Datasets:

ArXiv:
License:
zhengthomastang's picture
Include evaluation tools for 2025 edition
6b88ca2
import os
import re
import json
import argparse
import logging
from typing import Any, Dict
from utils.classes import CLASS_LIST, map_sub_class_to_primary_class, map_class_id_to_class_name
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%y/%m/%d %H:%M:%S", level=logging.INFO)
class ValidateFile(argparse.Action):
"""
Custom argparse action to validate file paths.
"""
def __call__(self, parser, namespace, values, option_string=None):
# Validate the file path format
file_path_pattern = r"^[a-zA-Z0-9_\-\/.#+]+$"
if not re.match(file_path_pattern, values):
parser.error(f"Invalid file path: {values}")
# Check if the file exists
if not os.path.exists(values):
parser.error(f"File {values} does NOT exist.")
# Check if the file is readable
if not os.access(values, os.R_OK):
parser.error(f"File {values} is NOT readable.")
# Set the validated file path in the namespace
setattr(namespace, self.dest, values)
def validate_file_path(input_string: str) -> str:
"""
Validates whether the input string matches a file path pattern
:param str input_string: input string
:return: validated file path
:rtype: str
::
file_path = validate_file_path(input_string)
"""
file_path_pattern = r"^[a-zA-Z0-9_\-\/.#+]+$"
if re.match(file_path_pattern, input_string):
return input_string
else:
raise ValueError(f"Invalid file path: {input_string}")
def sanitize_string(input_string: str) -> str:
"""
Sanitizes an input string
:param str input_string: input string
:return: sanitized string
:rtype: str
::
sanitized_string = sanitize_string(input_string)
"""
# Allow alphanumeric characters, dots, slashes, underscores, hashes, and dashes
return re.sub(r"[^a-zA-Z0-9\._/#-]", "_", input_string)
def make_dir(dir_path: str) -> None:
"""
Safely create a directory.
"""
valid_dir_path = validate_file_path(dir_path)
if os.path.islink(valid_dir_path):
raise ValueError(f"Directory path {dir_path} must not be a symbolic link.")
try:
if not os.path.isdir(valid_dir_path):
os.makedirs(valid_dir_path)
except OSError as e:
raise ValueError(f"Failed to create directory {dir_path}: {e}")
def load_json_from_file(file_path: str) -> Any:
"""
Safely loads JSON data from a file.
"""
valid_file_path = validate_file_path(file_path)
try:
with open(valid_file_path, "r") as f:
return json.load(f)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON format in file {file_path}: {e}")
except Exception as e:
raise ValueError(f"An error occurred while loading file {file_path}: {e}")
def split_files_per_scene(gt_path: str, pred_path: str, output_base_dir: str, scene_id_2_scene_name: Dict[int, str], num_frames_to_eval: int = 9000):
"""
Splits GT and Pred files per scene, saving them into separate directories.
:param gt_path: Path to the ground truth JSON file.
:param pred_path: Path to the predictions JSON file.
:param output_base_dir: Base directory to save split files.
"""
# Create output base directory
os.makedirs(output_base_dir, exist_ok=True)
gt_scenes = set()
pred_scenes = set()
# convert to int
valid_scene_ids = set(int(scene_id) for scene_id in scene_id_2_scene_name.keys())
# Process GT data
scene_gt_writers = {}
with open(gt_path, "r") as gt_file:
for line in gt_file:
line_split = line.split(" ")
scene_id = int(line_split[0])
gt_scenes.add(scene_id)
if scene_id not in scene_gt_writers:
os.makedirs(os.path.join(output_base_dir, f"scene_{scene_id}"), exist_ok=True)
scene_gt_writers[scene_id] = open(os.path.join(output_base_dir, f"scene_{scene_id}", "gt.txt"), "w")
scene_gt_writers[scene_id].write(line)
# Close all GT writers
for writer in scene_gt_writers.values():
writer.close()
# convert gt_scenes to a list and sort it
gt_scenes = list(gt_scenes)
gt_scenes.sort()
logging.info(f"Found scenes {gt_scenes} in ground truth.")
# Process Pred data
scene_pred_writers = {}
with open(pred_path, "r") as pred_file:
for line in pred_file:
line_split = line.split(" ")
# Validate line length
if len(line_split) != 11:
raise ValueError(f"Found incorrect entry in predictions. Each entry should have 11 elements: (scene_id class_id object_id frame_id x y z width length height yaw)")
# Validate scene id
scene_id = int(line_split[0])
if scene_id not in valid_scene_ids:
raise ValueError(f"Found incorrect scene id in predictions: {scene_id}. Valid scene ids are: {valid_scene_ids}, defined by the scene_id_2_scene_name json file")
# Validate class id
class_id = int(line_split[1])
if class_id not in map_class_id_to_class_name:
raise ValueError(f"Found incorrect class id in predictions: {class_id}. Valid class ids are: {map_class_id_to_class_name.keys()}")
# Validate object id
object_id = int(line_split[2])
if object_id < 0:
raise ValueError(f"Found incorrect object id in predictions: {object_id}. Object id should be positive.")
# Validate frame id
frame_id = int(line_split[3])
if frame_id < 0:
raise ValueError(f"Found incorrect frame id in predictions: {frame_id}. Frame id should be 0 or positive.")
if int(frame_id) >= int(num_frames_to_eval):
continue
pred_scenes.add(scene_id)
if scene_id not in scene_pred_writers:
os.makedirs(os.path.join(output_base_dir, f"scene_{scene_id}"), exist_ok=True)
scene_pred_writers[scene_id] = open(os.path.join(output_base_dir, f"scene_{scene_id}", "pred.txt"), "w")
scene_pred_writers[scene_id].write(line)
# Close all Pred writers
for writer in scene_pred_writers.values():
writer.close()
# convert gt_scenes to a list and sort it
pred_scenes = list(pred_scenes)
pred_scenes.sort()
logging.info(f"Found scenes {pred_scenes} in predictions.")
def split_files_per_class(gt_path: str, pred_path: str, output_base_dir: str, confidence_threshold: float = 0.0, num_frames_to_eval:int = 20000, ground_truth_frame_offset_secs: float = 0.0, fps: float = 30.0):
"""
Splits GT and Pred files per class, saving them into separate directories.
:param gt_path: Path to the ground truth JSON file.
:param pred_path: Path to the predictions JSON file.
:param output_base_dir: Base directory to save split files.
"""
# Create output base directory
os.makedirs(output_base_dir, exist_ok=True)
gt_classes = set()
pred_classes = set()
# Process GT data
class_gt_writers = {}
with open(gt_path, "r") as gt_file:
for line in gt_file:
line_split = line.split(" ")
class_id = int(line_split[1])
class_name = map_class_id_to_class_name[class_id]
gt_classes.add(class_name)
if class_name not in class_gt_writers:
os.makedirs(os.path.join(output_base_dir, class_name), exist_ok=True)
class_gt_writers[class_name] = open(os.path.join(output_base_dir, class_name, "gt.txt"), "w")
class_gt_writers[class_name].write(line)
# Close all GT writers
for writer in class_gt_writers.values():
writer.close()
# convert gt_classes to a list and sort it
gt_classes = list(gt_classes)
gt_classes.sort()
logging.info(f"Found classes {gt_classes} in ground truth.")
# Process Pred data
class_pred_writers = {}
with open(pred_path, "r") as pred_file:
for line in pred_file:
line_split = line.split(" ")
class_id = int(line_split[1])
class_name = map_class_id_to_class_name[class_id]
pred_classes.add(class_name)
if class_name not in class_pred_writers:
os.makedirs(os.path.join(output_base_dir, class_name), exist_ok=True)
class_pred_writers[class_name] = open(os.path.join(output_base_dir, class_name, "pred.txt"), "w")
class_pred_writers[class_name].write(line)
# Close all Pred writers
for writer in class_pred_writers.values():
writer.close()
# convert gt_classes to a list and sort it
pred_classes = list(pred_classes)
pred_classes.sort()
logging.info(f"Found classes {pred_classes} in predictions.")
def get_no_of_objects_per_scene(gt_path: str, scene_id_2_scene_name: Dict[int, str]):
"""
Get the number of objects per scene in the ground truth file.
"""
no_of_objects_per_scene = {}
with open(gt_path, "r") as gt_file:
for line in gt_file:
line_split = line.split(" ")
scene_id = line_split[0]
if scene_id not in scene_id_2_scene_name:
continue
scene_name = scene_id_2_scene_name[scene_id]
if scene_name not in no_of_objects_per_scene:
no_of_objects_per_scene[scene_name] = 0
no_of_objects_per_scene[scene_name] += 1
return no_of_objects_per_scene
def split_files_by_sensor(gt_path: str, pred_path: str, output_base_dir: str, map_camera_name_to_bev_name, confidence_threshold, num_frames_to_eval):
"""
Splits GT and Pred files by sensor and saves them into separate directories.
:param gt_path: Path to the ground truth JSON file.
:param pred_path: Path to the predictions JSON file.
:param output_base_dir: Base directory to save split files.
"""
# Create output base directory
os.makedirs(output_base_dir, exist_ok=True)
# Set to keep track of unique sensor IDs
gt_sensors = set()
pred_sensors = set()
# Create writers for GT data
sensor_gt_writers = {}
with open(gt_path, "r") as gt_file:
for line in gt_file:
if '"' not in line and "'" in line:
line = line.replace("'", '"')
data = json.loads(line)
# Only eval frames below num_frames_to_eval
if int(data['id']) >= num_frames_to_eval:
continue
cam_sensor_name = data['sensorId']
# Convert camera id to BEV sensor id
bev_sensor_names = map_camera_name_to_bev_name[cam_sensor_name]
for bev_sensor_name in bev_sensor_names:
gt_sensors.add(bev_sensor_name)
sensor_dir = os.path.join(output_base_dir, bev_sensor_name)
os.makedirs(sensor_dir, exist_ok=True)
gt_file_path = os.path.join(sensor_dir, "gt.json")
if bev_sensor_name not in sensor_gt_writers:
sensor_gt_writers[bev_sensor_name] = open(gt_file_path, "w")
sensor_gt_writers[bev_sensor_name].write(json.dumps(data) + "\n")
# Close all GT writers
for writer in sensor_gt_writers.values():
writer.close()
# Log found BEV sensors in GT
logging.info(f"Found BEV sensors: {', '.join(sorted(gt_sensors))} in ground truth file.")
# Create writers for Pred data
sensor_pred_writers = {}
with open(pred_path, "r") as pred_file:
for line in pred_file:
if '"' not in line and "'" in line:
line = line.replace("'", '"')
data = json.loads(line)
# Only eval frames below num_frames_to_eval
if int(data['id']) >= num_frames_to_eval:
continue
sensor_name = data['sensorId']
pred_sensors.add(sensor_name)
sensor_dir = os.path.join(output_base_dir, sensor_name)
os.makedirs(sensor_dir, exist_ok=True)
if sensor_name not in sensor_pred_writers:
pred_file_path = os.path.join(sensor_dir, "pred.json")
sensor_pred_writers[sensor_name] = open(pred_file_path, "w")
filtered_objects = []
for obj in data["objects"]:
# Get the confidence value from bbox3d.
confidence = obj["bbox3d"]["confidence"]
if confidence >= confidence_threshold:
filtered_objects.append(obj)
# Replace the "objects" list with the filtered version.
data["objects"] = filtered_objects
sensor_pred_writers[sensor_name].write(json.dumps(data) + "\n")
# Close all Pred writers
for writer in sensor_pred_writers.values():
writer.close()
# Log found BEV sensors in Prediction
logging.info(f"Found BEV sensors: {', '.join(sorted(pred_sensors))} in prediction file.")
print("")