Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Korean
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
43b8179
·
verified ·
1 Parent(s): 682c322

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md CHANGED
@@ -1,4 +1,14 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -53,4 +63,131 @@ configs:
53
  data_files:
54
  - split: test
55
  path: queries/test-*
 
 
 
56
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - kor
6
+ license: mit
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-retrieval
10
+ task_ids:
11
+ - document-retrieval
12
  dataset_info:
13
  - config_name: corpus
14
  features:
 
63
  data_files:
64
  - split: test
65
  path: queries/test-*
66
+ tags:
67
+ - mteb
68
+ - text
69
  ---
70
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
71
+
72
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
73
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">AutoRAGRetrieval</h1>
74
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
75
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
76
+ </div>
77
+
78
+ This dataset enables the evaluation of Korean RAG performance across various domains—finance, public sector, healthcare, legal, and commerce—by providing publicly accessible documents, questions, and answers.
79
+
80
+ | | |
81
+ |---------------|---------------------------------------------|
82
+ | Task category | t2t |
83
+ | Domains | Government, Medical, Legal, Social, Financial |
84
+ | Reference | https://arxiv.org/abs/2410.20878 |
85
+
86
+
87
+ ## How to evaluate on this task
88
+
89
+ You can evaluate an embedding model on this dataset using the following code:
90
+
91
+ ```python
92
+ import mteb
93
+
94
+ task = mteb.get_tasks(["AutoRAGRetrieval"])
95
+ evaluator = mteb.MTEB(task)
96
+
97
+ model = mteb.get_model(YOUR_MODEL)
98
+ evaluator.run(model)
99
+ ```
100
+
101
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
102
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
103
+
104
+ ## Citation
105
+
106
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
107
+
108
+ ```bibtex
109
+
110
+ @misc{kim2024autoragautomatedframeworkoptimization,
111
+ archiveprefix = {arXiv},
112
+ author = {Dongkyu Kim and Byoungwook Kim and Donggeon Han and Matouš Eibich},
113
+ eprint = {2410.20878},
114
+ primaryclass = {cs.CL},
115
+ title = {AutoRAG: Automated Framework for optimization of Retrieval Augmented Generation Pipeline},
116
+ url = {https://arxiv.org/abs/2410.20878},
117
+ year = {2024},
118
+ }
119
+
120
+
121
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
122
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
123
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
124
+ publisher = {arXiv},
125
+ journal={arXiv preprint arXiv:2502.13595},
126
+ year={2025},
127
+ url={https://arxiv.org/abs/2502.13595},
128
+ doi = {10.48550/arXiv.2502.13595},
129
+ }
130
+
131
+ @article{muennighoff2022mteb,
132
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
133
+ title = {MTEB: Massive Text Embedding Benchmark},
134
+ publisher = {arXiv},
135
+ journal={arXiv preprint arXiv:2210.07316},
136
+ year = {2022}
137
+ url = {https://arxiv.org/abs/2210.07316},
138
+ doi = {10.48550/ARXIV.2210.07316},
139
+ }
140
+ ```
141
+
142
+ # Dataset Statistics
143
+ <details>
144
+ <summary> Dataset Statistics</summary>
145
+
146
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
147
+
148
+ ```python
149
+ import mteb
150
+
151
+ task = mteb.get_task("AutoRAGRetrieval")
152
+
153
+ desc_stats = task.metadata.descriptive_stats
154
+ ```
155
+
156
+ ```json
157
+ {
158
+ "test": {
159
+ "num_samples": 834,
160
+ "number_of_characters": 601650,
161
+ "num_documents": 720,
162
+ "min_document_length": 8,
163
+ "average_document_length": 824.6027777777778,
164
+ "max_document_length": 2485,
165
+ "unique_documents": 720,
166
+ "num_queries": 114,
167
+ "min_query_length": 34,
168
+ "average_query_length": 69.6140350877193,
169
+ "max_query_length": 157,
170
+ "unique_queries": 114,
171
+ "none_queries": 0,
172
+ "num_relevant_docs": 114,
173
+ "min_relevant_docs_per_query": 1,
174
+ "average_relevant_docs_per_query": 1.0,
175
+ "max_relevant_docs_per_query": 1,
176
+ "unique_relevant_docs": 114,
177
+ "num_instructions": null,
178
+ "min_instruction_length": null,
179
+ "average_instruction_length": null,
180
+ "max_instruction_length": null,
181
+ "unique_instructions": null,
182
+ "num_top_ranked": null,
183
+ "min_top_ranked_per_query": null,
184
+ "average_top_ranked_per_query": null,
185
+ "max_top_ranked_per_query": null
186
+ }
187
+ }
188
+ ```
189
+
190
+ </details>
191
+
192
+ ---
193
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*