michsethowusu commited on
Commit
a4d1276
·
verified ·
1 Parent(s): 9bcb9ce

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +126 -10
README.md CHANGED
@@ -1,22 +1,138 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: audio
5
  dtype: audio
6
  - name: text
7
  dtype: string
 
8
  splits:
9
  - name: train
10
- num_bytes: 7107874042.356
11
  num_examples: 21138
12
- download_size: 6551669090
13
- dataset_size: 7107874042.356
14
- configs:
15
- - config_name: default
16
- data_files:
17
- - split: train
18
- path: data/train-*
 
 
 
 
19
  ---
20
- # Dataset Card for "twi-speech-text-parallel-v2"
21
 
22
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - tw
4
+ license: cc-by-4.0
5
+ task_categories:
6
+ - automatic-speech-recognition
7
+ - text-to-speech
8
+ task_ids:
9
+ - keyword-spotting
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ modalities:
15
+ - audio
16
+ - text
17
  dataset_info:
18
  features:
19
  - name: audio
20
  dtype: audio
21
  - name: text
22
  dtype: string
23
+ config_name: default
24
  splits:
25
  - name: train
26
+ num_bytes: 0
27
  num_examples: 21138
28
+ download_size: 0
29
+ dataset_size: 0
30
+ tags:
31
+ - speech
32
+ - twi
33
+ - akan
34
+ - ghana
35
+ - african-languages
36
+ - low-resource
37
+ - parallel-corpus
38
+ pretty_name: Twi Speech-Text Parallel Dataset
39
  ---
 
40
 
41
+ # Twi Speech-Text Parallel Dataset
42
+
43
+ ## Dataset Description
44
+
45
+ This dataset contains 21138 parallel speech-text pairs for Twi (Akan), a language spoken primarily in Ghana. The dataset consists of audio recordings paired with their corresponding text transcriptions, making it suitable for automatic speech recognition (ASR) and text-to-speech (TTS) tasks.
46
+
47
+ ### Dataset Summary
48
+
49
+ - **Language**: Twi (Akan) - `tw`
50
+ - **Task**: Speech Recognition, Text-to-Speech
51
+ - **Size**: 21138 audio files > 1KB (small/corrupted files filtered out)
52
+ - **Format**: WAV audio files with corresponding text files
53
+ - **Modalities**: Audio + Text
54
+
55
+ ### Supported Tasks
56
+
57
+ - **Automatic Speech Recognition (ASR)**: Train models to convert Twi speech to text
58
+ - **Text-to-Speech (TTS)**: Use parallel data for TTS model development
59
+ - **Keyword Spotting**: Identify specific Twi words in audio
60
+ - **Phonetic Analysis**: Study Twi pronunciation patterns
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Fields
65
+
66
+ - `audio`: Audio file in WAV format
67
+ - `text`: Corresponding text transcription from paired text file
68
+
69
+ ### Data Splits
70
+
71
+ The dataset contains a single training split with 21138 filtered audio-text pairs.
72
+
73
+ ## Dataset Creation
74
+
75
+ ### Source Data
76
+
77
+ The audio data has been sourced ethically from consenting contributors. To protect the privacy of the original authors and speakers, specific source information cannot be shared publicly.
78
+
79
+ ### Data Processing
80
+
81
+ 1. Audio files and corresponding text files were collected from organized folder structure
82
+ 2. Text content was read from separate `.txt` files with matching filenames
83
+ 3. Files smaller than 1KB were filtered out to ensure audio quality
84
+ 4. Empty text files were excluded from the dataset
85
+ 5. Audio was processed using the [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) tool for alignment and quality assurance
86
+
87
+ ### Annotations
88
+
89
+ Text annotations are stored in separate text files with matching filenames to the audio files, representing the spoken content in each audio recording.
90
+
91
+ ## Considerations for Using the Data
92
+
93
+ ### Social Impact of Dataset
94
+
95
+ This dataset contributes to the preservation and digital representation of Twi, supporting:
96
+ - Language technology development for underrepresented languages
97
+ - Educational resources for Twi language learning
98
+ - Cultural preservation through digital archives
99
+
100
+ ### Discussion of Biases
101
+
102
+ - The dataset may reflect the pronunciation patterns and dialects of specific regions or speakers
103
+ - Audio quality and recording conditions may vary across samples
104
+ - The vocabulary is limited to the words present in the collected samples
105
+
106
+ ### Other Known Limitations
107
+
108
+ - Limited vocabulary scope (word-level rather than sentence-level)
109
+ - Potential audio quality variations
110
+ - Regional dialect representation may be uneven
111
+
112
+ ## Additional Information
113
+
114
+ ### Licensing Information
115
+
116
+ This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
117
+
118
+ ### Citation Information
119
+
120
+ If you use this dataset in your research, please cite:
121
+
122
+ ```
123
+ @dataset{twi_words_parallel_2025,
124
+ title={Twi Words Speech-Text Parallel Dataset},
125
+ year={2025},
126
+ publisher={Hugging Face},
127
+ howpublished={\url{https://huggingface.co/datasets/[your-username]/twi-words-speech-text-parallel}}
128
+ }
129
+ ```
130
+
131
+ ### Acknowledgments
132
+
133
+ - Audio processing and alignment performed using [MMS-300M-1130 Forced Aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner)
134
+ - Thanks to all contributors who provided audio samples while maintaining privacy protection
135
+
136
+ ### Contact
137
+
138
+ For questions or concerns about this dataset, please open an issue in the dataset repository.