--- annotations_creators: - human-annotated language: - ara license: cc-by-sa-3.0 multilinguality: monolingual task_categories: - text-ranking task_ids: [] dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: test num_bytes: 2464880 num_examples: 4586 download_size: 1140185 dataset_size: 2464880 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: test num_bytes: 261220 num_examples: 4586 download_size: 37946 dataset_size: 261220 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 70977 num_examples: 918 download_size: 35987 dataset_size: 70977 - config_name: top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: test num_bytes: 166288 num_examples: 918 download_size: 34187 dataset_size: 166288 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: default data_files: - split: test path: data/test-* - config_name: queries data_files: - split: test path: queries/test-* - config_name: top_ranked data_files: - split: test path: top_ranked/test-* tags: - mteb - text ---
Mr. TyDi is a multi-lingual benchmark dataset built on TyDi, covering eleven typologically diverse languages. It is designed for monolingual retrieval, specifically to evaluate ranking with learned dense representations. This dataset adapts the arabic test split for Reranking evaluation purposes by the addition of multiple (Hard) Negatives to each query and positive | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Encyclopaedic, Written | | Reference | https://huggingface.co/NAMAA-Space | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["NamaaMrTydiReranking"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\\i}c and Reimers, Nils}, doi = {10.48550/ARXIV.2210.07316}, journal = {arXiv preprint arXiv:2210.07316}, publisher = {arXiv}, title = {MTEB: Massive Text Embedding Benchmark}, url = {https://arxiv.org/abs/2210.07316}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics