Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
French
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
d619c6f
·
verified ·
1 Parent(s): 1871a30

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +44 -15
README.md CHANGED
@@ -16,17 +16,26 @@ domains:
16
  - Written
17
  ---
18
  <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
19
- # AlloprofReranking
 
 
 
 
 
20
 
21
  This dataset was provided by AlloProf, an organisation in Quebec, Canada offering resources and a help forum curated by a large number of teachers to students on all subjects taught from in primary and secondary school
22
 
23
- > This dataset is included as a task in [`mteb`](https://github.com/embeddings-benchmark/mteb).
 
 
 
 
24
 
25
- - Task category: t2t
26
- - Domains: ['Web', 'Academic', 'Written']
27
 
28
  ## How to evaluate on this task
29
 
 
 
30
  ```python
31
  import mteb
32
 
@@ -38,23 +47,25 @@ evaluator.run(model)
38
  ```
39
 
40
  <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
41
- Reference: https://huggingface.co/datasets/antoinelb7/alloprof
42
 
43
  ## Citation
44
 
45
  If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
46
 
47
  ```bibtex
 
48
  @misc{lef23,
49
- doi = {10.48550/ARXIV.2302.07738},
50
- url = {https://arxiv.org/abs/2302.07738},
51
- author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.},
52
- keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
53
- title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study},
54
- publisher = {arXiv},
55
- year = {2023},
56
- copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
57
- }
 
58
 
59
  @article{enevoldsen2025mmtebmassivemultilingualtext,
60
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
@@ -78,6 +89,19 @@ If you use this dataset, please cite the dataset as well as [mteb](https://githu
78
  ```
79
 
80
  # Dataset Statistics
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  ```json
82
  {
83
  "test": {
@@ -110,4 +134,9 @@ If you use this dataset, please cite the dataset as well as [mteb](https://githu
110
  "max_top_ranked_per_query": 37
111
  }
112
  }
113
- ```
 
 
 
 
 
 
16
  - Written
17
  ---
18
  <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
19
+
20
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
21
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">AlloprofReranking</h1>
22
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
23
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
24
+ </div>
25
 
26
  This dataset was provided by AlloProf, an organisation in Quebec, Canada offering resources and a help forum curated by a large number of teachers to students on all subjects taught from in primary and secondary school
27
 
28
+ | | |
29
+ |---------------|---------------------------------------------|
30
+ | Task category | t2t |
31
+ | Domains | Web, Academic, Written |
32
+ | Reference | https://huggingface.co/datasets/antoinelb7/alloprof |
33
 
 
 
34
 
35
  ## How to evaluate on this task
36
 
37
+ You can evaluate an embedding model on this dataset using the following code:
38
+
39
  ```python
40
  import mteb
41
 
 
47
  ```
48
 
49
  <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
50
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
51
 
52
  ## Citation
53
 
54
  If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
55
 
56
  ```bibtex
57
+
58
  @misc{lef23,
59
+ author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.},
60
+ copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International},
61
+ doi = {10.48550/ARXIV.2302.07738},
62
+ keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
63
+ publisher = {arXiv},
64
+ title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study},
65
+ url = {https://arxiv.org/abs/2302.07738},
66
+ year = {2023},
67
+ }
68
+
69
 
70
  @article{enevoldsen2025mmtebmassivemultilingualtext,
71
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
 
89
  ```
90
 
91
  # Dataset Statistics
92
+ <details>
93
+ <summary> Dataset Statistics</summary>
94
+
95
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
96
+
97
+ ```python
98
+ import mteb
99
+
100
+ task = mteb.get_task("AlloprofReranking")
101
+
102
+ desc_stats = task.metadata.descriptive_stats
103
+ ```
104
+
105
  ```json
106
  {
107
  "test": {
 
134
  "max_top_ranked_per_query": 37
135
  }
136
  }
137
+ ```
138
+
139
+ </details>
140
+
141
+ ---
142
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*