Datasets:

Formats:
json
Size:
< 1K
Libraries:
Datasets
pandas
License:
EMO / convert2jsonl.py
a43992899's picture
Upload folder using huggingface_hub
c650031 verified
import os, json, wave
def load_jsonl(file_path):
with open(file_path, 'r') as file:
d = json.load(file)
return d
def write_jsonl(data, output_file):
with open(output_file, 'w') as file:
for item in data:
json.dump(item, file)
file.write('\n')
def get_audio_info(audio_path):
"""
Extract duration (seconds), sample_rate (Hz), num_samples (int), bit_depth (bits), and channels (int) from a WAV file.
"""
with wave.open(audio_path, 'rb') as wf:
sample_rate = wf.getframerate()
num_samples = wf.getnframes()
duration = num_samples / float(sample_rate)
sample_width = wf.getsampwidth() # in bytes
bit_depth = sample_width * 8 # convert to bits
channels = wf.getnchannels() # number of audio channels
return duration, sample_rate, num_samples, bit_depth, channels
def convert_emo_to_jsonl(output_dir="data/EMO"):
metadata = load_jsonl(os.path.join(output_dir, "emomusic/meta.json"))
train, val, test = [], [], []
for uid, info in metadata.items():
audio_path = os.path.join(output_dir, "emomusic", "wav", f"{uid}.wav")
split = info['split']
label = info['y']
try:
duration, sr, num_samples, bit_depth, channels = get_audio_info(audio_path)
except Exception as e:
print(f"Error reading {audio_path}: {e}")
continue
o = {
"audio_path": audio_path,
"label": label,
"duration": duration,
"sample_rate": sr,
"num_samples": num_samples,
"bit_depth": bit_depth,
"channels": channels
}
if split == "train":
train.append(o)
elif split == "valid":
val.append(o)
elif split == "test":
test.append(o)
else:
print(f"Unknown split {split} for {uid}")
os.makedirs(output_dir, exist_ok=True)
write_jsonl(train, os.path.join(output_dir, "EMO.train.jsonl"))
write_jsonl(val, os.path.join(output_dir, "EMO.val.jsonl"))
write_jsonl(test, os.path.join(output_dir, "EMO.test.jsonl"))
print(f"train: {len(train)}, val: {len(val)}, test: {len(test)}")
print("Conversion completed.")
if __name__ == "__main__":
convert_emo_to_jsonl("data/EMO")
print("EMO dataset conversion to JSONL completed.")