jonathan-roberts1 commited on
Commit
996dd7f
·
1 Parent(s): b1e4fd6

Update SATIN.py

Browse files
Files changed (1) hide show
  1. SATIN.py +39 -165
SATIN.py CHANGED
@@ -1,189 +1,61 @@
1
- """
2
-
3
  import datasets
4
- import os
5
- import pyarrow.parquet as pq
6
- from PIL import Image
7
- from io import BytesIO
8
- import numpy as np
9
- import pandas as pd
10
-
11
-
12
- def load_data(data_dir):
13
- parquet_file = [file for file in os.listdir(data_dir) if file.endswith('.parquet')][0]
14
- print(parquet_file)
15
- parquet_path = os.path.join(data_dir, parquet_file)
16
 
17
- parquet_path = data_dir
18
- table = pq.read_table(parquet_path)
19
-
20
- for row in table.iterrecords():
21
- image_bytes = row['image']
22
- image = Image.open(BytesIO(image_bytes))
23
- label = row['label']
24
- yield image, label
25
 
 
 
 
 
 
 
 
26
 
27
 
28
  class SATINConfig(datasets.BuilderConfig):
 
29
 
30
-
31
- def __init__(self, name, description, data_url, class_names, **kwargs):
32
-
33
- Args:
34
- data_url: `string`, url to download the zip file from.
35
- metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
36
- **kwargs: keyword arguments forwarded to super.
37
 
38
  super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
39
  self.name = name
40
- self.data_url = data_url
41
- self.description = description
42
- self.class_names = class_names
43
-
44
-
45
- class SATIN(datasets.GeneratorBasedBuilder):
46
- SATIN Images dataset
47
-
48
- _SAT_4_NAMES = ['barren land', 'grassland', 'other', 'trees']
49
- _SAT_6_NAMES = ['barren land', 'building', 'grassland', 'road', 'trees', 'water']
50
-
51
- BUILDER_CONFIGS = [
52
- SATINConfig(
53
- name="SAT_4",
54
- description="SAT_4.",
55
- data_url="https://huggingface.co/datasets/jonathan-roberts1/SAT-4/tree/main/data/",#train-00000-of-00001-e2dcb38bc165dfb0.parquet",
56
- class_names = _SAT_4_NAMES
57
- #metadata_urls={
58
- # "train": "https://link-to-breakfast-foods-train.txt",
59
- ),
60
- SATINConfig(
61
- name="SAT_6",
62
- description="SAT_6.",
63
- data_url="https://huggingface.co/datasets/jonathan-roberts1/SAT-6/tree/main/data/",#train-00000-of-00001-c47ada2c92f814d2.parquet",
64
- class_names = _SAT_6_NAMES
65
- )
66
- ]
67
-
68
- @property
69
- def url_prefix(self):
70
- return {
71
- "SAT-4": "https://huggingface.co/datasets/jonathan-roberts1/SAT-4/tree/main/data/",#train-00000-of-00001-e2dcb38bc165dfb0.parquet",#train-00000-of-00001-e2dcb38bc165dfb0.parquet",
72
- "SAT-6": "https://huggingface.co/datasets/jonathan-roberts1/SAT-6/tree/main/data/",
73
- }
74
-
75
- def _info(self):
76
- return datasets.DatasetInfo(
77
- description=self.config.description,
78
- features=datasets.Features(
79
- {
80
- "image": datasets.Image(),
81
- "label": datasets.ClassLabel(names=self.config.class_names),
82
- }
83
- ),
84
- supervised_keys=("image", "label"),
85
- #homepage=_HOMEPAGE,
86
- #citation=_CITATION,
87
- #license=_LICENSE,
88
- #task_templates=[ImageClassification(image_column="image", label_column="label")],
89
- )
90
-
91
- def _split_generators(self, dl_manager):
92
- url = self.config.data_url
93
- data_dir = dl_manager.download_and_extract(url)#, use_auth_token=True)
94
- print(data_dir)
95
- return [
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TRAIN,
98
- gen_kwargs={"data_dir": data_dir},
99
- ),
100
- ]
101
-
102
- def _generate_examples(self, data_dir):
103
- #base_url = self.url_prefix[self.config.name]
104
- file_url = self.config.data_url
105
- use_auth_token = os.environ.get("HUGGINGFACE_TOKEN")
106
-
107
- with NamedTemporaryFile() as file:
108
- download(file_url, file.name, use_auth_token=use_auth_token)
109
- df = pd.read_parquet(file.name)
110
-
111
- for idx, row in df.iterrows():
112
- example = {
113
- "image": row["image"],
114
- "label": row["label"],
115
- }
116
- yield idx, example
117
-
118
-
119
- #def _generate_examples(self, data_dir):
120
- # for idx, (image, label) in enumerate(load_data(data_dir)):
121
- # image_array = np.array(image)
122
- # yield idx, {"image": image_array, "label": label}
123
- """
124
-
125
-
126
- from datasets.utils.download_manager import DownloadManager
127
- import tempfile
128
- import datasets
129
- import os
130
- import pyarrow.parquet as pq
131
- from PIL import Image
132
- from io import BytesIO
133
- import numpy as np
134
- import pandas as pd
135
-
136
-
137
- class SATINConfig(datasets.BuilderConfig):
138
-
139
-
140
- def __init__(self, name, description, data_url, class_names, **kwargs):
141
-
142
- super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
143
- self.name = name
144
- self.data_url = data_url
145
- self.description = description
146
- self.class_names = class_names
147
 
 
 
 
148
 
149
 
150
  class SATIN(datasets.GeneratorBasedBuilder):
151
  """SATIN Images dataset"""
152
 
153
- _SAT_4_NAMES = ['barren land', 'grassland', 'other', 'trees']
154
- _SAT_6_NAMES = ['barren land', 'building', 'grassland', 'road', 'trees', 'water']
155
-
156
- BUILDER_CONFIGS = [
157
- SATINConfig(
158
- name="SAT_4",
159
- description="SAT_4.",
160
- data_url="jonathan-roberts1/SAT-4",#https://huggingface.co/datasets/jonathan-roberts1/SAT-4/blob/main/data/train-00000-of-00001-e2dcb38bc165dfb0.parquet?raw=true",
161
- class_names=_SAT_4_NAMES
162
- ),
163
- SATINConfig(
164
- name="SAT_6",
165
- description="SAT_6.",
166
- data_url="jonathan-roberts1/SAT-6",#"https://huggingface.co/datasets/jonathan-roberts1/SAT-6/blob/main/data/train-00000-of-00001-c47ada2c92f814d2.parquet?raw=true",
167
- class_names=_SAT_6_NAMES
168
- )
169
- ]
170
 
171
  def _info(self):
 
 
 
 
 
172
  return datasets.DatasetInfo(
173
  description=self.config.description,
174
- features=datasets.Features(
175
- {
176
- "image": datasets.Image(),
177
- "label": datasets.ClassLabel(names=self.config.class_names),
178
- }
179
- ),
180
- supervised_keys=("image", "label"),
181
  )
182
 
 
183
  def _split_generators(self, dl_manager):
184
- #data_path = dl_manager.download(self.config.data_url)
185
- from datasets import load_dataset
186
- dataset = load_dataset(self.config.data_url)
187
  return [
188
  datasets.SplitGenerator(
189
  name=datasets.Split.TRAIN,
@@ -193,9 +65,11 @@ class SATIN(datasets.GeneratorBasedBuilder):
193
 
194
  def _generate_examples(self, data_path):
195
  # iterate over the Huggingface dataset and yield the idx, image and label
196
- huggingface_dataset = data_path["train"]
 
 
197
  for idx, row in enumerate(huggingface_dataset):
198
- yield idx, {"image": row["image"], "label": row["label"]}
199
 
200
 
201
 
 
 
 
1
  import datasets
2
+ from datasets import load_dataset
 
 
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
4
 
5
+ _CONSTITUENT_DATASETS = ['SAT-4', 'SAT-6', 'NASC-TG2', 'WHU-RS19', 'RSSCN7', 'RS_C11', 'SIRI-WHU', 'EuroSAT',
6
+ 'NWPU-RESISC45', 'PatternNet', 'RSD46-WHU', 'GID', 'CLRS', 'Optimal-31',
7
+ 'Airbus-Wind-Turbines-Patches', 'USTC_SmokeRS', 'Canadian_Cropland_Dataset',
8
+ 'Ships-In-Satellite-Imagery', 'Satellite-Images-of-Hurricane-Damage',
9
+ 'Brazilian_Coffee_Scenes', 'Brazilian_Cerrado-Savanna_Scenes', 'Million-AID',
10
+ 'UC_Merced_LandUse_MultiLabel', 'MLRSNet_MultiLabel', 'AID_MultiLabel',
11
+ 'MultiScene', 'RSI-CB256']
12
 
13
 
14
  class SATINConfig(datasets.BuilderConfig):
15
+ """BuilderConfig for SATIN"""
16
 
17
+ def __init__(self, name, **kwargs):
 
 
 
 
 
 
18
 
19
  super(SATINConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
20
  self.name = name
21
+ self.hf_dataset_name = 'jonathan-roberts1' + "/" + name
22
+ self.description = None
23
+ self.features = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ #stream_dataset_info = load_dataset(self.hf_dataset_name, streaming=True, split='train').info
26
+ #self.description = stream_dataset_info.description
27
+ #self.features = stream_dataset_info.features
28
 
29
 
30
  class SATIN(datasets.GeneratorBasedBuilder):
31
  """SATIN Images dataset"""
32
 
33
+ BUILDER_CONFIGS = [SATINConfig(name=dataset_name) for dataset_name in _CONSTITUENT_DATASETS]
34
+
35
+ """
36
+ def __init__(self, *args, **kwargs):
37
+ super().__init__(*args, **kwargs)
38
+ self.config.hf_dataset = load_dataset(self.config.hf_dataset_name)
39
+ self.config.description = self.config.hf_dataset['train'].description
40
+ self.config.features = self.config.hf_dataset['train'].features
41
+ print(self.config.features)
42
+ """
 
 
 
 
 
 
 
43
 
44
  def _info(self):
45
+ if self.config.description is None or self.config.features is None:
46
+ stream_dataset_info = load_dataset(self.config.hf_dataset_name, streaming=True, split='train').info
47
+ self.config.description = stream_dataset_info.description
48
+ self.config.features = stream_dataset_info.features
49
+ print(f'info {self.config.features}')
50
  return datasets.DatasetInfo(
51
  description=self.config.description,
52
+ features=self.config.features,
53
+ #supervised_keys=("image", "label"),
 
 
 
 
 
54
  )
55
 
56
+
57
  def _split_generators(self, dl_manager):
58
+ dataset = load_dataset(self.config.hf_dataset_name)
 
 
59
  return [
60
  datasets.SplitGenerator(
61
  name=datasets.Split.TRAIN,
 
65
 
66
  def _generate_examples(self, data_path):
67
  # iterate over the Huggingface dataset and yield the idx, image and label
68
+ _DEFAULT_SPLIT = 'train'
69
+ huggingface_dataset = data_path['train']
70
+ features = huggingface_dataset.features
71
  for idx, row in enumerate(huggingface_dataset):
72
+ yield idx, {feature: row[feature] for feature in features}
73
 
74
 
75