Datasets:
ArXiv:
License:
File size: 6,477 Bytes
a3341ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import re
import argparse
import shutil
import json
import csv
import numpy as np
import pandas as pd
from typing import List, Set, Any
class ValidateFile(argparse.Action):
"""
Module to validate files
"""
def __call__(self, parser, namespace, values, option_string = None):
if not os.path.exists(values):
parser.error(f"Please enter a valid file path. Got: {values}")
elif not os.access(values, os.R_OK):
parser.error(f"File {values} doesn't have read access")
setattr(namespace, self.dest, values)
def validate_file_path(input_string: str) -> str:
"""
Validates whether the input string matches a file path pattern
:param str input_string: input string
:return: validated file path
:rtype: str
::
file_path = validate_file_path(input_string)
"""
file_path_pattern = r"^[a-zA-Z0-9_\-\/.#]+$"
if re.match(file_path_pattern, input_string):
return input_string
else:
raise ValueError(f"Invalid file path: {input_string}")
def load_csv_to_dataframe_from_file(file_path: str, column_names: List[str], camera_ids: Set, interval: int = 1) -> pd.DataFrame:
"""
Loads dataframe from a CSV file
:param str file_path: file path
:param List[str] column_names: column names
:return: dataframe in the file
:rtype: pd.DataFrame
::
dataFrame = load_csv_to_dataframe_from_file(file_path, column_names)
"""
data: List[List[str]] = list()
valid_file_path = validate_file_path(file_path)
df = pd.read_csv(valid_file_path, sep=" ", header=None, names=column_names, dtype={"CameraId": int, "Id": int, "FrameId": int})
# Ensure non-negative values for CameraId, Id, FrameId
if (df[['CameraId', 'Id', 'FrameId']] < 0).any().any():
raise ValueError("Invalid negative values found for CameraId, Id, or FrameId.")
# Filter by camera_id
df = df[df['CameraId'].isin(camera_ids)]
# Filter rows where FrameId % interval == 0
df = df[df['FrameId'] % interval == 0]
# Round the last two columns (assuming these are 'Xworld' and 'Yworld')
df['Xworld'] = df['Xworld'].round(3)
df['Yworld'] = df['Yworld'].round(3)
if len(df) == 0:
raise ValueError("DataFrame is empty after filtering process.")
return df
def write_dataframe_to_csv_to_file(file_path: str, data: pd.DataFrame, delimiter: str = " ") -> None:
"""
Writes dataframe to a CSV file
:param str file_path: file path
:param pd.DataFrame data: dataframe to be written
:param str delimiter: delimiter of the CSV file
:return: None
::
write_dataframe_to_csv_to_file(file_path, data, delimiter)
"""
data.to_csv(file_path, sep=delimiter, index=False, header=False)
def make_dir(dir_path: str) -> None:
"""
Makes a directory without removing other files
:param str dir_path: directory path
:return: None
::
make_dir(dir_path)
"""
valid_dir_path = validate_file_path(dir_path)
if not os.path.isdir(valid_dir_path):
os.makedirs(validate_file_path(dir_path))
def make_seq_maps_file(file_dir: str, scenes: List[str], benchmark: str, split_to_eval: str) -> None:
"""
Makes a sequence-maps file used by TrackEval library
:param str file_dir: file path
:param Set(str) sensor_ids: names of sensors
:param str benchmark: name of the benchmark
:param str split_to_eval: name of the split of data
:return: None
::
make_seq_maps_file(file_dir, sensor_ids)
"""
make_clean_dir(file_dir)
file_name = benchmark + "-" +split_to_eval + ".txt"
seq_maps_file = file_dir + "/" + file_name
f = open(seq_maps_file, "w")
f.write("name\n")
for name in scenes:
sensor_name = str(name) + "\n"
f.write(sensor_name)
# f.write("FINAL")
f.close()
def make_seq_ini_file(gt_dir: str, scene: str, seq_length: int) -> None:
"""
Makes a sequence-ini file used by TrackEval library
:param str gt_dir: file path
:param str scene: Name of a single scene
:param int seq_length: Number of frames
:return: None
::
make_seq_ini_file(gt_dir, scene, seq_length)
"""
ini_file_name = gt_dir + "/seqinfo.ini"
f = open(ini_file_name, "w")
f.write("[Sequence]\n")
name= "name=" +str(scene)+ "\n"
f.write(name)
f.write("imDir=img1\n")
f.write("frameRate=30\n")
seq = "seqLength=" + str(seq_length) + "\n"
f.write(seq)
f.write("imWidth=1920\n")
f.write("imHeight=1080\n")
f.write("imExt=.jpg\n")
f.close()
def get_scene_to_camera_id_dict(file_path):
"""
Loads a mapping of scene names to camera IDs from a JSON file.
:param str file_path: Path to the JSON file containing scenes data.
:return: A dictionary where keys are scene names and values are lists of camera IDs.
::
scene_to_camera_id_dict = get_scene_to_camera_id_dict(file_path)
"""
scene_2_cam_id = dict()
valid_file_path = validate_file_path(file_path)
with open(valid_file_path, "r") as file:
scenes_data = json.load(file)
for scene_data in scenes_data:
scene_name = scene_data["scene_name"]
camera_ids = scene_data["camera_ids"]
if scene_name not in scene_2_cam_id:
scene_2_cam_id[scene_name] = []
scene_2_cam_id[scene_name].extend(camera_ids)
return scene_2_cam_id
def check_file_size(file_path):
"""
Checks the size of a file and raises an exception if it exceeds 2 GB.
:param str file_path: Path to the file to be checked.
:return: None
:raises ValueError: If the file size is greater than 2 GB.
::
check_file_size(file_path)
"""
file_size_bytes = os.path.getsize(file_path)
file_size_gb = file_size_bytes / (2**30)
if file_size_gb > 2:
raise ValueError(f"The size of the file is {file_size_gb:.2f} GB, which is greater than the 2 GB")
def make_clean_dir(dir_path: str) -> None:
"""
Makes a clean directory
:param str dir_path: directory path
:return: None
::
make_clean_dir(dir_path)
"""
valid_dir_path = validate_file_path(dir_path)
if os.path.exists(valid_dir_path):
shutil.rmtree(dir_path, ignore_errors=True)
if not os.path.isdir(valid_dir_path):
os.makedirs(validate_file_path(dir_path))
|