# Model fine-tuning This directory contains scripts for: - **Model fine-tuning**: Generate datasets and fine-tune an LLM on GitHub PRs and commits. - **RAG indexing**: Generate vector indexes (embeddings) based on the repository. - **GitHub crawler**: Retrieve PR metadata, comments, reviews, and commit diffs from a public GitHub repository. ## Directory structure - `model/`: Python scripts for dataset generation, fine-tuning, and RAG vector indexing. - `github/`: Node.js CLI tool for crawling GitHub repositories. - `../data/`: Output directory for crawled data, generated datasets, and vector indexes. --- ## Dataset generation & RAG indexing ### Overview - **generate_dataset.py**: Processes raw PR metadata and commit diffs (from `../data/`) to generate training examples in JSONL format. - **rag.py**: Generates vector indexes (embeddings) from processed data for retrieval-augmented generation. ### Quick Start 1. **Install dependencies**: ```bash pip3 install -r requirements.txt ``` 2. **Prepare a `settings.json` file**: ```json { "system_instruction": "...", "base_model": "microsoft/Phi-4-reasoning", "max_context_size": 32768, "embed_model": "all-MiniLM-L6-v2", "repository": "https://github.com/dotnet/runtime" } ``` 3. **Data preparation & indexing**: - Run the dataset generator and RAG indexer: ```sh python3 generate_dataset.py python3 rag.py ``` ## GitHub Crawler A CLI tool to retrieve PR metadata, comments, reviews, and commit diffs from a public GitHub repo. ### Quick Start 1. **Install dependencies**: ```bash npm install ``` 2. **Set your GitHub token**: ```bash export GITHUB_TOKEN=YOUR_TOKEN ``` 3. **Run the crawler**: ```bash node main.js ``` ## Expected Output After running, you'll find: ``` ../data/raw_sample/ ├── prs/ │ ├── pr-1.json │ ├── pr-2.json │ └── ... └── diffs/ ├── .diff ├── .diff └── ... ../data/processed/ train.parquet test.parquet ../data/faiss/ index ```