Datasets:

ArXiv:
License:
zhengthomastang's picture
Include evaluation tools for 2024 edition
a3341ee
from ._base_metric import _BaseMetric
from trackeval import _timing
class Count(_BaseMetric):
"""
Class which simply counts the number of tracker and gt detections and ids.
:param Dict config: configuration for the app
::
identity = trackeval.metrics.Count(config)
"""
def __init__(self, config=None):
super().__init__()
self.integer_fields = ['Dets', 'GT_Dets', 'IDs', 'GT_IDs']
self.fields = self.integer_fields
self.summary_fields = self.fields
@_timing.time
def eval_sequence(self, data):
"""
Returns counts for one sequence
:param Dict data: dictionary containing the data for the sequence
:return: dictionary containing the calculated count metrics
:rtype: Dict[str, Dict[str]]
"""
# Get results
res = {'Dets': data['num_tracker_dets'],
'GT_Dets': data['num_gt_dets'],
'IDs': data['num_tracker_ids'],
'GT_IDs': data['num_gt_ids'],
'Frames': data['num_timesteps']}
return res
def combine_sequences(self, all_res):
"""
Combines metrics across all sequences
:param Dict[str, float] all_res: dictionary containing the metrics for each sequence
:return: dictionary containing the combined metrics across sequences
:rtype: Dict[str, float]
"""
res = {}
for field in self.integer_fields:
res[field] = self._combine_sum(all_res, field)
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=None):
"""
Combines metrics across all classes by averaging over the class values
:param Dict[str, float] all_res: dictionary containing the ID metrics for each class
:param bool ignore_empty_classes: Flag to ignore empty classes, defaults to False
:return: dictionary containing the combined metrics averaged over classes
:rtype: Dict[str, float]
"""
res = {}
for field in self.integer_fields:
res[field] = self._combine_sum(all_res, field)
return res
def combine_classes_det_averaged(self, all_res):
"""
Combines metrics across all classes by averaging over the detection values
:param Dict[str, float] all_res: dictionary containing the metrics for each class
:return: dictionary containing the combined metrics averaged over detections
:rtype: Dict[str, float]
"""
res = {}
for field in self.integer_fields:
res[field] = self._combine_sum(all_res, field)
return res