Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,114 Bytes
2f5bf7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from datasets import load_dataset

def hf_beir_queries(queries):
    queries_beir = {}
    for query in queries:
        queries_beir[query['_id']] = query['text']
    return(queries_beir)

def hf_beir_corpus(corpus):
    corpus_beir = {}
    for doc in corpus:
        corpus_beir[doc['_id']] = doc
    return(corpus_beir)

def hf_beir_qrels(qrels):
    qrels_beir = {}
    for el in qrels:
        if str(el['query-id']) in qrels_beir:
            qrels_beir[str(el['query-id'])][str(el['corpus-id'])] = el['score']
        else:
            qrels_beir[str(el['query-id'])] = {str(el['corpus-id']): el['score']}
    return(qrels_beir)

def load_data(
    path,
    lang
):
    queries = load_dataset(path, 'queries-' + str(lang), split='default')
    queries = hf_beir_queries(queries)
    corpus = load_dataset(path, 'corpus-' + str(lang), split='default')
    corpus = hf_beir_corpus(corpus)
    qrels = load_dataset(path, 'qrels-' + str(lang), split='default')
    qrels = hf_beir_qrels(qrels)
    images = load_dataset(path, 'images-' + str(lang), split='default')
    return(queries, corpus, qrels, images)