import os import logging import numpy as np from tabulate import tabulate import utils.trackeval as trackeval from typing import List, Dict, Set, Tuple, Any from utils.io_utils import make_dir, validate_file_path, load_json_from_file from utils.classes import CLASS_LIST logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%y/%m/%d %H:%M:%S", level=logging.INFO) def prepare_ground_truth_file(input_file_path: str, output_file_path: str, fps: int) -> None: """ Converts the ground truth file into a MOT (Multiple Object Tracking) format for evaluation. :param str input_file_path: The path to the input ground truth file. :param str output_file_path: The path where the output MOT file will be saved. :param int fps: The frame rate (FPS) of the videos. :param AppConfig app_config: The application configuration object. :return: None :rtype: None :: prepare_ground_truth_file(input_file_path, output_file_path, fps, app_config, ground_truth_frame_offset_secs) """ output_file = open(output_file_path, "w") with open(input_file_path) as f: for line_number, line in enumerate(f): line = line.split(" ") object_id = int(line[2]) frame_id = int(line[3]) + 1 x = float(line[4]) y = float(line[5]) z = float(line[6]) width = float(line[7]) length = float(line[8]) height = float(line[9]) yaw = float(line[10]) pitch = 0 roll = 0 result_str = ( f"{frame_id} {object_id} 1 " f"{x:.5f} {y:.5f} {z:.5f} " f"{width:.5f} {length:.5f} {height:.5f} {pitch:.5f} {roll:.5f} {yaw:.5f}\n" ) output_file.write(result_str) output_file.close() def prepare_prediction_file(input_file_path: str, output_file_path: str, fps: float) -> List[int]: """ Converts the prediction file into a MOT (Multiple Object Tracking) format for evaluation. :param str input_file_path: The path to the input prediction file. :param str output_file_path: The path where the output MOT file will be saved. :param float fps: The frame rate (FPS) of the videos. :: prepare_prediction_file(input_file_path, output_file_path, fps) """ output_file = open(output_file_path, "w") with open(input_file_path) as f: for line_number, line in enumerate(f): line = line.split(" ") object_id = int(line[2]) frame_id = int(line[3]) + 1 x = float(line[4]) y = float(line[5]) z = float(line[6]) width = float(line[7]) length = float(line[8]) height = float(line[9]) yaw = float(line[10]) pitch = 0 roll = 0 result_str = ( f"{frame_id} {object_id} 1 " f"{x:.5f} {y:.5f} {z:.5f} " f"{width:.5f} {length:.5f} {height:.5f} {pitch:.5f} {roll:.5f} {yaw:.5f}\n" ) output_file.write(result_str) output_file.close() return def make_seq_maps_file(seq_maps_dir_path: str, sensor_ids: List[str], benchmark: str, split_to_eval: str) -> None: """ Creates a sequence-maps file used by the TrackEval library. :param str seq_maps_dir_path: The directory path where the sequence-maps file will be saved. :param List[str] sensor_ids: A list of sensor IDs to include in the sequence-maps file. :param str benchmark: The name of the benchmark. :param str split_to_eval: The name of the split for evaluation. :return: None :rtype: None :: make_seq_maps_file(seq_maps_dir_path, sensor_ids, benchmark, split_to_eval) """ make_dir(seq_maps_dir_path) seq_maps_file_name = benchmark + "-" + split_to_eval + ".txt" seq_maps_file_path = os.path.join(seq_maps_dir_path, seq_maps_file_name) f = open(seq_maps_file_path, "w") f.write("name\n") for sensor_id in sensor_ids: f.write(sensor_id + "\n") f.close() def setup_evaluation_configs(results_dir_path: str, eval_type:str, num_cores:int) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ Sets up the evaluation configurations for TrackEval. :param str results_dir_path: The path to the folder that stores the results. :param str eval_type: The type of evaluation to perform ("bbox" or "location"). :return: A tuple containing the dataset configuration and evaluation configuration. :rtype: Tuple[Dict[str, Any], Dict[str, Any]] :: dataset_config, eval_config = setup_evaluation_configs(results_dir_path, eval_type) """ eval_config = trackeval.eval.Evaluator.get_default_eval_config() eval_config["PRINT_CONFIG"] = False eval_config["USE_PARALLEL"] = True eval_config["NUM_PARALLEL_CORES"] = num_cores # Create dataset configs for TrackEval library if eval_type == "bbox": dataset_config = trackeval.datasets.MTMCChallenge3DBBox.get_default_dataset_config() elif eval_type == "location": dataset_config = trackeval.datasets.MTMCChallenge3DLocation.get_default_dataset_config() dataset_config["DO_PREPROC"] = False dataset_config["SPLIT_TO_EVAL"] = "all" evaluation_dir_path = os.path.join(results_dir_path, "evaluation") make_dir(evaluation_dir_path) dataset_config["GT_FOLDER"] = os.path.join(evaluation_dir_path, "gt") dataset_config["TRACKERS_FOLDER"] = os.path.join(evaluation_dir_path, "scores") dataset_config["PRINT_CONFIG"] = False return dataset_config, eval_config def make_seq_ini_file(gt_dir: str, camera: str, seq_length: int) -> None: """ Creates a sequence-ini file used by the TrackEval library. :param str gt_dir: The directory path where the sequence-ini file will be saved. :param str camera: The name of a single sensor :param int seq_length: The number of frames in the sequence. :return: None :rtype: None :: make_seq_ini_file(gt_dir, camera, seq_length) """ ini_file_name = gt_dir + "/seqinfo.ini" f = open(ini_file_name, "w") f.write("[Sequence]\n") name= "name=" +str(camera)+ "\n" f.write(name) f.write("imDir=img1\n") f.write("frameRate=30\n") seq = "seqLength=" + str(seq_length) + "\n" f.write(seq) f.write("imWidth=1920\n") f.write("imHeight=1080\n") f.write("imExt=.jpg\n") f.close() def prepare_evaluation_folder(dataset_config: Dict[str, Any], input_file_type: str) -> Tuple[str, str]: """ Prepares the evaluation folder structure required for TrackEval. :param Dict[str, Any] dataset_config: The dataset configuration dictionary. :return: A tuple containing the prediction file path and ground truth file path. :rtype: Tuple[str, str] :: pred_file_path, gt_file_path = prepare_evaluation_folder(dataset_config) """ # Create evaluation configs for TrackEval library sensor_ids: Set[str] = set() sensor_ids.add(input_file_type) sensor_ids = sorted(list(sensor_ids)) # Create sequence maps file for evaluation seq_maps_dir_path = os.path.join(dataset_config["GT_FOLDER"], "seqmaps") make_seq_maps_file(seq_maps_dir_path, sensor_ids, dataset_config["BENCHMARK"], dataset_config["SPLIT_TO_EVAL"]) # Create ground truth directory mot_version = dataset_config["BENCHMARK"] + "-" + dataset_config["SPLIT_TO_EVAL"] gt_root_dir_path = os.path.join(dataset_config["GT_FOLDER"], mot_version) gt_dir_path = os.path.join(gt_root_dir_path, input_file_type) make_dir(gt_dir_path) gt_output_dir_path = os.path.join(gt_dir_path, "gt") make_dir(gt_output_dir_path) gt_file_path = os.path.join(gt_output_dir_path, "gt.txt") # Generate sequence file required for TrackEval library make_seq_ini_file(gt_dir_path, camera=input_file_type, seq_length=20000) # Create prediction directory pred_dir_path = os.path.join(dataset_config["TRACKERS_FOLDER"], mot_version, "data", "data") make_dir(pred_dir_path) pred_file_path = os.path.join(pred_dir_path, f"{input_file_type}.txt") return pred_file_path, gt_file_path def run_evaluation(gt_file, prediction_file, fps, app_config, dataset_config, eval_config, eval_type): """ Executes the evaluation process using TrackEval based on the provided configurations. :param str gt_file: The ground truth file path. :param str prediction_file: The prediction file path. :param float fps: The frames per second rate. :param AppConfig app_config: The application configuration object. :param Dict[str, Any] dataset_config: The dataset configuration dictionary. :param Dict[str, Any] eval_config: The evaluation configuration dictionary. :param str eval_type: The type of evaluation to perform ("bbox" or "location"). :return: The evaluation results. :rtype: Any :: results = run_evaluation(gt_file, prediction_file, fps, app_config, dataset_config, eval_config, eval_type) """ # Define the metrics to calculate metrics_config = {"METRICS": ["HOTA"]} metrics_config["PRINT_CONFIG"] = False config = {**eval_config, **dataset_config, **metrics_config} # Merge configs eval_config = {k: v for k, v in config.items() if k in eval_config.keys()} dataset_config = {k: v for k, v in config.items() if k in dataset_config.keys()} metrics_config = {k: v for k, v in config.items() if k in metrics_config.keys()} # Run the Evaluator evaluator = trackeval.eval.Evaluator(eval_config) if eval_type == "bbox": dataset_list = [trackeval.datasets.MTMCChallenge3DBBox(dataset_config)] elif eval_type == "location": dataset_list = [trackeval.datasets.MTMCChallenge3DLocation(dataset_config)] metrics_list: List[str] = list() for metric in [trackeval.metrics.HOTA, trackeval.metrics.CLEAR, trackeval.metrics.Identity]: if metric.get_name() in metrics_config["METRICS"]: metrics_list.append(metric(metrics_config)) if len(metrics_list) == 0: raise Exception("No metric selected for evaluation.") results = evaluator.evaluate(dataset_list, metrics_list) return results def _evaluate_tracking_for_all_BEV_sensors(ground_truth_file: str, prediction_file: str, output_directory, num_cores, fps): """ Evaluates tracking performance for all BEV sensors. :param str ground_truth_file: The path to the ground truth file. :param str prediction_file: The path to the prediction file. :param str output_directory: The directory where output files will be stored. :param str eval_options: The type of evaluation ("bbox" or "location"). :return: The evaluation results. :rtype: Any :: results = evaluate_tracking_for_all_bev_sensors(ground_truth_file, prediction_file, output_directory, app_config_path, calibration_file, eval_options) """ print("") all_results = {} for class_name in CLASS_LIST: class_dir = os.path.join(output_directory, class_name) if not os.path.isdir(class_dir): logging.warning(f"Skipping class folder '{class_name}' as it was not found.") print("--------------------------------") continue logging.info(f"Evaluating all BEV sensors on class {class_name}.") ground_truth_file = os.path.join(class_dir, "gt.txt") prediction_file = os.path.join(class_dir, "pred.txt") output_dir = os.path.join(class_dir, "output") if not os.path.exists(ground_truth_file) or not os.path.exists(prediction_file): logging.info(f"Skipping class folder '{class_name}' as it was not found.") print("--------------------------------") continue # Setup evaluation library & folders dataset_config, eval_config = setup_evaluation_configs(output_directory, "bbox", num_cores) output_pred_file_name, output_gt_file_name = prepare_evaluation_folder(dataset_config, "MTMC") logging.info("Completed setup for evaluation library.") # Prepare ground truth prepare_ground_truth_file(ground_truth_file, output_gt_file_name, fps) logging.info(f"Completed parsing ground-truth file {ground_truth_file}.") # Prepare prediction results prepare_prediction_file(prediction_file, output_pred_file_name, fps) logging.info(f"Completed parsing prediction file {prediction_file}.") # Run evaluation results = run_evaluation(output_gt_file_name, output_pred_file_name, fps, None, dataset_config, eval_config, "bbox") all_results[class_name] = results print("--------------------------------------------------------------") return all_results