Datasets:

ArXiv:
License:
File size: 7,500 Bytes
a3341ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
from abc import ABC, abstractmethod
from trackeval import _timing
from trackeval.utils import TrackEvalException


class _BaseMetric(ABC):
    @abstractmethod
    def __init__(self):
        self.plottable = False
        self.integer_fields = []
        self.float_fields = []
        self.array_labels = []
        self.integer_array_fields = []
        self.float_array_fields = []
        self.fields = []
        self.summary_fields = []
        self.registered = False

    #####################################################################
    # Abstract functions for subclasses to implement

    @_timing.time
    @abstractmethod
    def eval_sequence(self, data):
        ...

    @abstractmethod
    def combine_sequences(self, all_res):
        ...

    @abstractmethod
    def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False):
        ...

    @ abstractmethod
    def combine_classes_det_averaged(self, all_res):
        ...

    def plot_single_tracker_results(self, all_res, tracker, output_folder, cls):
        """
        Plot results of metrics, only valid for metrics with self.plottable
        
        :param Dict all_res: dictionary containing all results
        :param str tracker: The tracker to plot results for
        :param str output_folder: The output folder for saving the plots
        :param str cls: The class to plot results for

        :raises NotImplementedError: If the metric does not have self.plottable

        """
        if self.plottable:
            raise NotImplementedError('plot_results is not implemented for metric %s' % self.get_name())
        else:
            pass

    #####################################################################
    # Helper functions which are useful for all metrics:

    @classmethod
    def get_name(cls):
        return cls.__name__

    @staticmethod
    def _combine_sum(all_res, field):
        """
        Combine sequence results via sum
        
        :param Dict all_res: dictionary containing sequence results
        :param str field: The field to be combined
        :return: The sum of the combined results
        :rtype: float
        """
        return sum([all_res[k][field] for k in all_res.keys()])

    @staticmethod
    def _combine_weighted_av(all_res, field, comb_res, weight_field):
        """
        Combine sequence results via weighted average

        :param Dict all_res: dictionary containing sequence results
        :param str field: The field to be combined
        :param Dict comb_res: dictionary containing combined results
        :param str weight_field: The field representing the weight
        :return: The weighted average of the combined results
        :rtype: float
        """
        return sum([all_res[k][field] * all_res[k][weight_field] for k in all_res.keys()]) / np.maximum(1.0, comb_res[
            weight_field])

    def print_table(self, table_res, tracker, cls):
        """
        Prints table of results for all sequences
        
        :param Dict table_res: dictionary containing the results for each sequence.
        :param str tracker: The name of the tracker.
        :param str cls: The name of the class.
        :return None
        """
        print('')
        metric_name = self.get_name()
        self._row_print([metric_name + ': ' + tracker + '-' + cls] + self.summary_fields)
        for seq, results in sorted(table_res.items()):
            if seq == 'COMBINED_SEQ':
                continue
            # if seq == 'FINAL':
            summary_res = self._summary_row(results)
            self._row_print([seq] + summary_res)
        summary_res = self._summary_row(table_res['COMBINED_SEQ'])
        # self._row_print(['COMBINED'] + summary_res)

    def _summary_row(self, results_):
        """
        Generate a summary row of values based on the provided results.
        :param Dict results_: dictionary containing the metric results.

        :return: A list of formatted values for the summary row.
        :rtype: list
        :raises NotImplementedError: If the summary function is not implemented for a field type.
        """
        vals = []
        for h in self.summary_fields:
            if h in self.float_array_fields:
                vals.append("{0:1.5g}".format(100 * np.mean(results_[h])))
            elif h in self.float_fields:
                vals.append("{0:1.5g}".format(100 * float(results_[h])))
            elif h in self.integer_fields:
                vals.append("{0:d}".format(int(results_[h])))
            else:
                raise NotImplementedError("Summary function not implemented for this field type.")
        return vals

    @staticmethod
    def _row_print(*argv):
        """
        Prints results in an evenly spaced rows, with more space in first row
        
        :param argv: The values to be printed in each column of the row.
        :type argv: tuple or list
        """
        if len(argv) == 1:
            argv = argv[0]
        to_print = '%-35s' % argv[0]
        for v in argv[1:]:
            to_print += '%-10s' % str(v)
        print(to_print)

    def summary_results(self, table_res):
        """
        Returns a simple summary of final results for a tracker
        
        :param Dict table_res: The table of results containing per-sequence and combined sequence results.
        :return: dictionary representing the summary of final results.
        :rtype: Dict
        """
        return dict(zip(self.summary_fields, self._summary_row(table_res['COMBINED_SEQ'])))

    def detailed_results(self, table_res):
        """
        Returns detailed final results for a tracker
        
        :param Dict table_res: The table of results containing per-sequence and combined sequence results.
        :return: Detailed results for each sequence as a dictionary of dictionaries.
        :rtype: Dict
        :raises TrackEvalException: If the field names and data have different sizes.
        """
        # Get detailed field information
        detailed_fields = self.float_fields + self.integer_fields
        for h in self.float_array_fields + self.integer_array_fields:
            for alpha in [int(100*x) for x in self.array_labels]:
                detailed_fields.append(h + '___' + str(alpha))
            detailed_fields.append(h + '___AUC')

        # Get detailed results
        detailed_results = {}
        for seq, res in table_res.items():
            detailed_row = self._detailed_row(res)
            if len(detailed_row) != len(detailed_fields):
                raise TrackEvalException(
                    'Field names and data have different sizes (%i and %i)' % (len(detailed_row), len(detailed_fields)))
            detailed_results[seq] = dict(zip(detailed_fields, detailed_row))
        return detailed_results

    def _detailed_row(self, res):
        """
        Calculates a detailed row of results for a given set of metrics.

        :param Dict res: The results containing the metrics.
        :return: Detailed row of results.
        :rtype: list
        """
        detailed_row = []
        for h in self.float_fields + self.integer_fields:
            detailed_row.append(res[h])
        for h in self.float_array_fields + self.integer_array_fields:
            for i, alpha in enumerate([int(100 * x) for x in self.array_labels]):
                detailed_row.append(res[h][i])
            detailed_row.append(np.mean(res[h]))
        return detailed_row