Upload 6 files
Browse files
custom_code/GSAI-ML_LLaDA-8B-Instruct.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("text-generation", model="GSAI-ML/LLaDA-8B-Instruct", trust_remote_code=True)
|
13 |
+
messages = [
|
14 |
+
{"role": "user", "content": "Who are you?"},
|
15 |
+
]
|
16 |
+
pipe(messages)
|
17 |
+
# Load model directly
|
18 |
+
from transformers import AutoModelForCausalLM
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("GSAI-ML/LLaDA-8B-Instruct", trust_remote_code=True)
|
custom_code/Gen-Verse_MMaDA-8B-Base.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Load model directly
|
10 |
+
from transformers import AutoModel
|
11 |
+
model = AutoModel.from_pretrained("Gen-Verse/MMaDA-8B-Base", trust_remote_code=True)
|
custom_code/deepseek-ai_DeepSeek-R1.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1", trust_remote_code=True)
|
13 |
+
messages = [
|
14 |
+
{"role": "user", "content": "Who are you?"},
|
15 |
+
]
|
16 |
+
pipe(messages)
|
17 |
+
# Load model directly
|
18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True)
|
custom_code/deepseek-ai_DeepSeek-V3-0324.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-V3-0324", trust_remote_code=True)
|
13 |
+
messages = [
|
14 |
+
{"role": "user", "content": "Who are you?"},
|
15 |
+
]
|
16 |
+
pipe(messages)
|
17 |
+
# Load model directly
|
18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3-0324", trust_remote_code=True)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-V3-0324", trust_remote_code=True)
|
custom_code/jinaai_jina-embeddings-v3.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("feature-extraction", model="jinaai/jina-embeddings-v3", trust_remote_code=True)
|
13 |
+
# Load model directly
|
14 |
+
from transformers import AutoModel
|
15 |
+
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True)
|
custom_code/pfnet_plamo-2-translate.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# /// script
|
3 |
+
# requires-python = ">=3.12"
|
4 |
+
# dependencies = [
|
5 |
+
# "transformers",
|
6 |
+
# "torch",
|
7 |
+
# ]
|
8 |
+
# ///
|
9 |
+
# Use a pipeline as a high-level helper
|
10 |
+
from transformers import pipeline
|
11 |
+
|
12 |
+
pipe = pipeline("text-generation", model="pfnet/plamo-2-translate", trust_remote_code=True)
|
13 |
+
messages = [
|
14 |
+
{"role": "user", "content": "Who are you?"},
|
15 |
+
]
|
16 |
+
pipe(messages)
|
17 |
+
# Load model directly
|
18 |
+
from transformers import AutoModelForCausalLM
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("pfnet/plamo-2-translate", trust_remote_code=True)
|