Datasets:
ArXiv:
License:
#!/usr/bin/python3 | |
""" | |
Evaluation script for the Multi-Camera People Tracking track in the AI City Challenge, Track 1 in 2024. | |
# Environment setup: | |
[Optional] conda create -n aicity24-track1 python=3.10 | |
[Optional] conda activate aicity24-track1 | |
pip3 install pandas | |
pip3 install matplotlib | |
pip3 install scipy | |
# Usage: Set number of cores based on your cpu core count. | |
python3 aicityeval-track1.py --prediction_file ./sample_file/pred.txt --ground_truth_file ./sample_file/ground_truth_test_full.txt --num_cores 16 --scene_2_camera_id_file ./sample_file/scene_name_2_cam_id_full.json | |
python3 aicityeval-track1.py --prediction_file ./sample_file/pred.txt --ground_truth_file ./sample_file/ground_truth_test_half.txt --num_cores 16 --scene_2_camera_id_file ./sample_file/scene_name_2_cam_id_half.json | |
""" | |
import os | |
import sys | |
import time | |
import tempfile | |
import trackeval | |
import pandas as pd | |
import numpy as np | |
from argparse import ArgumentParser, ArgumentTypeError | |
from typing import List | |
from utils.io_utils import load_csv_to_dataframe_from_file, write_dataframe_to_csv_to_file, make_seq_maps_file, make_seq_ini_file, make_dir, check_file_size, get_scene_to_camera_id_dict | |
def get_unique_entry_per_scene(dataframe, scene_name, scene_2_camera_id): | |
camera_ids = scene_2_camera_id[scene_name] | |
filtered_df = dataframe[dataframe["CameraId"].isin(camera_ids)] | |
unique_entries_df = filtered_df.drop_duplicates(subset=["FrameId", "Id"]) | |
return unique_entries_df | |
def check_positive(value): | |
int_value = int(value) | |
if int_value <= 0: | |
raise ArgumentTypeError(f"{value} is an invalid num of cores") | |
return int_value | |
def computes_mot_metrics(prediction_file_path: str, ground_truth_path: str, output_dir: str, num_cores: int, scene_2_cam_id_file: str) -> None: | |
check_file_size(prediction_file_path) | |
# Create a temp directory if output_dir is not specified | |
is_temp_dir = False | |
if output_dir is None: | |
temp_dir = tempfile.TemporaryDirectory() | |
is_temp_dir = True | |
output_dir = temp_dir.name | |
print(f"Temp files will be created here: {output_dir}") | |
# Create a scene 2 camera_id dict | |
scene_2_camera_id = get_scene_to_camera_id_dict(scene_2_cam_id_file) | |
camera_ids = {camera_id for camera_ids in scene_2_camera_id.values() for camera_id in camera_ids} | |
# Load ground truth and prediction files in dataframe | |
column_names = ["CameraId", "Id", "FrameId", "X", "Y", "Width", "Height", "Xworld", "Yworld"] | |
mot_pred_dataframe = load_csv_to_dataframe_from_file(prediction_file_path, column_names, camera_ids) | |
ground_truth_dataframe = load_csv_to_dataframe_from_file(ground_truth_path, column_names, camera_ids) | |
# Create evaluater configs for trackeval lib | |
default_eval_config = trackeval.eval.Evaluator.get_default_eval_config() | |
default_eval_config["PRINT_CONFIG"] = False | |
default_eval_config["USE_PARALLEL"] = True | |
default_eval_config["LOG_ON_ERROR"] = None | |
default_eval_config["NUM_PARALLEL_CORES"] = num_cores | |
# Create dataset configs for trackeval lib | |
default_dataset_config = trackeval.datasets.MotChallenge3DLocation.get_default_dataset_config() | |
default_dataset_config["DO_PREPROC"] = False | |
default_dataset_config["SPLIT_TO_EVAL"] = "all" | |
default_dataset_config["GT_FOLDER"] = os.path.join(output_dir, "evaluation", "gt") | |
default_dataset_config["TRACKERS_FOLDER"] = os.path.join(output_dir, "evaluation", "scores") | |
default_dataset_config["PRINT_CONFIG"] = False | |
# Make output directory for storing results | |
make_dir(default_dataset_config["GT_FOLDER"]) | |
make_dir(default_dataset_config["TRACKERS_FOLDER"]) | |
# Create sequence maps file for evaluation | |
seq_maps_file = os.path.join(default_dataset_config["GT_FOLDER"], "seqmaps") | |
make_seq_maps_file(seq_maps_file, scene_2_camera_id.keys(), default_dataset_config["BENCHMARK"], default_dataset_config["SPLIT_TO_EVAL"]) | |
# Set the metrics to obtain | |
default_metrics_config = {"METRICS": ["HOTA"], "THRESHOLD": 0.5} | |
default_metrics_config["PRINT_CONFIG"] = False | |
config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs | |
eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()} | |
dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()} | |
metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()} | |
# Create prediction and ground truth list | |
for scene_name in scene_2_camera_id.keys(): | |
# Convert ground truth multi-camera dataframe to single camera in MOT format | |
ground_truth_dataframe_per_scene = get_unique_entry_per_scene(ground_truth_dataframe, scene_name, scene_2_camera_id) | |
ground_truth_dataframe_per_scene = ground_truth_dataframe_per_scene[["FrameId", "Id", "X", "Y", "Width", "Height", "Xworld", "Yworld"]] | |
ground_truth_dataframe_per_scene = ground_truth_dataframe_per_scene.sort_values(by="FrameId") | |
# Make ground truth frame-ids 1-based | |
ground_truth_dataframe_per_scene["FrameId"] += 1 | |
# Set other defaults | |
ground_truth_dataframe_per_scene["Conf"] = 1 | |
ground_truth_dataframe_per_scene["Zworld"] = -1 | |
ground_truth_dataframe_per_scene = ground_truth_dataframe_per_scene[["FrameId", "Id", "X", "Y", "Width", "Height", "Conf", "Xworld", "Yworld", "Zworld"]] | |
# Remove logs for negative frame ids | |
ground_truth_dataframe_per_scene = ground_truth_dataframe_per_scene[ground_truth_dataframe_per_scene["FrameId"] >= 1] | |
# Save single camera ground truth in MOT format as CSV | |
mot_version = default_dataset_config["BENCHMARK"] + "-" + default_dataset_config["SPLIT_TO_EVAL"] | |
gt_dir = os.path.join(default_dataset_config["GT_FOLDER"], mot_version) | |
dir_name = os.path.join(gt_dir, str(scene_name)) | |
gt_file_dir = os.path.join(gt_dir, str(scene_name), "gt") | |
gt_file_name = os.path.join(gt_file_dir, "gt.txt") | |
make_dir(gt_file_dir) | |
write_dataframe_to_csv_to_file(gt_file_name, ground_truth_dataframe_per_scene) | |
# Convert predicted multi-camera dataframe to MOT format | |
mot_pred_dataframe_per_scene = get_unique_entry_per_scene(mot_pred_dataframe, scene_name, scene_2_camera_id) | |
mot_pred_dataframe_per_scene = mot_pred_dataframe_per_scene[["FrameId", "Id", "X", "Y", "Width", "Height", "Xworld", "Yworld"]] | |
mot_pred_dataframe_per_scene = mot_pred_dataframe_per_scene.sort_values(by="FrameId") | |
# Make MOT prediction frame-ids 1-based | |
mot_pred_dataframe_per_scene["FrameId"] += 1 | |
# Remove logs for negative frame ids | |
mot_pred_dataframe_per_scene = mot_pred_dataframe_per_scene[mot_pred_dataframe_per_scene["FrameId"] >= 1] | |
# Set other defaults | |
mot_pred_dataframe_per_scene["Conf"] = 1 | |
mot_pred_dataframe_per_scene["Zworld"] = -1 | |
mot_pred_dataframe_per_scene = mot_pred_dataframe_per_scene[["FrameId", "Id", "X", "Y", "Width", "Height", "Conf", "Xworld", "Yworld", "Zworld"]] | |
# Save single camera prediction in MOT format as CSV | |
mot_file_dir = os.path.join(default_dataset_config["TRACKERS_FOLDER"], mot_version, "data", "data") | |
make_dir(mot_file_dir) | |
tracker_file_name = str(scene_name) + ".txt" | |
mot_file_name = os.path.join(mot_file_dir, tracker_file_name) | |
write_dataframe_to_csv_to_file(mot_file_name, mot_pred_dataframe_per_scene) | |
# Make sequence ini file for trackeval library | |
if np.isnan(mot_pred_dataframe_per_scene["FrameId"].max()): | |
last_frame_id = ground_truth_dataframe_per_scene["FrameId"].max() | |
elif np.isnan(ground_truth_dataframe_per_scene["FrameId"].max()): | |
last_frame_id = mot_pred_dataframe_per_scene["FrameId"].max() | |
else: | |
last_frame_id = max(mot_pred_dataframe_per_scene["FrameId"].max(), ground_truth_dataframe_per_scene["FrameId"].max()) | |
make_seq_ini_file(dir_name, scene=str(scene_name), seq_length=last_frame_id) | |
# Evaluate ground truth & prediction to get all exhaustive metrics | |
evaluator = trackeval.eval.Evaluator(eval_config) | |
dataset_list = [trackeval.datasets.MotChallenge3DLocation(dataset_config)] | |
temp_metrics_list = [trackeval.metrics.HOTA] | |
metrics_list = [] | |
for metric in temp_metrics_list: | |
if metric.get_name() in metrics_config["METRICS"]: | |
metrics_list.append(metric(metrics_config)) | |
results = evaluator.evaluate(dataset_list, metrics_list) | |
if is_temp_dir: | |
temp_dir.cleanup() | |
return results | |
def evaluate(prediction_file: str, ground_truth_file: str, output_dir: str, num_cores: int, scene_2_camera_id_file: str) -> None: | |
# Collect the result | |
sequence_result = computes_mot_metrics(prediction_file, ground_truth_file, output_dir, num_cores, scene_2_camera_id_file) | |
# Compute average | |
final_result = dict() | |
HOTA_scores = [] | |
DetA_scores = [] | |
AssA_scores = [] | |
LocA_scores = [] | |
for scene_name, result in sequence_result[0]["MotChallenge3DLocation"]["data"].items(): | |
if scene_name == "COMBINED_SEQ": | |
continue | |
result = result["pedestrian"]["HOTA"] | |
HOTA_scores.append(np.mean(result["HOTA"])) | |
DetA_scores.append(np.mean(result["DetA"])) | |
AssA_scores.append(np.mean(result["AssA"])) | |
LocA_scores.append(np.mean(result["LocA"])) | |
final_result["FINAL"] = dict() | |
final_result["FINAL"]["HOTA"] = np.mean(np.array(HOTA_scores)) | |
final_result["FINAL"]["DetA"] = np.mean(np.array(DetA_scores)) | |
final_result["FINAL"]["AssA"] = np.mean(np.array(AssA_scores)) | |
final_result["FINAL"]["LocA"] = np.mean(np.array(LocA_scores)) | |
return final_result | |
if __name__ == '__main__': | |
start = time.time() | |
# Parse arguments | |
parser = ArgumentParser() | |
parser.add_argument('--prediction_file', required=True) | |
parser.add_argument('--ground_truth_file', required=True) | |
parser.add_argument('--output_dir') | |
parser.add_argument('--num_cores', type=check_positive, default=1) | |
parser.add_argument('--scene_2_camera_id_file', required=True) | |
args = parser.parse_args() | |
# Run evaluation | |
final_result = evaluate(args.prediction_file, args.ground_truth_file, args.output_dir, args.num_cores, args.scene_2_camera_id_file) | |
end = time.time() | |
print(f"Total runtime: {end-start} seconds.") | |
print(f"HOTA: {float(final_result['FINAL']['HOTA'] * 100):.4f}%") | |
print(f"DetA: {float(final_result['FINAL']['DetA'] * 100):.4f}%") | |
print(f"AssA: {float(final_result['FINAL']['AssA'] * 100):.4f}%") | |
print(f"LocA: {float(final_result['FINAL']['LocA'] * 100):.4f}%") | |