Jose Marie Antonio Minoza commited on
Commit
7ff24c2
·
1 Parent(s): 15ba0bf

Initial commit

Browse files
Files changed (5) hide show
  1. .gitattributes +2 -0
  2. README.md +100 -0
  3. data.csv +3 -0
  4. source.tar.gz +3 -0
  5. target.tar.gz +3 -0
.gitattributes CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
61
+ *.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ocean Floor Bathymetry Enhancement Dataset
2
+
3
+ This dataset contains bathymetric data supporting the research presented in "Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping" (ICLR 2025). It provides paired low-resolution and high-resolution bathymetric samples from various ocean regions worldwide.
4
+
5
+ ## Overview
6
+
7
+ Accurate ocean modeling and coastal hazard prediction depend on high-resolution bathymetric data; yet, current worldwide datasets are too coarse for exact numerical simulations. This dataset addresses this gap by providing paired samples that can be used to train deep learning models for bathymetric enhancement with uncertainty quantification.
8
+
9
+ ## Dataset Structure
10
+
11
+ The dataset is organized as follows:
12
+ - `source.tar.gz`: Contains low-resolution (32×32) bathymetry samples
13
+ - NumPy (.npy) files containing single-channel depth measurements
14
+ - `target.tar.gz`: Contains high-resolution bathymetry samples
15
+ - NumPy (.npy) files containing corresponding higher resolution measurements
16
+ - `data.csv`: Contains metadata for each sample including location, coordinates, etc.
17
+
18
+ ## Data Coverage
19
+
20
+ The dataset includes samples from six major oceanic regions:
21
+ 1. Western Pacific Region - Contains complex underwater ridge systems and notable bathymetric variation
22
+ 2. Indian Ocean Basin - Notable for tsunami risk and tectonic activity
23
+ 3. Eastern Atlantic Coast - Characterized by tsunami-prone areas and coastal flooding
24
+ 4. South Pacific Region - Features cyclones and wave-driven inundation patterns
25
+ 5. Eastern Pacific Basin - Contains frequent tsunamis and submarine volcanism
26
+ 6. North Atlantic Basin - Known for hurricanes and storm surges
27
+
28
+ ## Usage
29
+
30
+ The dataset includes a custom PyTorch dataset loader class that handles loading, normalization, and preprocessing:
31
+
32
+ ```python
33
+ from dataset import BathyGEBCOSuperResolutionDataset
34
+
35
+ # Initialize the dataset
36
+ dataset = BathyGEBCOSuperResolutionDataset(
37
+ base_dir="path/to/extracted/data",
38
+ split_type="train" # or "test"
39
+ )
40
+
41
+ # Access a sample
42
+ [low_res_16x16, low_res_32x32, high_res_64x64], metadata = dataset[0]
43
+
44
+ # Metadata contains information about the sample
45
+ print(metadata['location_name']) # e.g., "Western Pacific Region"
46
+ print(metadata['latitude'], metadata['longitude']) # Geographical coordinates
47
+ ```
48
+
49
+ The dataset loader automatically handles normalization and can be configured with specific statistics:
50
+
51
+ ```python
52
+ # Initialize with custom normalization parameters
53
+ cfg = {
54
+ 'mean': -3911.3894,
55
+ 'std': 1172.8374,
56
+ 'max': 0,
57
+ 'min': -10994
58
+ }
59
+
60
+ dataset = BathyGEBCOSuperResolutionDataset(
61
+ base_dir="path/to/extracted/data",
62
+ split_type="train",
63
+ cfg=cfg
64
+ )
65
+ ```
66
+
67
+ ## Related Research
68
+
69
+ This dataset was developed to support research on uncertainty-aware deep learning for bathymetric enhancement. The associated paper introduces a block-based uncertainty mechanism for capturing local bathymetric complexity with spatially adaptive confidence estimates.
70
+
71
+ ## Citation
72
+
73
+ If you use this dataset in your research, please cite:
74
+
75
+ ```
76
+ @inproceedings{minoza2025learning,
77
+ title={Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping},
78
+ author={Jose Marie Antonio Minoza},
79
+ booktitle={Tackling Climate Change with Machine Learning Workshop at ICLR},
80
+ year={2025}
81
+ }
82
+
83
+ @misc{ocean-floor-mapping2025_modelzoo,
84
+ doi = {10.5281/ZENODO.15272540},
85
+ author = {Minoza, Jose Marie Antonio},
86
+ title = {Model Zoo: Learning Enhanced Structural Representations with Block-Based Uncertainties for Ocean Floor Mapping},
87
+ publisher = {Zenodo},
88
+ year = {2025},
89
+ copyright = {Creative Commons Attribution 4.0 International}
90
+ }
91
+ ```
92
+
93
+ ## License
94
+
95
+ This dataset is licensed under the MIT License.
96
+
97
+ ## Acknowledgments
98
+
99
+ - GEBCO for providing the original bathymetric data
100
+ - The research was presented at the ICLR 2025 Workshop on Tackling Climate Change with Machine Learning
data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99da6dcf1e151185d1ec66f708e0bbd573686147b87a268cd0762daa008f36a1
3
+ size 7663115
source.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84026807af90f4e6e31ede38a8b7586ce55b393eb865e559e11b226fab6f18ff
3
+ size 26151175
target.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc56ddae42f8b0cdf1d7f4a1d582b7cc45380c366af66ba119e092552404ff6
3
+ size 74477510