Datasets:
Upload Molecule3D_preprocessing.py
Browse files- Molecule3D_preprocessing.py +240 -0
Molecule3D_preprocessing.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is a script for Molecule3D dataset preprocessing
|
2 |
+
|
3 |
+
# 1. Load modules
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import urllib.request
|
7 |
+
import tqdm
|
8 |
+
import rdkit
|
9 |
+
from rdkit import Chem
|
10 |
+
import os
|
11 |
+
import molvs
|
12 |
+
import csv
|
13 |
+
import json
|
14 |
+
|
15 |
+
standardizer = molvs.Standardizer()
|
16 |
+
fragment_remover = molvs.fragment.FragmentRemover()
|
17 |
+
|
18 |
+
|
19 |
+
# 2. Download the original dataset
|
20 |
+
# Original data
|
21 |
+
# Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
|
22 |
+
# Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng Deng, Maho Nakata, Shuiwang Ji
|
23 |
+
|
24 |
+
# Please download the files from the link below:
|
25 |
+
# https://drive.google.com/drive/u/2/folders/1y-EyoDYMvWZwClc2uvXrM4_hQBtM85BI
|
26 |
+
# Suppose the files have been downloaded and unzipped
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
# 3. This part adds SMILES in addition to SDF and save CSV files
|
31 |
+
# List of file ranges and corresponding SDF/CSV filenames
|
32 |
+
file_ranges = [
|
33 |
+
(0, 1000000),
|
34 |
+
(1000001, 2000000),
|
35 |
+
(2000001, 3000000),
|
36 |
+
(3000001, 3899647)
|
37 |
+
]
|
38 |
+
|
39 |
+
# Base directory for input and output files
|
40 |
+
base_dir = '/YOUR LOCAL DIRECTORY/' # Please change this part
|
41 |
+
|
42 |
+
for start, end in file_ranges:
|
43 |
+
sdf_file = os.path.join(base_dir, f'combined_mols_{start}_to_{end}.sdf')
|
44 |
+
output_csv = os.path.join(base_dir, f'smiles_{start}_{end}.csv')
|
45 |
+
|
46 |
+
# Read the SDF file
|
47 |
+
suppl = Chem.SDMolSupplier(sdf_file)
|
48 |
+
|
49 |
+
# Write to CSV file with SMILES
|
50 |
+
with open(output_csv, mode='w', newline='') as file:
|
51 |
+
writer = csv.writer(file)
|
52 |
+
writer.writerow(['index', 'SMILES'])
|
53 |
+
|
54 |
+
for idx, mol in enumerate(suppl):
|
55 |
+
if mol is None:
|
56 |
+
continue
|
57 |
+
|
58 |
+
smiles = Chem.MolToSmiles(mol)
|
59 |
+
writer.writerow([f'{idx + start + 1}', smiles])
|
60 |
+
|
61 |
+
|
62 |
+
''' These files are expected to be stored:
|
63 |
+
smiles_sdf_0_1000000.csv
|
64 |
+
smiles_sdf_1000001_2000000.csv
|
65 |
+
smiles_sdf_2000001_3000000.csv
|
66 |
+
smiles_sdf_3000001_3899647.csv'''
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# 4. Check if there are any missing SMILES or sdf
|
71 |
+
|
72 |
+
df1 = pd.read_csv(f'{base_dir}/smiles_sdf_0_1000000.csv') # Suppose that you have already change the 'base_dir' above
|
73 |
+
df2 = pd.read_csv(f'{base_dir}/smiles_sdf_1000001_2000000.csv')
|
74 |
+
df3 = pd.read_csv(f'{base_dir}/smiles_sdf_2000001_3000000.csv')
|
75 |
+
df4 = pd.read_csv(f'{base_dir}/smiles_sdf_3000001_3899647.csv')
|
76 |
+
|
77 |
+
missing_1 = df1[df1.isna().any(axis = 1)]
|
78 |
+
missing_2 = df2[df2.isna().any(axis = 1)]
|
79 |
+
missing_3 = df3[df3.isna().any(axis = 1)]
|
80 |
+
missing_4 = df4[df4.isna().any(axis = 1)]
|
81 |
+
|
82 |
+
print('For smiles_sdf_0_1000000.csv file : ', missing_1)
|
83 |
+
print('For smiles_sdf_1000001_2000000.csv file : ', missing_2)
|
84 |
+
print('For smiles_sdf_2000001_3000000.csv file : ', missing_3)
|
85 |
+
print('For smiles_sdf_3000001_3899647.csv file : ', missing_4)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
# 5. Sanitize the molecules with MolVS
|
90 |
+
|
91 |
+
# This part would take a few hours
|
92 |
+
df1['X'] = [ \
|
93 |
+
rdkit.Chem.MolToSmiles(
|
94 |
+
fragment_remover.remove(
|
95 |
+
standardizer.standardize(
|
96 |
+
rdkit.Chem.MolFromSmiles(
|
97 |
+
smiles))))
|
98 |
+
for smiles in df1['SMILES']]
|
99 |
+
|
100 |
+
problems = []
|
101 |
+
for index, row in tqdm.tqdm(df1.iterrows()):
|
102 |
+
result = molvs.validate_smiles(row['X'])
|
103 |
+
if len(result) == 0:
|
104 |
+
continue
|
105 |
+
problems.append( (row['X'], result) )
|
106 |
+
|
107 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
108 |
+
for result, alert in problems:
|
109 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
110 |
+
|
111 |
+
df1.to_csv('smiles_sdf_0_1000000_sanitized.csv')
|
112 |
+
|
113 |
+
df2['X'] = [ \
|
114 |
+
rdkit.Chem.MolToSmiles(
|
115 |
+
fragment_remover.remove(
|
116 |
+
standardizer.standardize(
|
117 |
+
rdkit.Chem.MolFromSmiles(
|
118 |
+
smiles))))
|
119 |
+
for smiles in df2['SMILES']]
|
120 |
+
|
121 |
+
problems = []
|
122 |
+
for index, row in tqdm.tqdm(df2.iterrows()):
|
123 |
+
result = molvs.validate_smiles(row['X'])
|
124 |
+
if len(result) == 0:
|
125 |
+
continue
|
126 |
+
problems.append( (row['X'], result) )
|
127 |
+
|
128 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
129 |
+
for result, alert in problems:
|
130 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
131 |
+
|
132 |
+
df2.to_csv('smiles_sdf_1000001_2000000_sanitized.csv')
|
133 |
+
|
134 |
+
df3['X'] = [ \
|
135 |
+
rdkit.Chem.MolToSmiles(
|
136 |
+
fragment_remover.remove(
|
137 |
+
standardizer.standardize(
|
138 |
+
rdkit.Chem.MolFromSmiles(
|
139 |
+
smiles))))
|
140 |
+
for smiles in df3['SMILES']]
|
141 |
+
|
142 |
+
problems = []
|
143 |
+
for index, row in tqdm.tqdm(df3.iterrows()):
|
144 |
+
result = molvs.validate_smiles(row['X'])
|
145 |
+
if len(result) == 0:
|
146 |
+
continue
|
147 |
+
problems.append( (row['X'], result) )
|
148 |
+
|
149 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
150 |
+
for result, alert in problems:
|
151 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
152 |
+
|
153 |
+
df3.to_csv('smiles_sdf_2000001_3000000_sanitized.csv')
|
154 |
+
|
155 |
+
df4['X'] = [ \
|
156 |
+
rdkit.Chem.MolToSmiles(
|
157 |
+
fragment_remover.remove(
|
158 |
+
standardizer.standardize(
|
159 |
+
rdkit.Chem.MolFromSmiles(
|
160 |
+
smiles))))
|
161 |
+
for smiles in df4['SMILES']]
|
162 |
+
|
163 |
+
problems = []
|
164 |
+
for index, row in tqdm.tqdm(df4.iterrows()):
|
165 |
+
result = molvs.validate_smiles(row['X'])
|
166 |
+
if len(result) == 0:
|
167 |
+
continue
|
168 |
+
problems.append( (row['X'], result) )
|
169 |
+
|
170 |
+
# Most are because it includes the salt form and/or it is not neutralized
|
171 |
+
for result, alert in problems:
|
172 |
+
print(f"SMILES: {result}, problem: {alert[0]}")
|
173 |
+
|
174 |
+
df4.to_csv('smiles_sdf_3000001_3899647_sanitized.csv')
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
# 6. Concatenate four sanitized files to one long file
|
179 |
+
sanitized1 = pd.read_csv('smiles_sdf_0_1000000_sanitized.csv')
|
180 |
+
sanitized2 = pd.read_csv('smiles_sdf_1000001_2000000_sanitized.csv')
|
181 |
+
sanitized3 = pd.read_csv('smiles_sdf_2000001_3000000_sanitized.csv')
|
182 |
+
sanitized4 = pd.read_csv('smiles_sdf_3000001_3899647_sanitized.csv')
|
183 |
+
|
184 |
+
smiles_sdf_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)
|
185 |
+
|
186 |
+
smiles_sdf_concatenated.to_csv('smiles_sdf_concatenated.csv', index = False)
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
# 7. Combine the properties file to the smiles_sdf_concatenated.csv
|
191 |
+
smiles_sdf_concatenated = pd.read_csv('smiles_sdf_concatenated.csv')
|
192 |
+
|
193 |
+
properties = pd.read_csv('properties.csv') # This file is also from the link provided above
|
194 |
+
|
195 |
+
smiles_sdf_properties_concatenated = pd.concat([smiles_sdf_concatenated, properties], axis=1)
|
196 |
+
|
197 |
+
smiles_sdf_properties_concatenated.to_csv('smiles_sdf_properties.csv', index = False)
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
# 8. Rename the columns
|
202 |
+
columns_selected = smiles_sdf_properties_concatenated[['Unnamed: 0', 'X', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'homolumogap', 'scf energy']]
|
203 |
+
columns_selected.rename(columns={'Unnamed: 0': 'index', 'X': 'SMILES', 'homolumogap':'Y'}, inplace=True)
|
204 |
+
|
205 |
+
columns_selected.to_csv('Molecule3D_final.csv', index=False)
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
# 9. Split the dataset by using radom split and scaffold split
|
210 |
+
Molecule3D_final = pd.read_csv('Molecule3D_final.csv')
|
211 |
+
|
212 |
+
# Random split
|
213 |
+
with open('random_split_inds.json', 'r') as f: # random or scaffold
|
214 |
+
split_data = json.load(f)
|
215 |
+
|
216 |
+
random_train = Molecule3D_final[Molecule3D_final['index'].isin(split_data['train'])]
|
217 |
+
random_test = Molecule3D_final[Molecule3D_final['index'].isin(split_data['test'])]
|
218 |
+
random_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_data['valid'])]
|
219 |
+
|
220 |
+
random_train.to_parquet('Molecule3D_random_train.parquet', index=False)
|
221 |
+
random_test.to_parquet('Molecule3D_random_test.parquet', index=False)
|
222 |
+
random_valid.to_parquet('Molecule3D_random_validation.parquet', index=False)
|
223 |
+
|
224 |
+
|
225 |
+
# Scaffold split
|
226 |
+
with open('scaffold_split_inds.json', 'r') as f: # random or scaffold
|
227 |
+
split_scaffold = json.load(f)
|
228 |
+
|
229 |
+
scaffold_train = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['train'])]
|
230 |
+
scaffold_test = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['test'])]
|
231 |
+
scaffold_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['valid'])]
|
232 |
+
|
233 |
+
scaffold_train.to_parquet('Molecule3D_scaffold_train.parquet', index=False)
|
234 |
+
scaffold_test.to_parquet('Molecule3D_scaffold_test.parquet', index=False)
|
235 |
+
scaffold_valid.to_parquet('Molecule3D_scaffold_validation.parquet', index=False)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|