jackkuo commited on
Commit
f8bcab7
·
verified ·
1 Parent(s): 2c1e1a5

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE4T4oBgHgl3EQfDgur/content/tmp_files/2301.04870v1.pdf.txt +1484 -0
  2. -NE4T4oBgHgl3EQfDgur/content/tmp_files/load_file.txt +0 -0
  3. -tFRT4oBgHgl3EQfrzf-/content/tmp_files/2301.13622v1.pdf.txt +1338 -0
  4. -tFRT4oBgHgl3EQfrzf-/content/tmp_files/load_file.txt +0 -0
  5. .gitattributes +29 -0
  6. 09E0T4oBgHgl3EQfuQEC/vector_store/index.faiss +3 -0
  7. 0tE0T4oBgHgl3EQfuAGv/content/tmp_files/2301.02600v1.pdf.txt +3439 -0
  8. 0tE0T4oBgHgl3EQfuAGv/content/tmp_files/load_file.txt +0 -0
  9. 19FST4oBgHgl3EQfXDjl/vector_store/index.faiss +3 -0
  10. 1NAzT4oBgHgl3EQft_01/content/tmp_files/2301.01683v1.pdf.txt +1506 -0
  11. 1NAzT4oBgHgl3EQft_01/content/tmp_files/load_file.txt +0 -0
  12. 1NFRT4oBgHgl3EQfljc6/content/tmp_files/2301.13599v1.pdf.txt +551 -0
  13. 1NFRT4oBgHgl3EQfljc6/content/tmp_files/load_file.txt +381 -0
  14. 5tE3T4oBgHgl3EQfpQqt/vector_store/index.pkl +3 -0
  15. 69FKT4oBgHgl3EQfUC2Z/content/tmp_files/2301.11782v1.pdf.txt +787 -0
  16. 69FKT4oBgHgl3EQfUC2Z/content/tmp_files/load_file.txt +311 -0
  17. 6NE2T4oBgHgl3EQfOwb7/content/tmp_files/2301.03753v1.pdf.txt +776 -0
  18. 6NE2T4oBgHgl3EQfOwb7/content/tmp_files/load_file.txt +184 -0
  19. 7dAzT4oBgHgl3EQfEvrf/content/tmp_files/2301.01000v1.pdf.txt +1816 -0
  20. 7dAzT4oBgHgl3EQfEvrf/content/tmp_files/load_file.txt +0 -0
  21. 8tFLT4oBgHgl3EQftS_u/content/tmp_files/2301.12151v1.pdf.txt +1280 -0
  22. 8tFLT4oBgHgl3EQftS_u/content/tmp_files/load_file.txt +0 -0
  23. 99FST4oBgHgl3EQfbzgH/content/tmp_files/2301.13800v1.pdf.txt +1623 -0
  24. 99FST4oBgHgl3EQfbzgH/content/tmp_files/load_file.txt +0 -0
  25. BNE2T4oBgHgl3EQfnggo/content/tmp_files/2301.04008v1.pdf.txt +1332 -0
  26. BNE2T4oBgHgl3EQfnggo/content/tmp_files/load_file.txt +0 -0
  27. D9AyT4oBgHgl3EQfevgJ/content/tmp_files/2301.00325v1.pdf.txt +5777 -0
  28. D9AyT4oBgHgl3EQfevgJ/content/tmp_files/load_file.txt +0 -0
  29. DNAyT4oBgHgl3EQf4frj/content/tmp_files/2301.00789v1.pdf.txt +1166 -0
  30. DNAyT4oBgHgl3EQf4frj/content/tmp_files/load_file.txt +0 -0
  31. E9FJT4oBgHgl3EQfCizA/content/2301.11430v1.pdf +3 -0
  32. E9FJT4oBgHgl3EQfCizA/vector_store/index.faiss +3 -0
  33. ENE2T4oBgHgl3EQfSgdx/content/2301.03793v1.pdf +3 -0
  34. ENE2T4oBgHgl3EQfSgdx/vector_store/index.faiss +3 -0
  35. ENFQT4oBgHgl3EQfQTaG/content/tmp_files/2301.13282v1.pdf.txt +723 -0
  36. HNAzT4oBgHgl3EQfHfvA/vector_store/index.pkl +3 -0
  37. HNE1T4oBgHgl3EQfrQW4/content/2301.03353v1.pdf +3 -0
  38. IdE3T4oBgHgl3EQfuguG/content/tmp_files/2301.04685v1.pdf.txt +2048 -0
  39. IdE3T4oBgHgl3EQfuguG/content/tmp_files/load_file.txt +0 -0
  40. JdAyT4oBgHgl3EQf5_qu/content/tmp_files/2301.00815v1.pdf.txt +898 -0
  41. JdAyT4oBgHgl3EQf5_qu/content/tmp_files/load_file.txt +0 -0
  42. LdFOT4oBgHgl3EQf0DSF/vector_store/index.pkl +3 -0
  43. NdFKT4oBgHgl3EQfey4y/content/2301.11826v1.pdf +3 -0
  44. NdFKT4oBgHgl3EQfey4y/vector_store/index.pkl +3 -0
  45. NtFOT4oBgHgl3EQf2jTj/content/tmp_files/2301.12943v1.pdf.txt +1313 -0
  46. NtFOT4oBgHgl3EQf2jTj/content/tmp_files/load_file.txt +0 -0
  47. O9FPT4oBgHgl3EQfnTX9/vector_store/index.pkl +3 -0
  48. PNAzT4oBgHgl3EQflP3v/content/tmp_files/2301.01546v1.pdf.txt +1638 -0
  49. PNAzT4oBgHgl3EQflP3v/content/tmp_files/load_file.txt +0 -0
  50. QdAyT4oBgHgl3EQftvmX/content/tmp_files/2301.00601v1.pdf.txt +1552 -0
-NE4T4oBgHgl3EQfDgur/content/tmp_files/2301.04870v1.pdf.txt ADDED
@@ -0,0 +1,1484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Semantic Segmentation via Pixel-to-Center Similarity Calculation
2
+ Dongyue Wu1, Zilin Guo1, Aoyan Li1, Changqian Yu2, Changxin Gao1, Nong Sang1
3
+ 1National Key Laboratory of Science and Technology on Multispectral Information Processing, School of
4
+ Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
5
+ {dongyue wu,zilin guo,aoyanli,cgao,nsang}@hust.edu.cn
6
+ 2Meituan Inc., Beijing, China
7
+ changqianyu@meituan.com
8
+ Abstract
9
+ Since the fully convolutional network has achieved
10
+ great success in semantic segmentation, lots of works
11
+ have been proposed focusing on extracting discrimina-
12
+ tive pixel feature representations. However, we observe
13
+ that existing methods still suffer from two typical chal-
14
+ lenges, i.e. (i) large intra-class feature variation in dif-
15
+ ferent scenes, (ii) small inter-class feature distinction in
16
+ the same scene. In this paper, we first rethink semantic
17
+ segmentation from a perspective of similarity between
18
+ pixels and class centers. Each weight vector of the seg-
19
+ mentation head represents its corresponding semantic
20
+ class in the whole dataset, which can be regarded as the
21
+ embedding of the class center. Thus, the pixel-wise clas-
22
+ sification amounts to computing similarity in the final
23
+ feature space between pixels and the class centers. Un-
24
+ der this novel view, we propose a Class Center Similarity
25
+ layer (CCS layer) to address the above-mentioned chal-
26
+ lenges by generating adaptive class centers conditioned
27
+ on different scenes and supervising the similarities be-
28
+ tween class centers. It utilizes a Adaptive Class Center
29
+ Module (ACCM) to generate class centers conditioned
30
+ on each scene, which adapt the large intra-class vari-
31
+ ation between different scenes. Specially designed loss
32
+ functions are introduced to control both inter-class and
33
+ intra-class distances based on predicted center-to-center
34
+ and pixel-to-center similarity, respectively. Finally, the
35
+ CCS layer outputs the processed pixel-to-center simi-
36
+ larity as the segmentation prediction. Extensive experi-
37
+ ments demonstrate that our model performs favourably
38
+ against the state-of-the-art CNN-based methods.
39
+ Keywords: semantic segmentation, similarity, adaptive
40
+ class center, intra-class variation, intra-class distinction.
41
+ 1. Introduction
42
+ Semantic segmentation aims to assign each pixel with a
43
+ semantic category, which is a fundamental and challenging
44
+ task in the computer vision field. Benefited from the devel-
45
+ opment of deep convolutional networks [23, 14, 22, 12], the
46
+ fully convolutional network (FCN) [18] has been the domi-
47
+ nant solution in the semantic segmentation task.
48
+ Due to the simplicity of the architecture of FCN, exist-
49
+ ing methods mainly focus on enhancing the feature repre-
50
+ sentations to improve visual recognition capability. They
51
+ aggregate rich contextual information via large receptive
52
+ field [31, 6], multi-scale methods [37, 4], or attention mech-
53
+ anisms [25, 9, 38, 8, 26]. However, we observe that these
54
+ methods still suffer from two challenges. (i) Large intra-
55
+ class feature variation between different scenes. Accord-
56
+ ing to Fig. 1, the features of the “trees” (colored in red) near
57
+ the wall in Sample A greatly differ from those on the bank
58
+ in Sample B, despite that they belong to the same semantic
59
+ category. Similarly, plant pixels of Sample A locate signif-
60
+ icantly far from those of Sample B, which also suggesting
61
+ large intra-class variation between pixels in different scenes.
62
+ (ii) Small inter-class distinction inside each scene. Take
63
+ Sample A in Fig. 1 for example, it is difficult for the seg-
64
+ mentation network to tell pixels belonging to the “tree” and
65
+ pixels belonging to the “plant” apart, since pixels belong-
66
+ ing to the “tree” are near to pixels of the “plant”, indicating
67
+ that the two groups of pixels of different semantic classes
68
+ bear similar features. These two challenges make it hard
69
+ to category pixels from the same class but different scenes
70
+ into the correct class while telling groups of pixels from the
71
+ different classes but the same scene apart from each other.
72
+ To solve the aforementioned challenges, we rethink pre-
73
+ vious methods from a perspective of similarity between pix-
74
+ els and class centers. Most previous methods utilize a 1 × 1
75
+ convolutional layer as the segmentation head to get the fi-
76
+ nal prediction. The weights of the convolutional layer are
77
+ trained through all training samples and conduct a convolu-
78
+ tion operation on the feature maps in the inference phase. In
79
+ other words, the learned weights perform correlation calcu-
80
+ lation with each pixel and output the map of inner produc-
81
+ tion which is widely used to measure the similarity between
82
+ features. As each vector of the weights can be regarded as
83
+ 1
84
+ arXiv:2301.04870v1 [cs.CV] 12 Jan 2023
85
+
86
+ Figure 1. Illustration of the overall distribution of “tree” and “plant” pixels on the ADE20K validation set. We show the distribution of the
87
+ two classes in feature space. For clarity, we only label the pixels belonging to “tree” and “plant”, which are in red and blue, respectively,
88
+ while the pixels that belong to other classes keep their original color. Each dot in our plot represents a randomly sampled pixel in the
89
+ feature space. The light-colored dots denote pixels sampled from other samples(scenes) in the whole dataset, while the dark-colored ones
90
+ are sampled from Sample A and Sample B. According to the plots, the features of both “tree” and “plant” in Sample A are quite different
91
+ from those in Sample B, suggesting large intra-class variation between different scenes. The features of “tree” and “plant” are hard to
92
+ distinguish in Sample A, because of the small inter-class distinction. The dimension of features is reduced for illustration using t-SNE [24].
93
+ (a) Images
94
+ (b) Baseline
95
+ (c) Ours
96
+ Figure 2. Comparison of pixel distribution in feature space on the
97
+ ADE20K validation set. Baseline: ResNet-101 + DeeplabV3+.
98
+ Ours: Baseline + CCS layer. Pixels that randomly sampled form
99
+ the “tree” and “plant” are colored in red and blue, respectively.
100
+ Our distribution of each class is more compact than the baseline.
101
+ There are also clear boundaries between different classes in the
102
+ feature space of our method, when the pixels of the two classes
103
+ are mixed up in the feature space of the baseline.
104
+ a learned representation of the corresponding class, the fi-
105
+ nal segmentation prediction map can also be regarded as a
106
+ pixel-to-center similarity map. These learned representa-
107
+ tions contain the common information of their class on the
108
+ whole dataset. Therefore, we call them global class centers.
109
+ In this view, the classification can be remodeled as follows:
110
+ A pixel will be assigned to the class whose global class cen-
111
+ ter is the most similar to the pixel among all classes. In con-
112
+ clusion, semantic segmentation can be viewed as a task to
113
+ predict the similarity between pixels and class centers.
114
+ Motivated by this perspective, we argue that there are
115
+ two limitations of previous methods responsible for the
116
+ above-mentioned challenges: (i) The global class centers
117
+ are incapable of adapting the large intra-class variations be-
118
+ tween different scenes, since the global class centers are
119
+ learned based on the whole dataset and are kept unchanged
120
+ and identical for different scenes during the inference stage.
121
+ (ii) Since there is no constraint on the similarities between
122
+ global class centers, these centers which represent different
123
+ classes may share excessively similar representations, lead-
124
+ ing to difficulties in correctly distinguishing pixels. These
125
+ limitations correspond to the two challenges of the large
126
+ intra-class variation between scenes and the small inter-
127
+ class distinction inside each scene, respectively.
128
+ To solve the challenges, we propose a novel and flexi-
129
+ ble Class Center Similarity (CCS) layer, which replaces
130
+ the segmentation heads of networks and transfers the pixel-
131
+ wise classification task to a pixel-to-center similarity pre-
132
+ diction task. Our CCS layer consists of three parts: Adap-
133
+ tive Class Center Module (ACCM), Similarity Calculation
134
+ Module (SCM), and Class Distance (CD) Loss.
135
+ First,
136
+ Adaptive Class Center Module (ACCM) generates adaptive
137
+
138
+ Tree
139
+ Sample B
140
+ Plant囍class centers conditioned on each scene (image), which ac-
141
+ commodates the large intra-class variance between scenes.
142
+ Thus, the prediction only depends on the similarity between
143
+ each pixel and the scene-specific adaptive class centers, in-
144
+ stead of the immutable global class centers. Then, the adap-
145
+ tive class centers are forward Similarity Calculation Mod-
146
+ ule (SCM) to compute the pixels-to-centers similarity be-
147
+ tween pixels and class centers and the mutual similarity of
148
+ class centers as the inter-class similarity. Finally, our CD
149
+ Loss is applied to the inter-class similarity and pixels-to-
150
+ centers similarity in each scene to supervise the segmenta-
151
+ tion prediction while increasing the lack of inter-class dis-
152
+ tinction inside each scene simultaneously. The CCS layer
153
+ can be integrated into almost arbitrary semantic segmen-
154
+ tation architectures substituting for the final segmentation
155
+ head, namely the 1 × 1 convolution layer. To demonstrate
156
+ the effectiveness of the proposed Class Center Similarity
157
+ layer, we add the CCS layer to existing segmentation net-
158
+ works and carry out extensive experiments on ADE20K and
159
+ Pascal Context. Fig. 2 and Fig. 3 also show that our method
160
+ leads to clear and compact clusters for each semantic class
161
+ in each scene. In summary, the following contributions are
162
+ made in this paper:
163
+ • We rethink the semantic segmentation task from a
164
+ pixel-to-center (P-C) similarity perspective. Semantic
165
+ segmentation can be viewed as a task with two stages:
166
+ compute P-C similarity for each pixel and categorize
167
+ pixels to the most similar semantic class.
168
+ • We propose a class Center Similarity layer that can
169
+ generate conditional class centers for each scene under
170
+ the constraint of our Class Distance Loss. Our CCS
171
+ layer is easy to plug into almost any FCN-based se-
172
+ mantic segmentation network.
173
+ • We conduct extensive experiments to analyze the ef-
174
+ fectiveness of our approach. The proposed method,
175
+ called CCSNet, achieves state-of-the-art performance
176
+ on two challenging datasets.
177
+ Based on ResNet-
178
+ 101 [11], our model achieves 47.76% mIoU on
179
+ ADE20K, and 54.9% mIoU on PASCAL Context.
180
+ 2. Related Work
181
+ Semantic segmentation.
182
+ The development of deep neu-
183
+ ral networks dramatically boosts semantic segmentation.
184
+ Since FCN [18] replaces the fully connected layer in the
185
+ traditional classification network with a convolutional to
186
+ get pixel-wise predictions, FCNs achieves great success in
187
+ semantic segmentation.
188
+ Segnet [1], UNet [21] and Re-
189
+ fineNet [16] adopt encoder-decoder structure to recover the
190
+ spatial information that lost by downsample operation via
191
+ cascading upsampling. In order to capture long-range de-
192
+ pendencies, lots of works have been done by introducing
193
+ CRF [3, 2] and MRF [17] into segmentation tasks. Dilated
194
+ convolution [31] and deformable convolution[6], which in-
195
+ crease the resolution of feature maps, is used to enlarge
196
+ the receptive field. We revisit these typical networks and
197
+ find that semantic segmentation can be regarded as catego-
198
+ rizing each pixel to the semantic category with the great-
199
+ est pixel-to-center similarity (or the smallest pixel-to-center
200
+ distance).
201
+ Contextual information.
202
+ Context is believed of great
203
+ significance in semantic segmentation.
204
+ Recently, plenty
205
+ of works focusing on mining richer context information.
206
+ Multi-scale representations are used to capture more context
207
+ in PSPNet [37]. the family of DeepLab [3, 4, 5] also cap-
208
+ tures the context information from multi-scales. Based on
209
+ these approaches, many extensions have been proposed,e.g.
210
+ DenseASPP [27] and APCNet [10]. The Attention mecha-
211
+ nism is also adopted to capture global contextual informa-
212
+ tion [13, 15]. Other studies pay their attention to the sim-
213
+ ilarity of pixels to help aggregate contextual information.
214
+ OCNet [33], DANet [9] and CFNet [36] aggregate context
215
+ that computed on all pixels and augment context represen-
216
+ tation to the representation of each pixel. Based on the self-
217
+ attention mechanism, these approaches calculate similarity
218
+ (or relation) between pixels and aggregate representations
219
+ according to similarity. Although a great number of studies
220
+ explore discriminate representations to help segmentation,
221
+ the large variance between pixels of the same category from
222
+ different scenes and the lack of distinction in each scene still
223
+ remains. Our work addresses these two challenges based on
224
+ similarity as well, but we aim to get better similarity maps
225
+ while those utilize context to get better features. In addition,
226
+ thanks to our ACCM which generates the varying adaptive
227
+ class centers for classification, our method is more effective
228
+ with minor computational cost.
229
+ Center-based methods in semantic segmentation.
230
+ Re-
231
+ cently, several works propose approaches with centers in
232
+ semantic segmentation networks. In contrast to previous
233
+ works, ACFNet [34] presents the concept of class centers
234
+ as the global context from a categorical perspective, which
235
+ describes the overall representation of each class in a scene.
236
+ Then, different class centers are adaptively concatenated
237
+ with features according to each pixel for aggregating class-
238
+ wise context. OCRNet [32] presents a simple method char-
239
+ acterizing a pixel by exploiting the representation of the
240
+ corresponding object class.
241
+ Under supervision, OCRNet
242
+ learns object regions and generate representations of ob-
243
+ ject regions, which can be viewed as the object centers of
244
+ each region. Pixel-region relation is computed to aggre-
245
+ gate information from object centers. Similar to ACFNet,
246
+ the object-contextual representations generated from object
247
+ centers and pixel-region relation augment the original pixel
248
+ representations via concatenation.
249
+ Compared with these
250
+ methods that also introduce the concept of center in their
251
+
252
+ (a) Images
253
+ (b) Baseline
254
+ (c) Ours
255
+ (d) Baseline distribution
256
+ (e) Our distribution
257
+ Figure 3. Visualization results on ADE20K validation set. We visualize the distribution results to demonstrate our model learns a better
258
+ scene-level feature distribution than previous works. Comparing our method with the Baseline DeeplabV3+, we find that our boundaries
259
+ between different clusters are far more clear, with most pixels of the same class located in the same cluster.
260
+ works, our concern is how to get conditional centers to ad-
261
+ dress the drawback of global centers, while they follow the
262
+ thought of exploring context from a different aspect. Be-
263
+ sides, we apply our inter CD Loss and intra CD Loss on
264
+ class centers to enlarge distinction and optimize the distri-
265
+ bution of different classes while they do not have any super-
266
+ vision on the generated centers.
267
+ 3. Method
268
+ In this section, we first have a review of typical segmen-
269
+ tation models in semantic segmentation. Then, we expli-
270
+ cate our rethinking-modeling semantic segmentation as a
271
+ task to assign each pixel to a category directly based on the
272
+ pixel-to-center (P-C) similarity. After a brief overview of
273
+ the proposed prediction pipeline, we introduce the details
274
+
275
+ wall
276
+ floor
277
+ ceiling
278
+ windowpane
279
+ table
280
+ plant
281
+ curtain
282
+ chair
283
+ painting
284
+ sofa
285
+ rug
286
+ lamp
287
+ cushion
288
+ blind
289
+ coffee table
290
+ pot
291
+ blanket
292
+ sconcesky
293
+ tree
294
+ water
295
+ rockCOGNAC
296
+ JACOUETwall
297
+ floor
298
+ ceiling
299
+ windowpane
300
+ cabinet
301
+ door
302
+ table
303
+ plant
304
+ chair
305
+ painting
306
+ lamp
307
+ blind
308
+ potcase
309
+ basket
310
+ food
311
+ traywall
312
+ floor
313
+ ceiling
314
+ chair
315
+ shelf
316
+ rug
317
+ box
318
+ book
319
+ light
320
+ playthingbuilding
321
+ sky
322
+ treeK
323
+ H
324
+ W
325
+ 𝑀𝑎𝑠𝑘
326
+ 1 × 1
327
+ 𝐶𝑜𝑛𝑣
328
+
329
+ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
330
+ K×HW
331
+ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
332
+ &
333
+ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒
334
+ HW×D
335
+ 𝑨𝒅𝒂𝒑𝒕𝒊𝒗𝒆 𝑪𝒍𝒂𝒔𝒔 𝑪𝒆𝒏𝒕𝒆𝒓 𝑴𝒐𝒅𝒖𝒍𝒆
336
+ 𝑪
337
+ K
338
+ 𝑃 − 𝐶 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑀𝑎𝑝𝑠
339
+ H
340
+ W
341
+ D
342
+ H
343
+ W
344
+ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
345
+ K
346
+ H
347
+ W
348
+ 𝑖𝑛𝑡𝑒𝑟 𝐶𝐷 𝐿𝑜𝑠𝑠
349
+ 𝑟𝑒𝑠ℎ𝑎𝑝𝑒
350
+ D×HW
351
+ 𝐺𝑇
352
+
353
+ D
354
+ K
355
+ 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠 𝐶𝑒𝑛𝑡𝑒𝑟𝑠
356
+ K-1
357
+ K-1
358
+ 𝐶 − 𝐶 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑀𝑎𝑡𝑟𝑖𝑥
359
+ 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑴𝒐𝒅𝒖𝒍𝒆
360
+ 𝐶𝑒𝑛𝑡𝑒𝑟 − 𝐶𝑒𝑛𝑡𝑒𝑟
361
+ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
362
+ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛
363
+ 𝑃𝑖𝑥𝑒𝑙 − 𝐶𝑒𝑛𝑡𝑒𝑟
364
+ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
365
+ 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛
366
+ 𝑖𝑛𝑡ra 𝐶𝐷 𝐿𝑜𝑠𝑠
367
+ 𝑪𝑫 𝑳𝒐𝒔𝒔
368
+ Figure 4. Structure of the proposed CCS layer. The Mask is a spatial weight map used for aggregating features for all the centers of each
369
+ semantic class. C ∈ RK×D denote the generated K adaptive class centers, where D is the number of channels and K is the number
370
+ of classes. Then, the CCS layer calculates the pixel-to-center (P-C) similarity maps of each semantic class and center-to-center (C-C)
371
+ similarity between different classes. Finally, the proposed inter-class distance loss and intra-class distance loss are applied. The final
372
+ prediction is P-C similarity Maps normalized by the softmax function.
373
+ of the Adaptive Class Center Module, Similarity Calcula-
374
+ tion Module and Class Distance Loss.
375
+ 3.1. Revisiting prediction of semantic segmentation
376
+ Before we go to our proposed approach, let’s revisit
377
+ the architecture of typical segmentation networks. A typ-
378
+ ical segmentation network consists of two parts: feature
379
+ extractor and classifier.
380
+ The feature extractor is usually
381
+ a deep convolutional network, which takes images as in-
382
+ puts, then extracts high-dimensional representations of each
383
+ pixel. The classifier takes the output features of the ex-
384
+ tractor as inputs and computes the score maps indicating
385
+ the probabilities that every element belongs to each class.
386
+ The output of the feature extractor is noted as F ∈ RD×N,
387
+ where N is the total number of elements, D is the number
388
+ of output channels in the extractor. The representation of
389
+ the i-th pixel in the input image is noted as fi ∈ RD×1.
390
+ The weights of the classifier are noted as Wc ∈ RK×D,
391
+ and wj ∈ R1×D (j = 1, 2, ..., K) denotes the kernel
392
+ weight which performs correlation on feature maps to get
393
+ the prediction of j-th class. Following the work of FCN,
394
+ most segmentation networks replace the FC classifier with
395
+ a 1 × 1 convolutional layer, which computes the score map
396
+ S ∈ RK×N of input feature F. The computation can be
397
+ formulated as:
398
+ S = W ⊛ F,
399
+ (1)
400
+ where ⊛ is the convolution operation. S is then normalized
401
+ by soft-max to get a soft-margin prediction of the whole
402
+ image.
403
+ As classifier employs a 1×1 conv layer, the computation
404
+ of the j-th class’ score sij of i-th pixel can be formulated as:
405
+ sij = w⊤
406
+ j · fi,
407
+ (2)
408
+ where · denotes the inner product, sij is the score of i-
409
+ th pixel at j-th class, and w⊤
410
+ j is the transposed wj, i =
411
+ 1, 2, ..., N. The prediction pi assigned to i-th pixel is made
412
+ by performing a argmax operation to each location in the
413
+ image:
414
+ pi = arg max
415
+ j
416
+ (sij) = arg max
417
+ j
418
+ (w⊤
419
+ j · fi).
420
+ (3)
421
+ Hence, for a single pixel, the score sij is actually the in-
422
+ ner production similarity, or so-called correlation, between
423
+ its feature fi and the transposed weight vector w⊤
424
+ j of class
425
+ j. According to the pixel-to-weight similarity map S, the
426
+ final prediction is made by categorizing pixels to the se-
427
+ mantic class which has the greatest similarity value in fea-
428
+ ture space.
429
+ Thus, the weight vectors can be deemed as
430
+ learned class centers, and the category assignment is equiv-
431
+ alent to finding the nearest class center for each pixel. Con-
432
+ sequently, the overall inference procedure can be summa-
433
+ rized as Alg. 1, where I ∈ R3×N is the input RGB features
434
+ of an image, θ is the parameter of network, Wc ∈ RK×D is
435
+ the weights of the classifier, namely the learned global class
436
+ centers, i = 1, 2, ..., N, j = 1, 2, ..., K.
437
+ Algorithm 1 Inference with Global Class Centers
438
+ Input: I, network Net(, ) and parameters θ, weights of
439
+ classifier Wc.
440
+ Extract feature map: F ← Net(I, θ).
441
+ Calculate P-C similarity: S ← Simi(F, Wc)
442
+ Get prediction: pi ← arg maxj(sij)
443
+ Output: Final prediction P.
444
+ If pixel i belongs to the j-th class according to ground
445
+ truth, we hope that we can get greater relative sij at the j-th
446
+ channel compared with other channels and smaller scores at
447
+
448
+ Algorithm 2 Inference with Adaptive Class Centers
449
+ Input: I, network Net(, ), the parameters θ, and the
450
+ ACCM G(·).
451
+ Extract feature map: F ← Net(I, θ).
452
+ Gnerate Adaptive Class Centers: C ← G(F).
453
+ Calculate P-C similarity: S ← Simi(F, C)
454
+ Get prediction: pi ← arg maxj(sij)
455
+ Output: Final prediction P.
456
+ irrelevant channels, which correspond to irrelevant classes.
457
+ So, the network is trained under the supervision of Cross-
458
+ entropy (CE) Loss that applied on the normalized scores
459
+ maps:
460
+ LCE
461
+ =
462
+
463
+ i
464
+ −log
465
+ � exp(si · yi)
466
+
467
+ j exp(sij)
468
+
469
+ =
470
+
471
+ i
472
+ −(si · yi) + log
473
+ � �
474
+ j
475
+ exp(sij)
476
+
477
+ ,
478
+ (4)
479
+ where yi is the one-hot label of element i.
480
+ In our understanding, CE Loss mainly focuses on enlarg-
481
+ ing the relative inner production similarity between the cor-
482
+ responding weight vector and pixels of each class by push-
483
+ ing pixels and corresponding weight vectors closer in fea-
484
+ ture space. Accordingly, we can regard the weight vectors
485
+ as a set of global class centers learned by the network on
486
+ the whole dataset. The training stage is a process that the
487
+ network learns to find the global class centers of each class,
488
+ best fitting the distribution of all the pixels which belong to
489
+ the same class on the whole training set. Moreover, these
490
+ global class centers are identical for all input scenes.
491
+ However, semantic segmentation networks are still fac-
492
+ ing two challenges: (i) pixels of the same category yet dif-
493
+ ferent scenes are significantly different in feature space,
494
+ leading to difficulty for networks in categorizing all these
495
+ pixels to the same semantic class. (ii) pixels from different
496
+ categories but the same scene lack enough distinction, caus-
497
+ ing trouble finding distinctive separating plane to tell pixels
498
+ belonging to different classes apart.
499
+ To demonstrate the challenges, we conduct experiments
500
+ and visualize the feature representations, which are the in-
501
+ puts of the final convolution, in Fig. 1 of randomly sampled
502
+ pixels from “tree” and “plant” classes on ADE20K valida-
503
+ tion set, with sampling ratio set as 1%. We adopt t-SNE [24]
504
+ for a clear visualization. As shown in Fig. 1, the pixels of
505
+ “trees” and “plants” in Sample A are far from those in Sam-
506
+ ple B in feature space despite the fact that they belong to
507
+ the same class. This phenomenon indicates the large vari-
508
+ ance of features between different scenes, making it hard
509
+ to assign pixels of the same class yet different scenes with
510
+ the same class based on the immutable global class centers.
511
+ Moreover, for those pixels in the same scene, they are much
512
+ closer to each other despite that they belong to different cat-
513
+ egories. These short distances in feature space between pix-
514
+ els from the same scene but different classes corroborate the
515
+ scarcity of enough distinction to categorize them correctly.
516
+ 3.2. Overview of our proposed method
517
+ As illustrated above, considering the learned class cen-
518
+ ters Wc are unchangeable for different input images I, the
519
+ first challenges are unavoidable. To solve it, we propose a
520
+ new pipeline for semantic segmentation prediction pipeline
521
+ as shown in Alg. 2. The pixel-to-center (P-C) similarity
522
+ is calculated between pixels in each scene and the adap-
523
+ tive class centers which are generated based on the feature
524
+ map of the scene. Compared with Wc which is immutable
525
+ during inference for every input image, the adaptive class
526
+ center should be capable of varying between scenes to ac-
527
+ commodate the large intra-class feature variation in differ-
528
+ ent scenes.
529
+ On the other hand, there is no constraint on the similar-
530
+ ity between different class centers inside each scene. So,
531
+ the second challenge is aggravated, even though the adap-
532
+ tive class centers can mitigate the problem. Therefore, we
533
+ propose the Class Distance (CD) Loss to enlarge the inter-
534
+ class feature variation in the same scene. CD Loss directly
535
+ requires large similarities between pixels and the adaptive
536
+ class center of the ground truth class and small mutual sim-
537
+ ilarities among adaptive class centers.
538
+ Extensive experi-
539
+ ments and ablation studies in Sec. 4 corroborate the effec-
540
+ tiveness of our proposed prediction pipeline.
541
+ 3.3. Adaptive Class Center Module
542
+ Previous approaches take the transposed learned weight
543
+ Wc of the final classifier as global class centers, which are
544
+ the representations of each class at the dataset-level. On
545
+ account of the feature variances on the dataset from scene
546
+ to scene, these approaches are impeded by their global
547
+ class centers which are not able to vary between scenes.
548
+ Therefore, we propose the Adaptive Class Center Module
549
+ (ACCM) to generate unique class centers for each scene
550
+ as class representations at the scene-level instead of the
551
+ dataset-level.
552
+ ACCM performs matrix multiplication of pixel features
553
+ and a learned mask to generate coarse class centers for each
554
+ input image. This module refines the coarse class centers
555
+ and outputs a set of adaptive centers as scene-level repre-
556
+ sentations for all classes. The whole computation process
557
+ of ACCM can be formulated as:
558
+ C = A(M ⊗ F⊤),
559
+ (5)
560
+ where C ∈ RK×D is the matrix of generated conditional
561
+ adaptive class centers, ⊗ is matrix multiplication, A(·) is
562
+ the adaptive module consisting of several convolutional lay-
563
+ ers, and M ∈ RK×N is a learned weight map, based
564
+
565
+ on which ACCM aggregates information and generates the
566
+ coarse class centers. In practice, we find that for the adap-
567
+ tive module, a 1 × 1 convolution works well to generate
568
+ the adaptive class centers. We also conduct experiments to
569
+ study the impact of different M and eventually choose the
570
+ one supervised by Dice loss [19] for better performance.
571
+ The Dice loss is defined as:
572
+ LDice = 1 −
573
+ 2 �N
574
+ i mi · yi
575
+ �N
576
+ i ||mi||2 + �N
577
+ i ||yi||2 + ϵ
578
+ ,
579
+ (6)
580
+ where mi ∈ RK×1 is the i-th column vector in M corre-
581
+ sponding to i-th pixel, ||a|| is the second norm of vector a,
582
+ and ϵ is set as 1e−3 to prevent division by zero.
583
+ (a) traditional centers
584
+ (b) our centers
585
+ Figure 5. Illustration of our adaptive class centers. During infer-
586
+ ence, traditional approaches calculate pixel-to-centers similarity
587
+ maps with fixed centers, while our approach generates adaptive
588
+ centers for each input image, respectively.
589
+ Based on the adaptive class centers, we perform pixel-to-
590
+ center similarity calculation on feature maps to get absolute
591
+ P-C similarity maps, followed by soft-max at the dimension
592
+ of different classes to generate the relative P-C similarity
593
+ maps as the soft-margin prediction. The structure of the
594
+ model is shown in Fig. 4.
595
+ Moreover, to address the problem that features of differ-
596
+ ent classes but the same scene lack enough distinction, pre-
597
+ vious methods try to aggregate more context information
598
+ into pixel representations, but there is no supervision im-
599
+ posed on the representations of class centers. We propose
600
+ the Class Distance Loss composed of inter-class distance
601
+ loss and intra-class distance loss imposed on class centers
602
+ to make features in the same scene more discriminative. We
603
+ will introduce it in the next section.
604
+ 3.4. Similarity Calculation Module
605
+ We introduce of similarity function to measure the prox-
606
+ imity of two embedding a ∈ RD×1 and b ∈ RD×1 in the
607
+ feature space. we define the inner production similarity as:
608
+ Simi(a, b)inn = a · b.
609
+ (7)
610
+ To encourage class centers to be linearly independent
611
+ and obviate the influence of the embedding’s norm, we also
612
+ introduce the cosine similarity as :
613
+ Simi(a, b)cos = abs(a · b)
614
+ ||a|| ||b|| ,
615
+ (8)
616
+ where the abs(·) denotes the absolute value.
617
+ To calculate the C-C similarity, we employ consine sim-
618
+ ilarity (Eq. 8) to get rid of the influence of the norms of
619
+ class centers. We simply replace a and b in Eq. 8 with
620
+ adaptive class centers c⊤
621
+ p and c⊤
622
+ p as Simi(c⊤
623
+ p , c⊤
624
+ q ), where
625
+ cq ∈ R1×D is the q-th row in C, namely the adaptive class
626
+ center of the q-th class.
627
+ For P-C similarity calculation, we employ inner pro-
628
+ duction simialrity (Eq. 7). As the prediction is made by
629
+ the argmax operation on P-C similarity maps, the absolute
630
+ value of similarity between a pixel with a class center alone
631
+ is meaningless unless compared with similarities between
632
+ the pixel and other class centers. Hence, we introduce rel-
633
+ ative similarity as the probability that i-th pixel belongs to
634
+ q-th class:
635
+ RSimi(fi, c⊤
636
+ q ) =
637
+ exp
638
+
639
+ Simi(fi, c⊤
640
+ q )
641
+
642
+
643
+ j exp
644
+
645
+ Simi(fi, c⊤
646
+ j )
647
+ �,
648
+ (9)
649
+ where j = 1, 2, ..., K.
650
+ 3.5. Class Distance Loss
651
+ Since there is no constraint on the similarity between
652
+ different class centers inside each scene, the challenge that
653
+ different-classes pixels in the same scene lack enough dis-
654
+ tinction is aggravated consequently. We believe that it is
655
+ easy for pixel-wise classification if pixel representations in
656
+ the same scene have large inter-class distinction and small
657
+ intra-class distinction. Motivated by this notion, we propose
658
+ the Class Distance (CD) Loss. We introduce the inter-class
659
+ distance and intra-class distance at first, then explicate the
660
+ details of the Class Distance Loss.
661
+ Definition of inter-class and intra-class distance.
662
+ The
663
+ inter-class distance between the p-th and the q-th class is
664
+ defined as:
665
+ d(p,q)
666
+ inter = D(c⊤
667
+ p , c⊤
668
+ q ),
669
+ (10)
670
+ where p and q are the numbers of two different classes, c⊤
671
+ p
672
+ and c⊤
673
+ q are the class center vectors of p-th and q-th class
674
+ respectively, D(·, ·) is the distance function. The intra-class
675
+ distance of the q-th class is defined as:
676
+ dq
677
+ intra =
678
+ N
679
+
680
+ i=1
681
+ 1[yiq = 1]D(fi, c⊤
682
+ q ),
683
+ (11)
684
+ 1[condition] =
685
+
686
+ 1
687
+ condition is True
688
+ 0
689
+ condition is False ,
690
+ (12)
691
+
692
+ Conditional
693
+ CentersWe introduce our distance function based on the relative
694
+ similarity. The distance should be negative correlated with
695
+ relative similarity. Therefore, we define our distance as:
696
+ D(fi, c⊤
697
+ q ) = −log
698
+
699
+ RSimi(fi, c⊤
700
+ q )
701
+
702
+ .
703
+ (13)
704
+ We apply inner production similarity and cosine similarity
705
+ for dintra and dinter, respectively.
706
+ Inter-class and intra-class Distance Loss.
707
+ As illustrated
708
+ above, we propose inter-class distance loss and intra-class
709
+ distance loss to enlarge inter-class distances and diminish
710
+ intra-class distance. Our loss functions are as:
711
+ Lintra =
712
+ K
713
+
714
+ q=1
715
+ dq
716
+ intra,
717
+ (14)
718
+ Linter =
719
+ K
720
+
721
+ p=1
722
+ K
723
+
724
+ q=1
725
+ 1[q ̸= p]exp(−dp,q
726
+ inter),
727
+ (15)
728
+ where Lintra aims at diminishing intra-class distinction un-
729
+ der the supervision of GT, and Linter focuses on enlarging
730
+ the differences between class centers that can operate with-
731
+ out GT.
732
+ The weighted summation of the Lintra and Linter is
733
+ called Class Distance (CD) Loss for convenience, which
734
+ can be formulated as:
735
+ LCD = Lintra + αLinter,
736
+ (16)
737
+ where α is the a hyper-parameter that set empirically.
738
+ For dataset-level CD Loss, we regard each w⊤
739
+ j
740
+ as
741
+ dataset-level class center just as our rethinking of traditional
742
+ segmentation networks. So, the dataset-level intra-class dis-
743
+ tance loss and inter-class distance loss are calculated re-
744
+ spectively as:
745
+ Ldataset
746
+ intra
747
+ =
748
+ K
749
+
750
+ q=1
751
+ N
752
+
753
+ i=1
754
+ 1[yiq = 1]D(fi, w⊤
755
+ q ),
756
+ (17)
757
+ Ldataset
758
+ inter
759
+ =
760
+ K
761
+
762
+ p=1
763
+ K
764
+
765
+ q=1
766
+ 1[q ̸= p]exp
767
+
768
+ − D(w⊤
769
+ p , w⊤
770
+ q )
771
+
772
+ .(18)
773
+ Please notice that when combining Eq. 13 with Eq. 11, Eq. 9
774
+ and Eq. 7, the Lintra is in the same format with CE Loss
775
+ shown in Eq. 4:
776
+ Ldataset
777
+ intra
778
+ =
779
+ K
780
+
781
+ q=1
782
+ N
783
+
784
+ i=1
785
+ 1[yiq = 1]
786
+
787
+ log
788
+ � �
789
+ j
790
+ exp(fi·c⊤
791
+ j )
792
+
793
+ −fi·c⊤
794
+ q
795
+
796
+ .
797
+ (19)
798
+ This shows that the CE Loss is a special case of our pro-
799
+ posed intra-class distance loss.
800
+ For scene-level CD Loss, we use the proposed ACCM to
801
+ calculate the class centers conditioned on each scene. So,
802
+ the scene-level CD Loss can be formulated as follows:
803
+ Lscene
804
+ intra =
805
+ K
806
+
807
+ q=1
808
+ N
809
+
810
+ i=1
811
+ 1[yiq = 1]D(fi, c⊤
812
+ q ),
813
+ (20)
814
+ Lscene
815
+ inter =
816
+ K
817
+
818
+ p=1
819
+ K
820
+
821
+ q=1
822
+ 1[q ̸= p]exp
823
+
824
+ − D(c⊤
825
+ p , c⊤
826
+ q )
827
+
828
+ .(21)
829
+ Overall loss function.
830
+ The over-all loss function of our
831
+ model are as follows:
832
+ L
833
+ =
834
+ LCD + βLDice
835
+ =
836
+ Lintra + αLinter + βLDice,
837
+ (22)
838
+ where LDice is the Dice loss imposed on the mask M and
839
+ β is the weight of LDice. Since the scene-level CD Loss is
840
+ much more powerful, we employ the Lscene
841
+ intra and Lscene
842
+ inter in-
843
+ stead of Ldataset
844
+ intra
845
+ and Ldataset
846
+ inter
847
+ . We conduct experiments to
848
+ show the effectiveness of Lscene
849
+ intra and Lscene
850
+ inter over Ldataset
851
+ intra
852
+ and Ldataset
853
+ inter
854
+ in Tab. 5.
855
+ 4. Experiment
856
+ We evaluate our approach on two challenging semantic
857
+ segmentation datasets: ADE20K and Pascal Context. We
858
+ perform a comprehensive ablation study on the ADE20K
859
+ dataset and report the comparison with other methods on the
860
+ ADE20K validation set and the Pascal Context validation
861
+ set.
862
+ 4.1. Settings
863
+ Dataset.
864
+ ADE20K [40] dataset is a large-scale scene pars-
865
+ ing benchmark with 150 fine-grained objects and stuff cate-
866
+ gories, containing 20,210 images for training, 2,000 images
867
+ for validation, and 3352 images for testing.
868
+ Pascal Context dataset [20] is a scene parsing dataset that
869
+ provides semantic labels for whole scene(both “things” and
870
+ “stuff” classes), which augments 10,103 images from PAS-
871
+ CAL VOC 2010 [7]. It has 4,998 training and 5,105 vali-
872
+ dation images. We use the 59 most common categories for
873
+ evaluation.
874
+ Training.
875
+ We
876
+ conduct
877
+ our
878
+ experiments
879
+ using
880
+ four
881
+ NVIDIA GTX 2080 ti GPUs with four images per GPU. All
882
+ of our models are optimized by SGD optimizer with 0.9 mo-
883
+ mentum. The initial learning rate is set 1e−2 for ADE20K
884
+ and 4e−3 for PASCAL Context. We adopt the polynomial
885
+ learning rate decay strategy in training following previous
886
+ works [30, 29, 5]. The initial learning rate is multiplied by
887
+ (1−
888
+ iter
889
+ maxiter)0.9. We apply random resizing with a ratio be-
890
+ tween 0.5 and 2 in training, random cropping input images
891
+
892
+ into (512,512), and random horizontal flipping during train-
893
+ ing for all the experiments. We set the total iterations on
894
+ ADE20K to 80K and 160K for our ResNet-50 and ResNet-
895
+ 101 models, respectively. For Pascal Context, models run
896
+ 80k iterations during training.
897
+ Auxiliary loss.
898
+ Follow previous work [39], we adopt aux-
899
+ iliary segmentation loss to help train our model. We add
900
+ an auxiliary FCN head, which outputs prediction under the
901
+ supervision of CE Loss multiplied by 0.4.
902
+ Evaluation.
903
+ During the evaluation, we average the pre-
904
+ dictions of multiple scaled following the previous work [37,
905
+ 29, 5]. Each image is then flipped horizontally, then scaled
906
+ to a uniform size with scaling factor (0.5, 0.75, 1.0, 1.25,
907
+ 1.5, 1.75) for better performance. Besides, we use Synchro-
908
+ nized BN in our models. Additionally, we report mean In-
909
+ tersection over Union (mIoU) and pixel accuracy (Acc) for
910
+ ADE20K and mIoU for PASCAL context.
911
+ 4.2. Ablation Study On ADE20K
912
+ We conduct ablation studies on ADE20K to demonstrate
913
+ the effectiveness of our approach. Models are trained on
914
+ ADE20K train set and evaluated on val set. All the models
915
+ are pretrained on Image-Net without extra data.
916
+ Upper-bound verification.
917
+ To verify the feasibility of
918
+ our proposed methods, we first carry out a simple upper-
919
+ bound verification experiment. We directly replace the pre-
920
+ dicted Mask, which is supervised by CE loss, of our trained
921
+ model with processed ground truth during inference. Ac-
922
+ cording to the results shown in Tab. 1, our method pro-
923
+ vides a huge improvement compared with the baseline,
924
+ while the upper bound method Ours-GT greatly outper-
925
+ forms our method when the predicted Mask is replaced by
926
+ GT. Since the GT provides better weight maps than the pre-
927
+ dicted Mask to generate the adaptive class centers, the per-
928
+ formance is dramatically improved, indicating that there is
929
+ still a lot of room for improvement.
930
+ Method
931
+ CCS
932
+ mIoU(%)
933
+ Acc(%)
934
+ Baseline
935
+ 37.94
936
+ 77.98
937
+ Ours
938
+
939
+ 43.57
940
+ 81.06
941
+ Ours-GT
942
+
943
+ 47.21
944
+ 84.12
945
+ Table 1. Upper-bound verification.
946
+ Baseline: ResNet-50 FCN.
947
+ Ours: Baseline + CCS layer. Ours-GT: Baseline + CCS layer
948
+ whose Mask is supplanted by GT to verify the upper bound of
949
+ CCS layer.
950
+ Ablation study of class centers.
951
+ To demonstrate the
952
+ effectiveness of the adaptive class centers, we compare
953
+ Figure 6. P-C distance comparison between MC & AC. Left:
954
+ inter-class P-C distance. Right: intra-class P-C distance. We de-
955
+ note pixel-to-mean centers and pixel-to-adaptive centers as MC
956
+ and AC, respectively.
957
+ the P-C similarity, depending on which we generated the
958
+ probability maps.
959
+ Taking “tree” and “plant” as exam-
960
+ ples, we show the frequency histograms of intra-class
961
+ pixel-to-adaptive centers distance and pixel-to-mean cen-
962
+ ters (namely the global centers that learned from the whole
963
+ dataset) distance in Fig. 6. As we introduced before, the
964
+ results demonstrate that the adaptive class centers make
965
+ prominent success in increasing the inter-class distance be-
966
+ tween “tree” pixels and “plant” class center, while the intra-
967
+ class distances of “plant” pixels and adaptive class center of
968
+ “plant” are dramatically smaller than the distance between
969
+ pixels and global class center.
970
+ Ablation study of ACCM.
971
+ We conduct ablation studies
972
+ of ACCM to explore the best performance. We compared
973
+ different loss functions on Mask in order to generate better
974
+ adaptive class centers. We conduct experiments on FCN
975
+ based on ResNet-50 and report the results in Tab. 2.
976
+ Res50 FCN CCSNet
977
+ w/o loss
978
+ w/ CE loss
979
+ w/ Dice loss
980
+ mIoU(%)
981
+ 43.01
982
+ 41.56
983
+ 43.57
984
+ Acc(%)
985
+ 80.69
986
+ 80.45
987
+ 81.06
988
+ Table 2. Ablation study of defferent loss fucntion on Mask. Our
989
+ baseline in this experiment is ResNet-50 FCN, with our CS replace
990
+ the final convolution of FCN under supervision of scene-level CD
991
+ Loss.
992
+ Ablation study of hyper-parameter and architecture.
993
+ We first conduct experiments with different segmentation
994
+ heads. The multi-scale mIoU results of different segmen-
995
+ tation heads based on ResNet-50 are reported in Tab. 3.
996
+ Among three different segmentation heads, deeplabv3+ has
997
+ the best performance with 44.25% ms mIoU. We also ex-
998
+ plore proper hyper-parameters for CCSNet. We take FCN
999
+ Methods
1000
+ FCN
1001
+ PSP
1002
+ Deeplabv3+
1003
+ baseline
1004
+ 37.94
1005
+ 41.94
1006
+ 43.57
1007
+ +CCS
1008
+ 43.57
1009
+ 44.07
1010
+ 44.25
1011
+ Table 3. Ablation study of segmentation heads.
1012
+ CCS layer is
1013
+ equipped on different segmentation heads based on ResNet-50 are
1014
+ trained on ADE20K training set for 80k iterations. The mIoU re-
1015
+ sults on ADE20K validati set of each model are reported.
1016
+
1017
+ 0.20
1018
+ inter P-MC
1019
+ Frequency
1020
+ inter P-AC
1021
+ 0.15
1022
+ 0.10
1023
+ 0.05
1024
+ 0.00
1025
+ 2
1026
+ 4
1027
+ 6
1028
+ 8
1029
+ 10
1030
+ 12
1031
+ 14
1032
+ Inter Distance (tree-to-plant)0.15
1033
+ intra P-MC
1034
+ intra P-AC
1035
+ Frequ
1036
+ 0.10
1037
+ aA
1038
+ lati
1039
+ 0.05
1040
+ Rel
1041
+ 0.00
1042
+ 2
1043
+ 4
1044
+ 6
1045
+ 8
1046
+ 10
1047
+ 12
1048
+ 14
1049
+ Intra Distance (plant-to-plant)mIoU
1050
+ β = 0.1
1051
+ β = 0.5
1052
+ β = 1.0
1053
+ α = 0.1
1054
+ 42.79
1055
+ 42.86
1056
+ 42.85
1057
+ α = 0.5
1058
+ 43.01
1059
+ 43.05
1060
+ 43.57
1061
+ α = 1.0
1062
+ 43.14
1063
+ 43.50
1064
+ 43.47
1065
+ Table 4. Alblation Study of weight of Lscene
1066
+ inter and weight of dice
1067
+ loss. We vary the value of α and β and find when α = 0.5, β =
1068
+ 1.0, model has the best performance.
1069
+ based on ResNet-50 as a baseline to exploit the best weight
1070
+ of dinter and the weight of Dice loss.
1071
+ As shown in
1072
+ Tab. 4, our approach achieves the best performance when
1073
+ the weight of dinter is empirically set as 0.5. The best FCN
1074
+ based model equipped with our approach improves the pix-
1075
+ Acc and mIoU by 2.59% and 5.63%.
1076
+ Ablation study of CCS layer.
1077
+ We break down the
1078
+ improvements of our work over ResNet-101 based on
1079
+ DeeplabV3+, which has the best performance.
1080
+ We add
1081
+ the proposed components in our approaches step by step
1082
+ to the DeeplabV3+ baseline. Experiments are conducted
1083
+ on ADE20K and run 160k iterations. By simply replacing
1084
+ the global class centers Wc with our adaptive class cen-
1085
+ ters conditionally generated by ACCM, our network im-
1086
+ proves the performance by 0.86% in mIoU. This provides
1087
+ strong support for our assertion that global class centers are
1088
+ inferior compared to conditional class centers. Moreover,
1089
+ together with the image-level inter-class distance loss, our
1090
+ network achieves 47.76% mIoU on the ADE20K validation
1091
+ set, which demonstrates the effectiveness of our inter-class
1092
+ distance loss.
1093
+ 4.3. Results on ADE20K
1094
+ We train the ResNet-101 on the ADE20K training set
1095
+ and report the mIoU results on the validation set (results are
1096
+ shown in Tab. 6). Our CCSNet uses a pre-trained backbone
1097
+ network on ImageNet and achieves 47.76% mIoU, which
1098
+ outperforms DeeplabV3+ by 1.41% mIoU using the same
1099
+ backbone network. Visual comparison examples are shown
1100
+ in Fig. 7.
1101
+ 4.4. Results on PASCAL Context
1102
+ Tab. 7 reports the comparison results of our net-
1103
+ work and other state-of-the-the-art approaches. Based on
1104
+ ResNet-101, our method makes favourable performance
1105
+ and achieves 54.9% mIoU. CCSNet outperforms previous
1106
+ methods using the same ResNet-101 backbone.
1107
+ 5. Conclusion
1108
+ In this paper, we provide a novel perspective to view typ-
1109
+ ical semantic segmentation models, and re-model the prob-
1110
+ lem as a task that models compute the similarity maps be-
1111
+ tween pixels and class centers on each scene, then assign
1112
+ Method
1113
+ centers
1114
+ Linter
1115
+ Lintra
1116
+ mIoU
1117
+ Deeplabv3+
1118
+ Wc
1119
+ Wc
1120
+ 46.35
1121
+ + Ldataset
1122
+ inter
1123
+ Wc
1124
+ Wc
1125
+ Wc
1126
+ 46.45
1127
+ +ACCM&Lscene
1128
+ inter
1129
+ Wc
1130
+ C
1131
+ Wc
1132
+ 46.94
1133
+ +CCS w/o Linter
1134
+ C
1135
+ C
1136
+ 47.21
1137
+ CCSNet (Ours)
1138
+ C
1139
+ C
1140
+ C
1141
+ 47.76
1142
+ Table 5. Ablation study of CCS layer and CD Loss. The “centers”
1143
+ are those used to calculate the P-C similarity for prediction. For
1144
+ example, Wc denotes the learned weights of classifier, namely
1145
+ global class centers, used for final prediction, while the C indicate
1146
+ that the prediction is based on the P-C similarity using adaptive
1147
+ class centers. “Linter” and “Linter” shows whether the loss is
1148
+ applied on Wc (Ldataset
1149
+ inter
1150
+ and Ldataset
1151
+ intra
1152
+ ) or C (Lscene
1153
+ inter and Lscene
1154
+ intra).
1155
+ Method
1156
+ Baseline
1157
+ mIoU(%)
1158
+ CascadeNet [40]
1159
+ VGG-16
1160
+ 34.90
1161
+ RefineNet [16]
1162
+ ResNet-152
1163
+ 40.7
1164
+ UperNet [16]
1165
+ ResNet-101
1166
+ 42.66
1167
+ PSPNet [37]
1168
+ ResNet-101
1169
+ 43.51
1170
+ PSPNet [37]
1171
+ ResNet-269
1172
+ 44.94
1173
+ PSANet [38]
1174
+ ResNet-269
1175
+ 43.77
1176
+ EncNet [35]
1177
+ ResNet-101
1178
+ 43.77
1179
+ CFNet [36]
1180
+ ResNet-101
1181
+ 44.65
1182
+ ANL [41]
1183
+ ResNet-101
1184
+ 45.24
1185
+ OCRNet [32]
1186
+ ResNet-101
1187
+ 45.28
1188
+ APCNet [10]
1189
+ ResNet-101
1190
+ 45.38
1191
+ RGNet [28]
1192
+ ResNet-101
1193
+ 45.80
1194
+ CPNet [29]
1195
+ ResNet-101
1196
+ 46.27
1197
+ DeeplabV3+ [5]
1198
+ ResNet-101
1199
+ 46.35
1200
+ CCSNet
1201
+ ResNet-101
1202
+ 47.76
1203
+ Table 6. Results on the ADE20K validation set. Our model based
1204
+ on ResNet-101 achieves 47.76% in mIoU and outperforms all pre-
1205
+ vious methods using the same backbone network.
1206
+ Method
1207
+ Baseline
1208
+ mIoU(%)
1209
+ RefineNet [16]
1210
+ ResNet-152
1211
+ 47.3
1212
+ PSPNet [37]
1213
+ ResNet-101
1214
+ 47.8
1215
+ DeeplabV3+ [5]
1216
+ ResNet-101
1217
+ 48.3
1218
+ EncNet [35]
1219
+ ResNet-101
1220
+ 51.7
1221
+ DANet[9]
1222
+ ResNet-101
1223
+ 52.6
1224
+ ANL [41]
1225
+ ResNet-101
1226
+ 52.8
1227
+ CFNet [36]
1228
+ ResNet-101
1229
+ 54.0
1230
+ APCNet [10]
1231
+ ResNet-101
1232
+ 54.7
1233
+ RGNet [28]
1234
+ ResNet-101
1235
+ 53.9
1236
+ CPNet [29]
1237
+ ResNet-101
1238
+ 53.9
1239
+ OCRNet [32]
1240
+ ResNet-101
1241
+ 54.8
1242
+ CCSNet
1243
+ ResNet-101
1244
+ 54.9
1245
+ Table 7. Results on the PASCAL Context validation set. We report
1246
+ our result evaluated on 59 class without background. Our model
1247
+ based on ResNet-101 achieves 54.9% in mIoU.
1248
+ pixels to the semantic category with the highest P-C sim-
1249
+ ilarity. Based on this perspective, we provide solutions to
1250
+ address the two typical issues, i.e. same category yet dif-
1251
+ ferent scenes features could be of large variance, while fea-
1252
+
1253
+ (a) Images
1254
+ (b) GT
1255
+ (c) FCN
1256
+ (d) DeeplabV3+
1257
+ (e) CCSNet (Ours)
1258
+ Figure 7. Qualitative results on ADE20K validation set.
1259
+ tures of different categories but the same scene may be quite
1260
+ similar to each other. Based on P-C similarity maps, we
1261
+ propose ACCM to generate adaptive class centers condi-
1262
+ tioned on each scene to deal with the feature variances of
1263
+ different scenes and design inter-class and intra-class dis-
1264
+ tance loss at scene-level for more inter-class distinction in-
1265
+ side each scene. Our approach is easy yet effective and can
1266
+ be plugged into most FCN-based architectures. Finally, CC-
1267
+ SNet achieves state-of-the-the-art performance on two chal-
1268
+ lenging semantic segmentation datasets.
1269
+ References
1270
+ [1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Seg-
1271
+ net:
1272
+ A deep convolutional encoder-decoder archi-
1273
+ tecture for image segmentation.
1274
+ IEEE transac-
1275
+ tions on pattern analysis and machine intelligence,
1276
+ 39(12):2481–2495, 2017. 3
1277
+ [2] S. Chandra, N. Usunier, and I. Kokkinos. Dense and
1278
+ low-rank gaussian crfs using deep embeddings.
1279
+ In
1280
+ Proceedings of the IEEE International Conference on
1281
+ Computer Vision, pages 5103–5112, 2017. 3
1282
+ [3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,
1283
+ and A. L. Yuille. Deeplab: Semantic image segmen-
1284
+ tation with deep convolutional nets, atrous convolu-
1285
+ tion, and fully connected crfs. IEEE transactions on
1286
+ pattern analysis and machine intelligence, 40(4):834–
1287
+ 848, 2017. 3
1288
+ [4] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam.
1289
+ Rethinking atrous convolution for semantic image
1290
+ segmentation.
1291
+ arXiv preprint arXiv:1706.05587,
1292
+ 2017. 1, 3
1293
+ [5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
1294
+ H. Adam. Encoder-decoder with atrous separable con-
1295
+ volution for semantic image segmentation.
1296
+ In Pro-
1297
+ ceedings of the European conference on computer vi-
1298
+ sion (ECCV), pages 801–818, 2018. 3, 8, 9, 10
1299
+ [6] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu,
1300
+ and Y. Wei. Deformable convolutional networks. In
1301
+ Proceedings of the IEEE international conference on
1302
+ computer vision, pages 764–773, 2017. 1, 3
1303
+ [7] M. Everingham and J. Winn. The pascal visual ob-
1304
+ ject classes challenge 2012 (voc2012) development
1305
+ kit. Pattern Analysis, Statistical Modelling and Com-
1306
+ putational Learning, Tech. Rep, 8, 2011. 8
1307
+ [8] J. Fu, J. Liu, J. Jiang, Y. Li, Y. Bao, and H. Lu. Scene
1308
+ segmentation with dual relation-aware attention net-
1309
+ work.
1310
+ IEEE Transactions on Neural Networks and
1311
+ Learning Systems, PP:1–14, 08 2020. 1
1312
+ [9] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and
1313
+ H. Lu. Dual attention network for scene segmenta-
1314
+ tion.
1315
+ In Proceedings of the IEEE/CVF Conference
1316
+
1317
+ 200COGNAC
1318
+ JACOUETon Computer Vision and Pattern Recognition, pages
1319
+ 3146–3154, 2019. 1, 3, 10
1320
+ [10] J. He, Z. Deng, L. Zhou, Y. Wang, and Y. Qiao. Adap-
1321
+ tive pyramid context network for semantic segmen-
1322
+ tation. In Proceedings of the IEEE/CVF Conference
1323
+ on Computer Vision and Pattern Recognition, pages
1324
+ 7519–7528, 2019. 3, 10
1325
+ [11] K. He, X. Zhang, S. Ren, and J. Sun.
1326
+ Deep resid-
1327
+ ual learning for image recognition. In Proceedings of
1328
+ the IEEE conference on computer vision and pattern
1329
+ recognition, pages 770–778, 2016. 3
1330
+ [12] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
1331
+ berger. Densely connected convolutional networks. In
1332
+ Proceedings of the IEEE conference on computer vi-
1333
+ sion and pattern recognition, pages 4700–4708, 2017.
1334
+ 1
1335
+ [13] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei,
1336
+ and W. Liu. Ccnet: Criss-cross attention for seman-
1337
+ tic segmentation.
1338
+ In Proceedings of the IEEE/CVF
1339
+ International Conference on Computer Vision, pages
1340
+ 603–612, 2019. 3
1341
+ [14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
1342
+ agenet classification with deep convolutional neural
1343
+ networks. Advances in neural information processing
1344
+ systems, 25:1097–1105, 2012. 1
1345
+ [15] X. Li, L. Zhang, A. You, M. Yang, K. Yang, and
1346
+ Y. Tong.
1347
+ Global aggregation then local distribu-
1348
+ tion in fully convolutional networks. arXiv preprint
1349
+ arXiv:1909.07229, 2019. 3
1350
+ [16] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet:
1351
+ Multi-path refinement networks for high-resolution
1352
+ semantic segmentation. In Proceedings of the IEEE
1353
+ conference on computer vision and pattern recogni-
1354
+ tion, pages 1925–1934, 2017. 3, 10
1355
+ [17] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Seman-
1356
+ tic image segmentation via deep parsing network. In
1357
+ Proceedings of the IEEE international conference on
1358
+ computer vision, pages 1377–1385, 2015. 3
1359
+ [18] J. Long, E. Shelhamer, and T. Darrell. Fully convo-
1360
+ lutional networks for semantic segmentation. In Pro-
1361
+ ceedings of the IEEE conference on computer vision
1362
+ and pattern recognition, pages 3431–3440, 2015. 1, 3
1363
+ [19] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully
1364
+ convolutional neural networks for volumetric medical
1365
+ image segmentation. In 2016 fourth international con-
1366
+ ference on 3D vision (3DV), pages 565–571. IEEE,
1367
+ 2016. 7
1368
+ [20] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee,
1369
+ S. Fidler, R. Urtasun, and A. Yuille. The role of con-
1370
+ text for object detection and semantic segmentation in
1371
+ the wild. In Proceedings of the IEEE Conference on
1372
+ Computer Vision and Pattern Recognition, pages 891–
1373
+ 898, 2014. 8
1374
+ [21] O. Ronneberger, P. Fischer, and T. Brox. U-net: Con-
1375
+ volutional networks for biomedical image segmenta-
1376
+ tion. In International Conference on Medical image
1377
+ computing and computer-assisted intervention, pages
1378
+ 234–241. Springer, 2015. 3
1379
+ [22] O.
1380
+ Russakovsky,
1381
+ J.
1382
+ Deng,
1383
+ H.
1384
+ Su,
1385
+ J.
1386
+ Krause,
1387
+ S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
1388
+ M. Bernstein, et al. Imagenet large scale visual recog-
1389
+ nition challenge.
1390
+ International journal of computer
1391
+ vision, 115(3):211–252, 2015. 1
1392
+ [23] K. Simonyan and A. Zisserman.
1393
+ Very deep convo-
1394
+ lutional networks for large-scale image recognition.
1395
+ arXiv preprint arXiv:1409.1556, 2014. 1
1396
+ [24] L. van der Maaten and G. Hinton.
1397
+ Viualizing data
1398
+ using t-sne. Journal of Machine Learning Research,
1399
+ 9:2579–2605, 11 2008. 2, 6
1400
+ [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
1401
+ L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
1402
+ sukhin.
1403
+ Attention is all you need.
1404
+ arXiv preprint
1405
+ arXiv:1706.03762, 2017. 1
1406
+ [26] X. Wang, R. Girshick, A. Gupta, and K. He. Non-
1407
+ local neural networks.
1408
+ In Proceedings of the IEEE
1409
+ conference on computer vision and pattern recogni-
1410
+ tion, pages 7794–7803, 2018. 1
1411
+ [27] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang.
1412
+ Denseaspp for semantic segmentation in street scenes.
1413
+ In Proceedings of the IEEE conference on computer
1414
+ vision and pattern recognition, pages 3684–3692,
1415
+ 2018. 3
1416
+ [28] C. Yu, Y. Liu, C. Gao, C. Shen, and N. Sang. Repre-
1417
+ sentative graph neural network. In European Confer-
1418
+ ence on Computer Vision, pages 379–396. Springer,
1419
+ 2020. 10
1420
+ [29] C. Yu, J. Wang, C. Gao, G. Yu, C. Shen, and N. Sang.
1421
+ Context prior for scene segmentation. In Proceedings
1422
+ of the IEEE/CVF Conference on Computer Vision and
1423
+ Pattern Recognition, pages 12416–12425, 2020. 8, 9,
1424
+ 10
1425
+ [30] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang.
1426
+ Learning a discriminative feature network for seman-
1427
+ tic segmentation.
1428
+ In Proceedings of the IEEE con-
1429
+ ference on computer vision and pattern recognition,
1430
+ pages 1857–1866, 2018. 8
1431
+ [31] F. Yu and V. Koltun.
1432
+ Multi-scale context ag-
1433
+ gregation by dilated convolutions.
1434
+ arXiv preprint
1435
+ arXiv:1511.07122, 2015. 1, 3
1436
+ [32] Y. Yuan, X. Chen, and J. Wang. Object-contextual rep-
1437
+ resentations for semantic segmentation. arXiv preprint
1438
+ arXiv:1909.11065, 2019. 3, 10
1439
+
1440
+ [33] Y. Yuan and J. Wang. Ocnet: Object context network
1441
+ for scene parsing. arXiv preprint arXiv:1809.00916,
1442
+ 2018. 3
1443
+ [34] F. Zhang, Y. Chen, Z. Li, Z. Hong, J. Liu, F. Ma,
1444
+ J. Han, and E. Ding. Acfnet: Attentional class feature
1445
+ network for semantic segmentation. In Proceedings of
1446
+ the IEEE/CVF International Conference on Computer
1447
+ Vision, pages 6798–6807, 2019. 3
1448
+ [35] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang,
1449
+ A. Tyagi, and A. Agrawal. Context encoding for se-
1450
+ mantic segmentation. In Proceedings of the IEEE con-
1451
+ ference on Computer Vision and Pattern Recognition,
1452
+ pages 7151–7160, 2018. 10
1453
+ [36] H. Zhang, H. Zhang, C. Wang, and J. Xie.
1454
+ Co-
1455
+ occurrent features in semantic segmentation. In Pro-
1456
+ ceedings of the IEEE/CVF Conference on Computer
1457
+ Vision and Pattern Recognition, pages 548–557, 2019.
1458
+ 3, 10
1459
+ [37] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid
1460
+ scene parsing network. In Proceedings of the IEEE
1461
+ conference on computer vision and pattern recogni-
1462
+ tion, pages 2881–2890, 2017. 1, 3, 9, 10
1463
+ [38] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin,
1464
+ and J. Jia. Psanet: Point-wise spatial attention net-
1465
+ work for scene parsing. In Proceedings of the Euro-
1466
+ pean Conference on Computer Vision (ECCV), pages
1467
+ 267–283, 2018. 1, 10
1468
+ [39] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vi-
1469
+ neet, Z. Su, D. Du, C. Huang, and P. H. Torr. Condi-
1470
+ tional random fields as recurrent neural networks. In
1471
+ Proceedings of the IEEE international conference on
1472
+ computer vision, pages 1529–1537, 2015. 9
1473
+ [40] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and
1474
+ A. Torralba. Scene parsing through ade20k dataset.
1475
+ In Proceedings of the IEEE conference on computer
1476
+ vision and pattern recognition, pages 633–641, 2017.
1477
+ 8, 10
1478
+ [41] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai. Asym-
1479
+ metric non-local neural networks for semantic seg-
1480
+ mentation.
1481
+ In Proceedings of the IEEE/CVF Inter-
1482
+ national Conference on Computer Vision, pages 593–
1483
+ 602, 2019. 10
1484
+
-NE4T4oBgHgl3EQfDgur/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-tFRT4oBgHgl3EQfrzf-/content/tmp_files/2301.13622v1.pdf.txt ADDED
@@ -0,0 +1,1338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Learning Data Representations with Joint Diffusion Models
2
+ Kamil Deja 1 Tomasz Trzcinski 1 2 3 Jakub M. Tomczak 4 †
3
+ Abstract
4
+ We introduce a joint diffusion model that simul-
5
+ taneously learns meaningful internal representa-
6
+ tions fit for both generative and predictive tasks.
7
+ Joint machine learning models that allow synthe-
8
+ sizing and classifying data often offer uneven per-
9
+ formance between those tasks or are unstable to
10
+ train. In this work, we depart from a set of em-
11
+ pirical observations that indicate the usefulness
12
+ of internal representations built by contemporary
13
+ deep diffusion-based generative models in both
14
+ generative and predictive settings. We then intro-
15
+ duce an extension of the vanilla diffusion model
16
+ with a classifier that allows for stable joint train-
17
+ ing with shared parametrization between those
18
+ objectives. The resulting joint diffusion model
19
+ offers superior performance across various tasks,
20
+ including generative modeling, semi-supervised
21
+ classification, and domain adaptation.
22
+ 1. Introduction
23
+ Training a single machine learning model that can jointly
24
+ synthesize new data as well as to make predictions about
25
+ input samples remains a long-standing goal of machine
26
+ learning (Jebara, 2012; Lasserre et al., 2006). Shared rep-
27
+ resentations created with a combination of those two ob-
28
+ jectives promise benefits on many downstream problems
29
+ such as calibration of model uncertainty (Chapelle et al.,
30
+ 2009), semi-supervised learning (Kingma et al., 2014), un-
31
+ supervised domain adaptation (Ilse et al., 2020) or continual
32
+ learning (Masarczyk et al., 2021).
33
+ Since the introduction of deep generative models such
34
+ as Variational Autoencoders (VAEs) (Kingma & Welling,
35
+ 2014), a growing body of work takes advantage of shared
36
+ deep neural network-based parameterization and latent vari-
37
+ ables to build joint models. For instance, Ilse et al. (2020);
38
+ † Work done at Vrije Universiteit Amsterdam 1Warsaw Univer-
39
+ sity of Technology, Poland 2IDEAS NCBR, Poland 3Tooploox,
40
+ Poland 4Eindhoven University of Technology, The Netherlands.
41
+ Correspondence to: Kamil Deja <kamil.deja.dokt@pw.edu.pl>,
42
+ Jakub M. Tomczak <j.m.tomczak@tue.nl>.
43
+ Preprint.
44
+ Tulyakov et al. (2017); Knop et al. (2020); Yang et al. (2022)
45
+ stack a classifier on top of latent variables sampled from a
46
+ shared encoder. Similarly, (Nalisnick et al., 2019; Perugachi-
47
+ Diaz et al., 2021) use normalizing flows to obtain an invert-
48
+ ible representation that is further fed to a classifier. However,
49
+ these approaches require modifying the log-likelihood func-
50
+ tion by scaling either the conditional log-likelihood or the
51
+ marginal log-likelihood. This idea, known as hybrid mod-
52
+ eling (Lasserre et al., 2006), leads to the situation where
53
+ models concentrate either on synthesizing data or predicting
54
+ but not on both of those tasks simultaneously.
55
+ We address existing joint models’ limitations and lever-
56
+ age the recently introduced diffusion-based deep generative
57
+ models (DDGM) (Sohl-Dickstein et al., 2015; Dhariwal &
58
+ Nichol, 2021; Kingma et al., 2021). This new family of
59
+ methods has become popular because of the unprecedented
60
+ quality of the samples they generate. However, relatively
61
+ little attention was paid to their inner workings, especially
62
+ to the internal representations built by the DDGMs. In this
63
+ work, we fill this gap and empirically analyze those repre-
64
+ sentations, validating their usefulness for predictive tasks
65
+ and beyond. Then, we introduce a joint diffusion model,
66
+ where a classifier shares the parametrization with the UNet
67
+ encoder by operating on the extracted latent features. This
68
+ results in meaningful data representations shared across
69
+ discriminative and generative objectives.
70
+ We validate our approach in several use cases where we
71
+ show how one part of our model can benefit from the other.
72
+ First, we investigate how DDGMs benefit from the addi-
73
+ tional classifier to conditionally generate new samples or
74
+ alter original images. Next, we show the performance im-
75
+ provement our method brings in the classification task. Fi-
76
+ nally, we extend the evaluation of our joint diffusion model
77
+ to semi-supervised learning, domain adaptation, and coun-
78
+ terfactual explanations. For all of those tasks, our method
79
+ does not require any problem-specific adjustments, which
80
+ confirms the flexibility of our approach.
81
+ We can summarize the contributions of our work as follows:
82
+ • We provide empirical observations with insight into
83
+ representations built internally by diffusion models,
84
+ on top of which we introduce a joint classifier and
85
+ diffusion model with shared parametrization.
86
+ arXiv:2301.13622v1 [cs.LG] 31 Jan 2023
87
+
88
+ Diffusion Models Learn Data Representations
89
+ • We introduce a conditional sampling algorithm where
90
+ we optimize internal diffusion representations with a
91
+ classifier.
92
+ • We prove that our solution work with several use cases
93
+ including the semi-supervised learning, domain adap-
94
+ tion and counterfactual explanations.
95
+ 2. Background
96
+ Joint models
97
+ Let us consider two random variables: x ∈
98
+ X and y ∈ Y. For instance, in the classification problem we
99
+ can have X = RD and Y = {0, 1, . . . , K − 1}. The joint
100
+ distribution over these random variables could be factorized
101
+ in one of the following two manners:
102
+ p(x, y) = p(x|y)p(y)
103
+ (1)
104
+ = p(y|x) p(x).
105
+ (2)
106
+ In Eq. (2), we get the conditional distribution p(y|x) (e.g., a
107
+ classifier) and the marginal distribution p(x). For prediction,
108
+ it is enough to learn the conditional distribution, which is
109
+ typically parameterized with neural networks. However,
110
+ training the joint model with shared parametrization has
111
+ many advantages since one part of the model can positively
112
+ influence the other.
113
+ Diffusion-based Deep Generative Models
114
+ In this work,
115
+ we follow the formulation of Diffusion-based deep gen-
116
+ erative models as presented in (Ho et al., 2020; Sohl-
117
+ Dickstein et al., 2015). Given a data distribution x0 ∼
118
+ q(x0), we define a forward noising process q that pro-
119
+ duces a sequence of latent variables x1 through xT by
120
+ adding Gaussian noise at each time step t, with a vari-
121
+ ance of βt ∈ (0, 1), defined by a schedule β1, ..., βT ,
122
+ namely, q(x1, . . . , xT |x0) = �T
123
+ t=1 q(xt|xt−1), where
124
+ q(xt|xt−1) = N(xt; √1 − βtxt−1, βtI).
125
+ Following (Huang et al., 2021; Kingma et al., 2021;
126
+ Tomczak, 2022; Tzen & Raginsky, 2019), we consider
127
+ DDGMs as infinitely deep hierarchical VAEs with
128
+ a specific family of variational posteriors;
129
+ namely,
130
+ Gaussian diffusion processes (Sohl-Dickstein et al.,
131
+ 2015).
132
+ Therefore, for data point x0, and latent vari-
133
+ ables x1, . . . , xT , we want to optimize the marginal
134
+ likelihood
135
+ pθ(x0)
136
+ =
137
+
138
+ pθ(x0, . . . , xT )dx1, . . . , xT .
139
+ We
140
+ define
141
+ the
142
+ backward
143
+ diffusion
144
+ process
145
+ as
146
+ pθ(x0, . . . , xT )
147
+ =
148
+ p(xT )
149
+ �T
150
+ t=0 pθ(xt−1|xt), where
151
+ pθ(xt−1|xt) = N(xt−1; µθ(xt, t), Σθ(xt, t)).
152
+ We can define the variational lower bound as follows:
153
+ ln pθ(x0) ≥ Lvlb(θ) :=
154
+ Eq(x1|x0)[ln pθ(x0|x1)]
155
+
156
+ ��
157
+
158
+ −L0
159
+ − DKL [q(xT |x0)∥p(xT )]
160
+
161
+ ��
162
+
163
+ LT
164
+
165
+
166
+ T
167
+
168
+ t=2
169
+ Eq(xt|x0)DKL [q(xt−1|xt, x0)∥pθ(xt−1|xt)]
170
+
171
+ ��
172
+
173
+ Lt−1
174
+ . (3)
175
+ that we further optimize with respect to the parameters of
176
+ the backward diffusion.
177
+ Training objective
178
+ In (Ho et al., 2020), authors notice
179
+ that instead of estimating the probability of previous la-
180
+ tent variable p(xt−1|xt), we can predict the added noise ϵ.
181
+ Therefore, a single part of the variational lower bound is
182
+ equal to:
183
+ Lt(θ) =Ex0,ϵ
184
+
185
+ β2
186
+ t
187
+ 2σ2
188
+ t αt (1 − αt)×
189
+ ��ϵ − ϵθ
190
+ �√αtx0 +
191
+
192
+ 1 − αtϵ, t
193
+ ���2�
194
+ ,
195
+ (4)
196
+ where ϵ ∼ N(0, I) and ϵθ(·, ·) is a neural network predict-
197
+ ing the noise ϵ from xt.
198
+ In (Ho et al., 2020), it is also suggested to train the model
199
+ with a simplified objective that is a modified version of
200
+ equation (4) without scaling, namely:
201
+ Lt,simple(θ) = Ex0,ϵ
202
+ ���ϵ − ϵθ
203
+ �√αtx0 + √1 − αtϵ, t
204
+ ���2�
205
+ .
206
+ (5)
207
+ In practice, a single shared neural network is used for mod-
208
+ eling ϵθ. For that end, most of the works (Ho et al., 2020;
209
+ Kingma et al., 2021; Nichol & Dhariwal, 2021) use UNet
210
+ architecture (Ronneberger et al., 2015) that can be seen as a
211
+ specific type of an autoencoder. This is particularly relevant
212
+ for this work since we benefit from the Encoder – Decoder
213
+ structure of the denoising DDGM model.
214
+ 3. Related Work
215
+ Diffusion models There are several extensions to the base-
216
+ line DDGM setup that aim to improve the quality of sampled
217
+ generations (Ho et al., 2020; Huang et al., 2021; Kingma
218
+ et al., 2021; Song & Ermon, 2019; Song et al., 2020). This
219
+ includes noising and sampling schedulers and modified
220
+ training objectives. Several works propose to improve the
221
+ quality of samples from DDGMs by conditioning the gen-
222
+ erations with class identities (Tashiro et al., 2021; Ho &
223
+ Salimans, 2022; Huang et al.). Among those works, (Dhari-
224
+ wal & Nichol, 2021) introduces a classifier-guided genera-
225
+ tion, where a gradient from an externally and independently
226
+ trained classifier is added in the process of backward diffu-
227
+ sion to guide the generation towards a target class. On top
228
+
229
+ Diffusion Models Learn Data Representations
230
+ of this approach, (Augustin et al., 2022) present a tool for
231
+ investigating the decision of a classifier by generating visual
232
+ counterfactual explanations with a diffusion model. In this
233
+ work, we simplify both of those methods benefiting from
234
+ training a joint model with representations shared between
235
+ a diffusion model and a classifier.
236
+ Diffusion models and UNet representations Some works
237
+ tackle the problem of data representation with diffusion
238
+ models. (Abstreiter et al., 2021) introduce additional en-
239
+ coded information to the score estimator, which allows them
240
+ to use the score matching loss function for learning data rep-
241
+ resentations. (Baranchuk et al., 2021) use activations from
242
+ the pre-trained diffusion UNet model for the image segmen-
243
+ tation task. Other works consider data representations from
244
+ the UNet model within other generative models. (Esser
245
+ et al., 2018) introduce a conditional UNet-based variational
246
+ autoencoder, while (Falck et al., 2022) show the connection
247
+ between the UNet architecture and wavelet transformation,
248
+ applying it to the hierarchical VAEs. We show that indeed
249
+ diffusion models learn useful representations. We further
250
+ take advantage of that in utilizing a shared parameterization
251
+ between a diffusion model and a classifier in a joint model.
252
+ Joint training Apart from latent variable joint models,
253
+ (Grathwohl et al., 2019b) show that it is possible to use a
254
+ shared parameterization (a neural network-based classifier)
255
+ to formulate an energy-based model. This Joint Energy-
256
+ based Model (JEM) could be seen as a classifier if a softmax
257
+ function is applied to logits or a generator if a Markov-chain
258
+ Monte Carlo method is used to sample from the model.
259
+ Although it obtains strong empirical results, gradient estima-
260
+ tors used to train JEM are unstable and prone to diverging
261
+ when optimization parameters are not perfectly tuned, which
262
+ limits the robustness and applicability of this method. Alter-
263
+ natively, Introspective Neural Networks could be used for
264
+ generative modeling and classification by applying a single
265
+ parameterization (Jin et al., 2017; Lazarow et al., 2017; Lee
266
+ et al., 2018). The idea behind this class of models relies
267
+ on utilizing a training procedure that combines adversarial
268
+ learning and contrastive learning. Similarly to JEMs, sam-
269
+ pling is carried out by running an MCMC method. Here,
270
+ we propose to combine diffusion models with a classifier
271
+ by sharing parameterization. Thus, our training is entirely
272
+ based on the log-likelihood function, and sampling is carried
273
+ out by backward diffusion instead of any MCMC algorithm.
274
+ 4. Diffusion models learn data representations
275
+ As mentioned earlier, learning useful data representations is
276
+ important for having a good generator or classifier. Ideally,
277
+ we would like to train a joint model that allows us to obtain
278
+ proper representations for both p(y|x) and p(x) simulta-
279
+ neously. In this work, we investigate parameterizations
280
+ of DDGMs and, in particular, the use of an autoencoder
281
+ 𝐱𝐭−𝟏
282
+ 𝐱𝐭
283
+ Encoder
284
+ Decoder
285
+ 𝐳𝐭
286
+ 𝟏
287
+ 𝐳𝐭
288
+ 𝟐
289
+ 𝐳𝐭
290
+ 𝟑
291
+ 𝐳𝐭
292
+ Pooling
293
+ Figure 1. Data representation zt in a UNet-based diffusion model.
294
+ as a denoising decoder pθ(xt−1|xt). Within this architec-
295
+ ture, the denoising function can be decomposed into two
296
+ parts: encoding of the image at the current timestep into a
297
+ set of features Zt = e(xt) and then decoding it to obtain
298
+ xt−1 = d(Zt). In particular, for the UNet architecture, a set
299
+ of features obtained from an input is a structure composed
300
+ of several tensors with image features encoded to different
301
+ levels, Zt = {z1
302
+ t, z2
303
+ t . . . zn
304
+ t }. For simplification, for all fur-
305
+ ther experiments, we propose to pool features encoded by
306
+ the same filter and concatenate the averaged representations
307
+ into a single vector zt, as presented in Fig. 1 for n = 3.
308
+ In particular, we can use average pooling to select average
309
+ convolutional filter activations to the whole input. Details
310
+ of this procedure are described in Appendix A.1.
311
+ 4.1. UNet representations are useful for prediction
312
+ First, we would like to verify whether averaged representa-
313
+ tions z0 extracted from an original image x0 by the UNet
314
+ contain information that is in some sense predictive. For
315
+ that, we measure the performance of an MLP-based classi-
316
+ fier fed with z0.
317
+ As presented in Fig 2, representations encoded in z0 are
318
+ indeed very informative and, in some cases (e.g., CIFAR-
319
+ 10), could lead to performance comparable to a stand-alone
320
+ classifier with the same architecture as the combination of
321
+ the UNet encoder and MLP but trained with the standard
322
+ cross-entropy loss function. This observation is in line
323
+ with (Baranchuk et al., 2021), where the same activations
324
+ from the pre-trained diffusion model were used for semantic
325
+ image segmentation.
326
+ 4.2. Diffusion models learn features of increasing
327
+ granularity
328
+ The next question is how the data representations zt differ
329
+ with diffusion timesteps t. To investigate this issue, we train
330
+ an unsupervised DDGM on the CelebA dataset, which we
331
+ then use to extract the features zt at different timesteps. On
332
+ top of those representations, we fit a binary logistic regres-
333
+ sion classifier for each of the 40 attributes in the dataset. In
334
+ Fig. 3, we show the performance of those regression models
335
+
336
+ Diffusion Models Learn Data Representations
337
+ Figure 2. The test-set accuracy of a stand-alone classifier compared
338
+ to a classifier trained on top of data representations from a pre-
339
+ trained diffusion model extracted from original images x0.
340
+ for 6 different attributes when calculated on top of represen-
341
+ tations from ten different diffusion timesteps. We observe
342
+ that the model learns different data features depending on
343
+ the amount of noise added to the original data sample. As
344
+ presented in Fig. 3, high-grained data features such as hair
345
+ color start to emerge at late diffusion steps (closer to the
346
+ noise), while low-grained features (e.g., necklace or glasses)
347
+ are not present until the early steps. This observation is in
348
+ line with the works on denoising autoencoders where au-
349
+ thors observe similar behavior for denoising with different
350
+ amounts of added noise (Chandra & Sharma, 2014; Geras
351
+ & Sutton, 2014; Zhang & Zhang, 2018).
352
+ 200
353
+ 400
354
+ 600
355
+ 800
356
+ 1000
357
+ Timestep
358
+ 0.5
359
+ 0.6
360
+ 0.7
361
+ 0.8
362
+ 0.9
363
+ AUC
364
+ Blond hair
365
+ Black hair
366
+ Necklace
367
+ Mouth slightly open
368
+ Pointy nose
369
+ Eyeglasses
370
+ Figure 3. The area under the ROC curve (AUC) for logistic regres-
371
+ sion models fit on data representations extracted with a pre-trained
372
+ diffusion model at ten different diffusion timesteps. High-grained
373
+ features are already distinguishable at late diffusion steps (closer
374
+ to random noise), while low-grained features are only represented
375
+ at the earlier stage of the forward diffusion.
376
+ 5. Method
377
+ Taking into account the observations described in Section
378
+ 4, we propose to train a joint model that is composed of a
379
+ classifier and a DDGM. Specifically, we propose to use a
380
+ shared parameterization, namely, a shared encoder of the
381
+ UNet architecture that serves as the generative part and for
382
+ calculating pooled features for the classifier.
383
+ 5.1. Joint Diffusion Models: DDGMs with classifiers
384
+ Following the procedure introduced in Sec. 4, we pool the
385
+ latent representations of the data from different levels of the
386
+ UNet architecture into one vector z. On top of this vector,
387
+ we build a classifier model trained to assign a label to the
388
+ data example represented by the vector z.
389
+ In particular, we consider the following parameterization
390
+ of a denoising diffusion model within a single diffusion
391
+ timestep t, pθ(zt−1|zt). We distinguish the encoder eν
392
+ with parameters ν that maps input xt into a set of vectors
393
+ Zt = eν(xt), where Zt = {z1
394
+ t, z2
395
+ t . . . zn
396
+ t }, i.e., a set of
397
+ representation vectors derived from each depth level of the
398
+ UNet architecture. The second component of the denoising
399
+ diffusion model is the decoder dψ with parameters ψ that
400
+ reconstructs feature vectors into a denoised sample, xt−1 =
401
+ dψ(Zt). Together the encoder and the decoder form the
402
+ denoising model pθ with parameters θ = {ν, ψ}. Next, we
403
+ introduce a third part of our model, which is the classifier
404
+ gω with parameters ω that predicts target class ˆy = gω(Zt).
405
+ The first layer of the classifier is the average pooling that
406
+ results in a single representation zt.
407
+ ො𝐲
408
+ 𝐱𝟎
409
+ 𝐱𝐓
410
+ 𝐱𝐭−𝟏
411
+ 𝐱𝐭
412
+ (a) The parameterization of our joint diffusion
413
+ 𝐱𝟎
414
+ 𝐱𝐓
415
+ 𝐱𝐭−𝟏
416
+ 𝐱𝐭
417
+ ො𝐲𝐓
418
+ ො𝐲𝐭
419
+ ො𝐲𝐭−𝟏
420
+ (b) Additional noisy classifiers
421
+ Figure 4. The parameterization of our joint diffusion model.
422
+ (a) Each step in the backward diffusion is parameterized by a
423
+ shared UNet. The classifier uses the encoder of the UNet together
424
+ with the average pooling (green) and additional layers (yellow).
425
+ (b) An alternative training that additionally uses the classifier for
426
+ noisy images xt (t > 0).
427
+ In our approach, we consider a classifier that takes the origi-
428
+ nal image x0 for which a vector of probabilities is returned ϕ
429
+ and eventually the final prediction is calculated, ˆy = gω(x0).
430
+ The visualization of our shared parameterization is pre-
431
+ sented in Figure 4(a). As a result, our model could be writ-
432
+ ten as follows pν,ψ,ω(x0:T , y) = pν,ω(y|x0) pν,ψ(x0:T ),
433
+ and applying the logarithm yields:
434
+ ln pν,ψ,ω(x0:T , y) = ln pν,ω(y|x0) + ln pν,ψ(x0:T ).
435
+ (6)
436
+ The logarithm of the joint distribution (6) could serve as
437
+ the training objective in which ln pθ(x0:T ) could be either
438
+
439
+ 100%
440
+ 75%
441
+ Accuracy
442
+ 50%
443
+ 25%
444
+ 0%
445
+ FashionMNIsT
446
+ SVHN
447
+ CIFAR-10
448
+ CIFAR-100
449
+ I Standard classfier
450
+ : Classifier on pre-trained DDGMDiffusion Models Learn Data Representations
451
+ approximated by the ELBO for the diffusion-based model
452
+ in (3) or the simplified objective with (5)). In this paper, we
453
+ follow the simplified objective:
454
+ Lt,diff(ν, ψ) = Ex0,ϵ
455
+
456
+ ∥ϵ − ˆϵ∥2�
457
+ ,
458
+ (7)
459
+ where ˆϵ is a prediction from the decoder:
460
+ {z1
461
+ t, z2
462
+ t . . . zn
463
+ t } =eν
464
+ �√αtx0 +
465
+
466
+ 1 − αtϵ, t
467
+
468
+ (8)
469
+ ˆϵ =dψ({z1
470
+ t, z2
471
+ t . . . zn
472
+ t }).
473
+ (9)
474
+ For the classifier, we use the logarithm of the categorical
475
+ distribution, i.e., the cross-entropy loss:
476
+ Lclass(ν, ω) = −Ex0,y
477
+ ��K−1
478
+ k=0 1[y = k] log
479
+ exp(ϕk)
480
+ �K−1
481
+ c=0 exp(ϕc)
482
+
483
+ ,
484
+ (10)
485
+ where y is the target class, ϕ is a vector of probabilities
486
+ returned by the classifier gω(eν(x0)), and 1[y = k] is the
487
+ indicator function that is 1 if y equals k, and 0 otherwise.
488
+ The final loss function in our approach is then the following:
489
+ L(ν, ψ, ω) = Lclass(ν, ω)+
490
+ (11)
491
+ − L0(ν, ψ) −
492
+ T
493
+
494
+ t=2
495
+ Lt,diff(ν, ψ) − LT (ν, ψ).
496
+ We optimize the objective in (11) jointly with a single opti-
497
+ mizer over parameters {ν, ψ, ω}.
498
+ 5.2. An alternative training of joint diffusion models
499
+ The training of the proposed approach over a batch of data is
500
+ straightforward. For a sampled pair (x0, y), the example x0
501
+ is first noised with a forward diffusion to a random timestep,
502
+ xt so that the training loss for the denoising model is a
503
+ Monte-Carlo approximation of the sum over all timesteps.
504
+ Then x0 is fed to a classifier that returns probabilities ϕ, and
505
+ the cross-entropy loss is calculated for given y.
506
+ However, as discussed in Section 4.2, the diffusion model
507
+ trained even in a fully unsupervised manner provides data
508
+ representations related to the different granularity of input
509
+ features at various diffusion timesteps. Considering this, we
510
+ can improve the robustness of our method by applying the
511
+ same classifier to intermediate noisy images xt (0 < t <
512
+ T), which by reason adds the cross-entropy losses for xt,
513
+ namely:
514
+ Lt
515
+ class(ν, ω) = −Ex0,y
516
+ ��K−1
517
+ k=0 1[y = k] log
518
+ exp(ϕt
519
+ k)
520
+ �K−1
521
+ c=0 exp(ϕtc)
522
+
523
+ ,
524
+ (12)
525
+ where ϕt
526
+ k is a vector of probabilities given by gω(eν(xt)).
527
+ Then the extended objective (11) is the following:
528
+ LT (ν, ψ, ω) = L(ν, ψ, ω) +
529
+
530
+ t∈T
531
+ Lt
532
+ class(ν, ω),
533
+ (13)
534
+ where T ⊆ {1, 2, . . . , T} is the set of timesteps. These
535
+ additional noisy classifiers are schematically depicted in
536
+ Figure 4(b) in which we highlight that the model is reused
537
+ across various noisy images. It is important to mention that
538
+ the noisy classifiers serve only for training purposes; they
539
+ are not used for prediction. This procedure is similar to the
540
+ data augmentation technique, where random noise is added
541
+ to the input (Sietsma & Dow, 1991).
542
+ 5.3. Conditional sampling in joint diffusion models
543
+ To improve the quality of samples generated by DDGM,
544
+ (Dhariwal & Nichol, 2021) propose a classifier guidance
545
+ approach, where an externally trained classifier can be used
546
+ to guide the generation of the DDGM trained in an unsu-
547
+ pervised way towards the desired class. In the standard
548
+ DDGM, at each backward diffusion step, an image is sam-
549
+ pled from the output of the diffusion model pθ according to
550
+ the following formula:
551
+ µ, Σ ←µθ (xt) , Σθ (xt)
552
+ xt−1 ← sample from N (µ, Σ)
553
+ (14)
554
+ (Dhariwal & Nichol, 2021) proposed to change the second
555
+ line of this equation and add a scaled gradient with respect
556
+ to the target class from an externally trained classifier c(·)
557
+ directly to the output of the denoising model:
558
+ xt−1 ← sample from N (µ + sΣ∇xtc(xt), Σ) ,
559
+ (15)
560
+ where s is a gradient scale.
561
+ With the joint training of a classifier and diffusion model
562
+ introduced in this work, we propose to simplify the clas-
563
+ sifier guidance technique. Using the alternative training
564
+ introduced in the previous section, Section 5.2, we can use
565
+ noisy classifiers to formulate conditional sampling. The
566
+ encoder model eν encodes input data xt into the represen-
567
+ tation vectors Zt that are used to both denoise an example
568
+ into the previous diffusion timestep xt−1 ∼ dψ (Zt) as well
569
+ as to predict the target label with a classifier ˆy = gω (Zt).
570
+ Therefore, to guide the model towards a target label during
571
+ sampling, we propose optimizing the representations Zt ac-
572
+ cording to the gradient calculated through the classifier with
573
+ respect to the desired class. The overview of this procedure
574
+ is presented in the algorithm Algorithm 1.
575
+ For the reformulation of the diffusion model proposed
576
+ by (Ho et al., 2020) where instead of predicting the previous
577
+ timestep xt−1 denoising model is optimized to predict noise
578
+ ϵ that is subtracted from the image at the current timestep
579
+ xt, we adequately change the optimization objective. In-
580
+ stead of optimizing the noise to be specific to the target
581
+ class, we optimize it to be anything except for the target
582
+ class, which we implement by changing the optimization
583
+ direction: Z′
584
+ t ← Zt + α∇Zt log gω(y|Zt).
585
+
586
+ Diffusion Models Learn Data Representations
587
+ Table 1. An evaluation of generative capabilities by measuring the FID score, Precision and Recall of generations from various diffusion-
588
+ based models, including our joint diffusion model.
589
+ Model
590
+ FashionMNIST
591
+ CIFAR-10
592
+ CIFAR-100
593
+ CelebA
594
+ FID ↓
595
+ Prec ↑
596
+ Rec ↑
597
+ FID ↓
598
+ Prec ↑
599
+ Rec ↑
600
+ FID ↓
601
+ Prec ↑
602
+ Rec ↑
603
+ FID ↓
604
+ Prec ↑
605
+ Rec ↑
606
+ DDGM
607
+ 7.8
608
+ 71.5
609
+ 65.3
610
+ 7.2
611
+ 64.8
612
+ 61.2
613
+ 29.7
614
+ 70.0
615
+ 47.8
616
+ 5.6
617
+ 66.5
618
+ 58.7
619
+ DDGM (classifier guidance)
620
+ 7.9
621
+ 66.6
622
+ 59.5
623
+ 8.1
624
+ 63.2
625
+ 63.3
626
+ 22.1
627
+ 69.3
628
+ 46.9
629
+ 4.9
630
+ 66.0
631
+ 57.8
632
+ Ours
633
+ 8.7
634
+ 71.1
635
+ 61.1
636
+ 10
637
+ 66.4
638
+ 56.3
639
+ 17.4
640
+ 63.2
641
+ 54
642
+ 7.5
643
+ 66.7
644
+ 50.7
645
+ Ours (conditional sampling)
646
+ 5.9
647
+ 63.1
648
+ 63.2
649
+ 9.4
650
+ 66.8
651
+ 54.7
652
+ 16.8
653
+ 63.5
654
+ 54.1
655
+ 6.6
656
+ 64.2
657
+ 54.5
658
+ Algorithm 1 Sampling with optimized representations
659
+ given a diffusion model (an encoder eν(Zt|xt), a decoder
660
+ dφ(xt−1|Zt)), a classifier gω(y|Zt), and a step size α.
661
+ Input: class label y, step size α
662
+ xT ← sample from N(0, I)
663
+ for all t from T to 1 do
664
+ Zt ← eν(xt)
665
+ Z′
666
+ t ← Zt − α∇Zt log gω(y|Zt)
667
+ µ, Σ ← dψ(Z′
668
+ t)
669
+ xt−1 ← sample from N(µ, Σ)
670
+ end for
671
+ return x0
672
+ 6. Experiments
673
+ In the experiments, we aim for observing the benefits of the
674
+ proposed joint diffusion model over a stand-alone classifier
675
+ or a marginal diffusion model. To that end, we run a series
676
+ of experiments to verify various properties, namely:
677
+ • We measure the quality of a classifier to evaluate
678
+ whether training together with a diffusion model im-
679
+ proves the robustness of the classifier.
680
+ • We measure the generative capability of our model to
681
+ check if representations optimized by the classifier can
682
+ lead to more accurate conditional generations.
683
+ • We train our model in a semi-supervised setup to see
684
+ if shared representations between the classifier and the
685
+ diffusion model can positively influence the classifica-
686
+ tion accuracy for a limited number of labeled data.
687
+ • We use a domain-adaptation task to check if optimizing
688
+ the representations using our approach helps to adapt
689
+ to new data compared to a stand-alone classifier.
690
+ • We show that our joint model learns abstract features
691
+ that can be used for the counterfactual explanation.
692
+ We use a UNet-based model with a depth level of three in
693
+ all experiments. We pool its latent features with average
694
+ pooling into a single vector, on top of which we add a clas-
695
+ sifier with two linear layers and the LeakyReLU activation.
696
+ All metrics are reported for the standard training with the
697
+ objective in (11), except for the conditional sampling where
698
+ we additionally train the classifier on noisy samples, i.e.,
699
+ additional losses as in (13). Hyperparameters and training
700
+ details are included in the appendix and code repository1.
701
+ 6.1. Predictive performance of joint diffusion models
702
+ In the first experiment, we evaluate the predictive perfor-
703
+ mance of our method. To that end, we report the accu-
704
+ racy of our model on four datasets: FashionMNIST, SVHN,
705
+ CIFAR-10, and CIFAR-100. We compare our method with
706
+ a baseline classifier trained with a standard cross-entropy
707
+ loss and the MLP classifier trained on top of representations
708
+ extracted from the pre-trained DDGM as in Section 4. The
709
+ results of this experiment are presented in Table 2.
710
+ As noticed before, a classifier trained on features extracted
711
+ from the UNet of a DDGM pre-trained in an unsupervised
712
+ manner achieves reasonable performance. However, it is
713
+ always outperformed by a stand-alone classifier. Interest-
714
+ ingly, the proposed joint diffusion model achieves the best
715
+ performance on all four datasets. The reason for that could
716
+ be two-fold. First, training a partially shared neural network
717
+ (i.e., the encoder in the UNet architecture) benefits from the
718
+ unsupervised training, similarly to how the pre-training us-
719
+ ing Boltzmann machines benefited finetuning of deep neural
720
+ networks (Hinton et al., 2006). Second, the shared encoder
721
+ part is more robust since it is used in the backward diffusion
722
+ for images with various levels of noise.
723
+ Table 2. The classification accuracy calculated on the test sets. For
724
+ each training, we used exactly the same architecture.
725
+ Model
726
+ F-MNIST
727
+ SVHN
728
+ CIFAR-10
729
+ CIFAR-100
730
+ Classifier
731
+ 92.0%
732
+ 95.1%
733
+ 81%
734
+ 60.8%
735
+ Ours (pre-trained DDGM)
736
+ 60.6%
737
+ 79.6%
738
+ 80.9%
739
+ 43.8%
740
+ Ours
741
+ 93.3%
742
+ 95.4%
743
+ 89.9%
744
+ 63.6%
745
+ 6.2. Generative performance of joint diffusion models
746
+ In the second experiment, we check how adding a classifier
747
+ in our joint diffusion models influences the generative per-
748
+ formance. We use the FID score to quantify the quality of
749
+ data synthesis. Additionally, we use distributed Precision
750
+ 1Anonymized due to the double-blind policy.
751
+
752
+ Diffusion Models Learn Data Representations
753
+ (Prec), and Recall (Rec) for assessing the exactness and
754
+ diversity of generated samples (Sajjadi et al., 2018). For our
755
+ joint diffusion model, we consider samples from the prior
756
+ let through the backward diffusion. We also use the second
757
+ sampling scheme in which we use conditional sampling,
758
+ namely, the optimization procedure as described in Section
759
+ 5.3. We compare our approach with a vanilla DDGM, and a
760
+ DDGM with classifier guidance (Dhariwal & Nichol, 2021).
761
+ Overall, all methods performed similarly. In some cases, the
762
+ vanilla DDGM and the DDGM with the classifier guidance
763
+ obtain better results in terms of the FID score (CIFAR-10,
764
+ CelebA) and Precision (FashionMNIST, CIFAR-100). How-
765
+ ever, our joint diffusion model with conditional sampling
766
+ outperforms the DDGMs in terms of the FID score (Fash-
767
+ ionMNIST, CIFAR-100), Precision (CIFAR-10), and Recall
768
+ (FashionMNIST, CIFAR-100). Hence, we conclude that
769
+ all models perform well on the data synthesis task. Con-
770
+ ditional sampling is beneficial in the joint diffusion model
771
+ and yields better-quality generations. This could result from
772
+ the fact that the optimization procedure drives Zt to a mode.
773
+ Eventually, the backward diffusion generates better samples.
774
+ 0
775
+ 500
776
+ 1000
777
+ Step size α
778
+ 40
779
+ 60
780
+ Precision
781
+ CIFAR10
782
+ FashionMNIST
783
+ 0
784
+ 500
785
+ 1000
786
+ Step size α
787
+ 40
788
+ 50
789
+ 60
790
+ 70
791
+ Recall
792
+ CIFAR10
793
+ FashionMNIST
794
+ Precision
795
+ Recall
796
+ Figure 5. The dependency between the value of the step size α
797
+ and the value of Precision and Recall for the joint diffusion with
798
+ conditional sampling.
799
+ To get further insight into the role of conditional sampling,
800
+ we carried out an additional study for the varying value of
801
+ α (the step size in Algorithm 1). In Figure 5, we present
802
+ how Precision and Recall change for different values of
803
+ this parameter. Apparently, increasing the step size value α
804
+ leads to more precise but less diverse samples. This is rather
805
+ intuitive behavior because larger steps result in features Zt
806
+ closer to modes. There seems to be a sweet spot around
807
+ α ∈ [100, 250] for which both measures are high.
808
+ 𝛼 = 0
809
+ 𝛼 = 100
810
+ 𝛼 = 500
811
+ 𝛼 = 1000
812
+ Figure 6. Samples from our joint diffusion model optimized to-
813
+ wards a specific class (here: plane) with different step size α.
814
+ We visualize this effect in Figure 6. For a chosen class, e.g.,
815
+ plane, we observe that the larger α, the more precise the
816
+ samples are but with limited diversity (i.e., the background
817
+ is almost the same). For more samples, see Appendix B.
818
+ 6.3. A comparison to state-of-the-art approaches
819
+ To get a better overview of the performance of our joint
820
+ diffusion model, we present a comparison with other joint
821
+ models and SOTA discriminative and generative models in
822
+ Table 3. Importantly, we present the discriminative model
823
+ and the generative model as the bounds of the performance.
824
+ Importantly, within the class of the joint models, our joint
825
+ diffusion performs on par with Joint Energy-based Model
826
+ (JEM) (Grathwohl et al., 2019a) in terms of classification
827
+ accuracy, but it visibly outperforms JEM in terms of the FID
828
+ score. Moreover, our approach performs significantly better
829
+ than flow-based methods (Residual Flows, Glow).
830
+ Table 3. A comparison of our joint diffusion model with other
831
+ joint models, and the SOTA discriminative model, and the SOTA
832
+ generative model on the CIFAR-10 test set.
833
+ Class
834
+ Model
835
+ Accuracy% ↑
836
+ FID↓
837
+ Joint
838
+ Residual Flows (Chen et al., 2019)
839
+ 70.3
840
+ 46.4
841
+ Glow (Kingma & Dhariwal, 2018)
842
+ 67.6
843
+ 48.9
844
+ JEM (Grathwohl et al., 2019a)
845
+ 92.9
846
+ 38.4
847
+ Ours
848
+ 89.9
849
+ 9.4
850
+ Disc.
851
+ VIT-H (Dosovitskiy et al., 2020)
852
+ 99.5
853
+ N/A
854
+ Gen.
855
+ DDGM (our implementation)
856
+ N/A
857
+ 7.2
858
+ LSGM (Vahdat et al., 2021)
859
+ N/A
860
+ 2.1
861
+ 6.4. Semi-supervised learning of joint diffusion models
862
+ With satisfactory performance, we further evaluate other
863
+ setups where one part of the model can benefit from another.
864
+ In particular, we propose to assess our approach in the semi-
865
+ supervised setup, where we artificially limit the amount of
866
+ labeled data to 10%, 5% or 1% in three datasets SVHN,
867
+ CIFAR-10, and CIFAR-100. We compare joint diffusion
868
+ models to a deep neural network-based classifier and a deep
869
+ neural network-based classifier on top of the pre-trained
870
+ UNet encoder. The results are presented in Table 4.
871
+ In the case of the stand-alone classifier, we observe that
872
+ classification accuracy drastically drops with the number of
873
+ labeled data. However, in our joint diffusion model, we can
874
+ train the classifier on the smaller dataset while still optimiz-
875
+ ing the generator part in an unsupervised manner, with all
876
+ available unlabelled data. This approach significantly im-
877
+ proves the classifier’s performance thanks to the improved
878
+ quality of data representations. For CIFAR-10, we observe
879
+ that the joint diffusion model with only 5% of labeled data
880
+ (250 examples per class) performs almost as well as the
881
+ stand-alone classifier trained with the fully labeled train-
882
+ ing dataset. In more extreme scenarios, e.g., labeled data
883
+ limited to 50, 25, or 5 examples per class, it seems to be
884
+ slightly more beneficial to first learn the data representation
885
+ in an unsupervised way and then add the classifier on top
886
+ of them. However, overall, the joint diffusion model per-
887
+ forms extremely well and greatly benefits from available
888
+ unlabeled data in terms of classification accuracy. Our ex-
889
+
890
+ Diffusion Models Learn Data Representations
891
+ Table 4. The accuracy of the classifier trained in the semi-supervised setup, for each dataset we train the classifier with the fully labeled
892
+ data or a limited amount of labeled examples and the remaining unlabelled examples. We compare standard classifier with classifier
893
+ trained on a pre-trained DDGM as presented in Sec 4 and our joint diffusion method.
894
+ SVHN
895
+ CIFAR-10
896
+ CIFAR-100
897
+ Labelled data
898
+ 100%
899
+ 5%
900
+ 1%
901
+ 100%
902
+ 5%
903
+ 1%
904
+ 100%
905
+ 10%
906
+ 5%
907
+ 1%
908
+ Images per class
909
+ 10000
910
+ 500
911
+ 100
912
+ 5000
913
+ 250
914
+ 50
915
+ 500
916
+ 50
917
+ 25
918
+ 5
919
+ Classifier
920
+ 95.1
921
+ 87.8
922
+ 75.15
923
+ 81
924
+ 46.4
925
+ 31.5
926
+ 60.8
927
+ 22.2
928
+ 16.6
929
+ 6.9
930
+ Ours (pre-trained DDGM)
931
+ 79.6
932
+ 51.7
933
+ 66.0
934
+ 80.9
935
+ 75.1
936
+ 65.3
937
+ 43.8
938
+ 33.9
939
+ 28.8
940
+ 15.4
941
+ Ours
942
+ 95.4
943
+ 90.2
944
+ 76.7
945
+ 89.9
946
+ 78.2
947
+ 64.7
948
+ 63.6
949
+ 38.6
950
+ 21.5
951
+ 11.5
952
+ periments align with the observation by (Baranchuk et al.,
953
+ 2021), where DDGMs were used to improve the perfor-
954
+ mance in semi-supervised image segmentation.
955
+ 6.5. Domain adaptation with diffusion-based
956
+ fine-tuning
957
+ In the previous section, we evaluate whether the classifier
958
+ can benefit from the generative part of our model when
959
+ trained with limited access to labeled data. Now, we further
960
+ extend those experiments and check if joint diffusion can
961
+ adapt to the new data domain using only the generative part
962
+ – in a fully unsupervised way. For this purpose, we run an
963
+ experiment in which we first train the model on the source
964
+ labeled data to retrain it on the target dataset without access
965
+ to the labels. We compare our approach to a standalone
966
+ deep neural network-based classifier, see Table 5.
967
+ Table 5. The classification accuracy of the classifier trained in a
968
+ domain adaption task. We first train the joint model on the source
969
+ dataset, which we adapt to the target domain by retraining it using
970
+ only the diffusion loss for the examples in the target one.
971
+ SVHN → MNIST
972
+ USPS → MNIST
973
+ MNIST → USPS
974
+ Classifier
975
+ 78.8
976
+ 54.7
977
+ 72.2
978
+ Ours
979
+ 85.5
980
+ 90.5
981
+ 92.7
982
+ Classifier on target
983
+ (upper bound)
984
+ 96.1
985
+ 96.8
986
+ 99.4
987
+ As expected, in all three scenarios, the classification accu-
988
+ racy of the stand-alone classifier degrades on a target do-
989
+ main.2 However, having access to unlabeled data from the
990
+ target domain allows our joint diffusion model to adapt sur-
991
+ prisingly well. Our approach outperforms the stand-alone
992
+ classifier in all three cases by a significant margin. This
993
+ result indicates that learning low-level features is essential
994
+ for obtaining good predictive power while it is enough to
995
+ transfer the classification head unchanged.
996
+ 6.6. Visual Counterfactual Explanations
997
+ In the last experiment, we apply our joint diffusion model to
998
+ real-world medical data, the MALARIA dataset (Rajaraman
999
+ et al., 2018), that includes 27,558 cell images that are either
1000
+ 2The classification accuracy does not drop to a random level
1001
+ because all datasets share the same task, i.e., digits classification.
1002
+ Negative examples
1003
+ Positive examples
1004
+ Figure 7. Data samples from the Malaria dataset classified as nega-
1005
+ tive examples (left) or parasitized cells (right). (top row) original
1006
+ data examples, (2nd row) data noised with 20% of forward diffu-
1007
+ sion steps, (3rd row) denoised images with conditional sampling,
1008
+ (bottom row) the difference between the 3rd and 4th rows.
1009
+ infected by the malaria parasite or not (a classification task).
1010
+ The cells have various shapes and different staining (i.e.,
1011
+ colors) and contain or not the parasite (visually apparent as
1012
+ a purple dot).
1013
+ After training our joint diffusion model, we obtain high
1014
+ classification accuracy (98%) on the test set. On top of
1015
+ this, we introduce an adaptation of visual counterfactual
1016
+ explanations (VCE) method (Augustin et al., 2022) that
1017
+ provides an answer to the question: What is the minimal
1018
+ change to the input image x0 to change the decision of the
1019
+ classifier. In our setup, we answer this question with a
1020
+ conditional sampling algorithm that we use to generate the
1021
+ counterfactual explanations. In Figure 7, we show a few
1022
+ examples from the negative (left) or positive (right) classes.
1023
+ We add 20% of noise to these images and run conditional
1024
+ sampling with the opposite class (i.e., changing negative
1025
+ examples to positive ones and vice versa). In both cases,
1026
+ the joint diffusion model with conditional sampling can
1027
+ either remove the parasite from the image (for the positive
1028
+ examples) or add the parasite to the image (for the negative
1029
+ ones). All presented images are not cherry-picked.
1030
+ This experiment shows that not only we can use our pro-
1031
+ posed approach to obtain a powerful classifier but also to
1032
+ visualize some regions of interest. In the considered case,
1033
+ calculating the difference between the original example and
1034
+ the image with a changed class label indicates the malaria
1035
+ plasmodium (see the last row in Figure 7). We provide more
1036
+ examples from the CelebA data in the Appendix C.
1037
+
1038
+ Diffusion Models Learn Data Representations
1039
+ 7. Conclusion
1040
+ In this work, we introduced a joint model that combines a
1041
+ diffusion model and a classifier through shared parameteri-
1042
+ zation. We first experimentally demonstrated that DDGMs
1043
+ learn semantically meaningful data representations that
1044
+ could be used for classification.
1045
+ Next, we showed that our approach improves the perfor-
1046
+ mance of the classification task while retaining the high
1047
+ quality of generations and enables conditional generations
1048
+ with built-in classifier guidance. Additionally, we show that
1049
+ the joint diffusion model can be used in semi-supervised
1050
+ learning, domain adaptation, and for counterfactual expla-
1051
+ nations, without any changes to the original setup.
1052
+ References
1053
+ Abstreiter, K., Mittal, S., Bauer, S., Sch¨olkopf, B., and
1054
+ Mehrjou, A. Diffusion-based representation learning.
1055
+ arXiv preprint arXiv: Arxiv-2105.14257, 2021.
1056
+ Augustin, M., Boreiko, V., Croce, F., and Hein, M. Diffu-
1057
+ sion visual counterfactual explanations. arXiv preprint
1058
+ arXiv:2210.11841, 2022.
1059
+ Baranchuk, D., Rubachev, I., Voynov, A., Khrulkov, V., and
1060
+ Babenko, A. Label-efficient semantic segmentation with
1061
+ diffusion models. International Conference On Learning
1062
+ Representations, 2021.
1063
+ Chandra, B. and Sharma, R. K. Adaptive noise schedule
1064
+ for denoising autoencoder. In International conference
1065
+ on neural information processing, pp. 535–542. Springer,
1066
+ 2014.
1067
+ Chapelle, O., Scholkopf, B., and Zien, A. Semi-supervised
1068
+ learning (chapelle, o. et al., eds.; 2006)[book reviews].
1069
+ IEEE Transactions on Neural Networks, 20(3):542–542,
1070
+ 2009.
1071
+ Chen, R. T., Behrmann, J., Duvenaud, D., and Jacobsen,
1072
+ J.-H. Residual flows for invertible generative modeling.
1073
+ arXiv preprint arXiv:1906.02735, 2019.
1074
+ Dhariwal, P. and Nichol, A. Diffusion models beat GANs
1075
+ on image synthesis. Advances in Neural Information
1076
+ Processing Systems, 34, 2021.
1077
+ Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
1078
+ D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
1079
+ M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
1080
+ N. An image is worth 16x16 words: Transformers for
1081
+ image recognition at scale. International Conference On
1082
+ Learning Representations, 2020.
1083
+ Esser, P., Sutter, E., and Ommer, B. A variational u-net for
1084
+ conditional appearance and shape generation. Ieee/cvf
1085
+ Conference On Computer Vision And Pattern Recognition,
1086
+ 2018. doi: 10.1109/CVPR.2018.00923.
1087
+ Falck, F., Williams, C., Danks, D., Deligiannidis, G., Yau,
1088
+ C., Holmes, C. C., Doucet, A., and Willetts, M. A multi-
1089
+ resolution framework for u-nets with applications to hi-
1090
+ erarchical VAEs. In Oh, A. H., Agarwal, A., Belgrave,
1091
+ D., and Cho, K. (eds.), Advances in Neural Information
1092
+ Processing Systems, 2022.
1093
+ Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
1094
+ H., Laviolette, F., Marchand, M., and Lempitsky, V.
1095
+ Domain-adversarial training of neural networks. The
1096
+ journal of machine learning research, 17(1):2096–2030,
1097
+ 2016.
1098
+ Geras, K. J. and Sutton, C. Scheduled denoising autoen-
1099
+ coders. arXiv preprint arXiv:1406.3269, 2014.
1100
+ Grathwohl, W., Wang, K.-C., Jacobsen, J., Duvenaud, D.,
1101
+ Norouzi, M., and Swersky, K. Your classifier is secretly
1102
+ an energy based model and you should treat it like one.
1103
+ International Conference On Learning Representations,
1104
+ 2019a.
1105
+ Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D.,
1106
+ Norouzi, M., and Swersky, K. Your classifier is secretly
1107
+ an energy based model and you should treat it like one. In
1108
+ International Conference on Learning Representations,
1109
+ 2019b.
1110
+ Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
1111
+ algorithm for deep belief nets. Neural computation, 18
1112
+ (7):1527–1554, 2006.
1113
+ Ho, J. and Salimans, T. Classifier-free diffusion guidance.
1114
+ arXiv preprint arXiv: Arxiv-2207.12598, 2022.
1115
+ Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
1116
+ bilistic models. Advances in Neural Information Process-
1117
+ ing Systems, 33:6840–6851, 2020.
1118
+ Huang, C.-W., Lim, J. H., and Courville, A. C. A varia-
1119
+ tional perspective on diffusion-based generative models
1120
+ and score matching. Advances in Neural Information
1121
+ Processing Systems, 34, 2021.
1122
+ Huang, P. K.-M., Chen, S.-A., and Lin, H.-T. Improving
1123
+ conditional score-based generation with calibrated classi-
1124
+ fication and joint training. In NeurIPS 2022 Workshop on
1125
+ Score-Based Methods.
1126
+ Ilse, M., Tomczak, J. M., Louizos, C., and Welling, M. Diva:
1127
+ Domain invariant variational autoencoders. In Medical
1128
+ Imaging with Deep Learning, pp. 322–348. PMLR, 2020.
1129
+ Jebara, T. Machine learning: discriminative and generative,
1130
+ volume 755. Springer Science & Business Media, 2012.
1131
+
1132
+ Diffusion Models Learn Data Representations
1133
+ Jin, L., Lazarow, J., and Tu, Z. Introspective classification
1134
+ with convolutional nets. Advances in Neural Information
1135
+ Processing Systems, 30, 2017.
1136
+ Kingma, D. P. and Dhariwal, P. Glow: Generative flow
1137
+ with invertible 1x1 convolutions. In Advances in Neural
1138
+ Information Processing Systems, pp. 10215–10224, 2018.
1139
+ Kingma, D. P. and Welling, M. Auto-Encoding Variational
1140
+ Bayes. In ICLR, 2014.
1141
+ Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
1142
+ Welling, M. Semi-supervised learning with deep genera-
1143
+ tive models. Advances in neural information processing
1144
+ systems, 27, 2014.
1145
+ Kingma, D. P., Salimans, T., Poole, B., and Ho, J. Varia-
1146
+ tional diffusion models. In Advances in Neural Informa-
1147
+ tion Processing Systems, 2021.
1148
+ Knop, S., Spurek, P., Tabor, J., Podolak, I., Mazur, M., and
1149
+ Jastrzebski, S. Cramer-wold auto-encoder. The Journal
1150
+ of Machine Learning Research, 21(1):6594–6621, 2020.
1151
+ Lasserre, J. A., Bishop, C. M., and Minka, T. P. Principled
1152
+ hybrids of generative and discriminative models. In 2006
1153
+ IEEE Computer Society Conference on Computer Vision
1154
+ and Pattern Recognition (CVPR’06), volume 1, pp. 87–
1155
+ 94. IEEE, 2006.
1156
+ Lazarow, J., Jin, L., and Tu, Z. Introspective neural networks
1157
+ for generative modeling. In Proceedings of the IEEE
1158
+ International Conference on Computer Vision, pp. 2774–
1159
+ 2783, 2017.
1160
+ Lee, K., Xu, W., Fan, F., and Tu, Z. Wasserstein intro-
1161
+ spective neural networks. In Proceedings of the IEEE
1162
+ Conference on Computer Vision and Pattern Recognition,
1163
+ pp. 3702–3711, 2018.
1164
+ Masarczyk, W., Deja, K., and Trzcinski, T. On robustness
1165
+ of generative representations against catastrophic forget-
1166
+ ting. In Mantoro, T., Lee, M., Ayu, M. A., Wong, K. W.,
1167
+ and Hidayanto, A. N. (eds.), Neural Information Process-
1168
+ ing, pp. 325–333, Cham, 2021. Springer International
1169
+ Publishing. ISBN 978-3-030-92310-5.
1170
+ Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., and
1171
+ Lakshminarayanan, B. Hybrid models with deep and in-
1172
+ vertible features. In International Conference on Machine
1173
+ Learning, pp. 4723–4732. PMLR, 2019.
1174
+ Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
1175
+ probabilistic models. In International Conference on
1176
+ Machine Learning, pp. 8162–8171. PMLR, 2021.
1177
+ Perugachi-Diaz, Y., Tomczak, J., and Bhulai, S. Invertible
1178
+ densenets with concatenated lipswish. Advances in Neu-
1179
+ ral Information Processing Systems, 34:17246–17257,
1180
+ 2021.
1181
+ Rajaraman, S., Antani, S. K., Poostchi, M., Silamut, K.,
1182
+ Hossain, M. A., Maude, R. J., Jaeger, S., and Thoma,
1183
+ G. R. Pre-trained convolutional neural networks as feature
1184
+ extractors toward improved malaria parasite detection in
1185
+ thin blood smear images. PeerJ, 6:e4568, 2018.
1186
+ Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
1187
+ tional networks for biomedical image segmentation. In In-
1188
+ ternational Conference on Medical image computing and
1189
+ computer-assisted intervention, pp. 234–241. Springer,
1190
+ 2015.
1191
+ Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
1192
+ Gelly, S. Assessing generative models via precision and
1193
+ recall. arXiv preprint arXiv:1806.00035, 2018.
1194
+ Sietsma, J. and Dow, R. J. Creating artificial neural networks
1195
+ that generalize. Neural networks, 4(1):67–79, 1991.
1196
+ Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
1197
+ Ganguli, S. Deep unsupervised learning using nonequi-
1198
+ librium thermodynamics. In International Conference on
1199
+ Machine Learning, pp. 2256–2265. PMLR, 2015.
1200
+ Song, Y. and Ermon, S. Generative modeling by estimating
1201
+ gradients of the data distribution. Advances in Neural
1202
+ Information Processing Systems, 32, 2019.
1203
+ Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
1204
+ mon, S., and Poole, B. Score-based generative modeling
1205
+ through stochastic differential equations. In International
1206
+ Conference on Learning Representations, 2020.
1207
+ Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Con-
1208
+ ditional score-based diffusion models for probabilistic
1209
+ time series imputation. In Advances in Neural Informa-
1210
+ tion Processing Systems, volume 34, pp. 24804–24816.
1211
+ Curran Associates, Inc., 2021.
1212
+ Tomczak, J. M. Deep Generative Modeling. Springer Cham,
1213
+ 2022.
1214
+ Tulyakov, S., Fitzgibbon, A., and Nowozin, S. Hybrid vae:
1215
+ Improving deep generative models using partial observa-
1216
+ tions. arXiv preprint arXiv:1711.11566, 2017.
1217
+ Tzen, B. and Raginsky, M. Neural stochastic differential
1218
+ equations: Deep latent gaussian models in the diffusion
1219
+ limit. arXiv preprint arXiv:1905.09883, 2019.
1220
+ Vahdat, A., Kreis, K., and Kautz, J. Score-based generative
1221
+ modeling in latent space. Advances in Neural Information
1222
+ Processing Systems, 34, 2021.
1223
+ Yang, W., Kirichenko, P., Goldblum, M., and Wilson, A. G.
1224
+ Chroma-vae: Mitigating shortcut learning with generative
1225
+ classifiers. arXiv preprint arXiv:2211.15231, 2022.
1226
+
1227
+ Diffusion Models Learn Data Representations
1228
+ Zhang, Q. and Zhang, L. Convolutional adaptive denoising
1229
+ autoencoders for hierarchical feature extraction. Frontiers
1230
+ of Computer Science, 12(6):1140–1148, 2018.
1231
+
1232
+ Diffusion Models Learn Data Representations
1233
+ Appendix
1234
+ A. Training details and hyperparameters
1235
+ A.1. Pooling of the UNet features
1236
+ As discussed in Section 4, we pool the UNet features encoded to different UNet levels with the average pooling function.
1237
+ Precisely speaking, we take an average convolutional filter activation for a given filter across the whole image. This approach
1238
+ seems to result in the loss of information, such as the location of particular features extracted by the convolutional filter, but
1239
+ it allows us to create image representation with reasonable dimensionality. Depending on the dimensionality of input, with
1240
+ our method, we extract 1856 features for 28 × 28 Grayscale images (e.g. MNIST), 3712 features for 32 × 32 images with 3
1241
+ color channels (e.g. CIFAR), and 5248 features for 64 × 64 images with 3 color channels (CelebA).
1242
+ In all of our experiments, we use average pooling. Although other options such as max or min pooling might be used, our
1243
+ approach ensures that all of the features across the whole image are shared between the classifier and the generative models.
1244
+ A.2. Semi-supervised learning
1245
+ In our semi-supervised learning, we train our joint diffusion model on datasets with limited access to labeled samples. The
1246
+ simplest approach for this problem is to calculate the loss function on the diffusion using the whole batch of data while
1247
+ using only the labeled examples for the classifier loss. However, in some scenarios, we artificially omit up to 99% of labeled
1248
+ data. In practice, this would lead to a situation where for batch size equal to 128 or 254 examples, the classifier loss would
1249
+ be practically calculated on 1 or 2 samples. Therefore, to stabilize the training we propose to create a buffer where we put
1250
+ labeled examples from each batch. When the buffer reaches its capacity equal to the batch size, we calculate the classifier
1251
+ loss using the examples from the buffer and add it to the generative loss according to Equation 11.
1252
+ A.3. Domain adaptation
1253
+ In the experiments on the domain adaptation task, we propose the simplest setup, where we first train the joint model on the
1254
+ source task using the joint loss function (Eq. 11), and then we retrain the model on the target domain using only the DDGM
1255
+ loss in Equation 7. We show that without any alteration to our basic setup, we can observe a significant performance boost
1256
+ compared to the baseline classifier. We believe that we can further improve those results if we focus directly on the domain
1257
+ adaptation task and take advantage of the recent advantages in this field. Further experiments in this direction should for
1258
+ example include simultaneous training on examples from two domains. To improve the alignment, we can also benefit from
1259
+ adversarial training as introduced by (Ganin et al., 2016) in DANN.
1260
+
1261
+ Diffusion Models Learn Data Representations
1262
+ B. Additional results: Conditional generations with optimized representations
1263
+ In Figure 8 we present how the decision of the classifier changes for sampling with the optimized generations. With a higher
1264
+ α step size value, optimization converges faster towards target classes. Interestingly, for the CIFAR10 dataset, there are
1265
+ certain classes (e.g., class 3) that converge later in the backward diffusion process than the others. In Figure 8 we also
1266
+ present associated samples from our model. Once more they depict that the higher value of the α parameter leads to more
1267
+ precise but less diverse samples.
1268
+ 0
1269
+ 200
1270
+ 400
1271
+ 600
1272
+ 800
1273
+ 1000
1274
+ Timestep
1275
+ 0
1276
+ 2
1277
+ 4
1278
+ 6
1279
+ 8
1280
+ Avg. prediction
1281
+ 9
1282
+ 7
1283
+ 6
1284
+ 4
1285
+ 3
1286
+ 1
1287
+ 0
1288
+ (a) α = 200
1289
+ 0
1290
+ 200
1291
+ 400
1292
+ 600
1293
+ 800
1294
+ 1000
1295
+ Timestep
1296
+ 0
1297
+ 2
1298
+ 4
1299
+ 6
1300
+ 8
1301
+ Avg. prediction
1302
+ 9
1303
+ 7
1304
+ 6
1305
+ 4
1306
+ 3
1307
+ 1
1308
+ 0
1309
+ (b) α = 1000
1310
+ Figure 8. CIFAR10: Classifier decisions at different diffusion steps, for conditional sampling with different values of step size α and
1311
+ associated conditional samples
1312
+
1313
+ Diffusion Models Learn Data Representations
1314
+ Fashion MNIST
1315
+ CIFAR-100
1316
+ Figure 9. Conditional samples from our joint diffusion model for Fashion MNIST dataset (left) and first 10 classes of CIFAR100 dataset
1317
+ (right). Each row represents samples from one class.
1318
+ Fashion MNIST
1319
+ CIFAR-100
1320
+ CelebA
1321
+ Figure 10. Generated examples from our joint diffusion model without conditional sampling for CIFAR-10, CIFAR-100, and CelebA
1322
+ dataset.
1323
+
1324
+ oDiffusion Models Learn Data Representations
1325
+ C. Additional results: Counterfactual image generation
1326
+ In the experiment described in Section 6.6, we presented how we can use our joint diffusion model to generate the
1327
+ counterfactual explanations to the classifier using the medical dataset. In Figure 11, we present more examples of this
1328
+ approach by perturbing original examples from the CelebA dataset. We select 3 attributes from the CelebA dataset namely:
1329
+ young, smiling, and moustache. For each attribute, we select 5 positive examples and 5 negative examples which we alter
1330
+ using our conditional sampling procedure with the classifier-based optimization. We present original examples (first row)
1331
+ noised with 20% of noise (second row) and generated towards counterfactual class (third row). In the last row, we show the
1332
+ differences between the original and modified examples.
1333
+ (a) Young to old (left), old to young (right)
1334
+ (b) Smiling to no-smiling (left), no-smiling to smiling (right)
1335
+ (c) Moustache to no-moustache (left), no-moustache to moustache (right)
1336
+ Figure 11. Counterfactual image generation for the CelebA dataset using three different attributes on random original examples. For each
1337
+ attribute, we select 5 positive examples that we change to negative ones and 5 negative ones that we change to positive ones.
1338
+
-tFRT4oBgHgl3EQfrzf-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -5557,3 +5557,32 @@ wdAzT4oBgHgl3EQfQPvW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
5557
  r9E2T4oBgHgl3EQf1Qhf/content/2301.04149v1.pdf filter=lfs diff=lfs merge=lfs -text
5558
  6tAyT4oBgHgl3EQfcvc9/content/2301.00288v1.pdf filter=lfs diff=lfs merge=lfs -text
5559
  Z9E1T4oBgHgl3EQfcwRV/content/2301.03187v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5557
  r9E2T4oBgHgl3EQf1Qhf/content/2301.04149v1.pdf filter=lfs diff=lfs merge=lfs -text
5558
  6tAyT4oBgHgl3EQfcvc9/content/2301.00288v1.pdf filter=lfs diff=lfs merge=lfs -text
5559
  Z9E1T4oBgHgl3EQfcwRV/content/2301.03187v1.pdf filter=lfs diff=lfs merge=lfs -text
5560
+ HNE1T4oBgHgl3EQfrQW4/content/2301.03353v1.pdf filter=lfs diff=lfs merge=lfs -text
5561
+ ndE3T4oBgHgl3EQfKwmr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5562
+ vdFJT4oBgHgl3EQffCyN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5563
+ E9FJT4oBgHgl3EQfCizA/content/2301.11430v1.pdf filter=lfs diff=lfs merge=lfs -text
5564
+ r9E2T4oBgHgl3EQf1Qhf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5565
+ kdFRT4oBgHgl3EQfYDcO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5566
+ ddA0T4oBgHgl3EQfG_-E/content/2301.02055v1.pdf filter=lfs diff=lfs merge=lfs -text
5567
+ ndFPT4oBgHgl3EQfJzQg/content/2301.13016v1.pdf filter=lfs diff=lfs merge=lfs -text
5568
+ mNE5T4oBgHgl3EQfiw-y/content/2301.05651v1.pdf filter=lfs diff=lfs merge=lfs -text
5569
+ atFIT4oBgHgl3EQflys0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5570
+ ENE2T4oBgHgl3EQfSgdx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5571
+ ENE2T4oBgHgl3EQfSgdx/content/2301.03793v1.pdf filter=lfs diff=lfs merge=lfs -text
5572
+ ndE3T4oBgHgl3EQfKwmr/content/2301.04357v1.pdf filter=lfs diff=lfs merge=lfs -text
5573
+ yNFAT4oBgHgl3EQfAhzZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5574
+ ndFPT4oBgHgl3EQfJzQg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5575
+ ttAyT4oBgHgl3EQfmviR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5576
+ NdFKT4oBgHgl3EQfey4y/content/2301.11826v1.pdf filter=lfs diff=lfs merge=lfs -text
5577
+ htE0T4oBgHgl3EQf6gL5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5578
+ vdA0T4oBgHgl3EQfL__A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5579
+ SdA0T4oBgHgl3EQfD_9b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5580
+ sNAyT4oBgHgl3EQfmfhl/content/2301.00471v1.pdf filter=lfs diff=lfs merge=lfs -text
5581
+ q9E5T4oBgHgl3EQflQ94/content/2301.05670v1.pdf filter=lfs diff=lfs merge=lfs -text
5582
+ 09E0T4oBgHgl3EQfuQEC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5583
+ p9FRT4oBgHgl3EQfdzfW/content/2301.13569v1.pdf filter=lfs diff=lfs merge=lfs -text
5584
+ Z9E1T4oBgHgl3EQfcwRV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5585
+ UtA0T4oBgHgl3EQfEf_h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5586
+ d9FJT4oBgHgl3EQf_y11/content/2301.11696v1.pdf filter=lfs diff=lfs merge=lfs -text
5587
+ E9FJT4oBgHgl3EQfCizA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5588
+ 19FST4oBgHgl3EQfXDjl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09E0T4oBgHgl3EQfuQEC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49afc1dc7658df097642c7f5da053d8036538650c3c74f682178383950311c68
3
+ size 2293805
0tE0T4oBgHgl3EQfuAGv/content/tmp_files/2301.02600v1.pdf.txt ADDED
@@ -0,0 +1,3439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ The Real Number n-Degree Pythagorean Theorem
4
+
5
+ Jeffrey S. Lee1,2,4
6
+ Gerald B. Cleaver1,3
7
+
8
+ 1Early Universe Cosmology and Strings Group
9
+ 2Space Physics Numerical Modeling Group
10
+ Center for Astrophysics, Space Physics, and Engineering Research
11
+ 3Department of Physics
12
+ 4Department of Geosciences
13
+ Baylor University
14
+ One Bear Place
15
+ Waco, TX 76706
16
+
17
+ Jeff_Lee@Baylor.edu
18
+ Gerald_Cleaver@Baylor.edu
19
+
20
+
21
+ Key Words: ∞-degree Pythagorean Theorem, Law of Cosines, maximum triangle area, minimum triangle
22
+ area
23
+
24
+ Word Count: 4203
25
+
26
+ Abstract
27
+ This paper extends the Pythagorean Theorem to positive and negative real exponents to take the form
28
+ n
29
+ n
30
+ n
31
+ a
32
+ b
33
+ c
34
+ +
35
+ =
36
+ and makes use of the definition
37
+ 1
38
+ b
39
+ a
40
+  =
41
+  . For the case of n
42
+ +
43
+
44
+ ,
45
+ 1
46
+ n  is necessary for
47
+ the vertex angle to be real, and there are no restrictions on γ beyond its definition. However, for n
48
+
49
+
50
+ ,
51
+ two significant restrictions that are necessary for
52
+ n
53
+ n
54
+ n
55
+ a
56
+ b
57
+ c
58
+ +
59
+ =
60
+ to yield real vertex angles have been
61
+ discovered by this work: 1
62
+ 2
63
+
64
+
65
+
66
+ , and n cannot exceed a critical value which is γ-dependent.
67
+ Additionally, the areas of the associated triangles have been determined as well as the conditions for those
68
+ areas to be maxima or minima.
69
+ 1. Introduction
70
+
71
+ For centuries, the Pythagorean Theorem has been significant in the foundation of mathematics.
72
+ Although the finally proven Fermat’s Last Theorem [1] definitively establishes the non-existence of
73
+ Pythagorean Triples for
74
+ n
75
+ n
76
+ n
77
+ a
78
+ b
79
+ c
80
+ +
81
+ =
82
+ with
83
+ |
84
+ 2
85
+ n
86
+ n
87
+
88
+
89
+ , the Pythagorean Theorem can be extended to
90
+ higher degrees which are not required to be positive integers. However, only positive integers possess the
91
+ physical representation of dimension for
92
+ n
93
+ n
94
+ n
95
+ a
96
+ b
97
+ c
98
+ +
99
+ =
100
+ (i.e.,
101
+ 1
102
+ n = defines a scalar sum of straight line
103
+ segments;
104
+ 2
105
+ n =
106
+ defines a scalar sum of areas;
107
+ 3
108
+ n =
109
+ defines a scalar sum of volumes; and
110
+ 4
111
+ n 
112
+ defines
113
+ a scalar sum of hypervolumes;
114
+ 0
115
+ n =
116
+ is mathematically meaningless because it results in
117
+ 0
118
+ 0
119
+ 0
120
+ 2
121
+ 1
122
+ a
123
+ b
124
+ c
125
+ +
126
+ =
127
+
128
+ = ).
129
+
130
+
131
+
132
+ 2
133
+
134
+ The extension of the Pythagorean Theorem to higher dimensions using a variety of methods has been
135
+ extensively addressed in the literature [2-15], most frequently by considering a formulation such as
136
+ 2
137
+ 2
138
+ Total
139
+ 1
140
+ n
141
+ k
142
+ k
143
+ a
144
+ a
145
+ =
146
+ =
147
+ . Rather, the n-degree Pythagorean Theorem contains a relationship between the ratio of the
148
+ adjacent side lengths (i.e., γ) and the vertex angle (θ). n
149
+ indicates that the triangles to which
150
+ n
151
+ n
152
+ n
153
+ a
154
+ b
155
+ c
156
+ +
157
+ =
158
+ is being applied are not necessarily right angled.
159
+ 1
160
+   is defined as a precondition with no
161
+ loss of generality. If 0
162
+ 1
163
+
164
+
165
+  , the
166
+ 1
167
+   triangle has merely been rotated within its plane, and
168
+ 0
169
+  
170
+
171
+ implies the geometrically uninteresting imposition upon the triangle of non-physical side lengths.
172
+
173
+ The vertex angle θ is a function of γ and n and is therefore denoted (
174
+ )
175
+ ,n
176
+  
177
+ . For 0
178
+ 1
179
+ n
180
+
181
+  , the
182
+ vertex angle is complex (not addressed in this paper). For 1
183
+ 2
184
+ n
185
+
186
+
187
+ , the triangle is obtuse with
188
+ (
189
+ )
190
+ 90
191
+ ,
192
+ 180
193
+ n
194
+  
195
+
196
+
197
+ , and for
198
+ 2
199
+ n 
200
+ , the triangle is acute with (
201
+ )
202
+ ,
203
+ 90
204
+ n
205
+  
206
+
207
+ . In each instance of
208
+ |
209
+ 1
210
+ n
211
+ n
212
+ +
213
+
214
+  ,
215
+ (
216
+ )
217
+ 0
218
+ ,
219
+ 180
220
+ n
221
+  
222
+
223
+
224
+ , and there are no restrictions on the ratio of the adjacent side lengths
225
+ (other than
226
+ 1
227
+   ).
228
+
229
+ When n
230
+
231
+
232
+ , the situation changes significantly. In order that (
233
+ )
234
+ ,n
235
+  
236
+
237
+ , the restriction
238
+ 1
239
+ 2
240
+
241
+
242
+
243
+ must be imposed. However, even with 1
244
+ 2
245
+
246
+
247
+
248
+ , there is one additional compulsory restriction
249
+ for (
250
+ )
251
+ ,n
252
+  
253
+
254
+ : if
255
+ 1
256
+   , the degree of the negative real exponent Pythagorean Theorem must not
257
+ exceed a critical value which is dependent on γ
258
+ (
259
+ )
260
+ (
261
+ )
262
+ (
263
+ )
264
+ crit
265
+ crit
266
+ i.e.,
267
+ 1 , and thus,
268
+ 1
269
+ n
270
+ n
271
+ n
272
+ n
273
+
274
+
275
+
276
+
277
+
278
+
279
+ . If
280
+ (
281
+ )
282
+ crit
283
+ 1
284
+ n
285
+ n
286
+
287
+
288
+
289
+ , the vertex angle is complex (also not addressed in this paper).
290
+
291
+ For
292
+ |
293
+ 1
294
+ n
295
+ n
296
+ +
297
+
298
+  , the areas of the associated triangles, with fixed a and γ values, reach a maximum
299
+ which occurs when the triangle is right isosceles (
300
+ )
301
+ i.e.,
302
+ 1 and
303
+ 90
304
+
305
+
306
+ =
307
+ =
308
+ ; the areas increase as n → .
309
+ Conversely, if the perimeter of a triangle is fixed, the triangle area approaches a maximum value for
310
+ increasing n and approaches 0 for decreasing γ.
311
+
312
+ For
313
+ ( )
314
+ crit
315
+ |
316
+ if
317
+ 1
318
+ n
319
+ n
320
+ n
321
+
322
+
323
+
324
+
325
+
326
+  , the areas of the associated triangles with a fixed perimeter are
327
+ maximized for
328
+ 2
329
+  =
330
+ and as n → − . For finite n, the maximum area occurs when (
331
+ )
332
+ ,n
333
+  
334
+ is a
335
+ maximum.
336
+ 2. The n-Degree Pythagorean Theorem with Positive Real Exponents
337
+
338
+ For the general scalene triangle in Figure 1, the n-degree Pythagorean Theorem can be written as
339
+
340
+ n
341
+ n
342
+ n
343
+ a
344
+ b
345
+ c
346
+ +
347
+ =
348
+
349
+ (1)
350
+
351
+ which must also conform to the standard Law of Cosines,
352
+
353
+ 2
354
+ 2
355
+ 2
356
+ 2
357
+ cos
358
+ c
359
+ a
360
+ b
361
+ ab
362
+
363
+ =
364
+ +
365
+
366
+ ,
367
+ (2)
368
+
369
+ 3
370
+
371
+
372
+ with n
373
+ +
374
+
375
+ .
376
+
377
+ In this work, the extension of the Pythagorean exponents to numbers other than n
378
+ +
379
+
380
+ does not
381
+ extend with it the Law of Cosines because unlike in [10, 12] because an n-dimensional simplex does not
382
+ arise. Here, the objective is the solution for the vertex angle θ such that eq. (1) conforms to eq. (2).
383
+
384
+
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+ Figure 1: A scalene triangle.
395
+
396
+ Using
397
+ 1
398
+ b
399
+ a
400
+  =
401
+  , rewriting eq. (1) as
402
+
403
+ (
404
+ )
405
+ 2
406
+ 2
407
+ n
408
+ n
409
+ n
410
+ c
411
+ a
412
+ b
413
+ =
414
+ +
415
+ ,
416
+ (3)
417
+
418
+ and equating eqs. (2) and (3) yields
419
+
420
+ (
421
+ )
422
+ 2
423
+ 2
424
+ 1
425
+ 1
426
+ 1
427
+ cos
428
+ 2
429
+ n
430
+ n
431
+
432
+
433
+
434
+
435
+ +
436
+
437
+
438
+
439
+ + −
440
+ +
441
+
442
+
443
+ =
444
+
445
+
446
+
447
+
448
+
449
+
450
+ ,
451
+ (4)
452
+ where 
453
+ + denotes that the vertex angle arises from a version of the n-degree Pythagorean Theorem in
454
+ which n
455
+ +
456
+
457
+ .
458
+
459
+ If
460
+ 0
461
+ n =
462
+ , as stated above, no triangle exists; there is no 0-degree (or 0-dimensional) Pythagorean
463
+ Theorem. If 0
464
+ 1
465
+ n
466
+
467
+  ,  is a complex angle for all side ratios γ and is not applicable here. However, if
468
+ 1
469
+ n  ,  is always a real angle, and therefore, a corresponding real triangle does exist. As expected, for
470
+ the
471
+ 1
472
+ n = case, eq. (4) becomes
473
+ (
474
+ )
475
+ (
476
+ )
477
+ 1
478
+ 1
479
+ cos
480
+ 1
481
+ 180o
482
+ n
483
+
484
+ +
485
+
486
+ =
487
+ =
488
+
489
+ =
490
+ which is sensible because the triangle
491
+ has collapsed into a straight line which is independent of the side ratio. For the
492
+ 2
493
+ n =
494
+ case, eq. (4)
495
+ θb
496
+ c
497
+ a
498
+ b
499
+ θa
500
+ θ
501
+
502
+ 4
503
+
504
+ becomes
505
+ (
506
+ )
507
+ ( )
508
+ 1
509
+ 2
510
+ cos
511
+ 0
512
+ 90o
513
+ n
514
+
515
+ +
516
+
517
+ =
518
+ =
519
+ =
520
+ , and the traditional Pythagorean Theorem with a 90o vertex
521
+ angle, also independent of the side ratio, is recovered.
522
+
523
+ It is important to note that the vertex angle exists only for combinations of n and γ such that the
524
+ argument of the inverse cosine function in eq. (4) is not greater than 1 or less than -1,
525
+ (
526
+ )
527
+ 2
528
+ 2
529
+ 1
530
+ 1
531
+ i.e.,
532
+ 1
533
+ 2
534
+ n
535
+ n
536
+
537
+
538
+
539
+
540
+
541
+ + −
542
+ +
543
+
544
+
545
+
546
+
547
+
548
+
549
+
550
+
551
+
552
+ . However, the stipulation that
553
+ 1
554
+   ensures that eq. (4) will always result
555
+ in real angles. Therefore, there are no forbidden side ratios, and eq. (4) applies without restriction for
556
+ 1
557
+ n  .
558
+
559
+ 2.1 The 1 ≤ n ≤ 2 Case
560
+
561
+ If 1
562
+ 2
563
+ n
564
+
565
+
566
+ , the range of vertex angles is between 90o and 180o (as shown above). Plots of eq. (4) are
567
+ shown in Figure 2 and Figure 3.
568
+
569
+ Figure 2: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio and the Pythagorean
570
+ exponent for 1 ≤ n ≤ 2.
571
+
572
+ Vertex Angle (deg.)
573
+ 2
574
+ 180
575
+ 1.9
576
+ 170
577
+ 1.8
578
+ 160
579
+ 1.7
580
+ 150
581
+ Pythagorean Exponent
582
+ 1.6
583
+ 140
584
+ 1.5
585
+ 130
586
+ 1.4
587
+ 120
588
+ 1.3
589
+ 110
590
+ 1.2
591
+ 1.1
592
+ 100
593
+ 06
594
+ 2
595
+ 3
596
+ 4
597
+ 5
598
+ 6
599
+ 8
600
+ 6
601
+ 10
602
+ Side Ratio5
603
+
604
+
605
+ Figure 3: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio and the Pythagorean
606
+ exponent for 1 ≤ n ≤ 2.
607
+ For any given value of n, there is a corresponding value of γ that results in a maximum vertex angle
608
+ which is seen in Figure 3. That vertex angle and the side ratio that gives rise to it are found by equating
609
+ the first derivative of eq. (4) to zero.
610
+
611
+ (
612
+ )(
613
+ )
614
+ 2
615
+ 2
616
+ 0
617
+ 1
618
+ 1
619
+ 1
620
+ 0
621
+ n
622
+ n
623
+ n
624
+ n
625
+ d
626
+ d
627
+
628
+
629
+
630
+
631
+
632
+ +
633
+
634
+ =
635
+  −
636
+ +
637
+
638
+ +
639
+ =
640
+
641
+ (5)
642
+
643
+ The solution to eq. (5) for ( )
644
+ n
645
+
646
+ is not analytic, and the total number of complex solutions grows
647
+ rapidly with increasing n. However, it is clear that for all values of n,
648
+ 1
649
+  = is a solution – it is the only
650
+ positive real solution. Thus, the largest vertex angle occurs in an isosceles triangle. Therefore, by
651
+ substituting
652
+ 1
653
+  = into eq. (4), the maximum vertex angle can be found (eq. (6)).
654
+
655
+ 2
656
+ 1
657
+ max
658
+ cos
659
+ 1
660
+ 2
661
+ n
662
+ n
663
+
664
+ +
665
+
666
+ − 
667
+
668
+ =
669
+
670
+
671
+
672
+
673
+
674
+ ,
675
+ (6)
676
+ where
677
+ max
678
+
679
+ + denotes the maximum value of 
680
+ + for any degree n.
681
+
682
+ The second derivative of eq. (4) is extremely unruly, and therefore, the confirmation that
683
+ max
684
+
685
+ + is a
686
+ maximum angle was performed numerically with Maple®. A plot of eq. (6) is shown in Figure 4.
687
+
688
+ 6
689
+
690
+
691
+ Figure 4: Maximum vertex angle versus Pythagorean exponent for 1 ≤ n ≤ 2.
692
+
693
+ 2.2 The n ≥ 2 Case
694
+
695
+ For
696
+ 2
697
+ n 
698
+ , plots of eq. (4) are shown in Figure 5 and Figure 6. In this case, the vertex angles do not
699
+ exceed 90o, and there is a minimum vertex angle for which eq. (4) is valid. That vertex angle and the side
700
+ length that gives rise to it are also found by equating the first derivative of eq. (4) to zero (as was done
701
+ above). Given that for all values of n,
702
+ 1
703
+  = is once again the only positive real solution to eq. (5), and by
704
+ substituting
705
+ 1
706
+  = into eq. (4), the minimum vertex angle can be found (eq. (7)). Thus, as was the case in
707
+ Section 2.1 for the largest vertex angle for 1
708
+ 2
709
+ n
710
+
711
+
712
+ , the smallest vertex angle for
713
+ 2
714
+ n 
715
+ occurs when the
716
+ triangle is isosceles.
717
+
718
+ 2
719
+ 1
720
+ min
721
+ cos
722
+ 1 2
723
+ n
724
+ n
725
+
726
+ +
727
+
728
+ − 
729
+
730
+ =
731
+
732
+
733
+
734
+
735
+
736
+ ,
737
+ (7)
738
+ where
739
+ min
740
+
741
+ + denotes the minimum value of 
742
+ + for any degree n.
743
+
744
+
745
+ 180
746
+ 170
747
+ (deg.)
748
+ 160
749
+ Maximum Vertex Angle
750
+ 150
751
+ 140
752
+ 130
753
+ 120
754
+ 110
755
+ 100
756
+ 90
757
+ 1
758
+ 1.1
759
+ 1.2
760
+ 1.3
761
+ 1.4
762
+ 1.5
763
+ 1.6
764
+ 1.7
765
+ 1.8
766
+ 1.9
767
+ 2
768
+ Pythagorean Exponent7
769
+
770
+
771
+ Figure 5: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio and the Pythagorean
772
+ exponent for n ≥ 2.
773
+
774
+
775
+ Figure 6: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio and the Pythagorean
776
+ exponent for n ≥ 2. The side ratio is extended to the excluded regime of γ < 1.
777
+
778
+ The confirmation that
779
+ min
780
+
781
+ + is a minimum angle was also performed numerically with Maple®. A plot of
782
+ eq. (7) is shown in Figure 7.
783
+
784
+
785
+ Vertex Angle (deg.)
786
+ 10
787
+ 06
788
+ 6
789
+ 85
790
+ Pythagorean Exponent
791
+ 80
792
+ 6
793
+ 75
794
+ 70
795
+ 4
796
+ 65
797
+ 3
798
+ 2
799
+ 09
800
+ 1
801
+ 2
802
+ 3
803
+ 4
804
+ 5
805
+ 7
806
+ 8
807
+ 6
808
+ 10
809
+ Side Ratio8
810
+
811
+
812
+
813
+ Figure 7: Minimum vertex angle versus Pythagorean exponent.
814
+
815
+ In the limit that the Pythagorean exponent becomes infinite,
816
+
817
+ (
818
+ )
819
+ 2
820
+ 2
821
+ 1
822
+ 1
823
+ 1
824
+ lim
825
+ lim cos
826
+ 2
827
+ n
828
+ n
829
+ n
830
+ n
831
+
832
+
833
+
834
+
835
+
836
+
837
+
838
+ →
839
+ →
840
+
841
+
842
+
843
+
844
+ + −
845
+ +
846
+
847
+
848
+
849
+
850
+ =
851
+ =
852
+
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+ ,
865
+ (8)
866
+ which must be evaluated as a piecewise function.
867
+ Case 1 (
868
+ )
869
+ γ < 1
870
+ i
871
+ (
872
+ )
873
+ (
874
+ )
875
+ 2
876
+ 2
877
+ 1
878
+ 1
879
+ 1
880
+ 0 1
881
+ 1
882
+ lim cos
883
+ cos
884
+ 2
885
+ 2
886
+ n
887
+ n
888
+
889
+
890
+
891
+
892
+
893
+
894
+
895
+
896
+ →
897
+
898
+
899
+
900
+
901
+ + −
902
+ +
903
+
904
+
905
+
906
+
907
+
908
+
909
+
910
+ =
911
+ =
912
+
913
+
914
+
915
+
916
+
917
+
918
+
919
+
920
+
921
+
922
+
923
+
924
+
925
+
926
+
927
+
928
+
929
+
930
+
931
+ Case 2 (
932
+ )
933
+ =
934
+ γ
935
+ 1
936
+ (
937
+ )
938
+ ( )
939
+ 2
940
+ 1 1 1 2
941
+ 1
942
+ 1
943
+ lim cos
944
+ 60
945
+ 2
946
+ n
947
+ o
948
+ n
949
+
950
+
951
+
952
+
953
+ →
954
+
955
+
956
+
957
+
958
+ + −
959
+
960
+
961
+
962
+
963
+ =
964
+ =
965
+ =
966
+
967
+
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+
977
+
978
+
979
+
980
+ Case 3 (
981
+ )
982
+
983
+ γ
984
+ 1
985
+ (
986
+ )
987
+ (
988
+ )
989
+ 2
990
+ 2
991
+ 1
992
+ 1
993
+ 1
994
+ 1
995
+ 1
996
+ lim cos
997
+ cos
998
+ 2
999
+ 2
1000
+ n
1001
+ n
1002
+ n
1003
+
1004
+
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+ →
1013
+
1014
+
1015
+
1016
+
1017
+ + −
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+ =
1026
+ =
1027
+
1028
+
1029
+
1030
+
1031
+
1032
+
1033
+
1034
+
1035
+
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+ i This case is included for completeness, even though it was specified that γ ≥ 1.
1046
+
1047
+ 06
1048
+ 85
1049
+ (deg.)
1050
+ Minimum Vertex Angle
1051
+ 80
1052
+ 75
1053
+ 70
1054
+ 65
1055
+ 60
1056
+ 2
1057
+ 3
1058
+ 4
1059
+ 5
1060
+ 6
1061
+ 7
1062
+ 6
1063
+ 10
1064
+ 11
1065
+ 12
1066
+ 13
1067
+ 14
1068
+ 15
1069
+ Pythagorean Exponent9
1070
+
1071
+ Case 2, illustrated graphically by
1072
+ 100
1073
+ n =
1074
+ in Figure 6, indicates that the infinite degree Pythagorean
1075
+ Theorem generates an equilateral triangle, and expectedly, it is the only case that does. For case 3 with an
1076
+ infinite side ratio,
1077
+ (
1078
+ )
1079
+ lim lim
1080
+ 1
1081
+ 90o
1082
+ n
1083
+
1084
+
1085
+
1086
+
1087
+ →
1088
+ →
1089
+
1090
+
1091
+
1092
+ =
1093
+
1094
+
1095
+ . Thus, the infinite degree Pythagorean Theorem for a
1096
+ triangle with an infinite side ratio (a straight line) requires the same vertex angle as the standard (
1097
+ )
1098
+ 2
1099
+ n =
1100
+
1101
+ Pythagorean Theorem. A plot of the behavior of the three cases of eq. (8) is shown in Figure 8.
1102
+
1103
+
1104
+
1105
+ Figure 8: Plot of the infinite degree Pythagorean Theorem which was produced with n = 106.
1106
+ 3. The n-Degree Pythagorean Theorem with Negative Real Exponents
1107
+
1108
+ Section 2 can be adapted to examine real triangles that conform to the negative exponent n-degree
1109
+ Pythagorean Theorem, and a very different picture emerges. Once again, eqs. (2) and (3) can be equated
1110
+ to form
1111
+
1112
+ (
1113
+ )
1114
+ 2
1115
+ 2
1116
+ 1
1117
+ 1
1118
+ 1
1119
+ cos
1120
+ 2
1121
+ n
1122
+ n
1123
+
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+
1131
+ + −
1132
+ +
1133
+
1134
+
1135
+ =
1136
+
1137
+
1138
+
1139
+
1140
+
1141
+
1142
+ ,
1143
+ (9)
1144
+ where 
1145
+ − denotes that the vertex angle arises from a version of the n-degree Pythagorean Theorem in
1146
+ which n
1147
+
1148
+
1149
+ .
1150
+
1151
+ Unlike the positive exponents case, there is an infinite set of (
1152
+ )
1153
+ ,n
1154
+
1155
+ for which the always positive
1156
+ argument of the inverse cosine function exceeds 1. If
1157
+ 1
1158
+  = , then eq. (9) yields
1159
+
1160
+ (
1161
+ )
1162
+ 2
1163
+ 2
1164
+ 2
1165
+ 1
1166
+ 1
1167
+ 1
1168
+ 1
1169
+ 1
1170
+ 1 1
1171
+ cos
1172
+ cos
1173
+ 1 2
1174
+ 2
1175
+ n
1176
+ n
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+
1190
+
1191
+
1192
+ + −
1193
+ +
1194
+
1195
+
1196
+ =
1197
+ =
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+
1204
+
1205
+
1206
+
1207
+
1208
+
1209
+
1210
+
1211
+ .
1212
+ (10)
1213
+
1214
+ 10
1215
+
1216
+ 2 1
1217
+ 1 2
1218
+ 1
1219
+ n
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+  for all n, and isosceles triangles are permitted for all degrees of the negative real exponent
1229
+ Pythagorean Theorem.
1230
+
1231
+ However, as γ increases,
1232
+ (
1233
+ )
1234
+ 2
1235
+ 2
1236
+ 1
1237
+ 1
1238
+ 2
1239
+ n
1240
+ n
1241
+
1242
+
1243
+
1244
+ + −
1245
+ +
1246
+ (the argument of the inverse cosine function in eq. (9))
1247
+ also increases and can exceed 1, and the vertex angle becomes complex. Therefore, there exists a γ-
1248
+ dependent critical value of the Pythagorean degree,
1249
+ ( )
1250
+ crit
1251
+ n
1252
+
1253
+ , which is the largest exponent for a given
1254
+ side ratio that will produce a real vertex angle. This occurs when
1255
+ (
1256
+ )
1257
+ crit
1258
+ crit
1259
+ 2
1260
+ 2
1261
+ 1
1262
+ 1
1263
+ 1
1264
+ 2
1265
+ n
1266
+ n
1267
+
1268
+
1269
+
1270
+ + −
1271
+ +
1272
+ = , which can be
1273
+ simplified as
1274
+
1275
+ (
1276
+ )
1277
+ crit
1278
+ crit
1279
+ 1
1280
+ 1
1281
+ 1
1282
+ n
1283
+ n
1284
+
1285
+
1286
+ +
1287
+ =
1288
+ − .
1289
+ (11)
1290
+
1291
+ Equation (11) must be solved numerically, and its solution,
1292
+ ( )
1293
+ crit
1294
+ n
1295
+
1296
+ , is shown in Figure 9.
1297
+
1298
+
1299
+
1300
+ Figure 9: The Pythagorean critical degree as a function of the side ratio.
1301
+
1302
+ Thus, if
1303
+ ( )
1304
+ crit
1305
+ n
1306
+ n
1307
+
1308
+
1309
+ , then  is a complex angle. If, on the other hand,
1310
+ ( )
1311
+ crit
1312
+ n
1313
+ n
1314
+
1315
+
1316
+ ,  will be real,
1317
+ and a corresponding real triangle exists. The upper limit of γ is not immediately apparent, but consider the
1318
+ argument of the inverse cosine function in eq. (9). For 
1319
+ − to be a real angle,
1320
+ (
1321
+ )
1322
+ 2
1323
+ 2
1324
+ 1
1325
+ 1
1326
+ 1
1327
+ 2
1328
+ n
1329
+ n
1330
+
1331
+
1332
+
1333
+ + −
1334
+ +
1335
+  . As
1336
+ such, (
1337
+ )
1338
+ (
1339
+ )
1340
+ 2
1341
+ 2
1342
+ 1
1343
+ 1
1344
+ n
1345
+ n
1346
+
1347
+
1348
+
1349
+
1350
+ +
1351
+ . However, the term (
1352
+ )
1353
+ 2
1354
+ 1
1355
+ 1
1356
+ n
1357
+ n
1358
+  +
1359
+  for all γ and all n including n → − .
1360
+
1361
+ Side Ratio
1362
+ 1
1363
+ 1.1
1364
+ 1.2
1365
+ 1.3
1366
+ 1.4
1367
+ 1.5
1368
+ 1.6
1369
+ 1.7
1370
+ 1.8
1371
+ 1.9
1372
+ 2
1373
+ 0
1374
+ -1
1375
+ -2
1376
+ Critical Degree
1377
+ -3
1378
+ -4
1379
+ 5
1380
+ -6
1381
+ -7
1382
+ -811
1383
+
1384
+ This requires that
1385
+ (
1386
+ )
1387
+ 2
1388
+ min
1389
+ 1
1390
+ 1
1391
+
1392
+
1393
+
1394
+
1395
+
1396
+
1397
+
1398
+ (for n  −), and therefore,
1399
+ 2
1400
+  
1401
+ . Consequently, the n-degree
1402
+ Pythagorean Theorem with negative real exponents cannot be applied to real triangles with side ratios
1403
+ greater than or equal to 2. As indicated by Figure 10 and Figure 11, 0.5
1404
+ 2
1405
+
1406
+
1407
+
1408
+ is required to produce a
1409
+ real vertex angle for
1410
+ ( )
1411
+ crit
1412
+ n
1413
+ n
1414
+
1415
+
1416
+ . However, by definition
1417
+ 1
1418
+   , and therefore, 1
1419
+ 2
1420
+
1421
+
1422
+
1423
+ .
1424
+
1425
+ Also different from the
1426
+ 1
1427
+ n = and
1428
+ 2
1429
+ n =
1430
+ cases is that the
1431
+ 1
1432
+ n = − and
1433
+ 2
1434
+ n = − cases produce non-
1435
+ constant but equal γ-dependent angles. From eq. (9): when
1436
+ 1
1437
+ n = − or
1438
+ 2
1439
+ n = − ,
1440
+ (
1441
+ )
1442
+ 2
1443
+ 1
1444
+ 2
1445
+ 1
1446
+ cos
1447
+ 2
1448
+ 2
1449
+ 1
1450
+
1451
+
1452
+
1453
+
1454
+
1455
+
1456
+ − 
1457
+
1458
+ +
1459
+ =
1460
+
1461
+
1462
+
1463
+ +
1464
+
1465
+
1466
+
1467
+
1468
+ .
1469
+
1470
+
1471
+ 3.1 The n ≤ ncrit(γ) Case
1472
+
1473
+ For
1474
+ ( )
1475
+ crit
1476
+ n
1477
+ n
1478
+
1479
+
1480
+ , plots of eq. (9) are shown in Figure 10 and Figure 11. Additionally, a maximum
1481
+ value of the vertex angle exists for a given side ratio. As in Section 2.1, that vertex angle and the side
1482
+ ratio that gives rise to it are found by equating the first derivative of eq. (9) (instead of eq. (4)) to zero.
1483
+
1484
+
1485
+ Figure 10: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio and the Pythagorean
1486
+ exponent for n ≤ ncrit(γ). The missing section at the top and on the right side of the figure are due to n > ncrit(γ) for a
1487
+ given value of γ; the border of this section has the equation ncrit(γ) as shown in Figure 9. The side ratio is extended to
1488
+ the excluded regime of γ < 1.
1489
+
1490
+
1491
+ Vertex Angle (deg.)
1492
+ 0
1493
+ 60
1494
+ -1
1495
+ 50
1496
+ Pythagorean Exponent
1497
+ 40
1498
+ 30
1499
+ 20
1500
+ 8
1501
+ 10
1502
+ -9
1503
+ -10
1504
+ 1.6
1505
+ 1.2
1506
+ 1.4
1507
+ 1.8
1508
+ 2
1509
+ Side Ratio12
1510
+
1511
+
1512
+ Figure 11: The vertex angle of the n-degree Pythagorean Theorem as a function of the side ratio. The gaps between
1513
+ the plots and the horizontal axis are due to n > ncrit(γ) at those values of γ. The side ratio is extended to the excluded
1514
+ regime of γ < 1.
1515
+
1516
+ As was the case with eq. (5), the solution to eq. (12) for ( )
1517
+ n
1518
+
1519
+ is not analytic. However, it is clear that
1520
+ for all values of n,
1521
+ 1
1522
+  = is once again a solution. By substituting
1523
+ 1
1524
+  = into eq. (9), the vertex angle can
1525
+ be found (eq. (13)) which expectedly has the same mathematical form as eq. (7)).
1526
+
1527
+ (
1528
+ )(
1529
+ )
1530
+ 2
1531
+ 2
1532
+ 0
1533
+ 1
1534
+ 1
1535
+ 1
1536
+ 0
1537
+ n
1538
+ n
1539
+ n
1540
+ n
1541
+ d
1542
+ d
1543
+
1544
+
1545
+
1546
+
1547
+
1548
+
1549
+
1550
+ =
1551
+  −
1552
+ +
1553
+
1554
+ +
1555
+ =
1556
+
1557
+ (12)
1558
+
1559
+ 2
1560
+ 1
1561
+ max
1562
+ cos
1563
+ 1
1564
+ 2
1565
+ n
1566
+ n
1567
+
1568
+
1569
+
1570
+ − 
1571
+
1572
+ =
1573
+
1574
+
1575
+
1576
+
1577
+
1578
+ ,
1579
+ (13)
1580
+ where
1581
+ max
1582
+
1583
+ − denotes the maximum value of 
1584
+ − for a given degree n.
1585
+
1586
+ The second derivative of eq. (9) is the same as the second derivative of eq. (4), and therefore, the
1587
+ mathematical confirmation that
1588
+ max
1589
+
1590
+ − is a maximum angle was also performed numerically with Maple®.
1591
+ A plot of eq. (13) is shown in Figure 12.
1592
+
1593
+
1594
+ 60
1595
+ n=-1
1596
+ n=-2
1597
+ 50
1598
+ n=-3
1599
+ n = -100
1600
+ 40
1601
+ 30
1602
+ 20
1603
+ 10
1604
+ 0
1605
+ 0
1606
+ 0.5
1607
+ 1.5
1608
+ 2
1609
+ 2.5
1610
+ Side Ratio13
1611
+
1612
+
1613
+ Figure 12: Maximum vertex angle versus Pythagorean exponent.
1614
+
1615
+ In the limit that the Pythagorean exponent becomes infinitely negative,
1616
+
1617
+ (
1618
+ )
1619
+ 2
1620
+ 2
1621
+ 1
1622
+ 1
1623
+ 1
1624
+ lim
1625
+ lim
1626
+ cos
1627
+ 2
1628
+ n
1629
+ n
1630
+ n
1631
+ n
1632
+
1633
+
1634
+
1635
+
1636
+
1637
+
1638
+ −
1639
+ →−
1640
+ →−
1641
+
1642
+
1643
+
1644
+
1645
+ + −
1646
+ +
1647
+
1648
+
1649
+
1650
+
1651
+ =
1652
+ =
1653
+
1654
+
1655
+
1656
+
1657
+
1658
+
1659
+
1660
+
1661
+
1662
+
1663
+
1664
+
1665
+ ,
1666
+ (14)
1667
+ which is like the case with positive exponents. Even with the imposed condition that 1
1668
+ 2
1669
+
1670
+
1671
+
1672
+ , eq. (14)
1673
+ must be evaluated as a piecewise function.
1674
+
1675
+
1676
+
1677
+ Case 1 (
1678
+ )
1679
+ =
1680
+ γ
1681
+ 1
1682
+ (
1683
+ )
1684
+ 1
1685
+ 60o
1686
+
1687
+
1688
+ −
1689
+ =
1690
+ =
1691
+
1692
+
1693
+
1694
+ Case 2 (
1695
+ )
1696
+ 1 < γ < 2
1697
+ (
1698
+ )
1699
+ 1
1700
+ 1
1701
+ 2
1702
+ cos
1703
+ 2
1704
+
1705
+
1706
+
1707
+
1708
+ −
1709
+
1710
+
1711
+
1712
+
1713
+ =
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+ Case 3 (
1721
+ )
1722
+
1723
+
1724
+ γ
1725
+ 2
1726
+
1727
+ (
1728
+ )
1729
+ 2
1730
+ 0
1731
+
1732
+
1733
+
1734
+ −
1735
+
1736
+ =
1737
+
1738
+
1739
+
1740
+
1741
+
1742
+ 60
1743
+ 50
1744
+ (deg.)
1745
+ Maximum Vertex Angle
1746
+ 40
1747
+ 30
1748
+ 20
1749
+ 10
1750
+ 0
1751
+ -15
1752
+ -12
1753
+ 6-
1754
+ -6
1755
+ -3
1756
+ 0
1757
+ Pythagorean Exponent14
1758
+
1759
+ Case 1 produces the same result as did case 2 for positive exponents (
1760
+ )
1761
+ i.e.,
1762
+ 1
1763
+  =
1764
+ – a maximum
1765
+ vertex angle of 60o and thus, an equilateral triangle. Also, like the positive exponents case, the equilateral
1766
+ triangle is never actually realized because although γ can equal 1, n cannot be infinite. As illustrated in
1767
+ Figure 13, the negative infinite degree Pythagorean Theorem can produce real triangles, and the
1768
+ requirement that 1
1769
+ 2
1770
+
1771
+
1772
+
1773
+ is retained. Furthermore, a straight line will result when
1774
+
1775
+ ( )
1776
+ ( )
1777
+ (
1778
+ )
1779
+ crit
1780
+ crit
1781
+ 2
1782
+ 2
1783
+ 1
1784
+ 1
1785
+ 1
1786
+ lim
1787
+ lim
1788
+ cos
1789
+ 0
1790
+ 2
1791
+ n
1792
+ n
1793
+ n
1794
+ n
1795
+ n
1796
+ n
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+
1803
+
1804
+
1805
+
1806
+
1807
+
1808
+
1809
+
1810
+ + −
1811
+ +
1812
+
1813
+
1814
+
1815
+
1816
+ =
1817
+ =
1818
+
1819
+
1820
+
1821
+
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+ .
1831
+
1832
+
1833
+
1834
+ Figure 13: Plot of the negative infinite degree Pythagorean Theorem.
1835
+
1836
+ 4. The Areas of the Associated Triangles
1837
+
1838
+ The area of the scalene triangle in Figure 1, with a real vertex angle, is
1839
+ 1
1840
+ sin
1841
+ 2
1842
+ A
1843
+ ab
1844
+
1845
+ =
1846
+ . Its side
1847
+ lengths are a, b
1848
+ a
1849
+
1850
+ =
1851
+ , and from eq. (1),
1852
+ (
1853
+ )
1854
+ 1
1855
+ 1
1856
+ n
1857
+ n
1858
+ c
1859
+ a 
1860
+ =
1861
+ +
1862
+ . Therefore, its area is
1863
+
1864
+ 2
1865
+ 1
1866
+ sin
1867
+ 2
1868
+ A
1869
+ a 
1870
+
1871
+ =
1872
+ .
1873
+ (15)
1874
+
1875
+ Applying
1876
+ 2
1877
+ 2
1878
+ cos
1879
+ 1 sin
1880
+
1881
+
1882
+ = −
1883
+ and eq. (4) or eq. (9) depending on whether n
1884
+ +
1885
+
1886
+ or n
1887
+
1888
+
1889
+ ,
1890
+ respectively, eq. (15) can be written in terms of n and γ.
1891
+
1892
+
1893
+ 15
1894
+
1895
+ (
1896
+ )
1897
+ 2
1898
+ 2
1899
+ 2
1900
+ 2
1901
+ 2
1902
+ 4
1903
+ 1
1904
+ 1
1905
+ 2
1906
+ n
1907
+ n
1908
+ a
1909
+ A
1910
+
1911
+
1912
+
1913
+
1914
+
1915
+
1916
+
1917
+ =
1918
+
1919
+ + −
1920
+ +
1921
+
1922
+
1923
+
1924
+
1925
+
1926
+
1927
+
1928
+
1929
+ .
1930
+ (16)
1931
+
1932
+ The restrictions on γ remain:
1933
+ 1
1934
+   for n
1935
+ +
1936
+
1937
+ , and 1
1938
+ 2
1939
+
1940
+
1941
+
1942
+ for n
1943
+
1944
+
1945
+ . However, there are no
1946
+ restrictions on a (other than
1947
+ 0
1948
+ a 
1949
+ ).
1950
+
1951
+ 4.1 The Maximum Areas of Triangles for the n-Degree Pythagorean Theorem with Positive
1952
+ Real Exponents
1953
+
1954
+ A plot of eq. (16) is shown in Figure 14. It is clear as if a is constant and γ increases, the area of the
1955
+ associated triangle increases without bound. Also, if a is constant, increasing n increases the area, but this
1956
+ is a negligible effect compared to increasing γ. However, the effect that n has on the area increases as γ
1957
+ increases.
1958
+
1959
+
1960
+ Figure 14: Triangle area (in dimensionless units) with unit side length (a = 1). In the left-side figure, the effect of n
1961
+ on the area is difficult to distinguish. However, in the right-side figure, the effect of n on the area is clearer.
1962
+ Determining the conditions that maximize the area of a triangle can be done with an “angular”
1963
+ approach. From eq. (15), the maximum area of a triangle with given values of a and γ clearly occurs when
1964
+ 90
1965
+  =
1966
+ (corresponding to
1967
+ 2
1968
+ n =
1969
+ ) and is
1970
+ 2
1971
+ 1
1972
+ 2
1973
+ A
1974
+ a 
1975
+ =
1976
+ .
1977
+ In summary,
1978
+
1979
+ If γ and n are fixed, increasing a will increase the triangle’s area without bound.
1980
+
1981
+ If a and n are fixed, increasing γ will increase the triangle’s area without bound.
1982
+
1983
+ Therefore, no absolute maximum area triangle exists because the triangle will experience infinite
1984
+ dilation. The only minimum area is the trivial solution (
1985
+ )
1986
+ 0
1987
+ A =
1988
+ . Most significant from this analysis is
1989
+ that a right triangle, with fixed values of a and γ, has the maximum area.
1990
+
1991
+ Triangle Area
1992
+ Triangle Area
1993
+ 10
1994
+ 5
1995
+ 3
1996
+ 4.5
1997
+ 2.8
1998
+ 0.9
1999
+ 8
2000
+ 4
2001
+ 2.6
2002
+ 0.8
2003
+ Pythagorean Exponent
2004
+ 7
2005
+ 3.5
2006
+ Pythag orean Exponent
2007
+ 2.4
2008
+ 0.7
2009
+ 3
2010
+ 2.2
2011
+ 0.6
2012
+ 2.5
2013
+ 2
2014
+ 0.5
2015
+ 5
2016
+ 2
2017
+ 0.4
2018
+ 1.8
2019
+ 1.5
2020
+ 0.3
2021
+ 1.6
2022
+ 3
2023
+ 1
2024
+ 0.2
2025
+ 1.4
2026
+ 2
2027
+ 0.5
2028
+ 0.1
2029
+ 1.2
2030
+ 0
2031
+ 2
2032
+ 3
2033
+ 4
2034
+ 5
2035
+ 6
2036
+ 7
2037
+ 8
2038
+ 9
2039
+ 10
2040
+ 1.1
2041
+ 1.2
2042
+ 1.3
2043
+ 1.4
2044
+ 1.5
2045
+ 1.6
2046
+ 1.7
2047
+ 1.8
2048
+ 1.9
2049
+ Side Ratio
2050
+ Side Ratio16
2051
+
2052
+ The above result can, of course, be determined from the dependence of 
2053
+ + on n and γ. From eq. (4),
2054
+ (
2055
+ )
2056
+ 2
2057
+ 2
2058
+ 1
2059
+ 1
2060
+ 1
2061
+ cos
2062
+ 90
2063
+ 2
2064
+ n
2065
+ n
2066
+
2067
+
2068
+
2069
+
2070
+ +
2071
+
2072
+
2073
+
2074
+ + −
2075
+ +
2076
+
2077
+
2078
+ =
2079
+ =
2080
+
2081
+
2082
+
2083
+
2084
+
2085
+
2086
+ which gives
2087
+ (
2088
+ )
2089
+ 2
2090
+ 2
2091
+ 1
2092
+ 1
2093
+ n
2094
+ n
2095
+
2096
+
2097
+ +
2098
+ =
2099
+ +
2100
+ (17)
2101
+ because
2102
+ (
2103
+ )
2104
+ 2
2105
+ 2
2106
+ 1
2107
+ 1
2108
+ 0
2109
+ 2
2110
+ n
2111
+ n
2112
+
2113
+
2114
+
2115
+ + −
2116
+ +
2117
+ =
2118
+ . The only real solution to eq. (17) for n is
2119
+ 2
2120
+ n =
2121
+ .
2122
+
2123
+ An alternative and more rigorous approach to finding the degree which gives rise to the maximum
2124
+ area case for a given value of γ is from eq. (16);
2125
+ 0
2126
+ A
2127
+ n
2128
+
2129
+ =
2130
+
2131
+ gives
2132
+
2133
+ (
2134
+ )
2135
+ (
2136
+ )
2137
+ (
2138
+ )
2139
+ 2
2140
+ 2
2141
+ 2
2142
+ 1
2143
+ 1
2144
+ 1
2145
+ 1
2146
+ ln
2147
+ ln
2148
+ 1
2149
+ 0
2150
+ 1
2151
+ n
2152
+ n
2153
+ n
2154
+ n
2155
+ n
2156
+ n
2157
+ n
2158
+ n
2159
+
2160
+
2161
+
2162
+
2163
+
2164
+
2165
+
2166
+
2167
+
2168
+
2169
+  
2170
+
2171
+ +
2172
+ + −
2173
+ +
2174
+
2175
+ +
2176
+ =
2177
+
2178
+
2179
+
2180
+
2181
+
2182
+
2183
+ +
2184
+
2185
+
2186
+
2187
+  
2188
+
2189
+ .
2190
+ (18)
2191
+
2192
+ But (
2193
+ )
2194
+ 2
2195
+ 1
2196
+ 0
2197
+ n
2198
+ n
2199
+  +
2200
+
2201
+ for any value of γ or n, and therefore,
2202
+
2203
+ (
2204
+ )
2205
+ (
2206
+ )
2207
+ 2
2208
+ 2
2209
+ 1
2210
+ 1
2211
+ 1
2212
+ ln
2213
+ ln
2214
+ 1
2215
+ 0
2216
+ 1
2217
+ n
2218
+ n
2219
+ n
2220
+ n
2221
+ n
2222
+ n
2223
+
2224
+
2225
+
2226
+
2227
+
2228
+
2229
+
2230
+
2231
+
2232
+  
2233
+
2234
+ + −
2235
+ +
2236
+
2237
+ +
2238
+ =
2239
+
2240
+
2241
+
2242
+
2243
+
2244
+
2245
+ +
2246
+
2247
+
2248
+
2249
+  
2250
+
2251
+ .
2252
+ (19)
2253
+
2254
+ (
2255
+ )
2256
+ 2
2257
+ 2
2258
+ 1
2259
+ 1
2260
+ 0
2261
+ n
2262
+ n
2263
+
2264
+
2265
+
2266
+
2267
+ + −
2268
+ +
2269
+ =
2270
+
2271
+
2272
+
2273
+
2274
+ iff
2275
+ 2
2276
+ n =
2277
+ (as shown with eq. (17)).
2278
+ (
2279
+ )
2280
+ 1
2281
+ ln
2282
+ ln
2283
+ 1
2284
+ 0
2285
+ 1
2286
+ n
2287
+ n
2288
+ n
2289
+ n
2290
+
2291
+
2292
+
2293
+
2294
+
2295
+
2296
+
2297
+
2298
+
2299
+ +
2300
+
2301
+
2302
+
2303
+
2304
+
2305
+ +
2306
+
2307
+
2308
+
2309
+
2310
+ ,
2311
+ regardless of the value of γ, although it asymptotically approaches zero for increasing n. As expected, this
2312
+ somewhat more complex approach gives the same result as the “angular approach” used above – the
2313
+ maximum area triangle for positive real exponents occurs when
2314
+ 2
2315
+ n =
2316
+ .
2317
+
2318
+ Thus, the n-degree Pythagorean Theorem that produces triangles with the largest area for a given a
2319
+ and γ is the standard Pythagorean Theorem, and the triangles it produces are right angled. Even though
2320
+ the triangles that result from 1
2321
+ 2
2322
+ n
2323
+
2324
+
2325
+ have vertex angles which are larger than 90o, they have smaller
2326
+ areas than
2327
+ 2
2328
+ 1
2329
+ 2
2330
+ A
2331
+ a 
2332
+ =
2333
+ because sin
2334
+ 1
2335
+   for obtuse  .
2336
+
2337
+
2338
+
2339
+
2340
+
2341
+ 17
2342
+
2343
+ For a given a and a given n (not necessarily
2344
+ 2
2345
+ n =
2346
+ ), the value of γ that produces the triangle with the
2347
+ maximum area would be calculated from the derivative of eq. (16) i.e.,
2348
+ 0
2349
+ A
2350
+
2351
+
2352
+
2353
+
2354
+ =
2355
+
2356
+
2357
+
2358
+
2359
+
2360
+ which yields
2361
+
2362
+ (
2363
+ )
2364
+ (
2365
+ )
2366
+ 2
2367
+ 2 1
2368
+ 2
2369
+ 2
2370
+ 1
2371
+ 1
2372
+ 1
2373
+ 1
2374
+ 4
2375
+ n
2376
+ n
2377
+ n
2378
+ n
2379
+ n
2380
+
2381
+
2382
+
2383
+
2384
+
2385
+
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+ + −
2397
+ +
2398
+
2399
+ +
2400
+ =
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+  
2407
+
2408
+ .
2409
+ (20)
2410
+
2411
+ However, equation (20) has no solution for
2412
+ 0
2413
+ n 
2414
+ . This is physically reasonable because increasing γ
2415
+ for a given value of a continuously dilates the triangle; therefore, there is no finite maximum area. The
2416
+ smallest of all of the areas of these continuously enlarging triangles (with a fixed side length a) occurs
2417
+ when
2418
+ 1
2419
+  = and is
2420
+
2421
+ 3
2422
+ 2
2423
+ 1
2424
+ 2
2425
+ 2
2426
+ min
2427
+ 2
2428
+ 1 4
2429
+ n
2430
+ n
2431
+ n
2432
+ n
2433
+ A
2434
+ a
2435
+
2436
+
2437
+
2438
+
2439
+
2440
+
2441
+
2442
+
2443
+
2444
+
2445
+
2446
+
2447
+
2448
+
2449
+
2450
+
2451
+ =
2452
+
2453
+
2454
+
2455
+
2456
+
2457
+
2458
+
2459
+ .
2460
+ (21)
2461
+
2462
+ Equation (21) (a plot of which is shown in Figure 15) represents the areas of the members of an
2463
+ infinite set of isosceles triangles. Each of these triangles has the minimum possible area among all of the
2464
+ various triangles of the same degree. The triangle in this infinite set with the largest area occurs from the
2465
+ infinite degree case, is denoted by
2466
+ max
2467
+ min
2468
+ A
2469
+  , and is given by the limit of eq. (21).
2470
+
2471
+ max
2472
+ 2
2473
+ min
2474
+ min
2475
+ lim
2476
+ 6
2477
+ n
2478
+ A
2479
+ A
2480
+ a
2481
+
2482
+ →
2483
+ =
2484
+ =
2485
+ ,
2486
+ (22)
2487
+
2488
+ Figure 15: The minimum area (in dimensionless units) of an isosceles triangle with unit side length (a = 1) for the
2489
+ n-degree Pythagorean Theorem with positive real exponents. The red line indicates
2490
+ max
2491
+ min
2492
+ A
2493
+  .
2494
+
2495
+
2496
+
2497
+
2498
+ 18
2499
+
2500
+ 4.1.1
2501
+ The Area of a Triangle with a Fixed Perimeter (n > 0)
2502
+
2503
+ To further examine these ideas, it is sensible to consider the area of a triangle with a fixed perimeter
2504
+ P. Then, determine the values of γ and n that produce the maximum area for the n
2505
+ +
2506
+
2507
+ case (and then in
2508
+ Section 4.2, for the n
2509
+
2510
+
2511
+ case).
2512
+
2513
+ The triangle perimeter is trivially
2514
+
2515
+ (
2516
+ )
2517
+ 1
2518
+ 1
2519
+ 1
2520
+ n
2521
+ n
2522
+ P
2523
+ a
2524
+ b
2525
+ c
2526
+ a 
2527
+
2528
+
2529
+
2530
+ =
2531
+ +
2532
+ +
2533
+ =
2534
+ + +
2535
+ +
2536
+
2537
+
2538
+
2539
+
2540
+ .
2541
+ (23)
2542
+
2543
+ The area, in terms of the fixed perimeter, is denoted
2544
+ P
2545
+ A , and it results from combining eqs. (16) and (23).
2546
+
2547
+ (
2548
+ )
2549
+ (
2550
+ )
2551
+ 2
2552
+ 2
2553
+ 2
2554
+ 2
2555
+ 2
2556
+ 1
2557
+ 4
2558
+ 1
2559
+ 1
2560
+ 2
2561
+ 1
2562
+ 1
2563
+ P
2564
+ n
2565
+ n
2566
+ n
2567
+ n
2568
+ P
2569
+ A
2570
+
2571
+
2572
+
2573
+
2574
+
2575
+
2576
+
2577
+
2578
+
2579
+
2580
+
2581
+
2582
+
2583
+ =
2584
+
2585
+ + −
2586
+ +
2587
+
2588
+
2589
+
2590
+
2591
+
2592
+
2593
+
2594
+
2595
+
2596
+
2597
+ + +
2598
+ +
2599
+
2600
+
2601
+
2602
+
2603
+
2604
+
2605
+
2606
+
2607
+
2608
+ (24)
2609
+
2610
+ From eq. (24): for a fixed P, and as a function of n, the area of the triangle is a maximum when
2611
+ 1
2612
+  = . This area is denoted by
2613
+ max
2614
+ P
2615
+ A
2616
+ and is given by
2617
+
2618
+ 1
2619
+ 1
2620
+ 2
2621
+ max
2622
+ 2
2623
+ 1
2624
+ 4
2625
+ 16
2626
+ 16
2627
+ 1 2
2628
+ n
2629
+ n
2630
+ n
2631
+ P
2632
+ n
2633
+ n
2634
+ P
2635
+ A
2636
+ +
2637
+
2638
+
2639
+
2640
+
2641
+
2642
+
2643
+
2644
+
2645
+
2646
+
2647
+
2648
+
2649
+
2650
+
2651
+
2652
+
2653
+
2654
+
2655
+
2656
+
2657
+
2658
+
2659
+
2660
+
2661
+
2662
+
2663
+ =
2664
+
2665
+
2666
+  
2667
+
2668
+
2669
+ +
2670
+
2671
+
2672
+
2673
+
2674
+
2675
+
2676
+
2677
+
2678
+
2679
+
2680
+
2681
+
2682
+ ,
2683
+ (25)
2684
+
2685
+ Equation (25) represents the areas of an infinite set of maximum area isosceles triangles with a fixed
2686
+ perimeter. The triangle in that set with the largest area is the infinite degree member which is denoted by
2687
+ max
2688
+ P
2689
+ A
2690
+  , and its area is given by
2691
+
2692
+ 1
2693
+ 1
2694
+ 2
2695
+ 2
2696
+ max
2697
+ 2
2698
+ 1
2699
+ 4
2700
+ 16
2701
+ 3
2702
+ lim
2703
+ 16
2704
+ 36
2705
+ 1 2
2706
+ n
2707
+ n
2708
+ n
2709
+ P
2710
+ n
2711
+ n
2712
+ n
2713
+ P
2714
+ A
2715
+ P
2716
+
2717
+ +
2718
+
2719
+
2720
+
2721
+
2722
+
2723
+
2724
+
2725
+
2726
+
2727
+
2728
+
2729
+
2730
+ →
2731
+
2732
+
2733
+
2734
+
2735
+
2736
+
2737
+
2738
+
2739
+
2740
+
2741
+
2742
+
2743
+
2744
+
2745
+
2746
+
2747
+ =
2748
+ =
2749
+
2750
+
2751
+
2752
+
2753
+
2754
+
2755
+  
2756
+
2757
+
2758
+
2759
+
2760
+ +
2761
+
2762
+
2763
+
2764
+
2765
+
2766
+
2767
+
2768
+
2769
+
2770
+
2771
+
2772
+
2773
+ .
2774
+ (26)
2775
+
2776
+
2777
+
2778
+ 19
2779
+
2780
+ From eq. (24), as  →  , the areas of the triangles approach zero (as shown in Figure 17), as they
2781
+ take the form of a straight line. Also, from eq. (24) (and as shown in Figure 16), triangles with a fixed P
2782
+ will see their areas (as a function of γ) asymptotically increase as n → . Those areas are denoted
2783
+ P
2784
+ A
2785
+ and are given by
2786
+
2787
+ (
2788
+ )
2789
+ 2
2790
+ 2
2791
+ 2
2792
+ 4
2793
+ 1
2794
+ 1
2795
+ 4
2796
+ 2
2797
+ 1
2798
+ P
2799
+ A
2800
+ P
2801
+
2802
+
2803
+
2804
+
2805
+
2806
+
2807
+ =
2808
+
2809
+
2810
+ +
2811
+
2812
+
2813
+
2814
+
2815
+ ,
2816
+ (27)
2817
+
2818
+
2819
+
2820
+ Figure 16: Area (in dimensionless units) of Pythagorean triangles with unit perimeter.
2821
+
2822
+
2823
+ Figure 17: Area (in dimensionless units) of Pythagorean triangles with unit perimeter.
2824
+
2825
+
2826
+
2827
+
2828
+
2829
+ 20
2830
+
2831
+ 4.2 The Maximum Areas of Triangles for the n-Degree Pythagorean Theorem with Negative
2832
+ Real Exponents
2833
+
2834
+ For n
2835
+
2836
+
2837
+ , a plot of eq. (16) is shown in Figure 18. The area relationship for positive real exponents
2838
+ also applies to the case of negative real exponents. However, for all
2839
+ ( )
2840
+ crit
2841
+ n
2842
+ n
2843
+
2844
+
2845
+ , the vertex angles are
2846
+ real and acute, and if a and γ are fixed, the maximum area triangle has the largest vertex angle.
2847
+
2848
+
2849
+
2850
+ Figure 18: Triangle area (in dimensionless units) with unit side length (a = 1). The missing section at the top right
2851
+ and on the right side of figure are due to n > ncrit(γ) for a given value of γ; the border of this section has the equation
2852
+ ncrit(γ) as shown in Figure 9.
2853
+
2854
+ To determine the triangle with the maximum area, consider eqs. (15) and (9).
2855
+
2856
+
2857
+
2858
+ (
2859
+ )
2860
+
2861
+
2862
+ (
2863
+ )
2864
+ (
2865
+ )
2866
+ (
2867
+ )
2868
+ 1
2869
+ 2
2870
+ 2
2871
+ 2
2872
+ 1
2873
+ 2
2874
+ 2
2875
+ 2
2876
+ 2
2877
+ 2
2878
+ 2
2879
+ max
2880
+ 1
2881
+ 1
2882
+ 1
2883
+ 1
2884
+ 1
2885
+ max sin
2886
+ 1
2887
+ min cos
2888
+ 1
2889
+ min
2890
+ 2
2891
+ 2
2892
+ 2
2893
+ 2
2894
+ n
2895
+ n
2896
+ A
2897
+ a
2898
+ a
2899
+ a
2900
+
2901
+
2902
+
2903
+
2904
+
2905
+
2906
+
2907
+
2908
+
2909
+
2910
+
2911
+
2912
+
2913
+
2914
+
2915
+
2916
+ + −
2917
+ +
2918
+
2919
+
2920
+
2921
+
2922
+
2923
+
2924
+ =
2925
+ =
2926
+
2927
+ =
2928
+
2929
+
2930
+
2931
+
2932
+
2933
+
2934
+
2935
+
2936
+
2937
+
2938
+
2939
+
2940
+
2941
+
2942
+
2943
+
2944
+
2945
+
2946
+
2947
+
2948
+
2949
+ .
2950
+ (28)
2951
+
2952
+ In the special case of an isosceles triangle (
2953
+ )
2954
+ 1
2955
+  =
2956
+ ,
2957
+ (
2958
+ )
2959
+ 2
2960
+ 2
2961
+ 2
2962
+ 1
2963
+ 1
2964
+ min
2965
+ 1 2
2966
+ 2
2967
+ n
2968
+ n
2969
+ n
2970
+ n
2971
+
2972
+
2973
+
2974
+
2975
+
2976
+
2977
+
2978
+
2979
+
2980
+
2981
+
2982
+
2983
+ + −
2984
+ +
2985
+
2986
+  = −
2987
+
2988
+
2989
+
2990
+
2991
+
2992
+
2993
+ for
2994
+ 1
2995
+ n  −
2996
+ because
2997
+ (
2998
+ )
2999
+ crit
3000
+ 1
3001
+ n
3002
+  =
3003
+ does not exist.
3004
+
3005
+
3006
+
3007
+ Triangle Area
3008
+ 0.5
3009
+ 2
3010
+ 0.45
3011
+ 3
3012
+ 0.4
3013
+ Pythagorean Exponent
3014
+ 0.35
3015
+ 4
3016
+ 0.3
3017
+ 4
3018
+ 0.25
3019
+ 0.2
3020
+ 0.15
3021
+ 8
3022
+ 0.1
3023
+ -9
3024
+ 0.05
3025
+ -10
3026
+ 1.2
3027
+ 1.4
3028
+ 1.6
3029
+ 1.8
3030
+ 2
3031
+ Side Ratio21
3032
+
3033
+ The maximum triangle area is then
3034
+
3035
+ 1
3036
+ 1
3037
+ 1
3038
+ 2
3039
+ 1
3040
+ 2
3041
+ 2
3042
+ max
3043
+ 1
3044
+ sin
3045
+ 2
3046
+ 1 4
3047
+ 2
3048
+ n
3049
+ n
3050
+ n
3051
+ n
3052
+ A
3053
+ a
3054
+ a
3055
+
3056
+
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+
3067
+
3068
+ =
3069
+
3070
+
3071
+
3072
+
3073
+
3074
+ 
3075
+
3076
+ =
3077
+ =
3078
+
3079
+
3080
+ 
3081
+
3082
+
3083
+ 
3084
+
3085
+
3086
+ 
3087
+
3088
+ .
3089
+ (29)
3090
+
3091
+ If the negative infinite degree case of eq. (28) is considered, the following results.
3092
+
3093
+ (
3094
+ )
3095
+ 2
3096
+ 2
3097
+ 1
3098
+ 1
3099
+ lim
3100
+ min
3101
+ 2
3102
+ 2
3103
+ n
3104
+ n
3105
+ n
3106
+
3107
+
3108
+
3109
+
3110
+ →−
3111
+
3112
+
3113
+
3114
+
3115
+ + −
3116
+ +
3117
+
3118
+
3119
+
3120
+  =
3121
+
3122
+
3123
+
3124
+
3125
+
3126
+
3127
+
3128
+
3129
+
3130
+
3131
+
3132
+
3133
+ for any side ratio that conforms to 1
3134
+ 2
3135
+
3136
+
3137
+
3138
+ . For this negative
3139
+ infinite degree case, the maximum triangle area is
3140
+
3141
+ 2
3142
+ 2
3143
+ 2
3144
+ max
3145
+ 1
3146
+ 1
3147
+ sin
3148
+ 4
3149
+ 2
3150
+ 4
3151
+ A
3152
+ a
3153
+ a
3154
+
3155
+
3156
+
3157
+
3158
+ − =
3159
+ =
3160
+
3161
+ .
3162
+ (30)
3163
+
3164
+ Equation (30) necessarily complies with the requirement that 1
3165
+ 2
3166
+
3167
+
3168
+
3169
+ . Additionally, three interesting
3170
+ results emerge about this infinite set of negative infinite degree triangles:
3171
+ 1. In this set, there are two values of γ that produce triangles with equal areas:
3172
+ 1
3173
+  = and
3174
+ 3
3175
+  =
3176
+ ,
3177
+ and that maximum area is
3178
+ 1,
3179
+ 3
3180
+ 2
3181
+ 2
3182
+ max
3183
+ 1
3184
+ 3
3185
+ sin
3186
+ 2
3187
+ 4
3188
+ A
3189
+ a
3190
+ a
3191
+
3192
+
3193
+
3194
+
3195
+ −
3196
+ =
3197
+ =
3198
+ =
3199
+ =
3200
+ .
3201
+ 2.
3202
+ 2
3203
+  =
3204
+ necessarily gives zero area because the triangle has collapsed into a straight line.
3205
+ 3. In this infinite set, the triangle with the largest area is the member for which
3206
+ 2
3207
+  =
3208
+ , and its area
3209
+ is
3210
+ max
3211
+ 2
3212
+ 2
3213
+ max
3214
+ 1
3215
+ 1
3216
+ sin
3217
+ 2
3218
+ 2
3219
+ A
3220
+ a
3221
+ a
3222
+
3223
+
3224
+ − =
3225
+ =
3226
+ .
3227
+
3228
+
3229
+ 4.2.1
3230
+ The Area of a Triangle with a Fixed Perimeter (n < 0)
3231
+
3232
+ If, on the other hand, the perimeter is fixed, eq. (24) applies for 1
3233
+ 2
3234
+
3235
+
3236
+
3237
+ , and the largest area
3238
+ triangle will be isosceles, and it will have an area of
3239
+ 2
3240
+ 3
3241
+ 36 P . This area is expected because the conditions
3242
+ that
3243
+ 1
3244
+  = and n → − result in equilateral triangle in which
3245
+ 3
3246
+ P
3247
+ a
3248
+ =
3249
+ , and therefore,
3250
+ 2
3251
+ 2
3252
+ 3
3253
+ 3
3254
+ 36
3255
+ 4
3256
+ P
3257
+ a
3258
+ =
3259
+ .
3260
+
3261
+ From eq. (24), if lim
3262
+ P
3263
+ n
3264
+ A
3265
+ →−
3266
+ is taken, eq. (31) results. As seen in Figure 19 (a plot of eq. (31)), the area
3267
+ will asymptotically increase as n → − and will asymptotically decrease toward zero as
3268
+ 2
3269
+  →
3270
+ . Eq.
3271
+ (31) determines the area for a fixed perimeter, arbitrary side ratio, and infinite degree triangle.
3272
+
3273
+
3274
+ 22
3275
+
3276
+ (
3277
+ )
3278
+ 2
3279
+ 2
3280
+ 2
3281
+ 1
3282
+ 4
3283
+ 4
3284
+ 2
3285
+ P
3286
+ A
3287
+ P
3288
+
3289
+
3290
+
3291
+ −
3292
+
3293
+
3294
+ =
3295
+
3296
+
3297
+
3298
+ +
3299
+
3300
+
3301
+
3302
+
3303
+ ,
3304
+ (31)
3305
+ where
3306
+ P
3307
+ A− is the asymptotic area of the triangles with a fixed perimeter and for which n → − .
3308
+
3309
+ Among the infinite set of triangles whose areas are given by eq. (31), the triangle with the largest area
3310
+ is isosceles (as stated above), and its area is
3311
+ 2
3312
+ 3
3313
+ 36 P .
3314
+
3315
+
3316
+ Figure 19: Area of Pythagorean triangles with unit perimeter.
3317
+
3318
+
3319
+ Figure 20: Area of Pythagorean triangles with unit perimeter.
3320
+
3321
+
3322
+ 23
3323
+
3324
+ 5. Summary
3325
+
3326
+ The Pythagorean Theorem has been extended to positive and negative real exponents unfettered by
3327
+ the physical requirement of dimension. The relationship between the ratio of the adjacent sides and the
3328
+ vertex angle was determined for a given degree. It was found that for positive exponents, the stipulation
3329
+ that
3330
+ 1
3331
+   can be applied to all degrees, and no complex vertex angles arose. For 1
3332
+ 2
3333
+ n
3334
+
3335
+
3336
+ , an obtuse
3337
+ triangle results, and if
3338
+ 2
3339
+ n 
3340
+ , the triangle is acute. However, for negative exponents to produce real
3341
+ vertex angles, the restriction 1
3342
+ 2
3343
+
3344
+
3345
+
3346
+ is necessary but not sufficient. The additional requirement that if
3347
+ 1
3348
+ 2
3349
+
3350
+
3351
+
3352
+ , then
3353
+ ( )
3354
+ crit
3355
+ n
3356
+ n
3357
+
3358
+
3359
+ needs to be imposed.
3360
+
3361
+ The areas of the associated triangles for positive and negative real exponents were explored. With
3362
+ fixed a and γ values, the areas for
3363
+ |
3364
+ 1
3365
+ n
3366
+ n
3367
+ +
3368
+
3369
+  are maximized when the triangle is right isosceles
3370
+ requiring
3371
+ 1
3372
+  = and
3373
+ 2
3374
+ n =
3375
+ . Additionally, triangle areas increase as n → . Alternatively, if the
3376
+ perimeter of a triangle is kept constant, the triangle area approaches a maximum value with increasing n
3377
+ and approaches 0 for decreasing γ.
3378
+
3379
+ For the n
3380
+
3381
+
3382
+ case, as n → − , the triangle with a fixed perimeter and the maximum area has a
3383
+ side ratio of
3384
+ 2
3385
+  =
3386
+ . In contrast, if the degree is finite and
3387
+ ( )
3388
+ crit
3389
+ n
3390
+ n
3391
+
3392
+
3393
+ (if
3394
+ 1
3395
+   ), the maximum area
3396
+ occurs when the vertex angle (
3397
+ )
3398
+ ,n
3399
+  
3400
+ is a maximum.
3401
+
3402
+
3403
+
3404
+
3405
+
3406
+
3407
+ 24
3408
+
3409
+ Works Cited
3410
+ 1. Faltings, G., The proof of Fermat’s last theorem by R. Taylor and A. Wiles. Notices of the AMS, 1995.
3411
+ 42(7): p. 743-746.
3412
+ 2. Agarwal, R.P., Pythagorean theorem before and after Pythagoras. Adv. Stud. Contemp. Math, 2020.
3413
+ 30: p. 357-389.
3414
+ 3. Amir-Moéz, A.R., R.E. Byerly, and R.R. Byerly, Pythagorean theorem in unitary spaces. Publikacije
3415
+ Elektrotehničkog fakulteta. Serija Matematika, 1996: p. 85-89.
3416
+ 4. Atzema, E.J., Beyond Monge's Theorem: A Generalization of the Pythagorean Theorem. Mathematics
3417
+ Magazine, 2000. 73(4): p. 293-296.
3418
+ 5. Conant, D. and W. Beyer, Generalized pythagorean theorem. The American Mathematical Monthly,
3419
+ 1974. 81(3): p. 262-265.
3420
+ 6. Cook, W.J., An n-dimensional Pythagorean theorem. The College Mathematics Journal, 2013. 44(2):
3421
+ p. 98-101.
3422
+ 7. Czyzewska, K., Generalization of the Pythagorean theorem. Demonstratio Mathematica, 1991. 24(1-
3423
+ 2): p. 305-310.
3424
+ 8. Donchian, P.S. and H. Coxeter, 1142. An n-dimensional extension of Pythagoras' Theorem. The
3425
+ Mathematical Gazette, 1935. 19(234): p. 206-206.
3426
+ 9. Drucker, D., A comprehensive Pythagorean theorem for all dimensions. The American Mathematical
3427
+ Monthly, 2015. 122(2): p. 164-168.
3428
+ 10. Eifler, L. and N.H. Rhee, The n-dimensional Pythagorean theorem via the divergence theorem. The
3429
+ American Mathematical Monthly, 2008. 115(5): p. 456-457.
3430
+ 11. Kadison, R.V., The Pythagorean theorem: I. The finite case. Proceedings of the National Academy of
3431
+ Sciences, 2002. 99(7): p. 4178-4184.
3432
+ 12. Lee, J.-R., The law of cosines in a tetrahedron. The Pure and Applied Mathematics, 1997. 4(1): p. 1-6.
3433
+ 13. Quadrat, J.-P., J.B. Lasserre, and J.-B. Hiriart-Urruty, Pythagoras' theorem for areas. The American
3434
+ Mathematical Monthly, 2001. 108(6): p. 549-551.
3435
+ 14. Veljan, D., The 2500-year-old Pythagorean theorem. Mathematics Magazine, 2000. 73(4): p. 259-272.
3436
+ 15. Yeng, S., T. Lin, and Y.-F. Lin, The n-dimensional Pythagorean theorem. Linear and multilinear
3437
+ algebra, 1990. 26(1-2): p. 9-13.
3438
+
3439
+
0tE0T4oBgHgl3EQfuAGv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19FST4oBgHgl3EQfXDjl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfec1c5ff709a86525a3517e1e2db4c984ef7611e894d9e18336df01a56fb08
3
+ size 3670061
1NAzT4oBgHgl3EQft_01/content/tmp_files/2301.01683v1.pdf.txt ADDED
@@ -0,0 +1,1506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ 1
4
+
5
+ Mid-Infrared spectroscopy of
6
+ impactites from the Nördlinger Ries impact crater
7
+ Corresponding Author: Andreas Morlok, Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149
8
+ Münster, Germany. Email: morlokan@uni-muenster.de, Tel. +49-251-83-39069
9
+ Aleksandra Stojic, Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. Email:
10
+ a.stojic@uni-muenster.de;
11
+ Isabelle Dittmar, Hochschule Emden/Leer, Constantiaplatz 4, 26723 Emden, Germany, Email:
12
+ isabelle.dittmar@hs-emden-leer.de
13
+ Harald Hiesinger, Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. Email:
14
+ hiesinger@uni-muenster.de
15
+ Manuel Ahmedi, Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. Email:
16
+ ahmedi@uni-muenster.de
17
+ Martin Sohn, Hochschule Emden/Leer, Constantiaplatz 4, 26723 Emden, Germany, Email:
18
+ martin.sohn@hs-emden-leer.de
19
+ Iris Weber, Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. Email:
20
+ sonderm@uni-muenster.de
21
+ Joern Helbert, Institute for Planetary Research, DLR, Rutherfordstrasse 2, 12489 Berlin, Germany, Email:
22
+ joern.helbert@dlr.de
23
+ © 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0
24
+
25
+
26
+
27
+
28
+ 2
29
+
30
+ ABSTRACT
31
+ This study is part of an effort to build a mid-infrared database (7-14µm) of spectra for MERTIS (Mercury
32
+ Radiometer and Thermal Infrared Spectrometer), an instrument onboard of the ESA/JAXA BepiColombo
33
+ space probe to be launched to Mercury in 2017.
34
+ Mercury was exposed to abundant impacts throughout its history. This study of terrestrial impactites can
35
+ provide estimates of the effects of shock metamorphism on the mid-infrared spectral properties of
36
+ planetary materials.
37
+ In this study, we focus on the Nördlinger Ries crater in Southern Germany, a well preserved and easily
38
+ accessible impact crater with abundant suevite impactites. Suevite and melt glass bulk samples from
39
+ Otting and Aumühle, as well as red suevite from Polsingen were characterized and their reflectance
40
+ spectra in mid-infrared range obtained. In addition, in-situ mid-infrared spectra were made from glasses
41
+ and matrix areas in thin sections. The results show similar, but distinguishable spectra for both bulk
42
+ suevite and melt glass samples, as well as in-situ measurements.
43
+ Impact melt glass from Aumühle and Otting have spectra dominated by a Reststrahlen band at 9.3-9.6
44
+ µm. Bulk melt rock from Polsingen and bulk suevite and fine-grained matrix have their strongest band
45
+ between 9.4 to 9.6 µm. There are also features between 8.5 and 9 µm, and 12.5 - 12.8 µm associated
46
+ with crystalline phases. There is evidence of weathering products in the fine-grained matrix, such as
47
+ smectites. Mercury endured many impacts with impactors of all sizes over its history. So spectral
48
+ characteristics observed for impactites formed only in a single impact like in the Ries impact event can be
49
+ expected to be very common on planetary bodies exposed to many more impacts in their past. We
50
+ conclude that in mid-infrared remote sensing data the surface of Mercury can be expected to be
51
+ dominated by features of amorphous materials.
52
+
53
+
54
+
55
+
56
+ 3
57
+
58
+ Keywords: Spectroscopy, Impact processes, Infrared observations, Instrumentation
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+ 4
80
+
81
+ 1. Introduction
82
+ The aim of this study is to provide mid-infrared reflectance spectra with special emphasis on the region
83
+ from 7µm – 14µm for a range of impactites for the application in planetary remote sensing. We generate
84
+ these spectra for a database for the ESA/JAXA BepiColombo mission to Mercury (Benkhoff et al., 2010).
85
+ Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared
86
+ Spectrometer). This unique device allows mapping spectral features in the 7-14 µm range, with a spatial
87
+ resolution of ~500 m (Helbert et al., 2009; Benkhoff et al., 2010; Hiesinger et al., 2010).
88
+ Infrared spectroscopy provides a means to characterize the mineralogy of rocks via remote
89
+ sensing, in contrast to Gamma-Ray, Neutron and X-ray spectrometers, which determine elemental
90
+ compositions (Pieters and Englert, 1993). Thus, IR spectroscopy provides a central analytical tool to
91
+ determine the mineralogy of remote planetary surfaces. In order to correctly interpret the remote
92
+ sensing data, laboratory spectra of natural, synthetic rocks and minerals have to be collected to compare
93
+ them to the spectra that will be obtained from MERTIS, once BepiColombo enters the Hermean orbit
94
+ (Maturilli et al., 2008; Hiesinger et al., 2010). Comparable earlier instruments were the Thermal Emission
95
+ Spectrometer (TES) on the Mars Global Surveyor (Christensen et al., 2005) and the Thermal Emission
96
+ Imaging System (THEMIS) on the Mars Odyssey orbiter (Christensen et al., 2004). The lunar surface was
97
+ mapped in the mid-infrared with the DIVINER Lunar Radiometer Instrument on the Lunar
98
+ Reconnaissance Orbiter (Paige et al., 2010). The OSIRIS-REx Thermal Emission Spectrometer (OTES) will
99
+ map asteroid Bennu (1999 RQ36) (Hamilton and Christensen, 2014), and the Thermal Infrared Imager
100
+ (TIR) onboard Hayabusa 2 will map asteroid 1999JU3 (Okada et al., 2015).
101
+ The Ries crater in southern Germany (Fig.1) provides well preserved layers of impactites and is
102
+ one of the best studied impact sites in the world (von Engelhardt, 1995). The 14.6 Myr old crater with a
103
+ diameter of 24 kilometers (Buchner et al., 2010) offers the whole range of impact-associated rocks and
104
+
105
+
106
+
107
+ 5
108
+
109
+ minerals (von Engelhardt, 1990). Large impact events play a key role in surface modification processes in
110
+ effect on most terrestrial planets and their moons (Hörz and Cintala, 1997). Thus, the investigation of
111
+ terrestrial impact processed rocks and understanding how these processes affect the spectral properties
112
+ of the resulting impact generated rocks and melt glass is important for the interpretation of infrared data
113
+ from the surfaces of other planetary bodies. Given the characteristics of surface regolith, we need
114
+ spectral data from different grain size fractions. This is necessary because grain size variations affect the
115
+ corresponding spectra immensely by reducing the spectral contrast of features and creating additional
116
+ features at small grain sizes (e.g., Salisbury and Eastes, 1985; Salisbury and Wald, 1992; Mustard and
117
+ Hayes, 1997; Ruff and Christensen, 2002).
118
+ Reflectance and emission studies about spectral features in the mid-infrared in minerals
119
+ undergoing high shock metamorphism including formation of melt glass were made on experimentally
120
+ shocked samples, e.g., on anorthosite, pyroxenite, basalt, and feldspar (Johnson et al. , 2002, 2003, 2007,
121
+ 2012; and Jaret et al. ,2015). In these studies, especially feldspar-rich material showed loss and
122
+ degradation of features, as well as band shifts with increasing structural disorder resulting from
123
+ increasing shock pressure. Moroz et al. (2010) analyzed impact glasses from laser pulse experiments with
124
+ Martian soil analogue JSC Mars-1. Similar, Basilevsky et al. (2000) and Morris et al. (2000) spectrally
125
+ studied melt glass also made from Martian soil analogs. Byrnes et al. (2007), and Lee et al.,(2010)
126
+ measured synthetic quartzofeldspathic glasses and Dufresne et al. (2009), Minitti et al. (2002), Minitti
127
+ and Hamilton (2010) measured synthetic glass with basaltic to intermediate composition. In general, the
128
+ resulting mid-infrared reflectance or emission spectra display a dominant feature in the 9.2-10.5 µm
129
+ range. Pollack et al. (1973), Crisp et al., 1990; Nash and Salisbury (1991) and Wyatt et al. (2001), studied
130
+ obsidian or basalt. Further infrared reflectance and emission spectra of natural impact glass and tektites
131
+ were made, e.g., by Thomson and Schultz (2002), Gucsik et al. (2004), Faulques et al. (2005) and Palomba
132
+ et al. (2006). Wright et al. (2011), Basavaiah and Chavan (2013), and Jaret et al. (2013) investigated
133
+
134
+
135
+
136
+ 6
137
+
138
+ shocked bulk material from the Lonar Crater, India, showing mainly a simple spectrum with a dominating
139
+ feature in the ~9.4 - 10.2 µm range.
140
+ Complementary infrared transmission and absorbance spectra of related materials were also
141
+ made, e.g, of experimentally shocked feldspar materials (Stöffler and Hornemann, 1972; Ostertag, 1983)
142
+ and of CM2 chondrite Murchison (Morlok et al., 2010). Glasses with feldspathic composition produced in
143
+ static high pressure experiments were measured by, e.g., Iiishi et al. (1971), Velde et al. (1987), and
144
+ Williams and Jeanloz (1988, 1989). In addition, transmission infrared analyses of natural impact glass and
145
+ tektites for studying water contents were made by Beran and Koeberl (1997), for identification purposes
146
+ (Fröhlich et al., 2013) or for astrophysical studies of circumstellar dust (Morlok et al., 2014). King et al.
147
+ (2004) provided an overview of silicate glass analysis with various mid-infrared techniques.
148
+ Furthermore, there are also numerous studies how impact shock affects the spectral properties
149
+ in the visible and near-infrared, such as Johnson and Hörz (2003), Adams et al. (1979), and Bruckenthal
150
+ and Pieters (1984) for experimentally shocked feldspars or enstatite. Moroz et al. (2009) studied
151
+ synthetic glasses with Martian soil composition as impact melt analogs, and Cannon and Mustard (2015)
152
+ identified glass-rich impactites on Mars. Bell et al. (1976) and Stockstill-Cahill et al. (2014) analyzed lunar
153
+ glass analogues, while Keppler (1992) studied synthetic silicate glasses with albite and diopside
154
+ composition. Schulz and Mustard (2004) studied terrestrial impact melt rocks.
155
+ Shock metamorphism begins with fracturing and brecciation of the rocks at lower pressures;
156
+ above 2 GPa the mineral phases start to change. Shatter cones and conical fracturing patterns form.
157
+ Between 8 and 25 GPa, planar deformation features appear along with microscopic changes in the
158
+ crystal structure due to impact shock in, e.g., quartz and feldspar. At pressures >25 GPa, shock
159
+ metamorphism continues with the solid-state transformation of minerals into diaplectic glasses, which
160
+ are amorphous materials generated at pressures up to 40 GPa. At pressures over 35 GPa, partial melting
161
+ of phases begins and at over 60 GPa rocks completely melt, followed by vaporization at pressures above
162
+ 100 GPa (e.g., Stöffler, 1966, 1971, 1984; Chao, 1967; von Engelhardt and Stöffler, 1968; Stöffler and
163
+
164
+
165
+
166
+ 7
167
+
168
+ Langenhorst, 1994; French, 1998). Also, high pressure mineral polymorphs form; stishovite and coesite
169
+ form from quartz at pressures from 12-15 GPa and over 30 GPa, respectively. Carbon is transformed into
170
+ diamond at 13 GPa (Stöffler and Langenhorst, 1994; French, 1998).
171
+ In the impactite suevite, shock metamorphism can be divided into stages 0 – IV. Stage 0 ranges
172
+ from 0-10 GPa, stage I (10-35 GPa) and II (35-60 GPa) cover changes in crystal structure and partial
173
+ melting; stage IV pressures over 60 GPa result in melt glasses (Stöffler, 1971 and 1984; French, 1998;
174
+ Stöffler and Grieve, 2007; Stöffler et al., 2013). Suevite consists of materials of all five shock stages
175
+ (Stöffler et al., 2013). Thus the infrared spectra obtained from the suevites can be expected to contain a
176
+ mixture of spectral features depending on the level of shock metamorphism the material underwent.
177
+ In this study, we focus on impactites from the Ries crater, since the crater site allows easy access
178
+ to a range of naturally shocked rocks and minerals (von Engelhardt, 1990, 1995). Prior to the impact
179
+ event, the Ries area was covered with sediments mainly consisting of limestones. The underlying
180
+ crystalline basement is dominated by granites and gneisses, with significant amounts of amphibolite (von
181
+ Engelhardt and Graup, 1984; von Engelhardt, 1997). The average chemical composition of very
182
+ homogeneous impact melts (shock stage IV; Stöffler et al, 2013) is similar to the composition of the
183
+ modelled crystalline basement rock clasts based on the fallout suevite, identifying these rocks as the
184
+ main source of the homogenized melt (Staehle, 1972; von Engelhardt et al., 1984 , 1995, 1997;
185
+ Vennemann et al., 2001).
186
+ We focus on the suevite, the top layer of ejecta in the Ries that was deposited on all other
187
+ impact ejecta, Bunte Breccia (e.g. Abadian, 1972; Hörz et al., 1983), megablocks (e.g. Sturm et al., 2015)
188
+ and polymict crystalline breccia (e.g. von Engelhardt, 1997). The most voluminous ejecta is the Bunte
189
+ Breccia, consisting mainly of sedimentary material. Megablocks are rocks in the size range from 25 m to
190
+ kilometers, consisting of sedimentary (limestone) and crystalline materials. Both Bunte Breccia and
191
+
192
+
193
+
194
+ 8
195
+
196
+ megablocks show low degrees of shock metamorphism. Polymict crystalline breccias are mixtures of
197
+ basement rocks with shock stages up to stage II. Suevite is the only ejecta layer to contain material in all
198
+ stages of shock metamorphism (e.g., von Engelhardt, 1969, 1990, 1997). Moldavites, a type of tektites
199
+ formed in the Ries impact are an additional type of ejecta that was deposited 350 km east of the impact
200
+ site (e.g., von Engelhardt, 1987).
201
+ The mostly granitic and felsic petrology of the crystalline basement of the Ries, which controlled
202
+ the composition of the suevite (von Engelhardt et al., 1990, 1997), is quite different compared to that of
203
+ Mercury and other planetary surfaces in the Solar System. Also, granite in general is very rare outside
204
+ Earth (Bonin, 2012). Based on MESSENGER data, the best terrestrial analogues for the surface of Mercury
205
+ are basalts or ultramafic komatiites (Nittler et al., 2011; Stockstill-Cahill et al., 2012; Charlier et al., 2013;
206
+ Maturilli et al., 2014), but natural shocked forms are rare on Earth (e.g. Wright et al., 2011). However, a
207
+ spectral study of naturally shocked granitic material is of interest for our remote sensing purposes
208
+ because it gives insight into the spectral characteristics of impactites and their components, while
209
+ naturally shocked basalts are rare (Wright et al., 2011). Furthermore, the easy access to the Ries site
210
+ gives access to larger, representative amounts of sample material. Although rare, granitic materials have
211
+ been recognized on other planetary bodies. Granitic material has been found as fragments and clasts in
212
+ lunar samples (e.g., Warren et al., 1983; Jolliff et al., 1999; Shervais and McGee, 1999; Seddio et al.,
213
+ 2015). Granitoid or felsic materials may also occur on the mostly basaltic surface of Mars (e.g.,
214
+ Christensen et al., 2005; Bandfield, 2006, Ehlmann and Edwards, 2014; Sautter et al., 2014, 2015). There
215
+ are also indications for felsic, granitoid material on Venus (Müller et al., 2008; Gilmore, 2015).
216
+ Suevites are divided into crater or fallback suevite, occurring inside the inner ring of the Ries, and
217
+ outer suevite, encompassing suevite found outside of the inner part of the crater (Pohl et al., 1977,
218
+ Stöffler, 1977, 2013). Normal suevite in this study is outer suevite that originates from the Otting and
219
+ Aumühle quarries (Fig.1, 2a,b). It mainly consists of three components: a porous matrix of fine-grained
220
+
221
+
222
+
223
+ 9
224
+
225
+ rock, melt glass, and crystalline basement rocks displaying all stages of shock metamorphism ( Stöffler,
226
+ 1966; von Engelhardt and Graup, 1984; Stöffler et al., 2013). Red suevite (Fig. 2c) from the Polsingen
227
+ quarry is a rare variation of the outer suevite. Its red color is a characteristic owing to high hematite
228
+ content (Stöffler et al., 2013). In the red suevite, the actual groundmass consists of impact melt, in which
229
+ fragments are embedded (Reimold et al., 2010). Also, chemical differences between normal suevite and
230
+ red suevite (Na2O, K2O) were reported by Reimold et al. (2013) and Stöffler (2013). In addition to the
231
+ bulk materials, we are also interested in the components of the suevite. In particular, we studied the
232
+ melt glasses (Fig.2a, b), i.e., completely shock-melted and quenched rock material. Furthermore, we
233
+ looked at the fine-grained matrix itself, which was affected by weathering processes (von Engelhardt,
234
+ 1995; Stöffler et al., 2013).
235
+
236
+ 2. Samples and Techniques
237
+ 2.1 Sample Selection
238
+ We selected three bulk suevite samples from three different Ries localities of the suevite layer
239
+ (von Engelhardt and Stöffler, 1974; von Engelhardt et al., 1995, 1997; Bayerisches Geologisches
240
+ Landesamt, 2004): normal crater suevite from the Otting (samples Otting Bulk 1-3) and Aumühle
241
+ (Aumühle Bulk4, Bulk 18, Bulk 18 Matrix) quarries, and red suevite (samples Polsingen 2-4) from a small
242
+ outcrop in Polsingen (outer suevite) (von Engelhardt, 1997; Reimold et al., 2010). In addition, we used
243
+ material from three separated impact melt glasses: from a large, 30 cm sized glass ‘bomb’ (Otting
244
+ Glasbombe) and a separated glass ‘Flädle’ from Otting (Otting Glas 1), and another glass separated from
245
+ the Aumühle suevite (Aumühle 13).
246
+ In addition, for quantitative chemical and additional IR-microscopy analyses, polished thin
247
+ sections of Aumühle, Otting and Polsingen were produced from the bulk sample rocks. The vitreous
248
+
249
+
250
+
251
+ 10
252
+
253
+ state of the glass was confirmed using polarized light microscopy by the total extinction of the glass
254
+ under crossed polarizers (Fig.2a-c). However, the two Otting samples show brownish halos or ‘Schlieren’,
255
+ signs of incipient devitrification by the formation of small crystallites of pyroxenes, feldspar, oxides and
256
+ possibly incipient signs of alteration phases like clays (see discussion)(von Engelhardt et al., 1995).
257
+
258
+ 2.2 Sample Preparation
259
+ We used aliquots of larger amounts of material to avoid bias due to larger
260
+ fragments/components thus ensuring a homogeneous and representative sample. The original sample
261
+ masses were greater than 100 grams for each sample. Bulk samples were first powdered in steel and
262
+ agate mortars. Subsequently, the powders were cleaned in acetone and dry sieved into four size
263
+ fractions: 0-25 µm, 25-63 µm, 63-125 µm and 125-250 µm. This was done using an automatic Retsch Tap
264
+ Sieve; each size fraction was dry sieved for at least one hour. In order to remove clinging fines, the larger
265
+ two fractions were cleaned with acetone.
266
+ For additional in situ measurements involving optical microscopy, micro-FTIR, and Scanning
267
+ Electron Microscopy (SEM) measurements, we used thin sections of representative blocks of the
268
+ samples. The thin sections were polished to ~30 µm using standard procedures for petrological thin
269
+ sections, ensuring a high specular reflectance from a flat surface from which especially microscopic IR
270
+ investigations benefit greatly.
271
+
272
+ 2.3 Optical Microscopy
273
+ Overview images of the samples in normal light and between crossed polarizers were obtained with the
274
+ KEYENCE Digital Microscope VHX-500F. Light microscopy allows rapid assessment of the general
275
+
276
+
277
+
278
+ 11
279
+
280
+ homogeneity, as well as first mineral identification in the samples. Images were made using a
281
+ magnification of 10.
282
+
283
+ 2.4 Infrared Analyses
284
+ 2.4.1 Diffuse Reflectance Powder Analyses
285
+ To ensure diffuse reflectance, the size fractions were gently placed in aluminum sample cups (1
286
+ cm diameter), and the surface flattened with a spatula following a similar procedure described by
287
+ Mustard and Hayes (1997). For mid-infrared analyses from 2-20 µm, we used a Bruker Vertex 70 infrared
288
+ system with a MCT detector at the Infrared and Raman for Interplanetary Spectroscopy (IRIS) laboratory
289
+ at the Institut für Planetologie in Münster. To avoid sample surface disturbance due to pore collapse
290
+ during evacuation, we avoided analyses under near vacuum and measured under normal atmosphere. As
291
+ a consequence, water and atmosphere related features slightly affect the spectral range of interest near
292
+ 7 µm. To ensure a high signal-to-noise ratio, we accumulated 512 scans for each size fraction. For
293
+ background calibration a diffuse gold standard was applied. For the MERTIS database, we obtained
294
+ analyses in a variable geometry stage (Bruker A513) in order to emulate various observational
295
+ geometries of the orbiter. The data presented here were obtained at 30° incidence (i) and 30°
296
+ emergence angle (e).
297
+ The spectra of this study are intended to be compared with remote sensing data in the thermal
298
+ infrared. Emission and reflectance spectra can be compared using Kirchhoff’s law: ε = 1 – R
299
+ (R=Reflectance, ε = Emission) (Nicodemus, 1965). This relation works very well for the comparison of
300
+ directional emissivity and directional hemispherical reflectance (Hapke, 1993, Salisbury et al., 1994).
301
+
302
+
303
+
304
+ 12
305
+
306
+ However, in order to directly relate directional emissivity with reflectance by using Kirchhoff’s law, the
307
+ reflected light in all directions has to be collected (Thomson and Salisbury, 1993). A bi-directional,
308
+ variable mirror set-up was used for this study without a hemisphere integrating all radiation. This has to
309
+ be kept in mind when comparing the results in a quantitative manner with emission data (Salisbury et al.,
310
+ 1991; Christensen et al., 2000). In the case of the spectra obtained with the micro-FTIR in specular
311
+ reflectance mode, the diffusely scattered part of the light is very small, since highly polished glass was
312
+ analyzed. Although specular reflectance is not entirely relatable to the directed emission, as required by
313
+ Kirchhoff’s law, the differences will be mainly in spectral contrast, otherwise (e.g. band shape and
314
+ positions) the data will be comparable (Ramsey and Fink, 1999; Byrnes et al, 2007; Lee et al., 2010).
315
+ Although the spectral range of interest for the database is from 7-14 µm, we measured our
316
+ powder from 7-20 µm (Fig. 4a-c), since features of interest can appear at longer wavelengths. The signal
317
+ of the detector used becomes weak at wavelengths above 18 µm, resulting in a low signal to noise ratio.
318
+ Above 19 µm, the spectral features are mainly random noise. The analyses were conducted under
319
+ ambient pressure, which possibly affected the water bands at ~3 and ~6 µm. We therefore only present
320
+ representative features from 2-7 µm for each sample in Fig.4d. The impactites analyzed in this study are
321
+ often mixtures of various mineral phases. So in order to identify specific mineral bands in our laboratory
322
+ spectra, we used spectra from the Arizona State University Thermal Emission laboratory (Christensen et
323
+ al., 2000) and the Johns Hopkins ASTER laboratory (Baldridge et al. 2009).
324
+
325
+ 2.4.2 In-situ FTIR Microspectroscopy
326
+ For in situ analyses, we used a Bruker Hyperion 2000 IR microscope attached to the external port
327
+ of a Bruker Vertex 70v at the Hochschule Emden/Leer. Here a 1000×1000 µm2 sized aperture was
328
+ applied to obtain analyses of interesting features with in situ reflectance spectroscopy on polished thin
329
+
330
+
331
+
332
+ 13
333
+
334
+ sections. For each spectrum, 128 scans were added. A gold mirror was used for background calibration.
335
+ The analyses were made in the range from 2-15 µm. Since all features below 7 µm are very weak, we
336
+ present results in the range of interest, 7-14 µm (Fig.5).
337
+ The small shift between powder and microscope analyses observed (see 3. Results) is probably
338
+ due to the inherent differences among the samples (polished thin sections compared to powders) and
339
+ the different optical set-ups of the techniques. Differences in the positions between the CF in powdered
340
+ and solid samples were also observed by Cooper et al. (2002).
341
+
342
+ 2.5 SEM EDX Analyses
343
+ In order to document the suevites and their components, we used a JEOL 6610-LV Scanning
344
+ electron microscope equipped with a silicon drift Oxford EDX (Energy Dispersive X-Ray Spectroscopy)
345
+ system to obtain micrographs of particular areas of interest and perform quantitative chemical analyses.
346
+ Each chemical analysis was quantified with an ASTIMEX™ standard set for major elements prior to the
347
+ measurement. Beam current stability was controlled and measured before each analysis using a Faraday
348
+ cup. The calibration was confirmed by re-analyzing the standards after the calibration procedure. For
349
+ analyses of the chemical composition of melt glass and fine-grained matrix areas, we analyzed areas of
350
+ 100 x 100 µm2 using 90 seconds integration times. The rather small area was chosen to maintain
351
+ comparability between amorphous parts and fine-grained matrix areas. Otherwise it would be difficult to
352
+ obtain representative measurements of larger areas due to abundant cracks, gaps, holes, and veins,
353
+ which are often re-filled by secondary alteration phases. A broad beam and shorter integration times are
354
+ helpful to measure volatile elements correctly.
355
+
356
+
357
+
358
+
359
+ 14
360
+
361
+ 3. Results
362
+ 3.1 Optical Images
363
+ Optical images (Fig2a-c) give an overview of the thin sections for the three investigated samples.
364
+ The Otting (Fig.2a) and Aumühle (Fig.2b) samples in the transmitted light show the components of the
365
+ normal suevite, the darker melt glasses, embedded in a brighter matrix, which consists of fine fragments
366
+ of glass, rock and also secondary alteration products. Under crossed polarizers, the glasses are
367
+ recognizable by their nearly black appearance due to complete extinction, while the fine mixture of the
368
+ matrix appears brighter. The Polsingen sample (Fig.2c), being a coherent melt rock, consists entirely of a
369
+ red groundmass with abundant larger and smaller fragments in transmitted light. Brownish rims around
370
+ minerals and holes indicate significant weathering. In the image under crossed polarizers, the
371
+ groundmass appears dark, a few crystalline fragments are visible by their brighter appearance.
372
+
373
+ 3.2. SEM/EDX Analyses
374
+ Melt glass and fine-grained matrix area measurements in the suevites are shown in Table 1. Due
375
+ to porosity and volatile contents (water) the total analysis of matrix material in weight (wt)% is lower
376
+ than 100 wt%. The melt glasses also show lower totals, which is due to crystallized or oxidized inclusions
377
+ as well as inevitable cracks and veins.
378
+ For a better comparison with earlier data, we plot characteristic oxide ratios for MgO, FeO, CaO,
379
+ Na2O, K2O of our SEM/EDX results with those from the literature (Fig. 3) (Stöffler et al., 2013). Results for
380
+ melt glass in Aumühle and Otting are very similar to each other and to earlier studies of glass from outer
381
+ suevite. The results for the fine-grained matrix analyses cluster in an area overlapping with the
382
+ composition of outer suevite (Fig. 3) (Stöffler et al., 2013). The analyses plotting outside the area are
383
+
384
+
385
+
386
+ 15
387
+
388
+ explained by the lack of larger rock fragments within the analyzed areas. This resulted in a higher
389
+ content of fine grained secondary phases typical for the matrix, such as clay minerals, which is also
390
+ indicated by elevated Al2O3 contents (Tab. 1) (Stöffler et al., 2013). Otherwise, the compositions of the
391
+ fine-grained matrices can be explained as a mixture of the endmember glass and various basement rock
392
+ fragments. Melt rock from the red suevite in Polsingen plots slightly below the studies for bulk red
393
+ suevite (Stöffler et al., 2013). This is probably due to the high degree of weathering of the samples from
394
+ the only accessible outcrops, resulting in increased alkali (Na2O, K2O, CaO) concentrations (Reimold et al.,
395
+ 2013; Stöffler, 2013).
396
+
397
+ 3.3 Mid-Infrared Analyses of Powders
398
+ The powder spectra of the bulk normal suevite from Otting and Aumühle (Fig.4a, Tab. 2a) show
399
+ very similar band shapes and intensities for all samples, reflecting the high chemical homogeneity
400
+ already indicated by SEM/EDX. The Christiansen Features (CF) of the bulk Otting and Aumühle bulk
401
+ suevites are between 7.4 and 8.1 µm, respectively, for all size fractions within one sample group. In the
402
+ finest fraction from 0-25 µm, the CF is usually at longer wavelengths, from 7.9-8.1 µm indicating a
403
+ mineralogical heterogeneity among the finer fraction. Clays are extremely fine-grained and likely remain
404
+ in the smallest grain size fraction, which could account for the slight shift in the CF (see discussion). The
405
+ Transparency features (TF) appear at 10.4 - 11.7 µm usually in the smallest size fractions of the bulk
406
+ suevites. The strongest feature in this region is between 11.6 and 11.7µm. The strong Reststrahlen band
407
+ (RB) at 9.4 µm again indicates a highly amorphous and homogeneous internal structure of the minerals
408
+ comprising the sample. Minor bands or shoulders are found on the slope of the RB at 8.5-8.6 µm and
409
+ 8.8-8.9 µm, indicating crystalline species (see Discussion). Further RB or potential TF are observed in the
410
+ bulk suevites at 10.4-10.5 µm and 11.1-11.2 µm (overlapping with the transparency feature in the
411
+
412
+
413
+
414
+ 16
415
+
416
+ smallest size fractions) and 12.5-12.9 µm. Broad features in the 18-19 µm region are also typical. All bulk
417
+ suevite spectra show very strong water features at 2.8 µm and 6.1 µm (Fig. 4d). These volatile bands
418
+ probably result from clay minerals, but analysis under atmospheric conditions could also have affected
419
+ the spectra. A spectrum of separated fine-grained matrix from Aumühle 18 (Fig. 4a, Tab. 2a) is very
420
+ similar in band shape and peak positions to the bulk spectrum Aumühle 18, indicating a high abundance
421
+ of melt and crystalline clasts in the fine-grained matrix.
422
+ Melt glasses from Aumühle and Otting (Fig. 4b; Tab. 2b) are also very homogeneous. The
423
+ Christiansen Features (CF) are at 7.6-7.9 µm, the Transparency Features (TF) at 11.7-11.8 µm in the finest
424
+ size fraction. The strongest Reststrahlen band is at 9.3-9.4 µm, with a weak shoulder in the finest size
425
+ fraction at 8.6 µm. This all confirms the amorphous nature of the material. Only weak bands are found in
426
+ the 18-19 µm region. Water features occur at 6.1 µm and 2.8-2.9 µm (Fig. 4d).
427
+ In the red suevite (Polsingen) (Fig. 4c; Tab. 2c), the CF occurs between 7.6 and 7.9 µm. A strong
428
+ TF band is located at 11.8-12.0 µm, and the strongest Reststrahlen band is at 9.4-9.5 µm. Further, weak
429
+ Reststrahlen bands or shoulders are between 8.2 and 8.8 µm in red suevite samples. Also, the slopes
430
+ between 10 and 12 µm in Polsingen 3 and 4 are less steep than in the normal suevite. Broad bands at
431
+ ~17 µm, and between 18-19 µm are also typical. All red suevites show strong water features at 6.1 and
432
+ 2.7-3.0 µm, which are probably caused by weathering phases (Fig.4d).
433
+
434
+ 3.4 In Situ Analyses
435
+ Fine-grained matrix analyses for Aumühle (Fig.5, Table 3) show CFs between 7.6 and 8.3 µm, those for
436
+ Otting are located at 7.6-8 µm. The only powder analysis of separated matrix from Aumühle 18 overlaps
437
+ with these ranges (7.4-7.9µm). The strongest Reststrahlen band is at 9.5-9.6 µm in the Aumühle matrix,
438
+ at slightly longer wavelengths than in the powdered sample (9.4 µm). In the fine-grained Otting matrix,
439
+
440
+
441
+
442
+ 17
443
+
444
+ the Reststrahlen band is very similar (between 9.4 and 9.5 µm) for both in situ and powder
445
+ measurements. There are several additional Reststrahlen bands for fine grained matrix in the in situ
446
+ analyses: at 8.5-8.6 µm, 8.9-9.0 µm, and from 12.5 to 12.9 µm. The intensities vary from shoulders to
447
+ clear bands. Here the band positions are very similar to the powdered matrix from Aumühle 18.
448
+ The in-situ analyses of glasses in the polished sections of Aumühle and Otting (Fig.5, Tab.3) have
449
+ Christiansen Features between 7.7 and 7.9 µm, identical to the powder measurements. The dominating
450
+ Reststrahlen bands are at 9.4 to 9.6 µm, thus slightly shifted to longer wavelengths compared to the
451
+ powder data. The Polsingen samples where the ‘matrix’ consists of melt glass, show a high homogeneity:
452
+ the CF is at 7.9-8 µm, the Reststrahlen band at 9.6 µm. Characteristic is a shoulder/feature at 8.8 µm.
453
+ Again, a slight shift for the position of the Reststrahlen band was observed compared to the powder
454
+ analyses, whereas the other features occur at similar wavelength positions.
455
+
456
+ 4. Discussion
457
+ The investigated impact melt glasses in Aumühle and Otting do not have significant bands of
458
+ crystalline features, and are dominated by the Reststrahlen band at 9.3-9.4 µm in the powdered samples
459
+ and 9.4-9.6 µm in the micro-FTIR analyses. This range is similar to quartzofeldspathic glasses or glass
460
+ with granitic/rhyolitic composition (9.1-9.8 µm) with a mafic component (9.4-10.5 µm) (Wyatt et al.,
461
+ 2001; Byrnes et al, 2007; Johnson et al., 2007; DuFresne et al., 2009; Lee et al., 2010; Minitti and
462
+ Hamilton, 2010; Wright et al., 2011). This mixture reflects the starting composition of the Ries impact
463
+ site, which was dominated by gneiss, granite and about 13% mafic rock (amphibolite; von Engelhardt,
464
+ 1997). The CF of the melt glasses (7.6-7.9 µm) also falls into the region for acidic and intermediate rocks,
465
+ while mafic minerals and rocks tend to have the CF greater than 8 µm (Pieters and Englert, 1993;
466
+ Salisbury and Walter, 1989; Cooper et al., 2002).
467
+
468
+
469
+
470
+ 18
471
+
472
+ Bulk melt rock, i.e. the red suevite from Polsingen, shows the main RB band slightly shifted by about 0.1
473
+ µm to longer wavelengths. The similarity of the various samples even on millimeter scale in in-situ
474
+ analyses confirms that the red suevite is a homogeneous melt rock. Compared to the melt glasses in
475
+ normal suevite, the spectra from Polsingen show weak, but clear RB or shoulders of crystalline materials.
476
+ These indicate higher contents of crystalline components from granite and gneiss fragments (e.g., Hecker
477
+ et al., 2012).
478
+ Bulk suevites also form a homogeneous group, only the relative intensity of the mostly weak
479
+ crystalline bands hints at varying contents of partially shocked fragments. Separated matrix is spectrally
480
+ similar to the bulk material, indicating a high amount of fine-grained rock fragments in the matrix. This is
481
+ confirmed by the in-situ analyses of the fine-grained matrix, which have the same/similar band positions,
482
+ but varying intensities of the Restrahlen bands. The Reststrahlen bands in bulk powder suevite and fine-
483
+ grained matrix are a mixture of features characteristic for glasses and crystalline components.
484
+ The dominating band in the bulk samples between 9.4 µm (powders) and 9.4 to 9.6 µm (micro-
485
+ FTIR) is similar to the melt glasses (Byrnes et al, 2007; Lee et al., 2010; Wright et al., 2011). However,
486
+ crystalline features between 8.5-8.6 µm, 8.8-9.0 µm, and from 12.5 to 12.9 µm in the bulk and fine-
487
+ grained matrices are identical to that of quartz (e.g., Wenrich and Christensen, 1996; Christensen et al.,
488
+ 2000; Michalski et al., 2003; Baldridge et al., 2009), a major component of biotite-rich granite and gneiss
489
+ as found in the basement of the Ries Crater (von Engelhardt, 1997; Hecker et al., 2012).
490
+ The ranges for the position of the Christiansen Features in glass and bulk suevite overlap, but
491
+ some of the bulk samples have their CF at significantly shorter wavelengths compared to the glass. This
492
+ probably reflects the increased content of a crystalline quartz component. The lowest CF are between
493
+ 7.4 and 7.5 µm, close to that of quartz with 7.35-7.4 µm (Tab. 2a)(e.g., Christensen et al., 2000; Michalski
494
+ et al., 2003; Baldridge et al., 2009; Tappert et al., 2013). This in turn would point to a significant
495
+
496
+
497
+
498
+ 19
499
+
500
+ crystalline component at least in some of the bulk suevites. A comparison with CF positions of terrestrial
501
+ rocks (Salisbury and Walter, 1989; Cooper et al., 2002) also indicates that the bulk powder suevites (7.4-
502
+ 8.1µm) cover the range for acidic rocks (7.6-7.8 µm) and intermediate rocks (7.8-8.2 µm).
503
+ The variations in the positions of the CF are probably due to slight compositional variations as a
504
+ result of sieving. A higher content of quartz drives the CF to shorter wavelengths (e.g., Christensen et al.,
505
+ 2000; Michalski et al., 2003; Baldridge et al., 2009; Tappert et al., 2013), while an increase of clay
506
+ minerals or a mafic component (amphibolite) in the finest fraction during sieving could shift the position
507
+ of the CF towards longer wavelengths. Hornblende, a major phase of amphibolite, which comprises the
508
+ mafic component in the suevite (von Engelhardt, 1997), has a high CF from 8.2-8.5 µm (Salisbury, 1992;
509
+ 1993; Baldridge et al., 2009). The CF of alteration phase montmorillionite falls between 7.9 and 8.2 µm
510
+ and would be difficult to identify directly in a mixture with rocks of intermediate composition
511
+ (Christiansen et al., 2000; Cooper et al., 2002; Koeppen et al., 2005; Michalski et al., 2005; Baldridge,
512
+ 2009).The CF shift is also pronounced in the micro-FTIR spectra of the Aumühle samples, where the
513
+ intensity of the crystalline quartz features also varied in the analyzed areas (Fig.5).
514
+ In summary, in the mid-infrared range, suevites can be identified by their highly amorphous
515
+ band shape and few crystalline features. This could help to identify impactites like suevite in remote
516
+ sensing data, but also provides information about the shocked basement rock. However, glassy,
517
+ amorphous spectral features can also be expected from volcanic glasses like obsidian, so additional
518
+ geologic information about an observed area is necessary to distinguish the sources of glassy material
519
+ (Hamilton et al., 2001; Moroz et al., 2009; Wright et al., 2011).
520
+ While the starting composition of Mercury was probably not like the granitic basement of the
521
+ impact site in the Ries, i.e., in terms of mineralogy, it is still possible to draw conclusions for future
522
+ observations of the Mercurian surface. Mercury is a planet that underwent massive impact cratering in
523
+
524
+
525
+
526
+ 20
527
+
528
+ its early history (e.g., Hiesinger et al. 2010; Strom et al., 2011; Fassett et al., 2012). As a consequence, the
529
+ resulting future mid-infrared observations that will be made of Mercury by MERTIS on BepiColombo
530
+ might show only a few strong crystalline features. While the Ries crater represents only the effects of
531
+ one impact, surface material on Mercury underwent many impacts resulting in regolith gardening
532
+ (Domingue et al., 2014). The low degree of crystallinity of all involved rocks in suevite after only one
533
+ impact event indicates that the degree of amorphization can be expected to be much higher on the
534
+ surface of Mercury.
535
+ It has to be taken into account that the suevite is not the only type of ejecta observed in the
536
+ Ries. By volume, it is only a relatively small component – the Bunte Breccia has an estimated volume of
537
+ 95 km3, the megablocks about 47 km3, and up to 22 km3 of suevite (Stöffler et al., 2013; Sturm et al,
538
+ 2015). However, the suevite is the uppermost ejecta layer (e.g., von Engelhardt, 1990), and so is the
539
+ material most likely to be observed in remote sensing. Also, in a continuing impact gardening of a
540
+ planetary surface, the less shocked rocks will also increasingly experience higher degrees of shock
541
+ metamorphism. This might be even more enhanced by higher impact velocities on Mercury compared to
542
+ Earth, which result in the production of larger amounts of impact melt (e.g., Fassett et al., 2012).
543
+ In addition, the effects of space weathering will damage the crystalline structure of the remaining
544
+ material even more (Domingue et al., 2014). Observations in the ultraviolet, visible and near-infrared
545
+ range by MESSENGER do not show much variation over the surface, which could also point towards a
546
+ complete amorphization of the surface minerals (Izenberg et al., 2014). However, constant reprocessing
547
+ and gardening of the surface may also allow formation of new crystallites, resulting in a mixture of
548
+ crystallized and amorphous material. In addition volcanic activity (Thomas et al., 2014) will produce
549
+ crystalline phases. Consequently, ground based spectroscopic observations of larger areas on Mercury
550
+ (e.g., Sprague et al., 2000) show features of crystalline species such as pyroxene and feldspar.
551
+
552
+
553
+
554
+ 21
555
+
556
+ Furthermore, for our studied samples, alteration of pristine impact material by weathering has
557
+ to be taken into account. The fine-grained parts of the matrix contain clay minerals, mainly
558
+ montmorillonite, but also minor illite and halloysite (Stöffler et al, 2013). A strong band of
559
+ montmorillonite is found at 9.4-9.5 µm, overlapping with the position for the strong feature of
560
+ amorphous silicates. The strong feature of illite and halloysite is at slightly longer wavelengths, 9.4-9.7
561
+ µm (Christensen et al., 2000; Koeppen et al., 2005; Michalski et al., 2006; Baldridge et al., 2009). A
562
+ further feature that could indicate montmorillonite is a weak band at about 8.8 µm (Christensen et al.,
563
+ 2000; Michalski et al., 2006; Baldridge et al., 2009), occurring in most bulk suevites and the Polsingen
564
+ sample (Tab.2). However, this band is also characteristic for quartz (e.g., Christensen et al., 2000;
565
+ Michalski et al., 2003; Tappert et al., 2013).
566
+ Another way to identify clay minerals are spectral features at longer wavelengths, in the 17-19
567
+ µm regions. Clay minerals have features in the 18-19 µm region, montmorillionite from 18.7-19 µm, illite
568
+ and halloysite from 18-19 µm (Christensen et al., 2000; Baldridge et al., 2006; Michalski et al., 2006).
569
+ Here the Aumühle and Otting glasses show only a few, weak features. The suevite bulk samples show
570
+ more features in the 18.0-19 µm region, especially from 18.4-19 µm. This points towards a clay
571
+ component, but quartz can also have a feature at 18.3 µm (Baldridge et al., 2009). In contrast to the
572
+ Aumühle and Otting glasses, the Polsingen melt rocks show clear bands in the 18-19 µm region,
573
+ indicating a stronger degree of weathering compared to the glasses. However, this part is at the limit of
574
+ the spectral range of the spectrometer used, so exact band positions are difficult to obtain.
575
+ The strongest transparency feature of the bulk suevites (11.6-11.7µm) and red suevite (12.0µm)
576
+ is similar to that of the Aumühle and Otting glasses (at between 11.7 – 11.8 µm), and is also typical for
577
+ acidic and intermediate rocks (Salisbury and Walter, 1989; Cooper et al., 2002). A potential TF of
578
+ montmorillionite and illite at 12.1-12.7 µm is not visible in the smallest size fractions, except possibly the
579
+ Red Suevite from Polsingen. Illite has another TF at 11.5-11.7, which would overlap with the glass TF
580
+
581
+
582
+
583
+ 22
584
+
585
+ (Baldridge et al., 2006). A potential TF in bulk suevite at 11.1-11.2 µm is similar to one of the
586
+ montmorillonite TF found at 11.2-11.5 µm (Baldridge et al., 2006). However, quartz has its TF also in this
587
+ region (10.9-11.1µm) (Salisbury 1992; 1993; Baldridge et al., 2009).
588
+ Water bands could also potentially allow identifying secondary phases, but analyses were
589
+ conducted under ambient air pressure. The water bands for the samples in this study are all very similar
590
+ to each other, which indicate that adsorbed water could have influenced the spectra. This would render
591
+ the features difficult to use for comparison.
592
+ Further hints for the occurrence of smectites are elevated aluminum contents in the matrices and the
593
+ Polsingen samples (Tab.1). Certainly, aqueous alteration due to volatiles appears implausible on Mercury
594
+ at large scales. But application of the data from this study for remote sensing observations of bodies
595
+ where impactites were affected by alteration, like Earth or Mars, is still valid, as (minor to moderate)
596
+ alteration features do not overprint the spectral signature of the impactites.
597
+
598
+ 5. Conclusion
599
+ Despite the general similarity of their bulk spectra, bulk suevite, red suevite melt rock, and impact melts
600
+ are distinguishable by their mid-infrared features, although they are all dominated by amorphous
601
+ materials. Suevite glass from Aumühle and Otting shows simple spectra, dominated by an amorphous
602
+ feature. Suevites have clear bands of crystalline materials, while the Polsingen impact melt falls between
603
+ the two groups.
604
+ Secondary phases like clay minerals have features overlapping with other components (lithic rock clasts,
605
+ amorphous material) and are difficult to identify in the laboratory bulk spectra. This shows that low to
606
+ moderate amounts of alteration may not significantly affect the study of impactites on remote bodies.
607
+
608
+
609
+
610
+ 23
611
+
612
+ The samples of Polsingen impact melt also show signs of weathering, in contrast to the melt glasses from
613
+ Aumühle and Otting.
614
+ On the basis of our observations, we conclude that in mid-infrared remote sensing data, the surface
615
+ layer of Mercury will be dominated by features of amorphous materials. Because of the high degree of
616
+ amorphization that occurs after only one impact, as inferred from the Ries event, and following impact
617
+ gardening, even remaining crystalline materials will undergo high degrees of shock metamorphism.
618
+ However, the suevite represents only the uppermost impact layer in the Ries, while the underlying, more
619
+ voluminous ejecta show higher degrees of crystallinity.
620
+
621
+ Acknowledgements
622
+ Many thanks to Prof. Alexander Deutsch (Münster) and Gisela Pösges (Rieskrater Museum, Nördlingen)
623
+ for precious help with the samples. We also thank the editor, Will M. Grundy, Steve Ruff and another
624
+ anonymous reviewer for helping to improve the manuscript.
625
+ This work is supported by the DLR funding 50 QW 1302 in the framework of the BepiColombo mission.
626
+
627
+
628
+
629
+
630
+
631
+
632
+
633
+
634
+
635
+
636
+ 24
637
+
638
+ 5. References
639
+ Abadian M. (1972) Petrographie, Stoßwellenmetamorphose und Entstehung polymikter Breccien im
640
+ Nördlinger Ries. Contributions to Mineralogy and Petrology 35, 245-262
641
+ Adams J. B., Horz F., Gibbons R. V. (1979) Effects of Shock-Loading on the Reflectance Spectra of
642
+ Plagioclase, Pyroxene, and Glass. 10th Lunar and Planetary Science Conference , Abstract 1001.
643
+ Bandfield, J. L. (2006)Extended surface exposures of granitoid compositions in Syrtis Major, Mars.
644
+ Geophysical Research Letters 33, Issue 6, CiteID L06203
645
+ Basavaiah N., Chavan R.S. (2013) Spectral Results From Mid-IR DRIFT Analysis of Lonar Impact Crater,
646
+ India. 44th Lunar and Planetary Science Conference, LPI Contribution No. 1719
647
+ Basilevsky A.T., Yakovlev O.I., Fisenko A.V., Semjonova L.F., Moroz L.V., Pieters C.M., Hiroi T., Zinovieva
648
+ N.G., Keller H.U., Semenova A.S., Barsukova L.D., Roshchina I.A., Galuzinskaya A.K. Stroganov I.A. (2000)
649
+ Simulation of Impact Melting Effect on optical Properties of Martian Regolith. 31st Annual Lunar and
650
+ Planetary Science Conference, abstract no. 1214
651
+ Bayerisches Geologisches Landesamt (ed.). 2004. Geologische Übersichtskarte des Meteoritenkraters
652
+ Nördlinger Ries 1:100.000, 5th ed. Revised by H. Schmidt-Kaler.
653
+ Bell P.M., Mao H.K., Weeks R.A. (1976) Optical spectra and electron paramagnetic resonance of lunar
654
+ and synthetic glasses - A study of the effects of controlled atmosphere, composition, and temperature.
655
+ Lunar Science Conference, 7th, Proceedings, 2543-2559.
656
+ Benkhoff J., van Casteren J., Hayakawa H. Fujimoto M., Laakso H., Novara M., Ferri P., Middleton H. R.,
657
+ Ziethe R. (2010) BepiColombo---Comprehensive exploration of Mercury: Mission overview and science
658
+ goals. Planetary and Space Science 58, 2-20
659
+ Beran A., Koeberl C. (1997) Water in Tektites and Impact Glasses by FTIR Spectrometry.
660
+ Meteoritics&Planetary Science 32, 211-216
661
+ Bonin B. (2012) Extra-terrestrial igneous granites and related rocks: A review of their occurrenceand
662
+ petrogenesis. Lithos 153, 3-24.
663
+
664
+
665
+
666
+ 25
667
+
668
+ Buchner E., Schwarz W.H., Schmieder M., Trieloff M. (2015) Establishing a 14.6 ± 0.2 Ma age for the
669
+ Nördlinger Ries impact (Germany)—A prime example for concordant isotopic ages from various dating
670
+ materials. Meteoritics&Planetary Science 45, 662–674
671
+ Bruckenthal E. A.,Pieters C. M. (1984) Spectral Effects of Natural Shock on Plagioclase Feldspar. 15th
672
+ Lunar and Planetary Science conference, Abstract 1049.
673
+ Byrnes J.M., Ramsey M.S., King P.L., Lee L.J. (2007) Thermal infrared reflectance and emission
674
+ spectroscopy of quartzofeldspathic glasses. Geophysical Research Letters 34, L01306
675
+ Cannon K. M.; Mustard J. F. (2015) Preserved glass-rich impactites on Mars. Geology 43, 635-638
676
+ Chao E. C. T. (1967) Impact metamorphism. In Researches in Geochemistry, Vol. 2 (P. H. Abelson, ed.),
677
+ pp. 204–233. John Wiley and Sons, New York.
678
+ Charlier B., Grove T. L., Zuber M. T. (2013) Phase equilibria of ultramafic compositions on Mercury and
679
+ the origin of the compositional dichotomy. Earth and Planetary Science Letters 363, 50-60
680
+ Christensen P. R., Bandfield J. L., Hamilton V. E., Ruff S. W., Kieffer H. H., Titus T. N., Malin M. C., Morris
681
+ R. V., Lane M. D., Clark R. L. et al. (2001) Mars Global Surveyor Thermal Emission Spectrometer
682
+ experiment: Investigation description and surface science results. Journal of Geophysical Research,
683
+ Volume 106, Issue E10, p. 23823-23872
684
+ Christensen P. R., Ruff S. W., Fergason R. L., Knudson A. T., Anwar S., Arvidson R. E., Bandfield J. L.,
685
+ Blaney D. L., Budney C., Calvin W. M. et al. (2004) Initial Results from the Mini-TES Experiment in Gusev
686
+ Crater from the Spirit Rover. Science 305, 5685, 837-842
687
+ Christensen P. R., McSween H. Y., Bandfield J. L., Ruff S. W., Rogers A. D., Hamilton V. E., Gorelick N.,
688
+ Wyatt M. B., Jakosky B. M., Kieffer H. H. et al. (2005) Evidence for magmatic evolution and diversity on
689
+ Mars from infrared observations. Nature 436, 7050, 504-509
690
+ Cooper B.L., Salisbury J.W., Killen R.M., Potter, A.E. (2002) Midinfrared spectral features of rocks and
691
+ their powders. Journal of Geophysical Research 107, E4, 5017-5034
692
+ Crisp J., Kahle A.B., Abbott E.A. (1990) Thermal infrared spectral character of Hawaiian basaltic glasses.
693
+ Journal of Geophysical Research 95, 21657-21669
694
+
695
+
696
+
697
+ 26
698
+
699
+ Domingue D.L., · Chapman C.R.,· Killen R.M., Zurbuchen ·T.H., Gilbert J.A.,· Sarantos M.,· Benna
700
+ M.,·Slavin J.A.,· Schriver D.,· Trávnícek P.M. et al. (2014) Mercury’s Weather-Beaten Surface:
701
+ UnderstandingMercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science
702
+ Reviews 181:121–214
703
+ Dufresne C.D.M., King P.L., Dyar D., Dalby K.N. (2009) Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali
704
+ elements in basaltic glasses on mid-infrared spectra. American Mineralogist 94, 1580-1590
705
+ Ehlmann B. L., Edwards C. S. (2014) Mineralogy of the Martian Surface. Annual Review of Earth and
706
+ Planetary Sciences 42, 291-315
707
+ Von Engelhardt W. (1990) Distribution, petrography and shock metamorphism of the ejecta of the Ries
708
+ crater in Germany-a review. Tectonophysics 171, 259-273
709
+ von Engelhardt W., Stöffler D. (1968) Stages of shock metamorphism in crystalline rocks of the Ries
710
+ Basin, Germany. In Shock Metamorphism of Natural Materials (B. M. French and N. M. Short, eds.), pp.
711
+ 159–168. Mono Book Corp., Baltimore.
712
+ von Engelhardt W., Stöffler D., Schneider W. (1969) Petrologische Untersuchungen im Ries. Geologica
713
+ Bavarica 61, 229-295.
714
+ Von Engelhardt W., Stöffler D. (1974) Excursion B4: Ries meteorite crater, Germany. Fortschritte der
715
+ Mineralogie 52,103–122.
716
+ von Engelhardt W., Graup G. (1984) Suevite of the Ries Crater, Germany: Source rocks and implications
717
+ for cratering mechanics. Geologische Rundschau 73, 447–481.
718
+ von Engelhardt W, Luft E. (1987) Origin of Moldavites. Meteoritics 22, 371
719
+ von Engelhardt W., Arndt J., Fecker B., Pankau H.G. (1995) Suevite breccia from the Ries crater,
720
+ Germany: Origin, cooling history and devitrification of impact glasses. Meteoritics 30, 279-293.
721
+ von Engelhardt W. (1997) Suevite breccia of the Ries impact crater, Germany: Petrography, chemistry
722
+ and shock metamorphism of crystalline rock clasts. Meteoritics and Planetary Science 32, 545-554
723
+ Faulques E., Fritsch E., Ostroumov M. (2005) Spectroscopy of natural silica-rich glasses. Journal of
724
+ Mineralogical and Petrological Sciences 96, 120-128
725
+
726
+
727
+
728
+ 27
729
+
730
+ Fassett C.I., Head J.W., Baker D.M.H., Zuber M.T., Smith D.E., Neumann G.A., Solomon S.C., Klimczak C.,
731
+ Strom R.G., Chapman C.R. et al. (2012) Large impact basins on Mercury: Global distribution,
732
+ characteristics, and modification history from MESSENGER orbital data. Journal of Geophysical Research,
733
+ Volume 117, CiteID E00L08
734
+ French B.M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial
735
+ Meteorite´Impact Structures. LPI Contribution No. 954, Lunar and Planetary Institute, Houston. 120 pp.
736
+ Fröhlich F., Poupeau G., Badou A., Le Bourdonnec F.X., Sacquin Y., Dubernet S., Bardintzeff J.M., Veran
737
+ M., Smith D.C., Diemer E. (2013) Libyan Desert Glass: New field and Fourier transform infrared data.
738
+ Meteoritics&Planetary Science 48, 2517-2530.
739
+ Gilmore M. S., Mueller N., Helbert J. (2015) VIRTIS emissivity of Alpha Regio, Venus, with implications for
740
+ tessera composition. Icarus 254, 350-361
741
+ Gucsik A., Koeberl C., Brandstätter F., Libowitzky E., Zhang M. (2004) Infrared, Raman, and
742
+ cathodoluminescence studies of impact glasses. Meteoritics&Planetary Science 39, 1273-1285.
743
+ Hamilton V., Christensen P. (2014) The OSIRIS-REx Thermal Emission Spectrometer (OTES). EGU General
744
+ Assembly 2014, id.4687
745
+ Hapke, B. (1993), Theory of Reflectance and Emittance Spectroscopy. Cambridge Univ. Press, New York
746
+ Hecker C., Dilles J.H., van der Meijde M., van der Meer F.D. (2012) Thermal infrared spectroscopy and
747
+ partial least squares regression to determine mineral modes of granitoid rocks. Geochemistry,
748
+ Geophysics, Geosystems 13, 1-15.
749
+ Helbert J. and Maturilli A. (2009) The emissivity of a fine-grained labradorite sample at typical Mercury
750
+ dayside temperatures. Earth and Planetary Science Letters 285, 347-354.
751
+ Hiesinger H., Helbert J., Mertis Co-I Team (2010) The Mercury Radiometer and Thermal Infrared
752
+ Spectrometer (MERTIS) for the BepiColombo mission. Planetary and Space Science 58, 144–165.
753
+ Hörz F., Ostertag R., Rainey D.A. (1983) Bunte Breccia of the Ries - Continuous deposits of large impact
754
+ craters. Reviews of Geophysics and Space Physics 21, 1667-1725
755
+ Hörz F., Cintala M. (1997) Impact experiments related to the evolution of planetary regoliths. Meteoritics
756
+ & Planetary Science 32, 179-209
757
+
758
+
759
+
760
+ 28
761
+
762
+ Izenberg N.R., Klima R.L., Murchie S.L., Blewett D.T., Holsclaw G.M., McClintock W.E., Malaret E., Mauceri
763
+ C., Vilas F., Sprague A.L., Helbert J., Domingue D.L., Head J.W., Goudge T.A., Solomon S.C., Hibbitts C.A.,
764
+ Dyar M.D. (2014) The low-iron, reduced surface of Mercury as seen in spectral reflectance by
765
+ MESSENGER. Icarus 228, 364-374.
766
+ Iiishi K., Tomisaka T. Kato T., Umegaki Y. (1971) Isomorphous substitution and infrared and far infrared
767
+ spectra of the feldspar group. Neues Jahrbuch für Mineralogie. Abhandlungen, 115, 98–119.
768
+ Jaret S.J., Glotch T.D., Wright S.P. (2013) Micro-FTIR and Micro-Raman Spectroscopy of a Shocked Basalt
769
+ from the Lonar Crater, India. 44th Lunar and Planetary Science Conference, Abstract 2881
770
+ Jaret S.J., Glotch T.D., Johnson J.R. (2015) Micro-Raman and Micro-FTIR Spectroscopy of Experimentally
771
+ Shocked Andesine. 46th Lunar and Planetary Science Conference, Abstract 2056
772
+ Johnson J.R., Hörz F., Lucey P.G., Christensen P.R. (2002) Thermal infrared spectroscopy of
773
+ experimentally shocked anorthosite and pyroxenite: Implications for remote sensing of Mars. Journal of
774
+ Geophysical Research 107, E10, 5073.
775
+ Johnson J.R., Hörz F., (2003) Visible//near-infrared spectra of experimentally shocked
776
+ plagioclasefeldspars. Journal of Geophysical Reseach 108, E11, 5120
777
+ Johnson J.R., Hörz F., Staid M.I. (2003) Thermal infrared spectroscopy and modeling of experimentally
778
+ shocked plagioclase feldspars. American Mineralogist 88, 1575–1582
779
+ Johnson J.R. (2012) Thermal infrared spectra of experimentally shocked andesine anorthosite. Icarus
780
+ 221, 359–364.
781
+ Johnson J.R., Staid M.I., Kraft M.D. (2007) Thermal infrared spectroscopy and modeling of experimentally
782
+ shocked basalts. American Mineralogist 92, 1148-1157
783
+ Jolliff B.L., Floss C., McCallum I.S., Schwartz J.M. (1999) Geochemistry, petrology, and cooling history of
784
+ 14161,7373: A plutonic lunar sample with textural evidence of granitic-fraction separation by silicate-
785
+ liquid immiscibility. American Mineralogist 84, 821–837
786
+ Keppler H. (1992) Crystal field spectra and geochemistry of transition metal ions in silicate melts and
787
+ glasses. American Mineralogist 77, 62-75
788
+
789
+
790
+
791
+ 29
792
+
793
+ King P.L., Ramsey M.S., Swayze G.A., (2004). Infrared Spectroscopy in Geochemistry, Exploration
794
+ Geochemistry and Remote Sensing. Mineralogical Association of Canada, Short Course Series, vol. 33, 93-
795
+ 133.
796
+ Lee R.J., King P.L., Ramsey M.S. (2010) Spectral analysis of synthetic quartzofeldspathic glasses using
797
+ laboratory thermal infrared spectroscopy. Journal of Geophysical review 115, B06202
798
+ Maturilli A., Helbert J., Moroz L. (2008) The Berlin emissivity database (BED) . Planetary and Space
799
+ Science 56, 420-425
800
+ Maturilli A., Helbert J., St. John J. M., Head J. W., Vaughan W. M., D'Amore M., Gottschalk M., Ferrari S.
801
+ (2014) Komatiites as Mercury surface analogues: Spectral measurements at PEL. Earth and Planetary
802
+ Science Letters 398, 58-65.
803
+ Michalski J.R., Kraft M.D., Sharp T.G., Williams L.B., Christensen P.R. et al. (2006) Emission spectroscopy
804
+ of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission
805
+ Spectrometer data. Journal of Geophysical Research 111, E03004
806
+ Minitti M.E., Mustard J.F., Rutherford M.J. (2002) Effects of glass content and oxidation on the spectra of
807
+ SNC-like basalts: Applications to Mars remote sensing. Journal of Geophysical Research (Planets), 107,
808
+ E5, pp. 6-1
809
+ Minitti M.E., Hamilton V.E. (2010) A search for basaltic-to-intermediate glasses on Mars: Assessing
810
+ martian crustal mineralogy. Icarus 210, 135–149
811
+ Morlok A., Koike C., Tomioka N., Mann I. Tomeoka K. (2010) Mid-infrared spectra of the shocked
812
+ Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks. Icarus 207,
813
+ 45-53
814
+ Morlok A., Mason A.B., Anand M., Lisse C.M., Bullock E.S., Grady M.M. (2014) Dust from collisions: A way
815
+ to probe the composition of exo-planets? Icarus 239, 1-14.
816
+ Morris R. V., Le L., Lane M. D., Golden D. C., Shelfer T. D., Lofgren G. E., Christensen P. R. (2000)
817
+ Multidisciplinary Study of Synthetic Mars Global Average Soil Glass. 31st Annual Lunar and Planetary
818
+ Science Conference, , abstract no. 1611
819
+ Moroz L.V., Basilevsky A.T., Hiroi T., Rout S.S., Baither D, van der Bogert C.H., Yakovlev O.I., Fisenko A.V.,
820
+ Semjonova L.F., Rusakov V.S., Khramov D.A., Zinovieva N.G., Arnold G.,Pieters C.M. (2009) Spectral
821
+
822
+
823
+
824
+ 30
825
+
826
+ properties of simulated impact glasses produced from martian soil analogue JSC Mars-1. Icarus 202, 336-
827
+ 353
828
+ Mueller N., Helbert J., Hashimoto G. L., Tsang C. C. C., Erard S., Piccioni G., Drossart, P. (2008) Venus
829
+ surface thermal emission at 1 mum in VIRTIS imaging observations: Evidence for variation of crust and
830
+ mantle differentiation conditions. Journal of Geophysical Research, Volume 113, Issue E9, CiteID E00B17
831
+ Mustard J.F., Hays J.E. (1997) Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 µm.
832
+ Icarus 125, 145-163.
833
+ Nash D.B., Salisbury J.W. (1991) Infrared reflectance spectra (2.2-15 microns) of plagioclase feldspars.
834
+ Geophysical Research Letters 18, 1151-1154
835
+ Nicodemus F. E. (1965) Directional reflectance and emissivity of an opaque surface . Applied Optics 4,
836
+ 767-773.
837
+ Nittler L. R., Starr R. D., Weider S. Z., McCoy T. J., Boynton W. V., Ebel D. S.; Ernst C. M., Evans L. G.;
838
+ Goldsten J. O., Hamara D. K. et al. (2011) The Major-Element Composition of Mercury's Surface from
839
+ MESSENGER X-ray Spectrometry. Science 333, 6051, 1847-1850
840
+ Okada T., Fukuhara T., Tanaka S., Taguchi M., Imamura T., Arai T., Senshu H., Ogawa Y., Demura H.,
841
+ Kitazato K. et al. (2015) Thermal Infrared Imager TIR on Hayabusa2 for Observation of Asteroid
842
+ (162173)1999JU3. 46th Lunar and Planetary Science Conference. LPI Contribution No. 1832, p.1331
843
+ Ostertag R. (1983) Shock experiments on feldspar crystals. Journal of Geophysical Research, Supplement
844
+ 88, B364-B376
845
+ Paige D. A., Foote M. C., Greenhagen B. T., Schofield, J. T., Calcutt S., Vasavada A. R., Preston D. J., Taylor
846
+ F. W., Allen C. C., Snook K. J. (2010) The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer
847
+ Experiment. Space Science Reviews 150, 125-160
848
+ Palomba E., Rotundi A., Colangeli L. (2006) Infrared micro-spectroscopy of the martian meteorite Zagami:
849
+ Extraction of individual mineral phase spectra. Icarus 182, 68-79.
850
+ Pieters C.E., Englert P.A.J. (1993) Remote geochemical analysis: elemental and mineralogical
851
+ composition. Press Syndicate of the University of Cambridge, New York
852
+
853
+
854
+
855
+ 31
856
+
857
+ Pohl J., Stöffler D., Gall H. Ernstson K. (1977) The Ries impact crater. In: Impact and explosion cratering:
858
+ Planetary and terrestrial implications. New York, Pergamon Press, Inc., 343-404
859
+ Pollack J.B., Toon O.B., Khare B.N. (1973) Optical Properties of Some Terrestrial Rocks and Glasses.
860
+ Icarus19, 372--389
861
+ Ramsey M.S., Fink J.H. (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new
862
+ technique for volcanic mapping and monitoring. Bulletin of Volcanology 61, 32-39
863
+ Reimold W.U., McDonald I., Schmitt R.-T., Hansen B., Jacob J., Koeberl C. (2013) Geochemical studies of
864
+ the SUBO 18 (Enkingen) drill core and other impact breccias from the Ries crater, Germany . Meteoritics
865
+ & Planetary Science 48, 1531–1571.
866
+ Ruff S.W., Christensen P.R. (2002) Bright and dark regions on Mars: Particle size and mineralogical
867
+ characteristics based on Thermal Emission Spectrometer data. Journal of Geophysical Research 107, E12,
868
+ 5127.
869
+ Salisbury J.W., Eastes J.W. (1985) The Effect of Particle Size and Porosity on Spectral Contrast in the Mid-
870
+ lnfrared. Icarus 64, 586-588
871
+ Salisbury J. W., Walter L. S., Vergo N., and D’Aria D. M. (1991) Infrared (2.1–25 lm) spectra of minerals.
872
+ Baltimore, MD: Johns Hopkins University Press.
873
+ Salisbury J.W., Wald A. (1992) The Role of Volume Scattering in Reducing Spectral Contrast of
874
+ Reststrahlen Bands in Spectra of Powdered Minerals. Icarus 96, 121-128
875
+ Salisbury J.W., Wald A., Di Aria D.M. (1994) Thermal-infrared remote sensing and Kirchhoff’s law
876
+ 1.Labaratory measurements. Journal of Geophysical Research 99, B6, 11897-11911
877
+ Schultz P.H., Mustard J.F. (2004) Impact melts and glasses on Mars. Journal of Geophysical Research 109,
878
+ E01001
879
+ Sautter V., Fabre C., Forni O., Toplis M. J., Cousin A., Ollila A. M., Meslin P. Y., Maurice S., Wiens R. C.,
880
+ Baratoux D. et al. (2014) Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale
881
+ crater. Journal of Geophysical Research: Planets 119, 30-46
882
+ Sautter V., Toplis M.J., Wiens R.C., Cousin A., Fabre C., Gasnault O., Maurice S., Forni O., Lasue J., Ollila A.
883
+ (2015) In situ evidence for continental crust on early Mars. Nature Geoscience 8, 605–609
884
+
885
+
886
+
887
+ 32
888
+
889
+ Seddio S.M., Korotev R.L., Jolliff B.L., Wang A. (2015) Silica polymorphs in lunar granite: Implications for
890
+ granite petrogenesis on the Moon. American Mineralogist 100, 1533-1543
891
+ Shervais, J. W., McGee J. J. (1999) Petrology of the Western Highland Province: Ancient crust formation
892
+ at the Apollo 14 site. Journal of Geophysical Research 104, E3, 5891-5920
893
+ Stockstill-Cahill K.R., Blewett D.T., Cahill J.T.S., Denevi B.W., Lawrence S.J., Coman E.I. (2014) Spectra of
894
+ the Wells lunar glass simulants: New old data for reflectance modeling. Journal of Geophysical Research:
895
+ Planets 119, 925-940
896
+ Strom R. G., Banks M. E., Chapman C. R., Fassett C. I., Forde J. A., Head J, W., Merline W.J., Prockter L. M.,
897
+ Solomon S. C. (2011) Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and
898
+ resurfacing history. Planetary and Space Science 59, Isue 15, p. 1960-1967
899
+ Sprague A.L., Deutsch L.K., Hora J., Fazio G.G., Ludwig B., Emery J., Hoffmann W.F. (2000) Mid-Infrared
900
+ (8.1-12.5 mum) Imaging of Mercury. Icarus 147, 421-432
901
+ Stähle V. (1972) Impact Glasses from the Suevite of the Nördlinger Ries. Earth and Planetary Science
902
+ Letters 17, 275-293.
903
+ Stockstill-Cahill K. R., McCoy T. J, Nittler L. R., Weider S. Z., Hauck S. A. (2012) Magnesium-rich crustal
904
+ compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical
905
+ Research, Volume 117, CiteID E00L15
906
+ Stöffler D., Hornemann U. (1972) Glass and feldspar glass produced by natural and experimental shock.
907
+ Meteoritics 7, 371.
908
+ Stöffler D. (1966) Zones of impact metamorphism in the crystalline rocks at the Nördlinger Ries Crater.
909
+ Contributions to Mineralogy and Petrology, 12, 15–24.
910
+ Stöffler D. (1971) Progressive metamorphism and classification of shocked and brecciated crystalline
911
+ rocks at impact craters. Journal of Geophysical Research, 76, 5541–5551.
912
+ Stöffler D. (1977) Research drilling Nördlingen 1973: Polymict breccias, crater basement, and cratering
913
+ model of the Ries impact structure. Geologica Bavarica 75:443–458.
914
+ Stöffler D. (1984) Glasses formed by hypervelocity impact. Journal Non-Crystalline Solids, 67, 465–502.
915
+
916
+
917
+
918
+ 33
919
+
920
+ Stöffler D. and Langenhorst F. (1994) Shock metamorphism of quartz in nature and experiment: I. Basic
921
+ observation and theory. Meteoritics, 29, 155–181.
922
+ Stöffler D., Grieve R. A. F. (2007) Impactites. In Metamorphic rocks: A classification and glossary of terms,
923
+ Recommendations of the International Union of Geological Sciences, edited by Fettes D. and Desmons J.
924
+ Cambridge, UK: Cambridge University Press. 82–92, 111–125,126–242.
925
+ Stöffler D., Artemmieva N.A., Wünnemann K., Reimold W.U., Jacob J., Hansen B.K., Summerson I.A.T.
926
+ (2013) Ries crater and suevite revisited—Observations and modeling Part I: Observations. Meteoritics &
927
+ Planetary Science 48, 515–589.
928
+ Sturm S. Kenkmann T., Willmes M., Pösges G., Hiesinger H. (2015) The distribution of megablocks in the
929
+ Ries crater, Germany: Remote sensing, field investigation, and statistical analyses. Meteoritics &
930
+ Planetary Science 50, 141-171.
931
+ Thomas R.J., Rothery D.A., Conway S.J., Anand M. (2014) Mechanisms of explosive volcanism on
932
+ Mercury: Implications from its global distribution and morphology. Journal of Geophysical Research
933
+ Planets 119, 2239-2254
934
+ Thomson B. J., Schultz P. H. (2002) Mid-Infrared Spectra of Argentine Impact Melts: Implications for
935
+ Mars. 33rd Annual Lunar and Planetary Science Conference, abstract no.1595
936
+ Johnson J.L., Salisbury J.W. (1993) The Mid-Infrared Reflectance of Mineral Mixtures (7 -14 µm). Remote
937
+ Sensing of the Environment 45, 1-13
938
+ Velde B., Syono Y., Couty R., Kikuchi M. (1987) High Pressure Infrared Spectra of Diaplectic Anorthite
939
+ Glass. Physics and Chemistry of Minerals 14, 345-349
940
+ Warren P. H., Taylor G. J., Keil K., Shirley D. N., Wasson J. T. (1983) Petrology and chemistry of two 'large'
941
+ granite clasts from the moon. Earth and Planetary Science Letters 64, 175-185.
942
+ Williams Q., Jeanloz R. (1989) Static amorphization of anorthite at 300 K and comparison with diaplectic
943
+ glass. Nature 338, 413-415.
944
+ Williams Q., Jeanloz R. (1988) Spectroscopic evidence for pressure-induced coordination changes in
945
+ silicate glasses and melts. Science 239, 902-905
946
+
947
+
948
+
949
+ 34
950
+
951
+ Wright S., Christensen P.R., Sharp T.G. (2011) Laboratory thermal emission spectroscopy of shocked
952
+ basalt from Lonar Crater, India, and implications for Mars orbital and sample data. Journal of
953
+ Geophysical Research 116.
954
+ Wyatt M.B., Christensen P.R., Taylor L.A. (2001) Analysis of terrestrial and Martian volcanic compositions
955
+ using thermal emission spectroscopy: 1. Determination of mineralogy, chemistry, and classification
956
+ strategies. Journal of Geophysical Research, Volume 106, Issue E7, p. 14711-14732
957
+
958
+
959
+
960
+
961
+
962
+
963
+
964
+
965
+
966
+
967
+
968
+
969
+
970
+
971
+
972
+
973
+
974
+
975
+
976
+
977
+ 35
978
+
979
+ Figure Captions
980
+ Figure 1: Map of the Ries area (adapted from Stöffler, 2013). Samples for this study were taken in the
981
+ Otting, Aumühle and Polsingen locations.
982
+ Figure 2a-c: Micrographs of representative areas of locations sampled for this study under normal
983
+ transmitted light (top) and crossed polarizers (bottom). The Otting (a) and Aumühle (b) samples show
984
+ the melt glasses embedded in the fine grained matrix. Spots (1 mm2 each) analyzed in situ with a FTIR-
985
+ microscope are marked with black boxes. Red suevite from Polsingen (c) does not clearly show the
986
+ distinction between amorphous material and matrix, it is probably a coherent melt rock.
987
+ Figure 3: Comparison of SEM/EDAX data for melt glass and matrix. Data from this study: squares =
988
+ Aumühle, circles = Otting, triangles = Polsingen. Empty symbols = glass; filled symbols = fine-grained
989
+ matrix. Literature data (Stöffler et al., 2013) are marked with encircled areas (see legend). Chemical
990
+ data for impact melt glass in suevite from our study fall into an area for earlier analyses. Analyses of fine-
991
+ grained matrix overlap with bulk–suevite data, but also fall outside the range, due to higher contents of
992
+ secondary phases.
993
+ Figure 4a-d. Mid-infrared reflectance spectra of samples in the size fractions 0-25µm (blue), 25-63µm
994
+ (pink), 63-125µm (red) and 125-250µm (brown) of (a) Suevite bulk and matrix analyses from Aumühle
995
+ and Otting, (b) Spectra of separated melt glasses from Aumühle and Otting, (c) Samples of red suevite
996
+ melt glass from Polsingen. Vertical lines mark characteristic Christiansen, Reststrahlen and Transparency
997
+ features. (d) Water features in the range from 2-7 µm for selected samples. Spectra are off-set for
998
+ clarity. Blue: melt glasses, Red: red suevite from Polsingen, Purple: suevite bulk samples.
999
+ Figure 5: Infrared and Raman for Interplanetary Spectroscopy (IRIS) laboratory In situ mid-infrared
1000
+ spectra obtained from polished sections of suevite using a FTIR microscope. Each area was 1 mm2 in size;
1001
+ the locations are shown in Figure2 a-c.
1002
+
1003
+ Figure 1
1004
+
1005
+ Drilling
1006
+ & Outcrop
1007
+ Structural
1008
+ IN
1009
+ Aumuhle
1010
+ Inner ring
1011
+ Polsingen
1012
+ Centeri
1013
+ i
1014
+ Potting
1015
+ 4
1016
+ -
1017
+ -
1018
+ Enkingen
1019
+ Itzing 0
1020
+ @Altenburg
1021
+ Mauren
1022
+ Seelbronn
1023
+ Bollstadt
1024
+ 5 km
1025
+ Amerdingen3 mm
1026
+ Glass2
1027
+ Glass3
1028
+ Glass1
1029
+ Matrix1
1030
+ Matrix2
1031
+ Matrix4
1032
+ Matrix3
1033
+ Matrix5
1034
+ Otting
1035
+ Glass2
1036
+ Glass3
1037
+ Glass1
1038
+ Matrix1
1039
+ Matrix2
1040
+ Matrix4
1041
+ Matrix3
1042
+ Matrix5
1043
+ Transmitted Light
1044
+ Cross Polarized
1045
+ Figure 2a
1046
+
1047
+
1048
+ 1.00 mm2 mm3 mm
1049
+ Matrix4
1050
+ Matrix3
1051
+ Matrix1
1052
+ Matrix2
1053
+ Glass1
1054
+ Glass2
1055
+ Glass3
1056
+ Aumühle
1057
+ Matrix4
1058
+ Matrix3
1059
+ Matrix1
1060
+ Matrix2
1061
+ Glass1
1062
+ Glass2
1063
+ Glass3
1064
+ Transmitted Light
1065
+ Cross Polarized
1066
+ Figure 2b
1067
+
1068
+ 2 mm
1069
+ Polsingen1
1070
+ Polsingen2
1071
+ Polsingen3
1072
+ Polsingen
1073
+ Polsingen1
1074
+ Polsingen2
1075
+ Polsingen3
1076
+ Transmitted Light
1077
+ Cross Polarized
1078
+ Figure 2c
1079
+
1080
+ TI
1081
+ 1.00mm2mmMatrix
1082
+ Glass
1083
+ Impact Melt Rock
1084
+ Basement Rocks
1085
+ Melt/Suevite Crater
1086
+ Melt Outer Suevite
1087
+ Outer Suevite
1088
+ Polsingen (Melt rock)
1089
+ Aumühle
1090
+ Otting
1091
+ FeO+MgO
1092
+ CaO+Na2O
1093
+ K2O
1094
+ Figure 3
1095
+
1096
+ 7
1097
+ 8
1098
+ 9
1099
+ 10
1100
+ 11
1101
+ 12
1102
+ 13
1103
+ 14
1104
+ 15
1105
+ 16
1106
+ 17
1107
+ 18
1108
+ 19
1109
+ 20
1110
+ 0.00
1111
+ 0.05
1112
+ 0.10
1113
+ Reflectance
1114
+ Micron (µm)
1115
+ Aumühle 18
1116
+ Matrix
1117
+ 7
1118
+ 8
1119
+ 9
1120
+ 10
1121
+ 11
1122
+ 12
1123
+ 13
1124
+ 14
1125
+ 15
1126
+ 16
1127
+ 17
1128
+ 18
1129
+ 19
1130
+ 20
1131
+ 0.00
1132
+ 0.05
1133
+ 0.10
1134
+ Reflectance
1135
+ Micron (µm)
1136
+ 7
1137
+ 8
1138
+ 9
1139
+ 10
1140
+ 11
1141
+ 12
1142
+ 13
1143
+ 14
1144
+ 15
1145
+ 16
1146
+ 17
1147
+ 18
1148
+ 19
1149
+ 20
1150
+ 0.00
1151
+ 0.05
1152
+ 0.10
1153
+ Reflectance
1154
+ Micron (µm)
1155
+ 7
1156
+ 8
1157
+ 9
1158
+ 10
1159
+ 11
1160
+ 12
1161
+ 13
1162
+ 14
1163
+ 15
1164
+ 16
1165
+ 17
1166
+ 18
1167
+ 19
1168
+ 20
1169
+ 0.00
1170
+ 0.05
1171
+ 0.10
1172
+ Reflectance
1173
+ Micron (µm)
1174
+ 7
1175
+ 8
1176
+ 9
1177
+ 10
1178
+ 11
1179
+ 12
1180
+ 13
1181
+ 14
1182
+ 15
1183
+ 16
1184
+ 17
1185
+ 18
1186
+ 19
1187
+ 20
1188
+ 0.00
1189
+ 0.05
1190
+ 0.10
1191
+ Reflectance
1192
+ Micron (µm)
1193
+ 7
1194
+ 8
1195
+ 9
1196
+ 10
1197
+ 11
1198
+ 12
1199
+ 13
1200
+ 14
1201
+ 15
1202
+ 16
1203
+ 17
1204
+ 18
1205
+ 19
1206
+ 20
1207
+ 0.00
1208
+ 0.05
1209
+ 0.10
1210
+ Reflectance
1211
+ Micron (µm)
1212
+ Otting
1213
+ Bulk 1
1214
+ Aumühle 4
1215
+ Bulk
1216
+ Aumühle 18
1217
+ Bulk
1218
+ Otting
1219
+ Bulk 2
1220
+ Otting
1221
+ Bulk 3
1222
+ Christiansen
1223
+ Feature
1224
+ Transparency
1225
+ Feature
1226
+ Reststrahlen
1227
+ Bands
1228
+ 125-250 µm
1229
+ 25-63 µm
1230
+ 0-25 µm
1231
+ 63-125 µm
1232
+ Figure 4a
1233
+
1234
+ 7
1235
+ 8
1236
+ 9
1237
+ 10
1238
+ 11
1239
+ 12
1240
+ 13
1241
+ 14
1242
+ 15
1243
+ 16
1244
+ 17
1245
+ 18
1246
+ 19
1247
+ 20
1248
+ 0.00
1249
+ 0.05
1250
+ 0.10
1251
+ Reflectance
1252
+ Micron (µm)
1253
+ 7
1254
+ 8
1255
+ 9
1256
+ 10
1257
+ 11
1258
+ 12
1259
+ 13
1260
+ 14
1261
+ 15
1262
+ 16
1263
+ 17
1264
+ 18
1265
+ 19
1266
+ 20
1267
+ 0.00
1268
+ 0.05
1269
+ 0.10
1270
+ Reflectance
1271
+ Micron (µm)
1272
+ 7
1273
+ 8
1274
+ 9
1275
+ 10
1276
+ 11
1277
+ 12
1278
+ 13
1279
+ 14
1280
+ 15
1281
+ 16
1282
+ 17
1283
+ 18
1284
+ 19
1285
+ 20
1286
+ 0.00
1287
+ 0.05
1288
+ 0.10
1289
+ Reflectance
1290
+ Micron (µm)
1291
+ Otting
1292
+ Glass1
1293
+ Otting
1294
+ Glasbombe
1295
+ Aumühle 13
1296
+ Glass
1297
+ Figure 4b
1298
+
1299
+ 7
1300
+ 8
1301
+ 9
1302
+ 10
1303
+ 11
1304
+ 12
1305
+ 13
1306
+ 14
1307
+ 15
1308
+ 16
1309
+ 17
1310
+ 18
1311
+ 19
1312
+ 20
1313
+ 0.00
1314
+ 0.01
1315
+ 0.02
1316
+ 0.03
1317
+ 0.04
1318
+ 0.05
1319
+ Reflectance
1320
+ Micron (µm)
1321
+ 7
1322
+ 8
1323
+ 9
1324
+ 10
1325
+ 11
1326
+ 12
1327
+ 13
1328
+ 14
1329
+ 15
1330
+ 16
1331
+ 17
1332
+ 18
1333
+ 19
1334
+ 20
1335
+ 0.00
1336
+ 0.01
1337
+ 0.02
1338
+ 0.03
1339
+ 0.04
1340
+ 0.05
1341
+ Reflectance
1342
+ Micron (µm)
1343
+ 7
1344
+ 8
1345
+ 9
1346
+ 10
1347
+ 11
1348
+ 12
1349
+ 13
1350
+ 14
1351
+ 15
1352
+ 16
1353
+ 17
1354
+ 18
1355
+ 19
1356
+ 20
1357
+ 0.00
1358
+ 0.01
1359
+ 0.02
1360
+ 0.03
1361
+ 0.04
1362
+ 0.05
1363
+ Reflectance
1364
+ Micron (µm)
1365
+ Polsingen
1366
+ Bulk 3
1367
+ Polsingen
1368
+ Bulk 4
1369
+ Polsingen
1370
+ Bulk 2
1371
+ Figure 4c
1372
+
1373
+ Otting Glasbombe
1374
+ Aumühle 13 Glass
1375
+ Polsingen Bulk 2
1376
+ Aumühle 18
1377
+ Matrix
1378
+ Aumühle 18
1379
+ Bulk
1380
+ Otting Bulk 1
1381
+ 0.00
1382
+ 0.10
1383
+ 0.20
1384
+ 0.30
1385
+ 0.40
1386
+ Reflectance (off-set)
1387
+ 2
1388
+ 3
1389
+ 4
1390
+ 5
1391
+ 6
1392
+ 7
1393
+ Micron (µm)
1394
+ 0.50
1395
+ 0.60
1396
+ 0.70
1397
+ 0.80
1398
+ 0.90
1399
+ 1.00
1400
+ Figure 4d
1401
+
1402
+ 7
1403
+ 8
1404
+ 9
1405
+ 10
1406
+ 11
1407
+ 12
1408
+ 13
1409
+ 14
1410
+ 0.0
1411
+ 0.1
1412
+ 0.2
1413
+ 0.3
1414
+ 0.4
1415
+ Reflectance
1416
+ Micron (µm)
1417
+ 7
1418
+ 8
1419
+ 9
1420
+ 10
1421
+ 11
1422
+ 12
1423
+ 13
1424
+ 14
1425
+ 0.0
1426
+ 0.1
1427
+ 0.2
1428
+ 0.3
1429
+ 0.4
1430
+ Reflectance
1431
+ Micron (µm)
1432
+ Aumühle
1433
+ Glass
1434
+ Aumühle
1435
+ Matrix
1436
+ 7
1437
+ 8
1438
+ 9
1439
+ 10
1440
+ 11
1441
+ 12
1442
+ 13
1443
+ 14
1444
+ 0.0
1445
+ 0.1
1446
+ 0.2
1447
+ 0.3
1448
+ 0.4
1449
+ Reflectance
1450
+ Micron (µm)
1451
+ Otting
1452
+ Glass
1453
+ 7
1454
+ 8
1455
+ 9
1456
+ 10
1457
+ 11
1458
+ 12
1459
+ 13
1460
+ 14
1461
+ 0.0
1462
+ 0.1
1463
+ 0.2
1464
+ 0.3
1465
+ 0.4
1466
+ Reflectance
1467
+ Micron (µm)
1468
+ Otting
1469
+ Matrix
1470
+ 7
1471
+ 8
1472
+ 9
1473
+ 10
1474
+ 11
1475
+ 12
1476
+ 13
1477
+ 14
1478
+ 0.0
1479
+ 0.1
1480
+ 0.2
1481
+ 0.3
1482
+ 0.4
1483
+ Reflectance
1484
+ Micron (µm)
1485
+ Polsingen
1486
+ Glass
1487
+ Matrix1
1488
+ Matrix2
1489
+ Matrix3
1490
+ Matrix4
1491
+ Matrix5
1492
+ Matrix1
1493
+ Matrix3
1494
+ Matrix4
1495
+ Matrix2
1496
+ Matrix1
1497
+ Matrix2
1498
+ Matrix3
1499
+ Glass2
1500
+ Glass3
1501
+ Glass4
1502
+ Glass2
1503
+ Glass3
1504
+ Glass1
1505
+ Figure 5
1506
+
1NAzT4oBgHgl3EQft_01/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NFRT4oBgHgl3EQfljc6/content/tmp_files/2301.13599v1.pdf.txt ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An AMM minimizing user-level extractable
2
+ value and loss-versus-rebalancing
3
+ Conor McMenamin1 and Vanesa Daza1,2
4
+ 1 Department of Information and Communication Technologies, Universitat Pompeu
5
+ Fabra, Barcelona, Spain
6
+ 2 CYBERCAT - Center for Cybersecurity Research of Catalonia
7
+ Abstract. We present V0LVER, an AMM protocol which solves an in-
8
+ centivization trilemma between users, passive liquidity providers, and
9
+ block producers. V0LVER enables users and passive liquidity providers
10
+ to interact without paying MEV or incurring uncontrolled loss-versus-
11
+ rebalancing to the block producer. V0LVER is an AMM protocol built
12
+ on an encrypted transaction mempool, where transactions are decrypted
13
+ after being allocated liquidity by the AMM. V0LVER ensures this liq-
14
+ uidity, given some external market price, is provided at that price in ex-
15
+ pectancy. This is done by providing just enough loss-versus-rebalancing
16
+ profits to the block producer, incentivizing the block producer to move
17
+ the pool price to the external market price. With this, users transact
18
+ in expectancy at the external market price in exchange for a fee, with
19
+ AMMs providing liquidity in expectancy at the external market price.
20
+ Under block producer and liquidity provider competition, all of the fees
21
+ in V0LVER approach zero. Without block producer arbitrage, V0LVER
22
+ guarantees fall back to those of an AMM capable of processing encrypted
23
+ transactions, free from loss-versus-rebalancing or user-level MEV.
24
+ Keywords: Extractable Value · Decentralized Exchange · Incentives · Blockchain
25
+ 1
26
+ Introduction
27
+ In this paper we introduce V0LVER 3, an AMM which provides arbitrarily high
28
+ protection against user-level MEV and LVR. V0LVER is the first AMM to align
29
+ the incentives of the three, typically competing, entities in AMMs; the user, the
30
+ pool, and the block producer. This is done by ensuring that at all times, a block
31
+ producer is incentivized to move the pool to the price maximizing LVR. When
32
+ the block producer chooses a price, the block producer is forced to assert this is
33
+ correct, a technique introduced in [9]. Unfortunately, the protocol in [9] gives the
34
+ This Technical Report is part of a project that has received funding from the
35
+ European Union’s Horizon 2020 research and innovation programme under
36
+ grant agreement number 814284
37
+ 3 near-0 Extractable Value and Loss-Versus-Rebalancing ⇝ V0LVER
38
+ arXiv:2301.13599v1 [cs.GT] 31 Jan 2023
39
+
40
+ 2
41
+ McMenamin and Daza
42
+ block producer total power to extract value from users, due to order information
43
+ being revealed to the block producer before it is allocated a trading price in the
44
+ blockchain. To address this, V0LVER is built on encrypted mempools.
45
+ Modern cryptographic tools allow us to encrypt the mempool using zero-
46
+ knowledge based collateralized commit-reveal protocols [7,2,8,13], delay encryp-
47
+ tion [4,5] and/or threshold encryption [1]. If a block producer adding an order to
48
+ an AMM is forced to replicate the payoff of the AMM, we demonstrate the block
49
+ producer maximizes her own utility by showing liquidity centred around the ex-
50
+ ternal market price.4 Providing users with an AMM where the expected trade
51
+ price is the external market price, excluding fees, is a significant advancement
52
+ and the main contribution of this paper. Although batching orders against AMM
53
+ liquidity has been proposed as a defense against LVR [12], naively batching or-
54
+ ders against an AMM still allows a block producer to extract LVR by censoring
55
+ user orders. In V0LVER, block producers are effectively forced to immediately
56
+ repay LVR, while always being incentivized to include order commitments in the
57
+ blockchain, and eventually allocate AMM liquidity to these orders.
58
+ 2
59
+ Related Work
60
+ As the phenomenon of LVR has only recently been identified, there are only
61
+ two academic papers on the subject of LVR protection [6,9] to the best of our
62
+ knowledge, with no work protecting against both LVR and user-level MEV.
63
+ In [6], the AMM must receive the price of a swap from a trusted oracle before
64
+ users can interact with the pool. Such sub-block time price data requires central-
65
+ ized sources which are prone to manipulation, or require the active participation
66
+ of AMM representatives, a contradiction of the passive nature of AMMs and
67
+ their liquidity providers. We see this as an unsatisfactory dependency for DeFi
68
+ protocols.
69
+ Our work is based on some of the techniques of the Diamond protocol as
70
+ introduced in [9]. The Diamond protocol requires block producers to effectively
71
+ attest to the final price of the block given the orders that are to be proposed to
72
+ the AMM within the block. This technique requires the block producer to know
73
+ exactly what orders are going to be added to the blockchain. This unfortunately
74
+ gives the block producer total freedom to extract value from users submitting
75
+ orders to the AMM. With V0LVER, we address this issue while keeping the LVR
76
+ protection guarantees of Diamond.
77
+ Encrypting the transaction mempool using threshold encryption controlled
78
+ by a committee has been proposed in [1] and applied in [11]. In [11], a DEX
79
+ involving an AMM and based on frequent batch auctions [3] is proposed. This
80
+ DEX does not provide LVR resistance, and incentivizes transaction censorship
81
+ when a large LVR opportunity arises on the DEX. This is protected against in
82
+ V0LVER.
83
+ 4 This holds true in many CFMMs, including the famous Uniswap V2 protocol.
84
+
85
+ V0LVER
86
+ 3
87
+ 3
88
+ Preliminaries
89
+ This section introduces the key terminology and definitions needed to understand
90
+ LVR, and the proceeding analysis. In this work we are concerned with a single
91
+ swap between token x and token y. We use x and y subscripts when referring
92
+ to quantities of the respective tokens. The external market price of a swap is
93
+ denoted by ϵ, with the price of a swap quoted as the quantity of token x per
94
+ token y.
95
+ 3.1
96
+ Constant Function Market Makers
97
+ A CFMM is characterized by reserves (Rx, Ry) ∈ R2
98
+ + which describes the total
99
+ amount of each token in the pool. The price of the pool is given by pool price
100
+ function P : R2
101
+ + → R taking as input pool reserves (Rx, Ry). P() has the
102
+ following properties:
103
+ (a) P() is everywhere differentiable, with ∂P
104
+ ∂Rx
105
+ > 0,
106
+ ∂P
107
+ ∂Ry
108
+ < 0.
109
+ (b)
110
+ lim
111
+ Rx→0 P = 0,
112
+ lim
113
+ Rx→∞ P = ∞,
114
+ lim
115
+ Ry→0 P = ∞,
116
+ lim
117
+ Ry→∞ P = 0.
118
+ (c) If P(Rx, Ry) = p, then P(Rx + cp, Ry + c) = p, ∀c > 0.
119
+ (1)
120
+ For a CFMM, the feasible set of reserves C is described by:
121
+ C = {(Rx, Ry) ∈ R2
122
+ + : f(Rx, Ry) = k}
123
+ (2)
124
+ where f : R2
125
+ + → R is the pool invariant and k ∈ R is a constant. The pool is
126
+ defined by a smart contract which allows any player to move the pool reserves
127
+ from the current reserves (Rx,0, Ry,0) ∈ C to any other reserves (Rx,1, Ry,1) ∈ C
128
+ if and only if the player provides the difference (Rx,1 − Rx,0, Ry,1 − Ry,0). To
129
+ reason about V0LVER, we assume the existence of an external market price
130
+ between x and y, which we define as follows, based on the definition of [3].
131
+ Whenever an arbitrageur interacts with an AMM pool, say at time t with
132
+ reserves (Rx,t, Ry,t), we assume as in [10] that the arbitrageur always moves the
133
+ pool reserves to a point which maximizes arbitrageur profits, exploiting the dif-
134
+ ference between P(Rx,t, Ry,t) and the external market price at time t, denoted ϵt.
135
+ In this paper, we consider only the subset of CFMMs in which, given the LVR ex-
136
+ tracted in block Bt+1 corresponds to reserves (Rx,t+1, Ry,t+1), P(Rx,t+1, Ry,t+1)
137
+ = ϵt+1. This holds for Uniswap V2 pools, among others.
138
+ 3.2
139
+ LVR-resistant AMM
140
+ We provide here an overview of the most important features of Diamond [9], an
141
+ AMM protocol which is proved to provide arbitrarily high LVR protection under
142
+ competition to capture LVR among block producers. In V0LVER, we adapt these
143
+ features for use on an encrypted transaction mempool.
144
+
145
+ 4
146
+ McMenamin and Daza
147
+ A Diamond pool Φ is described by reserves (Rx, Ry), a pricing function P(), a
148
+ pool invariant function f(), an LVR-rebate parameter β ∈ (0, 1), and conversion
149
+ frequency T ∈ N. The authors also define a corresponding CFMM pool of Φ,
150
+ denoted CFMM(Φ). CFMM(Φ) is the CFMM pool with reserves (Rx, Ry) whose
151
+ feasible set is described by pool invariant function f() and pool constant k =
152
+ f(Rx, Ry). Conversely, Φ is the corresponding V0LVER pool of CFMM(Φ). The
153
+ authors note that CFMM(Φ) changes every time the Φ pool reserves change. The
154
+ protocol progresses in blocks, with one reserve update possible per block.
155
+ For an arbitrageur wishing to move the price of CFMM(Φ) to p from starting
156
+ reserves (Rx,0, Ry,0), let this require ∆y > 0 tokens to be added to CFMM(Φ),
157
+ and ∆x > 0 tokens to be removed from CFMM(Φ). The same price in Φ is
158
+ achieved by the following process:
159
+ 1. Adding (1 − β)∆y tokens to Φ and removing (1 − β)∆x tokens.
160
+ 2. Removing δx > 0 tokens such that:
161
+ P(Rx,0 − (1 − β)∆x − δx, Ry,0 + (1 − β)∆y) = p.
162
+ (3)
163
+ These δx tokens are added to the vault of Φ.
164
+ Vault tokens are periodically re-entered into Φ through what is effectively an
165
+ auction process, where the tokens being re-added are in a ratio which approxi-
166
+ mates the external market price at the time. The main result of [9] is the proving
167
+ that given a block producer interacts with Φ when the LVR parameter is β, and
168
+ there is an LVR opportunity of LV R in CFMM(Φ), the maximum LVR in Φ is
169
+ (1 − β)LV R. This results is stated formally therein as follows:
170
+ Theorem 1. For a CFMM pool CFMM(Φ) with LVR of L > 0, the LVR of Φ,
171
+ the corresponding pool in Diamond, has expectancy of at most (1 − β)L.
172
+ In this paper we use the same base functionality of Diamond to restrict the
173
+ LVR of block producers. Given a block producer wants to move the price of
174
+ CFMM(Φ) to some price p to extract maximal LVR LV R, the maximal LVR
175
+ in Φ of (1 − β)LV R is also achieved by moving the price to p. An important
176
+ point to note about applying LVR rebates as done in [9], is that directly after
177
+ tokens are placed in the vault, the pool constant drops. This must be considered
178
+ when calculating the profitability of an arbitrageur extracting LVR from a Dia-
179
+ mond pool. We do this when analyzing the profitability of V0LVER in Section
180
+ 5. Importantly, tokens are eventually re-added to the pool, and over time the
181
+ expected value of the pool constant is increasing, as demonstrated in [9].
182
+ 4
183
+ Our Protocol
184
+ We now outline the model in which we construct V0LVER, followed by a detailed
185
+ description of V0LVER.
186
+
187
+ V0LVER
188
+ 5
189
+ 4.1
190
+ Model
191
+ In this paper we consider a blockchain in which all transactions are attempting
192
+ to interact with a single V0LVER pool between tokens x and y.
193
+ 1. A transaction submitted by a player for addition to the blockchain while
194
+ observing blockchain height H, is finalized in a block of height at most
195
+ H + T, for some known T > 0.
196
+ 2. The token swap has an external market price ϵ, which follows a Martingale
197
+ process.
198
+ 3. There exists a population of arbitrageurs able to frictionlessly trade at exter-
199
+ nal market prices, who continuously monitor and interact with the blockchain.
200
+ 4. Encrypted orders are equally likely to buy or sell tokens at ϵ, distributed
201
+ symmetrically around ϵ.
202
+ 4.2
203
+ Protocol Framework
204
+ This section outlines the terminology and functionalities used in V0LVER. It is
205
+ intended as a reference point to understand the core V0LVER protocol. Specifi-
206
+ cally, we describe the possible transactions in V0LVER, the possible states that
207
+ V0LVER orders/order commitments can be in, and the possible actions of block
208
+ producers.
209
+ As in the protocol of Section 3.2, a V0LVER pool Φ with reserves (Rx, Ry)
210
+ is defined with respect to a CFMM pool, denoted CFMM(Φ), with reserves
211
+ (Rx, Ry), a pricing function P(), under the restrictions of Section 3.1, and a
212
+ pool invariant function f().
213
+ Orders in V0LVER are intended to interact with the AMM pool with some
214
+ delay due to commit-reveal. Therefore, we need to introduce the concept of
215
+ allocated funds to be used when orders eventually get revealed. To do this, we
216
+ define an allocated pool Φa. For a player committing to an order of size either
217
+ sizex or sizey known to be of maximum size maxx or maxy, the allocation pool
218
+ consists of (∆x, ∆y) tokens such that:
219
+ f(Rx, Ry) = f(Rx + maxx, Ry − ∆y) = f(Rx − ∆x, Ry + maxy).
220
+ (4)
221
+ Moreover, if f(Rx, Ry) = f(Rx+sizex, Ry−δy), meaning the CFMM pool would
222
+ sell δy tokens in return for sizex, the allocation pool also sells δy for sizex.
223
+ There are three types of transaction in our protocol. To define these trans-
224
+ actions, we need an LVR rebate function β : [0, 1, ..., Z, Z +1] → [0, 1]. It suffices
225
+ to consider β() as a strictly decreasing function with β(z) = 0 ∀z ≥ Z.
226
+ 1. Order. These are straightforward buy or sell orders indicating a limit price,
227
+ size and direction to be traded. WLOG, we assume all orders in our system
228
+ are executable.
229
+ 2. Order commitment transaction (OCT). These are encrypted orders
230
+ known to be collateralized by either maxx or maxy tokens. The exact size,
231
+ direction, price, and sender of an OCT sent from player Pi is hidden from all
232
+
233
+ 6
234
+ McMenamin and Daza
235
+ other players. This is possible using anonymous ZK proofs of collateral such
236
+ as used in [8,13,7]), which can be implemented on a blockchain in conjunction
237
+ with a user-lead commit-reveal protocol, delay encryption scheme [4,5] or
238
+ threshold encryption scheme [1,11].
239
+ 3. Update transaction. These transactions are executed in a block before
240
+ any OCT is allowed to interact with the protocol pool. Let the current block
241
+ height be H. Update transactions take as input an allocation block height
242
+ Ha ≤ H, some number of transactions to allocate Ta ∈ Z≥0, and pool price
243
+ p. Given an allocation block height of H′
244
+ a in the previous update transaction,
245
+ valid update transactions require:
246
+ (a) Ha > H′
247
+ a.
248
+ (b) The number of OCTs in blocks [H′
249
+ a + 1, ..., Ha] equals Ta.
250
+ Given inputs (Ha, Ta, p), the block producer moves the price of the pool to
251
+ p. The producer receives (1−β()) of the implied change in reserves from this
252
+ price move, as is done in [9].
253
+ The producer then deposits (Taβ(H − Ha)maxx, Taβ(H − Ha) maxx
254
+ p
255
+ ) to an
256
+ allocation pool denoted ΦHa, with (Ta(1 − β(H − Ha))maxx, Ta(1 − β(H −
257
+ Ha)) maxx
258
+ p
259
+ ) being added to ΦHa from the AMM reserves.
260
+ In other words, if an allocation pool requires up to (Tamaxx, Ta maxx
261
+ p
262
+ ) tokens
263
+ to trade with orders corresponding to the Ta allocated orders, the block producer
264
+ is forced to provide β(H − Ha) of the tokens in the pool, with starting bid and
265
+ offer prices equal to the pool price set by the block producer. This is used to
266
+ incentivize the block producer to always choose a pool price equal to the external
267
+ market price.
268
+ Every block, a block producer has four possible actions to perform on OCTs
269
+ and their orders. Orders in our system are batch-settled with other orders allo-
270
+ cated at the same time, and the liquidity in the respective allocation pool.
271
+ 1. Insert OCTs to the blockchain.
272
+ 2. Allocate inserted OCTs. For a block producer adding a block at height H
273
+ to allocate any number (including 0) inserted OCTs with inserted height of
274
+ at most Hi, the block producer must:
275
+ (a) Allocate all unallocated OCTs with inserted height less than or equal to
276
+ Hi. Let there be x such inserted OCTs to allocate.
277
+ (b) Submit an update transaction with inputs (Ha = Hi, Ta = x, p), for
278
+ some p > 0.
279
+ 3. Reveal allocated order. When a decrypted order corresponding to an OCT
280
+ at height Ha is finalized on the blockchain within T blocks after the corre-
281
+ sponding OCT is allocated, it is considered revealed. For allocation pool Φa
282
+ Ha
283
+ with reserves (Rx,Ha, Ry,Ha), the initial clearing price for orders allocated at
284
+ height Ha is equal to Rx,Ha
285
+ Ry,Ha . Upon order reveal, the clearing price for orders
286
+ is updated. This clearing price maximizes trade volume, as is done in [8].
287
+ 4. Execute revealed orders. T blocks after OCTs are allocated, any correspond-
288
+ ing revealed orders are executed at the last-updated clearing price for orders
289
+
290
+ V0LVER
291
+ 7
292
+ allocated at the same time. The final tokens in the allocation pool are re-
293
+ distributed proportionally to the allocating block producer and V0LVER
294
+ reserves.
295
+ 4.3
296
+ Protocol Outline
297
+ Our protocol can be considered as two sub-protocols, an update protocol and an
298
+ execution protocol. The update protocol is analogous to the protocol in Section
299
+ 3.2, while the execution protocol, and its combination with the update protocol
300
+ are novel and specific to this paper. Every round a block-producer can submit
301
+ an update transaction. There are two scenarios for an update transaction with
302
+ inputs (Ha, Ta, p) and block height of the previous update transaction H′
303
+ a. Either
304
+ Ta = 0 or Ta > 0. If Ta = 0. the update transaction is equivalent to an arbi-
305
+ trageur operation on a Diamond pool with LVR-rebate parameter of β(Ha−H′
306
+ a)
307
+ (see Section 3.2).
308
+ If Ta > 0, the arbitrageur must also deposit (Ta(1−β(H −Ha))maxx, Ta(1−
309
+ β(H−Ha)) maxx
310
+ p
311
+ ) to the Ha allocation pool ΦHa, with (Taβ(H−Ha)maxx, Taβ(H−
312
+ Ha) maxx
313
+ p
314
+ ) being added to ΦHa from the AMM reserves.
315
+ After an allocation pool is created for allocated OCTs {oct1, ..., octn}, the
316
+ orders corresponding to {oct1, ..., octn} can be revealed for up to T blocks. This
317
+ is sufficient time for any user whose OCT is contained in that set to reveal the
318
+ order corresponding to the OCT. To enforce revelation, tokens corresponding to
319
+ unrevealed orders are burned. After all orders have been revealed, or T blocks
320
+ have passed, any block producer can execute revealed orders against the alloca-
321
+ tion pool at a clearing price which maximizes volume traded. Specifically, given
322
+ an array of orders ordered by price, a basic smart-contract can verify that a
323
+ proposed clearing price maximizes volume traded, as is done in [8].
324
+ The final tokens in the allocation pool are redistributed to the allocating
325
+ block producer and V0LVER reserves. Adding these tokens directly to the pool
326
+ (and not the vault as in the protocol from Section 3.2) allows the pool to update
327
+ its price to reflect the information of the revealed orders.
328
+ 5
329
+ Protocol Properties
330
+ The goal of this section is to show that the expected execution price of any user
331
+ order is the external market price when the order is allocated, excluding at most
332
+ impact and fees. Firstly, note that an update transaction prior to allocation
333
+ moves the pool reserves of a V0LVER pool identically to an LVR arbitrage
334
+ transaction in Section 3.2. If Ta = 0, from [9] we know the block producer moves
335
+ the pool price to the max LVR price which is the external market price, and the
336
+ result follows trivially.
337
+ Now instead, assume Ta > 0. Let the reserves of a V0LVER pool Φ before
338
+ the update transaction be (Rx,0, Ry,0). Given an external market price of ϵ, from
339
+ Section 3.1 we know the max LVR occurs by moving the pool reserves to some
340
+ (Rx,m, Ry,m) with Rx,m
341
+ Ry,m = ϵ. WLOG, let Rx,0
342
+ Ry,0 < Rx,m
343
+ Ry,m . Let the block producer
344
+
345
+ 8
346
+ McMenamin and Daza
347
+ move the pool price to p corresponding to reserves in the corresponding CFMM
348
+ pool of (Rx,p, Ry,p). For a non-zero β(), this means the tokens in Φ not in the
349
+ vault (as per the protocol in Section 3.2) are (R′
350
+ x,p, R′
351
+ y,p) = (bRx,p, bRy,p) for
352
+ some b < 1. This is because some tokens in Φ are removed from the pool and
353
+ placed in the vault, while maintaining
354
+ R′
355
+ x,p
356
+ R′y,p = p.
357
+ There are three payoffs of interest here. For these, recall that by definition of
358
+ the external market price, the expected imbalance of an encrypted order in our
359
+ system is 0 at the external market price.
360
+ 1. Payoff of block producer vs. AMM pool: (1−β())(Rx,0−Rx,p+(Ry,0−
361
+ Ry,p)ϵ).
362
+ 2. Payoff of block producer vs. users: Against a block producer’s own or-
363
+ ders, the block producer has 0 expectancy. Against other player orders, the
364
+ block producer strictly maximizes her own expectancy when (Rx,p, Ry,p) =
365
+ (Rx,m, Ry,m). Otherwise the block producer is offering below ϵ against ex-
366
+ pected buyers, or bidding above ϵ to expected sellers.
367
+ 3. Payoff of users vs. AMM pool: Consider a set of allocated orders ex-
368
+ ecuted against the allocation pool, corresponding to the pool receiving δx
369
+ and paying δy tokens. By definition of the allocation pool, this (δx, δy) is
370
+ the same token vector that would be applied to the CFMM pool with re-
371
+ serves (bRx,p, bRy,p) if those orders were batch executed directly against the
372
+ CFMM. Let these new reserves be (bRx,1, bRy,1). Thus the profit of these
373
+ orders is b(1 − β())(Rx,p − Rx,1 + (Ry,p − Ry,1)ϵ).
374
+ Optimal strategy for block producer Let the block producer account for
375
+ α ∈ [0, 1] of the orders executed against the allocation pool. The maximum
376
+ payoff of the block producer against the AMM pool is the maximum of the sum
377
+ of arbitrage profits and profits of block producer orders executed against the
378
+ pool. Thus, the functions to be maximized is:
379
+ (1−β())(Rx,0−Rx,p+(Ry,0−Ry,p)ϵ)+α
380
+
381
+ b(1−β())(Rx,p−Rx,1+(Ry,p−Ry,1)ϵ)
382
+
383
+ .
384
+ (5)
385
+ This is equal to
386
+ (1−αb)(1−β())
387
+
388
+ Rx,0−Rx,p+(Ry,0−Ry,p)ϵ
389
+
390
+ +αb(1−β())
391
+
392
+ Rx,0−Rx,1+(Rx,0−Ry,1)ϵ
393
+
394
+ .
395
+ (6)
396
+ We know the second term is maximized for (Rx,1, Ry,1) = (Rx,m, Ry,m), as
397
+ this corresponds to LVR. Similarly, the first term is maximized for (Rx,p, Ry,p) =
398
+ (Rx,m, Ry,m).
399
+ Now consider the payoff for the block producer against user orders (Payoff 2.).
400
+ We have already argued that this is maximized with (Rx,p, Ry,p) = (Rx,m, Ry,m).
401
+ As such, moving the pool price to ϵ is a dominant strategy for the block producer.
402
+ Given this, we can see that the expected execution price for a client is ϵ
403
+ excluding impact and fees, with impact decreasing in expectancy in the number
404
+ of orders allocated. The payoff for the AMM against the block producer via the
405
+
406
+ V0LVER
407
+ 9
408
+ update transaction is (1 − β())LV R, while the payoff against other orders is at
409
+ least 0.
410
+ 5.1
411
+ Minimal LVR
412
+ In the previous section, it is demonstrated that user-level MEV is prevented in
413
+ V0LVER, with users trading at the external market price in expectancy, exclud-
414
+ ing fees. However, we have thus far only proved that LVR in a V0LVER pool is
415
+ (1 − β()) of the corresponding CFMM pool. As in [9], under sufficient competi-
416
+ tion among block producers the Nash Equilibrium for the LVR rebate function is
417
+ β(0). This is under the assumption that block producers take all non-negligible
418
+ extractable value opportunities, which we consider LVR to be.
419
+ However, in reality frictionless arbitrage against the external market price
420
+ in blockchain-based protocols is likely not possible, and so LVR extraction has
421
+ some cost. As such, the expected value for β() may be less than β(0). Deploying
422
+ V0LVER, and analyzing β() across different token pairs, and under varying costs
423
+ for block producers makes for interesting future work.
424
+ 6
425
+ Discussion
426
+ If a V0LVER pool allows an OCT to be allocated with β() = 0, V0LVER effec-
427
+ tively reverts to the corresponding CFMM pool, with MEV-proof batch settle-
428
+ ment for all simultaneously allocated OCTs, albeit without LVR protection for
429
+ the pool. To see this, note that as β() = 0, the block producer can fully extract
430
+ any existing LVR opportunity, without requiring a deposit to the allocation pool.
431
+ As such, the expected price of the allocation pool is the external market price,
432
+ with orders executed directly against the V0LVER reserves at the external mar-
433
+ ket price, excluding fees and impact. Importantly, there is never any way for the
434
+ block producer to extract any value from allocated orders. This is because the
435
+ settlement price for an OCT is effectively set when it allocated, before any price
436
+ or directional information is revealed.
437
+ Allocation of tokens to the allocation pool has an opportunity cost for both
438
+ the V0LVER pool and the block producer. Given the informational superiority of
439
+ the block producer, allocating tokens from the pool requires the upfront payment
440
+ of a fee to the pool. Doing this anonymously is important to avoid MEV-leakage
441
+ to the block producer. One possibility is providing an on-chain verifiable proof
442
+ of membership to set of players who have bought pool credits, where a valid
443
+ proof releases tokens to cover specific fees, as in [13,8]. Another possibility is
444
+ providing a proof to the block-producer that the user has funds to pay the fee,
445
+ with the block-producer paying the fee on behalf of the user. A final option
446
+ based on threshold encryption [11] is creating a state directly after allocation
447
+ before any more allocations are possible, in which allocated funds are either used
448
+ or de-allocated. All of these proposals have merits and limitations, but further
449
+ analysis of these are beyond the scope of this work.
450
+
451
+ 10
452
+ McMenamin and Daza
453
+ 7
454
+ Conclusion
455
+ V0LVER is an AMM based on an encrypted transaction mempool in which LVR
456
+ and MEV are protected against. V0LVER aligns the incentives of users, passive
457
+ liquidity providers and block producers. This is done by ensuring the optimal
458
+ block producer strategy under competition among block producers simultane-
459
+ ously minimizes LVR against passive liquidity providers and MEV against users.
460
+ Interestingly, the exact strategy equilibria of V0LVER depend on factors be-
461
+ yond instantaneous token maximization for block producers. This is due to risks
462
+ associated with liquidity provision and arbitrage costs. On one hand, allocating
463
+ OCTs after setting the pool price to the external market price, and providing
464
+ some liquidity to OCTs around this price should be positive expectancy for block
465
+ producers. Similarly, increasing the number of OCTs should also reduce the vari-
466
+ ance of block producer payoffs. On the other hand, there are caveats in which all
467
+ OCTs are informed and uni-directional. Analyzing these trade-offs for various
468
+ risk profiles and trading scenarios makes for further interesting future work.
469
+ References
470
+ 1. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
471
+ R., Yakira, D.: Helix: A Fair Blockchain Consensus Protocol Resistant to Ordering
472
+ Manipulation. IEEE Transactions on Network and Service Management 18(2),
473
+ 1584–1597 (2021). https://doi.org/10.1109/TNSM.2021.3052038
474
+ 2. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
475
+ M.: Zerocash: Decentralized Anonymous Payments from Bitcoin. In: 2014 IEEE
476
+ Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society, New
477
+ York, NY, USA (2014)
478
+ 3. Budish, E., Cramton, P., Shim, J.:
479
+ The High-Frequency Trading Arms Race:
480
+ Frequent Batch Auctions as a Market Design Response *. The Quarterly Journal
481
+ of Economics 130(4), 1547–1621 (07 2015). https://doi.org/10.1093/qje/qjv027,
482
+ https://doi.org/10.1093/qje/qjv027
483
+ 4. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.X. (eds.)
484
+ Advances in Cryptology – EUROCRYPT 2021. pp. 302–326. Springer International
485
+ Publishing, Cham (2021)
486
+ 5. Chiang, J.H., David, B., Eyal, I., Gong, T.: Fairpos: Input fairness in proof-of-
487
+ stake with adaptive security. https://eprint.iacr.org/2022/1442 (2022), ac-
488
+ cessed: 23/01/2023
489
+ 6. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic Automated Market Mak-
490
+ ers
491
+ for
492
+ Decentralized
493
+ Cryptocurrency
494
+ Exchange.
495
+ In:
496
+ 2021
497
+ IEEE
498
+ Interna-
499
+ tional Conference on Blockchain and Cryptocurrency (ICBC). pp. 1–2 (2021).
500
+ https://doi.org/10.1109/ICBC51069.2021.9461100
501
+ 7. McMenamin,
502
+ C.,
503
+ Daza,
504
+ V.:
505
+ Dynamic,
506
+ private,
507
+ anonymous,
508
+ collateraliz-
509
+ able
510
+ commitments
511
+ vs.
512
+ mev.
513
+ https://arxiv.org/abs/2301.12818
514
+ (2022).
515
+ https://doi.org/10.48550/ARXIV.2301.12818, accessed: 31/01/2023
516
+ 8. McMenamin, C., Daza, V., Fitzi, M., O’Donoghue, P.: FairTraDEX: A De-
517
+ centralised Exchange Preventing Value Extraction. In: Proceedings of the
518
+ 2022 ACM CCS Workshop on Decentralized Finance and Security. p. 39–46.
519
+ DeFi’22, Association for Computing Machinery, New York, NY, USA (2022).
520
+
521
+ V0LVER
522
+ 11
523
+ https://doi.org/10.1145/3560832.3563439,
524
+ https://doi.org/10.1145/3560832.
525
+ 3563439
526
+ 9. McMenamin,
527
+ C.,
528
+ Daza,
529
+ V.,
530
+ Mazorra,
531
+ B.:
532
+ Diamonds
533
+ are
534
+ Forever,
535
+ Loss-
536
+ Versus-Rebalancing
537
+ is
538
+ Not.
539
+ https://arxiv.org/abs/2210.10601
540
+ (2022).
541
+ https://doi.org/10.48550/ARXIV.2210.10601, accessed: 04/01/2023
542
+ 10. Milionis, J., Moallemi, C.C., Roughgarden, T., Zhang, A.L.: Quantifying Loss in
543
+ Automated Market Makers. In: Zhang, F., McCorry, P. (eds.) Proceedings of the
544
+ 2022 ACM CCS Workshop on Decentralized Finance and Security. ACM (2022)
545
+ 11. Penumbra: https://penumbra.zone/, accessed: 23/01/2023
546
+ 12. Ramseyer, G., Goyal, M., Goel, A., Mazi`eres, D.: Batch exchanges with constant
547
+ function market makers: Axioms, equilibria, and computation. https://arxiv.
548
+ org/abs/2210.04929 (2022). https://doi.org/10.48550/ARXIV.2210.04929, ac-
549
+ cessed: 26/01/2023
550
+ 13. Tornado Cash: https://tornadocash.eth.link/, accessed: 31/01/2023
551
+
1NFRT4oBgHgl3EQfljc6/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf,len=380
2
+ page_content='An AMM minimizing user-level extractable value and loss-versus-rebalancing Conor McMenamin1 and Vanesa Daza1,2 1 Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain 2 CYBERCAT - Center for Cybersecurity Research of Catalonia Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
3
+ page_content=' We present V0LVER, an AMM protocol which solves an in- centivization trilemma between users, passive liquidity providers, and block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
4
+ page_content=' V0LVER enables users and passive liquidity providers to interact without paying MEV or incurring uncontrolled loss-versus- rebalancing to the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
5
+ page_content=' V0LVER is an AMM protocol built on an encrypted transaction mempool, where transactions are decrypted after being allocated liquidity by the AMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
6
+ page_content=' V0LVER ensures this liq- uidity, given some external market price, is provided at that price in ex- pectancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
7
+ page_content=' This is done by providing just enough loss-versus-rebalancing profits to the block producer, incentivizing the block producer to move the pool price to the external market price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
8
+ page_content=' With this, users transact in expectancy at the external market price in exchange for a fee, with AMMs providing liquidity in expectancy at the external market price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
9
+ page_content=' Under block producer and liquidity provider competition, all of the fees in V0LVER approach zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
10
+ page_content=' Without block producer arbitrage, V0LVER guarantees fall back to those of an AMM capable of processing encrypted transactions, free from loss-versus-rebalancing or user-level MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
11
+ page_content=' Keywords: Extractable Value · Decentralized Exchange · Incentives · Blockchain 1 Introduction In this paper we introduce V0LVER 3, an AMM which provides arbitrarily high protection against user-level MEV and LVR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
12
+ page_content=' V0LVER is the first AMM to align the incentives of the three, typically competing, entities in AMMs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
13
+ page_content=' the user, the pool, and the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
14
+ page_content=' This is done by ensuring that at all times, a block producer is incentivized to move the pool to the price maximizing LVR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
15
+ page_content=' When the block producer chooses a price, the block producer is forced to assert this is correct, a technique introduced in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
16
+ page_content=' Unfortunately, the protocol in [9] gives the This Technical Report is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 814284 3 near-0 Extractable Value and Loss-Versus-Rebalancing ⇝ V0LVER arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
17
+ page_content='13599v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
18
+ page_content='GT] 31 Jan 2023 2 McMenamin and Daza block producer total power to extract value from users, due to order information being revealed to the block producer before it is allocated a trading price in the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
19
+ page_content=' To address this, V0LVER is built on encrypted mempools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
20
+ page_content=' Modern cryptographic tools allow us to encrypt the mempool using zero- knowledge based collateralized commit-reveal protocols [7,2,8,13], delay encryp- tion [4,5] and/or threshold encryption [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
21
+ page_content=' If a block producer adding an order to an AMM is forced to replicate the payoff of the AMM, we demonstrate the block producer maximizes her own utility by showing liquidity centred around the ex- ternal market price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
22
+ page_content='4 Providing users with an AMM where the expected trade price is the external market price, excluding fees, is a significant advancement and the main contribution of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
23
+ page_content=' Although batching orders against AMM liquidity has been proposed as a defense against LVR [12], naively batching or- ders against an AMM still allows a block producer to extract LVR by censoring user orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
24
+ page_content=' In V0LVER, block producers are effectively forced to immediately repay LVR, while always being incentivized to include order commitments in the blockchain, and eventually allocate AMM liquidity to these orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
25
+ page_content=' 2 Related Work As the phenomenon of LVR has only recently been identified, there are only two academic papers on the subject of LVR protection [6,9] to the best of our knowledge, with no work protecting against both LVR and user-level MEV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
26
+ page_content=' In [6], the AMM must receive the price of a swap from a trusted oracle before users can interact with the pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
27
+ page_content=' Such sub-block time price data requires central- ized sources which are prone to manipulation, or require the active participation of AMM representatives, a contradiction of the passive nature of AMMs and their liquidity providers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
28
+ page_content=' We see this as an unsatisfactory dependency for DeFi protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
29
+ page_content=' Our work is based on some of the techniques of the Diamond protocol as introduced in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
30
+ page_content=' The Diamond protocol requires block producers to effectively attest to the final price of the block given the orders that are to be proposed to the AMM within the block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
31
+ page_content=' This technique requires the block producer to know exactly what orders are going to be added to the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
32
+ page_content=' This unfortunately gives the block producer total freedom to extract value from users submitting orders to the AMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
33
+ page_content=' With V0LVER, we address this issue while keeping the LVR protection guarantees of Diamond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
34
+ page_content=' Encrypting the transaction mempool using threshold encryption controlled by a committee has been proposed in [1] and applied in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
35
+ page_content=' In [11], a DEX involving an AMM and based on frequent batch auctions [3] is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
36
+ page_content=' This DEX does not provide LVR resistance, and incentivizes transaction censorship when a large LVR opportunity arises on the DEX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
37
+ page_content=' This is protected against in V0LVER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
38
+ page_content=' 4 This holds true in many CFMMs, including the famous Uniswap V2 protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
39
+ page_content=' V0LVER 3 3 Preliminaries This section introduces the key terminology and definitions needed to understand LVR, and the proceeding analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
40
+ page_content=' In this work we are concerned with a single swap between token x and token y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
41
+ page_content=' We use x and y subscripts when referring to quantities of the respective tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
42
+ page_content=' The external market price of a swap is denoted by ϵ, with the price of a swap quoted as the quantity of token x per token y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
43
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
44
+ page_content='1 Constant Function Market Makers A CFMM is characterized by reserves (Rx, Ry) ∈ R2 + which describes the total amount of each token in the pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
45
+ page_content=' The price of the pool is given by pool price function P : R2 + → R taking as input pool reserves (Rx, Ry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
46
+ page_content=' P() has the following properties: (a) P() is everywhere differentiable, with ∂P ∂Rx > 0, ∂P ∂Ry < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
47
+ page_content=' (b) lim Rx→0 P = 0, lim Rx→∞ P = ∞, lim Ry→0 P = ∞, lim Ry→∞ P = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
48
+ page_content=' (c) If P(Rx, Ry) = p, then P(Rx + cp, Ry + c) = p, ∀c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
49
+ page_content=' (1) For a CFMM, the feasible set of reserves C is described by: C = {(Rx, Ry) ∈ R2 + : f(Rx, Ry) = k} (2) where f : R2 + → R is the pool invariant and k ∈ R is a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
50
+ page_content=' The pool is defined by a smart contract which allows any player to move the pool reserves from the current reserves (Rx,0, Ry,0) ∈ C to any other reserves (Rx,1, Ry,1) ∈ C if and only if the player provides the difference (Rx,1 − Rx,0, Ry,1 − Ry,0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
51
+ page_content=' To reason about V0LVER, we assume the existence of an external market price between x and y, which we define as follows, based on the definition of [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
52
+ page_content=' Whenever an arbitrageur interacts with an AMM pool, say at time t with reserves (Rx,t, Ry,t), we assume as in [10] that the arbitrageur always moves the pool reserves to a point which maximizes arbitrageur profits, exploiting the dif- ference between P(Rx,t, Ry,t) and the external market price at time t, denoted ϵt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
53
+ page_content=' In this paper, we consider only the subset of CFMMs in which, given the LVR ex- tracted in block Bt+1 corresponds to reserves (Rx,t+1, Ry,t+1), P(Rx,t+1, Ry,t+1) = ϵt+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
54
+ page_content=' This holds for Uniswap V2 pools, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
55
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
56
+ page_content='2 LVR-resistant AMM We provide here an overview of the most important features of Diamond [9], an AMM protocol which is proved to provide arbitrarily high LVR protection under competition to capture LVR among block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
57
+ page_content=' In V0LVER, we adapt these features for use on an encrypted transaction mempool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
58
+ page_content=' 4 McMenamin and Daza A Diamond pool Φ is described by reserves (Rx, Ry), a pricing function P(), a pool invariant function f(), an LVR-rebate parameter β ∈ (0, 1), and conversion frequency T ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
59
+ page_content=' The authors also define a corresponding CFMM pool of Φ, denoted CFMM(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
60
+ page_content=' CFMM(Φ) is the CFMM pool with reserves (Rx, Ry) whose feasible set is described by pool invariant function f() and pool constant k = f(Rx, Ry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
61
+ page_content=' Conversely, Φ is the corresponding V0LVER pool of CFMM(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
62
+ page_content=' The authors note that CFMM(Φ) changes every time the Φ pool reserves change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
63
+ page_content=' The protocol progresses in blocks, with one reserve update possible per block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
64
+ page_content=' For an arbitrageur wishing to move the price of CFMM(Φ) to p from starting reserves (Rx,0, Ry,0), let this require ∆y > 0 tokens to be added to CFMM(Φ), and ∆x > 0 tokens to be removed from CFMM(Φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
65
+ page_content=' The same price in Φ is achieved by the following process: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
66
+ page_content=' Adding (1 − β)∆y tokens to Φ and removing (1 − β)∆x tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
67
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
68
+ page_content=' Removing δx > 0 tokens such that: P(Rx,0 − (1 − β)∆x − δx, Ry,0 + (1 − β)∆y) = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
69
+ page_content=' (3) These δx tokens are added to the vault of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
70
+ page_content=' Vault tokens are periodically re-entered into Φ through what is effectively an auction process, where the tokens being re-added are in a ratio which approxi- mates the external market price at the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
71
+ page_content=' The main result of [9] is the proving that given a block producer interacts with Φ when the LVR parameter is β, and there is an LVR opportunity of LV R in CFMM(Φ), the maximum LVR in Φ is (1 − β)LV R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
72
+ page_content=' This results is stated formally therein as follows: Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
73
+ page_content=' For a CFMM pool CFMM(Φ) with LVR of L > 0, the LVR of Φ, the corresponding pool in Diamond, has expectancy of at most (1 − β)L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
74
+ page_content=' In this paper we use the same base functionality of Diamond to restrict the LVR of block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
75
+ page_content=' Given a block producer wants to move the price of CFMM(Φ) to some price p to extract maximal LVR LV R, the maximal LVR in Φ of (1 − β)LV R is also achieved by moving the price to p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
76
+ page_content=' An important point to note about applying LVR rebates as done in [9], is that directly after tokens are placed in the vault, the pool constant drops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
77
+ page_content=' This must be considered when calculating the profitability of an arbitrageur extracting LVR from a Dia- mond pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
78
+ page_content=' We do this when analyzing the profitability of V0LVER in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
79
+ page_content=' Importantly, tokens are eventually re-added to the pool, and over time the expected value of the pool constant is increasing, as demonstrated in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
80
+ page_content=' 4 Our Protocol We now outline the model in which we construct V0LVER, followed by a detailed description of V0LVER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
81
+ page_content=' V0LVER 5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
82
+ page_content='1 Model In this paper we consider a blockchain in which all transactions are attempting to interact with a single V0LVER pool between tokens x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
83
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
84
+ page_content=' A transaction submitted by a player for addition to the blockchain while observing blockchain height H, is finalized in a block of height at most H + T, for some known T > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
85
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
86
+ page_content=' The token swap has an external market price ϵ, which follows a Martingale process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
87
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
88
+ page_content=' There exists a population of arbitrageurs able to frictionlessly trade at exter- nal market prices, who continuously monitor and interact with the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
89
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
90
+ page_content=' Encrypted orders are equally likely to buy or sell tokens at ϵ, distributed symmetrically around ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
91
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
92
+ page_content='2 Protocol Framework This section outlines the terminology and functionalities used in V0LVER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
93
+ page_content=' It is intended as a reference point to understand the core V0LVER protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
94
+ page_content=' Specifi- cally, we describe the possible transactions in V0LVER, the possible states that V0LVER orders/order commitments can be in, and the possible actions of block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
95
+ page_content=' As in the protocol of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
96
+ page_content='2, a V0LVER pool Φ with reserves (Rx, Ry) is defined with respect to a CFMM pool, denoted CFMM(Φ), with reserves (Rx, Ry), a pricing function P(), under the restrictions of Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
97
+ page_content='1, and a pool invariant function f().' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
98
+ page_content=' Orders in V0LVER are intended to interact with the AMM pool with some delay due to commit-reveal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
99
+ page_content=' Therefore, we need to introduce the concept of allocated funds to be used when orders eventually get revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
100
+ page_content=' To do this, we define an allocated pool Φa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
101
+ page_content=' For a player committing to an order of size either sizex or sizey known to be of maximum size maxx or maxy, the allocation pool consists of (∆x, ∆y) tokens such that: f(Rx, Ry) = f(Rx + maxx, Ry − ∆y) = f(Rx − ∆x, Ry + maxy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
102
+ page_content=' (4) Moreover, if f(Rx, Ry) = f(Rx+sizex, Ry−δy), meaning the CFMM pool would sell δy tokens in return for sizex, the allocation pool also sells δy for sizex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
103
+ page_content=' There are three types of transaction in our protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
104
+ page_content=' To define these trans- actions, we need an LVR rebate function β : [0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
105
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
106
+ page_content=', Z, Z +1] → [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
107
+ page_content=' It suffices to consider β() as a strictly decreasing function with β(z) = 0 ∀z ≥ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
108
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
109
+ page_content=' Order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
110
+ page_content=' These are straightforward buy or sell orders indicating a limit price, size and direction to be traded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
111
+ page_content=' WLOG, we assume all orders in our system are executable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
112
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
113
+ page_content=' Order commitment transaction (OCT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
114
+ page_content=' These are encrypted orders known to be collateralized by either maxx or maxy tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
115
+ page_content=' The exact size, direction, price, and sender of an OCT sent from player Pi is hidden from all 6 McMenamin and Daza other players.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
116
+ page_content=' This is possible using anonymous ZK proofs of collateral such as used in [8,13,7]), which can be implemented on a blockchain in conjunction with a user-lead commit-reveal protocol, delay encryption scheme [4,5] or threshold encryption scheme [1,11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
117
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
118
+ page_content=' Update transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
119
+ page_content=' These transactions are executed in a block before any OCT is allowed to interact with the protocol pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
120
+ page_content=' Let the current block height be H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
121
+ page_content=' Update transactions take as input an allocation block height Ha ≤ H, some number of transactions to allocate Ta ∈ Z≥0, and pool price p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
122
+ page_content=' Given an allocation block height of H′ a in the previous update transaction, valid update transactions require: (a) Ha > H′ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
123
+ page_content=' (b) The number of OCTs in blocks [H′ a + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
124
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
125
+ page_content=', Ha] equals Ta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
126
+ page_content=' Given inputs (Ha, Ta, p), the block producer moves the price of the pool to p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
127
+ page_content=' The producer receives (1−β()) of the implied change in reserves from this price move, as is done in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
128
+ page_content=' The producer then deposits (Taβ(H − Ha)maxx, Taβ(H − Ha) maxx p ) to an allocation pool denoted ΦHa, with (Ta(1 − β(H − Ha))maxx, Ta(1 − β(H − Ha)) maxx p ) being added to ΦHa from the AMM reserves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
129
+ page_content=' In other words, if an allocation pool requires up to (Tamaxx, Ta maxx p ) tokens to trade with orders corresponding to the Ta allocated orders, the block producer is forced to provide β(H − Ha) of the tokens in the pool, with starting bid and offer prices equal to the pool price set by the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
130
+ page_content=' This is used to incentivize the block producer to always choose a pool price equal to the external market price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
131
+ page_content=' Every block, a block producer has four possible actions to perform on OCTs and their orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
132
+ page_content=' Orders in our system are batch-settled with other orders allo- cated at the same time, and the liquidity in the respective allocation pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
133
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
134
+ page_content=' Insert OCTs to the blockchain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
135
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
136
+ page_content=' Allocate inserted OCTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
137
+ page_content=' For a block producer adding a block at height H to allocate any number (including 0) inserted OCTs with inserted height of at most Hi, the block producer must: (a) Allocate all unallocated OCTs with inserted height less than or equal to Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
138
+ page_content=' Let there be x such inserted OCTs to allocate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
139
+ page_content=' (b) Submit an update transaction with inputs (Ha = Hi, Ta = x, p), for some p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
140
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
141
+ page_content=' Reveal allocated order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
142
+ page_content=' When a decrypted order corresponding to an OCT at height Ha is finalized on the blockchain within T blocks after the corre- sponding OCT is allocated, it is considered revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
143
+ page_content=' For allocation pool Φa Ha with reserves (Rx,Ha, Ry,Ha), the initial clearing price for orders allocated at height Ha is equal to Rx,Ha Ry,Ha .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
144
+ page_content=' Upon order reveal, the clearing price for orders is updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
145
+ page_content=' This clearing price maximizes trade volume, as is done in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
146
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
147
+ page_content=' Execute revealed orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
148
+ page_content=' T blocks after OCTs are allocated, any correspond- ing revealed orders are executed at the last-updated clearing price for orders V0LVER 7 allocated at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
149
+ page_content=' The final tokens in the allocation pool are re- distributed proportionally to the allocating block producer and V0LVER reserves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
150
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
151
+ page_content='3 Protocol Outline Our protocol can be considered as two sub-protocols, an update protocol and an execution protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
152
+ page_content=' The update protocol is analogous to the protocol in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
153
+ page_content='2, while the execution protocol, and its combination with the update protocol are novel and specific to this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
154
+ page_content=' Every round a block-producer can submit an update transaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
155
+ page_content=' There are two scenarios for an update transaction with inputs (Ha, Ta, p) and block height of the previous update transaction H′ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
156
+ page_content=' Either Ta = 0 or Ta > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
157
+ page_content=' If Ta = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
158
+ page_content=' the update transaction is equivalent to an arbi- trageur operation on a Diamond pool with LVR-rebate parameter of β(Ha−H′ a) (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
159
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
160
+ page_content=' If Ta > 0, the arbitrageur must also deposit (Ta(1−β(H −Ha))maxx, Ta(1− β(H−Ha)) maxx p ) to the Ha allocation pool ΦHa, with (Taβ(H−Ha)maxx, Taβ(H− Ha) maxx p ) being added to ΦHa from the AMM reserves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
161
+ page_content=' After an allocation pool is created for allocated OCTs {oct1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
162
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
163
+ page_content=', octn}, the orders corresponding to {oct1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
164
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
165
+ page_content=', octn} can be revealed for up to T blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
166
+ page_content=' This is sufficient time for any user whose OCT is contained in that set to reveal the order corresponding to the OCT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
167
+ page_content=' To enforce revelation, tokens corresponding to unrevealed orders are burned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
168
+ page_content=' After all orders have been revealed, or T blocks have passed, any block producer can execute revealed orders against the alloca- tion pool at a clearing price which maximizes volume traded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
169
+ page_content=' Specifically, given an array of orders ordered by price, a basic smart-contract can verify that a proposed clearing price maximizes volume traded, as is done in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
170
+ page_content=' The final tokens in the allocation pool are redistributed to the allocating block producer and V0LVER reserves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
171
+ page_content=' Adding these tokens directly to the pool (and not the vault as in the protocol from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
172
+ page_content='2) allows the pool to update its price to reflect the information of the revealed orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
173
+ page_content=' 5 Protocol Properties The goal of this section is to show that the expected execution price of any user order is the external market price when the order is allocated, excluding at most impact and fees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
174
+ page_content=' Firstly, note that an update transaction prior to allocation moves the pool reserves of a V0LVER pool identically to an LVR arbitrage transaction in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
175
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
176
+ page_content=' If Ta = 0, from [9] we know the block producer moves the pool price to the max LVR price which is the external market price, and the result follows trivially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
177
+ page_content=' Now instead, assume Ta > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
178
+ page_content=' Let the reserves of a V0LVER pool Φ before the update transaction be (Rx,0, Ry,0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
179
+ page_content=' Given an external market price of ϵ, from Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
180
+ page_content='1 we know the max LVR occurs by moving the pool reserves to some (Rx,m, Ry,m) with Rx,m Ry,m = ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
181
+ page_content=' WLOG, let Rx,0 Ry,0 < Rx,m Ry,m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
182
+ page_content=' Let the block producer 8 McMenamin and Daza move the pool price to p corresponding to reserves in the corresponding CFMM pool of (Rx,p, Ry,p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
183
+ page_content=' For a non-zero β(), this means the tokens in Φ not in the vault (as per the protocol in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
184
+ page_content='2) are (R′ x,p, R′ y,p) = (bRx,p, bRy,p) for some b < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
185
+ page_content=' This is because some tokens in Φ are removed from the pool and placed in the vault, while maintaining R′ x,p R′y,p = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
186
+ page_content=' There are three payoffs of interest here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
187
+ page_content=' For these, recall that by definition of the external market price, the expected imbalance of an encrypted order in our system is 0 at the external market price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
188
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
189
+ page_content=' Payoff of block producer vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
190
+ page_content=' AMM pool: (1−β())(Rx,0−Rx,p+(Ry,0− Ry,p)ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
191
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
192
+ page_content=' Payoff of block producer vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
193
+ page_content=' users: Against a block producer’s own or- ders, the block producer has 0 expectancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
194
+ page_content=' Against other player orders, the block producer strictly maximizes her own expectancy when (Rx,p, Ry,p) = (Rx,m, Ry,m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
195
+ page_content=' Otherwise the block producer is offering below ϵ against ex- pected buyers, or bidding above ϵ to expected sellers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
196
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
197
+ page_content=' Payoff of users vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
198
+ page_content=' AMM pool: Consider a set of allocated orders ex- ecuted against the allocation pool, corresponding to the pool receiving δx and paying δy tokens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
199
+ page_content=' By definition of the allocation pool, this (δx, δy) is the same token vector that would be applied to the CFMM pool with re- serves (bRx,p, bRy,p) if those orders were batch executed directly against the CFMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
200
+ page_content=' Let these new reserves be (bRx,1, bRy,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
201
+ page_content=' Thus the profit of these orders is b(1 − β())(Rx,p − Rx,1 + (Ry,p − Ry,1)ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
202
+ page_content=' Optimal strategy for block producer Let the block producer account for α ∈ [0, 1] of the orders executed against the allocation pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
203
+ page_content=' The maximum payoff of the block producer against the AMM pool is the maximum of the sum of arbitrage profits and profits of block producer orders executed against the pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
204
+ page_content=' Thus, the functions to be maximized is: (1−β())(Rx,0−Rx,p+(Ry,0−Ry,p)ϵ)+α � b(1−β())(Rx,p−Rx,1+(Ry,p−Ry,1)ϵ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
205
+ page_content=' (5) This is equal to (1−αb)(1−β()) � Rx,0−Rx,p+(Ry,0−Ry,p)ϵ � +αb(1−β()) � Rx,0−Rx,1+(Rx,0−Ry,1)ϵ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
206
+ page_content=' (6) We know the second term is maximized for (Rx,1, Ry,1) = (Rx,m, Ry,m), as this corresponds to LVR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
207
+ page_content=' Similarly, the first term is maximized for (Rx,p, Ry,p) = (Rx,m, Ry,m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
208
+ page_content=' Now consider the payoff for the block producer against user orders (Payoff 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
209
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
210
+ page_content=' We have already argued that this is maximized with (Rx,p, Ry,p) = (Rx,m, Ry,m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
211
+ page_content=' As such, moving the pool price to ϵ is a dominant strategy for the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
212
+ page_content=' Given this, we can see that the expected execution price for a client is ϵ excluding impact and fees, with impact decreasing in expectancy in the number of orders allocated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
213
+ page_content=' The payoff for the AMM against the block producer via the V0LVER 9 update transaction is (1 − β())LV R, while the payoff against other orders is at least 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
214
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
215
+ page_content='1 Minimal LVR In the previous section, it is demonstrated that user-level MEV is prevented in V0LVER, with users trading at the external market price in expectancy, exclud- ing fees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
216
+ page_content=' However, we have thus far only proved that LVR in a V0LVER pool is (1 − β()) of the corresponding CFMM pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
217
+ page_content=' As in [9], under sufficient competi- tion among block producers the Nash Equilibrium for the LVR rebate function is β(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
218
+ page_content=' This is under the assumption that block producers take all non-negligible extractable value opportunities, which we consider LVR to be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
219
+ page_content=' However, in reality frictionless arbitrage against the external market price in blockchain-based protocols is likely not possible, and so LVR extraction has some cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
220
+ page_content=' As such, the expected value for β() may be less than β(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
221
+ page_content=' Deploying V0LVER, and analyzing β() across different token pairs, and under varying costs for block producers makes for interesting future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
222
+ page_content=' 6 Discussion If a V0LVER pool allows an OCT to be allocated with β() = 0, V0LVER effec- tively reverts to the corresponding CFMM pool, with MEV-proof batch settle- ment for all simultaneously allocated OCTs, albeit without LVR protection for the pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
223
+ page_content=' To see this, note that as β() = 0, the block producer can fully extract any existing LVR opportunity, without requiring a deposit to the allocation pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
224
+ page_content=' As such, the expected price of the allocation pool is the external market price, with orders executed directly against the V0LVER reserves at the external mar- ket price, excluding fees and impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
225
+ page_content=' Importantly, there is never any way for the block producer to extract any value from allocated orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
226
+ page_content=' This is because the settlement price for an OCT is effectively set when it allocated, before any price or directional information is revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
227
+ page_content=' Allocation of tokens to the allocation pool has an opportunity cost for both the V0LVER pool and the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
228
+ page_content=' Given the informational superiority of the block producer, allocating tokens from the pool requires the upfront payment of a fee to the pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
229
+ page_content=' Doing this anonymously is important to avoid MEV-leakage to the block producer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
230
+ page_content=' One possibility is providing an on-chain verifiable proof of membership to set of players who have bought pool credits, where a valid proof releases tokens to cover specific fees, as in [13,8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
231
+ page_content=' Another possibility is providing a proof to the block-producer that the user has funds to pay the fee, with the block-producer paying the fee on behalf of the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
232
+ page_content=' A final option based on threshold encryption [11] is creating a state directly after allocation before any more allocations are possible, in which allocated funds are either used or de-allocated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
233
+ page_content=' All of these proposals have merits and limitations, but further analysis of these are beyond the scope of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
234
+ page_content=' 10 McMenamin and Daza 7 Conclusion V0LVER is an AMM based on an encrypted transaction mempool in which LVR and MEV are protected against.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
235
+ page_content=' V0LVER aligns the incentives of users, passive liquidity providers and block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
236
+ page_content=' This is done by ensuring the optimal block producer strategy under competition among block producers simultane- ously minimizes LVR against passive liquidity providers and MEV against users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
237
+ page_content=' Interestingly, the exact strategy equilibria of V0LVER depend on factors be- yond instantaneous token maximization for block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
238
+ page_content=' This is due to risks associated with liquidity provision and arbitrage costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
239
+ page_content=' On one hand, allocating OCTs after setting the pool price to the external market price, and providing some liquidity to OCTs around this price should be positive expectancy for block producers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
240
+ page_content=' Similarly, increasing the number of OCTs should also reduce the vari- ance of block producer payoffs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
241
+ page_content=' On the other hand, there are caveats in which all OCTs are informed and uni-directional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
242
+ page_content=' Analyzing these trade-offs for various risk profiles and trading scenarios makes for further interesting future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
243
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
244
+ page_content=' Asayag, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
245
+ page_content=', Cohen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
246
+ page_content=', Grayevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
247
+ page_content=', Leshkowitz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
248
+ page_content=', Rottenstreich, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
249
+ page_content=', Tamari, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
250
+ page_content=', Yakira, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
251
+ page_content=': Helix: A Fair Blockchain Consensus Protocol Resistant to Ordering Manipulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
252
+ page_content=' IEEE Transactions on Network and Service Management 18(2), 1584–1597 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
253
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
254
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
255
+ page_content='1109/TNSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
256
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
257
+ page_content='3052038 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
258
+ page_content=' Ben-Sasson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
259
+ page_content=', Chiesa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
260
+ page_content=', Garman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
261
+ page_content=', Green, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
262
+ page_content=', Miers, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
263
+ page_content=', Tromer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
264
+ page_content=', Virza, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
265
+ page_content=': Zerocash: Decentralized Anonymous Payments from Bitcoin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
266
+ page_content=' In: 2014 IEEE Symposium on Security and Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
267
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
268
+ page_content=' 459–474.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
269
+ page_content=' IEEE Computer Society, New York, NY, USA (2014) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
270
+ page_content=' Budish, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
271
+ page_content=', Cramton, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
272
+ page_content=', Shim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
273
+ page_content=': The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response *.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
274
+ page_content=' The Quarterly Journal of Economics 130(4), 1547–1621 (07 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
275
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
276
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
277
+ page_content='1093/qje/qjv027, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
278
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
279
+ page_content='1093/qje/qjv027 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
280
+ page_content=' Burdges, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
281
+ page_content=', De Feo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
282
+ page_content=': Delay encryption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
283
+ page_content=' In: Canteaut, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
284
+ page_content=', Standaert, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
285
+ page_content='X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
286
+ page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
287
+ page_content=') Advances in Cryptology – EUROCRYPT 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
288
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
289
+ page_content=' 302–326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
290
+ page_content=' Springer International Publishing, Cham (2021) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
291
+ page_content=' Chiang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
292
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
293
+ page_content=', David, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
294
+ page_content=', Eyal, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
295
+ page_content=', Gong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
296
+ page_content=': Fairpos: Input fairness in proof-of- stake with adaptive security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
297
+ page_content=' https://eprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
298
+ page_content='iacr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
299
+ page_content='org/2022/1442 (2022), ac- cessed: 23/01/2023 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
300
+ page_content=' Krishnamachari, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
301
+ page_content=', Feng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
302
+ page_content=', Grippo, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
303
+ page_content=': Dynamic Automated Market Mak- ers for Decentralized Cryptocurrency Exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
304
+ page_content=' In: 2021 IEEE Interna- tional Conference on Blockchain and Cryptocurrency (ICBC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
305
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
306
+ page_content=' 1–2 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
307
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
308
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
309
+ page_content='1109/ICBC51069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
310
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
311
+ page_content='9461100 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
312
+ page_content=' McMenamin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
313
+ page_content=', Daza, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
314
+ page_content=': Dynamic, private, anonymous, collateraliz- able commitments vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
315
+ page_content=' mev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
316
+ page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
317
+ page_content='org/abs/2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
318
+ page_content='12818 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
319
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
320
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
321
+ page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
322
+ page_content='2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
323
+ page_content='12818, accessed: 31/01/2023 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
324
+ page_content=' McMenamin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
325
+ page_content=', Daza, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
326
+ page_content=', Fitzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
327
+ page_content=', O’Donoghue, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
328
+ page_content=': FairTraDEX: A De- centralised Exchange Preventing Value Extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
329
+ page_content=' In: Proceedings of the 2022 ACM CCS Workshop on Decentralized Finance and Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
330
+ page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
331
+ page_content=' 39–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
332
+ page_content=' DeFi’22, Association for Computing Machinery, New York, NY, USA (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
333
+ page_content=' V0LVER 11 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
334
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
335
+ page_content='1145/3560832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
336
+ page_content='3563439, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
337
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
338
+ page_content='1145/3560832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
339
+ page_content=' 3563439 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
340
+ page_content=' McMenamin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
341
+ page_content=', Daza, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
342
+ page_content=', Mazorra, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
343
+ page_content=': Diamonds are Forever, Loss- Versus-Rebalancing is Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
344
+ page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
345
+ page_content='org/abs/2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
346
+ page_content='10601 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
347
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
348
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
349
+ page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
350
+ page_content='2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
351
+ page_content='10601, accessed: 04/01/2023 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
352
+ page_content=' Milionis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
353
+ page_content=', Moallemi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
354
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
355
+ page_content=', Roughgarden, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
356
+ page_content=', Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
357
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
358
+ page_content=' : Quantifying Loss in Automated Market Makers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
359
+ page_content=' In: Zhang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
360
+ page_content=', McCorry, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
361
+ page_content=' (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
362
+ page_content=') Proceedings of the 2022 ACM CCS Workshop on Decentralized Finance and Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
363
+ page_content=' ACM (2022) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
364
+ page_content=' Penumbra: https://penumbra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
365
+ page_content='zone/, accessed: 23/01/2023 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
366
+ page_content=' Ramseyer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
367
+ page_content=', Goyal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
368
+ page_content=', Goel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
369
+ page_content=', Mazi`eres, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
370
+ page_content=': Batch exchanges with constant function market makers: Axioms, equilibria, and computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
371
+ page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
372
+ page_content=' org/abs/2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
373
+ page_content='04929 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
374
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
375
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
376
+ page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
377
+ page_content='2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
378
+ page_content='04929, ac- cessed: 26/01/2023 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
379
+ page_content=' Tornado Cash: https://tornadocash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
380
+ page_content='eth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
381
+ page_content='link/, accessed: 31/01/2023' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1NFRT4oBgHgl3EQfljc6/content/2301.13599v1.pdf'}
5tE3T4oBgHgl3EQfpQqt/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:171f3d4c46b3ad5a922bf7ace975522894f96ecf64b7f62c0ce6791f5c8969d2
3
+ size 172469
69FKT4oBgHgl3EQfUC2Z/content/tmp_files/2301.11782v1.pdf.txt ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11782v1 [math.NT] 27 Jan 2023
2
+ A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS
3
+ ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT
4
+ Abstract. Given a sequence of frequencies {λn}n≥1, a corresponding generalized Dirichlet
5
+ series is of the form f(s) = �
6
+ n≥1 ane−λns. We are interested in multiplicatively generated
7
+ systems, where each number eλn arises as a finite product of some given numbers {qn}n≥1,
8
+ 1 < qn → ∞, referred to as Beurling primes. In the classical case, where λn = log n, Bohr’s
9
+ theorem holds: if f converges somewhere and has an analytic extension which is bounded in a
10
+ half-plane {Re s > θ}, then it actually converges uniformly in every half-plane {Re s > θ +ε},
11
+ ε > 0. We prove, under very mild conditions, that given a sequence of Beurling primes, a small
12
+ perturbation yields another sequence of primes such that the corresponding Beurling integers
13
+ satisfy Bohr’s condition, and therefore the theorem. Applying our result in conjunction with
14
+ work of Diamond–Montgomery–Vorhauer and Zhang, we find a system of Beurling primes for
15
+ which both Bohr’s theorem and the Riemann hypothesis are valid. We discuss the connections
16
+ between our work and Diophantine approximation with Beurling integers, as well as with a
17
+ conjecture of Helson concerning outer functions in Hardy spaces of generalized Dirichlet series.
18
+ 1. Introduction
19
+ For an increasing sequence of positive frequencies λ = {λn}n≥1, and a generalized Dirichlet
20
+ series
21
+ f(s) =
22
+
23
+ n≥1
24
+ ane−λns,
25
+ the abscissas σc, σu, and σa of point-wise, uniform, and absolute convergence are defined as in
26
+ the classical theory of Dirichlet series [10]. In this article we wish to find sets of frequencies such
27
+ that the analogue of a theorem of Bohr [4] holds: if σc(f) < ∞ and f has a bounded analytic
28
+ extension to a half-plane {Re s > θ}, then σu(f) ≤ θ. The problem of finding frequencies for
29
+ which the abscissas of bounded and uniform convergence always coincide, which originated with
30
+ Bohr and Landau [17], has recently been revisited [2, 19] with the context of Hardy spaces of
31
+ Dirichlet series in mind.
32
+ Indeed, Bohr’s theorem is essentially a necessity for a satisfactory
33
+ Hardy space theory, see [18, Ch. 6].
34
+ An important class of frequencies were introduced by Beurling [3]. Given an arbitrary in-
35
+ creasing sequence q = {qn}n≥1, 1 < qn → ∞, such that {log qn}n≥1 is linearly independent over
36
+ Q, we will denote by Nq = {νn}n≥1 the set of numbers that can be written (uniquely) as finite
37
+ products with factors from q, ordered in an increasing manner. The numbers qn are known
38
+ as Beurling primes, and the numbers νn are Beurling integers. The corresponding generalized
39
+ Dirichlet series are of the form
40
+ f(s) =
41
+
42
+ n≥1
43
+ anν−s
44
+ n .
45
+ There are a number of criteria to guarantee the validity of Bohr’s theorem for frequencies
46
+ {λn}n≥1. Bohr’s original condition asks for the existence of c1, c2 > 0 such that
47
+ (1)
48
+ λn+1 − λn ≥ c1e−c2λn+1,
49
+ n ∈ N.
50
+ Landau relaxed the condition somewhat: for every δ > 0 there should be a c > 0 such that
51
+ (2)
52
+ λn+1 − λn ≥ ce−eδλn+1 ,
53
+ n ∈ N.
54
+ 1
55
+
56
+ 2
57
+ ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT
58
+ Landau’s condition was recently relaxed further by Bayart [2]: for every δ > 0 there should be
59
+ a C > 0 such that
60
+ (3)
61
+ log
62
+ �λm + λn
63
+ λm − λn
64
+
65
+ + (m − n) ≤ Ceδλn,
66
+ m > n ∈ N.
67
+ All of these conditions are usually very difficult to check for any given Beurling system, since
68
+ they involve the distances between the corresponding Beurling integers. Furthermore, while it
69
+ is easy to construct Beurling integers for which conditions (1)-(3) fail, it appears to be rather
70
+ difficult to construct Beurling systems which do satisfy the Bohr condition. This is especially
71
+ true if one wants to retain properties of the ordinary integers, such as the asympotic behaviour
72
+ of the counting function Nq(x) = �
73
+ νn≤x 1, see for example [9].
74
+ One motivation for considering Beurling integers is to investigate the properties of the q-zeta
75
+ function
76
+ ζq(s) =
77
+
78
+ n≥1
79
+ ν−s
80
+ n
81
+ =
82
+
83
+ n≥1
84
+ 1
85
+ 1 − q−s
86
+ n
87
+ ,
88
+ and their interplay with the counting functions
89
+ Nq(x) =
90
+
91
+ νn≤x
92
+ 1,
93
+ πq(x) =
94
+
95
+ qn≤x
96
+ 1.
97
+ As an example, Beurling [3] himself showed that the condition
98
+ (4)
99
+ Nq(x) = ax + O(
100
+ x
101
+ (log x)γ ),
102
+ for some γ > 3
103
+ 2,
104
+ implies the analogue of the prime number theorem,
105
+ (5)
106
+ πq(x) :=
107
+
108
+ qn≤x
109
+ 1 ∼
110
+ x
111
+ log x.
112
+ We refer to [15] for an overview of further developments.
113
+ In Section 2 we begin with a preparatory result which is interesting in its own right. It states
114
+ that starting with the classical set of primes numbers we can add almost any finite sequence of
115
+ Beurling primes while retaining the validity of Bohr’s theorem.
116
+ Theorem 1.1. Let {pn}n≥1 be the sequence of ordinary prime numbers and let N ≥ 1. Then
117
+ Bohr’s condition (1) holds for the Beurling integers generated by the primes
118
+ q = {pn}n≥1
119
+
120
+ {qj}N
121
+ j=1,
122
+ for almost every choice (q1, . . . , qN) ∈ (1, ∞)N.
123
+ Sequences of Beurling primes of the type considered in Theorem 1.1 previously appeared in
124
+ [16].
125
+ Our main result requires more careful analysis.
126
+ Theorem 1.2. Let q = {qn}n≥1 be an increasing sequence of primes such that q1 > 1 and
127
+ σc(ζq) < ∞. Then, for every A > 0 there exists a sequence of Beurling primes ˜q = {˜qn}n≥1 for
128
+ which Bohr’s condition (1) holds and
129
+ |qn − ˜qn| ≤ q−A
130
+ n
131
+ ,
132
+ n ∈ N.
133
+ Theorem 1.2 and the work of Diamond, Montgomery, Vorhauer [8] and Zhang [21], allows
134
+ us to construct a system of Beurling primes that satisfies Bohr’s theorem and the “Riemann
135
+ Hypothesis”.
136
+ Corollary 1.3. There exists a system of Beurling primes q = {qn}n≥1 such that:
137
+
138
+ A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS
139
+ 3
140
+ (i) The Riemann zeta function ζq(s) has an analytic extension to Re s > 1
141
+ 2, except for a simple
142
+ pole at s = 1.
143
+ (ii) The Riemann zeta function has no zeros in the half–plane C 1
144
+ 2 = {Re s > 1/2}.
145
+ (iii) The prime counting πq(x) satisfies
146
+ πq(x) = li(x) + O
147
+ �√x
148
+
149
+ ,
150
+ where li(x) =
151
+
152
+ 2
153
+ (log u)−1 du.
154
+ (iv) Bohr’s condition holds for the associated class of generalized Dirichlet series.
155
+ We remark that as a direct consequence of (iii), we have the prime number theorem (5) as
156
+ well as Nq(x) ∼ ax, where a is the residue of ζq(s) at s = 1, see for example [7, 15].
157
+ The proofs of our results investigate how well “irrational numbers” may be approximated by
158
+ fractions of Beurling integers. We will comment further on this kind of Diophantine approxi-
159
+ mation problems in Section 3.
160
+ In Section 3 we will also return to the original motivation for our work. There has been an
161
+ interest in studying Hardy spaces of generalized Dirichlet series since the 60s [6, 11, 12]. However,
162
+ other than the ordinary integers, no examples of Beurling integers exist which simultaneously
163
+ satisfy the prime number theorem (iii) and Bohr’s theorem, despite the fact that Bohr’s theorem
164
+ is crucial. Furthermore, since many aspects of the function theory of the Hardy space do not
165
+ depend on the choice q of Beurling primes, the idea behind Corollary 1.3 was to find a Beurling
166
+ system Nq in which we can assume the Riemann hypothesis. As a function theoretic application,
167
+ we construct an outer function f which has a zero,
168
+ (6)
169
+ f(s) =
170
+ 1
171
+ ζq(s + 1/2 + ε),
172
+ 0 < ε < 1/2.
173
+ Originally, we intended to make use of (6) in order to disprove a conjecture of Helson [13]
174
+ about outer functions in Hardy spaces formed from frequencies satisfying the Bohr condition.
175
+ Unfortunately, we did not quite succeed, since we are unable to demonstrate the convergence
176
+ of (6) for Res > 0; the typical proof of this relies on the Lindel¨of hypothesis. Finding a system
177
+ which in addition to the properties of Corollary 1.3 satisfies the Lindel¨of hypothesis seems to
178
+ demand a deeper interplay between our tools and the probabilistic methods of [8].
179
+ Notation. Throughout the article, we will be using the convention that C denotes a positive
180
+ constant which may vary from line to line. We will write that C = C(Ω) when the constant
181
+ depends on the parameter Ω.
182
+ 2. Proof of the main results
183
+ Lemma 2.1. Suppose that {qn}n≥1 is a Beurling system such that dn := νn+1 − νn ≫ ν−C
184
+ n+1.
185
+ Then, for almost every q′ > 1 and every ε > 0, the Beurling system {qn}n≥1∪{q′} has a distance
186
+ function satisfying
187
+ (7)
188
+ d′
189
+ n = ν′
190
+ n+1 − ν′
191
+ n ≫ ν−C
192
+
193
+ n+1 ,
194
+ n ∈ N,
195
+ where C′(q′, q) = max (C, 2σc(ζq) − 1 + ε).
196
+ Proof. Let x0 > 1. First we will prove that the set M of all numbers q′ ≥ x0 such that there
197
+ exist infinitely many triples (j, n, m) ∈ N3 with
198
+ ����(q′)j − νn
199
+ νm
200
+ ���� ≤ ν−C0
201
+ n
202
+ ν−C0
203
+ m
204
+ ,
205
+ C0 = σ(ζq) + ε,
206
+
207
+ 4
208
+ ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT
209
+ has measure zero. Since
210
+ �����q′ −
211
+ � νn
212
+ νm
213
+ � 1
214
+ j ����� ≤ C(x0)x−j
215
+ 0
216
+ ����(q′)j − νn
217
+ νm
218
+ ���� .
219
+ we have that M ⊂ lim supm,n,j Ωm,n,j, where
220
+ Ωm,n,j =
221
+ �� νn
222
+ νm
223
+ � 1
224
+ j
225
+ − C(x0)x−j
226
+ 0 ν−C0
227
+ n
228
+ ν−C0
229
+ m
230
+ ,
231
+ � νn
232
+ νm
233
+ � 1
234
+ j
235
+ + C(x0)x−j
236
+ 0 ν−C0
237
+ n
238
+ ν−C0
239
+ m
240
+
241
+ ,
242
+ j, n, m ≥ 1.
243
+ The Borel–Cantelli lemma thus shows that |M| = 0, since
244
+
245
+ m≥1
246
+
247
+ n≥1
248
+
249
+ j≥1
250
+ |Ωm,n,j| ≤ C(x0)ζq (C0)2 < ∞.
251
+ Fix a number q′ ∈ [x0, ∞) \ M such that log q′ is not in the (countable) set spanQ{log qn}.
252
+ Note that the set of such numbers has full measure in [x0, ∞), and that x0 > 1 is arbitrary. By
253
+ construction, there are finitely many triples (j, n, m) such that
254
+ (8)
255
+ ����(q′)j − νn
256
+ νm
257
+ ���� ≤ ν−C0
258
+ n
259
+ ν−C0
260
+ m
261
+ .
262
+ For these exceptional triples, the left-hand side is at least positive, since log q′ /∈ spanQ{log qn}.
263
+ Therefore
264
+ ����(q′)j − νn
265
+ νm
266
+ ���� ≫ ν−C0
267
+ n
268
+ ν−C0
269
+ m
270
+ for all (j, n, m) ∈ N3.
271
+ Now we consider two arbitrary consecutive Beurling integers generated by the prime system
272
+ {qn}n≥1 ∪ {q′},
273
+ ν′
274
+ n+1 = (q′)aνm,
275
+ ν′
276
+ n = (q′)bνl.
277
+ If a = b, then l = m − 1 and
278
+ ν′
279
+ n+1 − ν′
280
+ n ≫ ν−C
281
+ m
282
+
283
+
284
+ ν′
285
+ n+1
286
+ �−C ,
287
+ by the hypothesis on the distances dn for the original Beurling system. Otherwise, if, say, b < a,
288
+ then
289
+ ��ν′
290
+ n+1 − ν′
291
+ n
292
+ �� = (q′)bνm
293
+ ����(q′)a−b − νl
294
+ νm
295
+ ���� ≫ ν−C0
296
+ l
297
+ ν−C0+1
298
+ m
299
+ (q′)b ≫
300
+
301
+ ν′
302
+ n+1
303
+ �−C
304
+
305
+ .
306
+ where C
307
+ ′ = 2σc(ζq) − 1 + ε.
308
+
309
+ Proof of Theorem 1.1. The proof is a direct consequence of Lemma 2.1.
310
+
311
+ In order to prove Bohr’s theorem for more general Beurling systems, we need to control the
312
+ constant in the distance estimate (7), which comes from the exceptional triples satisfying (8).
313
+ Proof of Theorem 1.2. Fix a small ε > 0 and x0 ∈ (1+ε/2, 1+ε). Consider first any Beurling
314
+ system Nρ = {νn}n≥1 generated by Beurling primes such that ρ1 > 1 + ε and σc(ζρ) < ∞. For
315
+ a number σ∞ > max(2, A) to be chosen in a moment, let
316
+ N =
317
+
318
+ m≥2
319
+
320
+ n≥2
321
+
322
+ j≥1
323
+ Ωm,n,j,
324
+ where Ωm,n,j is defined as in the proof of Lemma 2.1,
325
+ Ωm,n,j =
326
+ �� νn
327
+ νm
328
+ � 1
329
+ j
330
+ − C(x0)x−j
331
+ 0 ν−σ∞
332
+ n
333
+ ν−σ∞
334
+ m
335
+ ,
336
+ � νn
337
+ νm
338
+ � 1
339
+ j
340
+ + C(x0)x−j
341
+ 0 ν−σ∞
342
+ n
343
+ ν−σ∞
344
+ m
345
+
346
+ .
347
+
348
+ A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS
349
+ 5
350
+ Then |N| ≤ C(ε) (ζρ(σ∞) − 1)2 . Furthermore, for x > 2, let
351
+ Ix = [x − x− σ∞
352
+ 2 , x + x− σ∞
353
+ 2 ].
354
+ Note that if σ∞ is sufficiently large, σ∞ ≥ C(ε), then Ix∩Ωm,n,j ̸= ∅ only if νn ≥ x/2. Therefore
355
+ |Ix ∩ N| ≤
356
+
357
+ m≥2
358
+ j≥1
359
+ νn≥ x
360
+ 2
361
+ |Ωm,n,j| ≤ C(ε) (ζρ(σ∞) − 1)
362
+
363
+ νn≥ x
364
+ 2
365
+ ν−σ∞
366
+ n
367
+ ≤ C(ε) (ζρ(σ∞) − 1) ζρ
368
+ �σ∞
369
+ 4
370
+
371
+ x− 3σ∞
372
+ 4 .
373
+ We will construct a sequence of Beurling systems such that
374
+ (9)
375
+ (ζρ(σ∞) − 1) ζρ
376
+ �σ∞
377
+ 4
378
+
379
+ ≤ 1
380
+ for the number σ∞ > 0, still to be chosen later. Therefore
381
+ (10)
382
+ |Ix ∩ N| ≤ C(ε)x− σ∞
383
+ 4 |Ix|,
384
+ We conclude that whenever x is sufficiently large, Ix ̸⊂ N.
385
+ To include triples where νn or νm equals one in our considerations, we increase the power
386
+ σ∞. The inequality
387
+ (11)
388
+ ����xj − νn
389
+ νm
390
+ ���� ≤ ν−3σ∞
391
+ n
392
+ ν−3σ∞
393
+ m
394
+ implies, whenever x ≥ x0, that
395
+ �����x −
396
+ � νn
397
+ νm
398
+ � 1
399
+ j ����� ≤ C(x0)x−j
400
+ 0
401
+ ����xj − ν2
402
+ nνm
403
+ ν2mνn
404
+ ���� ≤ C(x0)x−j
405
+ 0
406
+
407
+ ν2
408
+ mνn
409
+ �−σ∞ �
410
+ ν2
411
+ nνm
412
+ �−σ∞ .
413
+ Therefore M ⊂ N, where M this time denotes the set of all x ≥ x0 for which there exists an
414
+ exceptional triple (j, n, m) ∈ N3 such that (11) holds.
415
+ Now let q be a sequence of primes in the statement of Theorem 1.2, assuming that ε < q1 −1.
416
+ As described, we will only be able to effectively apply (10) when x is sufficiently large, say,
417
+ x ≥ B = B(ε) = C(ε)4 + 2, where C(ε) in this instance refers to the same constant as in (10).
418
+ Let N be such that {q1, . . . , qN} = (1, B) ∩ q. Then, as a corollary of Theorem 1.1, we already
419
+ know that there exists an increasing finite sequence of primes {˜q1, . . . ˜qN}, ˜q1 > 1, such that
420
+ |qj − ˜qj| ≤ q−A
421
+ j
422
+ , j = 1, . . . , N, and such that Bohr’s condition holds for {ν(N)
423
+ n
424
+ }n≥1 = N{˜q1,...˜qN }.
425
+ Further, we choose σ∞ so large that
426
+ ���ν(N)
427
+ n+1 − ν(N)
428
+ n
429
+ ��� ≥
430
+
431
+ ν(N)
432
+ n+1
433
+ �−6σ∞
434
+ ,
435
+ n ∈ N,
436
+ and
437
+ (12)
438
+ (ζq′(σ∞) − 1) ζq′
439
+ �σ∞
440
+ 4
441
+
442
+ ≤ 1,
443
+ q′ = {˜q1, . . . ˜qN, qN+1 − 1, qN+2 − 1, qN+3 − 1, . . .}.
444
+ This is made possible by the hypothesis that σc(ζq) < ∞, since
445
+ ζq′(σ) ≤
446
+
447
+ j≥1
448
+ 1
449
+ 1 − (q′
450
+ j)−σ ≤ ζq
451
+ � σ
452
+ C
453
+
454
+ ,
455
+ σ > 0,
456
+ C ≥ sup
457
+ n≥1
458
+ log(qn)
459
+ log(q′n).
460
+ From here we proceed by induction. Suppose that ˜q1, . . . ˜qk have been chosen, where k ≥ N,
461
+ with corresponding Beurling integers {ν(k)
462
+ n }n≥1 = N{˜qn}k
463
+ n=1 satisfying that
464
+ ���ν(k)
465
+ n+1 − ν(k)
466
+ n
467
+ ��� ≥
468
+
469
+ ν(N)
470
+ n+1
471
+ �−6σ∞ .
472
+
473
+ 6
474
+ ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT
475
+ We apply the preceding discussion to the Beurling primes ρ = {˜q1, . . . ˜qk} and x = qk+1, con-
476
+ cluding that there exists a number ˜qk+1 ∈ Iqk+1 such that
477
+ �����˜qj
478
+ k+1 − ν(k)
479
+ n
480
+ ν(k)
481
+ m
482
+ ����� ≥
483
+
484
+ ν(k)
485
+ n
486
+ �−3σ∞ �
487
+ ν(k)
488
+ m
489
+ �−3σ∞
490
+ ,
491
+ (j, n, m) ∈ N3.
492
+ By the same argument as in the last paragraph of the proof of Theorem 1.1 the Beurling system
493
+ {ν(k+1)
494
+ n
495
+ }n≥1 = N{˜qn}k+1
496
+ n=1, then satisfies that
497
+ ���ν(k+1)
498
+ n+1
499
+ − ν(k+1)
500
+ n
501
+ ��� ≥
502
+
503
+ ν(k+1)
504
+ n+1
505
+ �−6σ∞
506
+ ,
507
+ n ∈ N.
508
+ At each step of the construction, (12) ensures that (9) holds. We hence obtain a sequence
509
+ ˜q = {˜qn}n≥1, satisfying that |˜qn − qn| ≤ q
510
+ − σ∞
511
+ 2
512
+ n
513
+ as well as Bohr’s condition (1), specifically,
514
+ |˜νn+1 − ˜νn| ≥ (˜νn+1)−6σ∞ ,
515
+ n ∈ N.
516
+ where {˜νn}n≥1 = N˜q.
517
+
518
+ Proof of Corollary 1.3. By [21, Theorem 1] there exists a Beurling system qRH that satisfies
519
+ (i)–(iii). Theorem 1.2 then implies that there exist primes q, asymptotically approaching qRH,
520
+ satisfying Bohr’s theorem, and such that
521
+ (13)
522
+ πq(x) = li(x) + O
523
+ ��√x
524
+
525
+ .
526
+ We observe that
527
+ log ζq(s) = −
528
+
529
+ ˆ
530
+ 1
531
+ log
532
+
533
+ 1 − u−s�
534
+ dπq(u),
535
+ Re s > 1,
536
+ see [8, Lemma 10]. With f(u) =
537
+ u−1
538
+ u log u, u > 1, consider the function
539
+ Z(s) = exp
540
+
541
+
542
+
543
+ ˆ
544
+ 1
545
+ u−sf(u) du
546
+
547
+  =
548
+ s
549
+ s − 1,
550
+ Re s > 1.
551
+ We then have that
552
+ (14)
553
+ log ζq(s)
554
+ Z(s) = −
555
+
556
+ ˆ
557
+ 1
558
+
559
+ log
560
+
561
+ 1 − u−s�
562
+ + u−s�
563
+ dπq(u) +
564
+
565
+ ˆ
566
+ 1
567
+ u−s (dπq(u) − f(u) du) .
568
+ The quantity under the first integral sign satisfies
569
+ log
570
+
571
+ 1 − u−s�
572
+ + u−s = O
573
+
574
+ u−2σ�
575
+ .
576
+ Thus, the first integral in (14) is analytic and uniformly bounded for Re s > 1
577
+ 2 + ε, ε > 0. By
578
+ (13), the second integral in (14) is also analytic in the half-plane C 1
579
+ 2 . Therefore, ζq has an
580
+ analytic continuation to the half–plane C 1
581
+ 2 , except for a simple pole at s = 1. Furthermore, ζq
582
+ cannot have any zeros in this half-plane.
583
+
584
+ 3. Further discussion
585
+ Diophantine approximation and Beurling integers. Using the Borel–Cantelli theorem to
586
+ study the irrationality of real numbers is a standard technique of Diophantine approximation.
587
+ The irrationality measure µ(x) of a real number x ∈ R is defined as the infimum of the set
588
+ Rx =
589
+
590
+ r > 0 :
591
+ ���x − m
592
+ n
593
+ ��� < 1
594
+ nr for at most finitely many pairs (m, n) ∈ N × N
595
+
596
+ .
597
+
598
+ A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS
599
+ 7
600
+ For a Beurling system Nq = {νn}n≥1, we may also introduce the irrationality measure µq(x) of
601
+ a real number x ∈ R as the infimum of the set
602
+ Rx =
603
+
604
+ r > 0 :
605
+ ����x − νm
606
+ νn
607
+ ���� < 1
608
+ νrn
609
+ for at most finitely many pairs (m, n) ∈ N × N
610
+
611
+ .
612
+ Then, by slightly modifying the proof of Lemma 2.1, we obtain the following proposition.
613
+ Proposition 3.1. Let q = {qn}n≥1 be a sequence of Beurling primes with σc(ζq) < ∞. Then,
614
+ for almost every x ∈ R, it holds that
615
+ µq(x) ≤ 2σc(ζq).
616
+ In the classical case, Dirichlet’s approximation theorem therefore implies that µ(x) = 2 for
617
+ almost every x ∈ R. We also recall Roth’s theorem [5], which states that µ(x) = 2 for every
618
+ algebraic irrational number. It would be very interesting to develop corresponding results in the
619
+ context of Beurling integers.
620
+ Hardy spaces of Dirichlet series and a conjecture of Helson. For a sequence q of Beurling
621
+ primes, we introduce the Hardy space H2
622
+ q as
623
+ H2
624
+ q =
625
+
626
+
627
+ f(s) =
628
+
629
+ n≥1
630
+ anν−s
631
+ n
632
+ : ∥f∥2
633
+ H2q =
634
+
635
+ n≥1
636
+ |an|2 < ∞
637
+
638
+
639
+  .
640
+ More generally, for 1 ≤ p < ∞, we define Hp
641
+ q as the completion of polynomials (finite sums
642
+ � anν−s
643
+ n ) under the Besicovitch norm
644
+ ∥P∥Hp
645
+ q :=
646
+
647
+  lim
648
+ T →∞
649
+ 1
650
+ 2T
651
+ T
652
+ ˆ
653
+ −T
654
+ |P(it)|p dt
655
+
656
+
657
+ 1
658
+ p
659
+ .
660
+ The function theory of these spaces originated with Helson [12], and was, in the distuingished
661
+ case where q is the sequence of ordinary primes, continued in very influential papers of Bayart
662
+ [1] and Hedenmalm, Lindqvist, and Seip [11]. More generally, there is a developing theory of
663
+ Hardy spaces of Dirichlet series � ane−λns whose frequencies are related to other groups than
664
+ T∞, but we shall restrict our attention to frequencies given by Beurling primes. A cornerstone
665
+ of the theory is that there is a natural multiplicative linear isometric isomorphism between Hp
666
+ q
667
+ and the Hardy space Hp
668
+ q (T∞) of the infinite torus [6, 13]. However, more is needed in order to
669
+ identify H∞(T∞) with H∞
670
+ q , the space of Dirichlet series � anν−s
671
+ n
672
+ which converge to a bounded
673
+ function in C0. In fact, Bohr’s condition is typically used in order to establish this isomorphism
674
+ [19].
675
+ In identifying Hp
676
+ q with Hp
677
+ q (T∞) one is naturally led to consider twisted Dirichlet series
678
+ fχ(s) =
679
+
680
+ n≥1
681
+ anχ(νn)ν−s
682
+ n ,
683
+ where a point χ ∈ T∞ is interpreted as the completely multiplicative character χ: Nq → T
684
+ such that χ(qn) = χn. Helson [13] proved that if f ∈ H2
685
+ q and the associated frequencies satisfy
686
+ Bohr’s condition, then fχ(s) converges in C0 for almost every χ ∈ T∞. Helson went on to
687
+ make a conjecture, which we state only in the special case that the frequencies correspond to a
688
+ Beurling system.
689
+ Recall that f ∈ H2
690
+ q is said to be outer if
691
+
692
+ fg : g ∈ H∞
693
+ q
694
+
695
+ is dense in H2
696
+ q.
697
+ Conjecture. If Nq is a Beurling system that satisfies Bohr’s condition and f is outer in H2
698
+ q,
699
+ then fχ never has any zeros in its half-plane of convergence.
700
+
701
+ 8
702
+ ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT
703
+ Suppose now that the Beurling primes q are chosen as in Corollary 1.3, so that we have the
704
+ “Riemann hypothesis” at our disposal, and consider the Dirichlet series
705
+ f(s) =
706
+ 1
707
+ ζq(s + 1/2 + ε),
708
+ for some 0 < ε < 1/2.
709
+ Through a routine calculation with coefficients, one checks that
710
+ f, f 2, 1/f, 1/f 2 ∈ H2
711
+ q. Therefore, there are polynomials pn which converge to 1/f in H4
712
+ q, so
713
+ that
714
+ ∥1 − pnf∥H2q ≤ ∥f∥H4q∥1/f − pn∥H4q → 0,
715
+ n → ∞.
716
+ Thus f is outer. On the other hand, it has a zero at s = 1/2 − ε.
717
+ Corollary 1.3 ensures that f has an analytic extension to C0. The problem is that we do not
718
+ know if f actually converges there, as required by Helson’s conjecture. Since we have Bohr’s
719
+ condition, a standard argument [20, Section 14.25] with the Perron formula shows that the
720
+ Lindel¨of hypothesis for ζq implies the convergence of f. However, in the Beurling prime setting,
721
+ “Riemann implies Lindel¨of” is only true when ζq has finite order in C 1
722
+ 2 .
723
+ This crux further
724
+ highlights one of the main issues of [14, 15]: how can we ensure that ζq is zero-free and has finite
725
+ order in some half-plane Re s > 1 − η? Or, equivalently, when do we have that
726
+ πq(x) = li(x) + O(xθ1),
727
+ Nq(x) = kx + O(xθ2),
728
+ for some θ1, θ2 < 1? The best estimate we are able to add to Corollary 1.3 comes from the
729
+ general result [15, Theorem 2.2]: there exists a number c > 0 such that
730
+ Nq(x) = ax + O
731
+
732
+ x exp(−c
733
+
734
+ log x log log x)
735
+
736
+ .
737
+ References
738
+ [1] Fr´ed´eric Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136
739
+ (2002), no. 3, 203–236.
740
+ [2] Fr´ed´eric Bayart, Convergence and almost sure properties in Hardy spaces of Dirichlet series, Math. Ann.
741
+ 382 (2022), no. 3-4, 1485–1515.
742
+ [3] Arne Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers g´en´eralis´es. I, Acta
743
+ Math. 68 (1937), no. 1, 255–291.
744
+ [4] Harald Bohr, ¨Uber die gleichm¨aßige Konvergenz Dirichletscher Reihen, J. Reine Angew. Math. 143 (1913),
745
+ 203–211.
746
+ [5] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–
747
+ 167.
748
+ [6] Andreas Defant and Ingo Schoolmann, Hp-theory of general Dirichlet series, J. Fourier Anal. Appl. 25
749
+ (2019), no. 6, 3220–3258.
750
+ [7] Harold G. Diamond, When do Beurling generalized integers have a density?, J. Reine Angew. Math. 295
751
+ (1977), 22–39.
752
+ [8] Harold G. Diamond, Hugh L. Montgomery, and Ulrike M. A. Vorhauer, Beurling primes with large oscilla-
753
+ tion, Math. Ann. 334 (2006), no. 1, 1–36.
754
+ [9] Andrew Granville, The lattice points of an n-dimensional tetrahedron, Aequationes Math. 41 (1991), no. 2-3,
755
+ 234–241.
756
+ [10] G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge Tracts in Mathematics and
757
+ Mathematical Physics, No. 18, Stechert-Hafner, Inc., New York, 1964.
758
+ [11] H˚akan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of
759
+ dilated functions in L2(0, 1), Duke Math. J. 86 (1997), no. 1, 1–37.
760
+ [12] Henry Helson, Compact groups with ordered duals, Proc. London Math. Soc. (3) 14a (1965), 144–156.
761
+ [13] Henry Helson, Compact groups and Dirichlet series, Ark. Mat. 8 (1969), 139–143.
762
+ [14] Titus W. Hilberdink, Well-behaved Beurling primes and integers, J. Number Theory 112 (2005), no. 2,
763
+ 332–344.
764
+ [15] Titus W. Hilberdink and Michel L. Lapidus, Beurling zeta functions, generalised primes, and fractal mem-
765
+ branes, Acta Appl. Math. 94 (2006), no. 1, 21–48.
766
+ [16] Athanasios Kouroupis, Composition operators and generalized primes, Proc. Amer. Math. Soc., to appear,
767
+ https://doi.org/10.1090/proc/16395.
768
+
769
+ A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS
770
+ 9
771
+ [17] Edmund Landau, ¨Uber die gleichm¨aßige Konvergenz Dirichletscher Reihen, Math. Z. 11 (1921), no. 3-4,
772
+ 317–318.
773
+ [18] Herv´e Queffelec and Martine Queffelec, Diophantine approximation and Dirichlet series, Texts and Readings
774
+ in Mathematics, vol. 80, Hindustan Book Agency, New Delhi; Springer, Singapore, [2020] ©2020, Second
775
+ edition [of 3099268].
776
+ [19] I. Schoolmann, On Bohr’s theorem for general Dirichlet series, Math. Nachr. 293 (2020), no. 8, 1591–1612.
777
+ [20] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press, Oxford
778
+ University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown.
779
+ [21] Wen-Bin Zhang, Beurling primes with RH and Beurling primes with large oscillation, Math. Ann. 337
780
+ (2007), no. 3, 671–704.
781
+ Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU),
782
+ 7491 Trondheim, Norway
783
+ Email address: athanasios.kouroupis@ntnu.no
784
+ Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU),
785
+ 7491 Trondheim, Norway
786
+ Email address: karl-mikael.perfekt@ntnu.no
787
+
69FKT4oBgHgl3EQfUC2Z/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf,len=310
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
3
+ page_content='11782v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
4
+ page_content='NT] 27 Jan 2023 A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
5
+ page_content=' Given a sequence of frequencies {λn}n≥1, a corresponding generalized Dirichlet series is of the form f(s) = � n≥1 ane−λns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
6
+ page_content=' We are interested in multiplicatively generated systems, where each number eλn arises as a finite product of some given numbers {qn}n≥1, 1 < qn → ∞, referred to as Beurling primes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
7
+ page_content=' In the classical case, where λn = log n, Bohr’s theorem holds: if f converges somewhere and has an analytic extension which is bounded in a half-plane {Re s > θ}, then it actually converges uniformly in every half-plane {Re s > θ +ε}, ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
8
+ page_content=' We prove, under very mild conditions, that given a sequence of Beurling primes, a small perturbation yields another sequence of primes such that the corresponding Beurling integers satisfy Bohr’s condition, and therefore the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
9
+ page_content=' Applying our result in conjunction with work of Diamond–Montgomery–Vorhauer and Zhang, we find a system of Beurling primes for which both Bohr’s theorem and the Riemann hypothesis are valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
10
+ page_content=' We discuss the connections between our work and Diophantine approximation with Beurling integers, as well as with a conjecture of Helson concerning outer functions in Hardy spaces of generalized Dirichlet series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
12
+ page_content=' Introduction For an increasing sequence of positive frequencies λ = {λn}n≥1, and a generalized Dirichlet series f(s) = � n≥1 ane−λns, the abscissas σc, σu, and σa of point-wise, uniform, and absolute convergence are defined as in the classical theory of Dirichlet series [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
13
+ page_content=' In this article we wish to find sets of frequencies such that the analogue of a theorem of Bohr [4] holds: if σc(f) < ∞ and f has a bounded analytic extension to a half-plane {Re s > θ}, then σu(f) ≤ θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
14
+ page_content=' The problem of finding frequencies for which the abscissas of bounded and uniform convergence always coincide, which originated with Bohr and Landau [17], has recently been revisited [2, 19] with the context of Hardy spaces of Dirichlet series in mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
15
+ page_content=' Indeed, Bohr’s theorem is essentially a necessity for a satisfactory Hardy space theory, see [18, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
16
+ page_content=' 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
17
+ page_content=' An important class of frequencies were introduced by Beurling [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
18
+ page_content=' Given an arbitrary in- creasing sequence q = {qn}n≥1, 1 < qn → ∞, such that {log qn}n≥1 is linearly independent over Q, we will denote by Nq = {νn}n≥1 the set of numbers that can be written (uniquely) as finite products with factors from q, ordered in an increasing manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
19
+ page_content=' The numbers qn are known as Beurling primes, and the numbers νn are Beurling integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
20
+ page_content=' The corresponding generalized Dirichlet series are of the form f(s) = � n≥1 anν−s n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
21
+ page_content=' There are a number of criteria to guarantee the validity of Bohr’s theorem for frequencies {λn}n≥1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
22
+ page_content=' Bohr’s original condition asks for the existence of c1, c2 > 0 such that (1) λn+1 − λn ≥ c1e−c2λn+1, n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
23
+ page_content=' Landau relaxed the condition somewhat: for every δ > 0 there should be a c > 0 such that (2) λn+1 − λn ≥ ce−eδλn+1 , n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
24
+ page_content=' 1 2 ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT Landau’s condition was recently relaxed further by Bayart [2]: for every δ > 0 there should be a C > 0 such that (3) log �λm + λn λm − λn � + (m − n) ≤ Ceδλn, m > n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
25
+ page_content=' All of these conditions are usually very difficult to check for any given Beurling system, since they involve the distances between the corresponding Beurling integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
26
+ page_content=' Furthermore, while it is easy to construct Beurling integers for which conditions (1)-(3) fail, it appears to be rather difficult to construct Beurling systems which do satisfy the Bohr condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
27
+ page_content=' This is especially true if one wants to retain properties of the ordinary integers, such as the asympotic behaviour of the counting function Nq(x) = � νn≤x 1, see for example [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
28
+ page_content=' One motivation for considering Beurling integers is to investigate the properties of the q-zeta function ζq(s) = � n≥1 ν−s n = � n≥1 1 1 − q−s n , and their interplay with the counting functions Nq(x) = � νn≤x 1, πq(x) = � qn≤x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
29
+ page_content=' As an example, Beurling [3] himself showed that the condition (4) Nq(x) = ax + O( x (log x)γ ), for some γ > 3 2, implies the analogue of the prime number theorem, (5) πq(x) := � qn≤x 1 ∼ x log x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
30
+ page_content=' We refer to [15] for an overview of further developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
31
+ page_content=' In Section 2 we begin with a preparatory result which is interesting in its own right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
32
+ page_content=' It states that starting with the classical set of primes numbers we can add almost any finite sequence of Beurling primes while retaining the validity of Bohr’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
33
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
34
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
35
+ page_content=' Let {pn}n≥1 be the sequence of ordinary prime numbers and let N ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
36
+ page_content=' Then Bohr’s condition (1) holds for the Beurling integers generated by the primes q = {pn}n≥1 � {qj}N j=1, for almost every choice (q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
37
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
38
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
39
+ page_content=' , qN) ∈ (1, ∞)N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
40
+ page_content=' Sequences of Beurling primes of the type considered in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
41
+ page_content='1 previously appeared in [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
42
+ page_content=' Our main result requires more careful analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
43
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
44
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
45
+ page_content=' Let q = {qn}n≥1 be an increasing sequence of primes such that q1 > 1 and σc(ζq) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
46
+ page_content=' Then, for every A > 0 there exists a sequence of Beurling primes ˜q = {˜qn}n≥1 for which Bohr’s condition (1) holds and |qn − ˜qn| ≤ q−A n , n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
47
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
48
+ page_content='2 and the work of Diamond, Montgomery, Vorhauer [8] and Zhang [21], allows us to construct a system of Beurling primes that satisfies Bohr’s theorem and the “Riemann Hypothesis”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
49
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
50
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
51
+ page_content=' There exists a system of Beurling primes q = {qn}n≥1 such that: A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS 3 (i) The Riemann zeta function ζq(s) has an analytic extension to Re s > 1 2, except for a simple pole at s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
52
+ page_content=' (ii) The Riemann zeta function has no zeros in the half–plane C 1 2 = {Re s > 1/2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
53
+ page_content=' (iii) The prime counting πq(x) satisfies πq(x) = li(x) + O �√x � , where li(x) = x´ 2 (log u)−1 du.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
54
+ page_content=' (iv) Bohr’s condition holds for the associated class of generalized Dirichlet series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
55
+ page_content=' We remark that as a direct consequence of (iii), we have the prime number theorem (5) as well as Nq(x) ∼ ax, where a is the residue of ζq(s) at s = 1, see for example [7, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
56
+ page_content=' The proofs of our results investigate how well “irrational numbers” may be approximated by fractions of Beurling integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
57
+ page_content=' We will comment further on this kind of Diophantine approxi- mation problems in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
58
+ page_content=' In Section 3 we will also return to the original motivation for our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
59
+ page_content=' There has been an interest in studying Hardy spaces of generalized Dirichlet series since the 60s [6, 11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
60
+ page_content=' However, other than the ordinary integers, no examples of Beurling integers exist which simultaneously satisfy the prime number theorem (iii) and Bohr’s theorem, despite the fact that Bohr’s theorem is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
61
+ page_content=' Furthermore, since many aspects of the function theory of the Hardy space do not depend on the choice q of Beurling primes, the idea behind Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
62
+ page_content='3 was to find a Beurling system Nq in which we can assume the Riemann hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
63
+ page_content=' As a function theoretic application, we construct an outer function f which has a zero, (6) f(s) = 1 ζq(s + 1/2 + ε), 0 < ε < 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
64
+ page_content=' Originally, we intended to make use of (6) in order to disprove a conjecture of Helson [13] about outer functions in Hardy spaces formed from frequencies satisfying the Bohr condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
65
+ page_content=' Unfortunately, we did not quite succeed, since we are unable to demonstrate the convergence of (6) for Res > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
66
+ page_content=' the typical proof of this relies on the Lindel¨of hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
67
+ page_content=' Finding a system which in addition to the properties of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
68
+ page_content='3 satisfies the Lindel¨of hypothesis seems to demand a deeper interplay between our tools and the probabilistic methods of [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
69
+ page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
70
+ page_content=' Throughout the article, we will be using the convention that C denotes a positive constant which may vary from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
71
+ page_content=' We will write that C = C(Ω) when the constant depends on the parameter Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
72
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
73
+ page_content=' Proof of the main results Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
74
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
75
+ page_content=' Suppose that {qn}n≥1 is a Beurling system such that dn := νn+1 − νn ≫ ν−C n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
76
+ page_content=' Then, for almost every q′ > 1 and every ε > 0, the Beurling system {qn}n≥1∪{q′} has a distance function satisfying (7) d′ n = ν′ n+1 − ν′ n ≫ ν−C ′ n+1 , n ∈ N, where C′(q′, q) = max (C, 2σc(ζq) − 1 + ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
77
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
78
+ page_content=' Let x0 > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
79
+ page_content=' First we will prove that the set M of all numbers q′ ≥ x0 such that there exist infinitely many triples (j, n, m) ∈ N3 with ����(q′)j − νn νm ���� ≤ ν−C0 n ν−C0 m , C0 = σ(ζq) + ε, 4 ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT has measure zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
80
+ page_content=' Since �����q′ − � νn νm � 1 j ����� ≤ C(x0)x−j 0 ����(q′)j − νn νm ���� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
81
+ page_content=' we have that M ⊂ lim supm,n,j Ωm,n,j, where Ωm,n,j = �� νn νm � 1 j − C(x0)x−j 0 ν−C0 n ν−C0 m , � νn νm � 1 j + C(x0)x−j 0 ν−C0 n ν−C0 m � , j, n, m ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
82
+ page_content=' The Borel–Cantelli lemma thus shows that |M| = 0, since � m≥1 � n≥1 � j≥1 |Ωm,n,j| ≤ C(x0)ζq (C0)2 < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
83
+ page_content=' Fix a number q′ ∈ [x0, ∞) \\ M such that log q′ is not in the (countable) set spanQ{log qn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
84
+ page_content=' Note that the set of such numbers has full measure in [x0, ∞), and that x0 > 1 is arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
85
+ page_content=' By construction, there are finitely many triples (j, n, m) such that (8) ����(q′)j − νn νm ���� ≤ ν−C0 n ν−C0 m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
86
+ page_content=' For these exceptional triples, the left-hand side is at least positive, since log q′ /∈ spanQ{log qn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
87
+ page_content=' Therefore ����(q′)j − νn νm ���� ≫ ν−C0 n ν−C0 m for all (j, n, m) ∈ N3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
88
+ page_content=' Now we consider two arbitrary consecutive Beurling integers generated by the prime system {qn}n≥1 ∪ {q′}, ν′ n+1 = (q′)aνm, ν′ n = (q′)bνl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
89
+ page_content=' If a = b, then l = m − 1 and ν′ n+1 − ν′ n ≫ ν−C m ≥ � ν′ n+1 �−C , by the hypothesis on the distances dn for the original Beurling system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
90
+ page_content=' Otherwise, if, say, b < a, then ��ν′ n+1 − ν′ n �� = (q′)bνm ����(q′)a−b − νl νm ���� ≫ ν−C0 l ν−C0+1 m (q′)b ≫ � ν′ n+1 �−C ′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
91
+ page_content=' where C ′ = 2σc(ζq) − 1 + ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
92
+ page_content=' □ Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
93
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
94
+ page_content=' The proof is a direct consequence of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
95
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
96
+ page_content=' □ In order to prove Bohr’s theorem for more general Beurling systems, we need to control the constant in the distance estimate (7), which comes from the exceptional triples satisfying (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
97
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
98
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
99
+ page_content=' Fix a small ε > 0 and x0 ∈ (1+ε/2, 1+ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
100
+ page_content=' Consider first any Beurling system Nρ = {νn}n≥1 generated by Beurling primes such that ρ1 > 1 + ε and σc(ζρ) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
101
+ page_content=' For a number σ∞ > max(2, A) to be chosen in a moment, let N = � m≥2 � n≥2 � j≥1 Ωm,n,j, where Ωm,n,j is defined as in the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
102
+ page_content='1, Ωm,n,j = �� νn νm � 1 j − C(x0)x−j 0 ν−σ∞ n ν−σ∞ m , � νn νm � 1 j + C(x0)x−j 0 ν−σ∞ n ν−σ∞ m � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
103
+ page_content=' A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS 5 Then |N| ≤ C(ε) (ζρ(σ∞) − 1)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
104
+ page_content=' Furthermore, for x > 2, let Ix = [x − x− σ∞ 2 , x + x− σ∞ 2 ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
105
+ page_content=' Note that if σ∞ is sufficiently large, σ∞ ≥ C(ε), then Ix∩Ωm,n,j ̸= ∅ only if νn ≥ x/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
106
+ page_content=' Therefore |Ix ∩ N| ≤ � m≥2 j≥1 νn≥ x 2 |Ωm,n,j| ≤ C(ε) (ζρ(σ∞) − 1) � νn≥ x 2 ν−σ∞ n ≤ C(ε) (ζρ(σ∞) − 1) ζρ �σ∞ 4 � x− 3σ∞ 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
107
+ page_content=' We will construct a sequence of Beurling systems such that (9) (ζρ(σ∞) − 1) ζρ �σ∞ 4 � ≤ 1 for the number σ∞ > 0, still to be chosen later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
108
+ page_content=' Therefore (10) |Ix ∩ N| ≤ C(ε)x− σ∞ 4 |Ix|, We conclude that whenever x is sufficiently large, Ix ̸⊂ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
109
+ page_content=' To include triples where νn or νm equals one in our considerations, we increase the power σ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
110
+ page_content=' The inequality (11) ����xj − νn νm ���� ≤ ν−3σ∞ n ν−3σ∞ m implies, whenever x ≥ x0, that �����x − � νn νm � 1 j ����� ≤ C(x0)x−j 0 ����xj − ν2 nνm ν2mνn ���� ≤ C(x0)x−j 0 � ν2 mνn �−σ∞ � ν2 nνm �−σ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
111
+ page_content=' Therefore M ⊂ N, where M this time denotes the set of all x ≥ x0 for which there exists an exceptional triple (j, n, m) ∈ N3 such that (11) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
112
+ page_content=' Now let q be a sequence of primes in the statement of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
113
+ page_content='2, assuming that ε < q1 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
114
+ page_content=' As described, we will only be able to effectively apply (10) when x is sufficiently large, say, x ≥ B = B(ε) = C(ε)4 + 2, where C(ε) in this instance refers to the same constant as in (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
115
+ page_content=' Let N be such that {q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
116
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
117
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
118
+ page_content=' , qN} = (1, B) ∩ q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
119
+ page_content=' Then, as a corollary of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
120
+ page_content='1, we already know that there exists an increasing finite sequence of primes {˜q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
122
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
123
+ page_content=' ˜qN}, ˜q1 > 1, such that |qj − ˜qj| ≤ q−A j , j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
124
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
125
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
126
+ page_content=' , N, and such that Bohr’s condition holds for {ν(N) n }n≥1 = N{˜q1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
127
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
128
+ page_content='˜qN }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
129
+ page_content=' Further, we choose σ∞ so large that ���ν(N) n+1 − ν(N) n ��� ≥ � ν(N) n+1 �−6σ∞ , n ∈ N, and (12) (ζq′(σ∞) − 1) ζq′ �σ∞ 4 � ≤ 1, q′ = {˜q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
130
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
132
+ page_content=' ˜qN, qN+1 − 1, qN+2 − 1, qN+3 − 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
133
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
135
+ page_content=' }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
136
+ page_content=' This is made possible by the hypothesis that σc(ζq) < ∞, since ζq′(σ) ≤ � j≥1 1 1 − (q′ j)−σ ≤ ζq � σ C � , σ > 0, C ≥ sup n≥1 log(qn) log(q′n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
137
+ page_content=' From here we proceed by induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
138
+ page_content=' Suppose that ˜q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
139
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
140
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
141
+ page_content=' ˜qk have been chosen, where k ≥ N, with corresponding Beurling integers {ν(k) n }n≥1 = N{˜qn}k n=1 satisfying that ���ν(k) n+1 − ν(k) n ��� ≥ � ν(N) n+1 �−6σ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
142
+ page_content=' 6 ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT We apply the preceding discussion to the Beurling primes ρ = {˜q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
144
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
145
+ page_content=' ˜qk} and x = qk+1, con- cluding that there exists a number ˜qk+1 ∈ Iqk+1 such that �����˜qj k+1 − ν(k) n ν(k) m ����� ≥ � ν(k) n �−3σ∞ � ν(k) m �−3σ∞ , (j, n, m) ∈ N3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
146
+ page_content=' By the same argument as in the last paragraph of the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
147
+ page_content='1 the Beurling system {ν(k+1) n }n≥1 = N{˜qn}k+1 n=1, then satisfies that ���ν(k+1) n+1 − ν(k+1) n ��� ≥ � ν(k+1) n+1 �−6σ∞ , n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
148
+ page_content=' At each step of the construction, (12) ensures that (9) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
149
+ page_content=' We hence obtain a sequence ˜q = {˜qn}n≥1, satisfying that |˜qn − qn| ≤ q − σ∞ 2 n as well as Bohr’s condition (1), specifically, |˜νn+1 − ˜νn| ≥ (˜νn+1)−6σ∞ , n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
150
+ page_content=' where {˜νn}n≥1 = N˜q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
151
+ page_content=' □ Proof of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
152
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
153
+ page_content=' By [21, Theorem 1] there exists a Beurling system qRH that satisfies (i)–(iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
154
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
155
+ page_content='2 then implies that there exist primes q, asymptotically approaching qRH, satisfying Bohr’s theorem, and such that (13) πq(x) = li(x) + O �√x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
156
+ page_content=' We observe that log ζq(s) = − ∞ ˆ 1 log � 1 − u−s� dπq(u), Re s > 1, see [8, Lemma 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
157
+ page_content=' With f(u) = u−1 u log u, u > 1, consider the function Z(s) = exp \uf8eb \uf8ed ∞ ˆ 1 u−sf(u) du \uf8f6 \uf8f8 = s s − 1, Re s > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
158
+ page_content=' We then have that (14) log ζq(s) Z(s) = − ∞ ˆ 1 � log � 1 − u−s� + u−s� dπq(u) + ∞ ˆ 1 u−s (dπq(u) − f(u) du) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
159
+ page_content=' The quantity under the first integral sign satisfies log � 1 − u−s� + u−s = O � u−2σ� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
160
+ page_content=' Thus, the first integral in (14) is analytic and uniformly bounded for Re s > 1 2 + ε, ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
161
+ page_content=' By (13), the second integral in (14) is also analytic in the half-plane C 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
162
+ page_content=' Therefore, ζq has an analytic continuation to the half–plane C 1 2 , except for a simple pole at s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
163
+ page_content=' Furthermore, ζq cannot have any zeros in this half-plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
164
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
165
+ page_content=' Further discussion Diophantine approximation and Beurling integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
166
+ page_content=' Using the Borel–Cantelli theorem to study the irrationality of real numbers is a standard technique of Diophantine approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
167
+ page_content=' The irrationality measure µ(x) of a real number x ∈ R is defined as the infimum of the set Rx = � r > 0 : ���x − m n ��� < 1 nr for at most finitely many pairs (m, n) ∈ N × N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
168
+ page_content=' A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS 7 For a Beurling system Nq = {νn}n≥1, we may also introduce the irrationality measure µq(x) of a real number x ∈ R as the infimum of the set Rx = � r > 0 : ����x − νm νn ���� < 1 νrn for at most finitely many pairs (m, n) ∈ N × N � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
169
+ page_content=' Then, by slightly modifying the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
170
+ page_content='1, we obtain the following proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
171
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
172
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
173
+ page_content=' Let q = {qn}n≥1 be a sequence of Beurling primes with σc(ζq) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
174
+ page_content=' Then, for almost every x ∈ R, it holds that µq(x) ≤ 2σc(ζq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
175
+ page_content=' In the classical case, Dirichlet’s approximation theorem therefore implies that µ(x) = 2 for almost every x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
176
+ page_content=' We also recall Roth’s theorem [5], which states that µ(x) = 2 for every algebraic irrational number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
177
+ page_content=' It would be very interesting to develop corresponding results in the context of Beurling integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
178
+ page_content=' Hardy spaces of Dirichlet series and a conjecture of Helson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
179
+ page_content=' For a sequence q of Beurling primes, we introduce the Hardy space H2 q as H2 q = \uf8f1 \uf8f2 \uf8f3f(s) = � n≥1 anν−s n : ∥f∥2 H2q = � n≥1 |an|2 < ∞ \uf8fc \uf8fd \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
180
+ page_content=' More generally, for 1 ≤ p < ∞, we define Hp q as the completion of polynomials (finite sums � anν−s n ) under the Besicovitch norm ∥P∥Hp q := \uf8eb \uf8ed lim T →∞ 1 2T T ˆ −T |P(it)|p dt \uf8f6 \uf8f8 1 p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
181
+ page_content=' The function theory of these spaces originated with Helson [12], and was, in the distuingished case where q is the sequence of ordinary primes, continued in very influential papers of Bayart [1] and Hedenmalm, Lindqvist, and Seip [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
182
+ page_content=' More generally, there is a developing theory of Hardy spaces of Dirichlet series � ane−λns whose frequencies are related to other groups than T∞, but we shall restrict our attention to frequencies given by Beurling primes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
183
+ page_content=' A cornerstone of the theory is that there is a natural multiplicative linear isometric isomorphism between Hp q and the Hardy space Hp q (T∞) of the infinite torus [6, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
184
+ page_content=' However, more is needed in order to identify H∞(T∞) with H∞ q , the space of Dirichlet series � anν−s n which converge to a bounded function in C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
185
+ page_content=' In fact, Bohr’s condition is typically used in order to establish this isomorphism [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
186
+ page_content=' In identifying Hp q with Hp q (T∞) one is naturally led to consider twisted Dirichlet series fχ(s) = � n≥1 anχ(νn)ν−s n , where a point χ ∈ T∞ is interpreted as the completely multiplicative character χ: Nq → T such that χ(qn) = χn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
187
+ page_content=' Helson [13] proved that if f ∈ H2 q and the associated frequencies satisfy Bohr’s condition, then fχ(s) converges in C0 for almost every χ ∈ T∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
188
+ page_content=' Helson went on to make a conjecture, which we state only in the special case that the frequencies correspond to a Beurling system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
189
+ page_content=' Recall that f ∈ H2 q is said to be outer if � fg : g ∈ H∞ q � is dense in H2 q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
190
+ page_content=' Conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
191
+ page_content=' If Nq is a Beurling system that satisfies Bohr’s condition and f is outer in H2 q, then fχ never has any zeros in its half-plane of convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
192
+ page_content=' 8 ATHANASIOS KOUROUPIS AND KARL-MIKAEL PERFEKT Suppose now that the Beurling primes q are chosen as in Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
193
+ page_content='3, so that we have the “Riemann hypothesis” at our disposal, and consider the Dirichlet series f(s) = 1 ζq(s + 1/2 + ε), for some 0 < ε < 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
194
+ page_content=' Through a routine calculation with coefficients, one checks that f, f 2, 1/f, 1/f 2 ∈ H2 q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
195
+ page_content=' Therefore, there are polynomials pn which converge to 1/f in H4 q, so that ∥1 − pnf∥H2q ≤ ∥f∥H4q∥1/f − pn∥H4q → 0, n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
196
+ page_content=' Thus f is outer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
197
+ page_content=' On the other hand, it has a zero at s = 1/2 − ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
198
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
199
+ page_content='3 ensures that f has an analytic extension to C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
200
+ page_content=' The problem is that we do not know if f actually converges there, as required by Helson’s conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
201
+ page_content=' Since we have Bohr’s condition, a standard argument [20, Section 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
202
+ page_content='25] with the Perron formula shows that the Lindel¨of hypothesis for ζq implies the convergence of f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
203
+ page_content=' However, in the Beurling prime setting, “Riemann implies Lindel¨of” is only true when ζq has finite order in C 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
204
+ page_content=' This crux further highlights one of the main issues of [14, 15]: how can we ensure that ζq is zero-free and has finite order in some half-plane Re s > 1 − η?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
205
+ page_content=' Or, equivalently, when do we have that πq(x) = li(x) + O(xθ1), Nq(x) = kx + O(xθ2), for some θ1, θ2 < 1?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
206
+ page_content=' The best estimate we are able to add to Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
207
+ page_content='3 comes from the general result [15, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
208
+ page_content='2]: there exists a number c > 0 such that Nq(x) = ax + O � x exp(−c � log x log log x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
209
+ page_content=' References [1] Fr´ed´eric Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
210
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
211
+ page_content=' 136 (2002), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
212
+ page_content=' 3, 203–236.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
213
+ page_content=' [2] Fr´ed´eric Bayart, Convergence and almost sure properties in Hardy spaces of Dirichlet series, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
214
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
215
+ page_content=' 382 (2022), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
216
+ page_content=' 3-4, 1485–1515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
217
+ page_content=' [3] Arne Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers g´en´eralis´es.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
218
+ page_content=' I, Acta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
219
+ page_content=' 68 (1937), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
220
+ page_content=' 1, 255–291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
221
+ page_content=' [4] Harald Bohr, ¨Uber die gleichm¨aßige Konvergenz Dirichletscher Reihen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
222
+ page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
223
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
224
+ page_content=' 143 (1913), 203–211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
225
+ page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
226
+ page_content=' Davenport and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
227
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
228
+ page_content=' Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160– 167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
229
+ page_content=' [6] Andreas Defant and Ingo Schoolmann, Hp-theory of general Dirichlet series, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
230
+ page_content=' Fourier Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
231
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
232
+ page_content=' 25 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
233
+ page_content=' 6, 3220–3258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
234
+ page_content=' [7] Harold G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
235
+ page_content=' Diamond, When do Beurling generalized integers have a density?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
236
+ page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
237
+ page_content=' Reine Angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
238
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
239
+ page_content=' 295 (1977), 22–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
240
+ page_content=' [8] Harold G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
241
+ page_content=' Diamond, Hugh L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
242
+ page_content=' Montgomery, and Ulrike M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
243
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
244
+ page_content=' Vorhauer, Beurling primes with large oscilla- tion, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
245
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
246
+ page_content=' 334 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
247
+ page_content=' 1, 1–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
248
+ page_content=' [9] Andrew Granville, The lattice points of an n-dimensional tetrahedron, Aequationes Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
249
+ page_content=' 41 (1991), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
250
+ page_content=' 2-3, 234–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
251
+ page_content=' [10] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
252
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
253
+ page_content=' Hardy and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
254
+ page_content=' Riesz, The general theory of Dirichlet’s series, Cambridge Tracts in Mathematics and Mathematical Physics, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
255
+ page_content=' 18, Stechert-Hafner, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
256
+ page_content=', New York, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
257
+ page_content=' [11] H˚akan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
258
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
259
+ page_content=' 86 (1997), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
260
+ page_content=' 1, 1–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
261
+ page_content=' [12] Henry Helson, Compact groups with ordered duals, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
262
+ page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
263
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
264
+ page_content=' (3) 14a (1965), 144–156.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
265
+ page_content=' [13] Henry Helson, Compact groups and Dirichlet series, Ark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
266
+ page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
267
+ page_content=' 8 (1969), 139–143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
268
+ page_content=' [14] Titus W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
269
+ page_content=' Hilberdink, Well-behaved Beurling primes and integers, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
270
+ page_content=' Number Theory 112 (2005), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
271
+ page_content=' 2, 332–344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
272
+ page_content=' [15] Titus W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
273
+ page_content=' Hilberdink and Michel L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
274
+ page_content=' Lapidus, Beurling zeta functions, generalised primes, and fractal mem- branes, Acta Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
275
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
276
+ page_content=' 94 (2006), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
277
+ page_content=' 1, 21–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
278
+ page_content=' [16] Athanasios Kouroupis, Composition operators and generalized primes, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
279
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
280
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
281
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
282
+ page_content=', to appear, https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
283
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
284
+ page_content='1090/proc/16395.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
285
+ page_content=' A NOTE ON BOHR’S THEOREM FOR BEURLING INTEGER SYSTEMS 9 [17] Edmund Landau, ¨Uber die gleichm¨aßige Konvergenz Dirichletscher Reihen, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
286
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
287
+ page_content=' 11 (1921), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
288
+ page_content=' 3-4, 317–318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
289
+ page_content=' [18] Herv´e Queffelec and Martine Queffelec, Diophantine approximation and Dirichlet series, Texts and Readings in Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
290
+ page_content=' 80, Hindustan Book Agency, New Delhi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
291
+ page_content=' Springer, Singapore, [2020] ©2020, Second edition [of 3099268].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
292
+ page_content=' [19] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
293
+ page_content=' Schoolmann, On Bohr’s theorem for general Dirichlet series, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
294
+ page_content=' Nachr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
295
+ page_content=' 293 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
296
+ page_content=' 8, 1591–1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
297
+ page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
298
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
299
+ page_content=' Titchmarsh, The theory of the Riemann zeta-function, second ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
300
+ page_content=', The Clarendon Press, Oxford University Press, New York, 1986, Edited and with a preface by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
301
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
302
+ page_content=' Heath-Brown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
303
+ page_content=' [21] Wen-Bin Zhang, Beurling primes with RH and Beurling primes with large oscillation, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
304
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
305
+ page_content=' 337 (2007), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
306
+ page_content=' 3, 671–704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
307
+ page_content=' Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway Email address: athanasios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
308
+ page_content='kouroupis@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
309
+ page_content='no Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway Email address: karl-mikael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
310
+ page_content='perfekt@ntnu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
311
+ page_content='no' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FKT4oBgHgl3EQfUC2Z/content/2301.11782v1.pdf'}
6NE2T4oBgHgl3EQfOwb7/content/tmp_files/2301.03753v1.pdf.txt ADDED
@@ -0,0 +1,776 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03753v1 [math.NA] 10 Jan 2023
2
+ ENFORCING NEUMANN BOUNDARY CONDITIONS WITH POLYNOMIAL
3
+ EXTENSION OPERATORS TO ACHEIVE OPTIMAL CONVERGENCE RATES ON
4
+ POLYTOPIAL MESHES IN THE FINITE ELEMENT METHOD
5
+ JAMES CHEUNG
6
+ Millennium Space Systems, A Boeing Company. 2265 E. El Segundo Blvd, El Segundo, CA.
7
+ Abstract. In [4], the authors presented two finite element methods for approximating second order bound-
8
+ ary value problems on polytopial meshes with optimal accuracy without having to utilize curvilinear map-
9
+ pings. This was done by enforcing the boundary conditions through judiciously chosen polynomial extension
10
+ operators. The H1 error estimates were proven to be optimal for the solutions of both the Dirichlet and
11
+ Neumann boundary value problems. It was also proven that the Dirichlet problem approximation converges
12
+ optimally in L2. However, optimality of the Neumann approximation in the L2 norm was left as an open
13
+ problem. In this work, we seek to close this problem by presenting new analysis that proves optimal error
14
+ estimates for the Neumann approximation in the W 1
15
+ ∞ and L2 norms.
16
+ 1. Introduction
17
+ The purpose of this note is to derive optimal error estimates for the polynomial extension finite element
18
+ method (PE-FEM) described in [4] for approximating elliptic boundary value problems with Neumann
19
+ conditions. This manuscript is very much an appendix to our previous work. As such, we highly suggest
20
+ that the reader refer to that work, especially since we will not redefine our notation here for the sake of
21
+ brevity. Our analysis will be structured in the following manner: We present new technical lemmas involving
22
+ the Averaged Taylor series in §2, then in §3 we move on to prove well-posedness and derive optimal error
23
+ estimates for the numerical solution in the W 1
24
+ ∞(Ω) norm, using this new result we are finally able to derive
25
+ optimal error estimates for the numerical solution in the L2(Ω) norm in §4. We then discuss our results and
26
+ propose additional future research in §5.
27
+ 2. Additional Results for Averaged Taylor Polynomials
28
+ We begin our analysis by deriving some technical results for the Averaged Taylor polynomials in the
29
+ W m
30
+ ∞(Ωh) setting.
31
+ Lemma 1. Let v ∈ L∞(Ωh), then ���T k
32
+ h (v)
33
+ ��
34
+ η(ξ)
35
+ ���
36
+ L∞(Ωh) ≤ C∥v∥L∞(Ωh).
37
+ Proof. Using a scaling argument on [2, Corollary 4.1.15], we immediately have that
38
+ ���T k
39
+ h (v)
40
+ ��
41
+ η(ξ)
42
+ ���
43
+ L∞(Ei∩Si,ℓ) ≤ Cδ−d
44
+ h ∥v∥L1(σi,ℓ)
45
+ ≤ C∥v∥L∞(σi,ℓ)
46
+ We conclude by seeing that���T k
47
+ h (v)
48
+ ��
49
+ η(ξ)
50
+ ���
51
+ L∞(Γh) = max
52
+ i,ℓ
53
+ ���T k
54
+ h (v)
55
+ ��
56
+ η(ξ)
57
+ ���
58
+ L∞(Ei∩Si,ℓ) .
59
+
60
+ Lemma 2. Let v ∈ W k+1
61
+
62
+ (Ωh). Then for an integer m < k + 1, the following is satisfied
63
+ ���T k
64
+ h (v)
65
+ ��
66
+ η(ξ) − v
67
+ ���
68
+ W m
69
+ ∞(Γh) ≤ Cδk+1−m
70
+ h
71
+ |v|W k+1
72
+
73
+ (Ωh).
74
+ 1
75
+
76
+ Proof. Using [2, Proposition 4.3.2], we have that
77
+ ���T k
78
+ h (v)
79
+ ��
80
+ η(ξ) − v
81
+ ���
82
+ W m
83
+ ∞(Ei∩Si,ℓ) =
84
+ ��T k
85
+ h (v) − v
86
+ ��
87
+ W m
88
+ ∞(η(Ei)∩Si,ℓ)
89
+
90
+ ��T k
91
+ h (v) − v
92
+ ��
93
+ W m
94
+ ∞(Si,ℓ)
95
+ ≤ Cδk+1−m
96
+ h
97
+ |v|W k+1
98
+
99
+ (Si,ℓ).
100
+ Taking the maximum over all i, ℓ ∈ N concludes the proof.
101
+
102
+ Lemma 3. Let v ∈ V
103
+ k
104
+ h, then
105
+ ����T k′,k
106
+ h
107
+ (v)
108
+ ���
109
+ η(ξ)
110
+ ����
111
+ L∞(Γh)
112
+ ≤ C
113
+ k
114
+
115
+ α|=1
116
+ h−|α|δ|α|
117
+ h ∥v∥L∞(Ωh)
118
+ Proof. From the definition of T k′,k
119
+ h
120
+ (v), we see directly that
121
+ ����T k′,k
122
+ h
123
+ (v)
124
+ ���
125
+ η(ξ)
126
+ ����
127
+ L∞(Γh)
128
+
129
+ k
130
+
131
+ |α|=1
132
+ δ|α|
133
+ h
134
+ |α|! ∥Dαv∥L∞(Γh)
135
+
136
+ k
137
+
138
+ |α|=1
139
+ δ|α|
140
+ h
141
+ |α|! ∥Dαv∥L∞(Ωh)
142
+
143
+ k
144
+
145
+ |α|=1
146
+ δ|α|
147
+ h h−|α|
148
+ |α|!
149
+ ∥v∥L∞(Ωh) ,
150
+ after applying the inverse inequality.
151
+
152
+ With these technical lemmas derived, we are now ready to prove that the solution of the Neumann
153
+ approximation presented in [4] is well-posed and optimal in W 1
154
+ ∞(Ω).
155
+ 3. Well-Posedness and Error Estimates in W 1
156
+ ∞(Ωh)
157
+ In this section, we determine that the solution uh ∈ V k
158
+ h is bounded in W 1
159
+ ∞(Ωh).
160
+ Additionally, we
161
+ demonstrate that the error estimate is optimal in the same norm. The analysis presented here is remarkably
162
+ standard since the perturbations incurred by the extensions in the discrete bilinear form are not large enough
163
+ to cause stability loss. Additionally, Strang’s Lemma arguments are also used to handle the error incurred
164
+ by the nonconforming perturbations in the bilinear form.
165
+ Theorem 1. Assume that δh ∼ O(h2) and that h ∈ R+ is sufficiently small. Further assume that �p, �q ∈
166
+ Ck+1(Ωh). Then there exist positive constants γ, M ∈ R+ such that
167
+ (1)
168
+ sup
169
+ vh∈V k
170
+ h ∩W 1
171
+ 1 (Ωh)
172
+ Bh,N(wh, vh)
173
+ ∥vh∥W 1
174
+ 1 (Ωh)
175
+ ≥ γ∥wh∥W 1
176
+ ∞(Ωh)
177
+ and
178
+ (2)
179
+ Bh,N(wh, vh) ≤ M∥wh∥W 1
180
+ ∞(Ωh)∥vh∥W 1
181
+ 1 (Ωh)
182
+ for all uh, vh ∈ V k
183
+ h .
184
+ Proof. We begin by recalling that
185
+ Bh,N(wh, vh) =
186
+
187
+ Ωh
188
+ (�p∇wh · ∇vh + ˜qwhvh) dx +
189
+
190
+ �p ◦ η(ξ) Tk−1
191
+ h
192
+ (∇wh)
193
+ ��
194
+ η(ξ) · n − �p(ξ)∇wh · nh, vh
195
+
196
+ Γh
197
+ .
198
+ We then see that
199
+ Bh,N(wh, vh) ≥
200
+
201
+ Ωh
202
+ (�p∇wh · ∇vh + �qwhvh) dx − Ch|u|W 1
203
+ ∞(Ωh)∥vh∥W 1
204
+ 1 (Ωh),
205
+ 2
206
+
207
+ after applying Lemma 3 and the trace inequality [2, Theorem 1.6.6]. Dividing both sides with ∥vh∥W 1
208
+ 1 (Ωh)
209
+ allows us to see that
210
+ sup
211
+ vh∈V k
212
+ h ∩W 1
213
+ 1 (Ωh)
214
+ Bh,N(wh, vh)
215
+ ∥vh∥W 1
216
+ 1 (Ωh)
217
+
218
+ sup
219
+ vh∈V k
220
+ h ∩W 1
221
+ 1 (Ωh)
222
+
223
+ Ωh (�p∇wh · ∇vh + �qwhvh) dx
224
+ ∥vh∥W 1
225
+ 1 (Ωh)
226
+ − Ch|u|W 1
227
+ ∞(Ωh).
228
+ Now, choosing vh = wh allows us to see that supvh∈V k
229
+ h ∩W 1
230
+ 1 (Ωh)
231
+
232
+ Ωh(�p∇wh·∇vh+�qwhvh)dx
233
+ ∥vh∥W 1
234
+ 1 (Ωh)
235
+ > 0. As such, we can
236
+ choose a constant Cp,q > 0 such that
237
+ sup
238
+ vh∈V k
239
+ h ∩W 1
240
+ 1 (Ωh)
241
+
242
+ Ωh (�p∇wh · ∇vh + �qwhvh) dx
243
+ ∥vh∥W 1
244
+ 1 (Ωh)
245
+ ≥ Cp,q
246
+ sup
247
+ vh∈V k
248
+ h ∩W 1
249
+ 1 (Ωh)
250
+
251
+ Ωh (∇wh · ∇vh + whvh) dx
252
+ ∥vh∥W 1
253
+ 1 (Ωh)
254
+ = Cp,q∥wh∥W 1
255
+ ∞(Ωh).
256
+ Therefore,
257
+ sup
258
+ vh∈V k
259
+ h ∩W 1
260
+ 1 (Ωh)
261
+ Bh,N(wh, vh)
262
+ ∥vh∥W 1
263
+ 1 (Ωh)
264
+ ≥ Cp,q∥wh∥W 1
265
+ ∞Ωh − Ch∥uh∥W 1
266
+ ∞(Ωh).
267
+ And thus, we have that (1) is satisfied.
268
+ Using Lemma 1, H¨older’s inequality, and the trace inequality allows us to derive (2).
269
+
270
+ Theorem 2. Let uh ∈ V k
271
+ h satisfy [4, Equation 26]. Assume that u ∈ W k+1
272
+
273
+ (Ω) and that f ∈ W k−1
274
+
275
+ (Ω).
276
+ Furthermore, let �u ∈ W k+1
277
+
278
+ (Ωh) and �f, �f ∈ W k−1
279
+
280
+ (Ωh) be extensions of u and f respectively from Ω to Ωh.
281
+ We then have that
282
+ ∥�u − uh∥W 1
283
+ ∞(Ωh) ≤ Chk �
284
+ |u|W k+1
285
+
286
+ (Ω) + ∥f∥W k−1
287
+
288
+ (Ω)
289
+
290
+ under the conditions specified in Theorem 1.
291
+ Proof. Let uI ∈ V k
292
+ h be the piecewise polynomial interpolant of �u ∈ W k+1
293
+
294
+ (Ωh) defined on Ωh. From [2,
295
+ Theorem 4.2.20] and the Stein extension theorem [1], we have that
296
+ (3)
297
+ ∥�u − uI∥W 1
298
+ ∞(Ωh) ≤ Chk|u|W k+1
299
+
300
+ (Ω).
301
+ We begin the analysis by seeing that
302
+ ∥uI − uh∥W 1
303
+ ∞(Ωh) ≤
304
+ sup
305
+ vh∈V k
306
+ h ∩W 1
307
+ 1 (Ωh)
308
+ Bh,N(uI − uh, vh)
309
+ ∥vh∥W 1
310
+ 1 (Ωh)
311
+ =
312
+ sup
313
+ vh∈V k
314
+ h ∩W 1
315
+ 1 (Ωh)
316
+ Bh,N(uI − �u, vh) + Bh,N(�u − uh, vh)
317
+ ∥vh∥W 1
318
+ 1 (Ωh)
319
+ ≤ M∥�u − uh∥W 1
320
+ ∞(Ωh) +
321
+ sup
322
+ vh∈V k
323
+ h ∩W 1
324
+ 1 (Ωh)
325
+
326
+ �f − �f, vh
327
+
328
+ Ωh
329
+
330
+
331
+ �p ◦ η(ξ)Rk−1 (∇�u)|η(ξ) · n, vh
332
+
333
+ Γh
334
+ ∥vh∥W 1
335
+ 1 (Ωh)
336
+ ≤ Chk|u|W k+1
337
+
338
+ (Ω) + Cδk−1
339
+ h
340
+ |f|W k−1
341
+
342
+ (Ω) + Cδk−1
343
+ h
344
+ |u|W k+1
345
+
346
+ (Ω)
347
+ ≤ Chk|u|W k+1
348
+
349
+ (Ω)
350
+ after utilizing (3), Lemma 2, and seeing that
351
+ Bh,N(�u, vh) =
352
+
353
+ �f, vh
354
+
355
+ Ωh
356
+ +
357
+
358
+ gN ◦ η(ξ) − �p ◦ η(ξ)Rk−1 (∇u)|η(ξ) · n, vh
359
+
360
+ Γh
361
+ .
362
+ The proof is completed by seeing that
363
+ ∥�u − uh∥W 1
364
+ ∞(Ωh) ≤ ∥u − uI∥W 1
365
+ ∞(Ωh) + ∥uI − uh∥W 1
366
+ ∞(Ωh),
367
+ and applying the above bound along with (3).
368
+
369
+ 3
370
+
371
+ 4. Error Estimates in L2(Ωh)
372
+ We are now ready to derive the optimal error estimates for the solution of the Neumann approximation
373
+ in the L2(Ω) norm. The analysis begins by estimating the nonconformity error. This nonconformity error
374
+ will then be used in the following duality argument to bound the terms in the discrete problem that are not
375
+ orthogonal in the Galerkin sense with respect to the continuous bilinear form.
376
+ 4.1. Nonconformity Error. Let us begin the derivation of the L2(Ωh) error bound by analyzing the
377
+ nonconformity induced by Bh,N(·, ·) := H1(Ωh) × V k
378
+ h → R+.
379
+ Lemma 4. Assume that all the conditions in Theorem 2 hold, then the following is satisfied
380
+ Nh(�u − uh, vh) ≤ Chk+1 �
381
+ |u|W k+1
382
+
383
+ (Ω) + |f|W k−1
384
+
385
+ (Ω)
386
+
387
+ ∥vh∥1,Ωh
388
+ for all V k
389
+ h ∩ W 1
390
+ 1 (Ωh).
391
+ Proof. Notice that
392
+ Bh,N(�u, vh) =
393
+
394
+ �f, vh
395
+
396
+ Ωh
397
+ +
398
+
399
+ gN ◦ η(ξ) − �p ◦ η(ξ) Rk−1
400
+ h
401
+ (∇�u)
402
+ ��
403
+ η(ξ) · n, vh
404
+
405
+ Γh
406
+ ∀v ∈ H1(Ωh).
407
+ Taking the difference with [4, Equation (24)] yields
408
+ Bh,N(�u − uh, vh) =
409
+
410
+ �f − �f, vh
411
+
412
+ Ωh
413
+
414
+
415
+ �p ◦ η(ξ) Rk−1
416
+ h
417
+ (∇�u)
418
+ ��
419
+ η(ξ) · n, vh
420
+
421
+ Γh
422
+ ∀vh ∈ V k
423
+ h .
424
+ Let us define eh := �u − uh, then from the definition of Bh,N(·, ·) (See [4, Equation (25)]), we have that
425
+ (4)
426
+ Nh(eh, vh) =
427
+
428
+ �f − �f, vh
429
+
430
+ Ωh
431
+
432
+
433
+ �p ◦ η(ξ) Rk−1
434
+ h
435
+ (∇�u)
436
+ ��
437
+ η(ξ) · n, vh
438
+
439
+ Γh
440
+
441
+
442
+ �p ◦ η(ξ) Tk−1
443
+ h
444
+ (∇eh)
445
+ ��
446
+ η(ξ) · n, vh
447
+
448
+ Γh
449
+ + ⟨�p(ξ)∇eh · nh, vh⟩Γh
450
+ =
451
+
452
+ �f − �f, vh
453
+
454
+ Ωh
455
+
456
+
457
+ �p ◦ η(ξ) Rk−1
458
+ h
459
+ (∇�u)
460
+ ��
461
+ η(ξ) · n, vh
462
+
463
+ Γh
464
+ + ⟨�p ◦ η(ξ)∇eh · (n − nh), vh⟩Γh +
465
+
466
+ �p(ξ) T1,k−1
467
+ h
468
+ (∇eh)
469
+ ���
470
+ η(ξ) · n, vh
471
+
472
+ Γh
473
+ +
474
+
475
+ (�p(ξ) − �p ◦ η(ξ)) Tk−1
476
+ h
477
+ (∇eh)
478
+ ��
479
+ η(ξ) · n, vh
480
+
481
+ Γh
482
+ .
483
+ We will now analyze each of the terms on the right hand side of (4) seperately.
484
+ Let Ωh
485
+ diff := Ωh \ (Ω ∩ Ωh), then we have by the definition of the extension that
486
+
487
+ �f − �f, vh
488
+
489
+ Ωh
490
+ =
491
+
492
+ �f − �f, vh
493
+ ��
494
+ Ωh
495
+ diff
496
+
497
+
498
+ max
499
+ i,ℓ ∥ �f − T k−1
500
+ h
501
+ f∥L∞(Si,ℓ) + max
502
+ i,ℓ ∥ �f − T k−1
503
+ h
504
+ f∥L∞(Si,ℓ)
505
+ � �
506
+ Ωh
507
+ diff
508
+ 1 · |v|dx
509
+ ≤ Cδk−1
510
+ h
511
+ |Ωh
512
+ diff|
513
+ 1
514
+ 2 |f|W k−1
515
+
516
+ (Ωh)∥vh∥0,Ωh
517
+ ≤ Cδ
518
+ k− 1
519
+ 2
520
+ h
521
+ |f|W k−1
522
+
523
+ (Ωh)∥vh∥1,Ωh,
524
+ after applying [2, Lemma 4.3.8], H¨older’s inequality, and seeing that |Ωh
525
+ diff| ∼ O(δh). Since we have assumed
526
+ that δh ∼ O(h2), we have that
527
+ (5)
528
+
529
+ �f − �f, vh
530
+
531
+ Ωh
532
+ ≤ Ch2k−1|f|W k−1
533
+
534
+ (Ωh)∥vh∥1,Ωh.
535
+ Next, using Lemma 2, we have that
536
+ (6)
537
+
538
+ �p ◦ η(ξ) Rk−1
539
+ h
540
+ (∇�u)
541
+ ��
542
+ η(ξ) · n, vh
543
+
544
+ Γh
545
+ ≤ p
546
+ ���Rk−1
547
+ h
548
+ ∇�u
549
+ ��
550
+ η(ξ)
551
+ ���
552
+ L∞(Γh) ∥vh∥L1(Γh)
553
+ ≤ Cδk
554
+ h|∇�u|W k
555
+ ∞(Ω)∥vh∥0,Γh
556
+ ≤ Ch2k|u|W k+1
557
+
558
+ (Ω)∥vh∥1,Ωh,
559
+ 4
560
+
561
+ after applying the trace theorem and the assumption that δh ∼ O(h2).
562
+ Additionally, we have that
563
+ (7)
564
+ ⟨�p ◦ η(ξ)∇eh · (n − nh), vh⟩Γh ≤ p
565
+
566
+ max
567
+ ξ∈Γh ∥n ◦ η(ξ) − nh(ξ)∥Rd
568
+
569
+ ∥∇eh∥L∞(Γh)∥vh∥L1(Γh)
570
+ ≤ Ch∥eh∥W 1
571
+ ∞(Ωh)∥vh∥1,Ωh
572
+ ≤ Chk+1 �
573
+ |u|W k+1
574
+
575
+ (Ω) + |f|W k−1
576
+
577
+ (Ω)
578
+
579
+ ∥vh∥1,Ωh,
580
+ after applying Theorem 2.
581
+ Then, we have that
582
+ (8)
583
+
584
+ �p(ξ) T1,k−1
585
+ h
586
+ (∇eh)
587
+ ���
588
+ η(ξ) · n, vh
589
+
590
+ Γh
591
+ ≤ Cp∥vh∥1,1Ωh
592
+ k−1
593
+
594
+ |α|=1
595
+ δ|α|
596
+ h ∥Dα∇eh∥L∞(Γh)
597
+ ≤ Cp∥vh∥1,1Ωh
598
+ k−1
599
+
600
+ |α|=1
601
+ δ|α|
602
+ h
603
+
604
+ ∥Dα∇(�u − uI)∥L∞(Ωh) + ∥Dα∇(uI − uh)∥L∞(Ωh)
605
+
606
+ ≤ Cp∥vh∥1,1Ωh
607
+ k−1
608
+
609
+ |α|=1
610
+ δ|α|
611
+ h
612
+
613
+ hk−|α||u|W k+1
614
+
615
+ (Ω) + Ch−|α| �
616
+ ∥∇(eh)∥L∞(Ωh) − ∥∇(�u − uI)∥L∞(Ωh)
617
+ ��
618
+ ≤ Cp∥vh∥1,1Ωh
619
+ k−1
620
+
621
+ |α|=1
622
+ δ|α|
623
+ h hk−|α| �
624
+ |u|W k+1
625
+
626
+ (Ω) + |f|W k−1
627
+
628
+ (Ω)
629
+
630
+ ≤ Chk+1 �
631
+ |u|W k+1
632
+
633
+ (Ω) + |f|W k−1
634
+
635
+ (Ω)
636
+
637
+ ∥vh∥1,Ωh
638
+ after applying Theorem 2 and the interpolation estimate [2, Theorem 4.2.20].
639
+ We finally move on to the last term, where we see that
640
+ (9)
641
+
642
+ (�p(ξ) − �p ◦ η(ξ)) Tk−1
643
+ h
644
+ (∇eh)
645
+ ��
646
+ η(ξ) · n, vh
647
+
648
+ Γh
649
+ ≤ Cδh
650
+ ���Tk−1
651
+ h
652
+ (∇eh)
653
+ ��
654
+ η(ξ)
655
+ ���
656
+ L∞(Γh) ∥vh∥L1(Γh)
657
+ ≤ Cδh∥∇eh∥L∞(Ωh)∥vh∥1,Ωh
658
+ ≤ Chk+2 �
659
+ |u|W k+1
660
+
661
+ (Ω) + |f|W k−1
662
+
663
+ (Ω)
664
+
665
+ ∥vh∥1,Ωh,
666
+ where we used Lemma 1 and Theorem 2.
667
+ Inserting (5), (6), (7), (8), and (9) into (4) gives us
668
+ Nh(�u − uh, vh) ≤ Chk+1 �
669
+ |u|W k+1
670
+
671
+ (Ω) + |f|W k−1
672
+
673
+ (Ω)
674
+
675
+ ∥vh∥1,Ωh
676
+ ∀vh ∈ V k
677
+ h
678
+ This concludes this proof.
679
+
680
+ Now that we have established that the nonconformity in the bilinear form is bounded above by O(hk+1),
681
+ we are now ready to analyze the L2(Ω) error of the numerical solution.
682
+ 4.2. The Dual Problem. The dual problem we are interested in utilizing is to seek a ψ ∈ H1(Ωh) such
683
+ that
684
+ Nh(v, ψ) = ⟨�u − uh, v⟩Ωh
685
+ ∀v ∈ H1(Ωh).
686
+ The corresponding finite element approximation to the dual problem is to seek a ψh ∈ V k
687
+ h such that
688
+ Nh(v, ψh) = ⟨�u − uh, v⟩Ωh
689
+ ∀vh ∈ V k
690
+ h .
691
+ In general, φ ∈ H1(Ωh) does not full H2(Ωh) regularity due to the presence of interior angles in Γh. From
692
+ the literature, [2, 5] it is known that
693
+ (10)
694
+ ∥ψ∥1+s,Ωh ≤ C∥u − uh∥0,Ωh
695
+ 5
696
+
697
+ and
698
+ (11)
699
+ ∥φ∥1,Ωh ≤ C∥u − uh∥−1,Ωh ≤ C∥u − uh∥0,Ωh.
700
+ Furthermore, we have that
701
+ (12)
702
+ ∥ψ − ψh∥1,Ωh ≤ Chs|φ|1+s,Ωh,
703
+ where s ∈
704
+ � 1
705
+ 2, 1
706
+
707
+ depends on the magnitude of the largest interior angle of Γh. See [4, Remark 7].
708
+ 4.3. Analysis of L2(Ωh) Convergence. With the previous results proven, we are now ready to derive op-
709
+ timal L2(Ωh) error estimates for the PE-FEM approximation of elliptic Neumann boundary value problems.
710
+ Theorem 3. Assume that all the conditions in Theorem 2 are satisfied. Then we have that
711
+ ∥�u − uh∥0,Ωh ≤ Chk+s �
712
+ |u|W k+1
713
+
714
+ (Ω) + |f|W k−1
715
+
716
+
717
+
718
+ ,
719
+ where s ∈
720
+ � 1
721
+ 2, 1
722
+
723
+ depends on the largest interior angle of Γh. If Γh is convex, then s = 1.
724
+ Proof. From the definition of the dual problem, we have that
725
+ ∥�u − uh∥2
726
+ 0,Ωh = Nh(�u − uh, φ)
727
+ = Nh(�u − uh, φ − φh) + Nh(�u − uh, φh)
728
+ ≤ C∥�u − uh∥1,Ωh∥φ − φh∥1,Ωh + Nh(�u − uh, φh)
729
+ ([4, Theorem 2])
730
+ ≤ Chk+s (|u|k+1,Ωh + |f|k−1,Ωh) |φ|2,Ωh + Nh(�u − uh, φh)
731
+ (12) and [4, Theorem 5]
732
+ ≤ Chk+s (|u|k+1,Ωh + |f|k−1,Ωh) |φ|2,Ωh
733
+ + Chk+1 �
734
+ |u|W k+1
735
+
736
+ (Ω) + |f|W k−1
737
+
738
+
739
+
740
+ ∥φh∥1,Ωh
741
+ Lemma 4
742
+ ≤ Chk+s �
743
+ |u|W k+1
744
+
745
+ (Ω) + |f|W k−1
746
+
747
+
748
+
749
+ ∥�u − uh∥0,Ωh
750
+ (10) and (11).
751
+ This concludes this proof.
752
+
753
+ 5. Conclusion
754
+ In this manuscript, we have presented new results that indicate that the solution of the Neumann ap-
755
+ proximation presented in [4] is optimal in W 1
756
+ ∞(Ω) and L2(Ω). Our analysis implies hat the solution to the
757
+ continuous Neumann problem must be pointwise bounded a.e. in its (k + 1)-th derivative in order for us to
758
+ achieve additional accuracy in the L2(Ω) norm, otherwise the L2(Ω) error is bounded by the O(hk) H1(Ω)
759
+ error.
760
+ In our future work, we plan on utilizing these results in the derivation of optimal L2(Ω) × L2(Ω) error
761
+ estimates for the interface coupling method presented in [3]. We will then aim to establish a generalized
762
+ theory for the well-posedness and approximation properties of extension boundary methods. We believe that
763
+ this approach can be generalized across many types of partial differential equations since the work presented
764
+ in this manuscript and in [4] indicates that the averaged Taylor series approximation only generates an O(h)
765
+ perturbation to the discretized variational operator that vanishes as h → 0.
766
+ References
767
+ [1] Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier, 2003.
768
+ [2] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathematical theory of finite element methods, volume 3.
769
+ Springer, 2008.
770
+ [3] James Cheung, Max Gunzburger, Pavel Bochev, and Mauro Perego. An optimally convergent higher-order finite element
771
+ coupling method for interface and domain decomposition problems. Results in Applied Mathematics, 6:100094, 2020.
772
+ [4] James Cheung, Mauro Perego, Pavel Bochev, and Max Gunzburger. Optimally accurate higher-order finite element methods
773
+ for polytopial approximations of domains with smooth boundaries. Mathematics of Computation, 88(319):2187–2219, 2019.
774
+ [5] Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
775
+ 6
776
+
6NE2T4oBgHgl3EQfOwb7/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf,len=183
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
3
+ page_content='03753v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
4
+ page_content='NA] 10 Jan 2023 ENFORCING NEUMANN BOUNDARY CONDITIONS WITH POLYNOMIAL EXTENSION OPERATORS TO ACHEIVE OPTIMAL CONVERGENCE RATES ON POLYTOPIAL MESHES IN THE FINITE ELEMENT METHOD JAMES CHEUNG Millennium Space Systems, A Boeing Company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
5
+ page_content=' 2265 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
6
+ page_content=' El Segundo Blvd, El Segundo, CA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
7
+ page_content=' Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
8
+ page_content=' In [4], the authors presented two finite element methods for approximating second order bound- ary value problems on polytopial meshes with optimal accuracy without having to utilize curvilinear map- pings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
9
+ page_content=' This was done by enforcing the boundary conditions through judiciously chosen polynomial extension operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
10
+ page_content=' The H1 error estimates were proven to be optimal for the solutions of both the Dirichlet and Neumann boundary value problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
11
+ page_content=' It was also proven that the Dirichlet problem approximation converges optimally in L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
12
+ page_content=' However, optimality of the Neumann approximation in the L2 norm was left as an open problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
13
+ page_content=' In this work, we seek to close this problem by presenting new analysis that proves optimal error estimates for the Neumann approximation in the W 1 ∞ and L2 norms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
14
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
15
+ page_content=' Introduction The purpose of this note is to derive optimal error estimates for the polynomial extension finite element method (PE-FEM) described in [4] for approximating elliptic boundary value problems with Neumann conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
16
+ page_content=' This manuscript is very much an appendix to our previous work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
17
+ page_content=' As such, we highly suggest that the reader refer to that work, especially since we will not redefine our notation here for the sake of brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
18
+ page_content=' Our analysis will be structured in the following manner: We present new technical lemmas involving the Averaged Taylor series in §2, then in §3 we move on to prove well-posedness and derive optimal error estimates for the numerical solution in the W 1 ∞(Ω) norm, using this new result we are finally able to derive optimal error estimates for the numerical solution in the L2(Ω) norm in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
19
+ page_content=' We then discuss our results and propose additional future research in §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
20
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
21
+ page_content=' Additional Results for Averaged Taylor Polynomials We begin our analysis by deriving some technical results for the Averaged Taylor polynomials in the W m ∞(Ωh) setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
22
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
23
+ page_content=' Let v ∈ L∞(Ωh), then ���T k h (v) �� η(ξ) ��� L∞(Ωh) ≤ C∥v∥L∞(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
24
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
25
+ page_content=' Using a scaling argument on [2, Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
26
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
27
+ page_content='15], we immediately have that ���T k h (v) �� η(ξ) ��� L∞(Ei∩Si,ℓ) ≤ Cδ−d h ∥v∥L1(σi,ℓ) ≤ C∥v∥L∞(σi,ℓ) We conclude by seeing that���T k h (v) �� η(ξ) ��� L∞(Γh) = max i,ℓ ���T k h (v) �� η(ξ) ��� L∞(Ei∩Si,ℓ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
28
+ page_content=' □ Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
29
+ page_content=' Let v ∈ W k+1 ∞ (Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
30
+ page_content=' Then for an integer m < k + 1, the following is satisfied ���T k h (v) �� η(ξ) − v ��� W m ∞(Γh) ≤ Cδk+1−m h |v|W k+1 ∞ (Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
31
+ page_content=' 1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
32
+ page_content=' Using [2, Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
33
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
34
+ page_content='2], we have that ���T k h (v) �� η(ξ) − v ��� W m ∞(Ei∩Si,ℓ) = ��T k h (v) − v �� W m ∞(η(Ei)∩Si,ℓ) ≤ ��T k h (v) − v �� W m ∞(Si,ℓ) ≤ Cδk+1−m h |v|W k+1 ∞ (Si,ℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
35
+ page_content=' Taking the maximum over all i, ℓ ∈ N concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
36
+ page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
37
+ page_content=' Let v ∈ V k h, then ����T k′,k h (v) ��� η(ξ) ���� L∞(Γh) ≤ C k � α|=1 h−|α|δ|α| h ∥v∥L∞(Ωh) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
38
+ page_content=' From the definition of T k′,k h (v), we see directly that ����T k′,k h (v) ��� η(ξ) ���� L∞(Γh) ≤ k � |α|=1 δ|α| h |α|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
39
+ page_content=' ∥Dαv∥L∞(Γh) ≤ k � |α|=1 δ|α| h |α|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
40
+ page_content=' ∥Dαv∥L∞(Ωh) ≤ k � |α|=1 δ|α| h h−|α| |α|!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
41
+ page_content=' ∥v∥L∞(Ωh) , after applying the inverse inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
42
+ page_content=' □ With these technical lemmas derived, we are now ready to prove that the solution of the Neumann approximation presented in [4] is well-posed and optimal in W 1 ∞(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
43
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
44
+ page_content=' Well-Posedness and Error Estimates in W 1 ∞(Ωh) In this section, we determine that the solution uh ∈ V k h is bounded in W 1 ∞(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
45
+ page_content=' Additionally, we demonstrate that the error estimate is optimal in the same norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
46
+ page_content=' The analysis presented here is remarkably standard since the perturbations incurred by the extensions in the discrete bilinear form are not large enough to cause stability loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
47
+ page_content=' Additionally, Strang’s Lemma arguments are also used to handle the error incurred by the nonconforming perturbations in the bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
48
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
49
+ page_content=' Assume that δh ∼ O(h2) and that h ∈ R+ is sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
50
+ page_content=' Further assume that �p, �q ∈ Ck+1(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
51
+ page_content=' Then there exist positive constants γ, M ∈ R+ such that (1) sup vh∈V k h ∩W 1 1 (Ωh) Bh,N(wh, vh) ∥vh∥W 1 1 (Ωh) ≥ γ∥wh∥W 1 ∞(Ωh) and (2) Bh,N(wh, vh) ≤ M∥wh∥W 1 ∞(Ωh)∥vh∥W 1 1 (Ωh) for all uh, vh ∈ V k h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
52
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
53
+ page_content=' We begin by recalling that Bh,N(wh, vh) = � Ωh (�p∇wh · ∇vh + ˜qwhvh) dx + � �p ◦ η(ξ) Tk−1 h (∇wh) �� η(ξ) · n − �p(ξ)∇wh · nh, vh � Γh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
54
+ page_content=' We then see that Bh,N(wh, vh) ≥ � Ωh (�p∇wh · ∇vh + �qwhvh) dx − Ch|u|W 1 ∞(Ωh)∥vh∥W 1 1 (Ωh), 2 after applying Lemma 3 and the trace inequality [2, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
55
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
56
+ page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
57
+ page_content=' Dividing both sides with ∥vh∥W 1 1 (Ωh) allows us to see that sup vh∈V k h ∩W 1 1 (Ωh) Bh,N(wh, vh) ∥vh∥W 1 1 (Ωh) ≥ sup vh∈V k h ∩W 1 1 (Ωh) � Ωh (�p∇wh · ∇vh + �qwhvh) dx ∥vh∥W 1 1 (Ωh) − Ch|u|W 1 ∞(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
58
+ page_content=' Now, choosing vh = wh allows us to see that supvh∈V k h ∩W 1 1 (Ωh) � Ωh(�p∇wh·∇vh+�qwhvh)dx ∥vh∥W 1 1 (Ωh) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
59
+ page_content=' As such, we can choose a constant Cp,q > 0 such that sup vh∈V k h ∩W 1 1 (Ωh) � Ωh (�p∇wh · ∇vh + �qwhvh) dx ∥vh∥W 1 1 (Ωh) ≥ Cp,q sup vh∈V k h ∩W 1 1 (Ωh) � Ωh (∇wh · ∇vh + whvh) dx ∥vh∥W 1 1 (Ωh) = Cp,q∥wh∥W 1 ∞(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
60
+ page_content=' Therefore, sup vh∈V k h ∩W 1 1 (Ωh) Bh,N(wh, vh) ∥vh∥W 1 1 (Ωh) ≥ Cp,q∥wh∥W 1 ∞Ωh − Ch∥uh∥W 1 ∞(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
61
+ page_content=' And thus, we have that (1) is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
62
+ page_content=' Using Lemma 1, H¨older’s inequality, and the trace inequality allows us to derive (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
63
+ page_content=' □ Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
64
+ page_content=' Let uh ∈ V k h satisfy [4, Equation 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
65
+ page_content=' Assume that u ∈ W k+1 ∞ (Ω) and that f ∈ W k−1 ∞ (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
66
+ page_content=' Furthermore, let �u ∈ W k+1 ∞ (Ωh) and �f, �f ∈ W k−1 ∞ (Ωh) be extensions of u and f respectively from Ω to Ωh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
67
+ page_content=' We then have that ∥�u − uh∥W 1 ∞(Ωh) ≤ Chk � |u|W k+1 ∞ (Ω) + ∥f∥W k−1 ∞ (Ω) � under the conditions specified in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
68
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
69
+ page_content=' Let uI ∈ V k h be the piecewise polynomial interpolant of �u ∈ W k+1 ∞ (Ωh) defined on Ωh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
70
+ page_content=' From [2, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
71
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
72
+ page_content='20] and the Stein extension theorem [1], we have that (3) ∥�u − uI∥W 1 ∞(Ωh) ≤ Chk|u|W k+1 ∞ (Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
73
+ page_content=' We begin the analysis by seeing that ∥uI − uh∥W 1 ∞(Ωh) ≤ sup vh∈V k h ∩W 1 1 (Ωh) Bh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
74
+ page_content='N(uI − uh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
75
+ page_content=' vh) ∥vh∥W 1 1 (Ωh) = sup vh∈V k h ∩W 1 1 (Ωh) Bh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
76
+ page_content='N(uI − �u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
77
+ page_content=' vh) + Bh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
78
+ page_content='N(�u − uh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
79
+ page_content=' vh) ∥vh∥W 1 1 (Ωh) ≤ M∥�u − uh∥W 1 ∞(Ωh) + sup vh∈V k h ∩W 1 1 (Ωh) � �f − �f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
80
+ page_content=' vh � Ωh − � �p ◦ η(ξ)Rk−1 (∇�u)|η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
81
+ page_content=' vh � Γh ∥vh∥W 1 1 (Ωh) ≤ Chk|u|W k+1 ∞ (Ω) + Cδk−1 h |f|W k−1 ∞ (Ω) + Cδk−1 h |u|W k+1 ∞ (Ω) ≤ Chk|u|W k+1 ∞ (Ω) after utilizing (3),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
82
+ page_content=' Lemma 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
83
+ page_content=' and seeing that Bh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
84
+ page_content='N(�u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
85
+ page_content=' vh) = � �f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
86
+ page_content=' vh � Ωh + � gN ◦ η(ξ) − �p ◦ η(ξ)Rk−1 (∇u)|η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
87
+ page_content=' vh � Γh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
88
+ page_content=' The proof is completed by seeing that ∥�u − uh∥W 1 ∞(Ωh) ≤ ∥u − uI∥W 1 ∞(Ωh) + ∥uI − uh∥W 1 ∞(Ωh), and applying the above bound along with (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
89
+ page_content=' □ 3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
90
+ page_content=' Error Estimates in L2(Ωh) We are now ready to derive the optimal error estimates for the solution of the Neumann approximation in the L2(Ω) norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
91
+ page_content=' The analysis begins by estimating the nonconformity error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
92
+ page_content=' This nonconformity error will then be used in the following duality argument to bound the terms in the discrete problem that are not orthogonal in the Galerkin sense with respect to the continuous bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
93
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
94
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
95
+ page_content=' Nonconformity Error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
96
+ page_content=' Let us begin the derivation of the L2(Ωh) error bound by analyzing the nonconformity induced by Bh,N(·, ·) := H1(Ωh) × V k h → R+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
97
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
98
+ page_content=' Assume that all the conditions in Theorem 2 hold, then the following is satisfied Nh(�u − uh, vh) ≤ Chk+1 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ∥vh∥1,Ωh for all V k h ∩ W 1 1 (Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
99
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
100
+ page_content=' Notice that Bh,N(�u, vh) = � �f, vh � Ωh + � gN ◦ η(ξ) − �p ◦ η(ξ) Rk−1 h (∇�u) �� η(ξ) · n, vh � Γh ∀v ∈ H1(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
101
+ page_content=' Taking the difference with [4, Equation (24)] yields Bh,N(�u − uh, vh) = � �f − �f, vh � Ωh − � �p ◦ η(ξ) Rk−1 h (∇�u) �� η(ξ) · n, vh � Γh ∀vh ∈ V k h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
102
+ page_content=' Let us define eh := �u − uh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
103
+ page_content=' then from the definition of Bh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
104
+ page_content='N(·,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
105
+ page_content=' ·) (See [4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
106
+ page_content=' Equation (25)]),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
107
+ page_content=' we have that (4) Nh(eh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
108
+ page_content=' vh) = � �f − �f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
109
+ page_content=' vh � Ωh − � �p ◦ η(ξ) Rk−1 h (∇�u) �� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
110
+ page_content=' vh � Γh − � �p ◦ η(ξ) Tk−1 h (∇eh) �� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
111
+ page_content=' vh � Γh + ⟨�p(ξ)∇eh · nh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
112
+ page_content=' vh⟩Γh = � �f − �f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
113
+ page_content=' vh � Ωh − � �p ◦ η(ξ) Rk−1 h (∇�u) �� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
114
+ page_content=' vh � Γh + ⟨�p ◦ η(ξ)∇eh · (n − nh),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
115
+ page_content=' vh⟩Γh + � �p(ξ) T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
116
+ page_content='k−1 h (∇eh) ��� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
117
+ page_content=' vh � Γh + � (�p(ξ) − �p ◦ η(ξ)) Tk−1 h (∇eh) �� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
118
+ page_content=' vh � Γh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
119
+ page_content=' We will now analyze each of the terms on the right hand side of (4) seperately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
120
+ page_content=' Let Ωh diff := Ωh \\ (Ω ∩ Ωh), then we have by the definition of the extension that � �f − �f, vh � Ωh = � �f − �f, vh � Ωh diff ≤ � max i,ℓ ∥ �f − T k−1 h f∥L∞(Si,ℓ) + max i,ℓ ∥ �f − T k−1 h f∥L∞(Si,ℓ) � � Ωh diff 1 · |v|dx ≤ Cδk−1 h |Ωh diff| 1 2 |f|W k−1 ∞ (Ωh)∥vh∥0,Ωh ≤ Cδ k− 1 2 h |f|W k−1 ∞ (Ωh)∥vh∥1,Ωh, after applying [2, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
121
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
122
+ page_content='8], H¨older’s inequality, and seeing that |Ωh diff| ∼ O(δh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
123
+ page_content=' Since we have assumed that δh ∼ O(h2), we have that (5) � �f − �f, vh � Ωh ≤ Ch2k−1|f|W k−1 ∞ (Ωh)∥vh∥1,Ωh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
124
+ page_content=' Next, using Lemma 2, we have that (6) � �p ◦ η(ξ) Rk−1 h (∇�u) �� η(ξ) · n, vh � Γh ≤ p ���Rk−1 h ∇�u �� η(ξ) ��� L∞(Γh) ∥vh∥L1(Γh) ≤ Cδk h|∇�u|W k ∞(Ω)∥vh∥0,Γh ≤ Ch2k|u|W k+1 ∞ (Ω)∥vh∥1,Ωh, 4 after applying the trace theorem and the assumption that δh ∼ O(h2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
125
+ page_content=' Additionally, we have that (7) ⟨�p ◦ η(ξ)∇eh · (n − nh), vh⟩Γh ≤ p � max ξ∈Γh ∥n ◦ η(ξ) − nh(ξ)∥Rd � ∥∇eh∥L∞(Γh)∥vh∥L1(Γh) ≤ Ch∥eh∥W 1 ∞(Ωh)∥vh∥1,Ωh ≤ Chk+1 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ∥vh∥1,Ωh, after applying Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
126
+ page_content=' Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
127
+ page_content=' we have that (8) � �p(ξ) T1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
128
+ page_content='k−1 h (∇eh) ��� η(ξ) · n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
129
+ page_content=' vh � Γh ≤ Cp∥vh∥1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
130
+ page_content='1Ωh k−1 � |α|=1 δ|α| h ∥Dα∇eh∥L∞(Γh) ≤ Cp∥vh∥1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
131
+ page_content='1Ωh k−1 � |α|=1 δ|α| h � ∥Dα∇(�u − uI)∥L∞(Ωh) + ∥Dα∇(uI − uh)∥L∞(Ωh) � ≤ Cp∥vh∥1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
132
+ page_content='1Ωh k−1 � |α|=1 δ|α| h � hk−|α||u|W k+1 ∞ (Ω) + Ch−|α| � ∥∇(eh)∥L∞(Ωh) − ∥∇(�u − uI)∥L∞(Ωh) �� ≤ Cp∥vh∥1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
133
+ page_content='1Ωh k−1 � |α|=1 δ|α| h hk−|α| � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ≤ Chk+1 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ∥vh∥1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
134
+ page_content='Ωh after applying Theorem 2 and the interpolation estimate [2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
135
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
136
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
137
+ page_content='20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
138
+ page_content=' We finally move on to the last term, where we see that (9) � (�p(ξ) − �p ◦ η(ξ)) Tk−1 h (∇eh) �� η(ξ) · n, vh � Γh ≤ Cδh ���Tk−1 h (∇eh) �� η(ξ) ��� L∞(Γh) ∥vh∥L1(Γh) ≤ Cδh∥∇eh∥L∞(Ωh)∥vh∥1,Ωh ≤ Chk+2 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ∥vh∥1,Ωh, where we used Lemma 1 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
139
+ page_content=' Inserting (5), (6), (7), (8), and (9) into (4) gives us Nh(�u − uh, vh) ≤ Chk+1 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ (Ω) � ∥vh∥1,Ωh ∀vh ∈ V k h This concludes this proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
140
+ page_content=' □ Now that we have established that the nonconformity in the bilinear form is bounded above by O(hk+1), we are now ready to analyze the L2(Ω) error of the numerical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
141
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
142
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
143
+ page_content=' The Dual Problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
144
+ page_content=' The dual problem we are interested in utilizing is to seek a ψ ∈ H1(Ωh) such that Nh(v, ψ) = ⟨�u − uh, v⟩Ωh ∀v ∈ H1(Ωh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
145
+ page_content=' The corresponding finite element approximation to the dual problem is to seek a ψh ∈ V k h such that Nh(v, ψh) = ⟨�u − uh, v⟩Ωh ∀vh ∈ V k h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
146
+ page_content=' In general, φ ∈ H1(Ωh) does not full H2(Ωh) regularity due to the presence of interior angles in Γh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
147
+ page_content=' From the literature, [2, 5] it is known that (10) ∥ψ∥1+s,Ωh ≤ C∥u − uh∥0,Ωh 5 and (11) ∥φ∥1,Ωh ≤ C∥u − uh∥−1,Ωh ≤ C∥u − uh∥0,Ωh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
148
+ page_content=' Furthermore, we have that (12) ∥ψ − ψh∥1,Ωh ≤ Chs|φ|1+s,Ωh, where s ∈ � 1 2, 1 � depends on the magnitude of the largest interior angle of Γh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
149
+ page_content=' See [4, Remark 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
150
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
151
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
152
+ page_content=' Analysis of L2(Ωh) Convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
153
+ page_content=' With the previous results proven, we are now ready to derive op- timal L2(Ωh) error estimates for the PE-FEM approximation of elliptic Neumann boundary value problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
154
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
155
+ page_content=' Assume that all the conditions in Theorem 2 are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
156
+ page_content=' Then we have that ∥�u − uh∥0,Ωh ≤ Chk+s � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ Ω � , where s ∈ � 1 2, 1 � depends on the largest interior angle of Γh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
157
+ page_content=' If Γh is convex, then s = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
158
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
159
+ page_content=' From the definition of the dual problem, we have that ∥�u − uh∥2 0,Ωh = Nh(�u − uh, φ) = Nh(�u − uh, φ − φh) + Nh(�u − uh, φh) ≤ C∥�u − uh∥1,Ωh∥φ − φh∥1,Ωh + Nh(�u − uh, φh) ([4, Theorem 2]) ≤ Chk+s (|u|k+1,Ωh + |f|k−1,Ωh) |φ|2,Ωh + Nh(�u − uh, φh) (12) and [4, Theorem 5] ≤ Chk+s (|u|k+1,Ωh + |f|k−1,Ωh) |φ|2,Ωh + Chk+1 � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ Ω � ∥φh∥1,Ωh Lemma 4 ≤ Chk+s � |u|W k+1 ∞ (Ω) + |f|W k−1 ∞ Ω � ∥�u − uh∥0,Ωh (10) and (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
160
+ page_content=' This concludes this proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
161
+ page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
162
+ page_content=' Conclusion In this manuscript, we have presented new results that indicate that the solution of the Neumann ap- proximation presented in [4] is optimal in W 1 ∞(Ω) and L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
163
+ page_content=' Our analysis implies hat the solution to the continuous Neumann problem must be pointwise bounded a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
164
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
165
+ page_content=' in its (k + 1)-th derivative in order for us to achieve additional accuracy in the L2(Ω) norm, otherwise the L2(Ω) error is bounded by the O(hk) H1(Ω) error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
166
+ page_content=' In our future work, we plan on utilizing these results in the derivation of optimal L2(Ω) × L2(Ω) error estimates for the interface coupling method presented in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
167
+ page_content=' We will then aim to establish a generalized theory for the well-posedness and approximation properties of extension boundary methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
168
+ page_content=' We believe that this approach can be generalized across many types of partial differential equations since the work presented in this manuscript and in [4] indicates that the averaged Taylor series approximation only generates an O(h) perturbation to the discretized variational operator that vanishes as h → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
169
+ page_content=' References [1] Robert A Adams and John JF Fournier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
170
+ page_content=' Sobolev spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
171
+ page_content=' Elsevier, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
172
+ page_content=' [2] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
173
+ page_content=' The mathematical theory of finite element methods, volume 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
174
+ page_content=' Springer, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
175
+ page_content=' [3] James Cheung, Max Gunzburger, Pavel Bochev, and Mauro Perego.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
176
+ page_content=' An optimally convergent higher-order finite element coupling method for interface and domain decomposition problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
177
+ page_content=' Results in Applied Mathematics, 6:100094, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
178
+ page_content=' [4] James Cheung, Mauro Perego, Pavel Bochev, and Max Gunzburger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
179
+ page_content=' Optimally accurate higher-order finite element methods for polytopial approximations of domains with smooth boundaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
180
+ page_content=' Mathematics of Computation, 88(319):2187–2219, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
181
+ page_content=' [5] Philippe G Ciarlet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
182
+ page_content=' The finite element method for elliptic problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
183
+ page_content=' SIAM, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
184
+ page_content=' 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE2T4oBgHgl3EQfOwb7/content/2301.03753v1.pdf'}
7dAzT4oBgHgl3EQfEvrf/content/tmp_files/2301.01000v1.pdf.txt ADDED
@@ -0,0 +1,1816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 4, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Deep Synoptic Array science: a 50 Mpc fast radio burst constrains the mass of the Milky Way
4
+ circumgalactic medium
5
+ Vikram Ravi,1, 2 Morgan Catha,2 Ge Chen,1 Liam Connor,1 James M. Cordes,3, 4 Jakob T. Faber,1
6
+ James W. Lamb,2 Gregg Hallinan,1, 2 Charlie Harnach,2 Greg Hellbourg,1, 2 Rick Hobbs,2 David Hodge,1
7
+ Mark Hodges,2 Casey Law,1, 2 Paul Rasmussen,2 Kritti Sharma,1 Myles B. Sherman,1 Jun Shi,1 Dana Simard,1
8
+ Jean J. Somalwar,1 Reynier Squillace,1 Sander Weinreb,1 David P. Woody,2 Nitika Yadlapalli,1
9
+ (The Deep Synoptic Array team)
10
+ 1Cahill Center for Astronomy and Astrophysics, MC 249-17 California Institute of Technology, Pasadena CA 91125, USA.
11
+ 2Owens Valley Radio Observatory, California Institute of Technology, Big Pine CA 93513, USA.
12
+ 3Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
13
+ 4Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
14
+ ABSTRACT
15
+ We present the Deep Synoptic Array (DSA-110) discovery and interferometric localization of the so
16
+ far non-repeating FRB 20220319D. The FRB originates in a young, rapidly star-forming barred spiral
17
+ galaxy, IRAS 02044+7048, at just 50 Mpc. Although the NE2001 and YMW16 models for the Galactic
18
+ interstellar-medium (ISM) contribution to the DM of FRB 20220319D exceed its total observed DM,
19
+ we show that uncertainties in these models accommodate an extragalactic origin for the burst. We
20
+ derive a conservative upper limit on the DM contributed by the circumgalactic medium (CGM) of
21
+ the Milky Way: the limit is either 28.7 pc cm−3 and 47.3 pc cm−3, depending on which of two pulsars
22
+ nearby on the sky to FRB 20220319D is used to estimate the ISM DM. These limits both imply that
23
+ the total Galactic CGM mass is < 1011M⊙, and that the baryonic mass of the Milky Way is ≲ 60% of
24
+ the cosmological average given the total halo mass. More stringent albeit less conservative constraints
25
+ are possible when the DMs of pulsars in the distant globular cluster M53 are additionally considered.
26
+ Although our constraints are sensitive to possible anisotropy in the CGM and to the assumed form of
27
+ the radial-density profile, they are not subject to uncertainties in the chemical and thermal properties of
28
+ the CGM. Our results strongly support scenarios commonly predicted by galaxy-formation simulations
29
+ wherein feedback processes expel baryonic matter from the halos of galaxies like the Milky Way.
30
+ Keywords: Barred spiral galaxies — circumgalactic medium — radio interferometers — radio transient
31
+ sources — star formation — warm ionized medium
32
+ 1. INTRODUCTION
33
+ Galaxies like the Milky Way are embedded in a multi-
34
+ phase (∼ 104 − 107 K), highly ionized (hydrogen neu-
35
+ tral fractions ≪ 0.01%), kinematically complex, spa-
36
+ tially clumpy and anisotropic circumgalactic medium
37
+ (CGM; Tumlinson et al. 2017). Likely extending beyond
38
+ dark-matter halo virial radii rvir, the CGM may repre-
39
+ sent the dominant baryon component by mass within
40
+ Corresponding author: Vikram Ravi
41
+ vikram@caltech.edu
42
+ halos.
43
+ The physical properties of the CGM of exter-
44
+ nal galaxies, including density, temperature, kinematic
45
+ structure, and chemical composition have long been
46
+ probed by absorption-line measurements towards back-
47
+ ground objects.
48
+ More recently, detections of thermal
49
+ bremsstrahlung (e.g., Li et al. 2018) and the Sunyaev-
50
+ Zeldovich effect around nearby galaxies (e.g., Bregman
51
+ et al. 2022) provide independent constraints on the
52
+ CGM density and temperature structure, potentially
53
+ confirming the presence of extended coronae around
54
+ galaxies.
55
+ Evidence for extended gas reservoirs associ-
56
+ ated with nearby galaxies, either in the CGM or the
57
+ intra-group medium, has also been observed in the dis-
58
+ arXiv:2301.01000v1 [astro-ph.GA] 3 Jan 2023
59
+
60
+ 2
61
+ Ravi et al.
62
+ persion measures (DMs) of background fast radio bursts
63
+ (FRBs; Connor & Ravi 2022; Wu & McQuinn 2022).
64
+ Galaxy-formation simulations highlight the dependence
65
+ of CGM properties on feedback from stellar winds, su-
66
+ pernovae, and AGN, as well as on the galaxy merger his-
67
+ tories (e.g., Wijers et al. 2020; Hafen et al. 2020; Zheng
68
+ et al. 2020; Fielding et al. 2020; Appleby et al. 2021;
69
+ Ramesh et al. 2022). The simulations predict varying
70
+ degrees of anisotropy in the CGM of individual galax-
71
+ ies, and different total CGM masses for galaxies with
72
+ comparable global characteristics. A ubiquitous predic-
73
+ tion of simulations is that feedback processes determine
74
+ the integrated CGM mass, MCGM.
75
+ In general, CGM
76
+ baryon fractions fCGM = MCGMΩM
77
+ MtotΩb
78
+ ≲ 0.5 are predicted,
79
+ where Mtot is the total (dark matter and baryonic) halo
80
+ mass.
81
+ A halo of ∼ 106 K gas at densities ≲ 10−3 cm−3 sur-
82
+ rounding the Milky Way was proposed by Spitzer (1956)
83
+ as a solution to the problem of confining distant cold-
84
+ gas clouds at high Galactic latitudes.
85
+ Tentative evi-
86
+ dence for such coronal gas had previously been found
87
+ in observations of the diffuse radio-synchrotron back-
88
+ ground (e.g., Baldwin 1956).
89
+ A theoretical basis for
90
+ the origins of such a hot CGM around galaxies was de-
91
+ veloped in the 1970s (Rees & Ostriker 1977; White &
92
+ Rees 1978), with the gas infalling onto dark-matter ha-
93
+ los heated to virial temperatures of ≳ 106 K, possibly
94
+ in shocks at the halo virial radii (see also Birnboim &
95
+ Dekel 2003). It would, however, be nearly two decades
96
+ before further observational evidence for a hot Milky
97
+ Way CGM was identified using observations of shadows
98
+ in the soft X-ray background from high-latitude (Snow-
99
+ den et al. 1991) and high-velocity (Herbstmeier et al.
100
+ 1995) cold clouds, and in the spectral decomposition of
101
+ the background into absorbed and unabsorbed compo-
102
+ nents (Garmire et al. 1992).
103
+ Today the hot CGM of
104
+ the Milky Way is best traced through X-ray observa-
105
+ tions of OVII and OVIII diffuse emission, and absorp-
106
+ tion towards bright background sources. Although high
107
+ Galactic latitude data are well fit by a spheroidal com-
108
+ ponent with a mass of a few ×1010M⊙ (e.g., Bregman
109
+ & Lloyd-Davies 2007; Gupta et al. 2012), more recent
110
+ models include a substantially less massive (∼ 0.1%),
111
+ but denser disk-like component to explain the line ob-
112
+ servations (Li & Bregman 2017; Nakashima et al. 2018;
113
+ Kaaret et al. 2020; Ueda et al. 2022). Structure in the
114
+ hot Milky Way CGM is also observed in the form of
115
+ the Fermi (Su et al. 2010), Parkes (Carretti et al. 2013)
116
+ and eROSITA (Predehl et al. 2020) bubbles. The neu-
117
+ tral and warm (≲ 105 K) components of the Milky Way
118
+ CGM, as primarily traced through observations of high-
119
+ velocity clouds, are likely sub-dominant in mass to the
120
+ hot component (few ×108M⊙; Putman et al. 2012), but
121
+ highlight the complexities of the disk-halo interface (e.g.,
122
+ Koo et al. 1992; Werk et al. 2019; Clark et al. 2022).
123
+ The mass of the Galactic CGM is uncertain. Here we
124
+ assume Mtot = 1.5 × 1012M⊙ (following Prochaska &
125
+ Zheng 2019) and a total Galactic mass in stars and cold
126
+ gas of 6 × 1010M⊙ (Draine 2011). Setting fCGM = 1
127
+ and Ωb/ΩM = 0.188 (Planck Collaboration et al. 2020)
128
+ implies MCGM = 2.82 × 1011M⊙. Recent models for the
129
+ distribution of OVII and OVIII emission and absorp-
130
+ tion result in MCGM values between 3 − 4 × 1010M⊙
131
+ (Li & Bregman 2017), 5.5 − 8.6 × 1010M⊙ (Kaaret et
132
+ al. 2020), and ∼ 1.2 × 1011M⊙ (Yamasaki & Totani
133
+ 2020). Faerman et al. (2017) argue that a portion of
134
+ the hot CGM is also traced by OVI absorption, as is
135
+ observed in external galaxies (Tumlinson et al. 2011),
136
+ and find MCGM = 1.2 × 1011M⊙.
137
+ Systematic effects
138
+ that make the estimation of MCGM difficult include the
139
+ model uncertainties in foregrounds and in the spatial
140
+ distribution and clumpiness of the gas, and the poorly
141
+ constrained gas metallicity. An alternate measurement
142
+ of MCGM was found by Salem et al. (2015) by model-
143
+ ing the ram-pressure stripping of the Large Magellanic
144
+ Cloud (LMC); a low value of (2.7 ± 1.4) × 1010M⊙ was
145
+ found.
146
+ The DMs of FRBs and pulsars within the Milky Way
147
+ halo offer a unique probe of the content of the Galactic
148
+ CGM (e.g., Anderson & Bregman 2010; Platts et al.
149
+ 2020). FRBs are transient radio emissions from distant
150
+ extragalactic sources that, like the emissions from radio
151
+ pulsars, are so short in duration that the dispersion in
152
+ intervening plasma is evident as an arrival-time delay at
153
+ lower frequencies:
154
+ ∆t(ν) =
155
+ q2
156
+ e
157
+ 2πmecν2
158
+ � D
159
+ 0
160
+ ne(l)dl,
161
+ (1)
162
+ where qe is the electron charge, me is the electron mass,
163
+ ν is the frequency, D is the source distance, and ne(l) is
164
+ the electron number density along the sightline. Under
165
+ physical conditions of CGM gas, DMs quantify the col-
166
+ umn densities along the source sightlines. In all cases,
167
+ however, the observed DMs of FRBs, DMobs, are com-
168
+ posed of a selection of additive components:
169
+ DMobs = DMISM + DMCGM + DMIGM + DMhost, (2)
170
+ where in this formulation DMISM includes the warm ion-
171
+ ized medium (WIM) in the Milky Way disk (e.g., Cordes
172
+ & Lazio 2002; Yao et al. 2017), DMCGM is the DM con-
173
+ tributed by the Galactic CGM, DMhost is the DM as-
174
+ sociated with the FRB host-galaxy interstellar medium
175
+ (ISM) and their halos, and DMIGM includes contribu-
176
+ tions from the intergalactic medium (IGM) and any in-
177
+ tervening galaxy systems. For pulsars within the Milky
178
+
179
+ Mass of the Milky Way CGM
180
+ 3
181
+ Way halo, such as in the Magellanic Clouds and in sev-
182
+ eral globular clusters, DMIGM = 0 pc cm−3. These ex-
183
+ pressions apply to the redshift ∼ 0 regime relevant to
184
+ this paper. If the components of DMobs can be accu-
185
+ rately modeled or bounded, constraints can be placed
186
+ on DMCGM.
187
+ Modeling of the DMs of pulsars in the
188
+ LMC led Anderson & Bregman (2010) to find a very low
189
+ MCGM ∼ 1.5×1010M⊙ assuming a Navarro et al. (1997)
190
+ profile (an NFW profile); it is likely that an overly large
191
+ DMISM was assumed, and the NFW profile is no longer
192
+ favored for the Galactic CGM. Although most FRBs are
193
+ too distant to allow for accurate modeling of the compo-
194
+ nents of DMobs, FRBs from nearby galaxies (Bhardwaj
195
+ et al. 2021; Kirsten et al. 2022) have begun to be used to
196
+ place constraints on DMCGM, assuming specific models
197
+ for DMISM, that are in tension with some models for the
198
+ Milky Way CGM.
199
+ In this paper we present observations with the
200
+ Deep
201
+ Synoptic
202
+ Array
203
+ (DSA-110)
204
+ of
205
+ a
206
+ new
207
+ FRB
208
+ (FRB 20220319D) that motivates stringent new con-
209
+ straints on the mass of the Milky Way CGM. Remark-
210
+ ably, FRB 20220319D was observed to have DMobs <
211
+ DMISM for leading models of the warm-gas distribution
212
+ in the Galactic disk, despite the unambiguous associ-
213
+ ation we find with a galaxy at a distance of 50 Mpc.
214
+ We detail observations of the FRB in §2.
215
+ We con-
216
+ sider the association with its host galaxy in §3, wherein
217
+ we show that the DM of FRB 20220319D is consis-
218
+ tent with an extragalactic origin given uncertainties in
219
+ models for DMISM, using observations of the DMs of
220
+ pulsars in globular clusters with accurate parallax dis-
221
+ tances.
222
+ We present an analysis of the host environ-
223
+ ment of FRB 20220319D in §4. We then place conser-
224
+ vative constraints on DMCGM, and hence MCGM, using
225
+ FRB 20220319D and the distant high-latitude globular
226
+ cluster M53, in §5. We discuss the implications of our
227
+ results in §6, and conclude in §7.
228
+ 2. DSA-110 OBSERVATION OF FRB 20220319D
229
+ The DSA-1101 is a radio interferometer hosted at
230
+ the Owens Valley Radio Observatory (OVRO), pur-
231
+ pose built for the discovery and arcsecond-localization
232
+ of FRBs. A full description of the instrument will be
233
+ presented in Ravi et al. (in prep.). During the observa-
234
+ tions discussed herein, the DSA-110 was configured as
235
+ described in Ravi et al. (2022).
236
+ Of particular note is
237
+ that when FRB 20220319D was observed, early in DSA-
238
+ 110 commissioning, all candidates at DMs in excess of
239
+ 1 https://deepsynoptic.org
240
+ 100
241
+ 0
242
+ 100
243
+ degrees
244
+ Intrinsic PPA
245
+ 0
246
+ 10
247
+ 20
248
+ 30
249
+ S/N
250
+ Intensity (I)
251
+ Linear Polarization (L)
252
+ Circular Polarization (V)
253
+ -0.8
254
+ -0.5
255
+ -0.2
256
+ 0.0
257
+ 0.2
258
+ 0.5
259
+ 0.8
260
+ Time (ms)
261
+ 1325
262
+ 1350
263
+ 1375
264
+ 1400
265
+ 1425
266
+ 1450
267
+ 1475
268
+ Frequency (MHz)
269
+ Figure 1. Dedispersed temporal profile and dynamic spec-
270
+ trum of FRB 20220319D. A value of DMobs = 110.95 pc cm−3
271
+ was used. The top panel shows the estimated absolute po-
272
+ sition angle based on an approximate parallactic angle, the
273
+ ∼ 20◦ error due to RM uncertainty is not included in the
274
+ error bars. The middle panel shows temporal profiles in to-
275
+ tal intensity, linearly polarized intensity, and Stokes V, as la-
276
+ beled. The bottom panel shows the dynamic spectrum of the
277
+ total-intensity data. The time resolution in the time-series
278
+ and dynamic-spectrum plots is 32.768 µs, and the temporal
279
+ profile is in units of signal to noise ratio. The reference time
280
+ is MJD 59657.93275696795, which was the burst arrival time
281
+ at OVRO at 1530 MHz. The polarized data on the burst was
282
+ corrected for the measured RM of 50 rad m−2.
283
+ 80 pc cm−3 were saved for further inspection, regardless
284
+ of the expected DM through the Galactic disk.
285
+ FRB 20220319D was detected during standard com-
286
+ missioning observations, with an arrival time at OVRO
287
+ at 1530 MHz of MJD 59657.93275696795. During these
288
+ observations, the DSA-110 was parked at a pointing-
289
+ center declination of +71.6◦.
290
+ The DSA-110 refer-
291
+ ence position is −118.283◦ longitude, +37.2334◦ lat-
292
+ itude.
293
+ FRB 20220319D was detected with a DM of
294
+ 110.96 pc cm−3, and a signal to noise ratio (S/N) of 41.7.
295
+ To derive optimized burst parameters and polarization
296
+ properties, we coherently combined voltage data from
297
+
298
+ 4
299
+ Ravi et al.
300
+ the 48 core antennas towards the detection-beam direc-
301
+ tion. The resulting temporal profile and calibrated dy-
302
+ namic spectrum, produced with incoherent dedispersion
303
+ at the native time and frequency resolutions, are shown
304
+ in Figure 1, and optimized parameters are given in Ta-
305
+ ble 1. The polarization analysis was done following pro-
306
+ cedures described in Ravi et al. (2022). The matched-
307
+ filter total-intensity S/N estimate is 79.
308
+ The burst exhibits a narrow temporal profile with
309
+ a strongly modulated spectrum.
310
+ The DM smearing
311
+ timescale ranges between 8–13 µs within the DSA-110
312
+ band, and so the data resolve the temporal structure of
313
+ the burst. Scaling the system-equivalent flux density of
314
+ the DSA-110 by the primary-beam attenuation at the
315
+ burst position, we derive a fluence of 11.2 ± 0.2 Jy ms.
316
+ Following techniques described in Connor et al. (2020),
317
+ we derive a spectral decorrelation bandwidth, νd =
318
+ 3.6 ± 0.2 MHz, defined as the 1/e scale of the autocor-
319
+ relation function of the spectrum. The burst spectro-
320
+ temporal morphology is consistent with the population
321
+ of so far non-repeating FRBs (Pleunis et al. 2021). We
322
+ derive a low fractional polarization of just 16% (Fig-
323
+ ure 1), with no significant circular polarization. A Fara-
324
+ day rotation measure (RM) of 50 ± 15 rad m−2 was de-
325
+ tected. The error was estimated by simulating the re-
326
+ covery of RMs with the same linear-polarization S/N as
327
+ FRB 20220319D (Sherman et al., in prep.).
328
+ The interferometric localization of FRB 20220319D
329
+ was derived following procedures largely described in
330
+ Ravi et al. (2022). Correlation products for all baselines
331
+ formed from the 63 functioning antennas of the DSA-110
332
+ at the time of detection were integrated over 262.144µs
333
+ centered on the burst arrival time. Bandpass calibra-
334
+ tion was done using a 10-min observation of 3C309.1 ob-
335
+ served 11 hr prior to the burst detection. Complex gain
336
+ calibration at the time of the burst detection was derived
337
+ using an NRAO VLA Sky Survey (NVSS; Condon et al.
338
+ 1998) model and 5 min of visibility data. We show im-
339
+ ages of the point-spread function (PSF; a flat spectrum
340
+ was assumed), and the pre- and post-deconvolution im-
341
+ ages of FRB 20220319D in Figure 2. Briggs weighting
342
+ with a ‘robust’ parameter of 0.5 was used to suppress
343
+ sidelobes, given the high S/N of FRB 20220319D, yield-
344
+ ing a PSF FWHM of 26.9′′ × 15.6′′.
345
+ The position of
346
+ FRB 20220319D, given in Table 1, was derived by fit-
347
+ ting an elliptical Gaussian to the deconvolved image of
348
+ FRB 20220319D.
349
+ We derived the uncertainty in the FRB position us-
350
+ ing data on nine compact bright sources from the Radio
351
+ Fundamental Catalog (RFC; rfc 2022c), obtained within
352
+ 2 hr of the burst observation. A fit to a linear trend in
353
+ R.A. and Decl. was used to derive arcsecond-level astro-
354
+ Table 1. Properties of FRB 20220319D.
355
+ Parameter
356
+ Value
357
+ Arrival time (MJD)a
358
+ 59657.93275696795
359
+ DM (pc cm−3)
360
+ 110.95(1)
361
+ Full-width half-maximum (ms)
362
+ 0.16(1)
363
+ Fluence (Jy ms)
364
+ 11.2(2)
365
+ Spectral energy (erg Hz−1)
366
+ 3.3(1)×1028
367
+ L/Ib
368
+ 0.16(3)
369
+ |V/I|b
370
+ 0.04(3)
371
+ RM (rad m−2)
372
+ 50(15)
373
+ νd (MHz)c
374
+ 3.6(2)
375
+ R.A. (J2000)
376
+ 02:08:42.7(1)
377
+ Decl. (J2000)
378
+ +71:02:06.9(6)
379
+ aArrival time at OVRO at 1530 MHz.
380
+ b L/I is the fraction of linearly polarized fluence, and
381
+ |V/I| is the absolute value of the fraction of circularly
382
+ polarized fluence.
383
+ c νd is the characteristic spectral decorrelation band-
384
+ width.
385
+ metric corrections, and the corresponding uncertainties.
386
+ These uncertainties (0.52′′ in R.A. and 0.5′′ in Decl.)
387
+ were then added in quadrature to the statistical uncer-
388
+ tainty in the fitted burst position (0.29′′ in R.A. and
389
+ 0.17′′ in Decl.) to derive a final 90% confidence contain-
390
+ ment ellipse with semi-axes of 1.25′′ in R.A. and 1.18′′ in
391
+ Decl. This ellipse is shown in the bottom-left panel of
392
+ Figure 2, together with the detrended position offsets of
393
+ the RFC sources. We also assessed the quality of the
394
+ in-field calibration by checking the positions of bright
395
+ (> 50 mJy) compact (< 20′′) NVSS sources within the
396
+ primary-beam FWHM against NVSS catalog positions.
397
+ These offsets (with the RFC corrections applied) are also
398
+ shown in Figure 2. A more detailed analysis of the DSA-
399
+ 110 localization accuracy will be presented in Ravi et al.
400
+ (in prep.).
401
+ 3. ASSOCIATION WITH IRAS 02044+7048, AND
402
+ UNCERTAINTIES IN DMISM
403
+ The
404
+ 90%
405
+ confidence
406
+ localization
407
+ region
408
+ of
409
+ FRB 20220319D is shown in Figure 3 overlaid on a
410
+ Pan-STARRS1 (PS1) i-band image.
411
+ The galaxy co-
412
+ incident with the FRB location is cataloged in the
413
+ NASA Extragalactic Database as IRAS 02044+7048,
414
+ with a spectroscopic redshift of 0.011 indicating a dis-
415
+ tance of approximately 50 Mpc.
416
+ Using observations
417
+ described below, we derive a spectroscopic redshift of
418
+
419
+ Mass of the Milky Way CGM
420
+ 5
421
+ 100
422
+ 50
423
+ 0
424
+ 50
425
+ 100
426
+ 100
427
+ 50
428
+ 0
429
+ 50
430
+ 100
431
+ PSF
432
+ 100
433
+ 50
434
+ 0
435
+ 50
436
+ 100
437
+ 100
438
+ 50
439
+ 0
440
+ 50
441
+ 100
442
+ FRB 20220319 - dirty
443
+ 100
444
+ 50
445
+ 0
446
+ 50
447
+ 100
448
+ 100
449
+ 50
450
+ 0
451
+ 50
452
+ 100
453
+ FRB 20220319 - clean
454
+ 2
455
+ 0
456
+ 2
457
+ 2
458
+ 1
459
+ 0
460
+ 1
461
+ 2
462
+ Offsets
463
+ NVSS offsets
464
+ VLBI sources
465
+ Right Ascension offset (arcsec)
466
+ Declination offset (arcsec)
467
+ Figure 2. DSA-110 localization of FRB 20220319D. Top left: Point-spread function (PSF) of the DSA-110 for the observation
468
+ of FRB 20220319D, assuming a flat-spectrum source. Top right: Dirty image of FRB 20220319D, with no deconvolution applied.
469
+ Bottom left: Deconvolved image of FRB 20220319D. The synthesized beam is represented by an ellipse with half-power diameters
470
+ of 26.9′′×15.6′′, at a position angle of 80◦. Briggs weighting was used with a ‘robust’ parameter of 0.5, in order to partially
471
+ suppress PSF sidelobes. Baselines shorter than 200λ were excluded from the analysis because they were affected by spurious
472
+ cross-coupling. Contours in the preceding three panels are at −0.4, −0.2 (dashed), 0.2, 0.4, 0.6, 0.8 and 0.9 (solid) of the peak
473
+ intensity. The images are centered on the coordinates (R.A. J2000, decl. J2000) = (02:08:42.7, +71:02:06.9). Bottom right:
474
+ Offsets of known astronomical sources from their true positions as measured by the DSA-110. The blue disks show offsets
475
+ of sources from cataloged positions in the NRAO VLA Sky Survey (NVSS; Condon et al. 1998) in a 5 min DSA-110 image
476
+ formed from data taken at a time centered on the burst detection. Only sources with cataloged flux densities > 50 mJy and
477
+ measured major-axis diameters < 20′′, within 2 deg of the pointing center, were considered. The symbol size is proportional to
478
+ flux density. The red crosses show measured offsets of nine RFC calibrator sources (see text for details) observed immediately
479
+ preceding and after the burst. The ellipse indicates the 90% confidence containment region for FRB 20220319D, derived from
480
+ the RFC calibrators.
481
+
482
+ 6
483
+ Ravi et al.
484
+ 2h08m45s
485
+ 42s
486
+ 39s
487
+ 36s
488
+ 71°02'30"
489
+ 15"
490
+ 00"
491
+ 01'45"
492
+ Right Ascension (J2000)
493
+ Declination (J2000)
494
+ Figure 3. Pan-STARRS i-band image of IRAS 02044+7048,
495
+ with the 3.7 × 2.2 arcsec 90% confidence localization region
496
+ of FRB 20220319D indicated as a white ellipse.
497
+ 0.0111 ± 0.0004, indicating a luminosity distance of
498
+ 49.6 Mpc. An isophotal fit to the PS1 i-band image in-
499
+ dicates an effective radius of 2.7 ± 0.2 kpc, and the FRB
500
+ is offset by 2.3 ± 0.3 kpc. The isophotal analysis also
501
+ indicates an inclination of 23 ± 3 deg. A barred spiral
502
+ morphology, with a classification of SBa, is evident from
503
+ the image.
504
+ Under
505
+ the
506
+ assumption
507
+ that
508
+ FRB 20220319D
509
+ is
510
+ extragalactic,
511
+ the
512
+ spatial
513
+ association
514
+ between
515
+ FRB 20220319D and IRAS 02044+7048 is secure. It is
516
+ unlikely that FRB 20220319D lies significantly beyond
517
+ IRAS 02044+7048; the morphology of the galaxy indi-
518
+ cates the presence of a warm-ISM phase, and scattering
519
+ in this ISM would likely cause temporal broadening
520
+ of several hundred milliseconds at our observing fre-
521
+ quencies (Cordes et al. 2022; Ocker et al. 2022). The
522
+ Gravitational Wave Galaxy Catalog (GWGC; White
523
+ et al. 2011) lists 15869 galaxies at distances less than
524
+ 50 Mpc, subtending a total of 4 deg2. Thus the chance-
525
+ association probability of FRB 20220319D and a galaxy
526
+ at < 50 Mpc is ≲ 10−4.
527
+ The extragalactic nature of FRB 20220319D is called
528
+ into question by its DM of 110.95 pc cm−3.
529
+ The pre-
530
+ dicted DM for extragalactic objects along its l = 129.2◦,
531
+ b = +9.1◦ sightline is 132.9 pc cm−3 according to the
532
+ NE2001 model for the Galactic ionized ISM distribu-
533
+ tion (Cordes & Lazio 2002), and 187.7 pc cm−3 accord-
534
+ ing to the YMW16 model (Yao et al. 2017). The RM
535
+ detection for FRB 20220319D of 50±15 rad m−2 is, how-
536
+ ever, marginally consistent with being in excess of the
537
+ expected Milky Way contribution along the burst sight-
538
+ line. A recent model for the Galactic RM foreground
539
+ along this sightline (Hutschenreuter et al. 2022) indi-
540
+ cates an expected Galactic RM of −14 ± 18 rad m−2
541
+ towards FRB 20220319D. We cannot draw conclusions
542
+ from the measured spectral decorrelation bandwidth of
543
+ νd = 3.6±0.2 MHz, which is far in excess of the 0.2 MHz
544
+ decorrelation bandwidth predicted by NE2001 due to
545
+ scattering in the Milky Way ISM, because the origins of
546
+ the spectral structure cannot easily be determined.
547
+ We now analyze the performance of the NE2001 and
548
+ YMW16 models with the aim of determining whether
549
+ the model uncertainties can accommodate an extra-
550
+ galactic origin for FRB 20220319D. Both model the dis-
551
+ tribution of the WIM (Draine 2011) in the Galactic
552
+ disk using observations of radio-wave propagation, with
553
+ a dominant thick-disk component encapsulating several
554
+ overdensities and voids motivated by multiwavelength
555
+ data. The YMW16 model is fit to pulsars with indepen-
556
+ dent DM and distance estimates, whereas the NE2001
557
+ model is additionally fit to pulsar and extragalactic
558
+ radio-source scattering measurements. For low-latitude
559
+ extragalactic sightlines, the radial extent of the thick
560
+ disk is critical in determining DMISM.
561
+ In NE2001, a
562
+ cutoff at a radius of 20 kpc is motivated by observations
563
+ of HII regions in other galaxies and scattering of extra-
564
+ galactic sources. Surveys of Galactic HII regions on the
565
+ other hand motivate the cutoff of 15 kpc in YMW16.
566
+ Neither cutoff is estimated in the NE2001 or YMW16
567
+ fits; rather they are fixed model choices that do not im-
568
+ pact the match between the models and the data un-
569
+ der consideration. The functional forms for the WIM
570
+ distribution in the thick disk also differ, with NE2001
571
+ incorporating an oblate spheroid, and YMW16 incorpo-
572
+ rating a plane-parallel slab that results in significant de-
573
+ viations from NE2001 at low latitudes in the second and
574
+ third quadrants (e.g., Price et al. 2021). High-latitude
575
+ extragalactic sightlines are likely to be better modeled
576
+ because the scale height of the thick disk is a critical fit-
577
+ ted parameter. However, density fluctuations caused by
578
+ turbulence in the WIM, together with clumps and voids,
579
+ complicate our picture even at high latitudes (Ocker et
580
+ al. 2020). Large-scale WIM inhomogeneities at the disk-
581
+ halo interface such as Galactic chimneys (e.g., Koo et al.
582
+ 1992; Normandeau et al. 1996) can result in significant
583
+ departures from spatially smooth models for DMISM.
584
+ We first note that the recent PSRπ sample of pul-
585
+ sar parallax measurements (Deller et al. 2019) reveals
586
+ discrepancies between the NE2001 and YMW16 models
587
+ and measured pulsar distances at low latitudes in the
588
+ second quadrant, where FRB 20220319D appears on the
589
+ sky. In general, known errors in NE2001 and YMW16
590
+
591
+ Mass of the Milky Way CGM
592
+ 7
593
+ exhibit significant spatial correlation (e.g., Price et al.
594
+ 2021), motivating the consideration of sources along
595
+ sightlines similar to FRB 20220319D. Table 2 lists the
596
+ DMs of the three nearest pulsars in the sample to
597
+ FRB 20220319D, together with the predicted DMs given
598
+ the measured distances.
599
+ The YMW16 model signifi-
600
+ cantly overpredicts all three DMs, and although NE2001
601
+ is more accurate for the modestly distant pulsars likely
602
+ in the Cygnus-Orion arm, it also overpredicts the DM
603
+ of the more distant PSR J0406+6138.
604
+ A more detailed analysis of the performance of the
605
+ models for sightlines towards distant objects is enabled
606
+ by the recent convergence in the distances to globu-
607
+ lar clusters hosting pulsars.
608
+ We obtain accurate dis-
609
+ tance estimates (less than few-percent errors) to all
610
+ 21 globular clusters with associated pulsars (Manch-
611
+ ester et al. 2005) at |b| > 5◦ from the compilation
612
+ of Baumgardt & Vasiliev (2021), primarily based on
613
+ Gaia parallaxes (Vasiliev & Baumgardt 2021).
614
+ Clus-
615
+ ters at lower latitudes are not considered because their
616
+ DMs are influenced by the thin disk and other compo-
617
+ nents in the Galactic plane. For each cluster we com-
618
+ pare the difference between the DMs predicted by the
619
+ NE2001 and YMW16 models for the cluster distances,
620
+ and the true cluster DMs defined as the mean DMs of
621
+ the associated pulsars. The results are shown in Fig-
622
+ ure 4; FRB 20220319D is also included with the pre-
623
+ dicted DM set to DMISM.
624
+ The errors in NE2001 at
625
+ low latitudes can clearly accommodate an extragalactic
626
+ origin for FRB 20220319D. YMW16 generally performs
627
+ better than NE2001 for the low-latitude clusters, but
628
+ these are nearly all in the first and fourth quadrants
629
+ (with NGC 1851 as the only exception), and so perhaps
630
+ not representative of errors along sightlines closer to the
631
+ Galactic anticenter.
632
+ As an additional check of the Galactic sightline to-
633
+ wards FRB 20220319D, we also consider independent
634
+ measures of DMISM. First, we use the relation between
635
+ the neutral hydrogen column density and pulsar DMs
636
+ derived by He et al. (2013) to estimate the DMs to-
637
+ wards FRB 20220319D and each globular cluster, as-
638
+ suming no HI gas beyond the clusters. We obtain HI
639
+ column densities from the HI4PI data (HI4PI Collabo-
640
+ ration et al. 2016). The results are shown in Figure 4,
641
+ including errors representing intrinsic scatter in the rela-
642
+ tion. The HI column densities result in underestimates
643
+ of the DMs towards low-latitude clusters, possibly re-
644
+ flecting the increased ionization of HI gas towards the
645
+ central regions of the Galaxy (e.g., Madsen & Reynolds
646
+ 2005).
647
+ The HI-predicted DMISM for FRB 20220319D
648
+ is consistent with an extragalactic origin, although the
649
+ uncertainties are large. Second, we estimate the DMs
650
+ towards FRB 20220319D and each globular cluster us-
651
+ ing Hα emission measures (EMs) derived from the Wis-
652
+ consin Hα Mapper (WHAM) all sky maps (Haffner et
653
+ al. 2003).
654
+ We follow the analysis of Berkhuijsen et
655
+ al. (2006), wherein the photon fluxes, FHα (in units of
656
+ Rayleighs), integrated over the range of Galactic veloci-
657
+ ties are converted to DMs using the following relations:
658
+ EM = 2.25FHαe2.2E(B−V ) cm−6 pc
659
+ (3)
660
+ DM = (EM × D × F)1/2.
661
+ (4)
662
+ F =
663
+ f
664
+ ζ(1 + ϵ2)
665
+ (5)
666
+ The expression for F (e.g., Ocker et al. 2020, and
667
+ references therein) encodes an ionized cloudlet model,
668
+ wherein the WIM is composed of cloudlets with a volume
669
+ filling factor f, ζ = ⟨n2
670
+ e⟩/⟨ne⟩/2 ∼ 2 captures the cloud
671
+ to cloud variation, and ϵ2 ≲ 1 is the density variance
672
+ internal to the cloudlets. Further, E(B − V ) is a mea-
673
+ sure of the interstellar redenning along a given sightline,
674
+ and D is the distance through the WIM. We have as-
675
+ sumed a uniform WIM electron temperature of 8000 K,
676
+ and equivalence between the line-of-sight and volume
677
+ filling factors. We find that for the cluster sightlines the
678
+ Hα-based DM estimates perform remarkably well for a
679
+ nominal value F = 0.1 (i.e., f ≳ 0.4), comparably to
680
+ YMW16 and better than NE2001 for low-latitude sight-
681
+ lines. This is surprising given previous results for pulsar
682
+ DMs (e.g., Schnitzeler 2012), but may be explained by
683
+ globular clusters generally lying beyond the outer extent
684
+ of the WIM, obviating the need for distance corrections
685
+ to the WHAM EMs.
686
+ For the FRB 20220319D sight-
687
+ line, the Hα flux implies DMISM = 89 pc cm−3, which is
688
+ 22 pc cm−3 lower than the measured DM.
689
+ We
690
+ conclude
691
+ that
692
+ models
693
+ for
694
+ the
695
+ DM
696
+ towards
697
+ FRB 20220319D contributed by the Galactic WIM are
698
+ consistent with an extragalactic origin.
699
+ This se-
700
+ cures the association of the burst with the galaxy
701
+ IRAS 02044+7048. Consistent with the original presen-
702
+ tations of the NE2001 and YMW16 models for the WIM
703
+ distribution, we confirm that there are significant model
704
+ uncertainties at low Galactic latitudes. We used a large
705
+ sample of globular-cluster parallax distances, which have
706
+ DM estimates from associated pulsars, to demonstrate
707
+ that an alternative predictor of DMISM based on the to-
708
+ tal Galactic Hα flux can provide a useful check on the
709
+ aforementioned models.
710
+ In order to estimate DMISM
711
+ towards FRB 20220319D we consider pulsars that are
712
+ nearby on the sky and at a similar Galactic latitude. The
713
+ two nearest pulsars within 1 deg of the burst in Galactic
714
+ latitude, PSR J0231+7026 (total separation of 1.9 deg)
715
+
716
+ 8
717
+ Ravi et al.
718
+ Table 2. Measured and predicted DMs of PSRπ pulsars near FRB 20220319D.
719
+ Pulsar
720
+ l (deg.)
721
+ b (deg.)
722
+ FRB offset (deg)
723
+ Distance (kpc)
724
+ DMa
725
+ NE2001a
726
+ YMW16a
727
+ PSR J0147+5922
728
+ 130.1
729
+ −2.7
730
+ 12
731
+ 2.02+0.46
732
+ −0.16
733
+ 40.1
734
+ 31.8
735
+ 79.0
736
+ PSR J0157+6212
737
+ 130.6
738
+ 0.3
739
+ 9
740
+ 1.80+0.08
741
+ −0.12
742
+ 30.2
743
+ 31.5
744
+ 59.3
745
+ PSR J0406+6138
746
+ 144.0
747
+ 7.0
748
+ 15
749
+ 4.58+1.63
750
+ −0.87
751
+ 65.3
752
+ 123.7
753
+ 141.7
754
+ aAll DMs are given in units of pc cm−3.
755
+ NGC6517
756
+ NGC6539
757
+ M62
758
+ M22
759
+ FRB20220319
760
+ NGC6652
761
+ NGC6397
762
+ NGC5986
763
+ OmegaCen
764
+ M4
765
+ M10
766
+ NGC6752
767
+ M3
768
+ M15
769
+ M14
770
+ NGC1851
771
+ M2
772
+ M13
773
+ 47Tuc
774
+ M5
775
+ M30
776
+ M53
777
+ 200
778
+ 150
779
+ 100
780
+ 50
781
+ 0
782
+ 50
783
+ 100
784
+ 150
785
+ (Predicted DM) - (True DM) (pc/cc)
786
+ 6.7
787
+ 6.8
788
+ 7.3
789
+ 7.6
790
+ 9.8
791
+ 11.4
792
+ 12.0
793
+ 13.3
794
+ 14.9
795
+ 16.0
796
+ 23.1
797
+ 25.6
798
+ 26.1
799
+ 27.3
800
+ 27.7
801
+ 35.0
802
+ 35.8
803
+ 40.9
804
+ 44.9
805
+ 46.8
806
+ 46.8
807
+ 79.8
808
+ |b| (deg)
809
+ NE2001
810
+ YMW16
811
+ Halpha (ff=0.1)
812
+ NH
813
+ Figure 4. Difference between the predicted DM and true DM of all globular clusters that host pulsars, sorted by increasing
814
+ |b|. Predictions are made for each globular cluster given its distance and location on the sky, using four different models for the
815
+ warm ISM of the Milky Way. The two literature models are NE2001 (blue solid thick curve) and YMW16 (orange solid thin
816
+ curve). We also convert the measured Hα emission measures (green dashed curve) and HI columns (red dots and shaded region)
817
+ along each sightline to DM predictions using methods described in the text. We also include predictions for FRB 20220319D
818
+ assuming a location beyond the Galactic disk.
819
+ and PSR J0325+6744 (total separation of 7.4 deg), have
820
+ DMs of 46.7 pc cm−3 and 65.3 pc cm−3, and we consider
821
+ these as conservative and less conservative estimates re-
822
+ spectively of DMISM along the burst sightline. We note
823
+ that the predicted NE2001 and YMW16 DMISM values
824
+ along the sightlines towards these pulsars are lower than
825
+ along the burst sightline.
826
+ 4. THE HOST ENVIRONMENT OF FRB 20220319D
827
+ We
828
+ obtained
829
+ long-slit
830
+ optical
831
+ spectroscopy
832
+ of
833
+ IRAS 02044+7048
834
+ using
835
+ the
836
+ Double
837
+ Spectrograph
838
+ (DBSP; Oke & Gunn 1982) mounted on the Palo-
839
+ mar 200-inch Hale telescope on 2022 June 01 (UT).
840
+ The observations were undertaken under conditions of
841
+ 1.2′′ seeing, at an airmass of 1.9, and used a 1.5′′ slit
842
+ positioned to include both the FRB location and the
843
+ galaxy nucleus at a position angle of 104◦. Two 600 s
844
+ exposures were obtained with the D55 dichroic and the
845
+ 316/7500 grating on the red arm; we only considered
846
+ data from the red arm of the spectrograph given the
847
+ significant extinction along this sightline (AV = 2.209;
848
+ Schlafly & Finkbeiner 2011). The two-dimensional spec-
849
+ tral data were reduced according to standard procedures
850
+ using a PypeIt-based pipeline (Prochaska et al. 2020).
851
+ We then defined the trace function using observations
852
+ of the standard star Feige 34, and extracted spectra in
853
+ 1.5′′ windows along the slit.
854
+ Feige 34 was also used
855
+
856
+ Mass of the Milky Way CGM
857
+ 9
858
+ Table 3. Observed and derived parame-
859
+ ters of the host galaxy of FRB 20220319D,
860
+ IRAS 02044+7048.
861
+ 1σ errors in the last
862
+ significant figures are given in parentheses.
863
+ Parameter
864
+ Value
865
+ Redshift
866
+ 0.0111(4)
867
+ Luminosity distance (Mpc)
868
+ 49.6
869
+ Effective radius (kpc)
870
+ 2.7(2)
871
+ FRB projected offset (kpc)
872
+ 2.3(3)
873
+ log M∗ (M⊙)
874
+ 9.93(7)
875
+ log Za
876
+ 0.1(0.2)
877
+ Internal AV b
878
+ 0.2+0.2
879
+ −0.1
880
+ SFR (M⊙ yr−1)c
881
+ 1.8(0.7)
882
+ Inclination (deg)
883
+ 23(3)
884
+ aMetallicity with respect to solar.
885
+ b V -band extinction corresponding to a
886
+ uniform dust slab.
887
+ c Averaged over the past 100 Myr.
888
+ 6
889
+ 4
890
+ 2
891
+ 0
892
+ 2
893
+ Offset along slit (kpc)
894
+ 0
895
+ 10
896
+ 20
897
+ 30
898
+ 40
899
+ 50
900
+ H flux (1040 erg s
901
+ 1)
902
+ FRB
903
+ Nucleus
904
+ Figure
905
+ 5.
906
+ Total Hα flux observed at different lo-
907
+ cations within our longslit spectroscopic observations of
908
+ IRAS 02044+7048. Measurements were obtained at 1.5′′ in-
909
+ tervals along a 1.5′′ longslit oriented at a position angle of
910
+ 104◦, which covered both the FRB position and the cen-
911
+ ter of the galaxy. The locations of the galaxy nucleus and
912
+ FRB 20220319D are indicated in the figure.
913
+ for flux calibration, and all spectra were corrected for
914
+ extinction according to the Fitzpatrick & Massa (2007)
915
+ extinction curve.
916
+ We detected Hα emission at several locations along
917
+ the slit, as shown in Figure 5. The strongest Hα emission
918
+ is observed at the galaxy core, from which we also detect
919
+ lines corresponding to [NII] and [SII]. These lines were
920
+ together used to derive a redshift of 0.0111 ± 0.0004 for
921
+ IRAS 02044+7048. Although we do not detect Hβ or
922
+ [OIII], the ratio log [NII]/Hα = −0.23 ± 0.02 indicates a
923
+ < 10% chance of the nuclear ionization being purely due
924
+ to star formation activity (Ho et al. 1997; Kewley et al.
925
+ 2006). There is evidence of Hα emission from spiral-arm
926
+ features on either side of the nucleus; these features are
927
+ too extended to represent HII regions. The FRB appears
928
+ associated with the eastern arm, although not at the
929
+ center of its Hα radial profile. No additional evidence
930
+ for or against an arm association can be gleaned from
931
+ the residuals of a fit of the IRAS 02044+7048 image in
932
+ Figure 3 to a two-dimensional Sersic profile.
933
+ In
934
+ order
935
+ to
936
+ determine
937
+ global
938
+ properties
939
+ of
940
+ IRAS 02044+7048, we derived and modeled its spec-
941
+ tral energy distribution (SED). We executed aperture
942
+ photometry on archival images from the Panoramic
943
+ Survey Telescope and Rapid Response System (Pan-
944
+ STARRS; Chambers et al. 2016), Two Micron All Sky
945
+ Survey (2MASS; Skrutskie et al. 2006), and ALLWISE
946
+ (Cutri et al. 2021) surveys. We identified an elliptical
947
+ aperture that captured the i-band extent of the galaxy
948
+ in Pan-STARRS data, and masked likely foreground
949
+ objects. We then used this aperture, convolved with the
950
+ PSF of each survey, to measure extinction-corrected AB
951
+ magnitudes in all filters used by Pan-STARRS, 2MASS,
952
+ and WISE. We modeled this SED using the Prospector
953
+ stellar population synthesis modeling code (Johnson et
954
+ al. 2021). We ran Prospector using recommended tech-
955
+ niques and priors and a non-parametric star-formation
956
+ history (SFH) model (Leja et al. 2019), and sampled
957
+ from the posterior using emcee (Foreman-Mackey et al.
958
+ 2013).
959
+ Non-parametric models for the SFH result in
960
+ less bias in both stellar-mass (M∗) and star-formation
961
+ rate (SFR) estimates, because specific SFH models are
962
+ not excluded a priori. We included a model for dust re-
963
+ radiation in the likelihood function. The spectral energy
964
+ distribution of IRAS 02044+7048 is shown in Figure 6,
965
+ together with the results from the Prospector analysis,
966
+ and derived maximum aposteriori probability parame-
967
+ ters are listed in Table 3. The SFR of 1.8 M⊙ yr−1 was
968
+ derived by integrating the SFH over the past 100 Myr.
969
+ IRAS 02044+7048,
970
+ and
971
+ the
972
+ location
973
+ of
974
+ FRB 20220319D within it, are largely consistent with
975
+ previous results on FRB host galaxies and environ-
976
+ ments (Bhandari et al. 2020; Heintz et al. 2020; Boch-
977
+ enek et al. 2021; Mannings et al. 2021; Bhandari et al.
978
+ 2022). Most FRB host galaxies have detectable ongoing
979
+ star formation, and some exhibit signatures of addi-
980
+ tional nuclear ionization sources.
981
+ The stellar mass of
982
+ IRAS 02044+7048 is entirely consistent with the distri-
983
+
984
+ 10
985
+ Ravi et al.
986
+ Figure 6.
987
+ Left:
988
+ Prospector fit to the spectral energy distribution (SED) of the host galaxy of FRB 20220319D,
989
+ IRAS 02044+7048. The SED measurements from archival PanSTARRS, 2MASS, and WISE data are shown in red, together
990
+ with representative 10% errors. Filter transmission curves are shown in grey. The maximum aposteriori probability (MAP)
991
+ model photometry is shown in green, together with the MAP spectrum. 100 spectra generated using random draws from the
992
+ posterior distributions of the model parameters are shown in black. Right: Measured SFH of IRAS 02044+7048 (green). The
993
+ results from 100 random draws from the posterior distributions are shown in black.
994
+ bution of masses found for both repeating and so far
995
+ non-repeating FRB hosts. The potential association of
996
+ FRB 20220319D with a spiral-arm feature is consistent
997
+ with the results of Mannings et al. (2021) based on
998
+ Hubble Space Telescope imaging of eight FRB hosts.
999
+ In the absence of very long baseline interferometry, our
1000
+ data do not have sufficient angular resolution to deter-
1001
+ mine whether or not the FRB originates from within an
1002
+ association of young stars (e.g., Tendulkar et al. 2021).
1003
+ The location of FRB 20220319D at an offset of ∼ 85% of
1004
+ the effective radius from the galaxy nucleus is consistent
1005
+ with the range of previously observed FRB offsets.
1006
+ However, the SFR of IRAS 02044+7048 is rather high
1007
+ for its stellar mass, with respect to the observed sam-
1008
+ ple of hosts of so far non-repeating FRBs (Bhandari
1009
+ et al. 2022).
1010
+ Only one so far non-repeating FRB
1011
+ (20190102C, at z = 0.2912) has a comparably high
1012
+ specific SFR (sSFR), of log sSFR = −9.74. Although
1013
+ IRAS 02044+7048 is consistent with a location on the
1014
+ star-forming main sequence of galaxies (Speagle et al.
1015
+ 2014), non-repeating FRB hosts as a population are con-
1016
+ sistent with originating from below this sequence.
1017
+ It
1018
+ is possible that FRBs from more actively star-forming
1019
+ hosts are selected against in existing radio surveys due to
1020
+ propagation effects in the host ISM (Seebeck et al. 2021),
1021
+ in which case it is not surprising that IRAS 02044+7048
1022
+ has a face-on orientation.
1023
+ 5. THE MASS OF THE MILKY WAY CGM
1024
+ The constraints on the extragalactic DM contribution
1025
+ along the sightline towards FRB 20220319D are severe.
1026
+ Adopting the two estimates discussed above for DMISM
1027
+ from pulsars nearby to the FRB on the sky, we find
1028
+ possible upper limits on the extragalactic DM contribu-
1029
+ tion (DMCGM+DMIGM+DMhost) of either 45.7 pc cm−3
1030
+ or 64.3 pc cm−3. Even with our conservative estimates
1031
+ for DMISM, FRB 20220319D has the lowest extragalactic
1032
+ DM yet measured for an FRB localized to a host galaxy.
1033
+ We thus have the opportunity to stringently bound the
1034
+ heretofore poorly constrained value of DMCGM, and thus
1035
+ directly bound the mass of the Galactic CGM. The IGM
1036
+ likely contributes 7 pc cm−3 towards IRAS 02044+7048,
1037
+ assuming an IGM baryon fraction of 0.7 (e.g., Macquart
1038
+ et al. 2020).
1039
+ The detection of extended Hα emission
1040
+ from the galaxy itself, and in particular at the location
1041
+ of FRB 20220319D, indicates that the WIM component
1042
+ of the ISM is present, although we do not know where
1043
+ within the ISM column the FRB source is located.2 We
1044
+ simply assume a nominal value of DMhost = 10 pc cm−3
1045
+ for our analysis below.
1046
+ Thus, we find that for the
1047
+ FRB 20220319D sightline, two possible upper limits on
1048
+ DMCGM are 28.7 pc cm−3 and 47.3 pc cm−3, depending
1049
+ on the assumption for DMISM. These upper limits are
1050
+ comparable to previous results from the closest known
1051
+ FRB source (FRB 20200120E), in a globular cluster as-
1052
+ sociated with M81, which provide possible upper limits
1053
+ on DMCGM of 32 pc cm−3 and 42 pc cm−3] depending on
1054
+ the choice of NE2001 or YMW16 for DMISM (Kirsten et
1055
+ al. 2022). The constraints from FRB 20200120E are af-
1056
+ fected by a reliance on the NE2001/YMW16 models for
1057
+ 2 With a measurement of scattering in the host ISM, it is possible
1058
+ to estimate DMhost (Cordes et al. 2022). However, upper limits
1059
+ on the temporal broadening of FRB 20220319D of ∼ 0.1 ms are
1060
+ not usefully constraining.
1061
+
1062
+ Model spectrum (MAP)
1063
+ Model photometry (MAP)
1064
+ Observed photometry
1065
+ Flux Density [maggies]
1066
+ 10
1067
+ 10
1068
+ Wavelength [A]5
1069
+ 4 -
1070
+ SFR [Mo/yr]
1071
+ 3
1072
+ 2
1073
+ 0
1074
+ .6
1075
+ 18
1076
+ 0
1077
+ 2
1078
+ 4
1079
+ 10
1080
+ 12
1081
+ Lookback Time [Gyr]Mass of the Milky Way CGM
1082
+ 11
1083
+ DMISM, and by stronger assumptions for the halo DM
1084
+ of M81.
1085
+ A recent synthesis of models for the Galactic CGM
1086
+ DM by Keating & Pen (2020) highlighted the wide range
1087
+ of extant predictions. In this work, we use a representa-
1088
+ tive set of models to demonstrate the implications of the
1089
+ constraint on DMCGM from FRB 20220319D. The mod-
1090
+ els are illustrated in Figure 7. We also consider measure-
1091
+ ments of the DM contributed by sightlines through the
1092
+ halo from pulsars in the LMC (Ridley et al. 2013) and
1093
+ in the distant (18.5 kpc; Baumgardt & Vasiliev 2021)
1094
+ globular cluster M53 (Kulkarni et al. 1991; Pan et al.
1095
+ 2021). Although the LMC is at b ≈ −33◦ and M53 is at
1096
+ b ≈ +80◦, we conservatively subtract the lowest DMISM
1097
+ to be found in either the NE2001 or YMW16 models of
1098
+ 18 pc cm−3 to estimate the halo DM contributions along
1099
+ their sightlines. In the top two panels of Figure 7, we
1100
+ show the resulting upper limits on DMCGM towards M53
1101
+ and the LMC, with ranges corresponding to the range of
1102
+ associated pulsar DMs. The bottom-left panel shows the
1103
+ upper limit on DMCGM from FRB 20220319D, placed at
1104
+ the virial radius of the Milky Way halo. In all cases we
1105
+ show model predictions for DMCGM assuming a spher-
1106
+ ically symmetric galactocentric baryon halo, but with
1107
+ the DM evaluated along sightlines from the position of
1108
+ the Earth (GRAVITY Collaboration et al. 2019). We
1109
+ evaluate the modified NFW (mNFW) and Maller & Bul-
1110
+ lock (2004) profiles following Prochaska & Zheng (2019),
1111
+ with a total Milky Way mass of Mtot = 1.5 × 1012M⊙,
1112
+ and a halo baryon fraction of fCGM = 0.75. The Pen
1113
+ (1999) model is evaluated for the same Mtot and with
1114
+ the core radius set to the halo virial radius. The semi-
1115
+ empirical Miller & Bregman (2013) and Faerman et
1116
+ al. (2017) models and the semi-analytic Faerman et al.
1117
+ (2020) model are all evaluated as given. Finally, in the
1118
+ bottom-right panel of Figure 7, we also show the model
1119
+ predictions for the halo baryon density along the LMC
1120
+ sightline, together with constraints from ram-pressure
1121
+ stripping analyses of dwarf galaxies (Salem et al. 2015;
1122
+ Putman et al. 2021) and modeling of OVII and OVIII
1123
+ emission measurements (Kaaret et al. 2020).
1124
+ The data are in favor of models that predict lower to-
1125
+ tal CGM DMs and lower inner densities (e.g., Pen 1999;
1126
+ Faerman et al. 2020; Miller & Bregman 2013). The DMs
1127
+ of M53 pulsars and FRB 20220319D deliver consistent
1128
+ constraints on the range of models, albeit on very dif-
1129
+ ferent radial distance scales. The constraints from LMC
1130
+ pulsars are less impactful, but nonetheless also exclude
1131
+ the three models (Maller & Bullock 2004; Faerman et
1132
+ al. 2017; Prochaska & Zheng 2019) considered here that
1133
+ predict larger values of DMCGM. We note that our treat-
1134
+ ment of the CGM contribution to the DMs of LMC pul-
1135
+ sars is far more conservative than that of Anderson &
1136
+ Bregman (2010); this is motivated by the uncertainties
1137
+ discussed above in estimating DMISM.
1138
+ The DM con-
1139
+ straints are consistent with the most robust density es-
1140
+ timates that we consider (Salem et al. 2015; Kaaret et
1141
+ al. 2020).
1142
+ The density estimates are however subject
1143
+ to the uncertainties discussed in §1, and we proceed by
1144
+ considering only the constraints on DMCGM.
1145
+ We now derive constraints on the mass of the Galac-
1146
+ tic CGM, MCGM, by finding β models that are consis-
1147
+ tent with the FRB 20220319D and M53 DMs.
1148
+ When
1149
+ converting the electron column density to a mass col-
1150
+ umn density, we assume 1.18 proton masses per elec-
1151
+ tron following Yamasaki & Totani (2020), which corre-
1152
+ sponds to roughly solar metallicity gas. The β profile is
1153
+ widely adopted in the field to convert (column-)density
1154
+ estimates to halo masses (e.g., Miller & Bregman 2013;
1155
+ Salem et al. 2015; Kaaret et al. 2020), as it is empirically
1156
+ motivated. The electron number density at a radius r is
1157
+ given by
1158
+ n(r) = n0
1159
+
1160
+ 1 +
1161
+ � r
1162
+ rc
1163
+ �2�−3β/2
1164
+ ,
1165
+ (6)
1166
+ where n0 is a central density, and rc is a core radius that
1167
+ we fix to 0.47 kpc following Miller & Bregman (2013).
1168
+ The exact value of the core radius is unimportant for
1169
+ our conclusions regarding MCGM.
1170
+ Typical values of
1171
+ β found using various CGM tracers are in the range
1172
+ 0.4 ≲ β ≲ 0.5 (e.g., Miller & Bregman 2013, 2015; Salem
1173
+ et al. 2015; Kaaret et al. 2020). We consider three con-
1174
+ straints on DMCGM: the lower and upper constraints
1175
+ from FRB 20220319D, and the lower constraint from the
1176
+ M53 pulsars. For each constraint, we derive correspond-
1177
+ ing values of MCGM from an integrated β profile for dif-
1178
+ ferent values of β. A useful joint constraint on MCGM
1179
+ and β is not possible with the data in hand. The results
1180
+ are shown in Figure 8.
1181
+ For typical values of β of between 0.4 and 0.5,
1182
+ the DM of FRB 20220319D implies an upper limit on
1183
+ log MCGM of between 11.0 and 10.8.
1184
+ The M53 pul-
1185
+ sars are even more constraining, limiting log MCGM to
1186
+ below a value of between 10.7 to 10.5.
1187
+ We consider
1188
+ the FRB 20220319D constraints to be more conserva-
1189
+ tive because the M53 estimate of DMCGM is very sen-
1190
+ sitive to the assumed DMISM along its sightline. The
1191
+ mass constraints all favor values of fCGM < 0.5 (re-
1192
+ call fCGM = MCGMΩM
1193
+ MtotΩb ) for our fiducial value of Mtot =
1194
+ 1.5×1012M⊙, with M53 potentially accommodating val-
1195
+ ues of fCGM ≲ 0.2 for reasonable values of β.
1196
+
1197
+ 12
1198
+ Ravi et al.
1199
+ 0
1200
+ 50
1201
+ 100
1202
+ 150
1203
+ 200
1204
+ 250
1205
+ Distance (kpc)
1206
+ 100
1207
+ 101
1208
+ 102
1209
+ DM (pc cm
1210
+ 3)
1211
+ M53
1212
+ mNFW
1213
+ MB04
1214
+ MB13
1215
+ Pen99
1216
+ Faerman1
1217
+ Faerman2
1218
+ 0
1219
+ 50
1220
+ 100
1221
+ 150
1222
+ 200
1223
+ 250
1224
+ Distance (kpc)
1225
+ 100
1226
+ 101
1227
+ 102
1228
+ DM (pc cm
1229
+ 3)
1230
+ LMC
1231
+ mNFW
1232
+ MB04
1233
+ MB13
1234
+ Pen99
1235
+ Faerman1
1236
+ Faerman2
1237
+ 0
1238
+ 50
1239
+ 100
1240
+ 150
1241
+ 200
1242
+ 250
1243
+ Distance (kpc)
1244
+ 100
1245
+ 101
1246
+ DM (pc cm
1247
+ 3)
1248
+ FRB 20220319
1249
+ mNFW
1250
+ MB04
1251
+ MB13
1252
+ Pen99
1253
+ Faerman1
1254
+ Faerman2
1255
+ 0
1256
+ 50
1257
+ 100
1258
+ 150
1259
+ 200
1260
+ 250
1261
+ Distance (kpc)
1262
+ 10
1263
+ 5
1264
+ 10
1265
+ 4
1266
+ 10
1267
+ 3
1268
+ Baryon number
1269
+ density (cm
1270
+ 3)
1271
+ Density (LMC direction)
1272
+ mNFW
1273
+ MB04
1274
+ MB13
1275
+ Pen99
1276
+ Faerman1
1277
+ Faerman2
1278
+ Figure 7. Illustration of the constraining power of different measurements of the CGM DM and density on a range of models.
1279
+ In all panels, curves show predictions of the default modified NFW (mNFW) model of Prochaska & Zheng (2019) (blue), the
1280
+ model of Maller & Bullock (2004) (orange; MB04), the model of Miller & Bregman (2013) (green; MB13), a Pen (1999) model
1281
+ (Pen99) assuming a core radius set to the virial radius (red), and the models of Faerman et al. (2017) (purple; Faerman1) and
1282
+ Faerman et al. (2020) (brown; Faerman2). Top panels: upper limit on the CGM DM towards M53 (left) and the LMC (right).
1283
+ In both cases, the minimum DM (18 pc cm−3) across the sky in either the NE2001 or YMW16 models has been subtracted. The
1284
+ ranges indicate the range of DMs of pulsars associated with each object. Bottom left: upper limit on the CGM DM towards
1285
+ FRB 20220319D. The range indicates different assumptions for the ISM DM that correspond to the two closest pulsars on the
1286
+ sky. Bottom right: constraints on the CGM density compared with the models. The dark disks indicate measurements using
1287
+ ram-pressure stripping modeling of the LMC (Salem et al. 2015) and modeling of diffuse X-ray line emission (Kaaret et al.
1288
+ 2020). The lower limits displayed as triangles indicate estimates using ram-pressure stripping modeling of a large selection of
1289
+ Milky Way satellites (Putman et al. 2021).
1290
+ 6. DISCUSSION
1291
+ Our results demonstrate that the total Galactic
1292
+ baryon mass is likely significantly lower than the cos-
1293
+ mological average for a halo as massive as the Milky
1294
+ Way.
1295
+ The mass constraints we derive are consistent
1296
+ with some previous observational results from analyses
1297
+ of OVII and OVIII emission and absorption (e.g., Li
1298
+ & Bregman 2017; Kaaret et al. 2020) and ram-pressure
1299
+ stripping of the LMC (Salem et al. 2015), but inconsis-
1300
+ tent with other results that posit higher CGM masses
1301
+ (e.g., Faerman et al. 2017; Yamasaki & Totani 2020).
1302
+ Analyses of the dynamics of Milky Way satellites im-
1303
+ ply a total virial mass of Mtot = (1.4 ± 0.3) × 1012M⊙
1304
+ (Watkins et al. 2010), a recent Gaia-based analysis
1305
+ of the dynamics of Milky Way globular clusters yields
1306
+ Mtot = (1.3 ± 0.3) × 1012M⊙ (Posti & Helmi 2019), and
1307
+ an analysis of the dynamics of the Magellanic Stream
1308
+ yields Mtot = (1.5 ± 0.3) × 1012M⊙ (Craig et al. 2022).
1309
+ It is possible that a full accounting for the orbit of the
1310
+ LMC would reduce the estimates of Mtot by ∼ 15%
1311
+ (Correa Magnus & Vasiliev 2022).
1312
+ However, in all
1313
+ cases fCGM ≲ 0.4 is implied by FRB 20220319D, and
1314
+ fCGM ≲ 0.2 is implied by the M53 DM. Our constraints
1315
+ are affected by different systematic effects to previous
1316
+ results, and do not suffer from uncertainties in model-
1317
+ ing the chemical and thermal states of the CGM, nor
1318
+ from uncertainties in modeling the interaction of satel-
1319
+ lite galaxies with the CGM. These values are consistent
1320
+ with several simulations of the CGM contents of galaxies
1321
+ like the Milky Way that account for the effects of kinetic
1322
+ and thermal feedback on reducing the halo baryon con-
1323
+ tent.
1324
+ The observational constraints on MCGM are affected
1325
+ by uncertainties in identifying the CGM DM contri-
1326
+ bution along the sightlines of interest.
1327
+ For the low-
1328
+ latitude FRB 20220319D sightline, we adopted conser-
1329
+ vative estimates of DMISM, and there are uncertainties
1330
+ at the level of a few pc cm−3 in the DMIGM and DMhost
1331
+
1332
+ Mass of the Milky Way CGM
1333
+ 13
1334
+ 0.0
1335
+ 0.2
1336
+ 0.4
1337
+ 0.6
1338
+ 0.8
1339
+ 1.0
1340
+ 1.2
1341
+ 1.4
1342
+ 10.4
1343
+ 10.6
1344
+ 10.8
1345
+ 11.0
1346
+ 11.2
1347
+ 11.4
1348
+ 11.6
1349
+ log MCGM (M )
1350
+ fCGM = 0.5
1351
+ fCGM = 0.2
1352
+ fCGM = 0.1
1353
+ FRB lower
1354
+ FRB upper
1355
+ M53
1356
+ Figure 8.
1357
+ Upper limits on the CGM mass for different
1358
+ assumptions for the radial density profile.
1359
+ We adopt a β
1360
+ model (see text for details), and show limits corresponding
1361
+ to the upper and lower ends of the range of constraints from
1362
+ FRB 20220319D (dashed and solid lines respectively), and
1363
+ from the most constraining pulsar in M53 (red solid line).
1364
+ Typical values of β found in the literature are ≳ 0.4. For
1365
+ these values, the inferred fCGM values are typically below
1366
+ 0.5, as indicated by blue horizontal lines.
1367
+ terms. We therefore consider the constraints on MCGM
1368
+ based on FRB 20220319D to be robust to uncertainties
1369
+ in DMCGM. The impact of uncertainty in DMISM for the
1370
+ M53 sightline is greater given the low values of DMCGM
1371
+ under consideration. Although we attempt to be con-
1372
+ servative, even a few-unit increase in DMCGM would sig-
1373
+ nificantly raise the derived upper limits on MCGM. Our
1374
+ analysis is also sensitive to how we model the distribu-
1375
+ tion of baryons in the CGM. First, we do not account
1376
+ for sightline to sightline variance, which simulations sug-
1377
+ gest may be at the level of ≳ 10% (e.g., Zheng et al.
1378
+ 2020; Ramesh et al. 2022). Second, it may be that a β
1379
+ profile is not the correct model to adopt, and our con-
1380
+ straints are sensitive to the specific value of β. Guidance
1381
+ on these points from simulations for future analyses of
1382
+ DMCGM will be important. Finally, although we assume
1383
+ a specific helium abundance in translating the DM con-
1384
+ straints to a total CGM mass, our results are sensitive
1385
+ to variations in this assumption only at the < 10% level.
1386
+ The discovery of FRB 20220319D has major implica-
1387
+ tions for the search for FRBs in the local universe, and
1388
+ for future FRB studies of the CGM of the Milky Way
1389
+ and other galaxies. First, we have shown that for low
1390
+ Galactic latitudes (|b| ≲ 15◦; see Figure 4) there can
1391
+ be significant uncertainties in the widely used NE2001
1392
+ and YMW16 models for DMISM, which may lead to
1393
+ nearby extragalactic FRBs being missed in surveys. In
1394
+ all cases we recommend that FRB surveys save candi-
1395
+ dates at DMs below the model values of DMISM. The
1396
+ possibility of missing FRBs with low extragalactic DMs
1397
+ also needs to be considered when using FRB samples to
1398
+ directly infer a characteristic DMCGM (e.g., Platts et al.
1399
+ 2020). These studies are also likely to be impacted by
1400
+ the uncertainties in deriving DMCGM that in most cases
1401
+ will be on the order of the values of DMCGM allowed
1402
+ by our analysis (see Figure 7). We recommend that in-
1403
+ ferences of DMCGM with FRBs focus on high-latitude
1404
+ sightlines towards FRBs interferometrically localized to
1405
+ nearby galaxies, wherein uncertainties in DMIGM and
1406
+ DMhost can be minimized. Nonetheless, if the charac-
1407
+ teristic DMCGM is indeed on the order of 10 pc cm−3,
1408
+ a very large number of local FRBs will be required to
1409
+ suppress variance between halo sightlines, and uncer-
1410
+ tainties in other DM contributions. These samples may
1411
+ be furnished by future coherent all-sky radio monitors
1412
+ (e.g., Lin et al. 2022). Finally, consistent with previ-
1413
+ ous studies (Keating & Pen 2020; Kirsten et al. 2022),
1414
+ our constraints on fCGM firmly exclude the fiducial pa-
1415
+ rameterizations of the widely used modified-NFW and
1416
+ Maller & Bullock (2004) models for the CGM DM as
1417
+ described by Prochaska & Zheng (2019). This impacts
1418
+ studies that have assumed the correspondingly large val-
1419
+ ues of DMCGM (e.g., Ravi 2019), as well as forecasts for
1420
+ the contributions of the CGM of intervening galaxies to
1421
+ FRB DMs.
1422
+ The host of FRB 20220319D, IRAS 02044+7048, ap-
1423
+ pears to have an unusually large specific SFR. This is
1424
+ despite FRB 20220319D being the closest so far non-
1425
+ repeating FRB yet discovered, and the strong evolution
1426
+ towards higher SFRs of the star-forming main sequence
1427
+ of galaxies with redshift (Speagle et al. 2014). Our anal-
1428
+ ysis of the SFH of the IRAS 02044+7048 host galaxy
1429
+ suggests that most stars were formed in a burst in the
1430
+ last ≲ 2 Gyr. Thus it is likely that the progenitor of
1431
+ FRB 20220319D does not have a delay time (i.e., age
1432
+ from its formation epoch) in excess of this timescale.
1433
+ Although several progenitor scenarios remain consistent
1434
+ with this constraint, the additional possible association
1435
+ of the FRB source with a spiral arm may imply a pro-
1436
+ genitor age that is a fraction of a ∼ 100 Myr dynamical
1437
+ timescale. We note that it is not straightforward to com-
1438
+ pare our inferred SFR, which is averaged over the past
1439
+ 100 Myr of the SFH, to the Hα-based SFRs common in
1440
+ the FRB literature (e.g., Bhandari et al. 2022), which
1441
+ are sensitive to the last ∼ 10 Myr (Kennicutt 1998). A
1442
+ direct comparison of non-parametric SFH estimates may
1443
+ lead to a more complete view of the formation channels
1444
+ of FRB progenitors.
1445
+ 7. SUMMARY AND CONCLUSIONS
1446
+ We present the DSA-110 discovery and interfero-
1447
+ metric localization of the nearest so far non-repeating
1448
+
1449
+ 14
1450
+ Ravi et al.
1451
+ FRB (20220319). The burst was observed with a high
1452
+ S/N of 79, a DM of 110.95 pc cm−3, and has a lin-
1453
+ ear polarization fraction of 16 ± 3% and an RM of
1454
+ 50 ± 15 rad m−2 (Figure 1, and Table 1).
1455
+ The FRB
1456
+ originated from the position (R.A. J2000, decl. J2000)
1457
+ = (02:08:42.7(1), +71:02:06.9(6)), where uncertainties
1458
+ in the last significant figures are given in parenthe-
1459
+ ses (Figure 2).
1460
+ We associate FRB 20220319D with a
1461
+ spiral-arm feature of a face-on star-forming galaxy at a
1462
+ distance of 50 Mpc (IRAS 02044+7048; Figures 3 and
1463
+ 5; Table 3).
1464
+ IRAS 02044+7048 is moderately mas-
1465
+ sive (log M∗ = 9.93 ± 0.07), with an approximately
1466
+ solar metallicity and an SFR averaged over the past
1467
+ 100 Myr of 1.8 ± 0.7 M⊙ yr−1 (Figure 6). The low DM
1468
+ of FRB 20220319D motivates a sensitive new constraint
1469
+ on the baryon mass of the Milky Way CGM. Our con-
1470
+ clusions are summarized as follows.
1471
+ • The spatial coincidence of FRB 20220319D and
1472
+ IRAS 02044+7048
1473
+ (false
1474
+ alarm
1475
+ probability
1476
+ of
1477
+ <
1478
+ 10−4),
1479
+ and a potential RM detection for
1480
+ FRB 20220319D that is in excess of the Galac-
1481
+ tic foreground, both imply a secure association.
1482
+ However, the DM of FRB 20220319D is somewhat
1483
+ lower than the predicted Galactic ISM DM along
1484
+ its sightline from leading models for the WIM dis-
1485
+ tribution (NE2001 and YMW16; Cordes & Lazio
1486
+ 2002; Yao et al. 2017). We show through an anal-
1487
+ ysis of the DMs towards pulsar-hosting globular
1488
+ clusters with Gaia parallax distances (Figure 4)
1489
+ that there are significant uncertainties in NE2001
1490
+ predictions for DMISM for |b| ≲ 15◦, and that
1491
+ YMW16 is particularly uncertain at low latitudes
1492
+ in the second quadrant, where FRB 20220319D is
1493
+ located (see also Table 2). We find that estimates
1494
+ for DMISM based on Hα EMs perform compara-
1495
+ bly well to the models. We conclude that models
1496
+ for DMISM towards FRB 20220319D can accom-
1497
+ modate an extragalactic origin, and urge FRB sur-
1498
+ veys to consider candidate bursts at DMs below
1499
+ standard model predictions for DMISM.
1500
+ • The SFH of IRAS 02044+7048 is consistent with
1501
+ most stars being formed in a burst within the
1502
+ past two Gigayears. This, together with the pos-
1503
+ sible location of FRB 20220319D within a spi-
1504
+ ral arm of IRAS 02044+7048, suggests a mod-
1505
+ erately low delay time for the burst progenitor.
1506
+ Despite its nearby distance, the specific SFR of
1507
+ IRAS 02044+7048 derived from SED modeling is
1508
+ larger than all but one so far non-repeating FRB,
1509
+ although the comparison with literature samples
1510
+ of host galaxies would be aided by the widespread
1511
+ use of non-parametric SFH analyses.
1512
+ • We find conservative upper limits on the Galactic
1513
+ CGM contribution to the DM of FRB 20220319D
1514
+ of either 28.7 pc cm−3 or 47.3 pc cm−3: the two val-
1515
+ ues are based on DMISM-estimates from the DMs
1516
+ of two pulsars nearby on the sky. These limits ex-
1517
+ clude some literature models (Maller & Bullock
1518
+ 2004; Faerman et al. 2017; Prochaska & Zheng
1519
+ 2019) for the baryon distribution in the CGM (Fig-
1520
+ ure 7).
1521
+ We find that consistent results are ob-
1522
+ tained from estimates of the CGM DM contribu-
1523
+ tions towards pulsars in the LMC and in the dis-
1524
+ tant (18.5 kpc) high-latitude globular cluster M53.
1525
+ The M53 pulsars in particular provide interest-
1526
+ ing constraints in the inner regions of the Milky
1527
+ Way halo that complement the FRB constraint,
1528
+ although the M53 DMCGM estimate is sensitive to
1529
+ the assumed ISM contribution.
1530
+ • We derive an upper limit on the mass of baryons in
1531
+ the Galactic CGM of log MCGM ≲ 10.8 − 11 from
1532
+ FRB 20220319D, and log MCGM ≲ 10.5−10.7 from
1533
+ M53 (Figure 8).
1534
+ The range corresponds to the
1535
+ range of assumed indices (0.4–0.5) of the β pro-
1536
+ file for the baryon halo density distribution. For
1537
+ a fiducial total mass (baryons and dark matter)
1538
+ of the Milky Way of 1.5 × 1012M⊙, and an as-
1539
+ sumed baryon-disk mass of 6×1010M⊙, the Milky
1540
+ Way contains ≪ 60% of the cosmological-average
1541
+ baryon mass.
1542
+ This is consistent with a baryon
1543
+ census, predicted by galaxy-formation simulations,
1544
+ wherein these “missing” baryons are expelled from
1545
+ halos like the Milky Way into the IGM through ki-
1546
+ netic and thermal feedback from AGN, supernovae
1547
+ and massive stars.
1548
+ Although our analysis relies
1549
+ on just a few sightlines, the conservative upper
1550
+ bounds on MCGM assuming spherical symmetry
1551
+ are robust to variations in the density distribution
1552
+ of halo baryons, and to assumptions on the chem-
1553
+ ical and thermal state of the halo.
1554
+ Studies of unseen baryons with FRB propagation sig-
1555
+ natures, like DMs, promise to transform our understand-
1556
+ ing of the distribution of baryons around and in be-
1557
+ tween galaxies (Ravi et al. 2019). As more FRBs like
1558
+ FRB 20220319D are localized to nearby galaxies (see
1559
+ also Kirsten et al. 2022), constraints on the CGM con-
1560
+ tent of the Milky Way will continue to improve, and
1561
+ direct measurements of MCGM may be possible. These
1562
+ measurements are likely to be important in assembling
1563
+ an in-situ picture of the processes whereby a galaxy
1564
+ grows from and impacts its environment.
1565
+
1566
+ Mass of the Milky Way CGM
1567
+ 15
1568
+ The authors thank staff members of the Owens Valley
1569
+ Radio Observatory and the Caltech radio group, includ-
1570
+ ing Kristen Bernasconi, Stephanie Cha-Ramos, Sarah
1571
+ Harnach, Tom Klinefelter, Lori McGraw, Corey Posner,
1572
+ Andres Rizo, Michael Virgin, Scott White, and Thomas
1573
+ Zentmyer. Their tireless efforts were instrumental to the
1574
+ success of the DSA-110. The DSA-110 is supported by
1575
+ the National Science Foundation Mid-Scale Innovations
1576
+ Program in Astronomical Sciences (MSIP) under grant
1577
+ AST-1836018. We acknowledge use of the VLA calibra-
1578
+ tor manual and the radio fundamental catalog. Some of
1579
+ the data presented herein were obtained at the W. M.
1580
+ Keck Observatory, which is operated as a scientific part-
1581
+ nership among the California Institute of Technology,
1582
+ the University of California and the National Aeronau-
1583
+ tics and Space Administration. The Observatory was
1584
+ made possible by the generous financial support of the
1585
+ W. M. Keck Foundation.
1586
+ Facility: Hale
1587
+ Software: astropy, CASA, heimdall, pypeit, Prospec-
1588
+ tor, wsclean
1589
+ REFERENCES
1590
+ Anderson, M. E. & Bregman, J. N. 2010, ApJ, 714, 320.
1591
+ doi:10.1088/0004-637X/714/1/320
1592
+ Appleby, S., Dav´e, R., Sorini, D., et al. 2021, MNRAS, 507,
1593
+ 2383. doi:10.1093/mnras/stab2310
1594
+ Baldwin, J. E. 1956, Ph.D. Thesis
1595
+ Baumgardt, H. & Vasiliev, E. 2021, MNRAS, 505, 5957.
1596
+ doi:10.1093/mnras/stab1474
1597
+ Berkhuijsen, E. M., Mitra, D., & Mueller, P. 2006,
1598
+ Astronomische Nachrichten, 327, 82.
1599
+ doi:10.1002/asna.200510488
1600
+ Bhandari, S., Sadler, E. M., Prochaska, J. X., et al. 2020,
1601
+ ApJL, 895, L37. doi:10.3847/2041-8213/ab672e
1602
+ Bhandari, S., Heintz, K. E., Aggarwal, K., et al. 2022, AJ,
1603
+ 163, 69. doi:10.3847/1538-3881/ac3aec
1604
+ Bhardwaj, M., Kirichenko, A. Y., Michilli, D., et al. 2021,
1605
+ ApJL, 919, L24. doi:10.3847/2041-8213/ac223b
1606
+ Birnboim, Y. & Dekel, A. 2003, MNRAS, 345, 349.
1607
+ doi:10.1046/j.1365-8711.2003.06955.x
1608
+ Bochenek, C. D., Ravi, V., & Dong, D. 2021, ApJL, 907,
1609
+ L31. doi:10.3847/2041-8213/abd634
1610
+ Bregman, J. N. & Lloyd-Davies, E. J. 2007, ApJ, 669, 990.
1611
+ doi:10.1086/521321
1612
+ Bregman, J. N., Hodges-Kluck, E., Qu, Z., et al. 2022, ApJ,
1613
+ 928, 14. doi:10.3847/1538-4357/ac51de
1614
+ Carretti, E., Crocker, R. M., Staveley-Smith, L., et al. 2013,
1615
+ Nature, 493, 66. doi:10.1038/nature11734
1616
+ Clark, S., Bordoloi, R., & Fox, A. J. 2022, MNRAS, 512,
1617
+ 811. doi:10.1093/mnras/stac504
1618
+ Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016,
1619
+ arXiv:1612.05560
1620
+ Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998,
1621
+ AJ, 115, 1693. doi:10.1086/300337
1622
+ Connor, L., van Leeuwen, J., Oostrum, L. C., et al. 2020,
1623
+ MNRAS, 499, 4716. doi:10.1093/mnras/staa3009
1624
+ Connor, L. & Ravi, V. 2022, Nature Astronomy, 6, 1035.
1625
+ doi:10.1038/s41550-022-01719-7
1626
+ Cordes, J. M. & Lazio, T. J. W. 2002, astro-ph/0207156
1627
+ Cordes, J. M., Ocker, S. K., & Chatterjee, S. 2022, ApJ,
1628
+ 931, 88. doi:10.3847/1538-4357/ac6873
1629
+ Correa Magnus, L. & Vasiliev, E. 2022, MNRAS, 511, 2610.
1630
+ doi:10.1093/mnras/stab3726
1631
+ Craig, P. A., Chakrabarti, S., Baum, S., et al. 2022,
1632
+ MNRAS, 517, 1737. doi:10.1093/mnras/stac2308
1633
+ Cutri, R. M., Wright, E. L., Conrow, T., et al. 2021, VizieR
1634
+ Online Data Catalog, II/328
1635
+ Deller, A. T., Goss, W. M., Brisken, W. F., et al. 2019,
1636
+ ApJ, 875, 100. doi:10.3847/1538-4357/ab11c7
1637
+ Draine, B. T. 2011, Physics of the Interstellar and
1638
+ Intergalactic Medium by Bruce T. Draine. Princeton
1639
+ University Press, 2011. ISBN: 978-0-691-12214-4
1640
+ Faerman, Y., Sternberg, A., & McKee, C. F. 2017, ApJ,
1641
+ 835, 52. doi:10.3847/1538-4357/835/1/52
1642
+ Faerman, Y., Sternberg, A., & McKee, C. F. 2020, ApJ,
1643
+ 893, 82. doi:10.3847/1538-4357/ab7ffc
1644
+ Fielding, D. B., Tonnesen, S., DeFelippis, D., et al. 2020,
1645
+ ApJ, 903, 32. doi:10.3847/1538-4357/abbc6d
1646
+
1647
+ 16
1648
+ Ravi et al.
1649
+ Fitzpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320.
1650
+ doi:10.1086/518158
1651
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013,
1652
+ PASP, 125, 306. doi:10.1086/670067
1653
+ Garmire, G. P., Nousek, J. A., Apparao, K. M. V., et al.
1654
+ 1992, ApJ, 399, 694. doi:10.1086/171962
1655
+ GRAVITY Collaboration, Abuter, R., Amorim, A., et al.
1656
+ 2019, A&A, 625, L10. doi:10.1051/0004-6361/201935656
1657
+ Gupta, A., Mathur, S., Krongold, Y., et al. 2012, ApJL,
1658
+ 756, L8. doi:10.1088/2041-8205/756/1/L8
1659
+ HI4PI Collaboration, Ben Bekhti, N., Fl¨oer, L., et al. 2016,
1660
+ A&A, 594, A116. doi:10.1051/0004-6361/201629178
1661
+ Hafen, Z., Faucher-Gigu`ere, C.-A., Angl´es-Alc´azar, D., et
1662
+ al. 2020, MNRAS, 494, 3581. doi:10.1093/mnras/staa902
1663
+ Haffner, L. M., Reynolds, R. J., Tufte, S. L., et al. 2003,
1664
+ ApJS, 149, 405. doi:10.1086/378850
1665
+ He, C., Ng, C.-Y., & Kaspi, V. M. 2013, ApJ, 768, 64.
1666
+ doi:10.1088/0004-637X/768/1/64
1667
+ Heintz, K. E., Prochaska, J. X., Simha, S., et al. 2020, ApJ,
1668
+ 903, 152. doi:10.3847/1538-4357/abb6fb
1669
+ Herbstmeier, U., Mebold, U., Snowden, S. L., et al. 1995,
1670
+ A&A, 298, 606
1671
+ Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997,
1672
+ ApJS, 112, 315. doi:10.1086/313041
1673
+ Hutschenreuter, S., Anderson, C. S., Betti, S., et al. 2022,
1674
+ A&A, 657, A43. doi:10.1051/0004-6361/202140486
1675
+ Johnson, B. D., Leja, J., Conroy, C., et al. 2021, ApJS, 254,
1676
+ 22. doi:10.3847/1538-4365/abef67
1677
+ Kaaret, P., Koutroumpa, D., Kuntz, K. D., et al. 2020,
1678
+ Nature Astronomy, 4, 1072.
1679
+ doi:10.1038/s41550-020-01215-w
1680
+ Keating, L. C. & Pen, U.-L. 2020, MNRAS, 496, L106.
1681
+ doi:10.1093/mnrasl/slaa095
1682
+ Kennicutt, R. C. 1998, ARA&A, 36, 189.
1683
+ doi:10.1146/annurev.astro.36.1.189
1684
+ Kewley, L. J., Groves, B., Kauffmann, G., et al. 2006,
1685
+ MNRAS, 372, 961. doi:10.1111/j.1365-2966.2006.10859.x
1686
+ Kirsten, F., Marcote, B., Nimmo, K., et al. 2022, Nature,
1687
+ 602, 585. doi:10.1038/s41586-021-04354-w
1688
+ Koo, B.-C., Heiles, C., & Reach, W. T. 1992, ApJ, 390,
1689
+ 108. doi:10.1086/171264
1690
+ Kulkarni, S. R., Anderson, S. B., Prince, T. A., et al. 1991,
1691
+ Nature, 349, 47. doi:10.1038/349047a0
1692
+ Leja, J., Carnall, A. C., Johnson, B. D., et al. 2019, ApJ,
1693
+ 876, 3. doi:10.3847/1538-4357/ab133c
1694
+ Li, Y. & Bregman, J. 2017, ApJ, 849, 105.
1695
+ doi:10.3847/1538-4357/aa92c6
1696
+ Li, J.-T., Bregman, J. N., Wang, Q. D., et al. 2018, ApJL,
1697
+ 855, L24. doi:10.3847/2041-8213/aab2af
1698
+ Lin, H.-H., Lin, K.-. yang ., Li, C.-T., et al. 2022, PASP,
1699
+ 134, 094106. doi:10.1088/1538-3873/ac8f71
1700
+ Macquart, J.-P., Prochaska, J. X., McQuinn, M., et al.
1701
+ 2020, Nature, 581, 391. doi:10.1038/s41586-020-2300-2
1702
+ Madsen, G. J. & Reynolds, R. J. 2005, ApJ, 630, 925.
1703
+ doi:10.1086/432043
1704
+ Maller, A. H. & Bullock, J. S. 2004, MNRAS, 355, 694.
1705
+ doi:10.1111/j.1365-2966.2004.08349.x
1706
+ Manchester, R. N., Hobbs, G. B., Teoh, A., et al. 2005, AJ,
1707
+ 129, 1993. doi:10.1086/428488
1708
+ Mannings, A. G., Fong, W.-. fai ., Simha, S., et al. 2021,
1709
+ ApJ, 917, 75. doi:10.3847/1538-4357/abff56
1710
+ Miller, M. J. & Bregman, J. N. 2013, ApJ, 770, 118.
1711
+ doi:10.1088/0004-637X/770/2/118
1712
+ Miller, M. J. & Bregman, J. N. 2015, ApJ, 800, 14.
1713
+ doi:10.1088/0004-637X/800/1/14
1714
+ Moser, E., Battaglia, N., Nagai, D., et al. 2022, ApJ, 933,
1715
+ 133. doi:10.3847/1538-4357/ac70c6
1716
+ Nakashima, S., Inoue, Y., Yamasaki, N., et al. 2018, ApJ,
1717
+ 862, 34. doi:10.3847/1538-4357/aacceb
1718
+ Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ,
1719
+ 490, 493. doi:10.1086/304888
1720
+ Normandeau, M., Taylor, A. R., & Dewdney, P. E. 1996,
1721
+ Nature, 380, 687. doi:10.1038/380687a0
1722
+ Ocker, S. K., Cordes, J. M., & Chatterjee, S. 2020, ApJ,
1723
+ 897, 124. doi:10.3847/1538-4357/ab98f9
1724
+ Ocker, S. K., Cordes, J. M., Chatterjee, S., et al. 2022,
1725
+ ApJ, 934, 71. doi:10.3847/1538-4357/ac75ba
1726
+ Oke, J. B. & Gunn, J. E. 1982, PASP, 94, 586.
1727
+ doi:10.1086/131027
1728
+ Pan, Z., Qian, L., Ma, X., et al. 2021, ApJL, 915, L28.
1729
+ doi:10.3847/2041-8213/ac0bbd
1730
+ Pen, U.-L. 1999, ApJL, 510, L1. doi:10.1086/311799
1731
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al.
1732
+ 2020, A&A, 641, A6. doi:10.1051/0004-6361/201833910
1733
+ Platts, E., Prochaska, J. X., & Law, C. J. 2020, ApJL, 895,
1734
+ L49. doi:10.3847/2041-8213/ab930a
1735
+ Pleunis, Z., Good, D. C., Kaspi, V. M., et al. 2021, ApJ,
1736
+ 923, 1. doi:10.3847/1538-4357/ac33ac
1737
+ Posti, L. & Helmi, A. 2019, A&A, 621, A56.
1738
+ doi:10.1051/0004-6361/201833355
1739
+ Predehl, P., Sunyaev, R. A., Becker, W., et al. 2020,
1740
+ Nature, 588, 227. doi:10.1038/s41586-020-2979-0
1741
+ Price, D. C., Flynn, C., & Deller, A. 2021, PASA, 38, e038.
1742
+ doi:10.1017/pasa.2021.33
1743
+ Prochaska, J. X. & Zheng, Y. 2019, MNRAS, 485, 648.
1744
+ doi:10.1093/mnras/stz261
1745
+ Prochaska, J., Hennawi, J., Westfall, K., et al. 2020, The
1746
+ Journal of Open Source Software, 5, 2308.
1747
+ doi:10.21105/joss.02308
1748
+
1749
+ Mass of the Milky Way CGM
1750
+ 17
1751
+ Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012,
1752
+ ARA&A, 50, 491.
1753
+ doi:10.1146/annurev-astro-081811-125612
1754
+ Putman, M. E., Zheng, Y., Price-Whelan, A. M., et al.
1755
+ 2021, ApJ, 913, 53. doi:10.3847/1538-4357/abe391
1756
+ Ramesh, R., Nelson, D., & Pillepich, A. 2022,
1757
+ arXiv:2211.00020
1758
+ Ravi, V. 2019, Nature Astronomy, 3, 928.
1759
+ doi:10.1038/s41550-019-0831-y
1760
+ Ravi, V., Battaglia, N., Burke-Spolaor, S., et al. 2019,
1761
+ BAAS, 51, 420
1762
+ Ravi, V., Catha, M., Chen, G., et al. 2022,
1763
+ arXiv:2211.09049
1764
+ Rees, M. J. & Ostriker, J. P. 1977, MNRAS, 179, 541.
1765
+ doi:10.1093/mnras/179.4.541
1766
+ Reid, M. J., Schneps, M. H., Moran, J. M., et al. 1988,
1767
+ ApJ, 330, 809. doi:10.1086/166514
1768
+ Ridley, J. P., Crawford, F., Lorimer, D. R., et al. 2013,
1769
+ MNRAS, 433, 138. doi:10.1093/mnras/stt709
1770
+ Salem, M., Besla, G., Bryan, G., et al. 2015, ApJ, 815, 77.
1771
+ doi:10.1088/0004-637X/815/1/77
1772
+ Schlafly, E. F. & Finkbeiner, D. P. 2011, ApJ, 737, 103.
1773
+ doi:10.1088/0004-637X/737/2/103
1774
+ Schnitzeler, D. H. F. M. 2012, MNRAS, 427, 664.
1775
+ doi:10.1111/j.1365-2966.2012.21869.x
1776
+ Seebeck, J., Ravi, V., Connor, L., et al. 2021,
1777
+ arXiv:2112.07639
1778
+ Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ,
1779
+ 131, 1163. doi:10.1086/498708
1780
+ Snowden, S. L., Mebold, U., Hirth, W., et al. 1991, Science,
1781
+ 252, 1529. doi:10.1126/science.252.5012.1529
1782
+ Speagle, J. S., Steinhardt, C. L., Capak, P. L., et al. 2014,
1783
+ ApJS, 214, 15. doi:10.1088/0067-0049/214/2/15
1784
+ Spitzer, L. 1956, ApJ, 124, 20. doi:10.1086/146200
1785
+ Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ, 724,
1786
+ 1044. doi:10.1088/0004-637X/724/2/1044
1787
+ Tendulkar, S. P., Gil de Paz, A., Kirichenko, A. Y., et al.
1788
+ 2021, ApJL, 908, L12. doi:10.3847/2041-8213/abdb38
1789
+ Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science,
1790
+ 334, 948. doi:10.1126/science.1209840
1791
+ Tumlinson, J., Peeples, M. S., & Werk, J. K. 2017,
1792
+ ARA&A, 55, 389.
1793
+ doi:10.1146/annurev-astro-091916-055240
1794
+ Ueda, M., Sugiyama, H., Kobayashi, S. B., et al. 2022,
1795
+ PASJ, 74, 1396. doi:10.1093/pasj/psac077
1796
+ Vasiliev, E. & Baumgardt, H. 2021, MNRAS, 505, 5978.
1797
+ doi:10.1093/mnras/stab1475
1798
+ Watkins, L. L., Evans, N. W., & An, J. H. 2010, MNRAS,
1799
+ 406, 264. doi:10.1111/j.1365-2966.2010.16708.x
1800
+ Werk, J. K., Rubin, K. H. R., Bish, H. V., et al. 2019, ApJ,
1801
+ 887, 89. doi:10.3847/1538-4357/ab54cf
1802
+ White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341.
1803
+ doi:10.1093/mnras/183.3.341
1804
+ White, D. J., Daw, E. J., & Dhillon, V. S. 2011, Classical
1805
+ and Quantum Gravity, 28, 085016.
1806
+ doi:10.1088/0264-9381/28/8/085016
1807
+ Wijers, N. A., Schaye, J., & Oppenheimer, B. D. 2020,
1808
+ MNRAS, 498, 574. doi:10.1093/mnras/staa2456
1809
+ Wu, X. & McQuinn, M. 2022, arXiv:2209.04455
1810
+ Yamasaki, S. & Totani, T. 2020, ApJ, 888, 105.
1811
+ doi:10.3847/1538-4357/ab58c4
1812
+ Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835,
1813
+ 29. doi:10.3847/1538-4357/835/1/29
1814
+ Zheng, Y., Peeples, M. S., O’Shea, B. W., et al. 2020, ApJ,
1815
+ 896, 143. doi:10.3847/1538-4357/ab960a
1816
+
7dAzT4oBgHgl3EQfEvrf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tFLT4oBgHgl3EQftS_u/content/tmp_files/2301.12151v1.pdf.txt ADDED
@@ -0,0 +1,1280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
2
+ Jona Klemenc * 1 Holger Trittenbach * 1
3
+ Abstract
4
+ Regulation, legal liabilities, and societal con-
5
+ cerns challenge the adoption of AI in safety and
6
+ security-critical applications. One of the key con-
7
+ cerns is that adversaries can cause harm by manip-
8
+ ulating model predictions without being detected.
9
+ Regulation hence demands an assessment of the
10
+ risk of damage caused by adversaries. Yet, there
11
+ is no method to translate this high-level demand
12
+ into actionable metrics that quantify the risk of
13
+ damage.
14
+ In this article, we propose a method to model and
15
+ statistically estimate the probability of damage
16
+ arising from adversarial attacks. We show that
17
+ our proposed estimator is statistically consistent
18
+ and unbiased. In experiments, we demonstrate
19
+ that the estimation results of our method have
20
+ a clear and actionable interpretation and outper-
21
+ form conventional metrics. We then show how
22
+ operators can use the estimation results to reliably
23
+ select the model with the lowest risk.
24
+ 1. Introduction
25
+ Adversarial perturbations are a security risk since an adver-
26
+ sary can use them to alter machine learning model predic-
27
+ tions without being noticed by a human (Yuan et al., 2019;
28
+ Ren et al., 2020). For instance, think of an upload filter that
29
+ uses a machine learning model to identify prohibited mate-
30
+ rial on social media platforms, such as copyright-protected
31
+ images or hate speech. By perturbing prohibited content,
32
+ an adversary may bypass an upload filter even though the
33
+ content appears identical to the original prohibited content
34
+ to the human observer. When machine learning models
35
+ are deployed in systems that take or enable action in phys-
36
+ ical environments, the security risks can result in safety
37
+ hazards (Deng et al., 2020). An example is autonomous
38
+ driving, where a false classification, e.g., of a stop sign, can
39
+ severely damage property and life. Given these potentially
40
+ *Equal contribution
41
+ 1neurocat, Berlin, Germany. Correspon-
42
+ dence to: Jona Klemenc <jona.klemenc@neurocat.ai>, Holger
43
+ Trittenbach <holger.trittenbach@neurocat.ai>.
44
+ severe consequences, regulators have made clear that one
45
+ must treat risk from adversaries seriously. Broad regulation,
46
+ such as the “EU AI Act” (European Commission, 2021),
47
+ as well as domain-specific norms, such as safety standards
48
+ for autonomous vehicles (e.g., ISO 21448 (SOTIF) (The
49
+ British Standards Institution, 2022), UL 4600 (Underwriters
50
+ Laboratories Inc., 2022), and ISO PAS 8800 (International
51
+ Organization for Standardization, 2023 (forthcoming)), ex-
52
+ plicitly require an assessment of the risk arising from adver-
53
+ sarial attacks. Consequently, operators of machine learning
54
+ models strive to manage the risk that stems from adversarial
55
+ perturbations (Piorkowski et al., 2022). While the motiva-
56
+ tion and intentions are clear, neither the regulation nor the
57
+ academic literature currently provides sufficient technical
58
+ guidelines on how to assess the “risk of adversarial attacks”.
59
+ A risk assessment of adversarial attacks requires a reliable
60
+ estimate that an adversary causes damage. Intuitively, this
61
+ probability of damage describes how likely an adversary can
62
+ find perturbations that go undetected and alter model predic-
63
+ tions. The probability of damage hence depends on the capa-
64
+ bilities of an adversary and the effectiveness of measures put
65
+ in place to detect adversarial perturbations. Previous work
66
+ has focused on evaluating adversaries by comparing adver-
67
+ sarial attacks (Yuan et al., 2019; Ren et al., 2020) with each
68
+ other, e.g., by a per-attack drop in accuracy (Brendel et al.,
69
+ 2020). These evaluations do not consider the likelihood that
70
+ measures detect adversarial perturbations. Instead, evalua-
71
+ tions assume a threshold (Croce et al., 2021; Maho et al.,
72
+ 2021) on the perturbation size beyond which perturbations
73
+ are detected with certainty. This is a stark simplification.
74
+ Practical experience shows that a suitable threshold is hard
75
+ to find or may not exist. Other proposed evaluation metrics
76
+ that compare perturbation sizes (Carlini et al., 2019) are
77
+ not viable alternatives as they are either prone to outliers or
78
+ suffer from statistical bias. It is an open question of how to
79
+ reliably estimate the probability of damage and how to use
80
+ the estimate to select machine learning models.
81
+ In this article, we propose a statistical approach to assessing
82
+ the risk caused by adversarial attacks. Our main contri-
83
+ bution is a model-agnostic estimator for the probability of
84
+ damage that is statistically unbiased and consistent. Our
85
+ estimator explicitly considers the probability of detecting
86
+ perturbations instead of assuming a hard threshold. As it
87
+ turns out, calculating estimates for the probability of detec-
88
+ arXiv:2301.12151v1 [cs.LG] 28 Jan 2023
89
+
90
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
91
+ tion efficiently is challenging for large sample sizes (see
92
+ Section 4). Hence, we propose a strategy to make estimates
93
+ efficient (see Section 4.2), even when querying the detector,
94
+ e.g., a human in the loop, is out of reach (see Section 4.3).
95
+ The estimates resulting from our method allow comparing
96
+ different models with each other to select the model with the
97
+ lowest risk of damage caused by adversarial attacks. Our
98
+ experiments demonstrate that our estimator is more reliable
99
+ than existing metrics in adversarial robustness benchmarks.
100
+ 2. Notation
101
+ Let X be a data space, and X = ⟨x1, . . . , xI⟩ ⊆ X a sample
102
+ of I observations. A machine learning model M : X → O
103
+ is a function that maps the data space to a prediction space
104
+ O. O differs depending on the model task, e.g., for image
105
+ classification it might be the space of logit scores or class
106
+ labels; for object detection it might be the space of bounding
107
+ boxes and classification scores. When there are multiple
108
+ models, we index them as M1, . . . , MJ.
109
+ We further define a ground truth as a function g: X → O
110
+ that assigns each observation a value of the prediction space
111
+ that is considered “correct” by some gold standard. We say
112
+ a prediction is “incorrect” if M(x) ̸= g(x). We say that
113
+ two model predictions “disagree” for a pair of observations
114
+ if M(x) ̸= M(x′), x, x′ ∈ X. Herein, we do not specify
115
+ further what it means to disagree since the specifics usually
116
+ depend on the model task and application. For instance, in
117
+ one case, one would say two models disagree if the argmax
118
+ of their logit outputs are different; in another case, they
119
+ disagree if the ranking of their top-k logit scores differs.
120
+ We use PS to denote probability distribution functions over
121
+ some space S with the corresponding probability density
122
+ function dPS. The hat notation indicates empirical esti-
123
+ mates, e.g., an empirical distribution ˆP.
124
+ We say an estimator of a probability function is unbiased
125
+ if the mean of the sampling distribution of the estimator is
126
+ equal to the true probability. An estimator that converges to
127
+ the estimated value with increasing sample size is consis-
128
+ tent (see Cram´er, 1999, p. 351).
129
+ 3. Fundamentals and Related Work
130
+ We expect operators to assess the risk of using a machine
131
+ learning model in a security-critical application as an ex-
132
+ pected value of the total damage, i.e., the product of the
133
+ occurrence probability of damage when operating a model
134
+ P dam(M) and the expected size of the damage Cdam.
135
+ Operational Risk(M) = P dam(M) × Cdam
136
+ (1)
137
+ We assume that Cdam is constant and independent of whether
138
+ the operator relies on machine learning or any other system,
139
+ e.g., a human in the loop. We focus on the risk of a malicious
140
+ adversary seeking to intentionally manipulate predictions
141
+ in a way that can inflict damage. We do not consider other
142
+ categories of machine-learning-related security and privacy
143
+ risks, such as the risks of model stealing (Tram`er et al.,
144
+ 2016) and model inversion (Fredrikson et al., 2015).
145
+ Adversarial Risk. The adversarial machine learning com-
146
+ munity often uses the term “risk” in the sense of Adver-
147
+ sarial Risk (AR). AR is concerned with the empirical risk
148
+ estimation of a model under small perturbations. Formally,
149
+ the adversarial risk is the expected loss over perturbations
150
+ within a neighborhood Nϵ(x)
151
+ AR(M) = Ex∼X
152
+
153
+ sup
154
+ x′∈N (x)
155
+ l(M(x′), g(x))
156
+
157
+ (2)
158
+ with loss function l (Uesato et al., 2018). With ϵ=0, Equa-
159
+ tion 2 reduces to the standard empirical risk. Typically, the
160
+ neighborhood N is constrained to an epsilon ball around
161
+ x, i.e., N(x) ≡ Bϵ(x) for a fixed perturbation budget ϵ.
162
+ Details of this definition differ across the literature (Pydi
163
+ & Jog, 2021). For instance, instead of the loss against a
164
+ ground truth, one may compute the loss of prediction change
165
+ l(M(x), M(x′)) if the ground truth is unknown (Diochnos
166
+ et al., 2018).
167
+ Related research focuses on average risk under ran-
168
+ dom (Levy & Katz, 2021; Rice et al., 2021) and natural
169
+ perturbations (Pedraza et al., 2021; Hendrycks & Dietterich,
170
+ 2019; Schwerdtner et al., 2020). Here, one measure of inter-
171
+ est is the Error-Region Risk (ERR) (Diochnos et al., 2018),
172
+ i.e., the probability that a successful perturbation exists
173
+ ERR(M) = Px∈X [∃x′ ∈ Bϵ(x) : M(x′) ̸= g(x′)]
174
+ (3)
175
+ However, estimations of ERR rely on random perturbations
176
+ drawn from a uniform distribution (Diochnos et al., 2018;
177
+ Webb et al., 2018). Thus, it does not account for “an explicit
178
+ and effective adversary” (Webb et al., 2018).
179
+ Benchmarks. Adversarial Risk has inspired several bench-
180
+ marks that compare the effectiveness of individual adver-
181
+ sarial attacks and defenses. The comparisons are based
182
+ on either the success rate of attacks for a defined pertur-
183
+ bation budget ϵ, see RobustBench (Croce et al., 2021)
184
+ and RoBIC (Maho et al., 2021), or the average perturba-
185
+ tion size attacks require to find successful perturbations,
186
+ see RobustVision (Brendel et al., 2020). Such com-
187
+ parisons are attack-centric, i.e., effective in evaluating at-
188
+ tacks against each other. However, estimating P dam requires
189
+ model-centric evaluations that measure how likely an adver-
190
+ sary can find successful adversarial perturbations given a set
191
+ of attacks and perturbation budgets (cf. Carlini et al., 2019).
192
+ Instead of evaluating adversarial risk for a defined budget,
193
+ one can also plot accuracy or attack success rates against a
194
+
195
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
196
+ perturbation budget (Dong et al., 2020; Carlini et al., 2019).
197
+ Such plots are useful to investigate the effectiveness of at-
198
+ tacks for varying perturbation budgets. However, visual
199
+ inspection of plots does not scale beyond the comparison of
200
+ a few attacks. It is an open question how one can use these
201
+ curves to estimate the operational risk; we will come back
202
+ to this question in Section 5.2.
203
+ In summary, there are a variety of evaluation methods that
204
+ seek to capture some element of adversarial risk. They pro-
205
+ vide a set of measures for attack benchmarks but are not
206
+ immediately applicable to estimate operational risk. The
207
+ reason is that they (i) do not account for the probability of
208
+ detecting adversarial attacks (see Section 4) and (ii) are ei-
209
+ ther biased or inconsistent and hence not useful as statistical
210
+ estimates (see Section 5.2).
211
+ 4. Estimating the Probability of Damage
212
+ The operational risk of a machine learning model depends
213
+ on the probability of damage P dam, see Equation 1. Intu-
214
+ itively, P dam is the joint probability of finding a successful
215
+ perturbation (Succ) from the space of adversarial perturba-
216
+ tions AdvM(X) and of a detector, e.g., a human in the loop,
217
+ not detecting it (¬ Det). Formally, we can express P dam as
218
+ the joint probability
219
+ P dam :=Px∼AdvM(X)(Succ(x), ¬Det(x))
220
+ = Px∼AdvM(X)(Succ(x))
221
+
222
+ ��
223
+
224
+ Probability of Attack Success
225
+ × Px∼AdvM(X)(¬Det(x) | Succ(x))
226
+
227
+ ��
228
+
229
+ Probability of Detection
230
+ (4)
231
+ Considering this equation, a natural solution to estimat-
232
+ ing P dam seems to be Monte Carlo Simulation: One can
233
+ draw a sample from the space of adversarial perturbations
234
+ AdvM(X) to estimate the probability of attack success
235
+ Px∼AdvM(X)(Succ(x)) and then pass the successful per-
236
+ turbations on to a detector to estimate the probability of de-
237
+ tection Px∼AdvM(X)(¬Det(x) | Succ(x)). However, one
238
+ must be careful with designing this sampling process – a
239
+ naive sampling of random perturbations is not sufficient here.
240
+ An adversary is efficient and uses all means available to find
241
+ successful perturbations. The adversary does not search
242
+ through the infinite space of random perturbations but in-
243
+ stead uses adversarial attacks, i.e., efficient optimization
244
+ methods that make heuristic assumptions on the perturba-
245
+ tion space. Thus, naive random sampling underestimates an
246
+ efficient adversary. Valid Monte Carlo Simulation requires
247
+ to simulate an adversary, i.e., to run attacks that are in line
248
+ with the resources and capabilities of the adversary.
249
+ While Monte Carlo Simulation is conceptually sound, it has
250
+ two significant limitations in our context:
251
+ Small Sample Size: If detection requires a human in the
252
+ loop, collecting data on detection will inevitably be time-
253
+ consuming: a detector must inspect each successful pertur-
254
+ bation individually. This may significantly limit the feasible
255
+ sample size and reduce the estimation quality.
256
+ Model-Specific Estimates: Probability estimates are specific
257
+ to the machine learning model and attacks used to search
258
+ for perturbations. This is because the conditional probabil-
259
+ ity of detection Px∼AdvM(X)(¬Det(x) | Succ(x)) relies
260
+ on AdvM(X) which is specific to the model and attacks.
261
+ Consequently, one must repeat the entire estimation of P dam
262
+ for any change in the choice of models or attacks. Because
263
+ detection is costly, the estimation becomes impractical for
264
+ operators who have frequent model iterations and face a
265
+ research field that frequently produces novel attacks.
266
+ Both limitations stand in the way of obtaining an estimate
267
+ of P dam in many practical settings.
268
+ In this section, we propose a sampling method that over-
269
+ comes both limitations. We first establish a rigorous formal
270
+ framework for the probability of attack success (Section 4.1).
271
+ We then turn to the estimation of the probability of detection
272
+ (Section 4.2) and introduce a method that is not limited by
273
+ Small Sample Size and Model-Specific Estimates. Lastly,
274
+ we look at the special case of providing an estimation for
275
+ P dam when there is no explicit detector – a setting that often
276
+ occurs in academic benchmarks (Section 4.3). The result is
277
+ a formal expression of the probability of damage that has
278
+ both a clear interpretation and an unbiased and consistent
279
+ estimator.
280
+ 4.1. Estimating the Probability of Attack Success
281
+ So far, we have defined P dam as an estimate over the space
282
+ of adversarial perturbations AdvM(X). However, one typi-
283
+ cally only has access to a sample X ∼ X, used for training
284
+ or testing of a machine learning model. The space of adver-
285
+ sarial perturbations is defined implicitly by a pushforward
286
+ of X along a function ΠM : x �→ x′
287
+ Px∼AdvM(X)(Succ(x), ¬Det(x))
288
+ = Px∼X (Succ(ΠM(x)), ¬Det(ΠM(x)))
289
+ (5)
290
+ We call ΠM the attack strategy.
291
+ One can use a sample X and an attack strategy ΠM to
292
+ simulate an adversary. To illustrate, think of an adversary
293
+ that wants to evade an upload filter for copyright-protected
294
+ material. The adversary would select a copyright-protected
295
+ image and manipulate it via an attack strategy ΠM such
296
+ that the classifier of the upload filter predicts it to be
297
+ non-protected content. To estimate the probability that
298
+ the adversary finds such a successful perturbation, one
299
+ can simulate the adversary by sampling images from the
300
+ data distribution of interest to the adversary, here the
301
+
302
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
303
+ copyright-protected images, and then manipulate the im-
304
+ ages with the attack strategy the adversary is expected to use.
305
+ An attack strategy depends on the choice of search algo-
306
+ rithms that an efficient adversary has at their disposal to
307
+ search for successful adversarial perturbations. The most
308
+ effective search algorithms known today are adversarial at-
309
+ tacks, i.e., heuristics to find small successful perturbations.
310
+ Many adversarial attacks require access to the model, e.g.,
311
+ to obtain inference results or gradients with respect to the
312
+ model input. An adversary with restricted model access
313
+ can only use a subset of adversarial attacks that do not rely
314
+ on gradient calculations. We define the set of applicable
315
+ adversarial attacks as
316
+ A = {ak : (x, M) �→ x′}k∈K
317
+ where each ak ∈ {a1, a2, . . . , aK} is an attack that has
318
+ access to an input x and potentially restricted access to
319
+ a model M. In practice, an adversary also may have a
320
+ limited computational budget, which forces them to select a
321
+ computationally feasible subset A′ ⊂ A; the selection of a
322
+ good subset of adversarial attacks under budget restrictions,
323
+ however, is a question orthogonal to our current article.
324
+ An adversary executes an attack strategy as follows. First,
325
+ the adversary uses A to generate candidate perturbations
326
+ CandA(x, M) = {a(x, M) | a ∈ A}
327
+ Out of the candidates, the adversary filters the ones x′ ∈
328
+ CandA(x, m) where Succ(x′) = True∧¬Det(x′) = True.
329
+ Filtering for Succ(x′) is straightforward if the adversary can
330
+ access the model predictions. For instance, if the adversary
331
+ is interested in an untargeted misclassification, e.g., chang-
332
+ ing the prediction from “copyright-protected” images to any
333
+ other class, the success filter is
334
+ CandSucc
335
+ A
336
+ (x, M) = {x′ ∈CandA(x, M)|M(x′)̸=M(x)}
337
+ where the sample X are images that initially are classified
338
+ as M(x) = “copyright-protected”.
339
+ However, filtering is not possible for an adversary because it
340
+ requires access to ¬Det(x′), e.g., a human in the loop. If an
341
+ adversary would have access to the detector, then there is no
342
+ need to use adversarial attacks that minimize perturbation
343
+ sizes. The adversary could instead directly optimize for
344
+ evading the detector with adaptive attacks (Tramer et al.,
345
+ 2020). To minimize the chance of being detected without ac-
346
+ cess to ¬Det(x′), the adversary thus makes an assumption:
347
+ small perturbations are less likely to be detected than large
348
+ ones. The adversary then uses the perturbation size as a
349
+ proxy for detectability and selects the smallest perturbation
350
+ per observation among all successful perturbations. This
351
+ Algorithm 1: Monte Carlo Simulation of P dam
352
+ Input
353
+ :X, M, A, Det, d
354
+ Output : �P dam
355
+ 1 r ← 0
356
+ 2 for x ∈ X do
357
+ ▷ Outer Loop
358
+ 3
359
+ dmin ← ∞
360
+ 4
361
+ for a ∈ A do
362
+ ▷ Inner Loop
363
+ 5
364
+ x′ ← a(x, M)
365
+ 6
366
+ if M(x′) ̸= M(x) ∧ d(x′, x) < dmin then
367
+ 7
368
+ x′′ ← x′, dmin ← d(x′, x)
369
+ 8
370
+ end
371
+ 9
372
+ end
373
+ 10
374
+ if x′′ ̸= x and ¬Det(x′′) then
375
+ 11
376
+ r ← r + 1
377
+ 12
378
+ end
379
+ 13 end
380
+ 14 return
381
+ r
382
+ |X|
383
+ means that an operator has to assume the worst-case, i.e.,
384
+ the smallest successful perturbation for each observation.
385
+ A difficulty for the adversary, and in turn also for the simu-
386
+ lation, is to select a distance metric to measure perturbation
387
+ size that correlates well with the chance of detection. A
388
+ common choice are Lp metrics, but there is an active debate
389
+ about which metrics align well with human perception, (see
390
+ for instance Zhang et al., 2018). With this in mind, we can
391
+ now introduce a formal definition of the attack strategy:
392
+ Definition 4.1 (Attack Strategy). An attack strategy is a
393
+ function
394
+ ΠM
395
+ A (x)=
396
+
397
+
398
+
399
+ arg min
400
+ x′∈CandSucc
401
+ A
402
+ (x,M)
403
+ d(x′, x), if CandSucc
404
+ A
405
+ (x, M)̸=∅
406
+ x
407
+ otherwise,
408
+ of type ΠM
409
+ A : X → X that returns the smallest perturbation
410
+ obtained by applying a set of applicable adversarial attacks
411
+ A to an observation x given a distance metric d.
412
+ We say an attack strategy is successful if ΠM
413
+ A (x) ̸= x. Since
414
+ an attack strategy relies on empirical evaluations, it yields
415
+ an upper bound on the minimum perturbation required for
416
+ any attack strategy to be successful.
417
+ Definition 4.2 (Smallest Upper Bound on Perturbation Size).
418
+ The smallest upper bound on the perturbation size obtained
419
+ by a successful attack strategy is
420
+ dA(x, M) =
421
+
422
+ d(ΠM
423
+ A (x), x), if ΠM
424
+ A (x) ̸= x
425
+
426
+ otherwise,
427
+ where d is a distance metric on X.
428
+ We can now define an algorithm to find an estimate for P dam
429
+ by Monte Carlo Simulation. Algorithm 1 illustrates the idea:
430
+
431
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
432
+ iterate over observations in a sample X (Line 2) and indi-
433
+ vidual attacks of an attack strategy A (Line 4), measure the
434
+ attack success (Line 6) and return the ratio of observations
435
+ for which an attack strategy was successful, i.e., the ones
436
+ that are not detected (Line 10). The result is an unbiased
437
+ and consistent estimate of the probability of attack success
438
+ for an attack strategy.
439
+ 4.2. Estimating the Probability of Detection
440
+ Algorithm 1 reveals the two limitations that we introduced
441
+ earlier. First, samples sizes |X| must be small if evaluating
442
+ Det(x′) is costly (Small Sample Size). This, in turn, means
443
+ that the sample size and the number of attacks to evaluate
444
+ the success of an attack strategy must be small. The small
445
+ sample sizes limit the quality of the estimate. Second, the
446
+ evaluation of Det occurs after generating x′. Since x′ de-
447
+ pends on M, the result of the estimation is model-dependent
448
+ (Model-Specific Estimates). One must repeat the estimation
449
+ of P dam for each model. We now show how one can over-
450
+ come both limitations.
451
+ 4.2.1. OVERCOMING SMALL SAMPLE SIZE
452
+ One way to overcome Small Sample Size is to substitute
453
+ the detector with a surrogate function that is inexpensive to
454
+ evaluate. Specifically, if there is a function F that substitutes
455
+ ¬Det, such that F(x) = ¬Det(ΠM
456
+ A (x)), one can use F
457
+ instead of ¬Det to evaluate the detector during a Monte
458
+ Carlo Simulation. We can express this in commutative
459
+ diagram notation as
460
+ ΠM
461
+ A (x)
462
+ ¬Det(ΠM
463
+ A (x))
464
+ ¬Det
465
+ F
466
+ Finding a suitable F is difficult since the domain of F is
467
+ the high-dimensional observation space. In particular, es-
468
+ timating a function in a high-dimensional space may still
469
+ require large sample sizes. However, under the assumption
470
+ that the detection probability correlates well with the pertur-
471
+ bation size, one can first map x to a distance and then use
472
+ the distance as the domain of the detection function. With
473
+ this assumption, the commutative diagram changes to
474
+ dA(x)
475
+ x
476
+ ΠM
477
+ A (x)
478
+ ¬Det(ΠM
479
+ A (x))
480
+ F ′
481
+ ¬Det
482
+ where F ′ is a function of type F ′ : R → {0, 1}, and the
483
+ image of dA the distance space induced by a metric d.
484
+ We further say that such an F ′ has the point-wise detection
485
+ commutation property if
486
+ ∀x ∈ X : Succ(ΠM
487
+ A (x)) ⇒ F ′(dA(x)) = ¬Det(ΠM
488
+ A (x)).
489
+ Such an F ′ may not exist.
490
+ Think of two observations
491
+ x, ˜x ∈ X, x ̸= ˜x with x′ = ΠM
492
+ A (x) and ˜x′ = ΠM
493
+ A (˜x),
494
+ where dA(x) = dA(˜x) but ¬Det(x′) ̸= ¬Det(˜x′), i.e.,
495
+ both observations have the same upper bound on the per-
496
+ turbation size. Then, there is no F ′ that has the detection
497
+ commutation property.
498
+ Fortunately, we do not require a point-wise detection com-
499
+ mutation. Since �P dam is a probabilistic estimate, it suffices
500
+ that F ′ is equivalent to the probability of detection.
501
+ Definition 4.3 (Probabilistic Detection Commutation Prop-
502
+ erty). We say a function F ′ : R → R has the probabilistic
503
+ detection commutation property if
504
+ Px∼X ′(¬Det(ΠM
505
+ A (x))) = Ex∼X ′(F ′(dA(x))),
506
+ (6)
507
+ where X ′ = {x ∈ X : Succ(ΠM
508
+ A (x))}.
509
+ Given an F ′ that has the probabilistic detection commu-
510
+ tation property, one can obtain P dam using the cumulative
511
+ distribution function of dA, the Attack Success Distribution.
512
+ Definition 4.4 (Attack Success Distribution).
513
+ ASDA,M(τ) := Px∼AdvM(X)(dA(x, M)≤ τ), τ ≥ 0 (7)
514
+ Formally, this leads to the following theorem.
515
+ Theorem 4.5. Let F ′ : R → R be a function that fulfills
516
+ the probabilistic detection commutation property. Then
517
+ P dam =
518
+ � ∞
519
+ 0
520
+ F ′(τ) dASDA,M(τ) dτ.
521
+ Proof. See Appendix A.
522
+ Using Theorem 4.5, the key to an estimation of P dam is an
523
+ estimation of ASDA,M. Given a sample X ∼ X, one can
524
+ approach the Attack Success Distribution with the following
525
+ empirical distribution function (cf. Dong et al., 2020).
526
+ Definition 4.6 (Attack Success Ratio).
527
+ ASRA,M(τ) = |{x ∈ X | dA(x, M) ≤ τ}|
528
+ |X|
529
+ Empirical distribution functions are unbiased and consis-
530
+ tent estimators of their distribution functions. Applying
531
+ this general property to ASRA,M allows us to formulate an
532
+ unbiased and consistent estimator for P dam.
533
+ Theorem 4.7. The estimator
534
+ �P dam =
535
+ � ∞
536
+ 0
537
+ F ′(τ) dASRA,M(τ) dτ
538
+ =
539
+ 1
540
+ |X|
541
+
542
+ x∈X,dA(x)̸=∞
543
+ F ′(dA(x))
544
+ (�)
545
+ is an unbiased, consistent estimator of P dam.
546
+ Proof. See Appendix A.
547
+
548
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
549
+ 4.2.2. OVERCOMING MODEL-SPECIFIC ESTIMATES
550
+ What is left to discuss is how to construct an F ′ that fulfills
551
+ the probabilistic commutation property. A natural choice
552
+ is to use the probability of detection conditioned on τ. In-
553
+ tuitively, this probability is the ratio of observations with
554
+ dA(x) = τ that one expects to be detected. Formally, we
555
+ define this as a probability function.
556
+ Definition 4.8 (Detection Probability Function).
557
+ ΨA,M(τ) = Px∼X (¬Det(ΠM
558
+ A (x)) | dA(x) = τ)
559
+ With a suitable distance measurement, we can assume that
560
+ the perturbation size statistically determines the detection
561
+ probability function. In this case, the detection probability
562
+ does not depend on the choice of a model, i.e.,
563
+ ΨA,M1(τ) = Px∼X (¬Det(ΠM1
564
+ A (x)) | dA(x) = τ)
565
+ = Px∼X (¬Det(ΠM2
566
+ A (x)) | dA(x) = τ)
567
+ = ΨA,M2(τ).
568
+ where M1 ̸= M2. One can show that ΨA,M is indeed a
569
+ suitable choice for F ′.
570
+ Theorem 4.9. The Detection Probability Function has the
571
+ probabilistic detection commutation property.
572
+ Proof. See Appendix B.
573
+ Combining Theorem 4.9 with Theorem 4.5 gives
574
+ Corollary 4.10. The probability of damage P dam is
575
+ P dam =
576
+ � ∞
577
+ 0
578
+ ΨA,M(τ) dASDA,M(τ) dτ
579
+ Furthermore, the estimator
580
+ �P dam =
581
+ � ∞
582
+ 0
583
+ ΨA,M(τ) dASRA,M(τ) dτ
584
+ =
585
+ 1
586
+ |X|
587
+
588
+ x∈X,dA(x)̸=∞
589
+ ΨA,M(dA(x))
590
+ is an unbiased, consistent estimator of P dam.
591
+ A useful implication of Corollary 4.10 is that one can further
592
+ refine ΨA,M to include prior knowledge and assumptions
593
+ in the calculation of P dam. For instance, recall that an ad-
594
+ versary uses an attack strategy ΠM
595
+ A to find the smallest
596
+ perturbation for an observation. The rationale is that the ad-
597
+ versary expects that the chances of being detected increase
598
+ with the perturbation size. With this assumption, one can
599
+ simplify ΨA,M to monotonic non-decreasing functions or
600
+ even a logistic curve. One must then only query the detector
601
+ with a data sample and then fit a posterior for ˆΨA,M, e.g.,
602
+ with Bayesian estimation, see Appendix C. A further take-
603
+ away from this section is that the estimate ˆΨA,M depends
604
+ on the application but not on a specific model. Think of our
605
+ upload filter example. Upload filters are used in different ap-
606
+ plications, e.g., to detect copyright infringement of portrait
607
+ photographs (Application A) and violent content in pictures
608
+ (Application B). For each application, one must estimate
609
+ a detection probability function: ˆΨphoto
610
+ A,M for Application A
611
+ and ˆΨviolent
612
+ A,M
613
+ for Application B. However, within Applica-
614
+ tion A, ˆΨphoto
615
+ A,M can be used to estimate the risk for different
616
+ copyright detection models, e.g., trained with different hy-
617
+ perparameter settings. Likewise, ˆΨviolent
618
+ A,M
619
+ can be used to
620
+ estimate the risk of different violence detection models. This
621
+ reduces the number of detection probability functions one
622
+ has to fit by querying a detector from one per model to one
623
+ per application. Thus, the independent estimation of the
624
+ detection probability function mitigates both Small Sample
625
+ Size and Model-Specific Estimates, and hence reduces the
626
+ effort for risk estimation.
627
+ 4.3. Estimations without a Detector
628
+ In some cases, collecting a sample from a detector to fit
629
+ ΨA,M is infeasible. For instance, think of academic bench-
630
+ marks that compare adversarial attacks or defense methods.
631
+ There, querying a human detector is often beyond the scope
632
+ of the study. One may not even have an indication of which
633
+ magnitude of perturbation size is actually required for a
634
+ detection to be successful. In such a case, selecting and
635
+ estimating a suitable detection probability function is not
636
+ possible.
637
+ However, one can still obtain a relative comparison of the
638
+ operational risk between models. One way is to assume that
639
+ the average sensitivity of models to adversarial perturbations
640
+ is similar to the sensitivity of a potential detector. Formally,
641
+ this gives an average detection function
642
+ ˆΨavg
643
+ A,M(τ) = 1 − 1
644
+ J
645
+ J
646
+
647
+ j=1
648
+ ASRA,Mj(τ)
649
+ (8)
650
+ where M1, M2, . . . , Mj, . . . , MJ are the models to com-
651
+ pare. Intuitively, using ˆΨavg
652
+ A,M as a detection function means
653
+ that models more sensitive to adversarial examples than the
654
+ average will obtain a high operational risk.
655
+ If all ASRA,MJ estimates are based on the same sample
656
+ X, one can rearrange Equation 8 to make its computation
657
+ efficient. We first define W(τ) to count the combination
658
+ of observations and models where the adversarial example
659
+ with the smallest perturbation size is further away than τ.
660
+ W(τ) = |{(i, j) | i ∈ [I], j ∈ [J], dA(xi, Mj) > τ}| .
661
+ We then have
662
+
663
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
664
+ 0.0
665
+ 0.1
666
+ 0.2
667
+ 0.3
668
+ 8
669
+ 255
670
+ 2
671
+ 255
672
+ Perturbation Size (L∞)
673
+ 0.0
674
+ 0.2
675
+ 0.4
676
+ 0.6
677
+ 0.8
678
+ 1.0
679
+ ASR
680
+ Baseline
681
+ Engstrom-Robust
682
+ Rice-Overfit
683
+ Carmon-Semi
684
+ Calculated ΨA,M
685
+ Figure 1. Solid, colored: ASR of the different models on 200
686
+ observations. Dashed, black: ΨA,M estimated according to Sec-
687
+ tion 4.3. Solid, black: Vertical lines marking L∞ ∈ {
688
+ 2
689
+ 255,
690
+ 8
691
+ 255}.
692
+ ˆΨavg
693
+ A,M(τ) = 1 −
694
+
695
+ j=1...J ASRA,Mj(τ)
696
+ J
697
+ = 1
698
+ J
699
+
700
+ � �
701
+ j=1...J
702
+ (1 − ASRA,Mj(τ))
703
+
704
+
705
+ =
706
+ 1
707
+ |X| · J
708
+
709
+ � �
710
+ j=1...J
711
+ (|X| − |{x ∈ X | dA(x) ≤ τ}|)
712
+
713
+
714
+ =
715
+ 1
716
+ |X| · J
717
+
718
+ j=1...J
719
+ |{x ∈ X | dA(x) > τ}|
720
+ =
721
+ 1
722
+ |X| · J W(τ)
723
+ With Corollary 4.10, we have
724
+ �P dam =
725
+ 1
726
+ |X|2 · J
727
+
728
+ j=1...J
729
+ W(dA(xi, Mj))
730
+ (9)
731
+ Algorithm 2 in Appendix D summarizes the estimation of
732
+ �P dam using Equation 9. The algorithm helps identify the
733
+ model with the lowest probability of damage even if collect-
734
+ ing a sample from a detector is infeasible.
735
+ 5. Experiments
736
+ This section demonstrates that �P dam provides a consistent
737
+ and unbiased evaluation to compare the robustness of ma-
738
+ chine learning models without the need to choose a threshold
739
+ on the perturbation size. Our experimental setup is represen-
740
+ tative of how academic benchmarks comparing adversarial
741
+ robustness are typically constructed. Our goal is to under-
742
+ line the usefulness of our metric in common setups using
743
+ open-source models and attack implementations. Hence, our
744
+ choice of models, attacks, and parametrization is arbitrary
745
+ and can be replaced with any other use-case.1
746
+ 1Our
747
+ implementations
748
+ and
749
+ results
750
+ are
751
+ available
752
+ at
753
+ https://github.com/duesenfranz/risk_scores_
754
+ paper_code.
755
+ Table 1. Summary statistics of the model robustness over 200
756
+ observations. Smaller values are better for all metrics but MPS.
757
+ The best values are highlighted in bold.
758
+ Model
759
+ �P dam
760
+ ASR
761
+ � 2
762
+ 255
763
+
764
+ ASR
765
+ � 8
766
+ 255
767
+
768
+ MPS
769
+ Baseline
770
+ 0.76
771
+ 0.70
772
+ 1.00
773
+ 0.00018
774
+ Engstrom-Robust
775
+ 0.44
776
+ 0.16
777
+ 0.48
778
+ 0.00020
779
+ Rice-Overfit
780
+ 0.43
781
+ 0.20
782
+ 0.42
783
+ 0.00119
784
+ Carmon-Semi
785
+ 0.33
786
+ 0.13
787
+ 0.33
788
+ 0.00095
789
+ 5.1. Setup
790
+ We compare the operational risk of publicly available mod-
791
+ els on CIFAR-10 (Krizhevsky et al., 2009).
792
+ Models. The list of models includes a baseline classifier and
793
+ three other models trained to achieve high adversarial ro-
794
+ bustness. We obtained all models from public repositories.2
795
+ Baseline (Croce et al., 2021): A baseline model trained
796
+ without a specific focus on robustness.
797
+ Carmon-Semi (Carmon et al., 2019): A model trained
798
+ for robustness with a semi-supervised learning method.
799
+ Engstrom-Robust (Engstrom et al., 2019): A model
800
+ trained for robustness by adversarial training.
801
+ Rice-Overfit (Rice et al., 2020): A model trained for
802
+ robustness by a combination of adversarial training and
803
+ a focus on minimizing overfitting.
804
+ Attacks. We define an attack strategy based on a set of
805
+ attacks A based on Foolbox (Rauber et al., 2020), an open-
806
+ source attack library. We use Projected Gradient Descent
807
+ (PGD), PGD with Adam optimizer, and DeepFool.
808
+ Parametrization. We use RobustBench (Croce et al., 2021)
809
+ to run attacks on observations in the test set. We instantiate
810
+ each attack with eight different values for epsilon, i.e., |A| =
811
+ 24, set d = d∞, and consider a perturbation successful if
812
+ the model prediction does not agree with the ground truth.
813
+ Metrics. Next to our metric �P dam, we compute three alter-
814
+ native metrics. We compute ASR (τ), with two thresholds
815
+ τ ∈ { 2
816
+ 255, 8
817
+ 255}: the fraction of observations with at least
818
+ one successful adversarial example with perturbation size
819
+ L∞ ≤ τ. ASR (τ) is the maximum likelihood estimator for
820
+ the adversarial risk using the 0-1 loss (cf. Section 3). The
821
+ threshold
822
+ 8
823
+ 255 is arbitrary but common (e.g., see Rice et al.,
824
+ 2020). Another common approach is to estimate the popu-
825
+ lation parameters of the perturbation sizes dA(x), x ∈ X,
826
+ (e.g., see Carlini et al., 2019). This approach is not reliable
827
+ since estimates are either not robust to outliers (e.g., the
828
+ average over dA(x), see Appendix E) or biased by nature
829
+ (e.g., the median). To demonstrate the issue of relying on
830
+ perturbation size as a metric, we compute the size of the
831
+ smallest perturbation that alters the model prediction, the
832
+ 2All models can be downloaded using RobustBench (Croce
833
+ et al., 2021).
834
+
835
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
836
+ 25
837
+ 50
838
+ 75
839
+ 100
840
+ 125
841
+ 150
842
+ 175
843
+ 200
844
+ Number of Observations
845
+ 0.0000
846
+ 0.0025
847
+ 0.0050
848
+ 0.0075
849
+ 0.0100
850
+ 0.0125
851
+ 0.0150
852
+ 0.0175
853
+ MPS
854
+ Baseline
855
+ Engstrom-Robust
856
+ Rice-Overfit
857
+ Carmon-Semi
858
+ 50
859
+ 100
860
+ 150
861
+ 200
862
+ Number of Observations
863
+ 0.00
864
+ 0.01
865
+ 0.02
866
+ MPS
867
+ (a) MPS with increasing sample size.
868
+ 50
869
+ 100
870
+ 150
871
+ 200
872
+ Number of Observations
873
+ 0.00
874
+ 0.25
875
+ 0.50
876
+ 0.75
877
+ �P dam
878
+ (b) �P dam with increasing sample size.
879
+ Figure 2. Convergence of robustness statistics. Each line plots a statistic measured on n ∈ [20, 200] observations. The error band is the
880
+ 5% and the 95% percentile, calculated by sampling 50 times with replacement.
881
+ Minimal Perturbation Size (MPS). MPS is non-robust to
882
+ outliers and biased.
883
+ 5.2. Results
884
+ Figure 1 plots the attack success rate (ASR) against the per-
885
+ turbation size. Since this is an academic benchmark, we do
886
+ not have access to a human detector in the loop. Hence, we
887
+ proceed as outlined in Section 4.3 to calculate ΨA,M. Based
888
+ on Figure 1, an operator would choose Carmon-Semi, the
889
+ model with the lowest ASR for all perturbation sizes. The
890
+ second best is Rice-Overfit since the ASR (green line)
891
+ is lower than the one of Engstrom-Robust (yellow line)
892
+ on most of the perturbation spectrum. The Baseline per-
893
+ forms poorly: an adversary can find successful perturbations
894
+ for each observation even for a small perturbation budget.
895
+ Table 1 summarizes the ASR plot with the metrics �P dam,
896
+ ASR
897
+ � 2
898
+ 255
899
+
900
+ , ASR
901
+ � 8
902
+ 255
903
+
904
+ and MPS. The selection based on
905
+ �P dam corresponds to the visual inspection: Carmon-Semi
906
+ is the model with the lowest value ( �P dam = 0.33), followed
907
+ by Rice-Overfit ( �P dam = 0.43). A benefit of �P dam is
908
+ that it remains actionable even if there are too many models
909
+ for a visual inspection.
910
+ The ASR(τ) metrics, however, contradict each other.
911
+ ASR
912
+ � 8
913
+ 255
914
+
915
+ suggests that Rice-Overfit is more robust
916
+ than Engstrom-Robust; ASR
917
+ � 2
918
+ 255
919
+
920
+ suggests the oppo-
921
+ site. Further, ASR (τ) = 1.0 for all models if the perturba-
922
+ tion size is unconstrained, i.e., τ → ∞. Thus selecting any
923
+ threshold on ASR is arbitrary, and results are volatile.
924
+ MPS suggests that Rice-Overfit is the most robust
925
+ model. However, MPS is biased: with increasing sample
926
+ size, its value approaches the true size of the smallest ad-
927
+ versarial example, which is close to 0 for all models, see
928
+ Figure 2(a). Indeed, if adversaries can choose from an infi-
929
+ nite number of observations, they likely find an adversarial
930
+ example with a very small perturbation. MPS has high
931
+ variance for small sample sizes n < 100, i.e., results are
932
+ insignificant. On the other hand, �P dam is consistent and un-
933
+ biased, i.e., the metric converges to its true expected value
934
+ with increasing sample size, see Figure 2(b).
935
+ In summary, our experimental results confirm our theoretical
936
+ analyses. Neither ASR (τ) nor MPS are reliable metrics for
937
+ selecting a robust model. �P dam allows for relative model
938
+ robustness comparisons, even when no detector is available.
939
+ 6. Conclusions
940
+ Estimating the damage caused by adversarial attacks is diffi-
941
+ cult. Standard Monte Carlo Simulation is inefficient because
942
+ it is limited to small sample sizes and model-specific esti-
943
+ mates. A consequence is that resulting metrics do not give
944
+ reliable estimates of model robustness. This prevents opera-
945
+ tors of machine learning models from translating high-level
946
+ regulations on AI safety and security into actionable techni-
947
+ cal requirements.
948
+ In this article, we put forward an original approach to quan-
949
+ tifying the risk of adversarial attacks that overcomes current
950
+ limitations. To this end, we first decompose the damage
951
+ caused by adversarial attacks into the probability that an
952
+ attacker is successful and the probability that an attack goes
953
+ undetected. We then propose an unbiased and consistent
954
+ estimator for both quantities. For cases where one does not
955
+ have access to a detector, we provide an alternative method
956
+ that allows comparing the risk between models. The results
957
+ are interpretable statistical estimates that provide an empiri-
958
+ cal basis for operators to select the model with the least risk
959
+ of damage from adversarial attacks.
960
+ Acknowledgments
961
+ This work was partially funded by the German BMWI
962
+ project KI-LOK.
963
+
964
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
965
+ References
966
+ Brendel, W., Rauber, J., Kurakin, A., Papernot, N., Veliqi,
967
+ B., Mohanty, S. P., Laurent, F., Salath´e, M., Bethge, M.,
968
+ Yu, Y., Zhang, H., Xu, S., Zhang, H., Xie, P., Xing, E. P.,
969
+ Brunner, T., Diehl, F., Rony, J., Hafemann, L. G., Cheng,
970
+ S., Dong, Y., Ning, X., Li, W., and Wang, Y. Adversarial
971
+ vision challenge. In The NeurIPS ’18 Competition, pp.
972
+ 129–153. Springer, 2020.
973
+ Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber,
974
+ J., Tsipras, D., Goodfellow, I., Madry, A., and Kurakin,
975
+ A. On evaluating adversarial robustness. arXiv, 2019.
976
+ Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
977
+ and Liang, P. S. Unlabeled data improves adversarial ro-
978
+ bustness. In Advances in Neural Information Processing
979
+ Systems (NeurIPS), 2019.
980
+ Cram´er, H. Mathematical methods of statistics, volume 43.
981
+ Princeton university press, 1999.
982
+ Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
983
+ E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
984
+ M. RobustBench: A standardized adversarial robustness
985
+ benchmark. arXiv, 2021.
986
+ Deng, Y., Zheng, X., Zhang, T., Chen, C., Lou, G., and Kim,
987
+ M. An analysis of adversarial attacks and defenses on
988
+ autonomous driving models. In International Conference
989
+ on Pervasive Computing and Communications (PerCom),
990
+ 2020.
991
+ Diochnos, D., Mahloujifar, S., and Mahmoody, M. Ad-
992
+ versarial risk and robustness: General definitions and
993
+ implications for the uniform distribution. In Advances in
994
+ Neural Information Processing Systems (NeurIPS), 2018.
995
+ Dong, Y., Fu, Q.-A., Yang, X., Pang, T., Su, H., Xiao, Z.,
996
+ and Zhu, J. Benchmarking adversarial robustness on
997
+ image classification. In Computer Vision and Pattern
998
+ Recognition Conference (CVPR), 2020.
999
+ Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran,
1000
+ B., and Madry, A. Adversarial robustness as a prior for
1001
+ learned representations. arXiv, 2019.
1002
+ European Commission. Artificial intelligence act, 2021.
1003
+ Fredrikson, M., Jha, S., and Ristenpart, T. Model inver-
1004
+ sion attacks that exploit confidence information and basic
1005
+ countermeasures. In Conference on Computer and Com-
1006
+ munications Security (CCS), 2015.
1007
+ Hendrycks, D. and Dietterich, T. Benchmarking neural
1008
+ network robustness to common corruptions and perturba-
1009
+ tions. arXiv, 2019.
1010
+ International Organization for Standardization. Road vehi-
1011
+ cles – Safety and artificial intelligence, 2023 (forthcom-
1012
+ ing).
1013
+ Krizhevsky, A., Hinton, G., et al. Learning multiple layers
1014
+ of features from tiny images. Technical report, University
1015
+ of Toronto, 2009.
1016
+ Levy, N. and Katz, G. RoMA: a method for neural network
1017
+ robustness measurement and assessment. arXiv, 2021.
1018
+ Maho, T., Bonnet, B., Furony, T., and Le Merrer, E. RoBIC:
1019
+ A benchmark suite for assessing classifiers robustness.
1020
+ In International Conference on Image Processing (ICIP),
1021
+ 2021.
1022
+ Pedraza, A., Deniz, O., and Bueno, G. Really natural ad-
1023
+ versarial examples. International Journal of Machine
1024
+ Learning and Cybernetics, 2021.
1025
+ Piorkowski, D., Hind, M., and Richards, J. Quantitative AI
1026
+ risk assessments: Opportunities and challenges. arXiv,
1027
+ 2022.
1028
+ Pydi, M. S. and Jog, V. The many faces of adversarial risk.
1029
+ In Advances in Neural Information Processing Systems
1030
+ (NeurIPS), 2021.
1031
+ Rauber, J., Zimmermann, R., Bethge, M., and Brendel, W.
1032
+ Foolbox native: Fast adversarial attacks to benchmark
1033
+ the robustness of machine learning models in pytorch,
1034
+ tensorflow, and jax. Journal of Open Source Software, 5
1035
+ (53):2607, 2020.
1036
+ Ren, K., Zheng, T., Qin, Z., and Liu, X. Adversarial attacks
1037
+ and defenses in deep learning. Engineering, 6(3):346–
1038
+ 360, 2020.
1039
+ Rice, L., Wong, E., and Kolter, J. Z. Overfitting in adversar-
1040
+ ially robust deep learning. In International Conference
1041
+ on Machine Learning (ICML), 2020.
1042
+ Rice, L., Bair, A., Zhang, H., and Kolter, J. Z. Robustness
1043
+ between the worst and average case. Advances in Neural
1044
+ Information Processing Systems (NeurIPS), 2021.
1045
+ Schwerdtner, P., Greßner, F., Kapoor, N., Assion, F., Sass,
1046
+ R., G¨unther, W., H¨uger, F., and Schlicht, P. Risk assess-
1047
+ ment for machine learning models. arXiv, 2020.
1048
+ The British Standards Institution. Road vehicles — safety
1049
+ of the intended functionality, 2022.
1050
+ Tram`er, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
1051
+ part, T. Stealing machine learning models via prediction
1052
+ {APIs}. In USENIX Security Symposium, 2016.
1053
+
1054
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
1055
+ Tramer, F., Carlini, N., Brendel, W., and Madry, A. On adap-
1056
+ tive attacks to adversarial example defenses. In Advances
1057
+ in Neural Information Processing Systems (NeurIPS),
1058
+ 2020.
1059
+ Uesato, J., O’donoghue, B., Kohli, P., and Oord, A. Ad-
1060
+ versarial risk and the dangers of evaluating against weak
1061
+ attacks. In International Conference on Machine Learn-
1062
+ ing (ICML), 2018.
1063
+ Underwriters Laboratories Inc. Standard for safety for the
1064
+ evaluation of autonomous products, 2022.
1065
+ Webb, S., Rainforth, T., Teh, Y. W., and Kumar, M. P. A sta-
1066
+ tistical approach to assessing neural network robustness.
1067
+ arXiv, 2018.
1068
+ Yuan, X., He, P., Zhu, Q., and Li, X. Adversarial examples:
1069
+ Attacks and defenses for deep learning. Transactions
1070
+ on Neural Networks and Learning Systems, 30(9):2805–
1071
+ 2824, 2019.
1072
+ Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
1073
+ O. The unreasonable effectiveness of deep features as
1074
+ a perceptual metric. In Conference on Computer Vision
1075
+ and Pattern Recognition (CVPR), 2018.
1076
+
1077
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
1078
+ Appendix
1079
+ A. Proof of Theorem 4.5 and Theorem 4.7
1080
+ Proof. Starting with Equation 5, we have
1081
+ P dam = Px∼D(Succ(ΠM
1082
+ A (x)), ¬Det(ΠM
1083
+ A (x)))
1084
+ = Px∼D(¬Det(ΠM
1085
+ A (x)) | Succ(ΠM
1086
+ A (x)))
1087
+ × Px∼D(Succ(ΠM
1088
+ A (x)))
1089
+ = Ex∼D(F ′(dA(x)) | Succ(ΠM
1090
+ A (x)))
1091
+ × Px∼D(Succ(ΠM
1092
+ A (x)))
1093
+ = Ex∼D(
1094
+
1095
+ F ′(dA(x)), if dA(x) < ∞
1096
+ 0
1097
+ otherwise
1098
+ )
1099
+ (*)
1100
+ =
1101
+ � ∞
1102
+ 0
1103
+ F ′(τ) dASDA,M(τ) dτ,
1104
+ where the last line is because ASD is the distribution func-
1105
+ tion of dA and because of the Law of the Unconscious
1106
+ Statistician (LOTUS). What remains to be proven is the
1107
+ unbiasedness and consistency of �P dam and the equality in
1108
+ Line �. The latter is a direct result of the equality
1109
+ ASRA,M =
1110
+ 1
1111
+ |X|
1112
+
1113
+ x∈X,dA(x)̸=∞
1114
+ χ[dA(x),∞),
1115
+ where χ denotes the characteristic function. For unbiased-
1116
+ ness and consistency, note that �P dam in Line � is the sample
1117
+ mean of the expected value in Line *, and therefore an
1118
+ unbiased and consistent estimator of P dam.
1119
+ B. Proof of Theorem 4.9
1120
+ Proof. We have to prove that
1121
+ Px∼D′(¬Det(ΠM
1122
+ A (x))) = Ex∼D′(ΨA,M(dA(x))).
1123
+ With the Law of Total Probability, we have
1124
+ Px∼D′(¬Det(ΠM
1125
+ A (x)))
1126
+ = E˜x∼D′(Px∼D′(¬Det(ΠM
1127
+ A (x)) | dA(x) = dA(˜x)))
1128
+ = E˜x∼D′(ΨA,M(dA(˜x)))
1129
+ = Ex∼D′(ΨA,M(dA(x)))
1130
+ C. Sketch of Fitting a Detection Probability
1131
+ Function ΨA,M with Logistic Regression
1132
+ Figure 3 sketches how a detection probability function can
1133
+ be estimated with logistic regression using only 30 samples.
1134
+ D. Algorithm for �P dam without a Detector
1135
+ Algorithm 2 calculates P dam if no detector is available, see
1136
+ Equation 9. The algorithm consists of two parts:
1137
+ 0
1138
+ 2
1139
+ 4
1140
+ 6
1141
+ 8
1142
+ 10
1143
+ d(x′, x)
1144
+ 0.0
1145
+ 0.5
1146
+ 1.0
1147
+ ¬Det(x′)
1148
+ Figure 3. Sketch of fitting a detection probability function ΨA,M
1149
+ with logistic regression.
1150
+ Blue:
1151
+ Scatterplot for d(x′, x) =
1152
+ d(a(x, M), x), a ∈ A and ¬Det(x′).
1153
+ Red: Estimate ˆΨA,M
1154
+ by logistic regression.
1155
+ 25
1156
+ 50
1157
+ 75
1158
+ 100
1159
+ 125
1160
+ 150
1161
+ 175
1162
+ 200
1163
+ Number of Observations
1164
+ 0.0000
1165
+ 0.0025
1166
+ 0.0050
1167
+ 0.0075
1168
+ 0.0100
1169
+ 0.0125
1170
+ 0.0150
1171
+ 0.0175
1172
+ MPS
1173
+ Baseline
1174
+ Engstrom-Robust
1175
+ Rice-Overfit
1176
+ Carmon-Semi
1177
+ 50
1178
+ 100
1179
+ 150
1180
+ 200
1181
+ Number of Observations
1182
+ 0.00
1183
+ 0.05
1184
+ 0.10
1185
+ mean(dA(x))
1186
+ Figure 4. Convergence of the average perturbation size. Each line
1187
+ plots the average perturbation size, measured on n ∈ [20, 200]
1188
+ observations. The error band is the 5% and the 95% percentile,
1189
+ calculated by sampling n observations 50 times with replacement.
1190
+ Part A calculates the smallest perturbation sizes dA(x) of
1191
+ the adversarial examples for all models and observa-
1192
+ tions x and collects them in two arrays:
1193
+ (a)
1194
+ A sorted array W which contains the smallest suc-
1195
+ cessful perturbations of all models.
1196
+ (b)
1197
+ A double array ASR, which contains the smallest
1198
+ successful perturbations organized into subarrays
1199
+ per model.
1200
+ Part B computes �P dam of each model Mi by comparing
1201
+ ASR[i] with W: It sums the indices in W of the small-
1202
+ est successful perturbations for the model Mi. It then
1203
+ divides the result by the square of the number of obser-
1204
+ vations and by the number of models.
1205
+ Finally, the algorithm returns �P dam.
1206
+
1207
+ Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
1208
+ Algorithm 2: Estimation of P dam without Detector
1209
+ Input
1210
+ :x1, . . . , xI, M1, . . . , MJ, A, d
1211
+ Output : �P dam for M1, M2, . . . , MJ
1212
+ 1 W ← []
1213
+ 2 ASR ← []
1214
+ 3 �P dam ← []
1215
+ 4 for j = 1 . . . J do
1216
+ ▷ Part A
1217
+ 5
1218
+ dmin ← ∞
1219
+ 6
1220
+ ASR[j] ← []
1221
+ 7
1222
+ for i = 1 . . . I do
1223
+ 8
1224
+ for a ∈ A do
1225
+ 9
1226
+ x′ ← a(xi, Mj)
1227
+ 10
1228
+ if M(x′) ̸= Mj(xi) ∧ d(x′, xi) < dmin
1229
+ then
1230
+ 11
1231
+ x′′ ← x′
1232
+ 12
1233
+ dmin ← d(x′, x)
1234
+ 13
1235
+ end
1236
+ 14
1237
+ end
1238
+ 15
1239
+ if x′′ ̸= xi then
1240
+ 16
1241
+ push(W, d(x′′, xi))
1242
+ 17
1243
+ push(ASR[j], d(x′′, xi))
1244
+ 18
1245
+ else
1246
+ 19
1247
+ push(W, ∞)
1248
+ 20
1249
+ end
1250
+ 21
1251
+ end
1252
+ 22 end
1253
+ 23 sort descending(W)
1254
+ 24 for j = 1 . . . J do
1255
+ ▷ Part B
1256
+ 25
1257
+ �P dam[j] ← 0
1258
+ 26
1259
+ for τ ∈ ASR[j] do
1260
+ 27
1261
+ �P dam[j] ← �P dam[j] + index(W, τ)
1262
+ 28
1263
+ end
1264
+ 29
1265
+ �P dam[j] ←
1266
+
1267
+ P dam[j]
1268
+ I2·J
1269
+ 30 end
1270
+ 31 return �P dam
1271
+ E. Average Perturbation Size with Increasing
1272
+ Sample Size
1273
+ Figure 4 plots the average perturbation size calculated on a
1274
+ subset of the 200 observations. The non-robustness to out-
1275
+ liers causes the wide error bands, which leads to an overlap
1276
+ of the percentiles of Carmon-Semi and Rice-Overfit
1277
+ for estimates based on fewer than 50 observations. In con-
1278
+ trast, �P dam yields statistically significant results even for
1279
+ estimates on fewer than 50 observations, see Figure 2.
1280
+
8tFLT4oBgHgl3EQftS_u/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
99FST4oBgHgl3EQfbzgH/content/tmp_files/2301.13800v1.pdf.txt ADDED
@@ -0,0 +1,1623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13800v1 [math.LO] 31 Jan 2023
2
+ A monotone connection between model class size
3
+ and description length
4
+ Reijo Jaakkola
5
+ Tampere University
6
+ Finland
7
+ Antti Kuusisto
8
+ Tampere University
9
+ University of Helsinki
10
+ Finland
11
+ Miikka Vilander
12
+ Tampere University
13
+ Finland
14
+ Abstract
15
+ This paper links sizes of model classes to the minimum lengths of their
16
+ defining formulas, that is, to their description complexities. Limiting
17
+ to models with a fixed domain of size n, we study description com-
18
+ plexities with respect to the extension of propositional logic with the
19
+ ability to count assignments. This logic, called GMLU, can alternati-
20
+ vely be conceived as graded modal logic over Kripke models with the
21
+ universal accessibility relation. While GMLU is expressively complete
22
+ for defining multisets of assignments, we also investigate its fragments
23
+ GMLU(d) that can count only up to the integer threshold d. We fo-
24
+ cus in particular on description complexities of equivalence classes of
25
+ GMLU(d).
26
+ We show that, in restriction to a poset of type realiza-
27
+ tions, the order of the equivalence classes based on size is identical to
28
+ the order based on description complexities. This also demonstrates
29
+ a monotone connection between Boltzmann entropies of model classes
30
+ and description complexities. Furthermore, we characterize how the
31
+ relation between domain size n and counting threshold d determines
32
+ whether or not there exists a dominating class, which essentially means
33
+ a model class with limit probability one. To obtain our results, we
34
+ prove new estimates on r-associated Stirling numbers. As another cru-
35
+ cial tool, we show that model classes split into two distinct cases in
36
+ relation to their description complexity.
37
+ 1
38
+ Introduction
39
+ This paper investigates how sizes of model classes are linked to the minimum
40
+ lengths of formulas needed to define the classes. In the scenarios we consider,
41
+ we first fix a class M of models that share a domain of the same finite size n.
42
+ The model classes M ⊆ M are then studied with respect to the extension
43
+ of propositional logic with the ability to count propositional assignments.
44
+ We call this logic GMLU, as it can alternatively be defined as graded modal
45
+ 1
46
+
47
+ logic over Kripke models with the universal relation. In order to obtain more
48
+ fine grained results, we parameterize GMLU and study also its fragments
49
+ GMLUd that can count only up to the threshold d ∈ Z+. This also enables us
50
+ to demonstrate how the relationship between minimum formula lengths and
51
+ model class sizes develops when we gradually increase the expressive power
52
+ of the logic used. For a model class M ⊆ M, the description complexity of
53
+ M with respect to GMLUd is simply the minimum length of a formula of
54
+ GMLUd needed to define M, if such a formula exists.
55
+ In this paper we are particularly interested in the description complexi-
56
+ ties Cd(M) of the logical equivalence classes M determined by GMLUd over
57
+ M. Let us write M ≡d M′ if the models M, M′ ∈ M satisfy the same set of
58
+ formulas of GMLUd. Note that Cd(M) of an equivalence class M of ≡d can
59
+ also be regarded as the description complexity of each model M ∈ M, as the
60
+ expressive power of GMLUd suffices precisely to describe M up to the equi-
61
+ valence ≡d. From this perspective, description complexity is analogous to
62
+ Kolmogorov complexity. There exist well known links between Kolmogorov
63
+ complexity and Shannon entropy, see for example [11]. The recent work in
64
+ [8],[7] demonstrates a way to conceive related results also in the scenario
65
+ where relational structures are classified via logics. In particular, it is shown
66
+ that the expected Boltzmann entropy of the equivalence classes of GMLU
67
+ is asymptotically equivalent to the expected description complexity (with
68
+ respect to GMLU) times the size of the vocabulary considered. It is also
69
+ shown that for d = 1, the greatest equivalence class of GMLUd has maxi-
70
+ mum description complexity among the classes. This paper builds on those
71
+ results.
72
+ Firstly, as a crucial tool for our proofs, we establish a classification of
73
+ description complexities into two distinct classes.
74
+ This division is based
75
+ on the numbers ni of elements realizing different propositional types i ∈ I
76
+ in models of the described model class; here I is just an index set for the
77
+ types. The division is then determined by whether or not ni = d for at least
78
+ two different types. Using this, we establish a strong connection between
79
+ model class sizes and description complexities. For each model M ∈ M, let
80
+ nM denote the tuple (ni)i∈I that gives the numbers ni of points realizing
81
+ propositional types in M. Furthermore, instead of recording numbers ni
82
+ greater than the counting threshold d, simply put d in nM. We define a
83
+ poset (M, ⪯τ) over the models, where τ is the vocabulary and the order
84
+ ⪯τ is based on comparing the tuples nM coordinatewise. The order ⪯τ is
85
+ directly inherited also by the classes of ≡d such that M ⪯τ M′ if and only
86
+ if for some (or equivalently, all) models M and M′ in the respective classes,
87
+ we have M ⪯τ M′. We will prove that for all classes M and M′ of ≡d such
88
+ that M and M′ are ⪯τ-comparable, we have
89
+ |M| < |M′| ⇔ Cd(M) < Cd(M′).
90
+ 2
91
+
92
+ In other words, over ⪯τ, the ordering of model classes according to size is
93
+ identical to the ordering based on description complexity. This is an intimate
94
+ link between syntax and semantics. As a corollary, we obtain a correspon-
95
+ ding relationship between Boltzmann entropies and description complexities
96
+ of model classes.
97
+ We then investigate how the classes of ≡d behave when we alter the
98
+ domain size n and counting threshold d. Note that increasing d corresponds
99
+ to moving to more and more expressive logics. First we observe that for
100
+ thresholds d and d′ > d and the corresponding Shannon entropies HS(≡d)
101
+ and HS(≡d′) of the model class distributions given by ≡d and ≡d′, we have
102
+ HS(≡d) < HS(≡d′) when d′ is at most n/2, and
103
+ HS(≡d) = H(≡d′) when d is at least n/2.
104
+ A similar result also follows for expected Boltzmann entropies HB(≡d) and
105
+ HB(≡d′), but with the orders reversed, that is HB(≡d) > HB(≡d′) for d′ at
106
+ most n/2.
107
+ To get a better sense of the relative sizes of the classes when n and d are
108
+ altered, we prove an asymptotic characterization of the class distributions
109
+ as n → ∞ and d is a function of n. Let us say that ≡d(n) has a dominating
110
+ class if with limit probability one, a random model of size n belongs to a
111
+ maximum size class in ≡d(n). Similarly, all classes in ≡d(n) are vanishing if
112
+ with limit probability zero, a random model of size n belongs to a maximum
113
+ size class. Then the following results hold as n → ∞.
114
+ • If d(n) ≤ n/2|τ| − f(n) where f(n) = ω(√n), then ≡d(n) has a domi-
115
+ nating class.
116
+ • If d(n) ≥ n/2|τ| − f(n) where f(n) = o(√n), then ≡d(n) has no domi-
117
+ nating class.
118
+ • If d(n) ≥ n/2|τ| + f(n) where f(n) = ω(√n), then every class in ≡d(n)
119
+ is vanishing.
120
+ One corollary of these results is that for d(n) ≤ n/t−f(n), if f(n) = ω(√n),
121
+ then with limit probability one, two random models of size n cannot be
122
+ separated in GMLUd(n).
123
+ Finally, we also give a non-asymptotic variant
124
+ of the characterization of the class distributions for ≡d including explicit
125
+ bounds on d for separating the cases where ≡d has a majority class or not.
126
+ By a majority class, we mean a class containing more than half of all models
127
+ in M.
128
+ Concerning related work, as already mentioned, it is well known that
129
+ entropy and Kolmogorov complexity are related. Indeed, for computable
130
+ distributions, Shannon entropy links to Kolmogorov complexity to within
131
+ a constant. This result is discussed, e.g., in [11], [4], [10]. However, it is
132
+ shown in [15] that the general link fails for R´enyi and Tsallis entropies. See
133
+ 3
134
+
135
+ for example [4], [10], [15] for R´enyi and Tsallis entropies. The first connec-
136
+ tion between logical formula length and entropy has—to our knowledge—
137
+ been obtained in [8], [7], where expected Boltzmann entropy is shown to be
138
+ asymptotically equivalent to description complexity.
139
+ Concerning further related work, we will next discuss the proof tech-
140
+ niques used in the current paper. For proving bounds on formula sizes, we
141
+ use formula size games for the logics GMLUd.
142
+ Indeed, variants of stan-
143
+ dard Ehrenfeucht-Fra¨ıss´e games and (graded) bisimulation games would not
144
+ suffice, as we need to deal with formula length, and thereby with all logi-
145
+ cal operators, including connectives. The formula size games for the logics
146
+ GMLUd will be developed below based on a similar game used in [8], [7].
147
+ That game builds on the game for standard modal logic ML used and devel-
148
+ oped in [5] for proving a nonelementary succinctness gap between first-order
149
+ logic and ML. The first formula size game, developed by Razborov in [13],
150
+ dealt with propositional logic. A later variant of the game was defined by
151
+ Adler and Immerman for CTL in [1]. Designing the games for GMLUd is
152
+ relatively straightforward and based directly on similar earlier systems, but
153
+ using them requires some nontrivial combinatorial arguments.
154
+ In addition to games, we also make use of a range of techniques for esti-
155
+ mating model class sizes and description complexity. These include Stirling’s
156
+ approximations and Chernoff bounds. In particular, to obtain our results,
157
+ we prove new estimates on r-associated Stirling numbers, which may be of
158
+ independent interest.
159
+ As a brief summary of our paper, the main objective is to elucidate the
160
+ general picture of how description length relates to model class size. This
161
+ also builds links between logic and notions of entropy. The logic GMLU is
162
+ suitable for the current study, and it even allows simple access to a chain
163
+ of increasingly expressive logics GMLUd via increasing d. The concluding
164
+ section discusses possibilities for generalizing to further logics. While the
165
+ current paper focuses on theory, the notion of description complexity is also
166
+ relevant in a range of applications. For example, in some currently active
167
+ research on explainability in AI, minimal length specifications can be used
168
+ as explanations of longer formulas. For work on this topic see, e.g., [2], [6].
169
+ The plan of the paper is as follows. After the preliminaries in Section
170
+ 2, we prove crucial lower bounds for description complexity in Section 3
171
+ using games. In Section 4 we prove a monotone connection between model
172
+ class size and description complexity, and in Section 5 we investigate phase
173
+ transitions of class size distributions by varying n and d. Section 6 concludes
174
+ the paper.
175
+ 4
176
+
177
+ 2
178
+ Preliminaries
179
+ We first define the logics studied in this work.
180
+ Let τ be a finite set of
181
+ proposition symbols. We consider τ to be fixed throughout the entire paper.
182
+ The syntax of graded universal modal logic GMLU[τ] is generated as
183
+ follows (the syntactic choices will be explained later on):
184
+ ϕ :=♦≥kψ | ■<kψ | ♦=kψ | ■̸=kψ |
185
+ ϕ ∧ ϕ | ϕ ∨ ϕ | ♦≥kϕ | ■<kϕ | ♦=kϕ | ■̸=kϕ
186
+ ψ :=p | ¬p | ψ ∧ ψ | ψ ∨ ψ
187
+ Here p ∈ τ and k ∈ N. Note that the formulas of GMLU[τ] have proposition
188
+ symbols only in the scope of modal operators. Furthermore, all formulas are
189
+ given in negation normal form. In the current paper, ¬ϕ will always mean
190
+ a formula where ¬ has been pushed all the way to the level literals.
191
+ Let M be a Kripke model with domain W. In this paper, modal logics
192
+ will always have a unary vocabulary, so therefore Kripke models will not be
193
+ associated with a binary accessibility relation. We define the semantics of
194
+ the global graded modalities as follows: (M, w) ⊨ ♦≥kϕ ⇔ there exist at
195
+ least d elements v ∈ W such that (M, v) ⊨ ϕ and (M, w) ⊨ ♦=kϕ ⇔ there
196
+ exist exactly d elements v ∈ W such that (M, v) ⊨ ϕ. Additionally, (M, w) ⊨
197
+ ■<kϕ ⇔ (M, w) ⊨ ¬♦≥k¬ϕ and (M, w) ⊨ ■̸=kϕ ⇔ (M, w) ⊨ ¬♦=k¬ϕ. The
198
+ semantics of the Boolean connectives ¬, ∧, ∨ is defined in the usual way.
199
+ Notice that ♦≥k and ■<k as well as ♦=k and ■̸=k are dual to each other.
200
+ Thus the modalities of GMLU are the diamonds ♦≥k, ♦=k and their duals
201
+ ■<k, ■̸=k. Intuitively ■<k (respectively, ■̸=k) means that all points satisfy
202
+ ϕ, except for some number m < k (resp. m ̸= k) of exceptions.
203
+ Let M be a Kripke model over τ and ϕ ∈ GMLU[τ]. The point-free truth
204
+ relation is defined such that M ⊨ ϕ if and only if M, w ⊨ ϕ for all w ∈ W.
205
+ As all proposition symbols occur in the scope of a global modality, M ⊨
206
+ ϕ if and only if there exists some w ∈ W such that M, w ⊨ ϕ. Clearly
207
+ truth of GMLU-formulas does not depend on the evaluation point w. This
208
+ independence property is the reason behind the definition of the syntax of
209
+ GMLU such that proposition symbols are guaranteed to be in the scope of
210
+ modal operators.
211
+ For a set M of pointed models, we denote M ⊨ ϕ ⇔
212
+ (M, w) ⊨ ϕ for every (M, w) ∈ M.
213
+ A propositional type π over τ is a maximally consistent set of literals
214
+ (that is, proposition symbols and negated proposition symbols). Therefore
215
+ π has exactly one of p, ¬p for each symbol p ∈ τ. We henceforth refer to
216
+ propositional types as just types. The number of types over τ is denoted by
217
+ t = 2|τ|.
218
+ The counting depth of a formula ϕ ∈ GMLU[τ], denoted depth(ϕ), is
219
+ defined as follows:
220
+ • depth(α) = 0 for any literal α,
221
+ 5
222
+
223
+ • depth(ϕ ∧ ψ) = depth(ϕ ∨ ψ)
224
+ = max(depth(ϕ), depth(ψ)),
225
+ • depth(♦≥kϕ) = depth(■<kϕ) = k,
226
+ • depth(♦=kϕ) = depth(■̸=kϕ) = k + 1.
227
+ We denote by GMLUd[τ] the counting depth d fragment of GMLU[τ],
228
+ where the counting depth of formulas is restricted to at most d. The re-
229
+ sults of this paper are formulated for the logics GMLUd[τ].
230
+ Note that
231
+ depth(♦=kϕ) = k + 1 while depth(♦≥kϕ) = k.
232
+ We give some intuition
233
+ to explain this choice. First of all, ♦=d−1ϕ ≡ ♦≥d−1ϕ ∧ ¬♦≥dϕ, so we see
234
+ that when the counting depth of formulas is restricted to d, the allowed
235
+ “exact counting” diamonds ♦=k always have k ≤ d − 1 and thus they add
236
+ no expressive power over “threshold counting” diamonds ♦≥k with k ≤ d.
237
+ Moreover, k + 1 also corresponds to the number of quantifiers required to
238
+ express “exact counting” of k elements in monadic first-order logic.
239
+ The size of a formula ϕ ∈ GMLU[τ], denoted size(ϕ), is defined as
240
+ follows:
241
+ • size(α) = 1 for any literal α,
242
+ • size(ϕ ∧ ψ) = size(ϕ ∨ ψ) = size(ϕ) + size(ψ) + 1,
243
+ • size(♦≥kϕ) = size(■<kϕ) = size(ϕ) + k,
244
+ • size(♦=kϕ) = size(■̸=kϕ) = size(φ) + k + 1.
245
+ Note that all literals have the same size. This is because we wish to consider
246
+ negative (that is, negated) information and positive (that is, non-negated)
247
+ information as equal in relation to formula size. This idea explains why we
248
+ defined GMLU so that formulas are in negation normal form.
249
+ Let M be the set of all τ-models with the fixed domain W = {1, . . . , n}.
250
+ When M is clear from the context, a formula ϕ ∈ GMLUd is said to define
251
+ a set M ⊆ M if for every M ∈ M, we have M ⊨ ϕ if and only if M ∈ M.
252
+ The set M is then called GMLUd-definable.
253
+ The GMLUd-description
254
+ complexity C(M) of a GMLUd-definable set M is the minimum size of a
255
+ formula ϕ ∈ GMLUd which defines M.
256
+ We may write M ≡d N if the models M and N satisfy exactly the same
257
+ GMLUd-formulas. The relation ≡d is clearly an equivalence relation and
258
+ defines a natural related partition. For an example of description complexity,
259
+ consider GMLU1[τ] for the case with the singleton alphabet τ = {p}. The
260
+ model where p is true in every point constitutes a singleton class in the
261
+ partition of models defined by ≡1. The description complexity of this class
262
+ is 2 as a minimum size formula that defines the class is ■<1p.
263
+ Let I := {1, . . . , t} and fix an enumeration (πi)i∈I of all the types over
264
+ the propositional vocabulary τ. Now let M be an equivalence class of ≡d
265
+ 6
266
+
267
+ over the set M of models of size n with domain W = {1, . . . , n}. For a type
268
+ πi, all models in the class either have exactly ni points of type πi for some
269
+ ni < d, or all the models in M have at least d points of type πi. In the latter
270
+ case we define ni := d. We thus get a characterization of the classes of ≡d
271
+ in terms of t-tuples n. A t-tuple n = (ni)i∈I is called (n, d)-admissible, if
272
+ ni ≤ d for every i ∈ I, �
273
+ i∈I ni ≤ n and either there is at least one i ∈ I
274
+ such that ni = d or �
275
+ i∈I ni = n. Note that (n, d)-admissible tuples n and
276
+ equivalence classes of ≡d are in one-to-one correspondence. Thus we can
277
+ write Mn for the class corresponding to n.
278
+ Given an (n, d)-admissible tuple n and a type πi that has precisely the
279
+ same number k of realizing points in every model M ∈ Mn, we denote this
280
+ number k by |πi|n. (Note that k can be greater than d.) We will often omit
281
+ the tuple n in the subscript of |πi|n when it is clear from the context.
282
+ Following [7], we define the Boltzmann entropy of a class M as
283
+ HB(M) := log(|M|). As discussed in [7], this terminology comes from sta-
284
+ tistical mechanics, where Boltzmann entropy measures the randomness of a
285
+ macrostate via the number of microstates that correspond to it. The idea
286
+ is that a larger macrostate is “more random” (or “less specific”) since it
287
+ is more likely to be hit by a random selection.
288
+ In statistical mechanics,
289
+ the formula for Boltzmann entropy is kB ln Ω, where Ω is the number of
290
+ microstates and kB the Boltzmann constant. In our definition, we use the
291
+ binary logarithm (and do not use kB). As a general intuition, it is natural
292
+ to associate a formula ϕ (or the class it defines) with a macrostate, while
293
+ the models of ϕ are then the corresponding microstates.
294
+ Consider now the following natural probability distribution over the equi-
295
+ valence classes of ≡d: p≡d(M) = |M|/|M| for each class M. We again refer
296
+ to this distribution with the symbol ≡d (with slight abuse of notation). We
297
+ define the Boltzmann entropy of the distribution ≡d as the expected
298
+ value of HB over the distribution ≡d and we denote it by HB(≡d). In other
299
+ words, we define HB(≡d) as �
300
+ M∈M/≡d p≡d(M)HB(M). Roughly speaking,
301
+ HB(≡d) is large when ≡d is far from the uniform distribution.
302
+ The Boltzmann entropy of the distribution ≡d is closely related to the
303
+ Shannon entropy HS(≡d) of ≡d, which we define as the expected value of
304
+ − log(p≡d(M)) over the distribution ≡d. More explicitly, we define HS(≡d)
305
+ as − �
306
+ M∈M/≡d p≡d(M) log(p≡d(M)).
307
+ In contrast to Boltzmann entropy,
308
+ Shannon entropy measures randomness of ≡d by looking at how uniform the
309
+ distribution is. Indeed, if ≡d contains a very large class, then its Shannon
310
+ entropy is small, while its Boltzmann entropy is relatively large. The follow-
311
+ ing result, which was shown in [7] in a more general setting (with slightly
312
+ different notation), formally establishes that the two notions of entropy are
313
+ complementary in nature.
314
+ Proposition 2.1. HS(≡d) + HB(≡d) = |τ|n
315
+ 7
316
+
317
+ 3
318
+ Description complexity
319
+ In this section we investigate the GMLUd-description complexity of equi-
320
+ valence classes in the partition ≡d. We will utilize a formula size game for
321
+ GMLUd.
322
+ Let I = {1, . . . , t} and let (πi)i∈I be an enumeration of the types of
323
+ the set τ of proposition symbols. Let d ≤ n be the counting depth. We
324
+ consider the partition induced by GMLUd for models of size n. For each
325
+ admissible tuple n = (ni)i∈I there is an equivalence class Mn, where each
326
+ type πi realized ni times, with ni = d meaning the type πi is realized at least
327
+ d times. We denote the number of occurrences of d in n by kd.
328
+ Such a class Mn can be defined via the following GMLUd formula:
329
+ ϕ(n) :=
330
+
331
+ ni<d
332
+ ♦=niψ(πi) ∧
333
+
334
+ ni=d
335
+ ♦≥dψ(πi)
336
+ The size of the formula ϕ(n) is �
337
+ i∈I ni + t(2|τ| + 1) − kd − 1.
338
+ If ni = d for at most one i ∈ I, then Mn can be defined by a smaller
339
+ formula. Let πj be a type with maximal nj in n. Now Mn is also defined
340
+ by the formula
341
+ ϕ′(n) :=
342
+
343
+ i̸=j
344
+ ♦=niψ(πi).
345
+ To see this, recall that we restrict to models of size n. As all other types
346
+ have been exactly specified, the only option for the remaining points is the
347
+ type πj. The size of ϕ′(n) is n−|πj|+(t−1)(2|τ|+1)−2, where |πj| denotes
348
+ the number of points in models of Mn with type πj.
349
+ We define the constant cτ := t(2|τ| + 1) − 1. By the formulas above we
350
+ see that C(Mn) ≤ �
351
+ i∈I ni+cτ if kd ≥ 2 and C(Mn) ≤ n−|πj|+cτ if kd ≤ 1.
352
+ We will use the formula size game for GMLUd to show that these bounds
353
+ are optimal up to the constant cτ.
354
+ Let r0 ∈ N and let A0, B0 be sets of τ-models. The GMLUd-formula size
355
+ game GAMEd(r0, A0, B0) has two players, S and D. Positions of the game
356
+ are of the form P = (r, A, B) and the starting position is P0 = (r0, A0, B0).
357
+ In a position P, if r = 0, then D wins. Otherwise S chooses between the
358
+ following moves:
359
+ p-move: S chooses a τ-literal α. The game ends. If A ⊨ α and B ⊨ ¬α, then
360
+ S wins. Otherwise D wins. S cannot make this move if he has not made a
361
+ modal move so far.
362
+ ∨-move: S chooses A1, A2 ⊆ A such that A1 ∪ A2 = A and r1, r2 ≥ 1 such
363
+ that r1 + r2 + 1 = r. D chooses whether the next position is (r1, A1, B) or
364
+ (r2, A2, B).
365
+ ∧-move: The same as a ∨-move with the roles of A and B switched.
366
+ 8
367
+
368
+ ♦≥d-move: S chooses a number k ∈ N with k ≤ d and k < r. For every
369
+ (M, w) ∈ A, S chooses k different points v ∈ W. Let A′ be the set of models
370
+ (M, v) chosen this way. For every (M, w) ∈ B, S chooses n − k + 1 different
371
+ points v ∈ W. Let B′ again be the set of models chosen. The next position
372
+ of the game is (r − k, A′, B′).
373
+ ■<d-move: The same as a ♦≥d-move with the roles of A and B switched.
374
+ ♦=d-move: S chooses a number k ∈ N with k < d and k < r. For every
375
+ (M, w) ∈ A, S chooses a set PM,w of k different points.
376
+ Let NM,w :=
377
+ W \ PM,w. For every (M, w) ∈ B, S chooses either a set PM,w of k + 1
378
+ different points or a set NM,w of |M| − k + 1 different points. Finally we let
379
+ A′ := {(M, v) | (M, w) ∈ A ∪ B, v ∈ PM,w} and B′ := {(M, v) | (M, w) ∈
380
+ A ∪ B, v ∈ NM,w}. The next position of the game is (r − k − 1, A′, B′).
381
+ ■̸=d-move: The same as a ♦=d-move with the roles of A and B switched.
382
+ The formula size game characterizes the size of formulas that separate
383
+ model classes. This is formalized in the following theorem:
384
+ Theorem 3.1. The following statements are equivalent:
385
+ 1. S has a winning strategy in the game GAMEd(r, A, B).
386
+ 2. There is ϕ ∈ GMLUd[τ] with size at most r such that A ⊨ ϕ and
387
+ B ⊨ ¬ϕ.
388
+ Proof. Easy proof by induction. See [5] for a version of the proof for basic
389
+ modal logic.
390
+ It will be useful for the proofs below to note that if (essentially) the same
391
+ model is on both sides of the game, then D has an easy winning strategy.
392
+ Lemma 3.2. Let P = (r, A, B) be a position of a game GAMEd(r0, A0, B0).
393
+ Let there be propositionally equivalent versions (M, w) ∈ A and (M, v) ∈ B
394
+ of the same model M. Now D has a winning strategy from position P.
395
+ Proof. It is easy to see that the pair of propositionally equivalent versions
396
+ of the same model is maintained through any modal move of S. For ∨-moves
397
+ and ∧-moves one of the two possible following positions will always have
398
+ such a pair of models and the strategy of D is to choose this position.
399
+ Let n be an admissible tuple and assume that n1 is one of the largest
400
+ coordinates. We first define the sets An and Bn of models for the game. All
401
+ models have the same universe W = {1, . . . , n}. We denote supp(n) := {i ∈
402
+ I | ni > 0}. We first define a model M0 as follows. For each i ∈ I, i ̸= 1, the
403
+ type πi is realized precisely ni times. The type π1 is realized n − �
404
+ i̸=1 ni
405
+ times. Additionally, the point 1 is of type π1. Intuitively the model M0 is a
406
+ model of the class Mn, where all points not fixed by the tuple n are of type
407
+ π1. We set An := {(M0, 1)}.
408
+ 9
409
+
410
+ For the set Bn we define models Mi→j for some pairs (i, j) ∈ supp(n) ×
411
+ supp(n) as follows. For i ̸= 1 and any j ∈ supp(n), the model Mi→j is
412
+ obtained from the model M0 by changing one point of type πi to type πj.
413
+ If i = 1 and nj = d, then the model Mi→j is obtained from M0 by changing
414
+ |π1|M0 − d + 1 points w ̸= 1 of type π1 to type πj. If i = 1 and nj < d,
415
+ no model is defined for the pair (i, j). We set Bn := {(Mi→j, 1) | i, j ∈
416
+ supp(n)}.
417
+ In terms of their tuples n′, the models Mi→j have n′
418
+ i = ni − 1 and
419
+ n′
420
+ j = nj + 1, except if nj = d, in which case n′
421
+ j = nj = d. For all other
422
+ indices ℓ, n′
423
+ ℓ = nℓ. All models (M0, 1) and (Mi→j, 1) are propositionally
424
+ equivalent as they realize the type π1 in the point 1.
425
+ Let P = (r, A, B) be a position of the game GAMEd(r, An, Bn).
426
+ We
427
+ define a directed graph G(A, B) := (V, E), where V = supp(n) and (i, j) ∈ E
428
+ if there are propositionally equivalent (M0, w) ∈ A and (Mi→j, v) ∈ B, or
429
+ vice versa with respect to A and B. We call a set C ⊆ supp(n) a cover of
430
+ G(A, B) if for every (i, j) ∈ E, we have that either i ∈ C or both j ∈ C and
431
+ nj < d. The cost r(C) of a cover C is
432
+ r(C) :=
433
+
434
+ i∈C
435
+ ni.
436
+ Intuitively, the definition of a cover means that including an index i ∈ I
437
+ generally covers all edges to and from i. The exception is that when ni = d,
438
+ incoming edges are not covered.
439
+ In the proof of the following lemma we use the notation Md(A) = {M |
440
+ (M, w) ∈ A, w ∈ W} for the set of models that have at least one pointed
441
+ version in the set A of pointed models. We also denote by tp(A) the set of
442
+ propositional types realized in the set A of points in a model M that will
443
+ below be clear from the set of points.
444
+ Lemma 3.3. Let P = (r, A, B) be a position of the game GAMEd(r, An, Bn)
445
+ and let
446
+ R(P) := min{r(C) | C is a cover of G(A, B)}.
447
+ If r < R(P), then D has a winning strategy from position P.
448
+ Proof. We show for all possible moves of S that either the condition r <
449
+ R(P) is maintained or D has a winning strategy for some other reason.
450
+ Since the definition of the graph G(A, B) is symmetrical with respect to A
451
+ and B, we only need to handle one of each pair of dual moves.
452
+ p-move: Since 0 < r < R(P), we have propositionally equivalent models on
453
+ both sides of the game and thus D wins if S makes any p-move.
454
+ ∨-move: Let A1, A2 ⊆ A and r1, r2 ≥ 1 be the choices of S and let P1 =
455
+ (r1, A1, B) and P2 = (r2, A2, B).
456
+ For each (i, j) ∈ E there is a pair of
457
+ 10
458
+
459
+ propositionally equivalent models (M, w) ∈ A and (M′, v) ∈ B as witnesses.
460
+ Since A1∪A2 = A, each model (M, w) ∈ A is in A1 or A2. The set B remains
461
+ unchanged so for each (i, j) ∈ E we have (i, j) ∈ E1 or (i, j) ∈ E2. Now if
462
+ r1 ≥ R(P1) and r2 ≥ R(P2), then there is a minimal cover C1 of position P1
463
+ with r(C1) ≤ r1 and the same for P2. Now the set C := C1 ∪ C2 is a cover
464
+ of position P with r(C) ≤ r1 + r2 < r, which is a contradiction. Therefore
465
+ we have r1 < R(P1) or r2 < R(P2) and D can maintain the condition by
466
+ choosing such a position.
467
+ ♦≥d-move: Let k ≤ d be the number chosen by S. The following position
468
+ is P ′ = (r − k, A′, B′). We first note that if M0 ∈ Md(A) ∩ Md(B), then S
469
+ must choose k points from the version in A and n − k + 1 points from the
470
+ version in B. Thus the next position P ′ will have propositionally equivalent
471
+ versions (M0, w) ∈ A′ and (M0, v) ∈ B′.
472
+ By Lemma 3.2 this gives D a
473
+ winning strategy so we assume M0 is only present on one side of the game.
474
+ Case A: M0 ∈ Md(A). For each (M0, w) ∈ A, S chooses a set PM0,w of k
475
+ points. Let PM0 := �
476
+ w∈W PM0,w. We consider the following cases:
477
+ 1) We have �
478
+ πi∈tp(PM0) ni > k. Let (i, j) ∈ E. Since the model Mi→j
479
+ only differs from M0 by n′
480
+ i = ni − 1 and n′
481
+ j ≥ nj, the model Mi→j has
482
+ at least k points with types from tp(PM0). Thus, when S chooses the set
483
+ NMi→j of n − k + 1 points, it contains at least one point with a type from
484
+ tp(PM0). Thus the pair of propositionally equivalent models is maintained
485
+ and (i, j) ∈ E′.
486
+ 2) We have �
487
+ πi∈tp(PM0) ni = k. Let (i, j) ∈ E. Assume πi /∈ tp(PM0) or
488
+ πj ∈ tp(PM0). Now the model Mi→j has at least k points with types from
489
+ tp(PM0) and (i, j) ∈ E′ as in case 1.
490
+ Assume then that πi ∈ tp(PM0) and πj /∈ tp(PM0). All edges of this kind
491
+ being eliminated is an acceptable worst case, so we assume that (i, j) /∈ E′.
492
+ Summing up Case A, the worst case is that S chooses a set tp(PM0)
493
+ of types with �
494
+ πi∈tp(PM0) ni = k ≤ d and eliminates all edges with πi ∈
495
+ tp(PM0) and πj /∈ tp(PM0).
496
+ Case B: M0 ∈ Md(B). For each (M0, w) ∈ B, S chooses a set NM0,w of
497
+ n − k + 1 points. Let NM0 := �
498
+ w∈W NM0,w and let Π be the complement of
499
+ tp(NM0). We note that ni < d for each πi ∈ Π since M0 only has at most
500
+ k − 1 points with types from Π.
501
+ Let (i, j) ∈ E and assume πi ∈ Π or πj /∈ Π.
502
+ Now πi /∈ tp(NM0)
503
+ or πj ∈ tp(NM0) so the model Mi→j has at least n − k + 1 points with
504
+ types from tp(NM0). Thus any set PMi→j,v of k points contains at least one
505
+ point with a type from tp(NM0). Thus the pair of propositionally equivalent
506
+ models is maintained and (i, j) ∈ E′.
507
+ Now assume πi /∈ Π and πj ∈ Π. If Mi→j has at least n − k + 1 points
508
+ with types from tp(NM0), then (i, j) ∈ E′ as above. We thus assume that
509
+ Mi→j has less than n − k + 1 points with types from tp(NM0), meaning it
510
+ 11
511
+
512
+ has at least k points with types from Π. Since nj < d and Mi→j differs from
513
+ M0 only by n′
514
+ i = ni − 1 and n′
515
+ j = nj + 1, the only remaining option is that
516
+ Mi→j has exactly k points with types from Π. Thus by the same reasoning
517
+ M0 has exactly k − 1 points with types from Π and since k − 1 < d, we have
518
+
519
+ i∈Π ni = k − 1. We again accept S eliminating these edges as a worst case
520
+ and assume (i, j) /∈ E′.
521
+ Summing up Case B, the worst case is that S chooses a set Π of types
522
+ with �
523
+ πi∈Π ni = k −1 < d and eliminates all edges with πi /∈ Π and πj ∈ Π.
524
+ We now consider the condition r − k < R(P ′) in the following position.
525
+ From the above arguments we see that the only way for S to eliminate
526
+ edges moving from G(A, B) to G(A′, B′) is to choose in each model (M0, w)
527
+ or (Mi→j, v) in A exactly all points that satisfy some set Π of types. If
528
+ M0 ∈ Md(A), we have �
529
+ πi∈Π ni = k ≤ d and S can eliminate all edges from
530
+ types in Π to other types. If M0 ∈ Md(B), we have �
531
+ πi∈Π ni = k − 1 and
532
+ ni < d for all πi ∈ Π. In this case S can eliminate all edges from other types
533
+ to types in Π. In both cases, the set C = {i ∈ supp(n) | πi ∈ Π} covers all
534
+ eliminated edges. The cost of C is r(C) = �
535
+ i∈C ni ≤ k. Let C′ be a cover
536
+ of P ′ with minimal cost so r(C′) = R(P ′). Now C ∪ C′ is a cover of P so
537
+ r < R(P) ≤ R(P ′) + r(C) ≤ R(P ′) + k. Thus r − k < R(P ′).
538
+ ♦=d-move: Let k < d be the number chosen by S. The following position
539
+ is P ′ = (r − k − 1, A′, B′). As for the ♦≥d-move, we may assume that M0 is
540
+ only present on one side of the game.
541
+ Case A: M0 ∈ Md(A). For each (M0, w) ∈ A, S chooses a k point set
542
+ PM0,w and NM0,w = W \ PM0,w.
543
+ We denote PM0 := �
544
+ w∈W PM0,w and
545
+ NM0 := �
546
+ w∈W NM0,w. We consider the following cases:
547
+ 1) We have �
548
+ πi∈tp(PM0) ni > k. Thus there are propositionally equivalent
549
+ w ∈ PM0 and v ∈ NM0. This means that in the following position P ′ there
550
+ are propositionally equivalent versions of the model M0 on both sides of the
551
+ game. D has a winning strategy from P ′ by Lemma 3.2.
552
+ 2) We have �
553
+ πi∈tp(PM0) ni = k. Note that since k < d, also ni < d for all
554
+ πi ∈ tp(PM0). Let (i, j) ∈ E.
555
+ Assume πi, πj /∈ tp(PM0). Now the model Mi→j has exactly k points
556
+ with types from tp(PM0). Thus if S chooses a k + 1 point set PMi→j, then
557
+ one of those points v′ has a type πℓ /∈ tp(PM0). By the definition of the
558
+ models, nℓ ̸= 0 so there is a point w′ in the model M0 of type πℓ. Now
559
+ there are propositionally equivalent (Mi→j, v′) ∈ A′ and (M0, w′) ∈ B′ so
560
+ (i, j) ∈ E′.
561
+ Similarly, if S chooses for Mi→j a set NMi→j of n − k + 1 points, then
562
+ this set contains at least one point v′ of a type πℓ ∈ tp(PM0). Now there
563
+ is a point w′ ∈ PM0 of type πℓ. Thus there are propositionally equivalent
564
+ (M0, w′) ∈ A′ and (Mi→j, v′) ∈ B′ so (i, j) ∈ E′.
565
+ If πi ∈ tp(PM0) or πj ∈ tp(PM0), we assume (i, j) /∈ E′. As for the
566
+ 12
567
+
568
+ ♦≥d-move, this is an acceptable worst case for our lower bound.
569
+ Summing up Case A, the worst case is that S chooses a set tp(PM0) of
570
+ types with �
571
+ πi∈tp(PM0) ni = k < d and eliminates all edges (i, j) ∈ E with
572
+ πi ∈ tp(PM0) or πj ∈ tp(PM0).
573
+ Case B: M0 ∈ Md(B). For each (M0, w) ∈ B, S chooses either a set PM0,w
574
+ of k + 1 points or a set NM0,w of n − k + 1 points. There are three cases:
575
+ 1) Assume first that there are (M0, w), (M0, w′) ∈ B with sets PM0,w and
576
+ NM0,w′ chosen. Since k + 1 + n − k + 1 > n, there is v ∈ PM0,w ∩ NM0,w′. In
577
+ the following position P ′ the model (M0, v) is on both sides of the game so
578
+ by Lemma 3.2 D has a winning strategy from P ′.
579
+ 2) Assume then that S chooses a set PM0,w of k+1 points for each (M0, w) ∈
580
+ B and let PM0 = �
581
+ w∈W PM0,w. Let (i, j) ∈ E and let (Mi→j, v) ∈ A and
582
+ (M0, w) ∈ B be the corresponding models.
583
+ Assume πi /∈ tp(PM0) or πj ∈ tp(PM0). Now the model Mi→j has at
584
+ least k+1 points with types from tp(PM0). Thus the set NMi→j,v of size n−k
585
+ has at least one point with a type from tp(PM0). Thus the propositionally
586
+ equivalent pair of models is maintained and (i, j) ∈ E′.
587
+ Assume πi ∈ tp(PM0) and πj /∈ tp(PM0). If Mi→j has at least k+1 points
588
+ with types from tp(PM0), the above argument again works and (i, j) ∈ E′.
589
+ Since k < d and Mi→j only differs from M0 by n′
590
+ i = ni − 1 and n′
591
+ j ≤ nj + 1,
592
+ the only remaining option is that Mi→j has exactly k points with types from
593
+ tp(PM0). We obtain �
594
+ i∈tp(PM0) n′
595
+ i = k. We again assume as a worst case
596
+ that (i, j) /∈ E′.
597
+ 3) Finally assume that S chooses a set NM0,w of n − k + 1 points for each
598
+ (M0, w) ∈ B and let NM0 = �
599
+ w∈W NM0,w. Let Π be the complement of
600
+ tp(NM0).
601
+ Assume πi ∈ Π or πj /∈ Π. Now πi /∈ tp(NM0) or πj ∈ tp(NM0) so the
602
+ model Mi→j has at least n−k+1 points with types from tp(NM0). Thus the
603
+ set PMi→j,v of size k has at least one point with a type from tp(NM0). Thus
604
+ the propositionally equivalent pair of models is maintained and (i, j) ∈ E′.
605
+ Assume πi /∈ Π and πj ∈ Π. If Mi→j has at least n − k + 1 points with
606
+ types from tp(NM0), the above argument again works and (i, j) ∈ E′.
607
+ We assume Mi→j has less than n−k+1 points with types from tp(NM0),
608
+ meaning it has at least k points with types from Π. Since k < d and Mi→j
609
+ only differs from M0 by n′
610
+ i = ni − 1 and n′
611
+ j ≤ nj + 1, the only remaining
612
+ option is that Mi→j has exactly k points with types from Π. We obtain
613
+
614
+ i∈Π n′
615
+ i = k. We again assume as a worst case that (i, j) /∈ E′. Edges
616
+ eliminated this way are ones from other types to types in Π. In particular,
617
+ we note that for any edge (i, j) eliminated this way, nj < d since M0 has at
618
+ most n − (n − k + 1) = k − 1 points of type πj.
619
+ Summing up Case B, the worst case is that S chooses a set Π of types
620
+ and eliminates either all edges (i, j) ∈ E with πi ∈ Π or πj /∈ Π or all edges
621
+ 13
622
+
623
+ (i, j) ∈ E with πi /∈ Π or πj ∈ Π. In both cases �
624
+ i∈Π n′
625
+ i = k for the model
626
+ Mi→j and for the latter case nj < d.
627
+ We now consider the condition r−k−1 < R(P ′) in the following position.
628
+ From the above arguments, we see that the only way for S to eliminate
629
+ edges moving from G(A, B) to G(A′, B′) is to choose in each model (M0, w)
630
+ or (Mi→j, v) in A exactly all points that satisfy some set Π of types. If
631
+ M0 ∈ Md(A), we have �
632
+ πi∈Π ni = k < d and S can eliminate all edges to
633
+ and from the set Π of types. If M0 ∈ Md(B), we have �
634
+ πi∈Π n′
635
+ i = k < d and
636
+ S can eliminate either all edges to or all edges from the set Π of types. In
637
+ particular, if nj = d for πj ∈ Π, then only outgoing edges can be eliminated.
638
+ In all cases, the set C = {i ∈ supp(n) | πi ∈ Π} covers all eliminated edges.
639
+ The cost of C is r(C) = �
640
+ i∈C ni ≤ k + 1 since �
641
+ i∈C ni ≤ �
642
+ i∈C n′
643
+ i + 1.
644
+ Let C′ be a cover of P ′ with minimal cost so r(C′) = R(P ′). Now C ∪ C′
645
+ is a cover of P so r < R(P) ≤ R(P ′) + r(C) ≤ R(P ′) + k + 1.
646
+ Thus
647
+ r − k − 1 < R(P ′).
648
+ A lower bound for the description complexity of an arbitrary class Mn
649
+ can now be obtained by simply calculating the minimum cost of a cover of
650
+ G(An, Bn).
651
+ Lemma 3.4. Let Mn be a class with ni = d for at least two different i ∈ I.
652
+ Then C(Mn) ≥ �
653
+ i∈I
654
+ ni.
655
+ Proof. We assume that n1 = d. We consider the graph G(An, Bn) = {(i, j) ∈
656
+ supp(n) | i ̸= 1 or nj = d}. This graph has edges from all types πi with
657
+ ni ̸= 0 to each other, with the exception that there are no edges from π1 to
658
+ πj with nj < d.
659
+ We first note that C = supp(n) is a cover of G(An, Bn) with cost �
660
+ i∈I ni.
661
+ For C′ ̸= C if i /∈ C′ with i ̸= 1, then by the definition of a cover, the edge
662
+ (i, 1) ∈ E is not covered, since i /∈ C and n1 = d. If 1 /∈ C′, then let j ∈ I
663
+ be the other index with nj = d besides 1. Now the edge (1, d) ∈ E is not
664
+ covered since 1 /∈ C and nj = d. We see that C is a minimal cost cover and
665
+ by Lemma 3.3 and Theorem 3.1 the claim holds.
666
+ Lemma 3.5. Let Mn be a class with ni = d for at most one i ∈ I. Let πj
667
+ be one of the types with the most realizing points in Mn. Then C(Mn) ≥
668
+
669
+ i∈I\{j} ni = n − |πj|.
670
+ Proof. We assume n1 = max{ni | i ∈ I}. Thus π1 is one of the types with
671
+ the most realizing points and if n1 < d, then ni < d for all i ∈ I.
672
+ We consider the graph G(An, Bn). From the definition we get G(An, Bn) =
673
+ {(i, j) ∈ supp(n) | i ̸= 1}. This graph has edges from all types πi with ni ̸= 0
674
+ to each other, with the exception that there are no edges originating from
675
+ 1.
676
+ 14
677
+
678
+ We first note that C = supp(n)\{1} is a cover of G(An, Bn) with r(C) =
679
+
680
+ i∈I\{1} ni = n − |π1|. Clearly supp(n) is a cover with higher cost.
681
+ Let C′ ⊂ supp(n). If there are i, j ∈ supp(n) with i, j /∈ C′, then the
682
+ edge (i, j) or (j, i) is in E and is not covered. If there is only one i ∈ supp(n)
683
+ with i /∈ C′ and i ̸= 1, then r(C′) = �
684
+ i∈I\{j} ni ≥ r(C) since π1 is one of
685
+ the types with the largest ni. We see that C is a minimal cost cover and by
686
+ Lemma 3.3 and Theorem 3.1 the claim holds.
687
+ We sum up the above lemmas into the Theorem below:
688
+ Theorem 3.6. Let n be an (n, d)-admissible tuple and let Mn be the cor-
689
+ responding equivalence class of ≡d. If ni = d for at least two i ∈ I, then
690
+ C(Mn) ≥ �
691
+ i∈I ni. Otherwise C(Mn) ≥ �
692
+ i∈I\{j} ni = n − |πj|.
693
+ 4
694
+ A monotone connection
695
+ Consider the following strict partial orders on the set of all (n, d)-admissible
696
+ tuples.
697
+ 1. n <s n′ iff |Mn| < |Mn′|
698
+ 2. n <c n′ iff C(Mn) < C(Mn′)
699
+ Note that neither |Mn| = |Mn′| nor C(Mn) = C(Mn′) necessarily entails
700
+ that n = n′, as demonstrated by the tuples (1, 2, d) and (2, 1, d). We let ≤s
701
+ and ≤c denote the partial orders obtained by adding loops to <s and <c
702
+ respectively. The main purpose of this section is to show that there exists
703
+ a natural and non-trivial partial order which is contained both in ≤s and
704
+ in ≤c (provided that n is sufficiently large w.r.t. d), which then gives us a
705
+ monotone connection between sizes of model classes and their description
706
+ complexities. To establish this result, we will use the heavy machinery devel-
707
+ oped in the previous section together with further combinatorial arguments
708
+ that involve r-associated Stirling numbers.
709
+ 4.1
710
+ r-associated Stirling numbers
711
+ We will use r-associated Stirling numbers to count the number of models in
712
+ a given model class. Given positive integers n, m, r such that n ≥ mr, we
713
+ define
714
+ �n
715
+ m
716
+
717
+ ≥r
718
+ to be the number of partitions of [n] which partition [n] into m, each set
719
+ having size at least r. When r = 1 these numbers are also known as the
720
+ Stirling numbers of the second kind and they simply count the number of
721
+ partitions of [n] into m sets [3].
722
+ 15
723
+
724
+ The following lemma will play the key role when we estimate the sizes
725
+ of the model classes. Even though the proof is simple and elementary, we
726
+ were not able to find these estimates in the existing literature.
727
+ Lemma 4.1. Let n, m, r ∈ Z+. Suppose that n ≥ mr. Then
728
+ mn
729
+ mmr ≤
730
+ �n
731
+ m
732
+
733
+ ≥r
734
+ ≤ mn
735
+ m!
736
+ Proof. For the upper bound note that
737
+ �n
738
+ m
739
+
740
+ ≥r
741
+
742
+ �n
743
+ m
744
+
745
+ ≥1
746
+ ≤ mn
747
+ m! .
748
+ The last inequality follows from the fact that mn counts the number of
749
+ mappings f : [n] → [m], while m! ·
750
+ � n
751
+ m
752
+
753
+ ≥1 only counts those f that are
754
+ surjections. For the lower bound, we use the fact that m!·
755
+ � n
756
+ m
757
+
758
+ ≥r counts the
759
+ number of mappings f : [n] → [m] which have the property that for every
760
+ 1 ≤ k ≤ m we have |f −1({k})| ≥ r. To give a lower bound on the number
761
+ of such functions, we count the number of mappings f : [n] → [m] which
762
+ have the property that the sets {(k − 1) · r + 1, . . . , k · r}, where 1 ≤ k ≤ m,
763
+ are mapped to distinct elements. Since the remaining n − mr elements can
764
+ be mapped arbitrarily, the number of such mappings is simply m! · mn−mr.
765
+ Thus
766
+ m! · mn−mr ≤ m! ·
767
+ �n
768
+ m
769
+
770
+ ≥r
771
+ ,
772
+ giving the wanted lower bound after dividing by m!.
773
+ We note that if m and r are much smaller than n — as they will be in
774
+ our applications — the estimates of Lemma 4.1 are (perhaps surprisingly)
775
+ quite sharp.
776
+ One important consequence of Lemma 4.1 is the following lemma. Again,
777
+ we emphasize that we were unable to find an estimate of this form in the
778
+ existing literature.
779
+ Lemma 4.2. Let n, m, r ∈ Z+. If n ≥ mr + 1, then
780
+ �n
781
+ m
782
+
783
+ ≥r
784
+ ≤ mmr+1
785
+ m!
786
+ �n − 1
787
+ m
788
+
789
+ ≥r
790
+ .
791
+ Proof. Follows immediately from Lemma 4.1.
792
+ If m and r are fixed, Lemma 4.2 bounds the growth rate of r-associated
793
+ Stirling numbers as n increases.
794
+ 16
795
+
796
+ 4.2
797
+ Combinatorics of model classes
798
+ In this subsection we use the above results on r-associated Stirling numbers
799
+ to investigate the sizes of model classes in terms of their (n, d)-admissible
800
+ tuples. We begin with the following lemma gives a simple and closed formula
801
+ for the size of a model class.
802
+ Lemma 4.3. Let n be an (n, d)-admissible tuple. Let i1, . . . , ik ∈ I be the
803
+ indices for which niℓ < d. We then have that
804
+ |Mn| =
805
+
806
+ n
807
+ ni1, . . . , nik, m
808
+
809
+ · kd! ·
810
+ �m
811
+ kd
812
+
813
+ ≥d
814
+ ,
815
+ where m := n − �
816
+ i̸∈{i1,...,ik} ni and kd := t − k.
817
+ Proof. Each model in Mn can be constructed as follows.
818
+ (1) We first pick k subsets of {1, . . . , n} of sizes ni1, . . . , nik and define that
819
+ each element in the iℓth set realizes the iℓth type. The number of ways this
820
+ can be done is given by
821
+
822
+ n
823
+ ni1,...,nik,m
824
+
825
+ .
826
+ (2) We then partition the remaining subset of size m to kd pieces, each piece
827
+ having size at least d. The number of ways this can be done is given by the
828
+ associated Stirling number
829
+ �m
830
+ kd
831
+
832
+ ≥d.
833
+ (3) For each piece we select a unique type from the remaining types — the
834
+ number of which is kd — and define that each element in a piece realizes
835
+ the type associated with that piece. The number of ways this can be done
836
+ is given by kd!.
837
+ Multiplying the above factors gives us the result.
838
+ The following lemmas establish how the size of a model class changes
839
+ when we modify its admissible tuple.
840
+ Lemma 4.4. Fix d ∈ Z+ and let n be an (n, d)-admissible tuple. Suppose
841
+ that n is sufficiently large with respect to d and |τ|. Then for every i ∈ I
842
+ such that ni < d − 1 we have that
843
+ |Mn| < |Mn′|,
844
+ where n′
845
+ i = ni + 1 and n′
846
+ j = nj, for every j ̸= i.
847
+ Proof. For notational simplicity we assume that nℓ < d iff ℓ ≤ k. By Lemma
848
+ 4.3 the inequality that we need to establish is
849
+
850
+ n
851
+ n1, . . . , nk, m
852
+
853
+ · kd! ·
854
+ �m
855
+ kd
856
+
857
+ ≥d
858
+ <
859
+
860
+ n
861
+ n1, . . . , ni + 1, . . . , nk, m − 1
862
+
863
+ · kd! ·
864
+ �m − 1
865
+ kd
866
+
867
+ ≥d
868
+ ,
869
+ 17
870
+
871
+ where m = n − �k
872
+ ℓ=1 nℓ and kd = t − k. Note that since n is large enough
873
+ w.r.t. d, kd ≥ 1. Simplifying this gives us the equivalent inequality
874
+ �m
875
+ kd
876
+
877
+ ≥d
878
+ <
879
+ m
880
+ ni + 1
881
+ �m − 1
882
+ kd
883
+
884
+ ≥d
885
+ ,
886
+ which follows from Lemma 4.2, as long as
887
+ m
888
+ ni + 1 > kkdd+1
889
+ d
890
+ kd!
891
+ ⇔ n > (ni + 1)kkdd+1
892
+ d
893
+ kd!
894
+ +
895
+ k
896
+
897
+ ℓ=1
898
+ nℓ
899
+ Using nℓ < d, which holds for every 1 ≤ ℓ ≤ k, and 1 ≤ kd ≤ t gives us the
900
+ desired result.
901
+ Lemma 4.5. Fix d ∈ Z+ and let n be an (n, d)-admissible tuple. Suppose
902
+ that n is sufficiently large with respect to d and |τ|. Then for every i ∈ I
903
+ such that ni < d we have that
904
+ |Mn| < |Mn′|,
905
+ where n′
906
+ j = d, when j = i, and n′
907
+ j = nj otherwise.
908
+ Proof. For notational simplicity we assume that nℓ < d iff ℓ ≤ k. By Lemma
909
+ 4.3 the inequality that we need to establish is
910
+
911
+ n
912
+ n1, . . . , ni, . . . , nk, m
913
+
914
+ · kd! ·
915
+ �m
916
+ kd
917
+
918
+ ≥d
919
+ <
920
+
921
+ n
922
+ n1, . . . , ni−1, ni+1, . . . , nk, m + ni
923
+
924
+ · (kd + 1)! ·
925
+ �m + ni
926
+ kd + 1
927
+
928
+ ≥d
929
+ ,
930
+ where m = n − �k
931
+ ℓ=1 nℓ and kd = t − k. Note that since n is large enough
932
+ w.r.t. d, kd ≥ 1. Simplifying this gives us the equivalent inequality
933
+ �m
934
+ kd
935
+
936
+ ≥d
937
+ <
938
+ m!ni!
939
+ (m + ni)! · (kd + 1) ·
940
+ �m + ni
941
+ kd + 1
942
+
943
+ ≥d
944
+ It follows from Lemma 4.1 that
945
+ �m + ni
946
+ kd + 1
947
+
948
+ ≥d
949
+ ≥ (kd + 1)m+ni
950
+ (kd + 1)(kd+1)d
951
+ and
952
+ �m
953
+ kd
954
+
955
+ ≥d
956
+ ≤ km
957
+ d
958
+ kd!
959
+ 18
960
+
961
+ Hence we only have to show that
962
+ km
963
+ d
964
+ kd! <
965
+ m!ni!
966
+ (m + ni)! · (kd + 1) · (kd + 1)m+ni
967
+ (kd + 1)(kd+1)d
968
+ or equivalently that
969
+ (kd + 1)(kd+1)d
970
+ (kd + 1)ni+1kd!ni! < m!(kd + 1)m
971
+ km
972
+ d (m + ni)!
973
+ =
974
+ (kd + 1)m
975
+ km
976
+ d
977
+ �ni−1
978
+ j=0 (m + ni − j)
979
+ =
980
+ � kd + 1
981
+ kd
982
+ � �� �
983
+ >1
984
+ �m� ni−1
985
+
986
+ j=0
987
+ (m + ni − j)
988
+ Recall 0 ≤ ni < d and 1 ≤ kd ≤ t. Hence in the above inequality the left
989
+ hand side is a constant, and thus it suffices to show that the right hand side
990
+ formula tends to infinity as n grows (recall m = n−�k
991
+ ℓ=1 nℓ, i.e., m is just n
992
+ minus a constant). However, this is clear, since the right hand side is of the
993
+ form f(n)/g(n), where f grows exponentially w.r.t. n while g grows only
994
+ polynomially w.r.t. n.
995
+ 4.3
996
+ Connecting size and description complexity
997
+ Let Pn,d denote the set of all (n, d)-admissible tuples. We define a natural
998
+ partial order ⪯ on Pn,d as follows: n ⪯ n′ if and only if ni ≤ n′
999
+ i, for every
1000
+ i ∈ I. By writing n ≺ n′ we mean that n ⪯ n′ and n ̸= n′.
1001
+ Lemma 4.6. Suppose that n is sufficiently large with respect to d and |τ|.
1002
+ Let n and n′ be (n, d)-admissible tuples such that n ≺ n′. Then
1003
+ |Mn| < |Mn′|
1004
+ Proof. It suffices to show that if n′ is an immediate successor of n, then
1005
+ |Mn| < |Mn′|. Now, there must exist exactly one i ∈ I such that n′
1006
+ i = ni + 1
1007
+ and n′
1008
+ j = nj for every j ̸= i. If n′
1009
+ i < d, then the claim follows from Lemma
1010
+ 4.4, while if n′
1011
+ i = d, then the claim follows from Lemma 4.5.
1012
+ Recall the constant cτ = 2|τ|(2|τ| + 1) − 1 from the previous section. We
1013
+ define yet another partial order ⪯τ on Pn,d as follows: n ⪯τ n′ if and only
1014
+ if the following two conditions hold:
1015
+ 1. For every i ∈ I we have that ni ≤ n′
1016
+ i.
1017
+ 2. Either n = n′ or �
1018
+ i∈I(n′
1019
+ i − ni) > cτ.
1020
+ 19
1021
+
1022
+ Roughly speaking n ⪯τ n′ means that if the tuples are distinct, then the
1023
+ distance between them w.r.t. to the order ⪯ is more than cτ. Again, by
1024
+ writing n ≺τ n′ we mean that n ⪯τ n′ and n ̸= n′. For example (1, d) ≺τ
1025
+ (2 + cτ, d), but (1, d) ̸⪯τ (1 + cτ, d).
1026
+ Lemma 4.7. Suppose that n is sufficiently large with respect to d and |τ|.
1027
+ Let n and n′ be (n, d)-admissible tuples such that n ≺τ n′. Then we have
1028
+ that
1029
+ C(Mn) < C(Mn′)
1030
+ Proof. Suppose first that d occurs at least twice in n′. Theorem 3.6 entails
1031
+ that C(Mn′) ≥ �
1032
+ i∈I n′
1033
+ i. We now have two cases based on whether or not d
1034
+ occurs at least twice in n. Suppose first that d occurs exactly once in n say,
1035
+ nj = d. Then Mn can be defined by a formula of size
1036
+ cτ +
1037
+
1038
+ i∈I−{j}
1039
+ ni <
1040
+
1041
+ i∈I−{j}
1042
+ n′
1043
+ i ≤ C(Mn′)
1044
+ and hence C(Mn) < C(Mn′). On the other hand, if d occurs at least twice
1045
+ in n, then Mn can be defined by a formula of size
1046
+ cτ +
1047
+
1048
+ i∈I
1049
+ ni <
1050
+
1051
+ i∈I
1052
+ n′
1053
+ i ≤ C(Mn′)
1054
+ and hence C(Mn) < C(Mn′).
1055
+ Suppose then that d occurs exactly once in n′, say n′
1056
+ j = d. Theorem 3.6
1057
+ entails that C(Mn′) ≥ �
1058
+ i∈I−{j} n′
1059
+ i. Since n ≺τ n′, we have that ni < d, for
1060
+ every i ̸= j. Since d must occur at least once in n — as n is (n, d)-admissible
1061
+ — we have that nj = d. Now Mn can be defined by a formula of size
1062
+ cτ +
1063
+
1064
+ i∈I−{j}
1065
+ ni <
1066
+
1067
+ i∈I−{j}
1068
+ n′
1069
+ i ≤ C(Mn′)
1070
+ and hence C(Mn) < C(Mn′).
1071
+ Recall the partial orderings ≤s and ≤c on Pn,d, which were introduced at
1072
+ the beginning of this section. The following theorem formalizes a connection
1073
+ between sizes of model classes and their description complexities.
1074
+ Theorem 4.8. If n is sufficiently large with respect to d, then
1075
+ ⪯τ ⊆ ≤s ∩ ≤c .
1076
+ In particular, if n and n′ are two distinct ⪯τ-comparable tuples, then
1077
+ |Mn| < |Mn′| ⇔ C(Mn) < C(Mn′).
1078
+ 20
1079
+
1080
+ Proof. Suppose that n ≺τ n′. Lemmas 4.6 and 4.7 guarantee that if n is
1081
+ large enough w.r.t. d, then |Mn| < |Mn′| and C(Mn) < C(Mn′). Hence
1082
+ n ≤s n′ and n ≤c n′, which proves the first claim. The second claim follows
1083
+ directly from the first.
1084
+ The intuitive content of the above theorem is that the partial order ⪯τ
1085
+ approximates both ≤s and ≤c. Hence ⪯τ can be viewed as a highly non-
1086
+ trivial monotone connection between ≤s and ≤c.
1087
+ We note that the above theorem also works for Boltzmann entropy. This
1088
+ is because the order ≤s is the same as the order based on Boltzmann entropy,
1089
+ since logarithm is an increasing function. We formulate the latter of the two
1090
+ claims as a corollary.
1091
+ Corollary 4.9. Assume n is sufficiently large with respect to d. If n and n′
1092
+ are two distinct ⪯τ-comparable tuples, then
1093
+ HB(Mn) < HB(Mn′) ⇔ C(Mn) < C(Mn′).
1094
+ 5
1095
+ The phase transitions of class size distributions
1096
+ In this section we move our attention from single classes to the entire pro-
1097
+ bability distribution given by ≡d. By allowing d to depend on n, we obtain
1098
+ qualitative results which link the growth rate of d with the emergence of a
1099
+ dominating class, i.e., a class which contains almost all the models. For fixed
1100
+ n, we also obtain quantitative results on how the relationship between d and
1101
+ n determines whether there exists a class in ≡d which contains majority of
1102
+ all the models of size n. We will also point out consequences of these results
1103
+ on the “average-case” expressive power of GMLUd.
1104
+ Throughout this section we continue to use our previous convention that
1105
+ t = 2|τ| denotes the number of types π of the alphabet τ. We start with the
1106
+ following observation, which gives a sense of what happens in the distribu-
1107
+ tion, when the counting depth is increased.
1108
+ Proposition 5.1. Suppose that d < d′ ≤ n/2. Then
1109
+ HS(≡d) < HS(≡d′) and HB(≡d) > HB(≡d′).
1110
+ Furthermore, for every n/2 ≤ d ≤ d′ we have that
1111
+ HS(≡d) = HS(≡d′) and HB(≡d) = HB(≡d′).
1112
+ Proof. By Proposition 2.1 HS(≡d) + HB(≡d) = |τ|n. Hence it suffices to
1113
+ establish the claims in the case of Boltzmann entropy. We first note that if
1114
+ n/2 ≤ d ≤ d′, then HB(≡d) = HB(≡d′), since the logic GMLUd can already
1115
+ specify each structure up to isomorphism.
1116
+ 21
1117
+
1118
+ Suppose then that d < d′ ≤ n/2. Consider the class Mn, where n =
1119
+ (0, . . . , 0, d, d). As the depth is increased to d′ > d, this class is divided to
1120
+ at least two smaller classes with tuples (0, . . . , 0, d, d′) and (0, . . . , 0, d′, d).
1121
+ Meanwhile, clearly no class increases in size so we see that HB(≡d) >
1122
+ HB(≡d′).
1123
+ We take this opportunity to point out an easy corollary of the previous
1124
+ result. In [7] it was established that HB(≡n) ∼ |τ|n, by which we mean
1125
+ that limn→∞ HB(≡n)/|τ|n = 1. When combined with Proposition 5.1, this
1126
+ result yields quite directly the following.
1127
+ Corollary 5.2. For any counting depth d(n), we have
1128
+ HB(≡d(n)) ∼ |τ|n
1129
+ Proof. W.l.o.g. we assume that d(n) ≤ n, for every n. Since log(|M|) ≤ |τ|n,
1130
+ for any class M, we have that HB(≡d(n)) ≤ |τ|n. Since HB(≡n) ∼ |τ|n, for
1131
+ every ε > 0 we have that if n is large enough, then HB(≡n) ≥ (1 − ε)|τ|n.
1132
+ Since HB(≡d(n)) ≥ HB(≡n), for every ε > 0 we have that HB(≡d(n)) ≥
1133
+ (1 − ε)|τ|n, provided that n is sufficiently large. Combining these bounds
1134
+ yields the desired result.
1135
+ Thus, from an asymptotic point of view, the dependence of the counting
1136
+ depth d on n has no effect on the Boltzmann entropy of ≡d. By virtue of
1137
+ Proposition 2.1, the same is true for the Shannon entropy of ≡d.
1138
+ We proceed now to further analyze the effect of counting depth on the
1139
+ distribution. To formulate some of our results, we will use standard asymp-
1140
+ totic notation, which we recall here. Let f, g : N → R>0. We use f = o(g)
1141
+ to denote that limn→∞ f(n)/g(n) = 0. Furthermore, we use f = ω(g) to
1142
+ denote that limn→∞ f(n)/g(n) = ∞.
1143
+ We first show that if the counting depth grows slowly enough with respect
1144
+ to n, then the distribution contains a class which contains almost all of the
1145
+ models of size n. More formally, fix a function d : Z+ → N and thereby
1146
+ a sequence ≡d(n) of equivalence relations. A class sequence M(n) with
1147
+ respect to the sequence ≡d(n) is a function that outputs a single class for each
1148
+ individual equivalence relation in the sequence. Each class sequence M(n)
1149
+ is naturally associated with the corresponding probability sequence
1150
+ pn := p≡d(n)(M(n)) = |M(n)|
1151
+ 2n|τ| .
1152
+ We say that ≡d(n) has a dominating class if there exists a class sequence
1153
+ M(n) such that pn → 1 as n → ∞. Then the class sequence M(n) is said to
1154
+ dominate ≡d(n). Intuitively, a class (sequence) is dominating if a random
1155
+ model of size n belongs to it with limit probability one.
1156
+ Our proof uses the well-known Chernoff bounds. The following lemma
1157
+ will require the lower-tail estimate, while the upper-tail estimate will be
1158
+ used later in this section.
1159
+ 22
1160
+
1161
+ Proposition 5.3 (Chernoff bounds [12]). Let X := �n
1162
+ i=1 Xi be a sum of
1163
+ independent 0-1-valued random variables, where Xi = 1 with probability p
1164
+ and Xi = 0 with probability 1 − p. Then for every δ ≥ 0 we have that
1165
+ (Lower tail) Pr[X ≤ (1 − δ)np] ≤ e−δ2 np
1166
+ 2
1167
+ (Upper tail) Pr[X ≥ (1 + δ)np] ≤ e−δ2 np
1168
+ 2+δ
1169
+ Lemma 5.4. For any f(n) = ω(√n), if the counting depth is d(n) ≤ n/t −
1170
+ f(n), then the class sequence Mn, where n = (d(n), . . . , d(n)), dominates
1171
+ ≡d(n).
1172
+ Proof. We will show that for each f(n), such that f(n) = ω(√n) and f(n) ≤
1173
+ n/t, we have that with limit probability one a random model realizes each
1174
+ type more than n/t − f(n) times.
1175
+ Given a type π, we let Xπ denote a
1176
+ random variable which counts the number of times π is realized. Now Xπ :=
1177
+
1178
+ 1≤i≤n Xπ,i, where Xπ,i is an indicator random variable for the event that
1179
+ the element i realizes the type π. Since the success probability of Xπ,i is
1180
+ t−1, we have that E(Xπ) = n/t.
1181
+ Now, Chernoff bound give us that for every n and for every 0 �� δ we
1182
+ have
1183
+ Pr
1184
+
1185
+ Xπ ≤ (1 − δ)n
1186
+ t
1187
+
1188
+ ≤ e−δ2 n
1189
+ 2t .
1190
+ Note that δ can indeed depend on n. Setting δ(n) :=
1191
+
1192
+ 2tg(n)/n, for any
1193
+ g(n) = ω(1), we obtain that
1194
+ e−δ2 n
1195
+ 2t = e−g(n) → 0.
1196
+ Furthermore
1197
+ δ(n)n
1198
+ t =
1199
+
1200
+ 2t · 1
1201
+ t
1202
+ � �� �
1203
+ =:C
1204
+ ·
1205
+
1206
+ g(n) · √n = C
1207
+
1208
+ ng(n).
1209
+ Hence for any function g(n) = ω(1) we have that with high probability the
1210
+ type π is realized more than n/t − C
1211
+
1212
+ ng(n) many times.
1213
+ Since π was
1214
+ arbitrary, it follows from the union bound that with high probability every
1215
+ type π is realized more than n/t − C
1216
+
1217
+ ng(n) times. Now, if f(n) = ω(√n),
1218
+ then by setting g(n) = (f(n)/C√n)2 we obtain that every type is realized
1219
+ more than n/t − f(n) times.
1220
+ We showed that when the counting depth is low enough, the distribution
1221
+ has a dominating class. Next we will show that for a high enough counting
1222
+ depth, there is no dominating class. For this, we will utilize the following
1223
+ inequality version of Stirling’s approximation, due to Robbins [14].
1224
+ 23
1225
+
1226
+ Proposition 5.5 (Stirling’s approximation [14]). For all n ∈ N, n > 0, we
1227
+ have
1228
+
1229
+ 2πn
1230
+ �n
1231
+ e
1232
+ �n
1233
+ e
1234
+ 1
1235
+ 12n+1 < n! <
1236
+
1237
+ 2πn
1238
+ �n
1239
+ e
1240
+ �n
1241
+ e
1242
+ 1
1243
+ 12n
1244
+ Lemma 5.6. For any f(n) = o(√n), if the counting depth is d(n) ≥ n/t −
1245
+ f(n), then ≡d(n) has no dominating class as n → ∞.
1246
+ Proof. Let M(n) be an arbitrary sequence of classes. We will show that
1247
+ there is some n0 such that for every n ≥ n0 the probability of a model
1248
+ belonging to class M(n) is at most half.
1249
+ Let Mn be a class of the sequence M(n) with i, j ≤ t such that ni ̸= nj.
1250
+ Let n′ be obtained from n by switching the numbers ni and nj in the tuple.
1251
+ We clearly have |Mn′| = |Mn| by symmetry so the probability of a model
1252
+ belonging to Mn is at most half.
1253
+ It remains to show that classes of the sequence M(n) with tuples re-
1254
+ peating only one number have probability at most half, when n is large
1255
+ enough. Let d ≥ n/t − f(n), where f(n) = o(√n). Assume d < n/t and let
1256
+ M = Mn, where n = (d, . . . , d). Note that this is the only (n, d)-admissible
1257
+ tuple that repeats only one number. We show that this class M has proba-
1258
+ bility less than half if n is large enough. In fact, we establish the stronger
1259
+ claim that the sequence of such classes with tuples (d(n), . . . , d(n)) has limit
1260
+ probability 0.
1261
+ The size of the above class M is given by the sum
1262
+ |M| =
1263
+
1264
+ n1+···+nt=n
1265
+ ni≥d
1266
+
1267
+ n
1268
+ n1, . . . , nt
1269
+
1270
+ .
1271
+ First we note that a multinomial coefficient is largest, when the numbers
1272
+ n1, . . . , nt are equal. Using this and Stirling’s approximation, we get
1273
+
1274
+ n
1275
+ n1, . . . , nt
1276
+
1277
+
1278
+
1279
+ n
1280
+ n
1281
+ t , . . . , n
1282
+ t
1283
+
1284
+
1285
+
1286
+ 2πn(n
1287
+ e )ne
1288
+ 1
1289
+ 12n
1290
+ (�2π n
1291
+ t ( n
1292
+ et)
1293
+ n
1294
+ t e
1295
+ 1
1296
+ 12 n
1297
+ t +1)t
1298
+ =
1299
+
1300
+ 2πn(n
1301
+ e )ne
1302
+ 1
1303
+ 12n
1304
+ �2π n
1305
+ t
1306
+ t(n
1307
+ e )n 1
1308
+ tn e
1309
+ t
1310
+ 12 n
1311
+ t +1
1312
+ =
1313
+
1314
+ tt
1315
+ (2π)t−1 ·
1316
+ 1
1317
+
1318
+ nt−1 · eg(n) · tn
1319
+
1320
+
1321
+ tt
1322
+ (2π)t−1 ·
1323
+ 1
1324
+
1325
+ nt−1 · 2n|τ|
1326
+ 24
1327
+
1328
+ The exponent of e above is
1329
+ g(n) =
1330
+ 1
1331
+ 12n −
1332
+ t
1333
+ 12n
1334
+ t + 1 =
1335
+ 1
1336
+ 12n −
1337
+ t2
1338
+ 12n + t
1339
+ = 12n + t − 12t2n
1340
+ 12n(12n + t)
1341
+ = (1 − t2)12n + t
1342
+ 12n(12n + t) .
1343
+ Clearly g(n) < 0 for all positive n so eg(n) < 1 and the above estimate holds.
1344
+ By the stars and bars method, the original sum has
1345
+ �tf(n) + t − 1
1346
+ t − 1
1347
+
1348
+ ≤ (2t)t−1 · f(n)t−1
1349
+ terms so the final estimate is
1350
+ |M| ≤
1351
+
1352
+ tt
1353
+ (2π)t−1 · (2t)t−1 · f(n)t−1
1354
+
1355
+ nt−1 · 2n|τ|
1356
+ Recall that there are 2n|τ| models of size n in total and f(n) = o(√n).
1357
+ We obtain the following limit:
1358
+ lim
1359
+ n→∞
1360
+
1361
+ tt
1362
+ (2π)t−1 · (2t)t−1 · f(n)t−1
1363
+
1364
+ nt−1 · 2n|τ|
1365
+ 2n|τ|
1366
+ = 0.
1367
+ We see that the sequence of classes Mn with n = (d, . . . , d) has limit pro-
1368
+ bability 0. Thus for a single such class, the probability is certainly at most
1369
+ half if n is large enough.
1370
+ Now assume d ≥ n/t, and consider the sequence of classes Mn, where n =
1371
+ (n/t, . . . , n/t). This is again the only (n, d)-admissible tuple that repeats
1372
+ only one number. The size of these classes is given by
1373
+
1374
+ n
1375
+ n
1376
+ t ,..., n
1377
+ t
1378
+
1379
+ and it is easy
1380
+ to see from the above that this sequence also has limit probability 0. Thus
1381
+ a single such class has probability less than half for large enough n.
1382
+ Intuitively, a class (sequence) is vanishing, if a random model of size n
1383
+ belongs to it with limit probability zero. To define this notion formally, fix
1384
+ a sequence ≡d(n). We say that all classes in ≡d(n) are vanishing as n → ∞
1385
+ if for all class sequences M(n) for ≡d(n), we have pn → 0 as n → ∞. We
1386
+ now show that if the counting depth is high enough, then all classes in the
1387
+ distribution sequence are vanishing.
1388
+ Lemma 5.7. For any f(n) such that f(n) = ω(√n), if the counting depth
1389
+ is d(n) ≥ n/t + f(n), then all classes in ≡d(n) are vanishing as n → ∞.
1390
+ Proof. Fix some function f(n) such that f(n) = ω(√n).
1391
+ We first show
1392
+ that with limit probability zero a random model realizes each type less
1393
+ than n/t + f(n) times.
1394
+ Without loss of generality we can assume that
1395
+ 25
1396
+
1397
+ f(n) ≤ n−n/t. Given a type π, we let Xπ denote the same random variable
1398
+ as in the proof of Lemma 5.4. Chernoff bound give us again that for every
1399
+ n and for every 0 < δ ≤ 1 we have
1400
+ Pr
1401
+
1402
+ Xπ ≥ (1 + δ)n
1403
+ t
1404
+
1405
+ ≤ e−δ2
1406
+ n
1407
+ t(2+δ) ≤ e−δ2 n
1408
+ 3t
1409
+ Note that δ can depend on n. Setting δ(n) :=
1410
+
1411
+ 3tg(n)/n, for any g(n) such
1412
+ that g(n) = ω(1) and g(n) ≤ n/(3t) (to guarantee that δ(n) ≤ 1), we get
1413
+ that
1414
+ e−δ2 n
1415
+ 3t = e−g(n) → 0.
1416
+ Furthermore
1417
+ δ(n)n
1418
+ t =
1419
+
1420
+ 3t · 1
1421
+ t
1422
+ � �� �
1423
+ =:C
1424
+ ·
1425
+
1426
+ g(n) · √n = C
1427
+
1428
+ ng(n).
1429
+ Hence for any function g(n) such that g(n) = ω(1) and g(n) ≤ n/(3t) we
1430
+ have that with high probability the type π is realized less than n
1431
+ t −C
1432
+
1433
+ ng(n)
1434
+ many times. Since π was arbitrary, it follows from the union bound that
1435
+ with high probability every type π is realized less than n
1436
+ t − C
1437
+
1438
+ ng(n) many
1439
+ times. By setting g(n) = (f(n)/C√n)2 we obtain that every type is realized
1440
+ less than n/t − f(n) times.
1441
+ Now consider an arbitrary class sequence M(n). We want to show that
1442
+ for every ε > 0 we have that pn < ε, provided that n is sufficiently large.
1443
+ Consider a class M(n) and let n be the corresponding (n, d(n))-admissible
1444
+ tuple, i.e., M(n) is the class Mn. If there is i ∈ I such that ni = d(n) =
1445
+ n/t + f(n), then it follows from the previous result that p≡d(n)(Mn) < ε, as
1446
+ long as n is sufficiently large. Suppose then that ni < n/t + f(n), for every
1447
+ i ∈ I. In this case the class Mn is an isomorphism class, which means that
1448
+ the probability that a random model belongs to Mn is simply
1449
+
1450
+ n
1451
+ n1, . . . , nt
1452
+
1453
+ /2n|τ|,
1454
+ which, as calculated in the proof of Lemma 5.6, is at most a constant times
1455
+ 1/
1456
+
1457
+ nt−1. This latter quantity is certainly less than ε, provided that n is
1458
+ sufficiently large.
1459
+ Hence p≡d(n)(Mn) < ε, provided that n is sufficiently
1460
+ large.
1461
+ We gather the above results in the following theorem:
1462
+ Theorem 5.8. The following statements hold for counting depth d(n) as
1463
+ n → ∞.
1464
+ • If d(n) ≤ n/t−f(n) where f(n) = ω(√n), then ≡d(n) has a dominating
1465
+ class.
1466
+ 26
1467
+
1468
+ • If d(n) ≥ n/t − f(n) where f(n) = o(√n), then ≡d(n) has no domina-
1469
+ ting class.
1470
+ • If d(n) ≥ n/t + f(n) where f(n) = ω(√n), then every class in ≡d(n)
1471
+ is vanishing.
1472
+ We point out a corollary of the above result. When the counting depth
1473
+ is too low, almost all models are in the same dominating class in terms
1474
+ of GMLUd definability. Conversely, if the counting depth is high enough,
1475
+ GMLUd can separate the models into classes that vanish. These observations
1476
+ directly give us the following result:
1477
+ Corollary 5.9. Let f(n) = ω(√n).
1478
+ If d(n) ≤ n/t − f(n), then with
1479
+ limit probability one, two random models of size n cannot be separated in
1480
+ GMLUd(n). If d(n) ≥ n/t + f(n), then with limit probability one, two ran-
1481
+ dom models of size n can be separated in GMLUd(n).
1482
+ We say that a class is a majority class, if it contains more than half of
1483
+ all the models. The following theorem is a quantitative version of Theorem
1484
+ 5.8.
1485
+ Theorem 5.10. Let n ∈ Z+.
1486
+ • If d ≤ n/t − c1
1487
+ √n, where
1488
+ c1 := 1
1489
+ t
1490
+
1491
+ 2t ln(2t),
1492
+ then the distribution ≡d for models of size n has a majority class.
1493
+ • If d ≥ n/t − c2
1494
+ √n, where
1495
+ c2 :=
1496
+
1497
+ π
1498
+ 2t3(4t)1/(t−1) < c1
1499
+ then the distribution ≡d for models of size n does not have a majority
1500
+ class.
1501
+ Proof. Suppose first that d ≤ n/t − c1
1502
+ √n. Set δ = (tc1)/√n, in which case
1503
+ δ · n
1504
+ t = c1
1505
+ √n and δ2 · n/(2t) = (tc1)2/(2t). Applying Chernoff bound and
1506
+ the union bound we obtain, in a similar manner as in the proof of Lemma
1507
+ 5.4, that with probability strictly greater than (1 − te−(tc1)2/(2t)) every type
1508
+ is realized at least n/2 − c1
1509
+ √n-times. A quick calculation shows that this
1510
+ latter probability is equal to 1/2 (hence the choice of c1).
1511
+ Consider then the case d ≥ n/t − c2
1512
+ √n.
1513
+ Let M = Mn, where n =
1514
+ (d, . . . , d). Using the estimate from the proof of Lemma 5.6 with f(n) =
1515
+ c2
1516
+ √n, we obtain
1517
+ |M|
1518
+ 2n|τ| ≤
1519
+
1520
+ tt
1521
+ (2π)t−1 · (2t)t−1 · (c2
1522
+ √n)t−1
1523
+
1524
+ nt−1
1525
+ = 1/2
1526
+ 27
1527
+
1528
+ Thus M is not a majority class.
1529
+ The same reasoning as in the proof of
1530
+ Lemma 5.6 shows there is no other majority class.
1531
+ We of course obtain a corresponding quantitative version of Corollary
1532
+ 5.9.
1533
+ Corollary 5.11. Let n ∈ Z+. If d ≤ n/t − c1
1534
+ √n, then the probability that
1535
+ two random models of size n can be separated in GMLUd is less than 1/4.
1536
+ If d ≥ n/t − c2
1537
+ √n, then the probability that two random models of size n
1538
+ can be separated in GMLUd is at least 1/2.
1539
+ 6
1540
+ Conclusion
1541
+ We have established an interesting monotone connection between model
1542
+ class sizes and description complexities, also obtaining related results for
1543
+ entropy. Furthermore, we have characterized the phase transitions of model
1544
+ class size when the domain size n and expressive power (in the form of count-
1545
+ ing depth d) is altered. These results elucidate the interplay of class size and
1546
+ formula length. While focusing on GMLUd, the results have been intended
1547
+ to give a general overview of related phenomena. Thereby, an obvious future
1548
+ direction involves investigating how these results lift into the framework of
1549
+ first-order logic. There, natural parametrizations—analogous to varying the
1550
+ counting depth d—can possibly be obtained by using quantifier depth and
1551
+ the number of variables.
1552
+ Moving beyond first-order logic, it would be interesting to investigate
1553
+ the expressively Turing-complete logic CL, or computation logic, introduced
1554
+ in [9]. Studying description complexities within that framework would lead
1555
+ to an even closer link to Kolmogorov complexity.
1556
+ Acknowledgments. Antti Kuusisto and Miikka Vilander were supported
1557
+ by the Academy of Finland project Explaining AI via Logic (XAILOG),
1558
+ grant number 345612 (Kuusisto). Antti Kuusisto was also supported by the
1559
+ Academy of Finland project Theory of computational logics, grant numbers
1560
+ 324435, 328987, 352419, 352420, 352419, 353027.
1561
+ References
1562
+ [1] Micah Adler and Neil Immerman. An n! lower bound on formula size.
1563
+ ACM Trans. Comput. Log., 4(3):296–314, 2003.
1564
+ [2] Pablo Barcel´o, Mika¨el Monet, Jorge P´erez, and Bernardo Subercaseaux.
1565
+ Model interpretability through the lens of computational complexity. In
1566
+ Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
1567
+ Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
1568
+ 28
1569
+
1570
+ Processing Systems 33: Annual Conference on Neural Information Pro-
1571
+ cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
1572
+ 2020.
1573
+ [3] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
1574
+ mathematics - a foundation for computer science.
1575
+ Addison-Wesley,
1576
+ 1989.
1577
+ [4] Peter Gr¨unwald and Paul M. B. Vit´anyi.
1578
+ Shannon information and
1579
+ Kolmogorov complexity. CoRR, cs.IT/0410002, 2004.
1580
+ [5] Lauri Hella and Miikka Vilander. Formula size games for modal logic
1581
+ and µ-calculus. J. Log. Comput., 29(8):1311–1344, 2019.
1582
+ [6] Reijo Jaakkola, Tomi Janhunen, Antti Kuusisto, Masood Feyzbakhsh
1583
+ Rankooh, and Miikka Vilander. Explainability via short formulas: the
1584
+ case of propositional logic with implementation. In Joint Proceedings
1585
+ of (HYDRA 2022) and the RCRA Workshop on Experimental Evalua-
1586
+ tion of Algorithms for Solving Problems with Combinatorial Explosion,
1587
+ volume 3281 of CEUR Workshop Proceedings, pages 64–77, 2022.
1588
+ [7] Reijo Jaakkola, Antti Kuusisto, and Miikka Vilander. Relating descrip-
1589
+ tion complexity to entropy. arXiv:2209.12564, 2022.
1590
+ [8] Reijo Jaakkola, Antti Kuusisto, and Miikka Vilander. Relating descrip-
1591
+ tion complexity to entropy. In Martin Grohe and Johann A. Makowsky,
1592
+ editors, Proceedings of Symposium on Theoretical Aspects of Computer
1593
+ Science, to appear, 2023.
1594
+ [9] Antti Kuusisto. Some turing-complete extensions of first-order logic.
1595
+ In Adriano Peron and Carla Piazza, editors, Proceedings Fifth Inter-
1596
+ national Symposium on Games, Automata, Logics and Formal Verifi-
1597
+ cation, GandALF 2014, Verona, Italy, September 10-12, 2014, volume
1598
+ 161 of EPTCS, pages 4–17, 2014.
1599
+ [10] Sik K. Leung-Yan-Cheong and Thomas M. Cover. Some equivalences
1600
+ between Shannon entropy and Kolmogorov complexity. IEEE Trans.
1601
+ Inf. Theory, 24(3):331–338, 1978.
1602
+ [11] Ming Li and Paul M. B. Vit´anyi. An Introduction to Kolmogorov Com-
1603
+ plexity and Its Applications, 4th Edition. Texts in Computer Science.
1604
+ Springer, 2019.
1605
+ [12] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
1606
+ domized Algorithms and Probabilistic Analysis. Cambridge University
1607
+ Press, 2005.
1608
+ 29
1609
+
1610
+ [13] Alexander A. Razborov. Applications of matrix methods to the the-
1611
+ ory of lower bounds in computational complexity. Comb., 10(1):81–93,
1612
+ 1990.
1613
+ [14] Herbert Robbins. A remark on stirling’s formula. The American Math-
1614
+ ematical Monthly, 62(1):26–29, 1955.
1615
+ [15] Andreia Teixeira,
1616
+ Armando Matos,
1617
+ Andre Souto,
1618
+ and Luis Fil-
1619
+ ipe Coelho Antunes.
1620
+ Entropy measures vs. Kolmogorov complexity.
1621
+ Entropy, 13(3):595–611, 2011.
1622
+ 30
1623
+
99FST4oBgHgl3EQfbzgH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE2T4oBgHgl3EQfnggo/content/tmp_files/2301.04008v1.pdf.txt ADDED
@@ -0,0 +1,1332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Balanced Datasets for IoT IDS
2
+ Alaa Alhowaide*
3
+ Computer Science Department
4
+ Memorial University of Newfoundland
5
+ St. John’s, NL, Canada
6
+ azalhowaide@mun.ca
7
+ Izzat Alsmadi
8
+ Department of Computing and
9
+ Cybersecurity
10
+ Texas A&M University-San Antonio
11
+ San Antonio, Texas, United States
12
+ ialsmadi@tamusa.edu
13
+ Jian Tang
14
+ Computer Science Department
15
+ Memorial University of
16
+ Newfoundland
17
+ St. John’s, NL, Canada
18
+ jian@mun.ca
19
+
20
+ Abstract
21
+ As the Internet of Things (IoT) continues to grow, cyberattacks are becoming increasingly common. The security
22
+ of IoT networks relies heavily on intrusion detection systems (IDSs). The development of an IDS that is accurate
23
+ and efficient is a challenging task. As a result, this challenge is made more challenging by the absence of balanced
24
+ datasets for training and testing the proposed IDS. In this study, four commonly used datasets are visualized and
25
+ analyzed visually. Moreover, it proposes a sampling algorithm that generates a sample that represents the original
26
+ dataset. In addition, it proposes an algorithm to generate a balanced dataset. Researchers can use this paper as a
27
+ starting point when investigating cybersecurity and machine learning.
28
+ The proposed sampling algorithms showed reliability in generating well-representing and balanced samples from
29
+ NSL-KDD, UNSW-NB15, BotNetIoT-01, and BoTIoT datasets.
30
+ Keywords: Sampling, Balanced Datasets, Cybersecurity, IDS, IoT
31
+
32
+ 1
33
+ Introduction
34
+ A rapid growth of applications in our lives depending on Internet of Things (IoT). IoT applications connect
35
+ everything from thermostats, toaster, fridge to complete systems to the Internet [1]. Most of the common IoT
36
+ applications include personal healthcare [2], smart transportations [3] [2], smart grid [4], smart industrial
37
+ automation [5], and intelligent emergency response systems [2] ranging from monitoring to decision making. All
38
+ these systems aim to provide a more comfortable lifestyle and improve our capabilities to experience a
39
+ considerably better life [3], which looks “smart.”. The number of connected devices reached 9.5 billion devices
40
+ at the end of 2019, according to IoT Analytics [6]. IoT Analytics expects the previous figure to reach 22 billion
41
+ by 2025 [7]. This rapid growth aligned with lake of standers and low-cost manufacturing enormous increased the
42
+ number and types of security threats [8]. Consequently, IoT network security becomes mandatory.
43
+ IDS is the first defense line against cyber-attacks. It refers to a device or software strategically allocated at a
44
+ specific point on a network to monitor all the traffic [9]. IDS reports malicious behaviors to the network
45
+ administrator, stop the malicious behaviors, and encompass intruders’ identification [8]. IDS are categorized into
46
+ an anomaly, and signature detection, and hybrid. The anomaly-based detection depends on the behavioral methods
47
+ in which it defines two types of behaviors; the normal and abnormal behaviors [10]. Most of IDS types of highly
48
+ depends on Machine Learning (ML) [9], [11], and [12], . ML plays a significant role in developing IDSs to detect
49
+
50
+ malicious threats. The performance of ML models highly depends on the dataset(s) that are used to train, validate,
51
+ and test the MLs. With the absence of balanced datasets and lake of standards and details of how samples are
52
+ selected from the training/testing datasets, results become unreliable.
53
+ The contributions of this research are (i) visual analysis of commonly used datasets; (ii) sampling algorithm
54
+ that generates a representative sample of the original datasets (iii) sampling algorithm that generates representative
55
+ balanced samples from the imbalanced datasets; (iii) two methods to measure the statistical significance of the
56
+ produced results.
57
+ Section two provides a literature review. Section three explains the proposed sampling algorithms, while
58
+ sections four and five discuss experiments and results, respectively. Lastly, section six concludes the study.
59
+ 2
60
+ Datasets in literature
61
+ This research considers four datasets: NSL-KDD [13], UNSW-NB15 [14], BotNetIoT-01 [15], and BoTIoT [16]
62
+ datasets. The NSL-KDD dataset is the most commonly used in intrusion detection, which contains regular network
63
+ traffic. Similarly, UNSW-NB15 contains regular network traffic. NSL-KDD and UNSW-NB15 represent a
64
+ benchmark for intrusion detection. In this regard, they allow the current research to be compared with previous
65
+ studies. BotNetIoT-01 dataset contains the traffic of nine IoT devices. Mirai and Gafgyt botnet attacks are the
66
+ only attacks in the BotNetIoT-01 dataset. BotNetIoT-01 dataset has 23 feature. This dataset is available at [17].
67
+ BoTIoT is a recently published dataset of simulated IoT network traffic. BoTIoT has a variety of recent/new IoT
68
+ attacks. A detailed analysis of these datasets features and traffic is available at [15] and [9].
69
+ 3
70
+ Proposed sampling methods
71
+ This section presents two sampling algorithms. Algorithm 1 select a random sample that is similar to the original
72
+ dataset. It uses the permutation to increase randomness of selecting the sample. Then it simply selects the first
73
+ num of records in the reindexed dataset. After selecting a random sample, it checks the similarity of the selected
74
+ labels’ distributions with the original dataset labels’ distribution. If they were similar, it returns the random sample.
75
+ Algorithm 1: The algorithm for sampling
76
+ Input: DS: dataset, num: sample size
77
+ Output: S: Sample of size num
78
+ Procedure: getSample(DS, num)
79
+ 1
80
+ S ← Ø
81
+ 2
82
+ Repeat as S is not similar to DS
83
+ 3
84
+ S = DS.reindex(np.random.permutation(dataframe.index))
85
+ 4
86
+ S = S.head(num)
87
+ 5
88
+ Return S
89
+ Algorithm 2 generates a balanced sample by first identifying the least represented class label in the original
90
+ dataset, referred as MinLabel. Then, it selects from the dominant class label a number or records equals to the
91
+ number of MinLabel using Algorithm 1.
92
+
93
+ Algorithm 2: The algorithm for generating a balanced sample
94
+ Input: DS: dataset
95
+ Output: B : Balanced sample
96
+
97
+ Procedure: getBalancedSample(DS)
98
+ 1
99
+ B ← Ø
100
+ 2
101
+ Define minimum class label, MinLabel
102
+ 3
103
+ minClassSet=DS[‘label’== MinLabel]
104
+ 4
105
+ S=getSample(DS[‘label’!= MinLabel], minimum class label count)
106
+ 5
107
+ B=concat(minClassSet, S)
108
+ 6
109
+ Return B
110
+ 4
111
+ Experiments
112
+ All experiments were implemented using Python 3.8.8. A label feature was added or edited in every dataset to
113
+ represent the normal and attack traffics by 0 and 1, respectively. Furthermore, all the categorical features values
114
+ were transformed into numerical values to facilitate the visual representation using the PCA. The duplicate records
115
+ were removed from all the datasets as well. In NSL-KDD, the features num_outbound_cmds and is_hot_login
116
+ were dropped because they have zero value for all records. The generated balanced samples are available at [**].
117
+ The Z-test experiments were executed with a freedom value equal to zero. The alternative hypothesis (H1) was:
118
+ The difference in means is not equal to zero. The experiments considered two methods to measure the significant
119
+ difference between the datasets and their balanced samples. The first method considered the original features of a
120
+ corresponding dataset. The method measured the similarity using Z-test for each feature. If all features were found
121
+ similar, then the balances sample is considered as a good representative sample of the original dataset.
122
+ The second method considered three dimensional PCA model to represent each of the original datasets and the
123
+ balanced sample. Similarly, it tests the similarity of each of the PCAs’ dimensions. The two sets are similar if all
124
+ the PCA’s dimensions are similar.
125
+ 5
126
+ Results
127
+ Figures and Tables from 1 to 12 display the distributions and counts, respectively, for each traffic type in the
128
+ datasets and the generated samples. The blue color in the pie charts stands for normal traffic, while other colors
129
+ stand for different attacks. The normal traffic is the dominant class in NSL-KDD and UNSW-NB15 datasets,
130
+ while it is the opposite case for BoTIoT BotNetIoT-01 datasets.
131
+ Significantly, the 50% sample pie charts are identical to the original datasets for all the datasets. This similarity
132
+ of distribution leads to the success of Algorithm 1 proposed in section 3. Notably, the attacks distribution of
133
+ BotNetIoT-01 and BoTIoT balanced samples is quite similar to the corresponding original datasets. It is notable
134
+ that the highly represented attack type in the original dataset still reserves its representation in the 50% and
135
+ balanced datasets.
136
+
137
+
138
+
139
+
140
+
141
+
142
+ Fig. 1 NSL full dataset traffic
143
+ distribution.
144
+
145
+ Fig. 2 NSL 50% dataset traffic
146
+ distribution.
147
+
148
+ Fig. 3 NSL balanced dataset traffic
149
+ distribution.
150
+
151
+ Table 1 NSL full dataset traffic counts.
152
+ Traffic Type
153
+ count
154
+ %
155
+ Normal.
156
+ 87832
157
+ 0.60329977
158
+ neptune.
159
+ 51820
160
+ 0.35594082
161
+ back.
162
+ 968
163
+ 0.00664899
164
+ teardrop.
165
+ 918
166
+ 0.00630555
167
+ satan.
168
+ 906
169
+ 0.00622313
170
+ warezclient.
171
+ 893
172
+ 0.00613383
173
+ ipsweep.
174
+ 651
175
+ 0.00447158
176
+ smurf.
177
+ 641
178
+ 0.0044029
179
+ portsweep.
180
+ 416
181
+ 0.00285742
182
+ pod.
183
+ 206
184
+ 0.00141497
185
+ nmap.
186
+ 158
187
+ 0.00108527
188
+ guess_passwd.
189
+ 53
190
+ 0.00036405
191
+ buffer_overflow
192
+ 30
193
+ 0.00020606
194
+ warezmaster.
195
+ 20
196
+ 0.00013738
197
+ land.
198
+ 19
199
+ 0.00013051
200
+ imap.
201
+ 12
202
+ 8.2426E-05
203
+ rootkit.
204
+ 10
205
+ 6.8688E-05
206
+ loadmodule.
207
+ 9
208
+ 6.1819E-05
209
+ ftp_write.
210
+ 8
211
+ 5.495E-05
212
+ multihop.
213
+ 7
214
+ 4.8082E-05
215
+ phf.
216
+ 4
217
+ 2.7475E-05
218
+ perl.
219
+ 3
220
+ 2.0606E-05
221
+ spy.
222
+ 2
223
+ 1.3738E-05
224
+ Total
225
+ 145586
226
+
227
+
228
+
229
+ Table 2 NSL 50% dataset traffic counts.
230
+ Traffic Type
231
+ count
232
+ %
233
+ Normal.
234
+ 43717
235
+ 0.60056599
236
+ neptune.
237
+ 26118
238
+ 0.35879824
239
+ back.
240
+ 506
241
+ 0.00695122
242
+ teardrop.
243
+ 464
244
+ 0.00637424
245
+ satan.
246
+ 461
247
+ 0.00633303
248
+ warezclient.
249
+ 451
250
+ 0.00619565
251
+ smurf.
252
+ 304
253
+ 0.00417623
254
+ ipsweep.
255
+ 302
256
+ 0.00414875
257
+ portsweep.
258
+ 213
259
+ 0.00292611
260
+ pod.
261
+ 104
262
+ 0.00142871
263
+ nmap.
264
+ 79
265
+ 0.00108527
266
+ guess_passwd.
267
+ 21
268
+ 0.00028849
269
+ buffer_overflow
270
+ 16
271
+ 0.0002198
272
+ warezmaster.
273
+ 11
274
+ 0.00015111
275
+ rootkit.
276
+ 6
277
+ 8.2426E-05
278
+ imap.
279
+ 5
280
+ 6.8688E-05
281
+ ftp_write.
282
+ 4
283
+ 5.495E-05
284
+ land.
285
+ 4
286
+ 5.495E-05
287
+ multihop.
288
+ 4
289
+ 5.495E-05
290
+ phf.
291
+ 1
292
+ 1.3738E-05
293
+ loadmodule.
294
+ 1
295
+ 1.3738E-05
296
+ perl.
297
+ 1
298
+ 1.3738E-05
299
+ Total
300
+ 72793
301
+
302
+
303
+ Table 3 NSL balanced dataset traffic
304
+ counts.
305
+ Traffic Type
306
+ count
307
+ %
308
+ Normal.
309
+ 57754
310
+ 0.5
311
+ neptune.
312
+ 51820
313
+ 0.44862693
314
+ back.
315
+ 968
316
+ 0.00838037
317
+ teardrop.
318
+ 918
319
+ 0.0079475
320
+ satan.
321
+ 906
322
+ 0.00784361
323
+ warezclient.
324
+ 893
325
+ 0.00773107
326
+ ipsweep.
327
+ 651
328
+ 0.00563597
329
+ smurf.
330
+ 641
331
+ 0.0055494
332
+ portsweep.
333
+ 416
334
+ 0.00360148
335
+ pod.
336
+ 206
337
+ 0.00178343
338
+ nmap.
339
+ 158
340
+ 0.00136787
341
+ guess_passwd.
342
+ 53
343
+ 0.00045884
344
+ buffer_overflow
345
+ 30
346
+ 0.00025972
347
+ warezmaster.
348
+ 20
349
+ 0.00017315
350
+ land.
351
+ 19
352
+ 0.00016449
353
+ imap.
354
+ 12
355
+ 0.00010389
356
+ rootkit.
357
+ 10
358
+ 8.6574E-05
359
+ loadmodule.
360
+ 9
361
+ 7.7917E-05
362
+ ftp_write.
363
+ 8
364
+ 6.9259E-05
365
+ multihop.
366
+ 7
367
+ 6.0602E-05
368
+ phf.
369
+ 4
370
+ 3.463E-05
371
+ perl.
372
+ 3
373
+ 2.5972E-05
374
+ spy.
375
+ 2
376
+ 1.7315E-05
377
+ Total
378
+ 115508
379
+
380
+
381
+
382
+
383
+ Fig. 4 UNSW-NB15 full dataset traffic
384
+ distribution.
385
+
386
+ Fig. 5 UNSW-NB15 50% dataset traffic
387
+ distribution.
388
+
389
+ Fig. 6 UNSW-NB15 balanced dataset
390
+ traffic distribution.
391
+ Table 4 UNSW-NB15 full dataset traffic
392
+ counts.
393
+ Traffic Type
394
+ count
395
+ %
396
+ Normal
397
+ 34205
398
+ 0.61141499
399
+ Exploits
400
+ 7609
401
+ 0.13601101
402
+ Fuzzers
403
+ 4838
404
+ 0.08647934
405
+ Generic
406
+ 3657
407
+ 0.06536894
408
+ Reconnaissance
409
+ 2703
410
+ 0.04831617
411
+ DoS
412
+ 1718
413
+ 0.03070928
414
+ Analysis
415
+ 446
416
+ 0.00797226
417
+ Shellcode
418
+ 378
419
+ 0.00675676
420
+ Backdoor
421
+ 346
422
+ 0.00618476
423
+ Worms
424
+ 44
425
+ 0.0007865
426
+ Total
427
+ 55944
428
+
429
+
430
+ Table 5 UNSW-NB15 50% dataset
431
+ traffic counts.
432
+ Traffic Type
433
+ count
434
+ %
435
+ Normal
436
+ 17185
437
+ 0.61436436
438
+ Exploits
439
+ 3797
440
+ 0.13574289
441
+ Fuzzers
442
+ 2380
443
+ 0.08508509
444
+ Generic
445
+ 1769
446
+ 0.06324181
447
+ Reconnaissance
448
+ 1321
449
+ 0.0472258
450
+ DoS
451
+ 892
452
+ 0.03188903
453
+ Analysis
454
+ 236
455
+ 0.00843701
456
+ Shellcode
457
+ 192
458
+ 0.00686401
459
+ Backdoor
460
+ 183
461
+ 0.00654226
462
+ Worms
463
+ 17
464
+ 0.00060775
465
+ Total
466
+ 27972
467
+
468
+
469
+ Table 6 UNSW-NB15 balanced dataset
470
+ traffic counts.
471
+ Traffic Type
472
+ count
473
+ %
474
+ Normal
475
+ 21739
476
+ 0.5
477
+ Exploits
478
+ 7609
479
+ 0.17500805
480
+ Fuzzers
481
+ 4838
482
+ 0.11127467
483
+ Generic
484
+ 3657
485
+ 0.0841115
486
+ Reconnaissance
487
+ 2703
488
+ 0.06216937
489
+ DoS
490
+ 1718
491
+ 0.03951424
492
+ Analysis
493
+ 446
494
+ 0.01025806
495
+ Shellcode
496
+ 378
497
+ 0.00869405
498
+ Backdoor
499
+ 346
500
+ 0.00795805
501
+ Worms
502
+ 44
503
+ 0.00101201
504
+ Total
505
+ 43478
506
+
507
+
508
+
509
+
510
+ Traffic Types:
511
+ 1% 1%
512
+ 0%
513
+ 1%,
514
+ Inormal
515
+ 1%
516
+ neptune.
517
+ back.
518
+ teardrop.
519
+ satan.
520
+ warezclient.
521
+ ■ipsweep.
522
+ 36%
523
+ smurf.
524
+ ■portsweep.
525
+ pod.
526
+ nmap.
527
+ 60%
528
+ guess_passwd.
529
+ ■buffer_overflow.
530
+ ■warezmaster.
531
+ land.
532
+ imap.
533
+ rootkit.
534
+ loadmodule.
535
+ ftp_write.50
536
+ 1%_1%
537
+ 0%,
538
+ Traffic,Types:
539
+ 1% ,
540
+ 1%.
541
+ I normal
542
+ I neptune.
543
+ - bark.
544
+ tearcirop.
545
+ I satan.
546
+ 36%
547
+ I warezclient.
548
+ jμnuis
549
+ Iipsveep.
550
+ 60%
551
+ portsweep.
552
+ I pod.
553
+ I nmap.
554
+ ssed ssang
555
+ d.
556
+ [uaro" ianq
557
+ OU.1%
558
+ 1%
559
+ 1%.
560
+ 1%
561
+ Traffic Types:
562
+ (%
563
+ ■normal.
564
+ 1%
565
+ neptune.
566
+ back.
567
+ teardrop.
568
+ satan.
569
+ warezclient.
570
+ ■ipsweep.
571
+ smurf.
572
+ portsweep.
573
+ 50%
574
+ pod.
575
+ 45%
576
+ nmap.
577
+ guess_passwd.
578
+ ■buffer_overflow
579
+ ■warezmaster.
580
+ land.
581
+ imap.
582
+ rootkit.
583
+ loadmodule
584
+ ■ftp_write.1%
585
+ 1%
586
+ .1%
587
+ 0%
588
+ Traffic Types:
589
+ ■Normal
590
+ 3%
591
+ 5%
592
+ ■Exploits
593
+ 6%
594
+ Fuzzers
595
+ Generic
596
+ 9%
597
+ Reconnaissance
598
+ DoS
599
+ 13%
600
+ 61%
601
+ ■Analysis
602
+ Shellcode
603
+ ■Backdoor
604
+ ■Worms1%
605
+ 1%
606
+ .1%
607
+ .0%
608
+ Traffic Type:
609
+ 3%
610
+ Normal
611
+ 5%
612
+ ■Exploits
613
+ 6%
614
+ Fuzzers
615
+ Generic
616
+ 8%
617
+ ■Reconnaissance
618
+ Dos
619
+ 14%
620
+ 61%
621
+ ■Analysis
622
+ ■Shellcode
623
+ ■Backdoor
624
+ Worms1%
625
+ .1%
626
+ 1%
627
+ 0%
628
+ Traffic Types:
629
+ 4%
630
+ Normal
631
+ 6%
632
+ ■Exploits
633
+ Fuzzers
634
+ 8%
635
+ Generic
636
+ Reconnaissance
637
+ 50%
638
+ 11%
639
+ Dos
640
+ Analysis
641
+ Shellcode
642
+ 18%
643
+ ■Backdoor
644
+ ■Worms
645
+ Fig. 7 BotIoT full dataset traffic
646
+ distribution.
647
+
648
+ Fig. 8 BotIoT 50% dataset traffic
649
+ distribution.
650
+
651
+ Fig. 9 BotIoT balanced dataset traffic
652
+ distribution.
653
+ Table 7 BotIoT full dataset traffic
654
+ counts.
655
+ Traffic Type
656
+ count
657
+ %
658
+ Normal
659
+ 477
660
+ 0.00013003
661
+ UDP
662
+ 198123
663
+ 0
664
+ 0.54006218
665
+ TCP
666
+ 159318
667
+ 0
668
+ 0.43428389
669
+ Service_Scan
670
+ 73168
671
+ 0.01994482
672
+ OS_Fingerprint
673
+ 17914
674
+ 0.00488317
675
+ HTTP
676
+ 2474
677
+ 0.00067439
678
+ Keylogging
679
+ 73
680
+ 1.9899E-05
681
+ Data_Exfiltration
682
+ 6
683
+ 1.6355E-06
684
+ Total
685
+ 366852
686
+ 2
687
+
688
+
689
+ Table 8 BotIoT 50% dataset traffic
690
+ counts.
691
+ Traffic Type
692
+ count
693
+ %
694
+ Normal
695
+ 231
696
+ 0.000125936
697
+ UDP
698
+ 990566
699
+ 0.540035469
700
+ TCP
701
+ 796673
702
+ 0.434329139
703
+ Service_Scan
704
+ 36604
705
+ 0.019955721
706
+ OS_Fingerprint
707
+ 8916
708
+ 0.004860813
709
+ HTTP
710
+ 1239
711
+ 0.000675476
712
+ Keylogging
713
+ 29
714
+ 1.58102E-05
715
+ Data_Exfiltration
716
+ 3
717
+ 1.63554E-06
718
+ Total
719
+ 183426
720
+ 1
721
+
722
+
723
+ Table 9 BotIoT balanced dataset traffic
724
+ counts.
725
+ Traffic Type
726
+ count
727
+ %
728
+ Normal
729
+ 477
730
+ 0.5
731
+ TCP
732
+ 235
733
+ 0.24633124
734
+ UDP
735
+ 232
736
+ 0.24318658
737
+ Service_Scan
738
+ 10
739
+ 0.01048218
740
+ Total
741
+ 954
742
+
743
+
744
+
745
+
746
+ Fig. 10 BotNetIoT-01 full dataset traffic
747
+ distribution.
748
+
749
+ Fig. 11 BotNetIoT-01 50% dataset traffic
750
+ distribution.
751
+
752
+ Fig. 12 BotNetIoT-01 balanced dataset
753
+ traffic distribution.
754
+ Table 10 BotNetIoT-01 full dataset
755
+ traffic counts.
756
+ Traffic
757
+ Type
758
+ count
759
+ %
760
+ Normal
761
+ 555932
762
+ 0.07871485
763
+ udp
764
+ 2176365
765
+ 0.30815325
766
+ tcp
767
+ 859850
768
+ 0.12174685
769
+ scan
770
+ 793090
771
+ 0.11229424
772
+ syn
773
+ 733299
774
+ 0.10382839
775
+ ack
776
+ 643821
777
+ 0.09115913
778
+ udpplain
779
+ 523304
780
+ 0.07409503
781
+ combo
782
+ 515156
783
+ 0.07294135
784
+ junk
785
+ 261789
786
+ 0.03706691
787
+ Total
788
+ 7062606
789
+
790
+
791
+ Table 11 BotNetIoT-01 50% dataset
792
+ traffic counts.
793
+ Traffic
794
+ Type
795
+ count
796
+ %
797
+ Normal
798
+ 277631
799
+ 0.07861999
800
+ udp
801
+ 1088615
802
+ 0.30827573
803
+ tcp
804
+ 429603
805
+ 0.12165566
806
+ scan
807
+ 397213
808
+ 0.11248341
809
+ syn
810
+ 366084
811
+ 0.10366825
812
+ ack
813
+ 322252
814
+ 0.09125583
815
+ udpplain
816
+ 261385
817
+ 0.07401942
818
+ combo
819
+ 257771
820
+ 0.072996
821
+ junk
822
+ 130749
823
+ 0.03702571
824
+ Total
825
+ 3531303
826
+
827
+
828
+ Table 12 BotNetIoT-01 balanced dataset
829
+ traffic counts.
830
+ Traffic
831
+ Type
832
+ count
833
+ %
834
+ Normal
835
+ 555932
836
+ 0.5
837
+ udp
838
+ 186062
839
+ 0.16734241
840
+ tcp
841
+ 73405
842
+ 0.06601977
843
+ scan
844
+ 67626
845
+ 0.06082219
846
+ syn
847
+ 62917
848
+ 0.05658696
849
+ ack
850
+ 54864
851
+ 0.04934416
852
+ udpplain
853
+ 44624
854
+ 0.04013441
855
+ combo
856
+ 44091
857
+ 0.03965503
858
+ junk
859
+ 22343
860
+ 0.02009508
861
+ Total
862
+ 1111864
863
+
864
+
865
+ To increase the reliability of the produced results by algorithms 1 and 2, we executed Z-test to measure the
866
+ statistical significance. Z-test was applied in two ways to measure if there is a significant difference between the
867
+ original dataset and the balanced dataset. Table 13 shows the two methods results of comparing the 50% and the
868
+ balanced samples compared with their corresponding original datasets. Only the NSL 50% sample was found
869
+ similar using the first method. On the other hand, all samples were found similar using the second method.
870
+
871
+
872
+
873
+ 2%_
874
+ 1%_
875
+ 0% _0%
876
+ 0%_0%
877
+ Traffic Type:
878
+ Normal
879
+ UDP
880
+ TCP
881
+ 43%
882
+ Service_Scan
883
+ 54%
884
+ OS_Fingerprint
885
+ = HTTP
886
+ Keylogging
887
+ Data_Exfiltration1%
888
+ %0
889
+ _0%
890
+ .0%_0%
891
+ 2% ~
892
+ Traffic Type:
893
+ Normal
894
+ ■ UDP
895
+ = TCP
896
+ 43%
897
+ Service_Scan
898
+ 54%
899
+ - OS_Fingerprint
900
+ ■ HTTP
901
+ Keylogging
902
+ Data_Exfiltration1%
903
+ 24%
904
+ Traffic Type:
905
+ Normal
906
+ ■ TCP
907
+ 50%
908
+ ■UDP
909
+ Service_Scan
910
+ 25%0.04
911
+ Traffic Type:
912
+ 0.08
913
+ 0.07
914
+ Normal
915
+ I udp
916
+ = tcp
917
+ 0.09
918
+ I scan
919
+ 0.31
920
+ I syn
921
+ ack
922
+ 0.10
923
+ I udpplain
924
+ I combo
925
+ 0.11
926
+ 0.12
927
+ junk0.04
928
+ Traffic Type:
929
+ 0.08
930
+ 0.07
931
+ Normal
932
+ I udp
933
+ = tcp
934
+ scan
935
+ 0.09
936
+ 0.31
937
+ syn
938
+ ack
939
+ 0.10
940
+ udpplain
941
+ combo
942
+ 0.11
943
+ 0.12
944
+ junk2%
945
+ Traffic Type:
946
+ 6t
947
+ Normal
948
+ 5%
949
+ udp
950
+ 6%
951
+ tcp
952
+ scan
953
+ 6%
954
+ 50%
955
+ syn
956
+ ■ ack
957
+ 6%
958
+ udpplain
959
+ ■combo
960
+ 17%
961
+ junkTable 13 Z-test results using All-feature and PCA comparisons.
962
+ Dataset
963
+ Sample
964
+ Features
965
+ PCA
966
+ NSL
967
+ 50%
968
+ similar
969
+ similar
970
+ Balanced DS
971
+ 13 similar, 27 different features
972
+ similar
973
+ NB15
974
+ 50% DS
975
+ 6 similar, 37 different
976
+ similar
977
+ Balanced DS
978
+ 4 similar, 39 different features
979
+ similar
980
+ Botnetiot
981
+ 50% DS
982
+ 24 similar, 0 different
983
+ similar
984
+ Balanced DS
985
+ 0 similar, 24 different features
986
+ similar
987
+ Botiot
988
+ 50% DS
989
+ 43 same, 0 different
990
+ similar
991
+ Balanced DS
992
+ 4 similar, 39 different features
993
+ similar
994
+ To better understand these results, we plot a visual representation of the original datasets, 50%, and balanced
995
+ samples using the PCA. Table 14 presents all the 3D PCA plot for all datasets and samples. Also, the explained
996
+ variance of each dimension of the PCA and the accumulative explained variance are displayed above each plot.
997
+ Interestingly, the samples have similar plot as their corresponding datasets, without exception. From Table 14, the
998
+ second method that used PCA seems to be more accurate.
999
+ Table 14 3D visualization of all datasets and samples using PCA.
1000
+ Dataset
1001
+ Full
1002
+ 50% sample
1003
+ Balanced sample
1004
+ NSL
1005
+ Dim Var=[0.99888489 0.99999954 0.99999999]
1006
+ Acc Var=0.9999999897744162
1007
+
1008
+ Dim Var=[0.99945449 0.99999977 0.99999999]
1009
+ Acc Var=0.999999994890656
1010
+
1011
+ Dim Var=[0.99894055 0.99999965 0.99999999]
1012
+ Acc Var0.9999999918070609
1013
+
1014
+ UNSW-NB15
1015
+ Dim Var= [0.74721778 0.99154115
1016
+ 0.99999804]
1017
+ Acc Var=0.9999980361116154
1018
+
1019
+ Dim Var= [0.74798519 0.99129133
1020
+ 0.99999805]
1021
+ Acc Var=0.9999980485289511
1022
+
1023
+ Dim Var= [0.74993195 0.9919089 0.99999836]
1024
+ Acc Var=0.9999983606509643
1025
+
1026
+ BotIoT
1027
+ Dim Var=[0.61936997 0.87203041 0.97291457]
1028
+ Acc Var=0.9729145691941684
1029
+
1030
+ Dim Var= [0.57665246 0.83934756
1031
+ 0.96824873]
1032
+ Acc Var=0.9682487261636522
1033
+
1034
+ Dim Var= [0.83554185 0.97786429
1035
+ 0.99720171]
1036
+ Acc Var= 0.9972017146909109
1037
+
1038
+ BotNetIoT-01
1039
+ Dim Var=[1. 1. 1.]
1040
+ Acc Var=1
1041
+
1042
+ Dim Var=[1. 1. 1.]
1043
+ Acc Var=0.9999999999996793
1044
+
1045
+ Dim Var=[1. 1. 1.]
1046
+ Acc Var=0.9999999999998491
1047
+
1048
+
1049
+ 60000
1050
+ 50000
1051
+ 40000
1052
+ 3000PC3
1053
+ 20000
1054
+ 10000
1055
+ 0
1056
+ 0
1057
+ 3
1058
+ le8
1059
+ 1
1060
+ 2
1061
+ 2PC2
1062
+ 3
1063
+ 4
1064
+ 1
1065
+ PC1
1066
+ 6
1067
+ 040000
1068
+ 30000
1069
+ 20000
1070
+ PC3
1071
+ 10000
1072
+ 0
1073
+ 0
1074
+ 3
1075
+ les
1076
+ 1
1077
+ 2
1078
+ 2 PC2
1079
+ 3
1080
+ PC1
1081
+ 5
1082
+ 1
1083
+ 6
1084
+ 040000
1085
+ 30000
1086
+ 2000C3
1087
+ 10000
1088
+ 0
1089
+ 0
1090
+ 3
1091
+ le8
1092
+ 1
1093
+ 2
1094
+ 2 PC2
1095
+ 3
1096
+ PC1
1097
+ 4
1098
+ 5
1099
+ 1
1100
+ 6
1101
+ 05
1102
+ 4
1103
+ 3 PC3
1104
+ 2
1105
+ 1
1106
+ 0
1107
+ 3
1108
+ 2
1109
+ 1
1110
+ le9
1111
+ -2
1112
+ -1
1113
+ 0
1114
+ 1
1115
+ PC2
1116
+ PC1
1117
+ N
1118
+ -2
1119
+ 3
1120
+ -35
1121
+ 3 PC3
1122
+ 2
1123
+ 1
1124
+ 0
1125
+ m
1126
+ 2
1127
+ 1
1128
+ le9
1129
+ -2
1130
+ -1
1131
+ PC2
1132
+ PC1
1133
+ 2
1134
+ -2
1135
+ 3
1136
+ -35
1137
+ 3 PC3
1138
+ 2
1139
+ 1
1140
+ 0
1141
+ m
1142
+ 2
1143
+ 1
1144
+ le9
1145
+ 2
1146
+ 1
1147
+ 0
1148
+ -1
1149
+ PC2
1150
+ PC1
1151
+ 2
1152
+ -2
1153
+ 3
1154
+ -3150
1155
+ 1.0
1156
+ 0.5 PC3
1157
+ 0.0
1158
+ 0.5
1159
+ 1
1160
+ 0.0
1161
+ le8
1162
+ 0.5
1163
+ 1.0
1164
+ 0
1165
+ PC2
1166
+ 1.5
1167
+ 2.0
1168
+ -1
1169
+ PC1
1170
+ 2.5
1171
+ 30150
1172
+ 1.0
1173
+ 0.5 PC3
1174
+ 0.0
1175
+ 0.5
1176
+ 1
1177
+ 0.0
1178
+ le8
1179
+ 0.5
1180
+ 1.0
1181
+ 1.5
1182
+ 0
1183
+ PC2
1184
+ 2.0
1185
+ -1
1186
+ PC1
1187
+ 2.56
1188
+ 4
1189
+ 2 PC3
1190
+ 0
1191
+ 2
1192
+ -4
1193
+ 1.5
1194
+ 1.0
1195
+ 0.0
1196
+ 0.5
1197
+ le8
1198
+ 0.5
1199
+ 1.0
1200
+ 0.0 PC2
1201
+ 1.5
1202
+ PC1
1203
+ 2.0
1204
+ 2.5
1205
+ 0.5600000
1206
+ 400009c3
1207
+ 500000
1208
+ B00000
1209
+ 200000
1210
+ 100000
1211
+ 0
1212
+ 2
1213
+ le17
1214
+ D
1215
+ 2
1216
+ 2
1217
+ PC2
1218
+ 3
1219
+ 4
1220
+ PC1600000
1221
+ 400009c3
1222
+ 500000
1223
+ B00000
1224
+ 200000
1225
+ 100000
1226
+ 0
1227
+ 2
1228
+ le17
1229
+ 2
1230
+ 2
1231
+ PC2
1232
+ 3
1233
+ 4
1234
+ PC1000008
1235
+ 600000
1236
+ 00000z
1237
+ 1.2
1238
+ 0.6
1239
+ 0
1240
+ 0.2 PC2
1241
+ 0.4
1242
+ le17
1243
+ 0.0
1244
+ PC1
1245
+ 0.26
1246
+ Conclusion
1247
+ As IoT network evolves and expands, the need for reliable and efficient IDSs increases. Therefore, it is
1248
+ mandatory to have high-quality datasets to train and test these security systems. It is significant to have balanced
1249
+ datasets to generate reliable results. In this research, four commonly used datasets to build IDSs were used to
1250
+ extract balanced samples. Two novel sampling algorithms were proposed. Furthermore, two methods that measure
1251
+ the goodness of the generated samples were proposed.
1252
+ Training the IDS on balanced datasets has a significant role in learning reliable models. It increases our
1253
+ confidence in the detection model's results. The proposed algorithms showed the ability to generate good
1254
+ representing samples out from the used datasets based on the Z-test and the 3D PCA plots.
1255
+ 7 References
1256
+ [1]
1257
+ S. Chawla and G. Thamilarasu, “Security as a service: real-time intrusion detection in internet of things,” in
1258
+ Proceedings of the Fifth Cybersecurity Symposium on - CyberSec ’18, Coeur d’ Alene, Idaho, Apr. 2018, pp. 1–4. doi:
1259
+ 10.1145/3212687.3212872.
1260
+ [2]
1261
+ L. Atzori, A. Lera, and G. Morabito, “The Internet of Things: A survey | Elsevier Enhanced Reader,” Computer
1262
+ networks, vol. 54, no. 15, pp. 2787–2805, 2010, doi: 10.1016/j.comnet.2010.05.010.
1263
+ [3]
1264
+ A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling
1265
+ Technologies, Protocols, and Applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376,
1266
+ Fourthquarter 2015, doi: 10.1109/COMST.2015.2444095.
1267
+ [4]
1268
+ K. J. Kaur and A. Hahn, “Exploring ensemble classifiers for detecting attacks in the smart grids,” in Proceedings of
1269
+ the Fifth Cybersecurity Symposium, Coeur d’ Alene Idaho, Apr. 2018, pp. 1–4. doi: 10.1145/3212687.3212873.
1270
+ [5]
1271
+ S. Shen, L. Huang, H. Zhou, S. Yu, E. Fan, and Q. Cao, “Multistage Signaling Game-Based Optimal Detection
1272
+ Strategies for Suppressing Malware Diffusion in Fog-Cloud-Based IoT Networks,” IEEE Internet of Things Journal, vol. 5,
1273
+ no. 2, pp. 1043–1054, Apr. 2018, doi: 10.1109/JIOT.2018.2795549.
1274
+ [6]
1275
+ K. Lueth, “IoT 2019 in Review: The 10 Most Relevant IoT Developments of the Year.” https://iot-analytics.com/iot-
1276
+ 2019-in-review/ (accessed May 27, 2020).
1277
+ [7]
1278
+ K. Lueth, “State of the IoT 2018: Number of IoT devices now at 7B – Market accelerating.” https://iot-
1279
+ analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/ (accessed May 27, 2020).
1280
+ [8]
1281
+ A. Alhowaide, I. Alsmadi, and J. Tang, “Ensemble Detection Model for IoT IDS,” Internet of Things, p. 100435,
1282
+ Jul. 2021, doi: 10.1016/j.iot.2021.100435.
1283
+ [9]
1284
+ A. Alhowaide, I. Alsmadi, and J. Tang, “Towards the design of real-time autonomous IoT NIDS,” Cluster Comput,
1285
+ Jan. 2021, doi: 10.1007/s10586-021-03231-5.
1286
+ [10]
1287
+ M. Aldwairi, W. Mardini, and A. Alhowaide, “Anomaly Payload Signature Generation System Based on Efficient
1288
+ Tokenization Methodology,” International Journal on Communications Antenna and Propagation (IRECAP) (2018), Nov.
1289
+ 2018.
1290
+ [11]
1291
+ A. Alhowaide, I. Alsmadi, and J. Tang, “PCA, Random-Forest and Pearson Correlation for Dimensionality
1292
+ Reduction in IoT IDS,” in 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Sep.
1293
+ 2020, pp. 1–6. doi: 10.1109/IEMTRONICS51293.2020.9216388.
1294
+ [12]
1295
+ A. Alhowaide, I. Alsmadi, and J. Tang, “An Ensemble Feature Selection Method for IoT IDS,” in 2020 IEEE 6th
1296
+ International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys), Dec. 2020,
1297
+ pp. 41–48. doi: 10.1109/DependSys51298.2020.00015.
1298
+
1299
+ [13]
1300
+ “NSL-KDD
1301
+ |
1302
+ Datasets
1303
+ |
1304
+ Research
1305
+ |
1306
+ Canadian
1307
+ Institute
1308
+ for
1309
+ Cybersecurity
1310
+ |
1311
+ UNB.”
1312
+ https://www.unb.ca/cic/datasets/nsl.html (accessed Nov. 20, 2019).
1313
+ [14]
1314
+ N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-
1315
+ NB15 network data set),” in 2015 Military Communications and Information Systems Conference (MilCIS), Nov. 2015, pp.
1316
+ 1–6. doi: 10.1109/MilCIS.2015.7348942.
1317
+ [15]
1318
+ A. Alhowaide, I. Alsmadi, and J. Tang, “Features Quality Impact on Cyber Physical Security Systems,” in 2019
1319
+ IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
1320
+ Canada, Oct. 2019, pp. 0332–0339. doi: 10.1109/IEMCON.2019.8936280.
1321
+ [16]
1322
+ “The
1323
+ BoT-IoT
1324
+ Dataset.”
1325
+ https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-
1326
+ Datasets/bot_iot.php (accessed Dec. 12, 2019).
1327
+ [17]
1328
+ A. Alhowaide, “IoT dataset for Intrusion Detection Systems (IDS).” https://kaggle.com/azalhowaide/iot-dataset-for-
1329
+ intrusion-detection-systems-ids (accessed Nov. 09, 2021).
1330
+
1331
+
1332
+
BNE2T4oBgHgl3EQfnggo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9AyT4oBgHgl3EQfevgJ/content/tmp_files/2301.00325v1.pdf.txt ADDED
@@ -0,0 +1,5777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Improved inference for MCP-Mod approach for
2
+ time-to-event endpoints with small sample sizes
3
+ Márcio A. Diniz∗
4
+ Diego I. Gallardo†
5
+ Tiago M. Magalhães‡
6
+ Created: July 7, 2020, updated: July 2, 2022
7
+ Abstract
8
+ The Multiple Comparison Procedures with Modeling Techniques (MCP-Mod) frame-
9
+ work has been recently approved by the U.S. Food and Administration and European
10
+ Medicines Agency as fit-per-purpose for phase II studies. Nonetheless, this approach relies
11
+ on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be
12
+ reasonable for small sample sizes. In this paper, we derived improved ML estimators and
13
+ correction for their covariance matrices in the censored Weibull regression model based on
14
+ the corrective and preventive approaches. We performed two simulation studies to eval-
15
+ uate ML and improved ML estimators with their covariance matrices in (i) a regression
16
+ framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework.
17
+ We have shown that improved ML estimators are less biased than ML estimators yielding
18
+ Wald-type statistics that controls type I error without loss of power in both frameworks.
19
+ Therefore, we recommend the use of improved ML estimators in the MCP-Mod approach
20
+ to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per
21
+ dose.
22
+ Keywords: MCP-Mod approach; small sample size; Weibull model; bias correction; co-
23
+ variance refinement.
24
+ MSC 2010: Primary 62Fxx; secondary 62F12
25
+ ∗Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Center, Cedars
26
+ Sinai Medical Center, Los Angeles, California, USA, e-mail to marcio.diniz@cshs.org.
27
+ †Department of Mathematics, Engineering School, University of Atacama, Copiapó, Chile, e-mail to
28
+ diego.gallardo@uda.cl.
29
+ ‡Department of Statistics, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora,
30
+ Brazil, e-mail to tiago.magalhaes@ufjf.br.
31
+ arXiv:2301.00325v1 [stat.ME] 1 Jan 2023
32
+
33
+ 2
34
+ 1
35
+ Introduction
36
+ Adequate designs for early-phase trials is essential to a successful clinical drug development.
37
+ Traditionally, investigators evaluate safety in phase I trials, proof-of-concept (PoC) in phase IIa
38
+ trials, and efficacy in phase IIb trials. When drugs are promising in these early stages, phase
39
+ III trials are designed accruing a large number of patients to provide a definitive evidence of
40
+ efficacy. Nonetheless, Jardim et al.1 showed that 20% of 80 cancer drug programs submitted
41
+ between 2009 to 2015 to the Food and Drug Administration (FDA) did not have any data for
42
+ phase II trials such that 31% obtained FDA approval; 46% had positive PoC with of 76% FDA-
43
+ approval; and 34% had negative PoC with only 15% of FDA-approval. Therefore, attaining
44
+ proof-of-concept is predictor to a successful phase III trial.
45
+ Bretz et al.2 proposed a framework named Multiple Comparison Procedures with Modeling
46
+ Techniques (MCP-Mod) unifying phase IIa and IIb trials into a seamless design while taking
47
+ advantage of both traditional approaches for normally distributed endpoints. Later, Pinheiro
48
+ et al.3 extended this methodology to general parametric models using generalized least squares
49
+ estimation allowing statisticians to consider more complex designs and other types of endpoints
50
+ such as binary and time to event. Regulatory agencies have stated their approval of the MCP-
51
+ Mod framework as an adequate and efficient methodology for design and analysis of phase II
52
+ dose-finding studies that will guide dose selection for phase III trials.
53
+ The MCP-Mod framework is implemented in two steps: (i) MCP-step consists of a trend
54
+ test to assess the presence of a dose response signal among a set of pre-specified candidate
55
+ models while preserving FWER; (ii) Mod-step corresponds to estimate dose-response curves in
56
+ order to identify the optimal dose that achieves a desired level of response in comparison to
57
+ placebo among the models that were selected in the MCP-step. Therefore, the properties of
58
+ the trend test defined as a Wald statistic used in the MCP-step and the maximum likelihood
59
+ (ML) estimators with their covariance matrix used in the Mod-step are essential to the success-
60
+ ful implementation of MCP-Mod approach. However, both steps rely on the the asymptotic
61
+ properties of the ML estimators, which are only valid for large sample sizes.
62
+ In cancer mouse studies, time-to-death is an endpoint that could be used to guide the identi-
63
+ fication of the minimum effective dose (MED) with large expected effect sizes and small sample
64
+ sizes. Nonetheless, the application of the MCP-Mod framework is limited due the underly-
65
+
66
+ 3
67
+ ing asymptotic assumptions. In this context, parametric survival models such as the censored
68
+ Weibull regression model (WRM) was showed to be useful given that provides clinical mean-
69
+ ingful interpretation based on event time ratios or hazard ratios.4 Moreover, the asymptotic
70
+ properties of the ML estimators can be studied and refined for small sample sizes. Recently,
71
+ Magalhães et al.5 obtained the skewness coefficient of the distribution of the maximum likeli-
72
+ hood estimators for WRM, and Magalhães et al.6 derived improved test statistics for LR, score
73
+ and gradient tests but not for the Wald statistic.
74
+ Our main goal is to derive improved ML estimators for the regression parameters and its
75
+ second-order covariance matrix for WRM, then use them as input to the generalized least
76
+ squares procedure proposed by Pinheiro et al.3 yielding a type I error probability closer to the
77
+ nominal value when testing proof-of-activity and more accurate MED estimates. Moreover, we
78
+ particularize the results from Cox and Snell7 and Magalhães et al.8 that are very general to
79
+ WRM and they can be in much broader context than the MCP-Mod framework.
80
+ The remaining paper is organized as follows: in Section 2, we revisit the Weibull distribution
81
+ and its properties; in Section 3, we review the main concepts of the MCP-Mod framework; in
82
+ Section 4, we introduce the improved estimators; in Section 5, we conducted a simulation study
83
+ to evalute the use of improved estimators in the MCP-Mod framework; finally, in Section 6, we
84
+ presented some concluding remarks.
85
+ 2
86
+ Weibull distribution
87
+ The Weibull distribution is commonly used to analysis of time-to-event or lifetime data and
88
+ a continuous random variable T is called Weibull, if its probability density function (pdf) is
89
+ f(t; λ, σ) =
90
+ 1
91
+ σλ1/σ t1/σ−1 exp
92
+
93
+ − (t/λ)1/σ�
94
+ , t > 0,
95
+ (1)
96
+ where σ > 0 is the shape parameter and λ > 0 is the scale parameter, it says T ∼ WE(λ, σ).
97
+ Two particular models under this parametrization are obtained for σ = 1 and σ = 1/2, which
98
+ represents the exponential and the Rayleigh models with means λ and λ
99
+
100
+ π/2, respectively. In
101
+ this work, we focused on those models. However, if σ is unknown, we assume that it can be
102
+
103
+ 4
104
+ replaced by consistent estimate. The ρ% survival time is given by
105
+ tρ = λ[− log(ρ)]σ
106
+ (2)
107
+ The regression structure can be incorporated in (1) by making
108
+ log(λi) = x⊤
109
+ i β
110
+ (3)
111
+ where β is a p-vector of unknown parameters and xi is a vector of predictors related to the ith
112
+ observation.
113
+ In lifetime data, there is the censoring restriction, i.e, if T1, . . . , Tn are a random sample
114
+ from (1), instead of Ti, we observe, under right censoring, ti = min(Ti, Li), where Li is the
115
+ censoring time, independent of Ti, i = 1, . . . , n. Here, we consider an hybrid censoring scheme,
116
+ where the study is finalized when a pre-fixed number r ≤ n out of n observations have failed, as
117
+ well as when a prefixed time, say L1 = · · · = Ln = L, has been reached. The type I censoring
118
+ is a particular case for r = n and the type II censoring appears when L1, . . . , Ln = +∞.
119
+ Additionally, we add the non-informative censoring assumption, i.e., the random variables Li
120
+ does not depend on λ. Usually, the regression modeling considers the distribution of Yi = log(Ti)
121
+ instead of Ti, which is an accelerated lifetime model form, see Kalbfleisch and Prentice.9 The
122
+ distribution of Yi is of the extreme value form with pdf given by
123
+ f(yi; xi) = 1
124
+ σ exp
125
+ �yi − µi
126
+ σ
127
+ − exp
128
+ �yi − µi
129
+ σ
130
+ ��
131
+ ,
132
+ −∞ < yi < ∞,
133
+ (4)
134
+ where µi = log λi. From this moment, we assume that σ is known, Then, the log-likelihood
135
+ function derived from (4) is given by
136
+ ℓ(β) =
137
+ n
138
+
139
+ i=1
140
+
141
+ δi
142
+
143
+ −n log σ + yi − µi
144
+ σ
145
+
146
+ − exp
147
+ �yi − µi
148
+ σ
149
+ ��
150
+ .
151
+ The total score function and the total Fisher information matrix for β are, respectively,
152
+ U β = σ−1X⊤W 1/2v and K = Kββ = σ−2X⊤W X, where X = (x1, . . . , xn)⊤, the model ma-
153
+ trix, assuming rank(X) = p, W = diag(w1, . . . , wn), wi = E
154
+
155
+ exp
156
+ � yi−µi
157
+ σ
158
+ ��
159
+ and v = (v1, . . . , vn)⊤,
160
+ vi =
161
+
162
+ −δi + exp
163
+ � yi−µi
164
+ σ
165
+ ��
166
+ w−1/2
167
+ i
168
+ . It can observed that the value of wi depends on the mechanism
169
+
170
+ 5
171
+ of censoring. That means wi = q ×
172
+
173
+ 1 − exp
174
+
175
+ −L1/σ
176
+ i
177
+ exp(−µi/σ)
178
+ ��
179
+ + (1 − q) × (r/n), where
180
+ q = P
181
+
182
+ W(r) ≤ log Li
183
+
184
+ and W(r) denotes the rth order statistic from W1, . . . , Wn. Note that
185
+ q = 1 and q = 0 for types I and II censoring, respectively, as showed in Magalhães et al.5
186
+ The maximum likelihood estimator (MLE) of β, �β, is the solution of U β = 0. The �β can
187
+ not be expressed in closed-form. It is typically obtained by numerically maximizing the log-
188
+ likelihood function using a Newton or quasi-Newton nonlinear optimization algorithm. Under
189
+ mild regularity conditions and in large samples,
190
+ �β ∼ Np
191
+
192
+ β, K−1
193
+ ββ
194
+
195
+ ,
196
+ (5)
197
+ approximately. The classic Wald test10 statistic is
198
+ WMLE =
199
+
200
+ C�β − Cβ(0)�⊤ �
201
+ C �
202
+ KC⊤�−1 �
203
+ C�β − Cβ(0)�
204
+ ,
205
+ (6)
206
+ where C is a matrix of contrasts m × p. Under the null hypothesis H : Cβ = Cβ(0), WMLE
207
+ has a χ2
208
+ p distribution up to an error of order n−1. The null hypothesis is rejected for a given
209
+ nominal level, α say, if the test statistic exceeds the upper 100(1 − α)% quantile of the χ2
210
+ p
211
+ distribution.
212
+ 3
213
+ MCP-Mod General approach
214
+ We briefly summarize the two-stage procedure discussed by Pinheiro et al.3 We consider
215
+ that time-to-event responses tij for doses xi given to jth subject for i = 0, . . . , p and j = 1, . . . , ni
216
+ can be described by the Weibull distribution with scale parameters λi and shape parameter σ
217
+ defined in (1) and (3). Then, we consider the parameter µ as our response for the dose-response
218
+ model such that it could be defined as the median survival time (2) for ρ = 0.5 or, alternatively,
219
+ log(λ).
220
+ Initially, a set of candidate dose-response models µi = f(xi, θ) is considered such that each
221
+ model can be rewritten as function of standardized model as below
222
+
223
+ 6
224
+ fm(x, θ) = θ0 + θ1f 0
225
+ m(x, θ0)
226
+ (7)
227
+ for m = 1, . . . , M.
228
+ In this work, we consider (M = 5) standardized models: (i) linear:
229
+ f 0(x, θ0) = x; (ii) emax : f 0(x, θ0) = x/(x + ED50) where ED50 can be interpreted as the dose
230
+ that produces the desired response on 50% of subjects; (iii) exponential: f 0(x, θ0) = exp{x/δ}−
231
+ 1, where δ is the exponential rate; (iv) logistic: f 0(x, θ0) = 1/(1 + exp{(ED50 − x)/δ}) (v)
232
+ beta: f 0(x, θ0) = β(δ1, δ2)(x/scal)δ1(1 − x/scal)δ2.
233
+ 3.1
234
+ MCP-step
235
+ In this step, a set of contrasts corresponding to the candidate models will be tested. For
236
+ each candidate model, an optimal contrast copt that maximizes the probability of rejecting the
237
+ hypothesis of non-signal dose-response is derived assuming that the candidate model is correct
238
+ and guess estimates for θ0:
239
+ copt ∝ S−1
240
+
241
+ µ0
242
+ m − µ0
243
+ m
244
+ ⊤S−11
245
+ 1S−11⊤
246
+
247
+ ,
248
+ (8)
249
+ where µ0
250
+ m = (f 0
251
+ m(x1, θ0), . . . , f 0
252
+ m(xp, θ0)). Then, the test of hypotheses for proof-of-concept can
253
+ be translated to H0 : copt
254
+ m µ = 0 vs. H1 : copt
255
+ m µ > 0 for candidate model m based on the Wald
256
+ test statistic
257
+ W (m) = (copt
258
+ m ˆµ)⊤ �
259
+ Copt ˆSCopt⊤�−1
260
+ m,m copt
261
+ m ˆµ
262
+ (9)
263
+ where Copt is the matrix m × p of optimal contrast with [A]m,m denoting the mth diagonal
264
+ element of matrix A for m = 1, . . . , M. Critical values for tests are derived based on the joint
265
+ distribution for W = (W (1), . . . , W (M)) allowing one to calculate multiplicity adjusted p-values
266
+ controlling the FWER at a prespecificed nominal type I error α.
267
+
268
+ 7
269
+ 3.2
270
+ Mod-step
271
+ In this step, the estimation of non-linear dose responses models is performed in two stages. In
272
+ the first stage, the parameters µ = [µ1, . . . , µp] are estimated using standard software packages
273
+ with analysis of variance (ANOVA) parametrization for the design matrix resulting into a
274
+ separate parameter µi for each dose level xi for i = 1, . . . , D. Let ˆµ denote the estimated
275
+ dose-response parameter vector under ANOVA parametrization, such that we assume that ˆµ
276
+ follows approximately Np(µ, S), where S is the covariance matrix of ˆµ that is estimated by ˆS.
277
+ In particular for µ = log(λ), we have µ = β and S = K1
278
+ ββ.
279
+ In the second stage, the non-linear dose-response model f(x, θ) is fitted by minimizing the
280
+ generalized linear squares (GLS) criterion:
281
+ Ψ(θ) = (ˆµ − f(x, θ))′ ˆS
282
+ −1(ˆµ − f(x, θ))
283
+ (10)
284
+ with respect to θ.
285
+ Then, the minimum effective dose can be estimated as �
286
+ MED = {x|f(x, ˆθ) > f(0, ˆθ) + ∆},
287
+ where ∆ is a clinical meaningful threshold and ˆθ minimizes (10).
288
+ 4
289
+ Improved inference
290
+ 4.1
291
+ Bias correction
292
+ Inferences based on maximum likelihood method depend strongly on asymptotic properties.
293
+ Among these properties, the MLE is approximately non-biased, in other words, E( �β − β) =
294
+ O(n−1), which is essential to define the mean of the normal distribution of �β.
295
+ Therefore,
296
+ likelihood inferences based on asymptotic approximation may not be reliable when sample sizes
297
+ are small or moderate, and two approaches are available to correct the MLE.
298
+ The corrective approach.
299
+ The bias of the MLE can be written as E( �β − β) = B(β) +
300
+ O(n−2), where B(β) is a term of order O(n−1), a function of the derivatives of the log-likelihood
301
+ function. Cox and Snell7 proposed a bias-corrected maximum likelihood estimator (BCE), that
302
+ can be expressed as �β = �β − B( �β), where B(β) is the term of order n−1, evaluated in �β and
303
+ E(�λ − λ) = O(n−2), i.e., less biased then MLE of β. The Cox and Snell’s method is known as
304
+
305
+ 8
306
+ a corrective approach because the MLE is calculated and then, the bias correction is applied.
307
+ For the censored Weibull regression model, the expression of B( �β) has the form
308
+ B( �β) = − 1
309
+ 2σ3P Zd (W + 2σW ′) 1,
310
+ (11)
311
+ where P = K−1X⊤, Z = XK−1X⊤, Zd is a diagonal matrix with diagonal given by the
312
+ diagonal of Z, W ′ = diag(w′
313
+ 1, . . . , w′
314
+ n), w′
315
+ i = −σ−1L1/σ
316
+ i
317
+ exp{−L1/σ
318
+ i
319
+ exp(−µi/σ) − µi/σ} and 1
320
+ is a n-dimensional vector of ones.
321
+ The preventive approach.
322
+ As alternative to the corrective approach, Firth11 proposed the
323
+ following modification in the score vector:
324
+ U ⋆
325
+ β = Uβ − KββB(β),
326
+ (12)
327
+ where B(β) is given by (11). The estimator ˇβ, solution of U ⋆
328
+ β = 0, has a bias of order O(n−2).
329
+ This is a preventive approach because the procedure already computes a less biased estimator
330
+ than the regular MLE.
331
+ 4.2
332
+ Covariance correction
333
+ From the general result of Magalhães et al.,8 we derived the specific matrix expression for
334
+ the MLE and BCE second-order covariance matrices for the censored Weibull regression model
335
+ and it is given by
336
+ Covτ
337
+ 2(β⋆) = K−1 + K−1 �
338
+ ∆ + ∆⊤�
339
+ K−1 + O(n−3),
340
+ (13)
341
+ where ∆ = −0.5∆(1) + 0.25∆(2) + 0.5τ2∆(3) with
342
+ ∆(1) = 1
343
+ σ4X⊤W ⋆ZdX,
344
+ ∆(2) = − 1
345
+ σ6X⊤ �
346
+ W Z(2)W − 2σW Z(2)W ′ − 6σ2W ′Z(2)W ′�
347
+ X,
348
+ ∆(3) = 1
349
+ σ5X⊤W ′W ⋆⋆X,
350
+ W ⋆ = diag(w⋆
351
+ 1, . . . , w⋆
352
+ n), w⋆
353
+ i = wi(wi − 2) − 2σw′
354
+ i + στ1(w′
355
+ i + 2σw′′
356
+ i ), Z(2) = Z ⊙ Z, with ⊙
357
+
358
+ 9
359
+ representing a direct product of matrices (Hadamard product), W ⋆⋆ is a diagonal matrix, with
360
+ Z(W +2σW ′)Zd1 as its diagonal, W ′′ = diag(w′′
361
+ 1, . . . , w′′
362
+ n), w′′
363
+ i = −σ−1w′
364
+ i
365
+
366
+ L1/σ
367
+ i
368
+ exp(−µi/σ) − 1
369
+
370
+ ,
371
+ τ = (τ1, τ2) = (1, 1) indicating the second-order covariance matrix of the MLE β⋆ = �β denoted
372
+ by Cov2( �β) and τ = (0, −1) indicating the second-order covariance matrix of the BCE β⋆ = �β
373
+ denoted by Cov2( �β).
374
+ 4.3
375
+ Wald-type test
376
+ Let Cov−1
377
+ 2 ( �β) and Cov−1
378
+ 2 ( �β) the inverse of Cov2( �β) and Cov2( �β), respectively and con-
379
+ sidering also the partitions and the notation for the Fisher information matrix discussed in the
380
+ introductory section, we can propose two modification to the Wald test in (6):
381
+ WMLE2 =
382
+
383
+ C �β − Cβ(0)�⊤ �
384
+ C �Cov2( �β)C⊤�−1 �
385
+ C �β − Cβ(0)�
386
+ ,
387
+ (14)
388
+ WBCE =
389
+
390
+ C �β − Cβ(0)�⊤ �
391
+ C �
392
+ KC⊤�−1 �
393
+ C �β − Cβ(0)�
394
+ ,
395
+ (15)
396
+ WBCE2 =
397
+
398
+ C �β − Cβ(0)�⊤ �
399
+ C �Cov2( �β)C⊤�−1 �
400
+ C �β − Cβ(0)�
401
+ ,
402
+ (16)
403
+ WFirth =
404
+
405
+ C ˇβ − Cβ(0)�⊤ �
406
+ C ˇ
407
+ KC⊤�−1 �
408
+ C ˇβ − Cβ(0)�
409
+ ,
410
+ (17)
411
+ where �Cov2( �β) is the matrix Cov2(β) evaluated at �β, �
412
+ K is the Fisher information evaluated
413
+ at �β, �Cov2( �β) is the matrix Cov2( �β) evaluated at �β, ˇ
414
+ K is the Fisher information evaluated
415
+ at ˇβ,. Under H, WMLE, WBCE, WBCE2, WFirth follow a χ2
416
+ p distribution.
417
+ 4.4
418
+ Improved Estimator strategies
419
+ In the supplemental material and the next section, we studied the statistical properties of
420
+ improved estimators for β and its covariance matrix with the following strategies: the classi-
421
+ cal ML estimator with the Fisher information as covariance matrix (MLE); the classical ML
422
+ estimator with the corrected covariance matrix defined in (13) (MLE2); the bias corrected esti-
423
+ mator (BCE) given in (11) with the Fisher information as covariance matrix; the bias corrected
424
+ estimator with the corrected covariance matrix (BCE2); and the Firth estimator defined in (12)
425
+ with its Fisher information as covariance matrix.
426
+
427
+ 10
428
+ 5
429
+ Simulation study
430
+ In our collaborative work, investigators wanted to establish a dose-response relationship
431
+ between a new inhibitor agent for pancreatic cancer in combination with a given dose of gem-
432
+ citabine in mouse models. Based on preliminary data, a survival median time of 4 months was
433
+ estimated in control-treated KPC mice model such that previous studies showed no survival
434
+ benefit with only gemcitabine.12 Assuming a Weibull distribution with σ = 0.5, we calculated
435
+ the placebo effect equal to 1.57 and maximum effect of 2.96 considering a hazard ratio of 4.
436
+ Investigators were interested in the minimum effective dose yielding a minimum hazard ratio
437
+ of 2 yielding ∆ = 0.693.
438
+ Model
439
+ Constraints
440
+ Guess estimates/True parameters
441
+ True MED
442
+ θ0
443
+ θ1
444
+ θ2
445
+ Linear
446
+ -
447
+ E0 = 1.569
448
+ δ = 0.0139
449
+ -
450
+ -
451
+ Emax
452
+ 50% at x4
453
+ E0 = 1.569
454
+ EMax = 2.079
455
+ ED50 = 50.000
456
+ 25.00
457
+ Exponential
458
+ 10% at x1
459
+ E0 = 1.569
460
+ E1 = 0.017
461
+ δ = 22.756
462
+ 84.51
463
+ Logistic
464
+ 10% at x3
465
+ 80% at x4
466
+ E0 = 1.569
467
+ EMax = 1.391
468
+ ED50 = 40.329
469
+ δ = 6.976
470
+ 40.37
471
+ Beta
472
+ 30% at x2
473
+ E0 = 1.569
474
+ EMax = 1.386
475
+ δ1 = 0.749
476
+ δ2 = 1.049
477
+ 10.61
478
+ Table 1: Scenarios (Emax, Exponential, Logistic and Beta) and candidate models (Linear,
479
+ Emax, Exponential, Logistic and Beta) defined based on, respectively, true parameters and
480
+ guess estimates. True parameters/guess estimates were calculated based on placebo effect of
481
+ 1.57, maximum effect of 2.96 and constraints with scale parameter of 120 for Beta model. True
482
+ MED was calculated based on ∆ = 0.693.
483
+ Five scenarios (constant, emax, exponential, logistic and beta model) presented in Table 1
484
+ were studied. True parameters were defined based on the aforementioned placebo and maxi-
485
+ mum effects, and the percent of maximum effect that is achieved at givens dose as discussed in
486
+ Bornkamp et al.13 For each scenario, the doses 0, 5, 25, 50 and 100 (mg/kg) were considered
487
+ such that true MED was calculated as continuous dose given in Table 1. Five candidate mod-
488
+ els (linear, emax, exponential, logistic and beta model) were considered with guess estimates
489
+ defined as the true parameters to calculate the optimal contrasts in (8). For each model, the
490
+ null hypothesis of non-signal of the new inhibitor agent was tested at 5% significance level, and
491
+ we used Akaike Information Criteria (AIC) to choose the model to estimate MED when more
492
+ than one model rejected the non-signal hypothesis.
493
+
494
+ 11
495
+ For both steps of the MCP-Mod framework, the five strategies (MLE, MLE2, BCE, BCE2
496
+ and Firth) were evaluated based on a Monte Carlo simulation study with 100,000 replicates for
497
+ sample sizes of 5, 10, 15, 20 and 25 mice per dose and censoring rate of 10%, 25% and 50%. The
498
+ following operating characteristics were studied: (i) convergence rate of GLS algorithm in the
499
+ MCP-Mod General framework; (ii) Probability of incorrectly detecting a dose-response signal,
500
+ i.e., type I error; (iii) Probability of correctly detecting a dose-response signal, i.e., power; (iv)
501
+ Probability of selecting the true model given that there is a signal; (v) Bias of MED estimate
502
+ and (vi) RMSE of MED estimate.
503
+ 5.1
504
+ Results
505
+ In Figure 1, convergence rates when calculating estimators and applying them as input for
506
+ the MCP-Mod framework is presented for different censoring rates and true models. When
507
+ censoring is 10%, there is no difference among estimators; when censoring is 25%, similar con-
508
+ clusion can be drawn but the estimators Firth, MLE2 and BCE2 have lower convergence rates
509
+ than MLE and BCE for the true model Exponential; when censoring is 50%, the lower conver-
510
+ gence rates of the estimators Firth, MLE2 and BCE2 are also observed in other scenarios with
511
+ dose-relationship signal. These lower convergence rates are attained because small sample sizes
512
+ in combination with high censoring rates result into doses with no events (in our case, deaths),
513
+ therefore, very large estimates for the regression coefficients are obtained and, consequently,
514
+ singular covariance matrix estimates.
515
+ For the MCP-step, type I error probability is displayed for different censoring rates and
516
+ true models in Figure 2. When censoring is 10%, corrected estimators (MLE2, BCE, BCE2,
517
+ Firth) show observed type I error probability closer to the nominal value (0.05) than MLE for
518
+ all sample sizes. In particular, MLE shows type I error probability more than twice than the
519
+ nominal value for sample size of 5 and almost twice the nominal value for 10 mice per dose;
520
+ when censoring is 25%, corrected estimators are slightly conservative for small sample sizes
521
+ of 5 and 10, while type I error probability of MLE is still inflated for all sample sizes; when
522
+ censoring is 50%, corrected estimators are overly conservative for all sample sizes and MLE
523
+ produces the nominal type I probability. As sample size increases, it is expected that type I
524
+ error probability converges to the nominal value (0.05) for all estimators.
525
+
526
+ 12
527
+ In Figure 3A, the probability of correctly detecting dose-response signal in the MCP-step
528
+ is showed as function of censoring rates and true models. It is expected that MLE show higher
529
+ probability than corrected estimators given that the power function is inflated as seen in Figure
530
+ 2. A fair comparison would require us to re-adjust critical values to reject the null hypothesis
531
+ such that the observed type I probability was set at 0.05 for all estimators.
532
+ Nonetheless,
533
+ the probability of correctly detecting dose-response signal is similar among estimators when
534
+ censoring rate is 10% because of the large effect sizes. When censoring rate is 25%, all estimators
535
+ are still comparable except when the true model is Exponential with BCE showing a similar or
536
+ superior performance than MLE; BCE2 having a higher probability than MLE for sample sizes
537
+ from 10 to 25; Firth estimator displaying comparable performance with MLE only when sample
538
+ size is at least 15 mice per dose; and MLE2 having the poorest performance for all sample sizes.
539
+ For 50% of censoring, there is no clear pattern, but MLE presents the highest probability when
540
+ the sample size is 5 mice per dose in three out of four scenarios, while corrected estimators
541
+ have poorer performance that becomes comparable with MLE as sample size increases, except
542
+ MLE2.
543
+ In Figure 3B, the probability of correctly selecting dose-response model using AIC is cal-
544
+ culated given that we selected at least one model in the MCP-step, i.e., it is a conditional
545
+ probability. Conclusions are somewhat similar to 3A: when censoring is 10%, MLE shows a
546
+ slight higher probability for Exponential, Logistic and Beta as true models such that this pat-
547
+ tern becomes more prominent for censoring rates of 25% and 50%. For Emax as true model,
548
+ BCE and BCE2 show consistently higher performance when censoring rates are 25% and 50%
549
+ and no differences can be seen for censoring rate of 10%.
550
+ For Mod-step, we calculated the relative bias and RMSE of �
551
+ MED estimator in Figure 4A
552
+ and B, respectively, for different censoring rates and true models. When censoring is 10%, MLE
553
+ and corrected estimators have negligible differences for bias and RMSE; when censoring is 25%,
554
+ discrepancies can be see for bias and RMSE when true models are Emax and Exponential such
555
+ that MLE consistently shows a better performance than corrected estimators; when censoring
556
+ is 50%, conclusions are hard to be drawn for sample sizes of 5 and 10 such that estimators
557
+ perform similar - but MLE2 - for sample sizes greater than 15 mice per dose.
558
+
559
+ 13
560
+ 6
561
+ Concluding Remarks
562
+ We have derived improved inferences based on the Wald statistic for WRM particularizing
563
+ general results from Cox and Snell7 and Magalhães et al.,8 which complements previous results
564
+ for improved inference based on likelihood ratio, Rao score and gradient statistics discussed in
565
+ Magalhães and Gallardo.6 Few authors have presented improved inference for survival models
566
+ with small sample sizes under the classical approach: Cordeiro and Colosimo14,15 and Medeiros16
567
+ derived those statistics, respectively, for censored exponential regression models (ERM), a par-
568
+ ticular case of censored WRM. Also for ERM, Lemonte17 presented the second-order covariance
569
+ matrix of the MLE.
570
+ We have also proposed to use bias-corrected (BCE, BCE2 and Firth) and second-order
571
+ covariance matrices (MLE2, BCE2) as input for the general MCP-Mod framework introduced
572
+ by Pinheiros et al.,3 which addresses the issue of relying on the asymptotic properties of MLE,
573
+ which might not be valid for small sample sizes.
574
+ To the best of our knowledge, this work
575
+ is the first attempt to apply refined estimators for small sample sizes in the general MCP-
576
+ Mod framework. Two simulations studies were performed to study the properties of refined
577
+ estimators in an usual context of regression models and relevant operating characteristics in
578
+ the MCP-Mod framework.
579
+ In the simulation study presented in the Supplementary material, we showed numerical
580
+ evidences that BCE and Firth estimator have lower bias and RMSE than MLE; second-order
581
+ covariance matrices evaluated at MLE and BCE are closer to their respective empirical covari-
582
+ ance matrices in comparison to the first-order covariance matrices; and Wald statistics derived
583
+ from the combination between bias-corrected estimators and second-order covariance matrices
584
+ yielded type I error probability closer to the nominal value than the standard Wald statistic
585
+ with no loss of power.
586
+ In the simulation study for the MCP-Mod framework, we have found that refined estimators
587
+ and second-order covariance matrices approximate type I error probability of its nominal value
588
+ in the MCP-step, while there are negligible differences between MLE and refined estimators in
589
+ the probability of correctly detecting the dose-response signal, probability correctly selecting the
590
+ dose-response model, bias and RMSE when censoring rates are up to 25%. For censoring rate
591
+ of 50%, we found convergence issues for the corrected estimators and second-order covariance
592
+
593
+ 14
594
+ matrices and poorer performance in the assessed operating characteristics.
595
+ In conclusion, we recommend the use of refined estimators for small sample sizes when
596
+ the expected censoring rate is at most 25% in the MCP-Mod framework. In the context of
597
+ basic science with limited sample sizes and large effect sizes, we do not expect large censoring
598
+ rates in mouse experiments. In human trials, smaller effect sizes are pursued such that larger
599
+ sample sizes are required. In this case, refined estimators are not needed because all estimators
600
+ present comparable performance for large sample sizes. Nonetheless, we showed that type I
601
+ error probability is still inflated even for sample sizes of 25 subjects per dose, therefore, the use
602
+ of refined estimators would avoid to dedicate further efforts on non-promising drugs.
603
+ We hope that refined estimators allow statisticians to implement the MCP-Mod framework
604
+ with small sample sizes accelerating the pre-clinical and clinical drug development process.
605
+ Similar ideas can be applied to other distributions such as Binomial, Negative Binomial and
606
+ Poisson, and they are currently under investigation.
607
+
608
+ 15
609
+ 10%
610
+ 25%
611
+ 50%
612
+ Constant
613
+ Emax
614
+ Exponential
615
+ Logistic
616
+ Beta
617
+ 5
618
+ 10
619
+ 15
620
+ 20
621
+ 25
622
+ 5
623
+ 10
624
+ 15
625
+ 20
626
+ 25
627
+ 5
628
+ 10
629
+ 15
630
+ 20
631
+ 25
632
+ 0.2
633
+ 0.4
634
+ 0.6
635
+ 0.8
636
+ 1.0
637
+ 0.2
638
+ 0.4
639
+ 0.6
640
+ 0.8
641
+ 1.0
642
+ 0.2
643
+ 0.4
644
+ 0.6
645
+ 0.8
646
+ 1.0
647
+ 0.2
648
+ 0.4
649
+ 0.6
650
+ 0.8
651
+ 1.0
652
+ 0.2
653
+ 0.4
654
+ 0.6
655
+ 0.8
656
+ 1.0
657
+ Sample size per dose
658
+ MCP Convergence Rate
659
+ Method
660
+ MLE
661
+ MLE2
662
+ BCE
663
+ BCE2
664
+ Firth
665
+ Figure 1: Convergence rate when calculating MLE, MLE2, BCE, BCE2 and Firth estimators
666
+ and applying them as input for the MCP-Mod framework as function of censoring rate and
667
+ true model.
668
+ 10%
669
+ 25%
670
+ 50%
671
+ 5
672
+ 10
673
+ 15
674
+ 20
675
+ 25
676
+ 5
677
+ 10
678
+ 15
679
+ 20
680
+ 25
681
+ 5
682
+ 10
683
+ 15
684
+ 20
685
+ 25
686
+ 0.000
687
+ 0.025
688
+ 0.050
689
+ 0.075
690
+ 0.100
691
+ 0.125
692
+ Sample size per dose
693
+ Type I error probability
694
+ Method
695
+ MLE
696
+ MLE2
697
+ BCE
698
+ BCE2
699
+ Firth
700
+ Figure 2: Type I error probability when in the MCP-step using MLE, MLE2, BCE, BCE2 and
701
+ Firth estimators as function of censoring rate.
702
+
703
+ 16
704
+ 10%
705
+ 25%
706
+ 50%
707
+ Emax
708
+ Exponential
709
+ Logistic
710
+ Beta
711
+ 5
712
+ 10
713
+ 15
714
+ 20
715
+ 25
716
+ 5
717
+ 10
718
+ 15
719
+ 20
720
+ 25
721
+ 5
722
+ 10
723
+ 15
724
+ 20
725
+ 25
726
+ 0.00
727
+ 0.25
728
+ 0.50
729
+ 0.75
730
+ 1.00
731
+ 0.00
732
+ 0.25
733
+ 0.50
734
+ 0.75
735
+ 1.00
736
+ 0.00
737
+ 0.25
738
+ 0.50
739
+ 0.75
740
+ 1.00
741
+ 0.00
742
+ 0.25
743
+ 0.50
744
+ 0.75
745
+ 1.00
746
+ Sample size per dose
747
+ Probability of Correctly Detecting Dose Response Signal
748
+ A
749
+ 10%
750
+ 25%
751
+ 50%
752
+ Emax
753
+ Exponential
754
+ Logistic
755
+ Beta
756
+ 5
757
+ 10
758
+ 15
759
+ 20
760
+ 25
761
+ 5
762
+ 10
763
+ 15
764
+ 20
765
+ 25
766
+ 5
767
+ 10
768
+ 15
769
+ 20
770
+ 25
771
+ 0.00
772
+ 0.25
773
+ 0.50
774
+ 0.75
775
+ 1.00
776
+ 0.00
777
+ 0.25
778
+ 0.50
779
+ 0.75
780
+ 1.00
781
+ 0.00
782
+ 0.25
783
+ 0.50
784
+ 0.75
785
+ 1.00
786
+ 0.00
787
+ 0.25
788
+ 0.50
789
+ 0.75
790
+ 1.00
791
+ Sample size per dose
792
+ Probability of Correctly Selecting Dose Response Model
793
+ B
794
+ Method
795
+ MLE
796
+ MLE2
797
+ BCE
798
+ BCE2
799
+ Firth
800
+ Figure 3: A. Probability of correctly detecting dose-response signal when in the MCP-step
801
+ using MLE, MLE2, BCE, BCE2 and Firth estimators as function of censoring rate and true
802
+ model. B. Probability of correctly selecting dose-response model using AIC in the Mod-step
803
+ using MLE, MLE2, BCE, BCE2 and Firth estimators as function of censoring rate and true
804
+ model.
805
+
806
+ 17
807
+ 10%
808
+ 25%
809
+ 50%
810
+ Emax
811
+ Exponential
812
+ Logistic
813
+ Beta
814
+ 5
815
+ 10
816
+ 15
817
+ 20
818
+ 25
819
+ 5
820
+ 10
821
+ 15
822
+ 20
823
+ 25
824
+ 5
825
+ 10
826
+ 15
827
+ 20
828
+ 25
829
+ −50%
830
+ −25%
831
+ 0%
832
+ 25%
833
+ −75%
834
+ −50%
835
+ −25%
836
+ 0%
837
+ −80%
838
+ −60%
839
+ −40%
840
+ −20%
841
+ 0%
842
+ −50%
843
+ −25%
844
+ 0%
845
+ Sample size per dose
846
+ Relative Bias (%)
847
+ A
848
+ 10%
849
+ 25%
850
+ 50%
851
+ Emax
852
+ Exponential
853
+ Logistic
854
+ Beta
855
+ 5
856
+ 10
857
+ 15
858
+ 20
859
+ 25
860
+ 5
861
+ 10
862
+ 15
863
+ 20
864
+ 25
865
+ 5
866
+ 10
867
+ 15
868
+ 20
869
+ 25
870
+ 10
871
+ 15
872
+ 20
873
+ 25
874
+ 30
875
+ 0
876
+ 50
877
+ 100
878
+ 150
879
+ 200
880
+ 10
881
+ 20
882
+ 30
883
+ 5
884
+ 10
885
+ 15
886
+ Sample size per dose
887
+ RMSE
888
+ B
889
+ Method
890
+ MLE
891
+ MLE2
892
+ BCE
893
+ BCE2
894
+ Firth
895
+ Figure 4: A. Bias of �
896
+ MED derived from the MCP-Mod framework when using MLE, MLE2,
897
+ BCE, BCE2 and Firth estimators as function of censoring rate and true model. B. Root-Mean-
898
+ Square Error of �
899
+ MED derived from the MCP-Mod framework when using MLE, MLE2, BCE,
900
+ BCE2 and Firth estimators as function of censoring rate and true model.
901
+
902
+ 18
903
+ References
904
+ 1 Jardim Denis L, Groves Eric S, Breitfeld Philip P, Kurzrock Razelle. Factors associated
905
+ with failure of oncology drugs in late-stage clinical development: a systematic review Cancer
906
+ treatment reviews. 2017;52:12–21.
907
+ 2 Bretz Frank, Pinheiro José C, Branson Michael. Combining multiple comparisons and mod-
908
+ eling techniques in dose-response studies Biometrics. 2005;61:738–748.
909
+ 3 Pinheiro José, Bornkamp Björn, Glimm Ekkehard, Bretz Frank. Model-based dose finding un-
910
+ der model uncertainty using general parametric models Statistics in medicine. 2014;33:1646–
911
+ 1661.
912
+ 4 Carroll Kevin J. On the use and utility of the Weibull model in the analysis of survival data
913
+ Controlled clinical trials. 2003;24:682–701.
914
+ 5 Magalhães Tiago M., Gallardo Diego I., Gómez H. W.. Skewness of maximum likelihood
915
+ estimators in the Weibull censored data Symmetry. 2019;11:1351.
916
+ 6 Magalhães Tiago M., Gallardo Diego I.. Bartlett and Bartlett-type corrections for censored
917
+ data from a Weibull distribution SORT - Statistics and Operations Research Transactions.
918
+ 2020;44:127–140.
919
+ 7 Cox David R., Snell E. J.. A general definition of residuals Journal of the Royal Statistical
920
+ Society. Series B (Methodological). 1968;30:248–275.
921
+ 8 Magalhães Tiago M., Botter Denise A., Sandoval Mônica C.. A general expression for second-
922
+ order covariance matrices - an application to dispersion models Brazilian Journal of Proba-
923
+ bility and Statistics. 2020. To appear.
924
+ 9 Kalbfleisch John D., Prentice Ross L.. The statistical analysis of failure time data.
925
+ New
926
+ Jersey: John Wiley & Sons2 ed. 2002.
927
+ 10 Wald Abraham. Test of statistical hypotheses concerning several parameter when the number
928
+ of observations is large Transactions of the American Mathematical Society. 1943;54:426–482.
929
+ 11 Firth David. Bias reduction of maximum likelihood estimates Biometrika. 1993;80:27–38.
930
+
931
+ 19
932
+ 12 Olive Kenneth P, Jacobetz Michael A, Davidson Christian J, et al. Inhibition of Hedgehog
933
+ signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer Science.
934
+ 2009;324:1457–1461.
935
+ 13 Bornkamp Björn, Pinheiro José, Bretz Frank, others . MCPMod: An R package for the design
936
+ and analysis of dose-finding studies Journal of Statistical Software. 2009;29:1–23.
937
+ 14 Cordeiro Gaus M., Colosimo Enrico A.. Improved likelihood ratio tests for exponential cen-
938
+ sored data Journal of Statistical Computation and Simulation. 1997;56:303–315.
939
+ 15 Cordeiro Gaus M., Colosimo Enrico A.. Corrected score tests for exponential censored data
940
+ Statistics & Probability Letters. 1999;44:365–373.
941
+ 16 Medeiros Francisco M. C., Lemonte Artur J.. Likelihood-based inference in censored exponen-
942
+ tial regression models Communications in Statistics - Theory and Methods. 2021;50:3214–
943
+ 3233.
944
+ 17 Lemonte Artur J.. Covariance matrix of maximum likelihood estimators in censored exponen-
945
+ tial regression models Communications in Statistics - Theory and Methods. 2022;51:1765–
946
+ 1777.
947
+
948
+ Improved inference for MCP-Mod approach for
949
+ time-to-event endpoints with small sample sizes -
950
+ Supplementary material
951
+ Márcio A. Diniz∗
952
+ Diego I. Gallardo†
953
+ Tiago M. Magalhães‡
954
+ July 2, 2022
955
+ We performed a simulation study with 10,000 Monte Carlo replicates where censored Weibull
956
+ data was generated with the regression structure established in (3). We considered scenarios
957
+ with p = 3, 5, 7 covariates following the standard normal distribution associated with the first p
958
+ components of the regression coefficient vector β = (−2, 1.5, −1, 2.5, −1.3, 1.8, −0.5). Censoring
959
+ was assumed as 10%, 25% and 50%. Bias and RMSE for MLE, Firth and BCE estimators are
960
+ presented in Supplemental Figures S1-S6.
961
+ Furthermore, we calculated matrix distances between the sampling covariance matrix -
962
+ Cov(β∗) - and the Fisher Information - K(β∗) - and the corrected covariance matrix Cov2(β∗)
963
+ from 13 evaluated at MLE (�β) and BCE (�β) in Table S1. The following distances between
964
+ matrices A and B were considered:
965
+ • d1 = max diag|A − B|;
966
+ • d2 =
967
+
968
+ tr((A − B)⊤(A − B));
969
+ • d3 = �
970
+ i
971
+
972
+ j |aij − bij|;
973
+ Finally, we evaluated type I error testing the composite null hypothesis H : β1 = β(0)
974
+ 1
975
+ against a composite alternative hypothesis A : H is false, where β(0)
976
+ 1
977
+ is a specified vector,
978
+ β1 is a q-dimensional vector and β2 contains the remaining p − q parameters. This partition
979
+ ∗Biostatistics and Bioinformatics Research Center, Samuel Oschin Cancer Center, Cedars Sinai Medical
980
+ Center, Los Angeles, California, USA, e-mail to marcio.diniz@cshs.org.
981
+ †Department of Mathematics, Engineering School, University of Atacama, Copiapó, Chile, e-mail to
982
+ diego.gallardo@uda.cl.
983
+ ‡Department of Statistics, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora,
984
+ Brazil, e-mail to tiago.magalhaes@ufjf.br.
985
+ arXiv:2301.00325v1 [stat.ME] 1 Jan 2023
986
+
987
+ 2
988
+ β = (β⊤
989
+ 1 , β⊤
990
+ 2 )⊤ induces the corresponding partitions
991
+ K =
992
+
993
+
994
+
995
+ K11
996
+ K12
997
+ K21
998
+ K22
999
+
1000
+
1001
+ � = σ−2
1002
+
1003
+
1004
+
1005
+ X⊤
1006
+ 1 W X1
1007
+ X⊤
1008
+ 1 W X2
1009
+ X⊤
1010
+ 2 W X1
1011
+ X⊤
1012
+ 2 W X2
1013
+
1014
+
1015
+ � and K−1 =
1016
+
1017
+
1018
+
1019
+ K11
1020
+ K12
1021
+ K21
1022
+ K22
1023
+
1024
+
1025
+ � ,
1026
+ where X = [X1 X2], X1, X2 being n × q and n × (p − q), respectively. We consider the
1027
+ following Wald test[1] statistics:
1028
+ WMLE =
1029
+
1030
+ �β1 − β(0)
1031
+ 1
1032
+ �⊤ �
1033
+
1034
+ K11�−1 �
1035
+ �β1 − β(0)
1036
+ 1
1037
+
1038
+ ,
1039
+ (1)
1040
+ WMLE2 =
1041
+
1042
+ �β1 − β(0)
1043
+ 1
1044
+ �⊤ �
1045
+ �Cov11
1046
+ 2 ( �β)
1047
+ �−1 �
1048
+ �β1 − β(0)
1049
+ 1
1050
+
1051
+ ,
1052
+ (2)
1053
+ WBCE =
1054
+
1055
+ �β1 − β(0)
1056
+ 1
1057
+ �⊤ �
1058
+
1059
+ K11�−1 �
1060
+ �β1 − β(0)
1061
+ 1
1062
+
1063
+ ,
1064
+ (3)
1065
+ WBCE2 =
1066
+
1067
+ �β1 − β(0)
1068
+ 1
1069
+ �⊤ �
1070
+ �Cov11
1071
+ 2 ( �β)
1072
+ �−1 �
1073
+ �β1 − β(0)
1074
+ 1
1075
+
1076
+ ,
1077
+ (4)
1078
+ WFirth =
1079
+
1080
+ ˇβ1 − β(0)
1081
+ 1
1082
+ �⊤ � ˇ
1083
+ K11�−1 �
1084
+ ˇβ1 − β(0)
1085
+ 1
1086
+
1087
+ .
1088
+ (5)
1089
+ In the censored Weibull regression model the statistic (1)-(5) can be rewritten as
1090
+ W =
1091
+
1092
+ β1 − β(0)
1093
+ 1
1094
+ �⊤ �
1095
+ R⊤W R
1096
+ � �
1097
+ β1 − β(0)
1098
+ 1
1099
+
1100
+ ,
1101
+ (6)
1102
+ with R = X1 − X2C, C =
1103
+
1104
+ X⊤
1105
+ 2 W X2
1106
+ �−1 X⊤
1107
+ 2 W X1 represents a (p − q) × q matrix whose
1108
+ columns are the vectors of regression coefficients obtained in the weighted normal linear regres-
1109
+ sion of the columns of X1 on the model matrix X2 with W as a weight matrix.
1110
+ Under the null hypothesis H, W has a χ2
1111
+ q distribution up to an error of order n−1. The null
1112
+ hypothesis is rejected for a given nominal level, α say, if the test statistic exceeds the upper
1113
+ 100(1 − α)% quantile of the χ2
1114
+ q distribution.
1115
+ Similarly, we evaluated power with the composite alternative hypothesis A : β⊤ = (ψ1q, 0p−q)⊤
1116
+ for ψ = 0.05, 0.10, 0.25, 0.50, 1.00, 2.00. Results are presented in Table S3.
1117
+ 1
1118
+ Results
1119
+ 1.1
1120
+ Assessing the bias for different estimation procedures
1121
+
1122
+ 3
1123
+ p = 3
1124
+ 10%
1125
+ 25%
1126
+ 50%
1127
+ 20
1128
+ 30
1129
+ 40 20
1130
+ 30
1131
+ 40 20
1132
+ 30
1133
+ 40
1134
+ 0.06
1135
+ 0.08
1136
+ 0.10
1137
+ 0.12
1138
+ 0.14
1139
+ Sample size
1140
+ Bias β0
1141
+ Method
1142
+ MLE
1143
+ BCE
1144
+ Firth
1145
+ 10%
1146
+ 25%
1147
+ 50%
1148
+ 20
1149
+ 30
1150
+ 40 20
1151
+ 30
1152
+ 40 20
1153
+ 30
1154
+ 40
1155
+ 0.06
1156
+ 0.08
1157
+ 0.10
1158
+ 0.12
1159
+ Sample size
1160
+ Bias β1
1161
+ Method
1162
+ MLE
1163
+ BCE
1164
+ Firth
1165
+ 10%
1166
+ 25%
1167
+ 50%
1168
+ 20
1169
+ 30
1170
+ 40 20
1171
+ 30
1172
+ 40 20
1173
+ 30
1174
+ 40
1175
+ 0.06
1176
+ 0.08
1177
+ 0.10
1178
+ 0.12
1179
+ Sample size
1180
+ Bias β2
1181
+ Method
1182
+ MLE
1183
+ BCE
1184
+ Firth
1185
+ p = 5
1186
+ 10%
1187
+ 25%
1188
+ 50%
1189
+ 20
1190
+ 30
1191
+ 40 20
1192
+ 30
1193
+ 40 20
1194
+ 30
1195
+ 40
1196
+ 0.06
1197
+ 0.09
1198
+ 0.12
1199
+ 0.15
1200
+ Sample size
1201
+ Bias β0
1202
+ Method
1203
+ MLE
1204
+ BCE
1205
+ Firth
1206
+ 10%
1207
+ 25%
1208
+ 50%
1209
+ 20
1210
+ 30
1211
+ 40 20
1212
+ 30
1213
+ 40 20
1214
+ 30
1215
+ 40
1216
+ 0.06
1217
+ 0.09
1218
+ 0.12
1219
+ 0.15
1220
+ Sample size
1221
+ Bias β1
1222
+ Method
1223
+ MLE
1224
+ BCE
1225
+ Firth
1226
+ 10%
1227
+ 25%
1228
+ 50%
1229
+ 20
1230
+ 30
1231
+ 40 20
1232
+ 30
1233
+ 40 20
1234
+ 30
1235
+ 40
1236
+ 0.06
1237
+ 0.08
1238
+ 0.10
1239
+ 0.12
1240
+ 0.14
1241
+ 0.16
1242
+ Sample size
1243
+ Bias β3
1244
+ Method
1245
+ MLE
1246
+ BCE
1247
+ Firth
1248
+ p = 7
1249
+ 10%
1250
+ 25%
1251
+ 50%
1252
+ 20
1253
+ 30
1254
+ 40 20
1255
+ 30
1256
+ 40 20
1257
+ 30
1258
+ 40
1259
+ 0.08
1260
+ 0.10
1261
+ 0.12
1262
+ 0.14
1263
+ Sample size
1264
+ Bias β0
1265
+ Method
1266
+ MLE
1267
+ BCE
1268
+ Firth
1269
+ 10%
1270
+ 25%
1271
+ 50%
1272
+ 20
1273
+ 30
1274
+ 40 20
1275
+ 30
1276
+ 40 20
1277
+ 30
1278
+ 40
1279
+ 0.08
1280
+ 0.10
1281
+ 0.12
1282
+ 0.14
1283
+ Sample size
1284
+ Bias β1
1285
+ Method
1286
+ MLE
1287
+ BCE
1288
+ Firth
1289
+ 10%
1290
+ 25%
1291
+ 50%
1292
+ 20
1293
+ 30
1294
+ 40 20
1295
+ 30
1296
+ 40 20
1297
+ 30
1298
+ 40
1299
+ 0.08
1300
+ 0.10
1301
+ 0.12
1302
+ Sample size
1303
+ Bias β6
1304
+ Method
1305
+ MLE
1306
+ BCE
1307
+ Firth
1308
+ Figure S1: Empirical bias for different estimators. Case σ = 0.5.
1309
+
1310
+ 4
1311
+ p = 3
1312
+ 10%
1313
+ 25%
1314
+ 50%
1315
+ 20
1316
+ 30
1317
+ 40 20
1318
+ 30
1319
+ 40 20
1320
+ 30
1321
+ 40
1322
+ 0.075
1323
+ 0.100
1324
+ 0.125
1325
+ 0.150
1326
+ Sample size
1327
+ RMSE β0
1328
+ Method
1329
+ MLE
1330
+ BCE
1331
+ Firth
1332
+ 10%
1333
+ 25%
1334
+ 50%
1335
+ 20
1336
+ 30
1337
+ 40 20
1338
+ 30
1339
+ 40 20
1340
+ 30
1341
+ 40
1342
+ 0.075
1343
+ 0.100
1344
+ 0.125
1345
+ 0.150
1346
+ Sample size
1347
+ RMSE β1
1348
+ Method
1349
+ MLE
1350
+ BCE
1351
+ Firth
1352
+ 10%
1353
+ 25%
1354
+ 50%
1355
+ 20
1356
+ 30
1357
+ 40 20
1358
+ 30
1359
+ 40 20
1360
+ 30
1361
+ 40
1362
+ 0.075
1363
+ 0.100
1364
+ 0.125
1365
+ 0.150
1366
+ Sample size
1367
+ RMSE β2
1368
+ Method
1369
+ MLE
1370
+ BCE
1371
+ Firth
1372
+ p = 5
1373
+ 10%
1374
+ 25%
1375
+ 50%
1376
+ 20
1377
+ 30
1378
+ 40 20
1379
+ 30
1380
+ 40 20
1381
+ 30
1382
+ 40
1383
+ 0.08
1384
+ 0.12
1385
+ 0.16
1386
+ 0.20
1387
+ Sample size
1388
+ RMSE β0
1389
+ Method
1390
+ MLE
1391
+ BCE
1392
+ Firth
1393
+ 10%
1394
+ 25%
1395
+ 50%
1396
+ 20
1397
+ 30
1398
+ 40 20
1399
+ 30
1400
+ 40 20
1401
+ 30
1402
+ 40
1403
+ 0.08
1404
+ 0.12
1405
+ 0.16
1406
+ 0.20
1407
+ Sample size
1408
+ RMSE β1
1409
+ Method
1410
+ MLE
1411
+ BCE
1412
+ Firth
1413
+ 10%
1414
+ 25%
1415
+ 50%
1416
+ 20
1417
+ 30
1418
+ 40 20
1419
+ 30
1420
+ 40 20
1421
+ 30
1422
+ 40
1423
+ 0.075
1424
+ 0.100
1425
+ 0.125
1426
+ 0.150
1427
+ 0.175
1428
+ 0.200
1429
+ Sample size
1430
+ RMSE β3
1431
+ Method
1432
+ MLE
1433
+ BCE
1434
+ Firth
1435
+ p = 7
1436
+ 10%
1437
+ 25%
1438
+ 50%
1439
+ 20
1440
+ 30
1441
+ 40 20
1442
+ 30
1443
+ 40 20
1444
+ 30
1445
+ 40
1446
+ 0.100
1447
+ 0.125
1448
+ 0.150
1449
+ 0.175
1450
+ Sample size
1451
+ RMSE β0
1452
+ Method
1453
+ MLE
1454
+ BCE
1455
+ Firth
1456
+ 10%
1457
+ 25%
1458
+ 50%
1459
+ 20
1460
+ 30
1461
+ 40 20
1462
+ 30
1463
+ 40 20
1464
+ 30
1465
+ 40
1466
+ 0.100
1467
+ 0.125
1468
+ 0.150
1469
+ 0.175
1470
+ Sample size
1471
+ RMSE β1
1472
+ Method
1473
+ MLE
1474
+ BCE
1475
+ Firth
1476
+ 10%
1477
+ 25%
1478
+ 50%
1479
+ 20
1480
+ 30
1481
+ 40 20
1482
+ 30
1483
+ 40 20
1484
+ 30
1485
+ 40
1486
+ 0.100
1487
+ 0.125
1488
+ 0.150
1489
+ Sample size
1490
+ RMSE β6
1491
+ Method
1492
+ MLE
1493
+ BCE
1494
+ Firth
1495
+ Figure S2: Empirical RMSE for different estimators. Case σ = 0.5.
1496
+
1497
+ 5
1498
+ p = 3
1499
+ 10%
1500
+ 25%
1501
+ 50%
1502
+ 20
1503
+ 30
1504
+ 40 20
1505
+ 30
1506
+ 40 20
1507
+ 30
1508
+ 40
1509
+ 0.12
1510
+ 0.16
1511
+ 0.20
1512
+ 0.24
1513
+ 0.28
1514
+ Sample size
1515
+ Bias β0
1516
+ Method
1517
+ MLE
1518
+ BCE
1519
+ Firth
1520
+ 10%
1521
+ 25%
1522
+ 50%
1523
+ 20
1524
+ 30
1525
+ 40 20
1526
+ 30
1527
+ 40 20
1528
+ 30
1529
+ 40
1530
+ 0.12
1531
+ 0.16
1532
+ 0.20
1533
+ 0.24
1534
+ Sample size
1535
+ Bias β1
1536
+ Method
1537
+ MLE
1538
+ BCE
1539
+ Firth
1540
+ 10%
1541
+ 25%
1542
+ 50%
1543
+ 20
1544
+ 30
1545
+ 40 20
1546
+ 30
1547
+ 40 20
1548
+ 30
1549
+ 40
1550
+ 0.12
1551
+ 0.16
1552
+ 0.20
1553
+ 0.24
1554
+ Sample size
1555
+ Bias β2
1556
+ Method
1557
+ MLE
1558
+ BCE
1559
+ Firth
1560
+ p = 5
1561
+ 10%
1562
+ 25%
1563
+ 50%
1564
+ 20
1565
+ 30
1566
+ 40 20
1567
+ 30
1568
+ 40 20
1569
+ 30
1570
+ 40
1571
+ 0.15
1572
+ 0.20
1573
+ 0.25
1574
+ 0.30
1575
+ Sample size
1576
+ Bias β0
1577
+ Method
1578
+ MLE
1579
+ BCE
1580
+ Firth
1581
+ 10%
1582
+ 25%
1583
+ 50%
1584
+ 20
1585
+ 30
1586
+ 40 20
1587
+ 30
1588
+ 40 20
1589
+ 30
1590
+ 40
1591
+ 0.15
1592
+ 0.20
1593
+ 0.25
1594
+ 0.30
1595
+ Sample size
1596
+ Bias β1
1597
+ Method
1598
+ MLE
1599
+ BCE
1600
+ Firth
1601
+ 10%
1602
+ 25%
1603
+ 50%
1604
+ 20
1605
+ 30
1606
+ 40 20
1607
+ 30
1608
+ 40 20
1609
+ 30
1610
+ 40
1611
+ 0.15
1612
+ 0.20
1613
+ 0.25
1614
+ 0.30
1615
+ Sample size
1616
+ Bias β3
1617
+ Method
1618
+ MLE
1619
+ BCE
1620
+ Firth
1621
+ p = 7
1622
+ 10%
1623
+ 25%
1624
+ 50%
1625
+ 20
1626
+ 30
1627
+ 40 20
1628
+ 30
1629
+ 40 20
1630
+ 30
1631
+ 40
1632
+ 0.2
1633
+ 0.3
1634
+ 0.4
1635
+ Sample size
1636
+ Bias β0
1637
+ Method
1638
+ MLE
1639
+ BCE
1640
+ Firth
1641
+ 10%
1642
+ 25%
1643
+ 50%
1644
+ 20
1645
+ 30
1646
+ 40 20
1647
+ 30
1648
+ 40 20
1649
+ 30
1650
+ 40
1651
+ 0.2
1652
+ 0.3
1653
+ 0.4
1654
+ Sample size
1655
+ Bias β1
1656
+ Method
1657
+ MLE
1658
+ BCE
1659
+ Firth
1660
+ 10%
1661
+ 25%
1662
+ 50%
1663
+ 20
1664
+ 30
1665
+ 40 20
1666
+ 30
1667
+ 40 20
1668
+ 30
1669
+ 40
1670
+ 0.2
1671
+ 0.3
1672
+ Sample size
1673
+ Bias β6
1674
+ Method
1675
+ MLE
1676
+ BCE
1677
+ Firth
1678
+ Figure S3: Empirical bias for different estimators. Case σ = 1.
1679
+
1680
+ 6
1681
+ p = 3
1682
+ 10%
1683
+ 25%
1684
+ 50%
1685
+ 20
1686
+ 30
1687
+ 40 20
1688
+ 30
1689
+ 40 20
1690
+ 30
1691
+ 40
1692
+ 0.15
1693
+ 0.20
1694
+ 0.25
1695
+ 0.30
1696
+ Sample size
1697
+ RMSE β0
1698
+ Method
1699
+ MLE
1700
+ BCE
1701
+ Firth
1702
+ 10%
1703
+ 25%
1704
+ 50%
1705
+ 20
1706
+ 30
1707
+ 40 20
1708
+ 30
1709
+ 40 20
1710
+ 30
1711
+ 40
1712
+ 0.15
1713
+ 0.20
1714
+ 0.25
1715
+ 0.30
1716
+ Sample size
1717
+ RMSE β1
1718
+ Method
1719
+ MLE
1720
+ BCE
1721
+ Firth
1722
+ 10%
1723
+ 25%
1724
+ 50%
1725
+ 20
1726
+ 30
1727
+ 40 20
1728
+ 30
1729
+ 40 20
1730
+ 30
1731
+ 40
1732
+ 0.15
1733
+ 0.20
1734
+ 0.25
1735
+ 0.30
1736
+ Sample size
1737
+ RMSE β2
1738
+ Method
1739
+ MLE
1740
+ BCE
1741
+ Firth
1742
+ p = 5
1743
+ 10%
1744
+ 25%
1745
+ 50%
1746
+ 20
1747
+ 30
1748
+ 40 20
1749
+ 30
1750
+ 40 20
1751
+ 30
1752
+ 40
1753
+ 0.15
1754
+ 0.20
1755
+ 0.25
1756
+ 0.30
1757
+ 0.35
1758
+ 0.40
1759
+ Sample size
1760
+ RMSE β0
1761
+ Method
1762
+ MLE
1763
+ BCE
1764
+ Firth
1765
+ 10%
1766
+ 25%
1767
+ 50%
1768
+ 20
1769
+ 30
1770
+ 40 20
1771
+ 30
1772
+ 40 20
1773
+ 30
1774
+ 40
1775
+ 0.15
1776
+ 0.20
1777
+ 0.25
1778
+ 0.30
1779
+ 0.35
1780
+ 0.40
1781
+ Sample size
1782
+ RMSE β1
1783
+ Method
1784
+ MLE
1785
+ BCE
1786
+ Firth
1787
+ 10%
1788
+ 25%
1789
+ 50%
1790
+ 20
1791
+ 30
1792
+ 40 20
1793
+ 30
1794
+ 40 20
1795
+ 30
1796
+ 40
1797
+ 0.15
1798
+ 0.20
1799
+ 0.25
1800
+ 0.30
1801
+ 0.35
1802
+ Sample size
1803
+ RMSE β3
1804
+ Method
1805
+ MLE
1806
+ BCE
1807
+ Firth
1808
+ p = 7
1809
+ 10%
1810
+ 25%
1811
+ 50%
1812
+ 20
1813
+ 30
1814
+ 40 20
1815
+ 30
1816
+ 40 20
1817
+ 30
1818
+ 40
1819
+ 0.2
1820
+ 0.3
1821
+ 0.4
1822
+ Sample size
1823
+ RMSE β0
1824
+ Method
1825
+ MLE
1826
+ BCE
1827
+ Firth
1828
+ 10%
1829
+ 25%
1830
+ 50%
1831
+ 20
1832
+ 30
1833
+ 40 20
1834
+ 30
1835
+ 40 20
1836
+ 30
1837
+ 40
1838
+ 0.2
1839
+ 0.3
1840
+ 0.4
1841
+ 0.5
1842
+ Sample size
1843
+ RMSE β1
1844
+ Method
1845
+ MLE
1846
+ BCE
1847
+ Firth
1848
+ 10%
1849
+ 25%
1850
+ 50%
1851
+ 20
1852
+ 30
1853
+ 40 20
1854
+ 30
1855
+ 40 20
1856
+ 30
1857
+ 40
1858
+ 0.15
1859
+ 0.20
1860
+ 0.25
1861
+ 0.30
1862
+ 0.35
1863
+ 0.40
1864
+ 0.45
1865
+ Sample size
1866
+ RMSE β6
1867
+ Method
1868
+ MLE
1869
+ BCE
1870
+ Firth
1871
+ Figure S4: Empirical RMSE for different estimators. Case σ = 1.
1872
+
1873
+ 7
1874
+ p = 3
1875
+ 10%
1876
+ 25%
1877
+ 50%
1878
+ 20
1879
+ 30
1880
+ 40 20
1881
+ 30
1882
+ 40 20
1883
+ 30
1884
+ 40
1885
+ 0.4
1886
+ 0.5
1887
+ 0.6
1888
+ 0.7
1889
+ 0.8
1890
+ Sample size
1891
+ Bias β0
1892
+ Method
1893
+ MLE
1894
+ BCE
1895
+ Firth
1896
+ 10%
1897
+ 25%
1898
+ 50%
1899
+ 20
1900
+ 30
1901
+ 40 20
1902
+ 30
1903
+ 40 20
1904
+ 30
1905
+ 40
1906
+ 0.4
1907
+ 0.5
1908
+ 0.6
1909
+ 0.7
1910
+ Sample size
1911
+ Bias β1
1912
+ Method
1913
+ MLE
1914
+ BCE
1915
+ Firth
1916
+ 10%
1917
+ 25%
1918
+ 50%
1919
+ 20
1920
+ 30
1921
+ 40 20
1922
+ 30
1923
+ 40 20
1924
+ 30
1925
+ 40
1926
+ 0.4
1927
+ 0.5
1928
+ 0.6
1929
+ 0.7
1930
+ Sample size
1931
+ Bias β2
1932
+ Method
1933
+ MLE
1934
+ BCE
1935
+ Firth
1936
+ p = 5
1937
+ 10%
1938
+ 25%
1939
+ 50%
1940
+ 20
1941
+ 30
1942
+ 40 20
1943
+ 30
1944
+ 40 20
1945
+ 30
1946
+ 40
1947
+ 0.4
1948
+ 0.6
1949
+ 0.8
1950
+ Sample size
1951
+ Bias β0
1952
+ Method
1953
+ MLE
1954
+ BCE
1955
+ Firth
1956
+ 10%
1957
+ 25%
1958
+ 50%
1959
+ 20
1960
+ 30
1961
+ 40 20
1962
+ 30
1963
+ 40 20
1964
+ 30
1965
+ 40
1966
+ 0.4
1967
+ 0.6
1968
+ 0.8
1969
+ Sample size
1970
+ Bias β1
1971
+ Method
1972
+ MLE
1973
+ BCE
1974
+ Firth
1975
+ 10%
1976
+ 25%
1977
+ 50%
1978
+ 20
1979
+ 30
1980
+ 40 20
1981
+ 30
1982
+ 40 20
1983
+ 30
1984
+ 40
1985
+ 0.4
1986
+ 0.5
1987
+ 0.6
1988
+ 0.7
1989
+ 0.8
1990
+ Sample size
1991
+ Bias β3
1992
+ Method
1993
+ MLE
1994
+ BCE
1995
+ Firth
1996
+ p = 7
1997
+ 10%
1998
+ 25%
1999
+ 50%
2000
+ 20
2001
+ 30
2002
+ 40 20
2003
+ 30
2004
+ 40 20
2005
+ 30
2006
+ 40
2007
+ 0.4
2008
+ 0.6
2009
+ 0.8
2010
+ 1.0
2011
+ Sample size
2012
+ Bias β0
2013
+ Method
2014
+ MLE
2015
+ BCE
2016
+ Firth
2017
+ 10%
2018
+ 25%
2019
+ 50%
2020
+ 20
2021
+ 30
2022
+ 40 20
2023
+ 30
2024
+ 40 20
2025
+ 30
2026
+ 40
2027
+ 0.4
2028
+ 0.6
2029
+ 0.8
2030
+ 1.0
2031
+ Sample size
2032
+ Bias β1
2033
+ Method
2034
+ MLE
2035
+ BCE
2036
+ Firth
2037
+ 10%
2038
+ 25%
2039
+ 50%
2040
+ 20
2041
+ 30
2042
+ 40 20
2043
+ 30
2044
+ 40 20
2045
+ 30
2046
+ 40
2047
+ 0.4
2048
+ 0.5
2049
+ 0.6
2050
+ 0.7
2051
+ 0.8
2052
+ 0.9
2053
+ Sample size
2054
+ Bias β6
2055
+ Method
2056
+ MLE
2057
+ BCE
2058
+ Firth
2059
+ Figure S5: Empirical bias for different estimators. Case σ = 3.
2060
+
2061
+ 8
2062
+ p = 3
2063
+ 10%
2064
+ 25%
2065
+ 50%
2066
+ 20
2067
+ 30
2068
+ 40 20
2069
+ 30
2070
+ 40 20
2071
+ 30
2072
+ 40
2073
+ 0.5
2074
+ 0.6
2075
+ 0.7
2076
+ 0.8
2077
+ 0.9
2078
+ Sample size
2079
+ RMSE β0
2080
+ Method
2081
+ MLE
2082
+ BCE
2083
+ Firth
2084
+ 10%
2085
+ 25%
2086
+ 50%
2087
+ 20
2088
+ 30
2089
+ 40 20
2090
+ 30
2091
+ 40 20
2092
+ 30
2093
+ 40
2094
+ 0.4
2095
+ 0.5
2096
+ 0.6
2097
+ 0.7
2098
+ 0.8
2099
+ 0.9
2100
+ Sample size
2101
+ RMSE β1
2102
+ Method
2103
+ MLE
2104
+ BCE
2105
+ Firth
2106
+ 10%
2107
+ 25%
2108
+ 50%
2109
+ 20
2110
+ 30
2111
+ 40 20
2112
+ 30
2113
+ 40 20
2114
+ 30
2115
+ 40
2116
+ 0.4
2117
+ 0.5
2118
+ 0.6
2119
+ 0.7
2120
+ 0.8
2121
+ Sample size
2122
+ RMSE β2
2123
+ Method
2124
+ MLE
2125
+ BCE
2126
+ Firth
2127
+ p = 5
2128
+ 10%
2129
+ 25%
2130
+ 50%
2131
+ 20
2132
+ 30
2133
+ 40 20
2134
+ 30
2135
+ 40 20
2136
+ 30
2137
+ 40
2138
+ 0.6
2139
+ 0.8
2140
+ 1.0
2141
+ Sample size
2142
+ RMSE β0
2143
+ Method
2144
+ MLE
2145
+ BCE
2146
+ Firth
2147
+ 10%
2148
+ 25%
2149
+ 50%
2150
+ 20
2151
+ 30
2152
+ 40 20
2153
+ 30
2154
+ 40 20
2155
+ 30
2156
+ 40
2157
+ 0.6
2158
+ 0.8
2159
+ 1.0
2160
+ Sample size
2161
+ RMSE β1
2162
+ Method
2163
+ MLE
2164
+ BCE
2165
+ Firth
2166
+ 10%
2167
+ 25%
2168
+ 50%
2169
+ 20
2170
+ 30
2171
+ 40 20
2172
+ 30
2173
+ 40 20
2174
+ 30
2175
+ 40
2176
+ 0.6
2177
+ 0.8
2178
+ 1.0
2179
+ Sample size
2180
+ RMSE β3
2181
+ Method
2182
+ MLE
2183
+ BCE
2184
+ Firth
2185
+ p = 7
2186
+ 10%
2187
+ 25%
2188
+ 50%
2189
+ 20
2190
+ 30
2191
+ 40 20
2192
+ 30
2193
+ 40 20
2194
+ 30
2195
+ 40
2196
+ 0.6
2197
+ 0.8
2198
+ 1.0
2199
+ 1.2
2200
+ Sample size
2201
+ RMSE β0
2202
+ Method
2203
+ MLE
2204
+ BCE
2205
+ Firth
2206
+ 10%
2207
+ 25%
2208
+ 50%
2209
+ 20
2210
+ 30
2211
+ 40 20
2212
+ 30
2213
+ 40 20
2214
+ 30
2215
+ 40
2216
+ 0.6
2217
+ 0.8
2218
+ 1.0
2219
+ 1.2
2220
+ 1.4
2221
+ Sample size
2222
+ RMSE β1
2223
+ Method
2224
+ MLE
2225
+ BCE
2226
+ Firth
2227
+ 10%
2228
+ 25%
2229
+ 50%
2230
+ 20
2231
+ 30
2232
+ 40 20
2233
+ 30
2234
+ 40 20
2235
+ 30
2236
+ 40
2237
+ 0.6
2238
+ 0.8
2239
+ 1.0
2240
+ Sample size
2241
+ RMSE β6
2242
+ Method
2243
+ MLE
2244
+ BCE
2245
+ Firth
2246
+ Figure S6: Empirical RMSE for different estimators. Case σ = 3.
2247
+
2248
+ 9
2249
+ 1.2
2250
+ Assessing the variance estimation
2251
+ Table S1: Distance between different estimated covariance matrices.
2252
+ n = 20
2253
+ n = 30
2254
+ n = 40
2255
+ Cov(�β) and
2256
+ Cov(�β) and
2257
+ Cov(�β) and
2258
+ Cov(�β) and
2259
+ Cov(�β) and
2260
+ Cov(�β) and
2261
+ c
2262
+ σ
2263
+ p d
2264
+ �K
2265
+ Cov2(�β)
2266
+ �K
2267
+ Cov2(�β)
2268
+ �K
2269
+ Cov2(�β)
2270
+ �K
2271
+ Cov2(�β)
2272
+ �K
2273
+ Cov2(�β)
2274
+ �K
2275
+ Cov2(�β)
2276
+ 10% 0.5
2277
+ 3 d1 0.0634 0.0262 0.0593 0.0175 0.0431 0.0275 0.0403 0.0243 0.0320 0.0151 0.0297 0.0116
2278
+ d2 0.0070 0.0010 0.0059 0.0005 0.0026 0.0012 0.0022 0.0009 0.0017 0.0003 0.0015 0.0003
2279
+ d3 0.0129 0.0025 0.0115 0.0014 0.0053 0.0029 0.0044 0.0022 0.0033 0.0009 0.0031 0.0006
2280
+ 5 d1 0.1046 0.0657 0.0988 0.0640 0.0616 0.0338 0.0588 0.0323 0.0485 0.0278 0.0468 0.0280
2281
+ d2 0.0232 0.0095 0.0207 0.0088 0.0085 0.0031 0.0078 0.0030 0.0051 0.0023 0.0048 0.0023
2282
+ d3 0.0642 0.0343 0.0590 0.0328 0.0257 0.0132 0.0241 0.0127 0.0168 0.0100 0.0161 0.0097
2283
+ 7 d1 0.2691 0.2520 0.2694 0.2545 0.1790 0.1684 0.1783 0.1689 0.1470 0.1397 0.1463 0.1398
2284
+ d2 0.1799 0.1562 0.1786 0.1581 0.0867 0.0777 0.0863 0.0783 0.0583 0.0537 0.0579 0.0538
2285
+ d3 0.6681 0.6066 0.6620 0.6084 0.3999 0.3755 0.3982 0.3763 0.3020 0.2888 0.3004 0.2884
2286
+ 1.0
2287
+ 3 d1 0.1319 0.0680 0.1138 0.0419 0.0781 0.0555 0.0677 0.0488 0.0694 0.0342 0.0625 0.0265
2288
+ d2 0.0280 0.0070 0.0208 0.0028 0.0099 0.0059 0.0073 0.0037 0.0071 0.0016 0.0060 0.0012
2289
+ d3 0.0517 0.0194 0.0396 0.0061 0.0213 0.0160 0.0151 0.0094 0.0131 0.0038 0.0120 0.0025
2290
+ 5 d1 0.1639 0.0630 0.1442 0.0494 0.1065 0.0512 0.0952 0.0441 0.0781 0.0452 0.0710 0.0402
2291
+ d2 0.0572 0.0103 0.0434 0.0064 0.0237 0.0059 0.0189 0.0044 0.0120 0.0031 0.0099 0.0024
2292
+ d3 0.1472 0.0461 0.1138 0.0258 0.0656 0.0233 0.0542 0.0173 0.0323 0.0114 0.0280 0.0091
2293
+ 7 d1 0.2433 0.1433 0.2192 0.1368 0.1609 0.1026 0.1514 0.1032 0.1268 0.0893 0.1201 0.0882
2294
+ d2 0.1487 0.0496 0.1214 0.0459 0.0651 0.0274 0.0571 0.0267 0.0399 0.0205 0.0359 0.0200
2295
+ d3 0.4508 0.2061 0.3819 0.1819 0.2397 0.1385 0.2151 0.1325 0.1642 0.1096 0.1521 0.1068
2296
+ 3.0
2297
+ 3 d1 0.4335 0.2503 0.3222 0.2257 0.2526 0.1844 0.1633 0.1480 0.2072 0.0949 0.1570 0.0826
2298
+ d2 0.2772 0.0751 0.1308 0.0639 0.0996 0.0495 0.0446 0.0364 0.0695 0.0159 0.0388 0.0079
2299
+ d3 0.4908 0.1454 0.2683 0.1309 0.1865 0.0984 0.1088 0.0866 0.1349 0.0411 0.0744 0.0167
2300
+ 5 d1 0.5378 0.1597 0.4069 0.1557 0.3359 0.1497 0.2678 0.1372 0.2472 0.1339 0.1933 0.1250
2301
+ d2 0.6043 0.1040 0.3160 0.0591 0.2407 0.0490 0.1397 0.0287 0.1232 0.0372 0.0726 0.0235
2302
+ d3 1.6158 0.4748 0.8530 0.2428 0.6192 0.2058 0.3797 0.0970 0.3509 0.1551 0.2081 0.0857
2303
+ 7 d1 0.6234 0.2563 0.4373 0.2420 0.3905 0.1814 0.2912 0.1542 0.2880 0.1344 0.2240 0.1162
2304
+ d2 0.9863 0.2202 0.4766 0.1692 0.3766 0.0933 0.2042 0.0617 0.1996 0.0546 0.1183 0.0401
2305
+
2306
+ 10
2307
+ n = 20
2308
+ n = 30
2309
+ n = 40
2310
+ Cov(�β) and
2311
+ Cov(�β) and
2312
+ Cov(�β) and
2313
+ Cov(�β) and
2314
+ Cov(�β) and
2315
+ Cov(�β) and
2316
+ c
2317
+ σ
2318
+ p d
2319
+ �K
2320
+ Cov2(�β)
2321
+ �K
2322
+ Cov2(�β)
2323
+ �K
2324
+ Cov2(�β)
2325
+ �K
2326
+ Cov2(�β)
2327
+ �K
2328
+ Cov2(�β)
2329
+ �K
2330
+ Cov2(�β)
2331
+ d3 3.3965 1.1968 1.9409 0.9714 1.2864 0.5180 0.7472 0.3326 0.7210 0.3036 0.4882 0.2401
2332
+ 25% 0.5
2333
+ 3 d1 0.0793 0.0369 0.0715 0.0276 0.0525 0.0256 0.0492 0.0226 0.0402 0.0098 0.0380 0.0134
2334
+ d2 0.0099 0.0022 0.0081 0.0014 0.0043 0.0011 0.0037 0.0008 0.0027 0.0003 0.0024 0.0004
2335
+ d3 0.0188 0.0054 0.0163 0.0037 0.0084 0.0027 0.0073 0.0020 0.0056 0.0009 0.0053 0.0010
2336
+ 5 d1 0.1023 0.0246 0.0916 0.0227 0.0686 0.0288 0.0634 0.0277 0.0466 0.0159 0.0437 0.0141
2337
+ d2 0.0225 0.0023 0.0182 0.0021 0.0099 0.0022 0.0085 0.0019 0.0048 0.0008 0.0042 0.0007
2338
+ d3 0.0570 0.0108 0.0483 0.0093 0.0259 0.0097 0.0219 0.0084 0.0138 0.0029 0.0127 0.0028
2339
+ 7 d1 0.2113 0.1726 0.2025 0.1731 0.1410 0.1185 0.1371 0.1180 0.1114 0.0967 0.1093 0.0965
2340
+ d2 0.1134 0.0757 0.1049 0.0757 0.0483 0.0345 0.0456 0.0341 0.0287 0.0217 0.0274 0.0214
2341
+ d3 0.4040 0.3062 0.3807 0.3053 0.1978 0.1613 0.1886 0.1585 0.1283 0.1086 0.1237 0.1067
2342
+ 1.0
2343
+ 3 d1 0.1674 0.0780 0.1431 0.0586 0.1119 0.0528 0.0982 0.0428 0.0757 0.0426 0.0680 0.0366
2344
+ d2 0.0434 0.0077 0.0312 0.0051 0.0197 0.0041 0.0151 0.0034 0.0089 0.0030 0.0069 0.0023
2345
+ d3 0.0842 0.0176 0.0673 0.0135 0.0378 0.0108 0.0312 0.0092 0.0189 0.0076 0.0160 0.0059
2346
+ 5 d1 0.2079 0.0774 0.1749 0.0671 0.1493 0.0739 0.1369 0.0766 0.0958 0.0508 0.0851 0.0456
2347
+ d2 0.0885 0.0114 0.0631 0.0082 0.0457 0.0107 0.0366 0.0112 0.0183 0.0038 0.0145 0.0033
2348
+ d3 0.2280 0.0446 0.1818 0.0321 0.1186 0.0418 0.0972 0.0396 0.0517 0.0143 0.0451 0.0130
2349
+ 7 d1 0.2791 0.1399 0.2393 0.1451 0.1852 0.1011 0.1676 0.1047 0.1350 0.0755 0.1247 0.0788
2350
+ d2 0.1993 0.0447 0.1473 0.0494 0.0853 0.0259 0.0689 0.0273 0.0446 0.0148 0.0370 0.0152
2351
+ d3 0.6023 0.2093 0.4748 0.2045 0.2781 0.1079 0.2396 0.1138 0.1589 0.0749 0.1406 0.0743
2352
+ 3.0
2353
+ 3 d1 0.4998 0.2301 0.3203 0.1692 0.3732 0.1706 0.2704 0.1684 0.2375 0.1330 0.1685 0.1164
2354
+ d2 0.4127 0.0684 0.1597 0.0329 0.2179 0.0321 0.1133 0.0328 0.0918 0.0263 0.0434 0.0219
2355
+ d3 0.7448 0.1563 0.3189 0.0655 0.3926 0.0630 0.2255 0.0641 0.1965 0.0726 0.1000 0.0556
2356
+ 5 d1 0.6530 0.1756 0.4516 0.1994 0.4249 0.1260 0.3083 0.1536 0.2991 0.1105 0.2281 0.0834
2357
+ d2 0.9047 0.0906 0.4160 0.0909 0.3938 0.0506 0.2079 0.0514 0.1868 0.0277 0.0967 0.0190
2358
+ d3 2.3326 0.3686 1.3273 0.3487 1.0084 0.2307 0.5947 0.2009 0.4849 0.1211 0.2822 0.0791
2359
+ 7 d1 0.8010 0.3253 0.5387 0.2408 0.5254 0.2072 0.3900 0.2308 0.3497 0.0975 0.2608 0.1008
2360
+ d2 1.5787 0.2777 0.6635 0.1951 0.6367 0.1091 0.3239 0.1048 0.3118 0.0512 0.1607 0.0418
2361
+ d3 5.2917 1.5483 2.7006 1.1317 2.1360 0.6376 1.2488 0.5553 1.0500 0.2858 0.6471 0.2486
2362
+ 50% 0.5
2363
+ 3 d1 0.1158 0.0483 0.1039 0.0485 0.0776 0.0370 0.0702 0.0343 0.0540 0.0204 0.0496 0.0183
2364
+
2365
+ 11
2366
+ n = 20
2367
+ n = 30
2368
+ n = 40
2369
+ Cov(�β) and
2370
+ Cov(�β) and
2371
+ Cov(�β) and
2372
+ Cov(�β) and
2373
+ Cov(�β) and
2374
+ Cov(�β) and
2375
+ c
2376
+ σ
2377
+ p d
2378
+ �K
2379
+ Cov2(�β)
2380
+ �K
2381
+ Cov2(�β)
2382
+ �K
2383
+ Cov2(�β)
2384
+ �K
2385
+ Cov2(�β)
2386
+ �K
2387
+ Cov2(�β)
2388
+ �K
2389
+ Cov2(�β)
2390
+ d2 0.0228 0.0036 0.0182 0.0033 0.0096 0.0018 0.0081 0.0015 0.0047 0.0006 0.0039 0.0005
2391
+ d3 0.0422 0.0083 0.0348 0.0078 0.0174 0.0035 0.0148 0.0030 0.0091 0.0018 0.0075 0.0015
2392
+ 5 d1 0.1607 0.0742 0.1458 0.0761 0.0990 0.0480 0.0913 0.0451 0.0686 0.0262 0.0637 0.0244
2393
+ d2 0.0562 0.0110 0.0462 0.0118 0.0211 0.0046 0.0178 0.0040 0.0099 0.0012 0.0085 0.0011
2394
+ d3 0.1446 0.0376 0.1217 0.0388 0.0548 0.0170 0.0475 0.0152 0.0257 0.0051 0.0218 0.0046
2395
+ 7 d1 0.2964 0.2236 0.2852 0.2309 0.1937 0.1616 0.1862 0.1586 0.1552 0.1358 0.1508 0.1334
2396
+ d2 0.2162 0.1162 0.2001 0.1267 0.0896 0.0606 0.0825 0.0584 0.0571 0.0430 0.0536 0.0415
2397
+ d3 0.7277 0.4459 0.6687 0.4468 0.3187 0.2389 0.2954 0.2289 0.2305 0.1906 0.2185 0.1842
2398
+ 1.0
2399
+ 3 d1 0.2294 0.0855 0.1953 0.0953 0.1541 0.0762 0.1304 0.0728 0.1015 0.0218 0.0860 0.0189
2400
+ d2 0.0880 0.0133 0.0607 0.0150 0.0372 0.0085 0.0269 0.0076 0.0174 0.0020 0.0124 0.0018
2401
+ d3 0.1646 0.0348 0.1166 0.0382 0.0721 0.0187 0.0541 0.0169 0.0338 0.0044 0.0246 0.0040
2402
+ 5 d1 0.3220 0.1557 0.2783 0.1709 0.1877 0.0797 0.1645 0.0756 0.1337 0.0480 0.1157 0.0444
2403
+ d2 0.2137 0.0411 0.1573 0.0531 0.0739 0.0113 0.0549 0.0107 0.0375 0.0047 0.0283 0.0042
2404
+ d3 0.5431 0.1338 0.4213 0.1656 0.1826 0.0381 0.1429 0.0364 0.0977 0.0205 0.0748 0.0181
2405
+ 7 d1 0.4181 0.1732 0.3656 0.2374 0.2503 0.1409 0.2212 0.1384 0.1831 0.1091 0.1651 0.1053
2406
+ d2 0.4305 0.0704 0.3286 0.1362 0.1573 0.0470 0.1218 0.0469 0.0859 0.0297 0.0685 0.0276
2407
+ d3 1.4277 0.4023 1.0993 0.5507 0.4759 0.1787 0.3801 0.1720 0.2791 0.1271 0.2325 0.1182
2408
+ 3.0
2409
+ 3 d1 0.6912 0.3287 0.4826 0.3279 0.4278 0.1813 0.2997 0.1798 0.3416 0.1817 0.2595 0.1766
2410
+ d2 0.7694 0.1459 0.3561 0.1466 0.2957 0.0417 0.1362 0.0399 0.1864 0.0504 0.1004 0.0463
2411
+ d3 1.3934 0.3504 0.6465 0.3234 0.5378 0.1021 0.2642 0.0922 0.3608 0.1235 0.2068 0.1108
2412
+ 5 d1 0.9271 0.4391 0.6588 0.4635 0.5571 0.2677 0.4015 0.2622 0.3910 0.1621 0.2830 0.1558
2413
+ d2 1.8814 0.3978 0.9394 0.4618 0.6351 0.1231 0.3188 0.1175 0.3187 0.0517 0.1633 0.0478
2414
+ d3 4.6010 1.4400 2.3371 1.4081 1.6206 0.4609 0.8959 0.4286 0.8370 0.2154 0.4862 0.1886
2415
+ 7 d1 1.1551 0.2748 0.7808 0.5265 0.6514 0.2569 0.4563 0.2763 0.4654 0.2025 0.3365 0.2006
2416
+ d2 3.4455 0.5081 1.5612 0.7768 1.0745 0.2111 0.5275 0.2168 0.5367 0.1118 0.2744 0.1042
2417
+ d3 12.2895 3.0940 6.5278 4.0423 3.7371 1.1778 2.1761 1.1681 1.8224 0.6151 1.0733 0.5555
2418
+ 1.3
2419
+ Assessing the type I error
2420
+
2421
+ 12
2422
+ Table S2: Simulated rejection rates for H0 : βq = 0q, with different combinations of σ, censoring,
2423
+ n, p and q.
2424
+ σ
2425
+ censoring
2426
+ n
2427
+ p
2428
+ q
2429
+ MLE
2430
+ MLE2
2431
+ BCE
2432
+ BCE2
2433
+ Firth
2434
+ 0.5
2435
+ 10%
2436
+ 20
2437
+ 3
2438
+ 1
2439
+ 0.0723
2440
+ 0.0463
2441
+ 0.0723
2442
+ 0.0590
2443
+ 0.0722
2444
+ 2
2445
+ 0.0874
2446
+ 0.0474
2447
+ 0.0877
2448
+ 0.0627
2449
+ 0.0869
2450
+ 5
2451
+ 1
2452
+ 0.0794
2453
+ 0.0415
2454
+ 0.0796
2455
+ 0.0580
2456
+ 0.0779
2457
+ 3
2458
+ 0.1131
2459
+ 0.0518
2460
+ 0.1132
2461
+ 0.0729
2462
+ 0.1121
2463
+ 7
2464
+ 2
2465
+ 0.1223
2466
+ 0.0531
2467
+ 0.1226
2468
+ 0.0791
2469
+ 0.1190
2470
+ 4
2471
+ 0.1495
2472
+ 0.0580
2473
+ 0.1492
2474
+ 0.0853
2475
+ 0.1460
2476
+ 30
2477
+ 3
2478
+ 1
2479
+ 0.0636
2480
+ 0.0422
2481
+ 0.0638
2482
+ 0.0522
2483
+ 0.0639
2484
+ 2
2485
+ 0.0770
2486
+ 0.0473
2487
+ 0.0769
2488
+ 0.0605
2489
+ 0.0767
2490
+ 5
2491
+ 1
2492
+ 0.0806
2493
+ 0.0462
2494
+ 0.0806
2495
+ 0.0626
2496
+ 0.0793
2497
+ 3
2498
+ 0.0917
2499
+ 0.0461
2500
+ 0.0919
2501
+ 0.0636
2502
+ 0.0919
2503
+ 7
2504
+ 2
2505
+ 0.0952
2506
+ 0.0442
2507
+ 0.0956
2508
+ 0.0656
2509
+ 0.0939
2510
+ 4
2511
+ 0.1179
2512
+ 0.0503
2513
+ 0.1182
2514
+ 0.0733
2515
+ 0.1153
2516
+ 40
2517
+ 3
2518
+ 1
2519
+ 0.0620
2520
+ 0.0460
2521
+ 0.0621
2522
+ 0.0539
2523
+ 0.0621
2524
+ 2
2525
+ 0.0684
2526
+ 0.0471
2527
+ 0.0684
2528
+ 0.0570
2529
+ 0.0687
2530
+ 5
2531
+ 1
2532
+ 0.0703
2533
+ 0.0430
2534
+ 0.0708
2535
+ 0.0561
2536
+ 0.0704
2537
+ 3
2538
+ 0.0836
2539
+ 0.0465
2540
+ 0.0836
2541
+ 0.0625
2542
+ 0.0830
2543
+ 7
2544
+ 2
2545
+ 0.0888
2546
+ 0.0439
2547
+ 0.0888
2548
+ 0.0638
2549
+ 0.0875
2550
+ 4
2551
+ 0.0993
2552
+ 0.0471
2553
+ 0.0997
2554
+ 0.0684
2555
+ 0.0992
2556
+ 25%
2557
+ 20
2558
+ 3
2559
+ 1
2560
+ 0.0791
2561
+ 0.0473
2562
+ 0.0795
2563
+ 0.0642
2564
+ 0.0794
2565
+ 2
2566
+ 0.0922
2567
+ 0.0495
2568
+ 0.0925
2569
+ 0.0674
2570
+ 0.0925
2571
+ 5
2572
+ 1
2573
+ 0.0955
2574
+ 0.0515
2575
+ 0.0972
2576
+ 0.0758
2577
+ 0.0956
2578
+ 3
2579
+ 0.1286
2580
+ 0.0590
2581
+ 0.1291
2582
+ 0.0844
2583
+ 0.1301
2584
+ 7
2585
+ 2
2586
+ 0.1374
2587
+ 0.0555
2588
+ 0.1397
2589
+ 0.0957
2590
+ 0.1371
2591
+ 4
2592
+ 0.1666
2593
+ 0.0675
2594
+ 0.1680
2595
+ 0.1024
2596
+ 0.1652
2597
+ 30
2598
+ 3
2599
+ 1
2600
+ 0.0767
2601
+ 0.0511
2602
+ 0.0770
2603
+ 0.0657
2604
+ 0.0770
2605
+ 2
2606
+ 0.0888
2607
+ 0.0544
2608
+ 0.0886
2609
+ 0.0700
2610
+ 0.0878
2611
+ 5
2612
+ 1
2613
+ 0.0884
2614
+ 0.0536
2615
+ 0.0892
2616
+ 0.0738
2617
+ 0.0887
2618
+
2619
+ 13
2620
+ σ
2621
+ censoring
2622
+ n
2623
+ p
2624
+ q
2625
+ MLE
2626
+ MLE2
2627
+ BCE
2628
+ BCE2
2629
+ Firth
2630
+ 3
2631
+ 0.1229
2632
+ 0.0625
2633
+ 0.1229
2634
+ 0.0895
2635
+ 0.1229
2636
+ 7
2637
+ 2
2638
+ 0.1190
2639
+ 0.0559
2640
+ 0.1205
2641
+ 0.0900
2642
+ 0.1195
2643
+ 4
2644
+ 0.1490
2645
+ 0.0599
2646
+ 0.1501
2647
+ 0.0978
2648
+ 0.1480
2649
+ 40
2650
+ 3
2651
+ 1
2652
+ 0.0691
2653
+ 0.0485
2654
+ 0.0691
2655
+ 0.0607
2656
+ 0.0689
2657
+ 2
2658
+ 0.0786
2659
+ 0.0518
2660
+ 0.0787
2661
+ 0.0666
2662
+ 0.0787
2663
+ 5
2664
+ 1
2665
+ 0.0767
2666
+ 0.0503
2667
+ 0.0768
2668
+ 0.0666
2669
+ 0.0773
2670
+ 3
2671
+ 0.0919
2672
+ 0.0540
2673
+ 0.0923
2674
+ 0.0726
2675
+ 0.0919
2676
+ 7
2677
+ 2
2678
+ 0.0991
2679
+ 0.0546
2680
+ 0.0993
2681
+ 0.0796
2682
+ 0.0991
2683
+ 4
2684
+ 0.1195
2685
+ 0.0545
2686
+ 0.1198
2687
+ 0.0849
2688
+ 0.1199
2689
+ 50%
2690
+ 20
2691
+ 3
2692
+ 1
2693
+ 0.0924
2694
+ 0.0570
2695
+ 0.0927
2696
+ 0.0780
2697
+ 0.0922
2698
+ 2
2699
+ 0.1121
2700
+ 0.0657
2701
+ 0.1131
2702
+ 0.0898
2703
+ 0.1123
2704
+ 5
2705
+ 1
2706
+ 0.1059
2707
+ 0.0571
2708
+ 0.1108
2709
+ 0.0872
2710
+ 0.1096
2711
+ 3
2712
+ 0.1531
2713
+ 0.0722
2714
+ 0.1557
2715
+ 0.1088
2716
+ 0.1561
2717
+ 7
2718
+ 2
2719
+ 0.1485
2720
+ 0.0641
2721
+ 0.1572
2722
+ 0.1133
2723
+ 0.1542
2724
+ 4
2725
+ 0.1992
2726
+ 0.0845
2727
+ 0.2042
2728
+ 0.1373
2729
+ 0.2038
2730
+ 30
2731
+ 3
2732
+ 1
2733
+ 0.0723
2734
+ 0.0507
2735
+ 0.0731
2736
+ 0.0637
2737
+ 0.0727
2738
+ 2
2739
+ 0.0938
2740
+ 0.0588
2741
+ 0.0940
2742
+ 0.0794
2743
+ 0.0939
2744
+ 5
2745
+ 1
2746
+ 0.0863
2747
+ 0.0543
2748
+ 0.0874
2749
+ 0.0743
2750
+ 0.0868
2751
+ 3
2752
+ 0.1205
2753
+ 0.0630
2754
+ 0.1215
2755
+ 0.0925
2756
+ 0.1231
2757
+ 7
2758
+ 2
2759
+ 0.1156
2760
+ 0.0583
2761
+ 0.1190
2762
+ 0.0926
2763
+ 0.1178
2764
+ 4
2765
+ 0.1572
2766
+ 0.0714
2767
+ 0.1584
2768
+ 0.1144
2769
+ 0.1589
2770
+ 40
2771
+ 3
2772
+ 1
2773
+ 0.0682
2774
+ 0.0521
2775
+ 0.0683
2776
+ 0.0626
2777
+ 0.0687
2778
+ 2
2779
+ 0.0824
2780
+ 0.0555
2781
+ 0.0825
2782
+ 0.0722
2783
+ 0.0828
2784
+ 5
2785
+ 1
2786
+ 0.0844
2787
+ 0.0570
2788
+ 0.0849
2789
+ 0.0764
2790
+ 0.0855
2791
+ 3
2792
+ 0.1005
2793
+ 0.0567
2794
+ 0.1011
2795
+ 0.0812
2796
+ 0.1014
2797
+ 7
2798
+ 2
2799
+ 0.1013
2800
+ 0.0555
2801
+ 0.1024
2802
+ 0.0834
2803
+ 0.1026
2804
+ 4
2805
+ 0.1305
2806
+ 0.0652
2807
+ 0.1323
2808
+ 0.0978
2809
+ 0.1326
2810
+ 1.0
2811
+ 10%
2812
+ 20
2813
+ 3
2814
+ 1
2815
+ 0.0732
2816
+ 0.0441
2817
+ 0.0733
2818
+ 0.0570
2819
+ 0.0727
2820
+ 2
2821
+ 0.0844
2822
+ 0.0464
2823
+ 0.0843
2824
+ 0.0614
2825
+ 0.0836
2826
+
2827
+ 14
2828
+ σ
2829
+ censoring
2830
+ n
2831
+ p
2832
+ q
2833
+ MLE
2834
+ MLE2
2835
+ BCE
2836
+ BCE2
2837
+ Firth
2838
+ 5
2839
+ 1
2840
+ 0.0820
2841
+ 0.0445
2842
+ 0.0823
2843
+ 0.0612
2844
+ 0.0810
2845
+ 3
2846
+ 0.1159
2847
+ 0.0555
2848
+ 0.1161
2849
+ 0.0744
2850
+ 0.1141
2851
+ 7
2852
+ 2
2853
+ 0.1146
2854
+ 0.0476
2855
+ 0.1158
2856
+ 0.0734
2857
+ 0.1131
2858
+ 4
2859
+ 0.1401
2860
+ 0.0566
2861
+ 0.1407
2862
+ 0.0822
2863
+ 0.1365
2864
+ 30
2865
+ 3
2866
+ 1
2867
+ 0.0657
2868
+ 0.0444
2869
+ 0.0657
2870
+ 0.0547
2871
+ 0.0657
2872
+ 2
2873
+ 0.0782
2874
+ 0.0495
2875
+ 0.0781
2876
+ 0.0621
2877
+ 0.0781
2878
+ 5
2879
+ 1
2880
+ 0.0738
2881
+ 0.0453
2882
+ 0.0739
2883
+ 0.0590
2884
+ 0.0736
2885
+ 3
2886
+ 0.0960
2887
+ 0.0483
2888
+ 0.0960
2889
+ 0.0676
2890
+ 0.0946
2891
+ 7
2892
+ 2
2893
+ 0.0964
2894
+ 0.0447
2895
+ 0.0968
2896
+ 0.0661
2897
+ 0.0966
2898
+ 4
2899
+ 0.1215
2900
+ 0.0511
2901
+ 0.1219
2902
+ 0.0760
2903
+ 0.1205
2904
+ 40
2905
+ 3
2906
+ 1
2907
+ 0.0660
2908
+ 0.0474
2909
+ 0.0660
2910
+ 0.0547
2911
+ 0.0659
2912
+ 2
2913
+ 0.0716
2914
+ 0.0485
2915
+ 0.0715
2916
+ 0.0593
2917
+ 0.0718
2918
+ 5
2919
+ 1
2920
+ 0.0733
2921
+ 0.0482
2922
+ 0.0735
2923
+ 0.0607
2924
+ 0.0734
2925
+ 3
2926
+ 0.0880
2927
+ 0.0478
2928
+ 0.0881
2929
+ 0.0636
2930
+ 0.0877
2931
+ 7
2932
+ 2
2933
+ 0.0876
2934
+ 0.0432
2935
+ 0.0870
2936
+ 0.0637
2937
+ 0.0855
2938
+ 4
2939
+ 0.1008
2940
+ 0.0461
2941
+ 0.1006
2942
+ 0.0672
2943
+ 0.1005
2944
+ 25%
2945
+ 20
2946
+ 3
2947
+ 1
2948
+ 0.0863
2949
+ 0.0490
2950
+ 0.0865
2951
+ 0.0677
2952
+ 0.0852
2953
+ 2
2954
+ 0.0962
2955
+ 0.0546
2956
+ 0.0965
2957
+ 0.0721
2958
+ 0.0961
2959
+ 5
2960
+ 1
2961
+ 0.0984
2962
+ 0.0486
2963
+ 0.0999
2964
+ 0.0743
2965
+ 0.0991
2966
+ 3
2967
+ 0.1306
2968
+ 0.0608
2969
+ 0.1307
2970
+ 0.0866
2971
+ 0.1292
2972
+ 7
2973
+ 2
2974
+ 0.1296
2975
+ 0.0535
2976
+ 0.1326
2977
+ 0.0934
2978
+ 0.1293
2979
+ 4
2980
+ 0.1713
2981
+ 0.0671
2982
+ 0.1727
2983
+ 0.1061
2984
+ 0.1693
2985
+ 30
2986
+ 3
2987
+ 1
2988
+ 0.0769
2989
+ 0.0482
2990
+ 0.0772
2991
+ 0.0633
2992
+ 0.0765
2993
+ 2
2994
+ 0.0866
2995
+ 0.0526
2996
+ 0.0869
2997
+ 0.0690
2998
+ 0.0872
2999
+ 5
3000
+ 1
3001
+ 0.0866
3002
+ 0.0514
3003
+ 0.0874
3004
+ 0.0727
3005
+ 0.0871
3006
+ 3
3007
+ 0.1125
3008
+ 0.0548
3009
+ 0.1125
3010
+ 0.0806
3011
+ 0.1116
3012
+ 7
3013
+ 2
3014
+ 0.1143
3015
+ 0.0541
3016
+ 0.1154
3017
+ 0.0869
3018
+ 0.1142
3019
+ 4
3020
+ 0.1455
3021
+ 0.0612
3022
+ 0.1462
3023
+ 0.1001
3024
+ 0.1460
3025
+ 40
3026
+ 3
3027
+ 1
3028
+ 0.0672
3029
+ 0.0480
3030
+ 0.0671
3031
+ 0.0591
3032
+ 0.0671
3033
+
3034
+ 15
3035
+ σ
3036
+ censoring
3037
+ n
3038
+ p
3039
+ q
3040
+ MLE
3041
+ MLE2
3042
+ BCE
3043
+ BCE2
3044
+ Firth
3045
+ 2
3046
+ 0.0738
3047
+ 0.0487
3048
+ 0.0740
3049
+ 0.0613
3050
+ 0.0741
3051
+ 5
3052
+ 1
3053
+ 0.0775
3054
+ 0.0516
3055
+ 0.0777
3056
+ 0.0671
3057
+ 0.0781
3058
+ 3
3059
+ 0.0990
3060
+ 0.0539
3061
+ 0.0990
3062
+ 0.0768
3063
+ 0.0989
3064
+ 7
3065
+ 2
3066
+ 0.0960
3067
+ 0.0490
3068
+ 0.0966
3069
+ 0.0782
3070
+ 0.0963
3071
+ 4
3072
+ 0.1204
3073
+ 0.0573
3074
+ 0.1207
3075
+ 0.0859
3076
+ 0.1203
3077
+ 50%
3078
+ 20
3079
+ 3
3080
+ 1
3081
+ 0.0885
3082
+ 0.0542
3083
+ 0.0894
3084
+ 0.0743
3085
+ 0.0886
3086
+ 2
3087
+ 0.1151
3088
+ 0.0625
3089
+ 0.1152
3090
+ 0.0868
3091
+ 0.1141
3092
+ 5
3093
+ 1
3094
+ 0.1060
3095
+ 0.0525
3096
+ 0.1093
3097
+ 0.0877
3098
+ 0.1081
3099
+ 3
3100
+ 0.1511
3101
+ 0.0719
3102
+ 0.1540
3103
+ 0.1080
3104
+ 0.1531
3105
+ 7
3106
+ 2
3107
+ 0.1477
3108
+ 0.0683
3109
+ 0.1578
3110
+ 0.1175
3111
+ 0.1550
3112
+ 4
3113
+ 0.2017
3114
+ 0.0833
3115
+ 0.2070
3116
+ 0.1346
3117
+ 0.2080
3118
+ 30
3119
+ 3
3120
+ 1
3121
+ 0.0720
3122
+ 0.0502
3123
+ 0.0723
3124
+ 0.0649
3125
+ 0.0721
3126
+ 2
3127
+ 0.0973
3128
+ 0.0631
3129
+ 0.0974
3130
+ 0.0828
3131
+ 0.0981
3132
+ 5
3133
+ 1
3134
+ 0.0862
3135
+ 0.0565
3136
+ 0.0873
3137
+ 0.0761
3138
+ 0.0888
3139
+ 3
3140
+ 0.1239
3141
+ 0.0637
3142
+ 0.1246
3143
+ 0.0974
3144
+ 0.1251
3145
+ 7
3146
+ 2
3147
+ 0.1184
3148
+ 0.0608
3149
+ 0.1224
3150
+ 0.0919
3151
+ 0.1209
3152
+ 4
3153
+ 0.1545
3154
+ 0.0713
3155
+ 0.1574
3156
+ 0.1130
3157
+ 0.1601
3158
+ 40
3159
+ 3
3160
+ 1
3161
+ 0.0668
3162
+ 0.0505
3163
+ 0.0670
3164
+ 0.0602
3165
+ 0.0671
3166
+ 2
3167
+ 0.0843
3168
+ 0.0567
3169
+ 0.0844
3170
+ 0.0743
3171
+ 0.0842
3172
+ 5
3173
+ 1
3174
+ 0.0758
3175
+ 0.0525
3176
+ 0.0767
3177
+ 0.0669
3178
+ 0.0761
3179
+ 3
3180
+ 0.1082
3181
+ 0.0612
3182
+ 0.1088
3183
+ 0.0881
3184
+ 0.1091
3185
+ 7
3186
+ 2
3187
+ 0.1068
3188
+ 0.0586
3189
+ 0.1084
3190
+ 0.0878
3191
+ 0.1080
3192
+ 4
3193
+ 0.1386
3194
+ 0.0661
3195
+ 0.1396
3196
+ 0.1041
3197
+ 0.1410
3198
+ 3.0
3199
+ 10%
3200
+ 20
3201
+ 3
3202
+ 1
3203
+ 0.0741
3204
+ 0.0453
3205
+ 0.0742
3206
+ 0.0567
3207
+ 0.0742
3208
+ 2
3209
+ 0.0873
3210
+ 0.0484
3211
+ 0.0873
3212
+ 0.0626
3213
+ 0.0872
3214
+ 5
3215
+ 1
3216
+ 0.0900
3217
+ 0.0475
3218
+ 0.0903
3219
+ 0.0657
3220
+ 0.0885
3221
+ 3
3222
+ 0.1186
3223
+ 0.0523
3224
+ 0.1180
3225
+ 0.0742
3226
+ 0.1159
3227
+ 7
3228
+ 2
3229
+ 0.1208
3230
+ 0.0500
3231
+ 0.1211
3232
+ 0.0789
3233
+ 0.1163
3234
+ 4
3235
+ 0.1492
3236
+ 0.0581
3237
+ 0.1497
3238
+ 0.0846
3239
+ 0.1475
3240
+
3241
+ 16
3242
+ σ
3243
+ censoring
3244
+ n
3245
+ p
3246
+ q
3247
+ MLE
3248
+ MLE2
3249
+ BCE
3250
+ BCE2
3251
+ Firth
3252
+ 30
3253
+ 3
3254
+ 1
3255
+ 0.0694
3256
+ 0.0440
3257
+ 0.0693
3258
+ 0.0563
3259
+ 0.0690
3260
+ 2
3261
+ 0.0808
3262
+ 0.0497
3263
+ 0.0806
3264
+ 0.0634
3265
+ 0.0805
3266
+ 5
3267
+ 1
3268
+ 0.0782
3269
+ 0.0489
3270
+ 0.0787
3271
+ 0.0638
3272
+ 0.0781
3273
+ 3
3274
+ 0.0971
3275
+ 0.0470
3276
+ 0.0971
3277
+ 0.0658
3278
+ 0.0963
3279
+ 7
3280
+ 2
3281
+ 0.0942
3282
+ 0.0436
3283
+ 0.0938
3284
+ 0.0670
3285
+ 0.0932
3286
+ 4
3287
+ 0.1125
3288
+ 0.0475
3289
+ 0.1126
3290
+ 0.0694
3291
+ 0.1109
3292
+ 40
3293
+ 3
3294
+ 1
3295
+ 0.0623
3296
+ 0.0451
3297
+ 0.0624
3298
+ 0.0534
3299
+ 0.0623
3300
+ 2
3301
+ 0.0706
3302
+ 0.0486
3303
+ 0.0706
3304
+ 0.0574
3305
+ 0.0706
3306
+ 5
3307
+ 1
3308
+ 0.0718
3309
+ 0.0473
3310
+ 0.0718
3311
+ 0.0607
3312
+ 0.0716
3313
+ 3
3314
+ 0.0857
3315
+ 0.0444
3316
+ 0.0858
3317
+ 0.0609
3318
+ 0.0846
3319
+ 7
3320
+ 2
3321
+ 0.0867
3322
+ 0.0450
3323
+ 0.0867
3324
+ 0.0644
3325
+ 0.0861
3326
+ 4
3327
+ 0.1072
3328
+ 0.0487
3329
+ 0.1071
3330
+ 0.0727
3331
+ 0.1066
3332
+ 25%
3333
+ 20
3334
+ 3
3335
+ 1
3336
+ 0.0850
3337
+ 0.0516
3338
+ 0.0856
3339
+ 0.0686
3340
+ 0.0842
3341
+ 2
3342
+ 0.0982
3343
+ 0.0522
3344
+ 0.0984
3345
+ 0.0711
3346
+ 0.0994
3347
+ 5
3348
+ 1
3349
+ 0.0978
3350
+ 0.0527
3351
+ 0.0987
3352
+ 0.0775
3353
+ 0.0982
3354
+ 3
3355
+ 0.1329
3356
+ 0.0577
3357
+ 0.1336
3358
+ 0.0871
3359
+ 0.1328
3360
+ 7
3361
+ 2
3362
+ 0.1336
3363
+ 0.0533
3364
+ 0.1354
3365
+ 0.0922
3366
+ 0.1316
3367
+ 4
3368
+ 0.1709
3369
+ 0.0640
3370
+ 0.1731
3371
+ 0.1029
3372
+ 0.1682
3373
+ 30
3374
+ 3
3375
+ 1
3376
+ 0.0801
3377
+ 0.0550
3378
+ 0.0802
3379
+ 0.0690
3380
+ 0.0802
3381
+ 2
3382
+ 0.0889
3383
+ 0.0533
3384
+ 0.0888
3385
+ 0.0713
3386
+ 0.0883
3387
+ 5
3388
+ 1
3389
+ 0.0904
3390
+ 0.0547
3391
+ 0.0909
3392
+ 0.0757
3393
+ 0.0906
3394
+ 3
3395
+ 0.1168
3396
+ 0.0577
3397
+ 0.1171
3398
+ 0.0862
3399
+ 0.1165
3400
+ 7
3401
+ 2
3402
+ 0.1192
3403
+ 0.0606
3404
+ 0.1198
3405
+ 0.0898
3406
+ 0.1178
3407
+ 4
3408
+ 0.1496
3409
+ 0.0642
3410
+ 0.1499
3411
+ 0.1006
3412
+ 0.1486
3413
+ 40
3414
+ 3
3415
+ 1
3416
+ 0.0683
3417
+ 0.0480
3418
+ 0.0684
3419
+ 0.0602
3420
+ 0.0681
3421
+ 2
3422
+ 0.0717
3423
+ 0.0457
3424
+ 0.0718
3425
+ 0.0601
3426
+ 0.0717
3427
+ 5
3428
+ 1
3429
+ 0.0773
3430
+ 0.0511
3431
+ 0.0776
3432
+ 0.0675
3433
+ 0.0776
3434
+ 3
3435
+ 0.0972
3436
+ 0.0543
3437
+ 0.0972
3438
+ 0.0748
3439
+ 0.0970
3440
+ 7
3441
+ 2
3442
+ 0.0971
3443
+ 0.0497
3444
+ 0.0974
3445
+ 0.0745
3446
+ 0.0969
3447
+
3448
+ 17
3449
+ σ
3450
+ censoring
3451
+ n
3452
+ p
3453
+ q
3454
+ MLE
3455
+ MLE2
3456
+ BCE
3457
+ BCE2
3458
+ Firth
3459
+ 4
3460
+ 0.1166
3461
+ 0.0523
3462
+ 0.1169
3463
+ 0.0836
3464
+ 0.1159
3465
+ 50%
3466
+ 20
3467
+ 3
3468
+ 1
3469
+ 0.0883
3470
+ 0.0540
3471
+ 0.0896
3472
+ 0.0732
3473
+ 0.0895
3474
+ 2
3475
+ 0.1125
3476
+ 0.0643
3477
+ 0.1132
3478
+ 0.0881
3479
+ 0.1135
3480
+ 5
3481
+ 1
3482
+ 0.1022
3483
+ 0.0567
3484
+ 0.1054
3485
+ 0.0852
3486
+ 0.1062
3487
+ 3
3488
+ 0.1570
3489
+ 0.0786
3490
+ 0.1584
3491
+ 0.1136
3492
+ 0.1593
3493
+ 7
3494
+ 2
3495
+ 0.1419
3496
+ 0.0613
3497
+ 0.1501
3498
+ 0.1085
3499
+ 0.1489
3500
+ 4
3501
+ 0.1962
3502
+ 0.0811
3503
+ 0.2018
3504
+ 0.1282
3505
+ 0.2005
3506
+ 30
3507
+ 3
3508
+ 1
3509
+ 0.0790
3510
+ 0.0561
3511
+ 0.0793
3512
+ 0.0721
3513
+ 0.0792
3514
+ 2
3515
+ 0.0987
3516
+ 0.0617
3517
+ 0.0990
3518
+ 0.0843
3519
+ 0.0989
3520
+ 5
3521
+ 1
3522
+ 0.0842
3523
+ 0.0534
3524
+ 0.0849
3525
+ 0.0733
3526
+ 0.0852
3527
+ 3
3528
+ 0.1274
3529
+ 0.0661
3530
+ 0.1283
3531
+ 0.0978
3532
+ 0.1279
3533
+ 7
3534
+ 2
3535
+ 0.1152
3536
+ 0.0586
3537
+ 0.1183
3538
+ 0.0923
3539
+ 0.1201
3540
+ 4
3541
+ 0.1537
3542
+ 0.0689
3543
+ 0.1551
3544
+ 0.1096
3545
+ 0.1572
3546
+ 40
3547
+ 3
3548
+ 1
3549
+ 0.0648
3550
+ 0.0489
3551
+ 0.0647
3552
+ 0.0596
3553
+ 0.0650
3554
+ 2
3555
+ 0.0814
3556
+ 0.0571
3557
+ 0.0813
3558
+ 0.0723
3559
+ 0.0814
3560
+ 5
3561
+ 1
3562
+ 0.0776
3563
+ 0.0532
3564
+ 0.0781
3565
+ 0.0688
3566
+ 0.0783
3567
+ 3
3568
+ 0.1063
3569
+ 0.0629
3570
+ 0.1064
3571
+ 0.0878
3572
+ 0.1066
3573
+ 7
3574
+ 2
3575
+ 0.1045
3576
+ 0.0597
3577
+ 0.1065
3578
+ 0.0871
3579
+ 0.1056
3580
+ 4
3581
+ 0.1296
3582
+ 0.0629
3583
+ 0.1306
3584
+ 0.0961
3585
+ 0.1320
3586
+ 1.4
3587
+ Assessing the power of the tests
3588
+ Table S3: Simulated rejection rates for H0 : βq = 0q, with different combinations of σ, censoring,
3589
+ n and q when the true parameter vector is β⊤ = (ψ1⊤
3590
+ q , 0⊤
3591
+ p−q)
3592
+ σ
3593
+ censoring
3594
+ n
3595
+ q
3596
+ ψ
3597
+ MLE
3598
+ MLE2
3599
+ BCE
3600
+ BCE2
3601
+ Firth
3602
+ 0.5
3603
+ 10%
3604
+ 20
3605
+ 1
3606
+ 0.05
3607
+ 0.1047
3608
+ 0.0583
3609
+ 0.1047
3610
+ 0.0799
3611
+ 0.1030
3612
+ 0.10
3613
+ 0.1599
3614
+ 0.0956
3615
+ 0.1605
3616
+ 0.1256
3617
+ 0.1575
3618
+ 0.25
3619
+ 0.4796
3620
+ 0.3537
3621
+ 0.4798
3622
+ 0.4231
3623
+ 0.4726
3624
+ 0.50
3625
+ 0.9141
3626
+ 0.8577
3627
+ 0.9143
3628
+ 0.8909
3629
+ 0.9092
3630
+ 1.00
3631
+ 0.9993
3632
+ 0.9982
3633
+ 0.9993
3634
+ 0.9989
3635
+ 0.9993
3636
+
3637
+ 18
3638
+ σ
3639
+ censoring
3640
+ n
3641
+ q
3642
+ ψ
3643
+ MLE
3644
+ MLE2
3645
+ BCE
3646
+ BCE2
3647
+ Firth
3648
+ 2.00
3649
+ 1.0000
3650
+ 1.0000
3651
+ 1.0000
3652
+ 1.0000
3653
+ 1.0000
3654
+ 3
3655
+ 0.05
3656
+ 0.1453
3657
+ 0.0673
3658
+ 0.1446
3659
+ 0.0938
3660
+ 0.1426
3661
+ 0.10
3662
+ 0.2495
3663
+ 0.1337
3664
+ 0.2492
3665
+ 0.1763
3666
+ 0.2442
3667
+ 0.25
3668
+ 0.7927
3669
+ 0.6427
3670
+ 0.7924
3671
+ 0.7191
3672
+ 0.7858
3673
+ 0.50
3674
+ 0.9963
3675
+ 0.9891
3676
+ 0.9964
3677
+ 0.9941
3678
+ 0.9958
3679
+ 1.00
3680
+ 1.0000
3681
+ 1.0000
3682
+ 1.0000
3683
+ 1.0000
3684
+ 1.0000
3685
+ 2.00
3686
+ 1.0000
3687
+ 1.0000
3688
+ 1.0000
3689
+ 1.0000
3690
+ 1.0000
3691
+ 30
3692
+ 1
3693
+ 0.05
3694
+ 0.0876
3695
+ 0.0476
3696
+ 0.0878
3697
+ 0.0654
3698
+ 0.0862
3699
+ 0.10
3700
+ 0.1090
3701
+ 0.0585
3702
+ 0.1090
3703
+ 0.0843
3704
+ 0.1067
3705
+ 0.25
3706
+ 0.1920
3707
+ 0.1165
3708
+ 0.1924
3709
+ 0.1536
3710
+ 0.1890
3711
+ 0.50
3712
+ 0.4689
3713
+ 0.3533
3714
+ 0.4696
3715
+ 0.4154
3716
+ 0.4637
3717
+ 1.00
3718
+ 0.9177
3719
+ 0.8656
3720
+ 0.9173
3721
+ 0.8958
3722
+ 0.9139
3723
+ 2.00
3724
+ 0.9996
3725
+ 0.9991
3726
+ 0.9996
3727
+ 0.9994
3728
+ 0.9995
3729
+ 3
3730
+ 0.05
3731
+ 0.1234
3732
+ 0.0566
3733
+ 0.1234
3734
+ 0.0775
3735
+ 0.1211
3736
+ 0.10
3737
+ 0.1474
3738
+ 0.0682
3739
+ 0.1478
3740
+ 0.0952
3741
+ 0.1463
3742
+ 0.25
3743
+ 0.3334
3744
+ 0.1836
3745
+ 0.3332
3746
+ 0.2458
3747
+ 0.3284
3748
+ 0.50
3749
+ 0.7904
3750
+ 0.6497
3751
+ 0.7906
3752
+ 0.7196
3753
+ 0.7852
3754
+ 1.00
3755
+ 0.9973
3756
+ 0.9899
3757
+ 0.9973
3758
+ 0.9952
3759
+ 0.9970
3760
+ 2.00
3761
+ 1.0000
3762
+ 1.0000
3763
+ 1.0000
3764
+ 1.0000
3765
+ 1.0000
3766
+ 40
3767
+ 1
3768
+ 0.05
3769
+ 0.0863
3770
+ 0.0466
3771
+ 0.0866
3772
+ 0.0661
3773
+ 0.0862
3774
+ 0.10
3775
+ 0.0926
3776
+ 0.0497
3777
+ 0.0931
3778
+ 0.0705
3779
+ 0.0929
3780
+ 0.25
3781
+ 0.0969
3782
+ 0.0565
3783
+ 0.0967
3784
+ 0.0762
3785
+ 0.0955
3786
+ 0.50
3787
+ 0.1296
3788
+ 0.0757
3789
+ 0.1296
3790
+ 0.1009
3791
+ 0.1279
3792
+ 1.00
3793
+ 0.2785
3794
+ 0.1839
3795
+ 0.2789
3796
+ 0.2325
3797
+ 0.2739
3798
+ 2.00
3799
+ 0.6884
3800
+ 0.5744
3801
+ 0.6886
3802
+ 0.6391
3803
+ 0.6828
3804
+ 3
3805
+ 0.05
3806
+ 0.1106
3807
+ 0.0506
3808
+ 0.1105
3809
+ 0.0705
3810
+ 0.1097
3811
+ 0.10
3812
+ 0.1180
3813
+ 0.0524
3814
+ 0.1186
3815
+ 0.0740
3816
+ 0.1163
3817
+ 0.25
3818
+ 0.1388
3819
+ 0.0659
3820
+ 0.1390
3821
+ 0.0933
3822
+ 0.1367
3823
+ 0.50
3824
+ 0.2103
3825
+ 0.1063
3826
+ 0.2105
3827
+ 0.1435
3828
+ 0.2079
3829
+
3830
+ 19
3831
+ σ
3832
+ censoring
3833
+ n
3834
+ q
3835
+ ψ
3836
+ MLE
3837
+ MLE2
3838
+ BCE
3839
+ BCE2
3840
+ Firth
3841
+ 1.00
3842
+ 0.5019
3843
+ 0.3272
3844
+ 0.5016
3845
+ 0.4028
3846
+ 0.4946
3847
+ 2.00
3848
+ 0.9433
3849
+ 0.8812
3850
+ 0.9436
3851
+ 0.9173
3852
+ 0.9404
3853
+ 25%
3854
+ 20
3855
+ 1
3856
+ 0.05
3857
+ 0.1030
3858
+ 0.0649
3859
+ 0.1032
3860
+ 0.0816
3861
+ 0.1015
3862
+ 0.10
3863
+ 0.1984
3864
+ 0.1397
3865
+ 0.1987
3866
+ 0.1698
3867
+ 0.1971
3868
+ 0.25
3869
+ 0.6658
3870
+ 0.5724
3871
+ 0.6663
3872
+ 0.6237
3873
+ 0.6626
3874
+ 0.50
3875
+ 0.9857
3876
+ 0.9746
3877
+ 0.9858
3878
+ 0.9820
3879
+ 0.9854
3880
+ 1.00
3881
+ 1.0000
3882
+ 1.0000
3883
+ 1.0000
3884
+ 1.0000
3885
+ 1.0000
3886
+ 2.00
3887
+ 1.0000
3888
+ 1.0000
3889
+ 1.0000
3890
+ 1.0000
3891
+ 1.0000
3892
+ 3
3893
+ 0.05
3894
+ 0.1456
3895
+ 0.0760
3896
+ 0.1461
3897
+ 0.1067
3898
+ 0.1447
3899
+ 0.10
3900
+ 0.3205
3901
+ 0.2030
3902
+ 0.3208
3903
+ 0.2578
3904
+ 0.3192
3905
+ 0.25
3906
+ 0.9351
3907
+ 0.8836
3908
+ 0.9349
3909
+ 0.9129
3910
+ 0.9333
3911
+ 0.50
3912
+ 1.0000
3913
+ 0.9998
3914
+ 1.0000
3915
+ 1.0000
3916
+ 1.0000
3917
+ 1.00
3918
+ 1.0000
3919
+ 1.0000
3920
+ 1.0000
3921
+ 1.0000
3922
+ 1.0000
3923
+ 2.00
3924
+ 1.0000
3925
+ 1.0000
3926
+ 1.0000
3927
+ 1.0000
3928
+ 1.0000
3929
+ 30
3930
+ 1
3931
+ 0.05
3932
+ 0.0830
3933
+ 0.0507
3934
+ 0.0832
3935
+ 0.0658
3936
+ 0.0820
3937
+ 0.10
3938
+ 0.1023
3939
+ 0.0645
3940
+ 0.1022
3941
+ 0.0851
3942
+ 0.1013
3943
+ 0.25
3944
+ 0.2609
3945
+ 0.1867
3946
+ 0.2614
3947
+ 0.2255
3948
+ 0.2600
3949
+ 0.50
3950
+ 0.6668
3951
+ 0.5685
3952
+ 0.6671
3953
+ 0.6228
3954
+ 0.6630
3955
+ 1.00
3956
+ 0.9872
3957
+ 0.9777
3958
+ 0.9872
3959
+ 0.9846
3960
+ 0.9871
3961
+ 2.00
3962
+ 1.0000
3963
+ 1.0000
3964
+ 1.0000
3965
+ 1.0000
3966
+ 1.0000
3967
+ 3
3968
+ 0.05
3969
+ 0.1095
3970
+ 0.0539
3971
+ 0.1096
3972
+ 0.0741
3973
+ 0.1081
3974
+ 0.10
3975
+ 0.1457
3976
+ 0.0780
3977
+ 0.1457
3978
+ 0.1085
3979
+ 0.1451
3980
+ 0.25
3981
+ 0.4489
3982
+ 0.3164
3983
+ 0.4488
3984
+ 0.3759
3985
+ 0.4452
3986
+ 0.50
3987
+ 0.9321
3988
+ 0.8766
3989
+ 0.9319
3990
+ 0.9073
3991
+ 0.9300
3992
+ 1.00
3993
+ 1.0000
3994
+ 0.9999
3995
+ 1.0000
3996
+ 1.0000
3997
+ 1.0000
3998
+ 2.00
3999
+ 1.0000
4000
+ 1.0000
4001
+ 1.0000
4002
+ 1.0000
4003
+ 1.0000
4004
+ 40
4005
+ 1
4006
+ 0.05
4007
+ 0.0763
4008
+ 0.0458
4009
+ 0.0764
4010
+ 0.0607
4011
+ 0.0759
4012
+ 0.10
4013
+ 0.0817
4014
+ 0.0473
4015
+ 0.0819
4016
+ 0.0624
4017
+ 0.0818
4018
+ 0.25
4019
+ 0.1026
4020
+ 0.0650
4021
+ 0.1024
4022
+ 0.0816
4023
+ 0.1013
4024
+
4025
+ 20
4026
+ σ
4027
+ censoring
4028
+ n
4029
+ q
4030
+ ψ
4031
+ MLE
4032
+ MLE2
4033
+ BCE
4034
+ BCE2
4035
+ Firth
4036
+ 0.50
4037
+ 0.1539
4038
+ 0.1019
4039
+ 0.1544
4040
+ 0.1279
4041
+ 0.1528
4042
+ 1.00
4043
+ 0.3941
4044
+ 0.3050
4045
+ 0.3942
4046
+ 0.3538
4047
+ 0.3914
4048
+ 2.00
4049
+ 0.8618
4050
+ 0.8058
4051
+ 0.8619
4052
+ 0.8359
4053
+ 0.8599
4054
+ 3
4055
+ 0.05
4056
+ 0.0985
4057
+ 0.0482
4058
+ 0.0985
4059
+ 0.0675
4060
+ 0.0972
4061
+ 0.10
4062
+ 0.1036
4063
+ 0.0526
4064
+ 0.1036
4065
+ 0.0724
4066
+ 0.1026
4067
+ 0.25
4068
+ 0.1321
4069
+ 0.0728
4070
+ 0.1324
4071
+ 0.0994
4072
+ 0.1312
4073
+ 0.50
4074
+ 0.2454
4075
+ 0.1493
4076
+ 0.2453
4077
+ 0.1897
4078
+ 0.2438
4079
+ 1.00
4080
+ 0.6702
4081
+ 0.5319
4082
+ 0.6699
4083
+ 0.6006
4084
+ 0.6665
4085
+ 2.00
4086
+ 0.9917
4087
+ 0.9825
4088
+ 0.9917
4089
+ 0.9871
4090
+ 0.9910
4091
+ 50%
4092
+ 20
4093
+ 1
4094
+ 0.05
4095
+ 0.1095
4096
+ 0.0766
4097
+ 0.1097
4098
+ 0.0937
4099
+ 0.1089
4100
+ 0.10
4101
+ 0.2310
4102
+ 0.1738
4103
+ 0.2311
4104
+ 0.2048
4105
+ 0.2305
4106
+ 0.25
4107
+ 0.7900
4108
+ 0.7318
4109
+ 0.7904
4110
+ 0.7657
4111
+ 0.7880
4112
+ 0.50
4113
+ 0.9985
4114
+ 0.9966
4115
+ 0.9984
4116
+ 0.9978
4117
+ 0.9983
4118
+ 1.00
4119
+ 1.0000
4120
+ 1.0000
4121
+ 1.0000
4122
+ 1.0000
4123
+ 1.0000
4124
+ 2.00
4125
+ 1.0000
4126
+ 1.0000
4127
+ 1.0000
4128
+ 1.0000
4129
+ 1.0000
4130
+ 3
4131
+ 0.05
4132
+ 0.1629
4133
+ 0.0982
4134
+ 0.1626
4135
+ 0.1291
4136
+ 0.1618
4137
+ 0.10
4138
+ 0.3924
4139
+ 0.2878
4140
+ 0.3924
4141
+ 0.3394
4142
+ 0.3907
4143
+ 0.25
4144
+ 0.9814
4145
+ 0.9658
4146
+ 0.9814
4147
+ 0.9751
4148
+ 0.9809
4149
+ 0.50
4150
+ 1.0000
4151
+ 1.0000
4152
+ 1.0000
4153
+ 1.0000
4154
+ 1.0000
4155
+ 1.00
4156
+ 1.0000
4157
+ 1.0000
4158
+ 1.0000
4159
+ 1.0000
4160
+ 1.0000
4161
+ 2.00
4162
+ 1.0000
4163
+ 1.0000
4164
+ 1.0000
4165
+ 1.0000
4166
+ 1.0000
4167
+ 30
4168
+ 1
4169
+ 0.05
4170
+ 0.0813
4171
+ 0.0524
4172
+ 0.0815
4173
+ 0.0681
4174
+ 0.0810
4175
+ 0.10
4176
+ 0.1068
4177
+ 0.0708
4178
+ 0.1070
4179
+ 0.0882
4180
+ 0.1064
4181
+ 0.25
4182
+ 0.3089
4183
+ 0.2450
4184
+ 0.3091
4185
+ 0.2799
4186
+ 0.3080
4187
+ 0.50
4188
+ 0.7896
4189
+ 0.7294
4190
+ 0.7897
4191
+ 0.7621
4192
+ 0.7875
4193
+ 1.00
4194
+ 0.9977
4195
+ 0.9966
4196
+ 0.9977
4197
+ 0.9972
4198
+ 0.9977
4199
+ 2.00
4200
+ 1.0000
4201
+ 1.0000
4202
+ 1.0000
4203
+ 1.0000
4204
+ 1.0000
4205
+ 3
4206
+ 0.05
4207
+ 0.1060
4208
+ 0.0597
4209
+ 0.1060
4210
+ 0.0794
4211
+ 0.1056
4212
+ 0.10
4213
+ 0.1603
4214
+ 0.0953
4215
+ 0.1602
4216
+ 0.1245
4217
+ 0.1591
4218
+
4219
+ 21
4220
+ σ
4221
+ censoring
4222
+ n
4223
+ q
4224
+ ψ
4225
+ MLE
4226
+ MLE2
4227
+ BCE
4228
+ BCE2
4229
+ Firth
4230
+ 0.25
4231
+ 0.5550
4232
+ 0.4358
4233
+ 0.5550
4234
+ 0.4939
4235
+ 0.5534
4236
+ 0.50
4237
+ 0.9789
4238
+ 0.9641
4239
+ 0.9788
4240
+ 0.9724
4241
+ 0.9782
4242
+ 1.00
4243
+ 1.0000
4244
+ 1.0000
4245
+ 1.0000
4246
+ 1.0000
4247
+ 1.0000
4248
+ 2.00
4249
+ 1.0000
4250
+ 1.0000
4251
+ 1.0000
4252
+ 1.0000
4253
+ 1.0000
4254
+ 40
4255
+ 1
4256
+ 0.05
4257
+ 0.0750
4258
+ 0.0486
4259
+ 0.0753
4260
+ 0.0632
4261
+ 0.0750
4262
+ 0.10
4263
+ 0.0762
4264
+ 0.0484
4265
+ 0.0770
4266
+ 0.0635
4267
+ 0.0769
4268
+ 0.25
4269
+ 0.1008
4270
+ 0.0735
4271
+ 0.1010
4272
+ 0.0867
4273
+ 0.1015
4274
+ 0.50
4275
+ 0.1802
4276
+ 0.1331
4277
+ 0.1805
4278
+ 0.1599
4279
+ 0.1802
4280
+ 1.00
4281
+ 0.4858
4282
+ 0.4088
4283
+ 0.4854
4284
+ 0.4515
4285
+ 0.4843
4286
+ 2.00
4287
+ 0.9430
4288
+ 0.9184
4289
+ 0.9431
4290
+ 0.9321
4291
+ 0.9424
4292
+ 3
4293
+ 0.05
4294
+ 0.0900
4295
+ 0.0529
4296
+ 0.0900
4297
+ 0.0689
4298
+ 0.0896
4299
+ 0.10
4300
+ 0.0946
4301
+ 0.0530
4302
+ 0.0946
4303
+ 0.0713
4304
+ 0.0949
4305
+ 0.25
4306
+ 0.1338
4307
+ 0.0792
4308
+ 0.1340
4309
+ 0.1033
4310
+ 0.1329
4311
+ 0.50
4312
+ 0.3024
4313
+ 0.2051
4314
+ 0.3024
4315
+ 0.2539
4316
+ 0.2994
4317
+ 1.00
4318
+ 0.7963
4319
+ 0.7031
4320
+ 0.7963
4321
+ 0.7532
4322
+ 0.7945
4323
+ 2.00
4324
+ 0.9991
4325
+ 0.9974
4326
+ 0.9991
4327
+ 0.9986
4328
+ 0.9991
4329
+ 1.0
4330
+ 10%
4331
+ 20
4332
+ 1
4333
+ 0.05
4334
+ 0.0876
4335
+ 0.0476
4336
+ 0.0878
4337
+ 0.0654
4338
+ 0.0862
4339
+ 0.10
4340
+ 0.1090
4341
+ 0.0585
4342
+ 0.1090
4343
+ 0.0843
4344
+ 0.1067
4345
+ 0.25
4346
+ 0.1920
4347
+ 0.1165
4348
+ 0.1924
4349
+ 0.1536
4350
+ 0.1890
4351
+ 0.50
4352
+ 0.4689
4353
+ 0.3533
4354
+ 0.4696
4355
+ 0.4154
4356
+ 0.4637
4357
+ 1.00
4358
+ 0.9177
4359
+ 0.8656
4360
+ 0.9173
4361
+ 0.8958
4362
+ 0.9139
4363
+ 2.00
4364
+ 0.9996
4365
+ 0.9991
4366
+ 0.9996
4367
+ 0.9994
4368
+ 0.9995
4369
+ 3
4370
+ 0.05
4371
+ 0.1234
4372
+ 0.0566
4373
+ 0.1234
4374
+ 0.0775
4375
+ 0.1211
4376
+ 0.10
4377
+ 0.1474
4378
+ 0.0682
4379
+ 0.1478
4380
+ 0.0952
4381
+ 0.1463
4382
+ 0.25
4383
+ 0.3334
4384
+ 0.1836
4385
+ 0.3332
4386
+ 0.2458
4387
+ 0.3284
4388
+ 0.50
4389
+ 0.7904
4390
+ 0.6497
4391
+ 0.7906
4392
+ 0.7196
4393
+ 0.7852
4394
+ 1.00
4395
+ 0.9973
4396
+ 0.9899
4397
+ 0.9973
4398
+ 0.9952
4399
+ 0.9970
4400
+ 2.00
4401
+ 1.0000
4402
+ 1.0000
4403
+ 1.0000
4404
+ 1.0000
4405
+ 1.0000
4406
+ 30
4407
+ 1
4408
+ 0.05
4409
+ 0.0863
4410
+ 0.0466
4411
+ 0.0866
4412
+ 0.0661
4413
+ 0.0862
4414
+
4415
+ 22
4416
+ σ
4417
+ censoring
4418
+ n
4419
+ q
4420
+ ψ
4421
+ MLE
4422
+ MLE2
4423
+ BCE
4424
+ BCE2
4425
+ Firth
4426
+ 0.10
4427
+ 0.0926
4428
+ 0.0497
4429
+ 0.0931
4430
+ 0.0705
4431
+ 0.0929
4432
+ 0.25
4433
+ 0.0969
4434
+ 0.0565
4435
+ 0.0967
4436
+ 0.0762
4437
+ 0.0955
4438
+ 0.50
4439
+ 0.1296
4440
+ 0.0757
4441
+ 0.1296
4442
+ 0.1009
4443
+ 0.1279
4444
+ 1.00
4445
+ 0.2785
4446
+ 0.1839
4447
+ 0.2789
4448
+ 0.2325
4449
+ 0.2739
4450
+ 2.00
4451
+ 0.6884
4452
+ 0.5744
4453
+ 0.6886
4454
+ 0.6391
4455
+ 0.6828
4456
+ 3
4457
+ 0.05
4458
+ 0.1106
4459
+ 0.0506
4460
+ 0.1105
4461
+ 0.0705
4462
+ 0.1097
4463
+ 0.10
4464
+ 0.1180
4465
+ 0.0524
4466
+ 0.1186
4467
+ 0.0740
4468
+ 0.1163
4469
+ 0.25
4470
+ 0.1388
4471
+ 0.0659
4472
+ 0.1390
4473
+ 0.0933
4474
+ 0.1367
4475
+ 0.50
4476
+ 0.2103
4477
+ 0.1063
4478
+ 0.2105
4479
+ 0.1435
4480
+ 0.2079
4481
+ 1.00
4482
+ 0.5019
4483
+ 0.3272
4484
+ 0.5016
4485
+ 0.4028
4486
+ 0.4946
4487
+ 2.00
4488
+ 0.9433
4489
+ 0.8812
4490
+ 0.9436
4491
+ 0.9173
4492
+ 0.9404
4493
+ 40
4494
+ 1
4495
+ 0.05
4496
+ 0.0830
4497
+ 0.0507
4498
+ 0.0832
4499
+ 0.0658
4500
+ 0.0820
4501
+ 0.10
4502
+ 0.1023
4503
+ 0.0645
4504
+ 0.1022
4505
+ 0.0851
4506
+ 0.1013
4507
+ 0.25
4508
+ 0.2609
4509
+ 0.1867
4510
+ 0.2614
4511
+ 0.2255
4512
+ 0.2600
4513
+ 0.50
4514
+ 0.6668
4515
+ 0.5685
4516
+ 0.6671
4517
+ 0.6228
4518
+ 0.6630
4519
+ 1.00
4520
+ 0.9872
4521
+ 0.9777
4522
+ 0.9872
4523
+ 0.9846
4524
+ 0.9871
4525
+ 2.00
4526
+ 1.0000
4527
+ 1.0000
4528
+ 1.0000
4529
+ 1.0000
4530
+ 1.0000
4531
+ 3
4532
+ 0.05
4533
+ 0.1095
4534
+ 0.0539
4535
+ 0.1096
4536
+ 0.0741
4537
+ 0.1081
4538
+ 0.10
4539
+ 0.1457
4540
+ 0.0780
4541
+ 0.1457
4542
+ 0.1085
4543
+ 0.1451
4544
+ 0.25
4545
+ 0.4489
4546
+ 0.3164
4547
+ 0.4488
4548
+ 0.3759
4549
+ 0.4452
4550
+ 0.50
4551
+ 0.9321
4552
+ 0.8766
4553
+ 0.9319
4554
+ 0.9073
4555
+ 0.9300
4556
+ 1.00
4557
+ 1.0000
4558
+ 0.9999
4559
+ 1.0000
4560
+ 1.0000
4561
+ 1.0000
4562
+ 2.00
4563
+ 1.0000
4564
+ 1.0000
4565
+ 1.0000
4566
+ 1.0000
4567
+ 1.0000
4568
+ 25%
4569
+ 20
4570
+ 1
4571
+ 0.05
4572
+ 0.0763
4573
+ 0.0458
4574
+ 0.0764
4575
+ 0.0607
4576
+ 0.0759
4577
+ 0.10
4578
+ 0.0817
4579
+ 0.0473
4580
+ 0.0819
4581
+ 0.0624
4582
+ 0.0818
4583
+ 0.25
4584
+ 0.1026
4585
+ 0.0650
4586
+ 0.1024
4587
+ 0.0816
4588
+ 0.1013
4589
+ 0.50
4590
+ 0.1539
4591
+ 0.1019
4592
+ 0.1544
4593
+ 0.1279
4594
+ 0.1528
4595
+ 1.00
4596
+ 0.3941
4597
+ 0.3050
4598
+ 0.3942
4599
+ 0.3538
4600
+ 0.3914
4601
+ 2.00
4602
+ 0.8618
4603
+ 0.8058
4604
+ 0.8619
4605
+ 0.8359
4606
+ 0.8599
4607
+
4608
+ 23
4609
+ σ
4610
+ censoring
4611
+ n
4612
+ q
4613
+ ψ
4614
+ MLE
4615
+ MLE2
4616
+ BCE
4617
+ BCE2
4618
+ Firth
4619
+ 3
4620
+ 0.05
4621
+ 0.0985
4622
+ 0.0482
4623
+ 0.0985
4624
+ 0.0675
4625
+ 0.0972
4626
+ 0.10
4627
+ 0.1036
4628
+ 0.0526
4629
+ 0.1036
4630
+ 0.0724
4631
+ 0.1026
4632
+ 0.25
4633
+ 0.1321
4634
+ 0.0728
4635
+ 0.1324
4636
+ 0.0994
4637
+ 0.1312
4638
+ 0.50
4639
+ 0.2454
4640
+ 0.1493
4641
+ 0.2453
4642
+ 0.1897
4643
+ 0.2438
4644
+ 1.00
4645
+ 0.6702
4646
+ 0.5319
4647
+ 0.6699
4648
+ 0.6006
4649
+ 0.6665
4650
+ 2.00
4651
+ 0.9917
4652
+ 0.9825
4653
+ 0.9917
4654
+ 0.9871
4655
+ 0.9910
4656
+ 30
4657
+ 1
4658
+ 0.05
4659
+ 0.0813
4660
+ 0.0524
4661
+ 0.0815
4662
+ 0.0681
4663
+ 0.0810
4664
+ 0.10
4665
+ 0.1068
4666
+ 0.0708
4667
+ 0.1070
4668
+ 0.0882
4669
+ 0.1064
4670
+ 0.25
4671
+ 0.3089
4672
+ 0.2450
4673
+ 0.3091
4674
+ 0.2799
4675
+ 0.3080
4676
+ 0.50
4677
+ 0.7896
4678
+ 0.7294
4679
+ 0.7897
4680
+ 0.7621
4681
+ 0.7875
4682
+ 1.00
4683
+ 0.9977
4684
+ 0.9966
4685
+ 0.9977
4686
+ 0.9972
4687
+ 0.9977
4688
+ 2.00
4689
+ 1.0000
4690
+ 1.0000
4691
+ 1.0000
4692
+ 1.0000
4693
+ 1.0000
4694
+ 3
4695
+ 0.05
4696
+ 0.1060
4697
+ 0.0597
4698
+ 0.1060
4699
+ 0.0794
4700
+ 0.1056
4701
+ 0.10
4702
+ 0.1603
4703
+ 0.0953
4704
+ 0.1602
4705
+ 0.1245
4706
+ 0.1591
4707
+ 0.25
4708
+ 0.5550
4709
+ 0.4358
4710
+ 0.5550
4711
+ 0.4939
4712
+ 0.5534
4713
+ 0.50
4714
+ 0.9789
4715
+ 0.9641
4716
+ 0.9788
4717
+ 0.9724
4718
+ 0.9782
4719
+ 1.00
4720
+ 1.0000
4721
+ 1.0000
4722
+ 1.0000
4723
+ 1.0000
4724
+ 1.0000
4725
+ 2.00
4726
+ 1.0000
4727
+ 1.0000
4728
+ 1.0000
4729
+ 1.0000
4730
+ 1.0000
4731
+ 40
4732
+ 1
4733
+ 0.05
4734
+ 0.0750
4735
+ 0.0486
4736
+ 0.0753
4737
+ 0.0632
4738
+ 0.0750
4739
+ 0.10
4740
+ 0.0762
4741
+ 0.0484
4742
+ 0.0770
4743
+ 0.0635
4744
+ 0.0769
4745
+ 0.25
4746
+ 0.1008
4747
+ 0.0735
4748
+ 0.1010
4749
+ 0.0867
4750
+ 0.1015
4751
+ 0.50
4752
+ 0.1802
4753
+ 0.1331
4754
+ 0.1805
4755
+ 0.1599
4756
+ 0.1802
4757
+ 1.00
4758
+ 0.4858
4759
+ 0.4088
4760
+ 0.4854
4761
+ 0.4515
4762
+ 0.4843
4763
+ 2.00
4764
+ 0.9430
4765
+ 0.9184
4766
+ 0.9431
4767
+ 0.9321
4768
+ 0.9424
4769
+ 3
4770
+ 0.05
4771
+ 0.0900
4772
+ 0.0529
4773
+ 0.0900
4774
+ 0.0689
4775
+ 0.0896
4776
+ 0.10
4777
+ 0.0946
4778
+ 0.0530
4779
+ 0.0946
4780
+ 0.0713
4781
+ 0.0949
4782
+ 0.25
4783
+ 0.1338
4784
+ 0.0792
4785
+ 0.1340
4786
+ 0.1033
4787
+ 0.1329
4788
+ 0.50
4789
+ 0.3024
4790
+ 0.2051
4791
+ 0.3024
4792
+ 0.2539
4793
+ 0.2994
4794
+ 1.00
4795
+ 0.7963
4796
+ 0.7031
4797
+ 0.7963
4798
+ 0.7532
4799
+ 0.7945
4800
+
4801
+ 24
4802
+ σ
4803
+ censoring
4804
+ n
4805
+ q
4806
+ ψ
4807
+ MLE
4808
+ MLE2
4809
+ BCE
4810
+ BCE2
4811
+ Firth
4812
+ 2.00
4813
+ 0.9991
4814
+ 0.9974
4815
+ 0.9991
4816
+ 0.9986
4817
+ 0.9991
4818
+ 50%
4819
+ 20
4820
+ 1
4821
+ 0.05
4822
+ 0.1046
4823
+ 0.0516
4824
+ 0.1059
4825
+ 0.0799
4826
+ 0.1052
4827
+ 0.10
4828
+ 0.1149
4829
+ 0.0626
4830
+ 0.1160
4831
+ 0.0924
4832
+ 0.1153
4833
+ 0.25
4834
+ 0.2006
4835
+ 0.1172
4836
+ 0.2024
4837
+ 0.1657
4838
+ 0.1990
4839
+ 0.50
4840
+ 0.4537
4841
+ 0.3255
4842
+ 0.4557
4843
+ 0.4026
4844
+ 0.4500
4845
+ 1.00
4846
+ 0.8902
4847
+ 0.8170
4848
+ 0.8911
4849
+ 0.8667
4850
+ 0.8861
4851
+ 2.00
4852
+ 0.9984
4853
+ 0.9956
4854
+ 0.9984
4855
+ 0.9978
4856
+ 0.9981
4857
+ 3
4858
+ 0.05
4859
+ 0.1360
4860
+ 0.0625
4861
+ 0.1368
4862
+ 0.0933
4863
+ 0.1353
4864
+ 0.10
4865
+ 0.1618
4866
+ 0.0769
4867
+ 0.1631
4868
+ 0.1106
4869
+ 0.1624
4870
+ 0.25
4871
+ 0.3300
4872
+ 0.1806
4873
+ 0.3313
4874
+ 0.2462
4875
+ 0.3271
4876
+ 0.50
4877
+ 0.7474
4878
+ 0.5753
4879
+ 0.7479
4880
+ 0.6676
4881
+ 0.7438
4882
+ 1.00
4883
+ 0.9941
4884
+ 0.9790
4885
+ 0.9941
4886
+ 0.9891
4887
+ 0.9935
4888
+ 2.00
4889
+ 1.0000
4890
+ 0.9999
4891
+ 1.0000
4892
+ 1.0000
4893
+ 1.0000
4894
+ 30
4895
+ 1
4896
+ 0.05
4897
+ 0.0997
4898
+ 0.0528
4899
+ 0.1009
4900
+ 0.0789
4901
+ 0.0995
4902
+ 0.10
4903
+ 0.0967
4904
+ 0.0542
4905
+ 0.0980
4906
+ 0.0804
4907
+ 0.0970
4908
+ 0.25
4909
+ 0.1037
4910
+ 0.0571
4911
+ 0.1053
4912
+ 0.0812
4913
+ 0.1031
4914
+ 0.50
4915
+ 0.1434
4916
+ 0.0800
4917
+ 0.1443
4918
+ 0.1132
4919
+ 0.1432
4920
+ 1.00
4921
+ 0.2760
4922
+ 0.1771
4923
+ 0.2775
4924
+ 0.2355
4925
+ 0.2735
4926
+ 2.00
4927
+ 0.6428
4928
+ 0.5194
4929
+ 0.6435
4930
+ 0.5961
4931
+ 0.6367
4932
+ 3
4933
+ 0.05
4934
+ 0.1281
4935
+ 0.0609
4936
+ 0.1291
4937
+ 0.0874
4938
+ 0.1292
4939
+ 0.10
4940
+ 0.1399
4941
+ 0.0648
4942
+ 0.1411
4943
+ 0.0938
4944
+ 0.1399
4945
+ 0.25
4946
+ 0.1538
4947
+ 0.0700
4948
+ 0.1546
4949
+ 0.1020
4950
+ 0.1529
4951
+ 0.50
4952
+ 0.2266
4953
+ 0.1101
4954
+ 0.2284
4955
+ 0.1584
4956
+ 0.2252
4957
+ 1.00
4958
+ 0.4787
4959
+ 0.2954
4960
+ 0.4797
4961
+ 0.3840
4962
+ 0.4761
4963
+ 2.00
4964
+ 0.9196
4965
+ 0.8272
4966
+ 0.9201
4967
+ 0.8818
4968
+ 0.9160
4969
+ 40
4970
+ 1
4971
+ 0.05
4972
+ 0.0931
4973
+ 0.0561
4974
+ 0.0933
4975
+ 0.0771
4976
+ 0.0935
4977
+ 0.10
4978
+ 0.1154
4979
+ 0.0736
4980
+ 0.1160
4981
+ 0.0989
4982
+ 0.1162
4983
+ 0.25
4984
+ 0.2458
4985
+ 0.1747
4986
+ 0.2461
4987
+ 0.2185
4988
+ 0.2449
4989
+ 0.50
4990
+ 0.6193
4991
+ 0.5199
4992
+ 0.6204
4993
+ 0.5842
4994
+ 0.6191
4995
+
4996
+ 25
4997
+ σ
4998
+ censoring
4999
+ n
5000
+ q
5001
+ ψ
5002
+ MLE
5003
+ MLE2
5004
+ BCE
5005
+ BCE2
5006
+ Firth
5007
+ 1.00
5008
+ 0.9788
5009
+ 0.9625
5010
+ 0.9792
5011
+ 0.9737
5012
+ 0.9783
5013
+ 2.00
5014
+ 1.0000
5015
+ 1.0000
5016
+ 1.0000
5017
+ 1.0000
5018
+ 1.0000
5019
+ 3
5020
+ 0.05
5021
+ 0.1295
5022
+ 0.0670
5023
+ 0.1300
5024
+ 0.0955
5025
+ 0.1296
5026
+ 0.10
5027
+ 0.1617
5028
+ 0.0877
5029
+ 0.1623
5030
+ 0.1227
5031
+ 0.1616
5032
+ 0.25
5033
+ 0.4348
5034
+ 0.2914
5035
+ 0.4355
5036
+ 0.3646
5037
+ 0.4329
5038
+ 0.50
5039
+ 0.9074
5040
+ 0.8305
5041
+ 0.9075
5042
+ 0.8777
5043
+ 0.9061
5044
+ 1.00
5045
+ 0.9997
5046
+ 0.9990
5047
+ 0.9997
5048
+ 0.9995
5049
+ 0.9997
5050
+ 2.00
5051
+ 1.0000
5052
+ 1.0000
5053
+ 1.0000
5054
+ 1.0000
5055
+ 1.0000
5056
+ 3.0
5057
+ 10%
5058
+ 20
5059
+ 1
5060
+ 0.05
5061
+ 0.0933
5062
+ 0.0552
5063
+ 0.0934
5064
+ 0.0789
5065
+ 0.0940
5066
+ 0.10
5067
+ 0.0896
5068
+ 0.0534
5069
+ 0.0903
5070
+ 0.0760
5071
+ 0.0901
5072
+ 0.25
5073
+ 0.1085
5074
+ 0.0703
5075
+ 0.1092
5076
+ 0.0909
5077
+ 0.1095
5078
+ 0.50
5079
+ 0.1582
5080
+ 0.1068
5081
+ 0.1591
5082
+ 0.1367
5083
+ 0.1581
5084
+ 1.00
5085
+ 0.3683
5086
+ 0.2783
5087
+ 0.3682
5088
+ 0.3322
5089
+ 0.3670
5090
+ 2.00
5091
+ 0.8149
5092
+ 0.7494
5093
+ 0.8150
5094
+ 0.7908
5095
+ 0.8129
5096
+ 3
5097
+ 0.05
5098
+ 0.1139
5099
+ 0.0588
5100
+ 0.1142
5101
+ 0.0839
5102
+ 0.1138
5103
+ 0.10
5104
+ 0.1268
5105
+ 0.0660
5106
+ 0.1272
5107
+ 0.0911
5108
+ 0.1261
5109
+ 0.25
5110
+ 0.1505
5111
+ 0.0800
5112
+ 0.1509
5113
+ 0.1129
5114
+ 0.1508
5115
+ 0.50
5116
+ 0.2656
5117
+ 0.1621
5118
+ 0.2667
5119
+ 0.2096
5120
+ 0.2642
5121
+ 1.00
5122
+ 0.6334
5123
+ 0.4856
5124
+ 0.6337
5125
+ 0.5684
5126
+ 0.6320
5127
+ 2.00
5128
+ 0.9870
5129
+ 0.9676
5130
+ 0.9869
5131
+ 0.9812
5132
+ 0.9864
5133
+ 30
5134
+ 1
5135
+ 0.05
5136
+ 0.0813
5137
+ 0.0527
5138
+ 0.0815
5139
+ 0.0710
5140
+ 0.0818
5141
+ 0.10
5142
+ 0.1060
5143
+ 0.0742
5144
+ 0.1062
5145
+ 0.0938
5146
+ 0.1060
5147
+ 0.25
5148
+ 0.2841
5149
+ 0.2215
5150
+ 0.2850
5151
+ 0.2592
5152
+ 0.2840
5153
+ 0.50
5154
+ 0.7386
5155
+ 0.6650
5156
+ 0.7392
5157
+ 0.7109
5158
+ 0.7379
5159
+ 1.00
5160
+ 0.9957
5161
+ 0.9934
5162
+ 0.9957
5163
+ 0.9953
5164
+ 0.9956
5165
+ 2.00
5166
+ 1.0000
5167
+ 1.0000
5168
+ 1.0000
5169
+ 1.0000
5170
+ 1.0000
5171
+ 3
5172
+ 0.05
5173
+ 0.1090
5174
+ 0.0598
5175
+ 0.1091
5176
+ 0.0845
5177
+ 0.1085
5178
+ 0.10
5179
+ 0.1625
5180
+ 0.0979
5181
+ 0.1627
5182
+ 0.1302
5183
+ 0.1625
5184
+ 0.25
5185
+ 0.5165
5186
+ 0.3945
5187
+ 0.5168
5188
+ 0.4626
5189
+ 0.5160
5190
+
5191
+ 26
5192
+ σ
5193
+ censoring
5194
+ n
5195
+ q
5196
+ ψ
5197
+ MLE
5198
+ MLE2
5199
+ BCE
5200
+ BCE2
5201
+ Firth
5202
+ 0.50
5203
+ 0.9643
5204
+ 0.9379
5205
+ 0.9644
5206
+ 0.9546
5207
+ 0.9647
5208
+ 1.00
5209
+ 1.0000
5210
+ 0.9999
5211
+ 1.0000
5212
+ 1.0000
5213
+ 1.0000
5214
+ 2.00
5215
+ 1.0000
5216
+ 1.0000
5217
+ 1.0000
5218
+ 1.0000
5219
+ 1.0000
5220
+ 40
5221
+ 1
5222
+ 0.05
5223
+ 0.0761
5224
+ 0.0484
5225
+ 0.0764
5226
+ 0.0656
5227
+ 0.0763
5228
+ 0.10
5229
+ 0.0785
5230
+ 0.0498
5231
+ 0.0784
5232
+ 0.0660
5233
+ 0.0787
5234
+ 0.25
5235
+ 0.0999
5236
+ 0.0677
5237
+ 0.1000
5238
+ 0.0858
5239
+ 0.0998
5240
+ 0.50
5241
+ 0.1734
5242
+ 0.1272
5243
+ 0.1740
5244
+ 0.1577
5245
+ 0.1744
5246
+ 1.00
5247
+ 0.4455
5248
+ 0.3632
5249
+ 0.4463
5250
+ 0.4152
5251
+ 0.4457
5252
+ 2.00
5253
+ 0.9183
5254
+ 0.8820
5255
+ 0.9186
5256
+ 0.9057
5257
+ 0.9181
5258
+ 3
5259
+ 0.05
5260
+ 0.0943
5261
+ 0.0503
5262
+ 0.0944
5263
+ 0.0726
5264
+ 0.0941
5265
+ 0.10
5266
+ 0.0984
5267
+ 0.0551
5268
+ 0.0982
5269
+ 0.0758
5270
+ 0.0979
5271
+ 0.25
5272
+ 0.1351
5273
+ 0.0790
5274
+ 0.1353
5275
+ 0.1067
5276
+ 0.1350
5277
+ 0.50
5278
+ 0.2809
5279
+ 0.1905
5280
+ 0.2810
5281
+ 0.2407
5282
+ 0.2801
5283
+ 1.00
5284
+ 0.7410
5285
+ 0.6343
5286
+ 0.7413
5287
+ 0.6961
5288
+ 0.7394
5289
+ 2.00
5290
+ 0.9979
5291
+ 0.9943
5292
+ 0.9979
5293
+ 0.9962
5294
+ 0.9977
5295
+ 25%
5296
+ 20
5297
+ 1
5298
+ 0.05
5299
+ 0.0946
5300
+ 0.0491
5301
+ 0.0973
5302
+ 0.0769
5303
+ 0.0962
5304
+ 0.10
5305
+ 0.1101
5306
+ 0.0632
5307
+ 0.1122
5308
+ 0.0921
5309
+ 0.1111
5310
+ 0.25
5311
+ 0.1552
5312
+ 0.0921
5313
+ 0.1588
5314
+ 0.1301
5315
+ 0.1557
5316
+ 0.50
5317
+ 0.3301
5318
+ 0.2302
5319
+ 0.3361
5320
+ 0.2978
5321
+ 0.3315
5322
+ 1.00
5323
+ 0.7609
5324
+ 0.6580
5325
+ 0.7662
5326
+ 0.7280
5327
+ 0.7621
5328
+ 2.00
5329
+ 0.9882
5330
+ 0.9779
5331
+ 0.9884
5332
+ 0.9857
5333
+ 0.9875
5334
+ 3
5335
+ 0.05
5336
+ 0.1518
5337
+ 0.0713
5338
+ 0.1548
5339
+ 0.1104
5340
+ 0.1531
5341
+ 0.10
5342
+ 0.1641
5343
+ 0.0789
5344
+ 0.1660
5345
+ 0.1187
5346
+ 0.1650
5347
+ 0.25
5348
+ 0.2820
5349
+ 0.1534
5350
+ 0.2866
5351
+ 0.2116
5352
+ 0.2851
5353
+ 0.50
5354
+ 0.6287
5355
+ 0.4515
5356
+ 0.6321
5357
+ 0.5485
5358
+ 0.6267
5359
+ 1.00
5360
+ 0.9728
5361
+ 0.9334
5362
+ 0.9734
5363
+ 0.9561
5364
+ 0.9722
5365
+ 2.00
5366
+ 0.9996
5367
+ 0.9990
5368
+ 0.9996
5369
+ 0.9995
5370
+ 0.9996
5371
+ 30
5372
+ 1
5373
+ 0.05
5374
+ 0.0949
5375
+ 0.0512
5376
+ 0.0973
5377
+ 0.0763
5378
+ 0.0966
5379
+ 0.10
5380
+ 0.0947
5381
+ 0.0513
5382
+ 0.0967
5383
+ 0.0777
5384
+ 0.0946
5385
+
5386
+ 27
5387
+ σ
5388
+ censoring
5389
+ n
5390
+ q
5391
+ ψ
5392
+ MLE
5393
+ MLE2
5394
+ BCE
5395
+ BCE2
5396
+ Firth
5397
+ 0.25
5398
+ 0.1006
5399
+ 0.0547
5400
+ 0.1030
5401
+ 0.0830
5402
+ 0.1034
5403
+ 0.50
5404
+ 0.1260
5405
+ 0.0720
5406
+ 0.1284
5407
+ 0.1081
5408
+ 0.1282
5409
+ 1.00
5410
+ 0.2015
5411
+ 0.1252
5412
+ 0.2054
5413
+ 0.1746
5414
+ 0.2020
5415
+ 2.00
5416
+ 0.4956
5417
+ 0.3793
5418
+ 0.5006
5419
+ 0.4555
5420
+ 0.4956
5421
+ 3
5422
+ 0.05
5423
+ 0.1449
5424
+ 0.0694
5425
+ 0.1467
5426
+ 0.1018
5427
+ 0.1471
5428
+ 0.10
5429
+ 0.1458
5430
+ 0.0677
5431
+ 0.1476
5432
+ 0.1012
5433
+ 0.1460
5434
+ 0.25
5435
+ 0.1550
5436
+ 0.0770
5437
+ 0.1573
5438
+ 0.1129
5439
+ 0.1554
5440
+ 0.50
5441
+ 0.1971
5442
+ 0.1023
5443
+ 0.1998
5444
+ 0.1473
5445
+ 0.1990
5446
+ 1.00
5447
+ 0.3828
5448
+ 0.2358
5449
+ 0.3847
5450
+ 0.3080
5451
+ 0.3838
5452
+ 2.00
5453
+ 0.8233
5454
+ 0.6914
5455
+ 0.8247
5456
+ 0.7672
5457
+ 0.8214
5458
+ 40
5459
+ 1
5460
+ 0.05
5461
+ 0.0876
5462
+ 0.0557
5463
+ 0.0886
5464
+ 0.0761
5465
+ 0.0896
5466
+ 0.10
5467
+ 0.1062
5468
+ 0.0665
5469
+ 0.1069
5470
+ 0.0929
5471
+ 0.1077
5472
+ 0.25
5473
+ 0.1992
5474
+ 0.1387
5475
+ 0.2011
5476
+ 0.1796
5477
+ 0.2007
5478
+ 0.50
5479
+ 0.4874
5480
+ 0.3994
5481
+ 0.4895
5482
+ 0.4582
5483
+ 0.4889
5484
+ 1.00
5485
+ 0.9315
5486
+ 0.8958
5487
+ 0.9322
5488
+ 0.9211
5489
+ 0.9307
5490
+ 2.00
5491
+ 0.9998
5492
+ 0.9992
5493
+ 0.9998
5494
+ 0.9993
5495
+ 0.9997
5496
+ 3
5497
+ 0.05
5498
+ 0.1290
5499
+ 0.0686
5500
+ 0.1303
5501
+ 0.1012
5502
+ 0.1290
5503
+ 0.10
5504
+ 0.1591
5505
+ 0.0863
5506
+ 0.1599
5507
+ 0.1276
5508
+ 0.1593
5509
+ 0.25
5510
+ 0.3480
5511
+ 0.2227
5512
+ 0.3495
5513
+ 0.2931
5514
+ 0.3492
5515
+ 0.50
5516
+ 0.8009
5517
+ 0.6842
5518
+ 0.8026
5519
+ 0.7559
5520
+ 0.8014
5521
+ 1.00
5522
+ 0.9978
5523
+ 0.9952
5524
+ 0.9980
5525
+ 0.9970
5526
+ 0.9980
5527
+ 2.00
5528
+ 1.0000
5529
+ 1.0000
5530
+ 1.0000
5531
+ 1.0000
5532
+ 1.0000
5533
+ 50%
5534
+ 20
5535
+ 1
5536
+ 0.05
5537
+ 0.0830
5538
+ 0.0516
5539
+ 0.0848
5540
+ 0.0709
5541
+ 0.0850
5542
+ 0.10
5543
+ 0.0844
5544
+ 0.0534
5545
+ 0.0851
5546
+ 0.0729
5547
+ 0.0851
5548
+ 0.25
5549
+ 0.0962
5550
+ 0.0627
5551
+ 0.0975
5552
+ 0.0837
5553
+ 0.0978
5554
+ 0.50
5555
+ 0.1399
5556
+ 0.0931
5557
+ 0.1412
5558
+ 0.1250
5559
+ 0.1421
5560
+ 1.00
5561
+ 0.2814
5562
+ 0.2099
5563
+ 0.2834
5564
+ 0.2555
5565
+ 0.2825
5566
+ 2.00
5567
+ 0.6944
5568
+ 0.6067
5569
+ 0.6966
5570
+ 0.6682
5571
+ 0.6963
5572
+ 3
5573
+ 0.05
5574
+ 0.1274
5575
+ 0.0659
5576
+ 0.1280
5577
+ 0.0998
5578
+ 0.1291
5579
+
5580
+ 28
5581
+ σ
5582
+ censoring
5583
+ n
5584
+ q
5585
+ ψ
5586
+ MLE
5587
+ MLE2
5588
+ BCE
5589
+ BCE2
5590
+ Firth
5591
+ 0.10
5592
+ 0.1235
5593
+ 0.0679
5594
+ 0.1239
5595
+ 0.0968
5596
+ 0.1243
5597
+ 0.25
5598
+ 0.1422
5599
+ 0.0790
5600
+ 0.1428
5601
+ 0.1111
5602
+ 0.1440
5603
+ 0.50
5604
+ 0.2264
5605
+ 0.1375
5606
+ 0.2272
5607
+ 0.1839
5608
+ 0.2263
5609
+ 1.00
5610
+ 0.5062
5611
+ 0.3659
5612
+ 0.5086
5613
+ 0.4518
5614
+ 0.5075
5615
+ 2.00
5616
+ 0.9475
5617
+ 0.9008
5618
+ 0.9482
5619
+ 0.9326
5620
+ 0.9473
5621
+ 30
5622
+ 1
5623
+ 0.05
5624
+ 0.0803
5625
+ 0.0550
5626
+ 0.0813
5627
+ 0.0725
5628
+ 0.0815
5629
+ 0.10
5630
+ 0.1018
5631
+ 0.0705
5632
+ 0.1024
5633
+ 0.0912
5634
+ 0.1021
5635
+ 0.25
5636
+ 0.2266
5637
+ 0.1784
5638
+ 0.2283
5639
+ 0.2131
5640
+ 0.2278
5641
+ 0.50
5642
+ 0.6021
5643
+ 0.5318
5644
+ 0.6037
5645
+ 0.5811
5646
+ 0.6038
5647
+ 1.00
5648
+ 0.9777
5649
+ 0.9684
5650
+ 0.9778
5651
+ 0.9750
5652
+ 0.9778
5653
+ 2.00
5654
+ 1.0000
5655
+ 1.0000
5656
+ 1.0000
5657
+ 1.0000
5658
+ 1.0000
5659
+ 3
5660
+ 0.05
5661
+ 0.1186
5662
+ 0.0715
5663
+ 0.1187
5664
+ 0.0977
5665
+ 0.1191
5666
+ 0.10
5667
+ 0.1540
5668
+ 0.0976
5669
+ 0.1544
5670
+ 0.1271
5671
+ 0.1547
5672
+ 0.25
5673
+ 0.4131
5674
+ 0.3063
5675
+ 0.4144
5676
+ 0.3701
5677
+ 0.4141
5678
+ 0.50
5679
+ 0.9013
5680
+ 0.8456
5681
+ 0.9016
5682
+ 0.8831
5683
+ 0.9013
5684
+ 1.00
5685
+ 0.9999
5686
+ 0.9997
5687
+ 0.9999
5688
+ 0.9997
5689
+ 0.9998
5690
+ 2.00
5691
+ 1.0000
5692
+ 1.0000
5693
+ 1.0000
5694
+ 1.0000
5695
+ 1.0000
5696
+ 40
5697
+ 1
5698
+ 0.05
5699
+ 0.0764
5700
+ 0.0542
5701
+ 0.0770
5702
+ 0.0703
5703
+ 0.0775
5704
+ 0.10
5705
+ 0.0833
5706
+ 0.0577
5707
+ 0.0838
5708
+ 0.0747
5709
+ 0.0841
5710
+ 0.25
5711
+ 0.0969
5712
+ 0.0680
5713
+ 0.0980
5714
+ 0.0866
5715
+ 0.0970
5716
+ 0.50
5717
+ 0.1457
5718
+ 0.1046
5719
+ 0.1457
5720
+ 0.1321
5721
+ 0.1460
5722
+ 1.00
5723
+ 0.3327
5724
+ 0.2660
5725
+ 0.3342
5726
+ 0.3128
5727
+ 0.3336
5728
+ 2.00
5729
+ 0.8150
5730
+ 0.7679
5731
+ 0.8158
5732
+ 0.8018
5733
+ 0.8153
5734
+ 3
5735
+ 0.05
5736
+ 0.1091
5737
+ 0.0659
5738
+ 0.1099
5739
+ 0.0909
5740
+ 0.1093
5741
+ 0.10
5742
+ 0.1089
5743
+ 0.0627
5744
+ 0.1093
5745
+ 0.0868
5746
+ 0.1090
5747
+ 0.25
5748
+ 0.1428
5749
+ 0.0858
5750
+ 0.1434
5751
+ 0.1190
5752
+ 0.1441
5753
+ 0.50
5754
+ 0.2365
5755
+ 0.1545
5756
+ 0.2369
5757
+ 0.2001
5758
+ 0.2362
5759
+ 1.00
5760
+ 0.6144
5761
+ 0.4948
5762
+ 0.6150
5763
+ 0.5695
5764
+ 0.6141
5765
+ 2.00
5766
+ 0.9876
5767
+ 0.9759
5768
+ 0.9876
5769
+ 0.9839
5770
+ 0.9876
5771
+
5772
+ 29
5773
+ References
5774
+ [1] Wald Abraham. Test of statistical hypotheses concerning several parameter when the
5775
+ number of observations is large Transactions of the American Mathematical Society.
5776
+ 1943;54:426–482.
5777
+
D9AyT4oBgHgl3EQfevgJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNAyT4oBgHgl3EQf4frj/content/tmp_files/2301.00789v1.pdf.txt ADDED
@@ -0,0 +1,1166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Inertial migration in pressure-driven channel flow: beyond the Segre-Silberberg pinch
2
+ Prateek Anand1 and Ganesh Subramanian1, ∗
3
+ 1Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
4
+ We examine theoretically the inertial migration of a neutrally buoyant rigid sphere in pressure-
5
+ driven channel flow, accounting for its finite size relative to the channel width (the confinement
6
+ ratio). For sufficiently large channel Reynolds numbers (Rec), a small but finite confinement ratio
7
+ qualitatively alters the inertial lift velocity profiles obtained using a point-particle formulation. Fi-
8
+ nite size effects are shown to lead to new equilibria, in addition to the well known Segre-Silberberg
9
+ pinch locations. Consequently, a sphere can migrate to either the near-wall Segre-Silberberg equi-
10
+ libria, or the new stable equilibria located closer to the channel centerline, depending on Rec and
11
+ its initial position. Our findings are in accord with recent experiments and simulations, and have
12
+ implications for passive sorting of particles based on size, shape and other physical characteristics,
13
+ in microfluidic applications.
14
+ Inertia-driven
15
+ cross-stream
16
+ migration
17
+ of
18
+ neutrally
19
+ buoyant spheres in pipe flow, to an annular location
20
+ between the centerline and walls, was first observed by
21
+ Segre and Silberberg[1–3], the location termed the Segre-
22
+ Silberberg annulus (henceforth, SS-annulus or equilib-
23
+ ria). Equilibria arising from inertial lift forces have since
24
+ been exploited in a range of microfluidic applications[4–
25
+ 8]. The first theoretical explanations of the phenomenon
26
+ were for pressure-driven channel flow (the plane Poiseuille
27
+ profile)[9, 10], and involved determining the inertial lift
28
+ on a sphere for Rep, Rec ≪ 1, Rep and Rec being the
29
+ particle and channel Reynolds numbers, respectively [11].
30
+ The pair of zero-crossings of the O(Rep) lift profile, sym-
31
+ metrically located about the centerline, corresponded to
32
+ the SS-equilibria. The calculations were later extended
33
+ to Rec ∼ O(1) and larger[12, 13], with the SS equilibria
34
+ starting at a location intermediate between the walls and
35
+ centerline for Rec ≪ 1, and moving wallward with in-
36
+ creasing Rec. An analogous dependence on the Reynolds
37
+ number was predicted for the SS-annulus in pipe flow[14],
38
+ pointing to the similar physics governing inertial migra-
39
+ tion in the two configurations.
40
+ Later experiments[15], while confirming the original
41
+ observations[1–3], revealed an additional inner annulus,
42
+ this being the only equilibrium location beyond a cer-
43
+ tain Rec[40]. The calculations above[9, 10, 12, 13] use a
44
+ point-particle approximation, and predict only the pair of
45
+ SS-equilibria in plane Poiseuille flow, and the SS-annulus
46
+ alone in pipe flow[14], regardless of Rec. The inner an-
47
+ nulus was therefore speculated to arise from finite-size
48
+ effects[15].
49
+ Although initially regarded as a transient
50
+ feature[17], recent experiments[18] have confirmed the in-
51
+ ner annulus to be a stable equilibrium, leading to the
52
+ following migration scenario: all spherical particles fo-
53
+ cus onto the SS-annulus at low Rec (Regime A); for Rec
54
+ greater than a threshold, particles focus onto either the
55
+ SS-annulus or the aforementioned inner annulus depend-
56
+ ing on their radial distance from the centerline (Regime
57
+ B); particles focus solely onto the inner annulus beyond
58
+ a second threshold (Regime C). The threshold Rec’s de-
59
+ marcating different regimes are observed to decrease with
60
+ increasing λ, λ being the confinement ratio defined as the
61
+ ratio of the sphere radius a to channel width H (or pipe
62
+ radius). This scenario has been qualitatively confirmed
63
+ by simulations[19, 20], although the parameter ranges ex-
64
+ plored in the above studies are necessarily restricted.
65
+ In this letter, for the first time, we move beyond earlier
66
+ point-particle formulations, and theoretically examine in-
67
+ ertial migration in plane Poiseuille flow for small but fi-
68
+ nite λ, with Rec = VmaxH/ν being arbitrary; Vmax here
69
+ is the centerline speed of plane Poiseuille flow, and ν the
70
+ kinematic viscosity of the suspending fluid. Rep = λ2Rec
71
+ is assumed small, allowing analytical progress based on
72
+ a leading order Stokesian approximation. The O(λRep)
73
+ finite-size contribution is shown to qualitatively alter the
74
+ inertial lift profiles obtained from a point-particle for-
75
+ mulation (λ = 0), for large Rec, in a manner consistent
76
+ with the recent studies above. Our calculations show that
77
+ a new pair of stable equilibria, closer to the centerline,
78
+ emerges beyond a threshold Rec, even for Rep ≪ 1. We
79
+ provide a complete characterization of migration scenar-
80
+ ios in the λ−Rec plane for plane Poiseuille flow.
81
+ FIG. 1: Neutrally buoyant sphere of radius a in
82
+ pressure-driven flow through a channel of width H.
83
+ For a neutrally buoyant rigid sphere in plane Poiseuille
84
+ flow, at a non-dimensional distance of λ−1s from the
85
+ lower wall (see Fig.1), use of the generalized reciprocal
86
+ theorem leads to the following expression for the inertial
87
+ arXiv:2301.00789v1 [physics.flu-dyn] 2 Jan 2023
88
+
89
+ 12
90
+ d
91
+ H
92
+ s =
93
+ H
94
+ a
95
+ r
96
+ d
97
+ r32
98
+ lift velocity[21]:
99
+ Vp(s) = −Rep
100
+
101
+ V F +V P
102
+
103
+ uSt ·
104
+
105
+ ustr · ∇U ∞ + U ∞ · ∇ustr
106
+
107
+ dV + λRep
108
+
109
+
110
+
111
+ V ∞ ui ·
112
+
113
+ us,i · ∇us,i
114
+
115
+ dV −
116
+
117
+ V ∞
118
+
119
+ ui ·
120
+
121
+ us,i · ∇u∞
122
+ + u∞ · ∇us,i
123
+
124
+ − uSt,i ·
125
+
126
+ ustr,i · ∇U ∞ + U ∞ · ∇ustr,i
127
+ ��
128
+ dV +
129
+
130
+ V P uSt,i ·
131
+
132
+ ustr,i · ∇U ∞ + U ∞ · ∇ustr,i
133
+
134
+ dV
135
+
136
+ ,
137
+ (1)
138
+ for Rep small but finite, Vp in being scaled with Vmaxλ.
139
+ The first integral in (1) is the point-particle contribu-
140
+ tion examined earlier[9, 10, 12, 13], the domain of in-
141
+ tegration (V F + V P ) being the total volume contained
142
+ between the channel walls.
143
+ The dominant contribu-
144
+ tion to this integral comes from scales of O(H), whence
145
+ the finite sphere size may be neglected.
146
+ Thus, uSt
147
+ and ustr in the integrand are, respectively, the veloc-
148
+ ity fields due to a Stokeslet and a stresslet confined
149
+ between the channel walls.
150
+ The Stokeslet is oriented
151
+ perpendicular to the walls, while the stresslet is pro-
152
+ portional to the rate of strain tensor, associated with
153
+ the plane Poiseuille flow, evaluated at the sphere loca-
154
+ tion. This tensor is 1
155
+ 2β(1112 + 1211), with the Poiseuille
156
+ flow given by U ∞ = (βr2 + γλr2
157
+ 2)11 in a reference
158
+ frame moving with the fluid velocity at the sphere cen-
159
+ ter; here, 11 is a unit vector along the flow direction, r2
160
+ the gradient coordinate relative to the sphere center, and
161
+ β = 4(1 − 2s) and γ = −4 denote the shear rate and cur-
162
+ vature of the plane Poiseuille profile. The dependence of
163
+ the point-particle contribution on H amounts to an Rec-
164
+ dependence in non-dimensional terms, so the first term
165
+ in (1) is of the form RepF1(s, Rec), with F1 determined
166
+ semi-analytically for Rec ≪ 1[9, 10, 16], and numerically
167
+ for Rec ≳ O(1)[12, 13, 16].
168
+ The integrals within square brackets, in (1), are the
169
+ O(λRep) contributions.
170
+ The dominant contributions
171
+ to the first two integrals arise from scales of O(a), so
172
+ the channel walls may be neglected, the integration be-
173
+ ing over an unbounded fluid domain (V ∞) outside the
174
+ sphere. Thus, ui is the Stokesian velocity disturbance
175
+ due to a sphere translating under a constant force nor-
176
+ mal to the walls, and us,i is the Stokesian disturbance
177
+ due to a force-free torque-free sphere in an ambient
178
+ plane Poiseuille flow, both in an unbounded fluid do-
179
+ main; u∞ = (βr2 + λγr2
180
+ 2 − λγ/3)11 is the Poiseuille
181
+ flow in a reference frame translating with the sphere,
182
+ and differs from U ∞ above since the sphere transla-
183
+ tion speed includes a contribution (λγ/3) from the profile
184
+ curvature[21, 22]. uSt,i and ustr,i denote the unbounded-
185
+ domain Stokeslet and the stresslet, respectively, the for-
186
+ mer given by the Oseen-Burgers tensor[22]; they differ
187
+ from uSt and ustr above in not including the wall-image
188
+ contributions [22, 23]. The third integral within brackets
189
+ corrects for the inclusion of the sphere volume (V P ) in
190
+ the domain of integration of the point-particle integral.
191
+ The irrelevance of H for the finite-size integrals im-
192
+ plies that the expression within square brackets, in (1),
193
+ is only a function of s. Further, the simple domain of
194
+ integration (V ∞ or V P ) leads to this s-dependence being
195
+ evaluable in closed form[21], and (1) reduces to:
196
+ Vp(s) = Rep
197
+
198
+ F1(s, Rec) + λ1141(1 − 2s)
199
+ 216
200
+
201
+ ,
202
+ (2)
203
+ F1(s, Rec) in (2) can be computed numerically for any
204
+ Rec using a shooting method[12, 13, 16].
205
+ In Fig. 2a,
206
+ the resulting (scaled) lift profiles are shown, for different
207
+ Rec’s, over the lower half-channel with s ∈ [0, 0.5] (due
208
+ to anti-symmetry about the centerline). In addition to
209
+ the wallward movement of the lone zero-crossing (the SS-
210
+ equilibrium), the magnitude of the lift at any fixed loca-
211
+ tion, not in the neighbourhood of the wall[24], decreases
212
+ sharply with increasing Rec[13]. This reflects the weak-
213
+ ened particle-wall interaction when the walls recede be-
214
+ yond the inertial screening length of O(HRe
215
+ − 1
216
+ 2
217
+ c
218
+ ), owing
219
+ to a more rapid decay of the disturbance velocity field
220
+ at these distances. Apart from the overall decrease in
221
+ magnitude, the shape of the profile also changes, with
222
+ an intermediate concave-downward portion emerging for
223
+ Rec ≳ 296. An analogous scenario prevails for pipe flow,
224
+ although the lift is smaller than that for channel flow at
225
+ the same Rec[14, 18].
226
+ The changes in the point-particle contribution above
227
+ imply that the finite-size term in (2), although O(λ)
228
+ smaller for Rec ≪ 1, becomes comparable for sufficiently
229
+ large Rec. This is seen in Fig. 2b which shows the lift
230
+ profiles, for λ = 0.01, for the same Rec’s as in Fig. 2a. For
231
+ Rec = 50, the lift profile and the SS-equilibrium are only
232
+ marginally affected. In contrast, for Rec = Rethreshold
233
+ c1
234
+ (≈ 665 for λ = 0.01), while the SS-equilibrium (expect-
235
+ edly) has moved closer to the walls, a pair of stable and
236
+ unstable equilibria appear between it and the centerline
237
+ via a saddle-node bifurcation; the unstable equilibrium
238
+ demarcating the basins of attraction of the SS equilib-
239
+ rium and the inner stable equilibrium. The bifurcation
240
+ arises due to finite-size effects causing the region of neg-
241
+ ative curvature, in the point-particle profile, to cross the
242
+
243
+ 3
244
+ (a) λ = 0 (point-particle)
245
+ (b) λ = 0.01
246
+ FIG. 2: Inertial lift profiles in the lower half-channel for Rec ∈(50, 2000): (a) λ = 0 (point-particle); (b) λ = 0.01; the
247
+ two insets for λ = 0.01 provide a magnified view of the saddle-node bifurcations at Rethreshold
248
+ c1
249
+ ≈ 665 and
250
+ Rethreshold
251
+ c2
252
+ ≈ 1500. The black, red and blue symbols denote the SS, unstable and stable equilibria, respectively. The
253
+ arrow in (a) shows the movement of the SS equilibria with increasing Rec.
254
+ zero-lift line (upper inset in Fig. 2b). As Rec increases to
255
+ 800, the unstable equilibrium moves towards the SS equi-
256
+ librium even as both move wallward, while the inner sta-
257
+ ble equilibrium moves towards the centerline. A second
258
+ saddle-node bifurcation at Rec = Rethreshold
259
+ c2
260
+ (≈ 1500 for
261
+ λ = 0.01) leads to the near-center stable equilibrium be-
262
+ ing the only one in the half-channel for larger Rec (lower
263
+ inset in Fig. 2b). Note that for Rec ∈ (50, 2000) as in
264
+ Fig. 2b, and λ = 0.01, Rep ∈ (0.005,0.2), consistent with
265
+ the theoretical assumption of weak fluid inertial effects
266
+ on scales of O(a).
267
+ Fig. 3a plots the equilibrium loci identified above, for
268
+ λ = 0.01, as a function of Rec. The SS-branch is seen to
269
+ start at s ≈ 0.182 for Rec ≪ 1, moving to smaller s with
270
+ increasing Rec.
271
+ The inner stable equilibrium emerges
272
+ discontinuously at s ≈ 0.18 for Rec ≈ 665, moving to
273
+ larger s thereafter (the SS-equilibrium is at s ≈ 0.09 for
274
+ this Rec). The loci of the SS and the inner equilibria are
275
+ shown as sequences of black and blue dots, respectively,
276
+ with the unstable equilibrium locus connecting the two
277
+ shown as a sequence of red dots. The fold that devel-
278
+ ops in the interval Rec ∈ (665, 1500), bracketed by the
279
+ two saddle-node bifurcations, implies a hysteretic behav-
280
+ ior in an experiment [29]. A quasi-static protocol of in-
281
+ creasing flow rate will lead to spheres remaining at the
282
+ SS-equilibrium until Rec ≈ 1500, at which point they
283
+ will jump onto the new stable branch closer to the cen-
284
+ terline. In contrast, along a path of decreasing flow rate,
285
+ spheres will remain at the inner stable equilibrium down
286
+ to Rec ≈ 665, before jumping back to the SS-branch.
287
+ A behavior analogous to that in Fig. 3a occurs for
288
+ λ less than 0.01, with the pair of Rec-thresholds in-
289
+ creasing with decreasing λ.
290
+ However, the equilibrium
291
+ loci undergo a qualitative change as λ increases.
292
+ To
293
+ see this, note that the SS-equilibrium, in the point-
294
+ particle framework, emerges from a balance between an
295
+ O(βγ) curvature-induced contribution driving migration
296
+ towards higher shear rates (that is, away from the cen-
297
+ terline), and an O(β2) wall-induced repulsion. Both con-
298
+ tributions arise due to inertial forces acting on scales
299
+ of O(H) for Rec ≪ 1[16], and decrease with increasing
300
+ Rec. The O(β2) contribution decreases faster, leading to
301
+ the wallward movement of the SS-equilibrium. At O(λ),
302
+ there arises an additional curvature-induced contribution
303
+ on scales of O(a), and that drives migration towards the
304
+ centerline [32]. The opposing signs of the point-particle
305
+ and finite-size curvature-induced contributions weakens
306
+ the wallward movement (with increasing Rec) of the SS-
307
+ equilibrium for larger λ. The profound effect of this weak-
308
+ ening may be seen from Fig. 3b which shows the equilib-
309
+ rium locus for λ = 0.025. The region of multiple equi-
310
+ libria is now absent, with the SS-equilibrium smoothly
311
+ transitioning from an initial wallward movement, to a
312
+ movement towards the centerline, across Rec ≈ 200.
313
+ By identifying the equilibrium loci as a function of
314
+ Rec, for different λ, a ‘phase diagram’ of migration sce-
315
+ narios in the λ − Rec plane may be constructed as in
316
+ Fig. 4. The figure highlights the existence of three dis-
317
+ tinct regions.
318
+ Region
319
+ 1
320
+ ○, corresponding to the area
321
+ below the red curve and outside the (gray) shaded re-
322
+ gion, contains lift profiles with a single stable off-center
323
+ equilibrium in the half-channel. Region 2
324
+ ○, correspond-
325
+ ing to the shaded region, contains lift profiles with two
326
+ stable equilibria, separated by an intervening unstable
327
+ one, in the half-channel. The upper and lower bound-
328
+ aries of this region are determined by the pair of turning
329
+ points on the equilibrium locus, corresponding to saddle-
330
+ node bifurcations - these were identified in Fig 3a for
331
+ λ = 0.01. The two boundaries end in a cusp for the fold
332
+ bifurcation under consideration [33, 34], corresponding to
333
+
334
+ Rec=50
335
+ 0.2
336
+ Rec=100
337
+ Rec=300
338
+ - Rec=665
339
+ 0.1
340
+ Rec=800
341
+ — Rec=1500
342
+ Rec=1700
343
+ 0.0
344
+ -0.1
345
+ -0.2
346
+ 0.0
347
+ 0.1
348
+ 0.2
349
+ 0.3
350
+ 0.4
351
+ 0.5
352
+ S0.0005
353
+ Rec=50
354
+ Rec=660
355
+ 0.2
356
+ Rec=670
357
+ - Rec=100
358
+ Vp/Rep
359
+ 0.0000
360
+ Rec=300
361
+ Rec=665
362
+ 0.0005
363
+ 0.1
364
+ - Rec=800
365
+ - Rec=1500
366
+ 0.0010
367
+ 0.16
368
+ 0.17
369
+ 0.18
370
+ 0.19
371
+ 0.20
372
+ 0.21
373
+ — Rec=2000
374
+ S
375
+ 0.0
376
+ 0.010
377
+ -0.1
378
+ Vp/Rep
379
+ 0.005
380
+ Rec=1400
381
+ Rec=1700
382
+ 0.000
383
+ -0.2
384
+ 0.005
385
+ 0.06
386
+ 80'0
387
+ 0.10
388
+ 0.12
389
+ 0.14
390
+ s
391
+ 0.0
392
+ 0.1
393
+ 0.2
394
+ 0.3
395
+ 0.4
396
+ 0.5
397
+ s4
398
+ (a) λ = 0.01
399
+ (b) λ = 0.025
400
+ FIG. 3: Inertial equilibrium loci for (a)λ = 0.01 and (b)λ = 0.025; black, blue and red dots denote the SS, and the
401
+ inner stable and unstable equilibria, respectively. The region of multiple equilibria in (a), for Rec ∈ (665, 1500),
402
+ leads to hysteretic jumps in the equilibrium location marked by the vertical arrows A1 (s = 0.179 → 0.09) and
403
+ A2(s = 0.08 → 0.31). Vertical dashed lines in (a) and (b) denote the laminar-turbulent transition.
404
+ (λcritical, Recritical
405
+ c
406
+ ) ≡ (0.0216, 296) in Fig. 4; see top right
407
+ inset. Along either a vertical or a horizontal line, the lat-
408
+ ter corresponding to an experimental path of changing
409
+ flow rate, Region 2
410
+ ○ mediates a discontinuous transition
411
+ from the SS-equilibrium to the inner stable equilibrium
412
+ closer to the centerline. Region 3
413
+ ○, above the red curve,
414
+ includes lift profiles with the centerline as the only sta-
415
+ ble equilibrium.
416
+ Note that the centerline is always an
417
+ equilibrium by symmetry, albeit an unstable one in Re-
418
+ gions 1
419
+ ○ and 2
420
+ ○. Insets in Fig. 4 show lift profiles for
421
+ the following (λ, Rec) pairs: (0.3, 5); (b) (0.05, 10); (c)
422
+ (0.01, 1000); (d) (0.015, 1500), which are consistent with
423
+ the aforementioned features of Regions 1
424
+ ○- 3
425
+ ○.
426
+ The black dot-dashed line in Fig. 4 corresponds to
427
+ Rep = 1, and may be regarded as a rough threshold above
428
+ which the present theoretical results may no longer be
429
+ valid. This implies, for instance, that our results may not
430
+ be quantitatively accurate beyond Rec = 100 at λ = 0.1.
431
+ Importantly, the region of multiple equilibria and the
432
+ associated hysteretic transitions, predicted here for the
433
+ first time, lie well within this threshold. A second factor
434
+ that limits the observability of Region 2
435
+ ○ is the laminar-
436
+ turbulence transition. Although plane Poiseuille flow is
437
+ predicted to become linearly unstable at Rec = 11544
438
+ [35], experiments show a nonlinear subcritical transition
439
+ to turbulence at a much lower Rec ∼ O(2000)[36, 37].
440
+ This subcritical transition is shown as vertical dashed
441
+ lines in both Figs. 3 and 4. The emergence of the region
442
+ of multiple equilibria in the latter figure clearly occurs
443
+ well before the transition threshold.
444
+ While the migration pattern for a fixed λ, implied by
445
+ Fig. 4, is in qualitative agreement with studies quoted at
446
+ the beginning[15, 17–20], the inner annulus in these stud-
447
+ ies is observed for higher λ (≳ 0.05) and for Rep ≳ O(1)
448
+ - see hatched region in Fig. 4. The absence of multiple
449
+ equilibria for smaller λ is very likely due to the develop-
450
+ ment length, needed for a steady particle distribution,
451
+ being larger than the pipe length used in the experi-
452
+ ments. For Rec fixed, this length scales as O(λ−3)[15],
453
+ increasing rapidly with decreasing particle size. Notwith-
454
+ standing differences between the pipe and channel ge-
455
+ ometries, experiments with longer pipes should lead to
456
+ the hatched region in Fig. 4 extending down to smaller
457
+ λ. There remains the provocative question of how the
458
+ secondary finite-Rep region of multiple equilibria, iden-
459
+ tified in the said studies, connects to the theoretically
460
+ identified small-Rep region (Region 2
461
+ ○ in Fig. 4).
462
+ FIG. 4: Migration scenarios in the λ − Rec plane.
463
+ Inertial lift profiles for canonical (λ, Rec) pairs
464
+ (highlighted by black dots) are shown (see text for
465
+ details). The hatched region shows parameter ranges
466
+ covered in earlier studies [15, 17–20].
467
+ Apart from the fundamental significance of our find-
468
+ ings, in terms of enriching the inertial migration land-
469
+ scape, and providing an explanation for recent exper-
470
+ iments and computations, Fig. 4 may be leveraged to-
471
+ wards passive sorting in microfluidic applications. The
472
+ simplest scenario pertains to separating spheres of two
473
+
474
+ 0.4
475
+ Critical Re. for transition
476
+ 0.3
477
+ to turbulence ~ 2000
478
+ location
479
+ A2
480
+ 0.1
481
+ Lower wall
482
+ (s = 0)
483
+ ~ 665
484
+ ~ 1500
485
+ 5
486
+ 10
487
+ 50
488
+ 100
489
+ 500
490
+ 1000
491
+ Rec0.45F
492
+ 0.40
493
+ 0.35
494
+ cation
495
+ 0.30
496
+ O1
497
+ Critical Rec for transition
498
+ to turbulence ~ 2000
499
+ 0.25
500
+ 0.20
501
+ Lower wall
502
+ (s = 0)
503
+ 5
504
+ 10
505
+ 50
506
+ 100
507
+ 500
508
+ 1000
509
+ Rec(a)
510
+ (c)
511
+ 3
512
+ 0.500
513
+ d
514
+ (b)
515
+ 0.100
516
+ 0.050
517
+ 0.0220
518
+ 0.0215
519
+ 0.010
520
+ 0.0210
521
+ 2
522
+ (0.02156,296)
523
+ 0.005
524
+ 0.0205
525
+ 296
526
+ 298
527
+ 300
528
+ 302
529
+ 304
530
+ Rec
531
+ 1
532
+ 10
533
+ 100
534
+ 1000
535
+ Critical Re.fortransition
536
+ Rec
537
+ toturbulence20005
538
+ different sizes, corresponding to confinement ratios λ1
539
+ and λ2 (λ2 > λ1). An experimental protocol of changing
540
+ flow rate (Rec) for a bi-disperse suspension, with parti-
541
+ cles of the aforementioned sizes, would appear as a pair
542
+ of horizontal lines in Fig. 4, the upper one correspond-
543
+ ing to λ2. With increasing flow rate, separation would
544
+ be achieved at an Rec when the point on the λ2-line is
545
+ above Region 2
546
+ ○ (after crossing it to the right), with the
547
+ one on the λ1-line directly below.
548
+ At this Rec, larger
549
+ spheres would focus onto the pair of near-centerline sta-
550
+ ble equilibria, with the smaller ones focusing onto the
551
+ near-wall SS-equilibria. If the point on the λ1-line lies
552
+ within Region 2
553
+ ○, rather than below it, as would be the
554
+ case when λ2/λ1 is not far from unity, partial separation
555
+ will be achieved owing to smaller spheres focusing onto
556
+ both the SS and inner equilibria (the relative fractions
557
+ determined by the pair of unstable equilibria).
558
+ The implications of the near-centerline stable equilib-
559
+ ria found here go well beyond the size-sorting scenario
560
+ above.
561
+ The dependence of the interval of existence of
562
+ these equilibria, on inertial forces in a region of order the
563
+ sphere size, implies a generic sensitivity of the finite-size
564
+ contributions to the detailed characteristics of the sus-
565
+ pended microstructure.
566
+ Thus, for anisotropic particles
567
+ such as spheroids or ellipsoids, the threshold Reynolds
568
+ numbers (Rethreshold
569
+ c1
570
+ , Rethreshold
571
+ c2
572
+ ) that characterize the
573
+ region of multiple equilibria are expected to be functions
574
+ of the particle aspect ratio(s).
575
+ In contrast, the time-
576
+ averaged inertial lift for spheroids with order unity aspect
577
+ ratios, calculated within a point-particle framework for
578
+ plane Poiseuille flow, may be shown to yield SS-equilibria
579
+ identical to those for spheres[16]; the spheroid aspect
580
+ ratio only affecting the magnitude of the point-particle
581
+ lift profile, not the equilibrium locations.
582
+ The aspect-
583
+ ratio-dependence expected for the near-centerline equi-
584
+ libria will therefore be crucial for shape-sorting proto-
585
+ cols in microfluidic applications[38]. Along similar lines,
586
+ there will be a dependence on the viscosity ratio for
587
+ drops, allowing, in principle, for separation of weakly
588
+ deformed drops based on both size and viscosity ratio
589
+ differences[39]. Analogous remarks apply to other elastic
590
+ microstructures such as vesicles, capsules or red blood
591
+ cells. Migration phase diagrams for these cases will have
592
+ at least one additional axis - this axis could be the appro-
593
+ priate shape parameter for anisotropic particles (aspect
594
+ ratio for spheroids) or the viscosity ratio for drops. In
595
+ the latter case, the degree of deformability, as character-
596
+ ized by the Capillary number, offers an additional degree
597
+ of freedom. It would be of interest, in future, to quan-
598
+ titatively determine these phase diagrams, allowing for
599
+ rational design of passive sorting protocols.
600
+ ∗ sganesh@jncasr.ac.in
601
+ [1] Segre, G., & A. Silberberg. Nature 189.4760 (1961): 209-
602
+ 210.
603
+ [2] Segre, G., & Silberberg, A. J. (1962). Journal of fluid me-
604
+ chanics, 14(1), 115-135.
605
+ [3] Segre, G., & Silberberg, A. (1962). Journal of fluid me-
606
+ chanics, 14(1), 136-157.
607
+ [4] Di Carlo, D., Irimia, D., Tompkins, R. G., & Toner, M.
608
+ (2007). Proceedings of the National Academy of Sciences,
609
+ 104(48), 18892-18897.
610
+ [5] Di Carlo, D. (2009). Lab on a Chip, 9(21), 3038-3046.
611
+ [6] Amini, H., Lee, W., & Di Carlo, D. (2014). Lab on a Chip,
612
+ 14(15), 2739-2761.
613
+ [7] Paie, P., Bragheri, F., Di Carlo, D., & Osellame, R. (2017).
614
+ Microsystems & nanoengineering, 3(1), 1-8.
615
+ [8] Li, M., van Zee, M., Goda, K., & Di Carlo, D. (2018). Lab
616
+ on a Chip, 18(17), 2575-2582.
617
+ [9] Ho, B. P., & Leal, L. G. (1974). Journal of fluid mechanics,
618
+ 65(2), 365-400.
619
+ [10] Vasseur, P., & Cox, R. G. (1976). Journal of Fluid Me-
620
+ chanics, 78(2), 385-413.
621
+ [11] Rec will be used here to denote the Reynolds number
622
+ based on the relevant macroscopic scale, either the channel
623
+ width or the pipe diameter.
624
+ [12] Schonberg, J. A., & Hinch, E. J. (1989). Journal of Fluid
625
+ Mechanics, 203, 517-524.
626
+ [13] Asmolov, E. S. (1999). Journal of fluid mechanics, 381,
627
+ 63-87.
628
+ [14] Matas, J. P., Morris, J. F., & Guazzelli, E. (2009). Jour-
629
+ nal of Fluid Mechanics, 621, 59-67.
630
+ [15] Matas, J. P., Morris, J. F., & Guazzelli, ´E. (2004). Jour-
631
+ nal of fluid mechanics, 515, 171-195.
632
+ [16] Anand, P., & Subramanian, G. (2022). To be submitted
633
+ to JFM.
634
+ [17] Morita, Y., Itano, T., & Sugihara-Seki, M. (2017). Jour-
635
+ nal of Fluid Mechanics, 813, 750-767.
636
+ [18] Nakayama, S., Yamashita, H., Yabu, T., Itano, T., &
637
+ Sugihara-Seki, M. (2019). Journal of Fluid Mechanics, 871,
638
+ 952-969.
639
+ [19] Shao, X., Yu, Z., & Sun, B. (2008). Physics of Fluids,
640
+ 20(10), 103307.
641
+ [20] Pan, T. W., Li, A., & Glowinski, R. (2021). Physics of
642
+ Fluids, 33(3), 033301.
643
+ [21] Supplemental material.
644
+ [22] Kim, S., & Karrila, S. J. (2013). Microhydrodynamics:
645
+ principles and selected applications. Courier Corporation.
646
+ [23] Leal, L. G. (2007). Advanced transport phenomena: fluid
647
+ mechanics and convective transport processes (Vol. 7).
648
+ Cambridge University Press.
649
+ [24] Within a point-particle framework, the inertial lift veloc-
650
+ ity increases to approximately 1.52, independent of Rec,
651
+ on approach towards either wall[16].
652
+ [25] Leal, L. G., & Hinch, E. J. (1971). The effect of weak
653
+ Brownian rotations on particles in shear flow. Journal of
654
+ Fluid Mechanics, 46(4), 685-703.
655
+ [26] Dabade, V., Marath, N. K., & Subramanian, G. (2016).
656
+ The effect of inertia on the orientation dynamics of
657
+ anisotropic particles in simple shear flow. Journal of Fluid
658
+ Mechanics, 791, 631-703.
659
+ [27] Marath, N. K., & Subramanian, G. (2017). The effect
660
+ of inertia on the time period of rotation of an anisotropic
661
+ particle in simple shear flow. Journal of Fluid Mechanics,
662
+ 830, 165-210.
663
+ [28] Okagawa, A., Cox, R. G., & Mason, S. G. (1973). The
664
+ kinetics of flowing dispersions. VI. Transient orientation
665
+
666
+ 6
667
+ and rheological phenomena of rods and discs in shear flow.
668
+ Journal of Colloid and Interface Science, 45(2), 303-329.
669
+ [29] Such a hysteresis will arise only in the absence of stochas-
670
+ tic fluctuations, or for short channels. Positional fluctua-
671
+ tions arising either from weak Brownian motion [25–27],
672
+ or from pair-hydrodynamic interactions[28], will eliminate
673
+ hysteretic behavior in sufficiently long channels.
674
+ [30] Ho, B. P., & Leal, L. G. (1976). Migration of rigid spheres
675
+ in a two-dimensional unidirectional shear flow of a second-
676
+ order fluid. Journal of Fluid Mechanics, 76(4), 783-799.
677
+ [31] Chan, P. H., & Leal, L. (1979). The motion of a de-
678
+ formable drop in a second-order fluid. Journal of fluid me-
679
+ chanics, 92(1), 131-170.
680
+ [32] For cross-stream migration in plane Poiseuille flow
681
+ arising from mechanisms other than inertia such as
682
+ viscoelasticity[30] or drop deformation[31], the lift at lead-
683
+ ing order arises from this curvature-induced finite size con-
684
+ tribution, and drives migration towards the centerline.
685
+ [33] Zeeman, E. C. (1976). Catastrophe theory. Scientific
686
+ American, 234(4), 65-83.
687
+ [34] Dubey, P., Roy, A., & Subramanian, G. (2022). Linear
688
+ stability of a rotating liquid column revisited. Journal of
689
+ Fluid Mechanics, 933.
690
+ [35] Orszag, S. A. (1971). Journal of Fluid Mechanics, 50(4),
691
+ 689-703.
692
+ [36] Carlson, D. R., Widnall, S. E., & Peeters, M. F. (1982).
693
+ Journal of Fluid Mechanics, 121, 487-505.
694
+ [37] Nishioka, M., & Asai, M. (1985). Journal of Fluid Me-
695
+ chanics, 150, 441-450.
696
+ [38] Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho,
697
+ K., Doshi, N., ... & Di Carlo, D. (2012). Continuous iner-
698
+ tial focusing and separation of particles by shape. Physical
699
+ Review X, 2(3), 031017.
700
+ [39] The SS-equilibria for drops, within the framework of a
701
+ point-particle formulation, may be shown to be identical
702
+ to those for rigid spheres. The point-particle disturbance
703
+ velocity field depends only on the strength of the induced
704
+ stresslet, and as a result, the inertial lift for a spherical
705
+ drop may be obtained from that for a rigid sphere by mul-
706
+ tiplication by the ratio of the corresponding stresslet co-
707
+ efficients.
708
+ [40] Wherever appropriate,
709
+ Rec
710
+ is taken to denote the
711
+ Reynolds number based on the pipe diameter and the
712
+ mean velocity of the flow through the pipe.
713
+
714
+ 1
715
+ Supplemental material
716
+ Following [S1] and [S2], one may use a generalized reciprocal theorem formulation to derive a formal expression for
717
+ the inertial lift velocity of a neutrally buoyant sphere, in an ambient plane Poiseuille flow, for arbitrary Rep. In the
718
+ limit Rep ≪ 1, the non-dimensional inertial lift is O(Rep), being given by:
719
+ Vp = −Rep
720
+
721
+ V F u · (us · ∇us + us · ∇u∞ + u∞ · ∇us) dV.
722
+ (S1)
723
+ where Vp is scaled by Vmaxa/H or Vmaxλ.
724
+ The actual problem in the reciprocal theorem framework corresponds to the one of interest, that is, a neutrally
725
+ buoyant sphere freely moving in wall-bounded plane Poiseuille flow for Rep and λ small but finite, with Rec = λ−2Rep
726
+ being arbitrary. For purposes of calculating the inertial lift to O(Rep), the disturbance velocity field in the actual
727
+ problem may be replaced by its Stokesian approximation. Thus, us, in the inertial acceleration terms in (S1), is the
728
+ Stokesian disturbance field due to a force-free and torque-free sphere translating with Up in an ambient plane Poiseuille
729
+ flow. In a reference frame moving with the sphere center, the latter flow is given by u∞ = (α + βr2 + λγr2
730
+ 2)11 − Up
731
+ where, with the sphere at a distance λ−1s (in units of a) from the lower wall, one has α = 4λ−1s(1 − s), β = 4(1 − 2s)
732
+ and γ = −4. Here, α11 −Up and β are the ambient slip and shear rate at the sphere center, the latter varying linearly
733
+ across the channel and equalling zero at the centerline (s = 0.5); γ denotes the constant curvature of the Poiseuille
734
+ profile. Up is determined using the force-free constraint in Faxen’s law for translation. This leads to Up = (α+λγ/3)11
735
+ and, as a result, the ambient flow in the said reference frame takes the form u∞ = (βr2 + λγr2
736
+ 2 − λγ/3)11. The test
737
+ problem in the reciprocal theorem framework corresponds to the Stokesian translation of a sphere in an otherwise
738
+ quiescent fluid confined between parallel walls (ones that bound the Poiseuille flow in the actual problem), under a
739
+ constant force acting along the gradient direction. The test disturbance field u multiplies the inertial acceleration
740
+ terms involving us in (S1).
741
+ We now examine the length scales that contribute dominantly to the integral in (S1), beginning with the limit Rec ≪
742
+ 1, when the inertial screening length (HRe−1/2
743
+ c
744
+ ) is much larger than the channel width, and therefore, irrelevant. The
745
+ dominant contributions to the volume integral in this limit may arise from either scales of O(a) (the inner region) or
746
+ those of O(H) (the outer region). In order to assess their relative magnitudes, we consider the intermediate asymptotic
747
+ interval 1 ≪ r ≪ λ−1 (r is measured in units of a) where both the finite size of the sphere and wall-induced image
748
+ contributions may be neglected at leading order. For r in this interval, u ∼ 1/r corresponding to the farfield Stokeslet,
749
+ and us ∼ β/r2 + γλ/r3 corresponding to the farfield stresslet and force-quadrupole contributions associated with the
750
+ linear and quadratic ambient flow components, respectively. Using these forms along with u∞ ∼ βr + γλr2, one
751
+ obtains the following estimates for parts of the integrand involving the linear and nonlinear components of the inertial
752
+ acceleration:
753
+ • u · (us · ∇u∞ + u∞ · ∇us) ∼ β2
754
+ r3 + λβγ
755
+ r2
756
+ + λγβ
757
+ r4
758
+ + γ2
759
+ r3
760
+ (linear),
761
+ • u · (us · ∇us) ∼ β2
762
+ r6 + λβγ
763
+ r7
764
+ + λ2γ2
765
+ r8
766
+ (nonlinear).
767
+ Using dV ∼ O(r2dr), one obtains the following estimates for contributions to the lift velocity integral:
768
+ V linear
769
+ p
770
+ ∼ Rep
771
+ � r
772
+ dr′
773
+ � β2
774
+ r′ + λβγ + λγβ
775
+ r′2 + λ2γ2
776
+ r′
777
+
778
+ ,
779
+ ∼ Rep
780
+
781
+ β2 ln r + λβγr + λγβ
782
+ r
783
+ + λ2γ2 ln r
784
+
785
+ ,
786
+ (S2a)
787
+ V non-linear
788
+ p
789
+ ∼ Rep
790
+ � r
791
+ dr′
792
+ � β2
793
+ r′4 + λβγ
794
+ r′5 + λ2γ2
795
+ r′6
796
+
797
+ ,
798
+ ∼ Rep
799
+ � β2
800
+ r3 + λβγ
801
+ r4
802
+ + λ2γ2
803
+ r5
804
+
805
+ .
806
+ (S2b)
807
+ The algebraically growing terms in (S2a) will be dominated by scales of O(H), and the resulting contributions to the
808
+ lift velocity are obtained by cutting off the divergence (for r → ∞) at r ∼ O(λ−1); this cut-off recognizes the wall-
809
+ induced screening of the unbounded-domain behavior that eventually leads to a more rapid decay for r ≫ O(λ−1),
810
+ and thence, convergence. The algebraically decaying terms in both (S2a) and (S2b) will be dominated by scales of
811
+
812
+ 2
813
+ O(a), with the lift velocity contributions now obtained by cutting off the divergence (for r → 0) at r ∼ O(1). The ln r
814
+ terms in (S2a) imply the dominance of the intermediate (matching) interval 1 ≪ r ≪ λ−1, leading, in principle, to
815
+ contributions of O(β2 ln λ−1) and O(λ2γ2 ln λ−1) to the lift velocity; logarithmically smaller contributions of O(β2)
816
+ and O(λ2γ2) must arise from both scales of O(a) (r ∼ O(1)) and O(H) (r ∼ O(λ−1)). However, contributions from
817
+ the inner and matching regions turn out to be zero by symmetry. Owing to the absence of walls at leading order, the
818
+ O(β2) and O(β2 ln λ−1) inner and matching-region contributions must correspond to the lift on a neutrally buoyant
819
+ sphere (or the equivalent point-particle singularity) in an unbounded simple shear flow; likewise, the O(λ2γ2) and
820
+ O(λ2γ2 ln λ−1) inner and matching-region contributions must correspond to the lift on a sphere at the origin of an
821
+ unbounded quadratic flow. In both these scenarios, however, the two lateral directions are equivalent, and there can
822
+ be no lift. That these contributions are zero may also be seen from the fact that one cannot construct a true vector,
823
+ the inertial lift velocity, from any quadratic combination of the velocity gradient tensor associated with an ambient
824
+ linear flow (simple shear for the present case of an ambient Poiseuille flow), or from any quadratic combination of the
825
+ third order tensor that would characterize a generic quadratic flow. Crucially, the O(β2) and O(λ2γ2) outer-region
826
+ contributions are not subject to the above symmetry-argument-based limitation. This is due to the importance of
827
+ walls at leading order, and the implied availability of an additional vector (the unit normal characterizing the wall
828
+ orientations) to construct the lift velocity vector.
829
+ Based on the above arguments, one is led to the following lift velocity contributions from the linear and nonlinear
830
+ inertial terms in the integrand:
831
+ V linear
832
+ p
833
+ ∼ Rep
834
+
835
+ β2(outer) + βγ(outer) + λγβ(inner) + λ2γ2(outer)
836
+
837
+ ,
838
+ (S3a)
839
+ V non-linear
840
+ p
841
+ ∼ Rep λβγ(inner).
842
+ (S3b)
843
+ From (S3a) and (S3b), the leading order contribution to the lift velocity is seen to come from the linearized inertial
844
+ terms, and from scales of O(H), with there being two such contributions: one proportional to β2 that characterizes
845
+ wall-induced repulsion in an ambient linear flow, and the other proportional to βγ that denotes the contribution due
846
+ to the ambient profile curvature. The dominance of scales of O(H) implies that, for purposes of evaluating the above
847
+ contributions, the sphere in both the actual and test problems can be replaced by the corresponding point singularity.
848
+ Thus, at leading order, one only need consider the terms in (S1) that are linear in us, and further, us and u may be
849
+ approximated as the disturbance fields due to a stresslet (ustr) and Stokeslet (uSt), respectively. Note that uSt and
850
+ ustr are a combination of the unbounded domain components and additional wall-image contributions, both of which
851
+ are of comparable importance on scales of O(H); detailed expressions are given in [S2]. Thus, the inertial lift velocity
852
+ at leading order in Rep and λ reduces to:
853
+ Vp = −Rep
854
+
855
+ V F +V P uSt · (ustr · ∇U ∞ + U ∞ · ∇ustr) dV,
856
+ (S4)
857
+ where the O(λγ) term in u∞ has been neglected, so U ∞ = (βr2 + λγr2
858
+ 2)11 in (S4). Further, on account of the
859
+ subdominance of scales of O(a), the domain of integration has been extended to include the particle volume (V P ),
860
+ with an accompanying change in the integration variable that is now the position vector scaled by H (rather than a as
861
+ in (S1)). (S4) is the point-particle approximation for the lift velocity for Rec ≪ 1, and corresponds to a dimensional
862
+ lift velocity of O(V 2
863
+ maxλ2a/ν). The use of a rescaled (with λ) integration variable, as mentioned above, leads to the
864
+ integral in (S4) being only a function of s; the detailed evaluation of this integral, via a partial Fourier transform, is
865
+ discussed in [S2].
866
+ For Rec ≳ O(1), the scaling arguments used above to establish the dominance of the outer region contributions
867
+ still hold. The outer region now corresponds to scales of order the inertial screening length or larger, so that the
868
+ farfield Stokesian estimate for us, used above to establish outer-region dominance, remains valid only for 1 ≪ r ≪
869
+ λ−1Re
870
+ − 1
871
+ 2
872
+ c
873
+ , with the disturbance velocity field in the actual problem decaying more rapidly for larger r. The outer-
874
+ region dominance for Rec ≳ O(1) implies that this disturbance field may still be approximated as being driven by
875
+ a stresslet forcing, although the forcing appears in the linearized Navier-Stokes equations. While there still exist
876
+ physically distinct contributions arising from profile curvature and wall-induced repulsion, the lift velocity can no
877
+ longer be written as an additive superposition of the two. Furthermore, despite the relevance of the inertial screening
878
+ length, asymptotically larger scales of O(H) continue to be relevant. The ratio of these two outer scales involves Rec
879
+ which appears in the governing linearized equations of motion. Thus, the version of the reciprocal theorem integral
880
+ in (S4) for Rec ≳ O(1), with us replaced by its finite-Rec analog, will be a function of both s and Rec. Although
881
+ the actual calculation is more easily accomplished via a direct solution of the partially Fourier transformed ODE’s
882
+ using a shooting method [S2, S3], one may nevertheless write the point-particle lift velocity contribution formally in
883
+ the form (V 2
884
+ maxλ2a/ν)F1(s; Rec).
885
+
886
+ 3
887
+ The modification of the leading order lift velocity, for λ small but finite, arises from contributions in (S3) that
888
+ are of a smaller order in λ than the outer-region contributions included in (S4). The largest such contributions are
889
+ proportional to λ(βγ), and pertain to the inner region, arising from both the linear and nonlinear inertial terms
890
+ in (S3a) and (S3b).
891
+ The βγ-dependence implies that these contributions arise solely due to the coupling of the
892
+ shear and curvature of the ambient profile, consistent with earlier symmetry arguments. Further, scales of O(H) are
893
+ irrelevant, implying that the λ(βγ) terms will lead to contributions independent of Rec, with the dimensional lift
894
+ velocity being of the form (V 2
895
+ maxλ3a/ν)F2(s), as in equation (2) of the main manuscript. A second implication of the
896
+ O(λβγ) contributions being from the inner region is that they arise independently of the outer-region point-particle
897
+ contribution.
898
+ Said differently, the (V 2
899
+ maxλ2a/ν)F1(s; Rec) and (V 2
900
+ maxλ3a/ν)F2(s) contributions to the inertial lift
901
+ correspond to the leading order terms of the underlying asymptotic expansions of the integrand in the outer and inner
902
+ regions, respectively. This implies that the O(V 2
903
+ maxλ3a/ν)F2(s) contribution is not a correction to the leading order
904
+ point-particle result, and thereby, not constrained to be small in comparison. This feature is especially significant
905
+ since the emergence of multiple equilibria in the lift profiles (Region 2
906
+ ○ in Fig 4 of the main manuscript) is only made
907
+ possible by allowing the finite-size contribution to be comparable to the leading point-particle one.
908
+ Note that there are other corrections for finite λ: for instance, the O(λ2γ2) outer-region contribution in (S3), the
909
+ correction to us arising from λ-dependent corrections to the stresslet coefficient, etc. While both of these may be
910
+ shown to be of a smaller order in λ for Rec ≪ 1, they will be far smaller for large Rec owing to an overall weakening
911
+ of wall-induced corrections. This weakening arises from the more rapid decay of the disturbance velocity field for
912
+ distances larger than O(HRe
913
+ − 1
914
+ 2
915
+ c
916
+ ). This Rec-dependence is important since, as explained in the main manuscript, the
917
+ finite-size contributions become significant only at large Rec owing to the reduction in the magnitude of the point-
918
+ particle contribution with increasing Rec. Clearly, the only finite-size contributions of relevance correspond to the
919
+ O(λβγ) terms in (S3a) and (S3b). To calculate these, we return to the original reciprocal theorem result, viz. (S1),
920
+ and subtract and add back the leading point-particle contribution given by (S4):
921
+ Vp = − Rep
922
+
923
+ V F +V P uSt ·
924
+
925
+ ustr · ∇U ∞ + U ∞ · ∇ustr
926
+
927
+ dV
928
+ − Rep
929
+ ��
930
+ V F u ·
931
+
932
+ us · ∇us + us · ∇u∞ + u∞ · ∇us
933
+
934
+ dV
935
+
936
+
937
+ V F +V P uSt ·
938
+
939
+ ustr · ∇U ∞ + U ∞ · ∇ustr
940
+
941
+ dV
942
+
943
+ .
944
+ (S5)
945
+ Splitting the point-particle contribution within brackets into separate integrals over the fluid (V F ) and particle (V P )
946
+ domains, separating the nonlinear and linear inertial terms in the original reciprocal theorem integral, and then
947
+ combining the integrals involving the linear inertial terms, one obtains:
948
+ Vp = − Rep
949
+
950
+ V F +V P uSt ·
951
+
952
+ ustr · ∇U ∞ + U ∞ · ∇ustr
953
+
954
+ dV
955
+ − Rep
956
+ ��
957
+ V F u ·
958
+
959
+ us · ∇us
960
+
961
+ dV +
962
+
963
+ V F
964
+
965
+ u ·
966
+
967
+ us · ∇u∞ + u∞ · ∇us
968
+
969
+ − uSt ·
970
+
971
+ ustr · ∇U ∞ + U ∞ · ∇ustr
972
+ ��
973
+ dV −
974
+
975
+ V P uSt ·
976
+
977
+ ustr · ∇U ∞
978
+ + U ∞ · ∇ustr
979
+
980
+ dV
981
+
982
+ .
983
+ (S6)
984
+ The last integral within brackets, over V P , evidently involves scales of O(a), and we therefore focus on the remaining
985
+ two integrals. The first integral within brackets contains the nonlinear inertial term, and as already seen in (S2b), the
986
+ integrand exhibits an algebraic decay for r ≫ 1. The second integral involves the difference between the linearized
987
+ inertial terms, and their approximations based on point-particle representations of the corresponding velocity fields,
988
+ as a result of which growing terms cancel out, and only the algebraically decaying one in (S3a) survives. The algebraic
989
+ decay implies the dominance of scales of O(a), and therefore, that wall-induced image contributions do not contribute
990
+ at leading order. Thus, the leading approximations of all of the integrals within brackets, in (S6), may be obtained by
991
+
992
+ 4
993
+ replacing the original fluid domain (V F ) by a completely unbounded one (V ∞), and (S6) may be written in the form:
994
+ Vp = − Rep
995
+
996
+ V F +V P uSt ·
997
+
998
+ ustr · ∇U ∞ + U ∞ · ∇ustr
999
+
1000
+ dV.
1001
+ + λRep
1002
+
1003
+
1004
+
1005
+ V ∞ ui ·
1006
+
1007
+ us,i · ∇us,i
1008
+
1009
+ dV −
1010
+
1011
+ V ∞
1012
+
1013
+ ui ·
1014
+
1015
+ us,i · ∇u∞ + u∞ · ∇us,i
1016
+
1017
+ − uSt,i ·
1018
+
1019
+ ustr,i · ∇U ∞ + U ∞ · ∇u(1)
1020
+ str,i
1021
+ ��
1022
+ dV +
1023
+
1024
+ V P uSt,i ·
1025
+
1026
+ ustr,i · ∇U ∞
1027
+ + U ∞ · ∇ustr,i
1028
+
1029
+ dV
1030
+
1031
+ ,
1032
+ (S7)
1033
+ where both the actual velocity fields and their point-particle approximations, that appear in the three bracketed
1034
+ integrals, are now approximated by simpler expressions pertaining to an unbounded fluid domain; these are indicated
1035
+ by the additional subscript ‘i’, and are given below::
1036
+ ui = 12
1037
+ 8π ·
1038
+ �I
1039
+ r + rr
1040
+ r3
1041
+
1042
+ + 12
1043
+ 8π ·
1044
+ � I
1045
+ 3r3 − rr
1046
+ r5
1047
+
1048
+ ,
1049
+ (S8a)
1050
+ us,i = −5
1051
+ 2
1052
+ (E : rr)r
1053
+ r5
1054
+
1055
+ �E · r
1056
+ r5
1057
+ − 5(E : rr)r
1058
+ 2r7
1059
+
1060
+ + λγ
1061
+
1062
+
1063
+ 1
1064
+ 24r9
1065
+
1066
+ 3r6 + r4(−23r2
1067
+ 1 + r2
1068
+ 2 − 8r2
1069
+ 3 − 3) + 15r2�
1070
+ r2
1071
+ 1(7r2
1072
+ 2 + 1) + r2
1073
+ 2
1074
+
1075
+ − 105r2
1076
+ 1r2
1077
+ 2
1078
+
1079
+ 11 +
1080
+ 5
1081
+ 8r9 (r2 − 1)r1r2(3r2 − 7r2
1082
+ 2)12 +
1083
+ 5
1084
+ 8r9 (r2 − 1)r1r3(r2 − 7r2
1085
+ 2)13
1086
+
1087
+ ,
1088
+ (S8b)
1089
+ uSt,i = 12
1090
+ 8π ·
1091
+ �I
1092
+ r + rr
1093
+ r3
1094
+
1095
+ ,
1096
+ (S8c)
1097
+ ustr,i = −5
1098
+ 2
1099
+ (E : rr)r
1100
+ r5
1101
+ .
1102
+ (S8d)
1103
+ (S8a) is the disturbance velocity field induced by a translating sphere. (S8b) is the disturbance field due to a force-free
1104
+ sphere in an ambient flow with both linear and quadratic components: the part involving E (= β
1105
+ 2 (1112 + 1211), the
1106
+ rate of strain tensor of the ambient Poiseuille flow), constitutes the disturbance in an ambient linear flow, while that
1107
+ proportional to γ constitutes the response to the quadratic component. As originally shown (but not used) by [S1],
1108
+ the latter may be obtained using an expansion in spherical harmonics [S4]. (S8c) and (S8d) are the usual velocity
1109
+ fields for a Stokeslet and the stresslet in an unbounded domain.
1110
+ Finally, note that the integrals over V P and V ∞ extend down to the origin (the sphere center) with both integrands
1111
+ including an O(β2) contribution arising from the coupling of the linear ambient flow component with the stresslet field,
1112
+ that is O(1/r3) for r → 0 (see initial integrand estimates); while this leads to a conditionally convergent behavior,
1113
+ doing the angular integration first leads to a trivial answer, as must be the case based on symmetry arguments
1114
+ above. For the integral over V ∞, a similar conditionally convergent behavior arises at infinity from the leading O(γ2)
1115
+ contribution, that is again resolved by appropriate choice of the order of integration. Even the leading point-particle
1116
+ integral is conditionally convergent at the origin, an issue (implicitly) addressed by a particular order of integration
1117
+ in the calculation procedure[S2].
1118
+ The volume integrals, within brackets in (S8), are readily calculated analytically:
1119
+
1120
+ V ∞ ui ·
1121
+
1122
+ us,i · ∇us,i
1123
+
1124
+ dV =6143 βγ
1125
+ 120960 ,
1126
+ (S9)
1127
+
1128
+ V ∞
1129
+
1130
+ ui·
1131
+
1132
+ us,i·∇u∞+u∞·∇us,i
1133
+
1134
+ −uSt,i·
1135
+
1136
+ ustr,i·∇U ∞+U ∞·∇ustr,i
1137
+ ��
1138
+ dV =37 βγ
1139
+ 1260 ,
1140
+ (S10)
1141
+
1142
+ V P uSt,i ·
1143
+
1144
+ ustr,i · ∇U ∞ + U ∞ · ∇ustr,i
1145
+
1146
+ dV =− βγ
1147
+ 4 .
1148
+ (S11)
1149
+ Substituting (S9-S11) in (S6), with β = 4(1 − 2s) and γ = −4, gives:
1150
+ Vp = Rep
1151
+
1152
+ F1(s, Rec) + λF2(s)
1153
+
1154
+ ,
1155
+ (S12)
1156
+ with F2(s) = 1141(1−2s)
1157
+ 216
1158
+ .
1159
+
1160
+ 5
1161
+ ∗ sganesh@jncasr.ac.in
1162
+ [S1] Ho, B. P., & Leal, L. G. (1974). Journal of fluid mechanics, 65(2), 365-400.
1163
+ [S2] Anand, P., & Subramanian, G. (2022). To be submitted to JFM.
1164
+ [S3] Schonberg, J. A., & Hinch, E. J. (1989). Journal of Fluid Mechanics, 203, 517-524.
1165
+ [S4] Kim, S., & Karrila, S. J. (2013). Microhydrodynamics: principles and selected applications. Courier Corporation.
1166
+
DNAyT4oBgHgl3EQf4frj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9FJT4oBgHgl3EQfCizA/content/2301.11430v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f712fe852388ad382e8bf5ef7270c4a8aa83dae8a5c40c22b9ccc2b2684af245
3
+ size 329328
E9FJT4oBgHgl3EQfCizA/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61cc5809fec1bb993a69253457b6f64a4f564c8c692ba1b49b8618cee5521ac
3
+ size 3538989
ENE2T4oBgHgl3EQfSgdx/content/2301.03793v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b7b6c18525cf08ba32ad800a4d277a683953d094fa3f44122ff9fed73ed087
3
+ size 2835106
ENE2T4oBgHgl3EQfSgdx/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edc625bea32d10fd9ab8467a3e3ab7cbcaa2d83aae48f446f3a7f12b3742df84
3
+ size 1572909
ENFQT4oBgHgl3EQfQTaG/content/tmp_files/2301.13282v1.pdf.txt ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pressure Reconstruction from the Measured Pressure Gradient
2
+ Using Gaussian Process Regression
3
+ Zejian You∗ and Qi Wang†
4
+ San Diego State University, San Diego, California, 92182, USA
5
+ Xiaofeng Liu‡
6
+ San Diego State University, San Diego, California, 92182, USA
7
+ Many numerical algorithms have been established to reconstruct pressure fields from mea-
8
+ sured kinematic data with noise by Particle Image Velocimetry (PIV), such as the Pressure Pois-
9
+ son solver and the Omni-Directional Integration (ODI) method. This study adopts Gaussian
10
+ Process Regression (GPR), a probabilistic framework with an intrinsic de-noising mechanism
11
+ to tackle drawbacks of traditional Pressure Poisson solver and compares the performance with
12
+ ODI. To evaluate the accuracy of the algorithm, GPR and ODI are tested in detail in a canon-
13
+ ical setup of forced homogeneous isotropic turbulence from the Johns Hopkins Turbulence
14
+ Database. According to the result, GPR has the same level of accuracy as ODI with optimized
15
+ hyper-parameters for the isotropic turbulence flow. However, GPR has the tendency to flatten
16
+ impulsive signals. Therefore, without further modifications, it is not suitable to detect flow
17
+ structures with impulsive true signals. The error propagation of the proposed framework is
18
+ also analyzed and discussed in both physical and spectral spaces.
19
+ Nomenclature
20
+ 𝑝(𝒙)
21
+ =
22
+ pressure field
23
+ �𝑝(𝒙)
24
+ =
25
+ true pressure field
26
+ 𝒙
27
+ =
28
+ spatial coordinates
29
+ 𝒖
30
+ =
31
+ velocity field
32
+ 𝜌
33
+ =
34
+ density
35
+ 𝑡
36
+ =
37
+ time
38
+ 𝜇
39
+ =
40
+ dynamic viscosity
41
+ 𝑘
42
+ =
43
+ realization number
44
+ ¯𝑝(𝒙)
45
+ =
46
+ mean of the pressure field
47
+ GP
48
+ =
49
+ Gaussian Process
50
+ N
51
+ =
52
+ Gaussian distribution
53
+ C
54
+ =
55
+ covariance matrix of the Gaussian process
56
+ 𝑙
57
+ =
58
+ correlation length in the radial basis function kernel
59
+ 𝑙𝑝
60
+ =
61
+ correlation length scale from the true pressure field
62
+ 𝜎(𝒙)
63
+ =
64
+ standard deviation of Gaussian Process at a spatial location 𝒙
65
+ 𝜎𝑝
66
+ =
67
+ standard deviation of the pressure field
68
+ 𝜎𝜖
69
+ =
70
+ standard deviation of assumed noise level in pressure gradient
71
+ 𝜎∇𝑝
72
+ =
73
+ standard deviation of embedded noise in pressure gradient
74
+ 𝑶
75
+ =
76
+ vector formed by observations of material derivatives
77
+ 𝑿∗, 𝑿
78
+ =
79
+ vector formed by observation locations and general spatial locations
80
+ Σ𝑖 𝑗
81
+ =
82
+ Covariance matrices
83
+ 𝑅𝜆
84
+ =
85
+ Reynolds number based on Taylor micro scale
86
+ 𝑝𝐺𝑃𝑅, 𝑝𝑂𝐷𝐼
87
+ =
88
+ pressure field reconstructed by GPR or ODI
89
+ ∗Doctoral student, Department of Aerospace Engineering, San Diego State University, Student Member AIAA.
90
+ †Assistant Professor, Department of Aerospace Engineering, San Diego State University, Member AIAA. E-mail: qwang4@sdsu.edu
91
+ ‡Associate Professor, Department of Aerospace Engineering, San Diego State University, Associate Fellow AIAA.
92
+ 1
93
+ arXiv:2301.13282v1 [physics.flu-dyn] 30 Jan 2023
94
+
95
+ I. Introduction
96
+ A. Pressure field estimation from PIV
97
+ U
98
+ nderstanding the pressure field is essential in various turbulence and hydrodynamic researches. The generation
99
+ of acoustic noise [1, 2] and the onset of boundary separation [3, 4], for example, are instances where an
100
+ accurate estimation of the pressure is of paramount importance. However, non-intrusive measurements of the detailed
101
+ instantaneous pressure field is a leading challenge in experimental studies. By applying Particle Image Velocimetry
102
+ (PIV), the gradient information of pressure can be obtained from the balance of the Navier-Stokes equation, in which the
103
+ material acceleration is the dominant term, while the viscous term is negligible at regions away from the wall for high
104
+ Reynolds number flow [5],
105
+ ∇𝑝 = −𝜌 𝐷𝒖
106
+ 𝐷𝑡 + 𝜇∇2𝒖 ≈ −𝜌 𝐷𝒖
107
+ 𝐷𝑡 .
108
+ (1)
109
+ Numerical tools have been established to further reconstruct the instantaneous pressure field based on the measured
110
+ pressure gradient. While the traditional approach solves the pressure-Poisson equation, which often utilizes an inaccurate
111
+ boundary condition, the state-of-art tool, named Omni-directional Integration (ODI), integrates the pressure gradients
112
+ in a collection of directions and averages the resulting field [5–8]. This has led to a robust de-noising framework
113
+ that greatly mitigates the effect of measurement error [9]. A recent example shows that the time-averaged pressure
114
+ reconstructed from Reynolds Averaged Navier-Stokes (RANS) equation based on stereo PIV measurements even reaches
115
+ spatial resolution beyond that of PIV [10]. The goal of the current study is to extend the idea of denoising and establish
116
+ a probabilistic framework using Gaussian Process Regression to reconstruct pressure from its gradient information with
117
+ uncertainties.
118
+ B. Gaussian process regression
119
+ Gaussian process regression has been used to solve regression problem when the underlying function is unknown
120
+ and hard to evaluate analytically. For example, apply Gaussian Process upper confidence bound sampling (GP-UCB)
121
+ to provide movie recommendation[11]; reconstruct missing temporal and spatial sensor data of a dynamic nonlinear
122
+ response [12, 13]; analyze motion trajectory of moving targets from sparse observations [14]. This non-parametric
123
+ Bayesian approach has been proven to be very powerful in exploration and exploitation scenarios. Furthermore, GPR
124
+ can capture a wide variety of relations between inputs and outputs by the kernel-encoded prior assumption. In this study,
125
+ we reconstruct the pressure from pressure gradient by deliberately encoding the prior assumption with different kernel
126
+ functions while previous works mainly focus on obtaining function from observations of the function itself.
127
+ The rest of the paper is structured as follows: in §II we introduce the mathematical formulation for Gaussian
128
+ Process Regression when applied to pressure field reconstruction. In §III we explain how we choose the optimal
129
+ hyper-parameters for GPR and how we evaluate the performance of GPR and ODI through the forced homogeneous
130
+ isotropic turbulence database from Johns Hopkins Turbulence Database (JHTDB). In §IV we show some comparison
131
+ results and analyses of reconstructed pressure field by GPR and ODI. In §V, we conclude current results and propose
132
+ some prospective future works.
133
+ II. Mathematical formulation
134
+ In the current study, we propose a new approach, adopting the idea of Gaussian Process Regression (GPR) [see 11,
135
+ for a brief tutorial] This probability framework takes into account measurement noise and could help to perform field
136
+ inversion from gradient information and mitigate the effect of measurement noise.
137
+ In Gaussian process regression, we assume the observation of pressure gradient at any spatial location 𝒙 can be
138
+ expressed by the true pressure gradient with an additional noise:
139
+ ∇𝑝(𝒙) = ∇�𝑝(𝒙) + 𝜖
140
+ (2)
141
+ where the noise term 𝜖 follows normal distribution
142
+ 𝜖 ∼ N (0, 𝜎2
143
+ 𝜖 ).
144
+ (3)
145
+ Furthermore, GPR regards the pressure field, 𝑝(𝒙) as a Gaussian process in infinite dimensional space, e.g.
146
+ 𝑝(𝒙) ∼ GP( ¯𝑝(𝒙), C(𝒙, 𝒙′)),
147
+ (4)
148
+ 2
149
+
150
+ Fig. 1
151
+ (a): An example of one-dimensional GPR when observations of the values of a smooth function are
152
+ available. Red dashed lines mark the location of observations while the black dashed lines are samples drawn
153
+ from the posterior distribution. Two red solid lines mark the region within one standard deviation in the
154
+ posterior distribution. (b): When observations of function derivatives are available, a similar approach can also
155
+ be adopted to infer the values of the function.
156
+ in which ¯𝑝(𝒙) represents the mean, or the expected value of the prior distribution for the pressure, ¯𝑝(𝒙) = E[𝑝(𝒙)],
157
+ and 𝒙, 𝒙′ represent two different spatial locations. The kernel of the Gaussian process, C(𝒙, 𝒙′) represents the
158
+ covariance of the uncertain pressure fields at two different spatial locations, 𝑝(𝒙) and 𝑝(𝒙′).
159
+ Or equivalently,
160
+ C(𝒙, 𝒙′) = E [(𝑝(𝒙) − ¯𝑝(𝒙))(𝑝(𝒙′) − ¯𝑝(𝒙′))].
161
+ For a continuous and stationary random process, radial basis function kernel is popularly introduced. The Gaussian
162
+ kernel, for example, reads
163
+ C(𝒙, 𝒙′) = 𝜎(𝒙)𝜎(𝒙′) exp(−1
164
+ 2
165
+ ||𝒙 − 𝒙′||2
166
+ 𝑙2
167
+ ),
168
+ (5)
169
+ in which 𝜎(𝒙) is the standard deviation and 𝑙 is the correlation length. The standard deviation 𝜎(𝒙) will be updated
170
+ during the inference and can naturally lead to uncertainty quantification (UQ) of the reconstruction. The correlation
171
+ length 𝑙 is a hyper-parameter representing the smoothness of the pressure field, which can be tuned to achieve the best
172
+ performance for different scenarios.
173
+ The corresponding correlation function of the pressure field for the kernel function C(𝒙, 𝒙′) is defined as
174
+ K(𝒙, 𝒙′) =
175
+ C(𝒙, 𝒙′)
176
+ 𝜎(𝒙)𝜎(𝒙′)
177
+ (6)
178
+ where 𝜎𝑝 is the root mean square of entire pressure field. For radial basis function kernel, the correlation function
179
+ K(𝒙, 𝒙′) is only function of distance 𝑟 between two point,
180
+ K(𝒙, 𝒙′) = K(𝑟)
181
+ (7)
182
+ in which 𝑟 = ||𝒙 −𝒙′||. In order to better comprehend the physical meaning of pressure field, we introduce the correlation
183
+ length scale 𝑙𝑝, which could be obtained by fitting the correlation function K(𝑟) of true pressure field into the correlation
184
+ function of Gaussian kernel.
185
+ While most applications of GPR deal with observing the values of the function directly [13], as shown in Figure
186
+ 1(𝑎), the formulation of GPR is general and can be applied to observations of the gradient information. An example of
187
+ such reconstruction for a one-dimensional case is shown in Figure 1(𝑏), where the dashed lines marks the observation
188
+ location for the gradient of the function 𝑝(𝑥). Given 𝑿∗ a vector collection of 𝑛 spatial locations 𝒙𝒏 where data are
189
+ observed, the samples of the pressure gradient observations would follow a multivariate Gaussian distribution,
190
+ 𝑶 = ∇𝑝 (𝑿∗) ∼ N
191
+
192
+ ∇ ¯𝑝
193
+ ��
194
+ 𝑿∗, ∇𝒙∇𝒙′C (𝑿∗, 𝑿∗) + 𝜎2
195
+ 𝜖 I∗
196
+
197
+ .
198
+ (8)
199
+ Here 𝜎𝜖 is the assumed noise level of synthetic noise introduced as a mimic of experimental data. I∗ is the identity
200
+ matrix. Moreover, once the observations are drawn from the above distribution, the observations of pressure gradient
201
+ at 𝑿∗ and unknown values of pressure field at 𝑿, a vector collection of spatial locations where reconstruction are
202
+ 3
203
+
204
+ α)
205
+ 2
206
+ 1
207
+ 1
208
+ p
209
+ I
210
+ 1
211
+ -1
212
+ 1
213
+ 1
214
+ -
215
+ -2
216
+ 2
217
+ 0.2
218
+ 0.2
219
+ 0.4
220
+ 0
221
+ 0.4
222
+ 0.6
223
+ 0.8
224
+ 0
225
+ 0.6
226
+ 0.8
227
+ 1
228
+ 1Fig. 2
229
+ (a): True pressure field from an isotropic turbulence DNS database. (b)-(c): Pressure gradient obtained
230
+ from the DNS pressure field by central finite difference method. (d)-(e): Sample realization of 1000 error
231
+ embedded pressure gradient.
232
+ conducted, would follow the joint Gaussian distribution,
233
+ �������
234
+ 𝑶
235
+ 𝑝(𝑿)
236
+ �������
237
+ ∼ N
238
+ ������
239
+
240
+ ���������
241
+ ∇𝑝 (𝑿∗)
242
+ ¯𝑝(𝑿)
243
+ ���������
244
+ ,
245
+ ����������
246
+ ∇𝒙∇𝒙′C (𝑿∗, 𝑿∗) + 𝜎2
247
+ 𝜖 I∗
248
+ ��������������������������������������������������������
249
+ Σ11
250
+ , ∇𝒙′C (𝑿, 𝑿∗)
251
+ ��������������������������
252
+ Σ12
253
+ ∇𝒙C (𝑿∗, 𝑿)
254
+ ������������������������
255
+ Σ21
256
+ , C (𝑿, 𝑿)
257
+ ��������������
258
+ Σ22
259
+ ����������
260
+ ������
261
+
262
+ (9)
263
+ The last piece of this joint Gaussian distribution is the reference pressure. Since the value of reference pressure does not
264
+ influence the dynamic structure of reconstructed pressure fields, we include one additional observation of pressure
265
+ 𝑝(𝒙0) = 0 at location 𝒙0 in the formulation. Once noisy measurements for the pressure gradient become available, the
266
+ pressure field can be recovered using Bayes’ theorem. And the posterior conditional distribution is given by,
267
+ 𝑝 (𝑿) ∼ N
268
+
269
+ ¯𝑝 − Σ21Σ−1
270
+ 11
271
+
272
+ 𝑶 − ∇ ¯𝑝
273
+ ��
274
+ 𝑿∗
275
+
276
+ , Σ22 − Σ21Σ−1
277
+ 11Σ12
278
+
279
+ .
280
+ (10)
281
+ The updated mean of the posterior distribution is regarded as the reconstructed pressure field from GPR,
282
+ 𝑝𝐺𝑃𝑅(𝑿) = ¯𝑝 − Σ21Σ−1
283
+ 11
284
+
285
+ 𝑶 − ∇ ¯𝑝
286
+ ��
287
+ 𝑿∗
288
+
289
+ (11)
290
+ Notice that the matrix inversion in the above expression requires O(𝑁3) operations, with 𝑁 being the number of
291
+ observations. The inversion would therefore be computationally intractable for large 𝑁. Nevertheless, for large-scale
292
+ computations, we could transform the matrix inversion into an iterative algorithm using the Conjugate Gradient method
293
+ [15], which is part of future efforts.
294
+ Moreover, the covariance matrix of the posterior probability distribution can be computed from,
295
+ 𝐶𝐺𝑃𝑅(𝑿, 𝑿) = Σ22 − Σ21Σ−1
296
+ 11Σ12.
297
+ (12)
298
+ Square roots of the diagonal elements of the above matrix are the standard deviation 𝜎𝑝(𝑿), representing the uncertainty
299
+ of the reconstructed pressure fields at different spatial locations.
300
+ III. Problem Setup
301
+ A. Data acquisition
302
+ As the first step, we test our algorithm in a homogeneous isotropic turbulence flow field with Reynolds number around
303
+ 𝑅𝜆 ∼ 433 based on Taylor microscale. Instead of using data from experiments, we extract data in the Johns Hopkins
304
+ 4
305
+
306
+ a
307
+ 1.0
308
+ 0.8
309
+ 0.5
310
+ 0.6
311
+ 0.0
312
+ 0.4
313
+ -0.5
314
+ 0.2
315
+ -1.0
316
+ 0.0
317
+ 0.0
318
+ 0.2
319
+ 0.4
320
+ 0.6
321
+ 0.8
322
+ ab)
323
+ c)
324
+ 0.8
325
+ 30
326
+ 0.6
327
+ 20
328
+ 0.4
329
+ 0.2
330
+ 10
331
+ 0.0
332
+ 0
333
+ 0.8
334
+ -10
335
+ 0.6
336
+ 0.4
337
+ -20
338
+ 0.2
339
+ 30
340
+ 0.0
341
+ 0.00
342
+ 0.25
343
+ 0.50
344
+ 0.75
345
+ 0.00
346
+ 0.25
347
+ 0.50
348
+ 0.75Turbulent database [16–18] from a direct numerical simulation (DNS) as a surrogate. The simulated data provides
349
+ access to the fully resolved velocity and pressure fields, enabling us to test our algorithm thoroughly. Although the
350
+ database is three-dimensional, the algorithm of both ODI and GPR is able to reconstruct pressure on a two-dimensional
351
+ plane given observations of the in-plane components of the gradient vectors, as shown in Figure 2.
352
+ The observations are the projection of material derivatives onto the 𝑥 − 𝑦 plane at certain observation locations
353
+ extracted from the database, at four times the DNS grid spacing in 𝑥 and 𝑦 directions. A total number of 150 × 150
354
+ observations of pressure gradient are obtained on a two-dimensional plane in the turbulent field on the 𝑥 − 𝑦 plane with
355
+ 𝐿𝑥 = 𝐿𝑦 = 0.9.
356
+ In order to compare the performance of GPR and ODI, we adopted 1000 realizations of error-embedded pressure
357
+ gradient generated by Liu and Moreto [9] and reconstruct the pressure field by ODI as well as GPR. The error-
358
+ embedded pressure gradient is generated by adding random noise of uniform distribution with the magnitude as 40%
359
+ of (|∇𝑝|DNS)max, the maximum magnitude of the true pressure gradient, at each point. The true pressure field, true
360
+ pressure gradient as well as one sample realization of error embedded pressure gradient are shown in Figure 2.
361
+ B. Evaluation of pressure reconstruction
362
+ To quantify the accuracy of pressure reconstruction when subject to noise in the measurements, as often observed in
363
+ PIV, we evaluate the cumulative error over 1000 realizations of noisy measurements. First, we calculate the error of the
364
+ reconstructed pressure field by GPR and ODI by subtracting the true pressure field �𝑝(𝒙) at each point, i.e.,
365
+ 𝜖𝑖 𝑗 = 𝑝𝑖 𝑗 − �𝑝𝑖 𝑗,
366
+ (13)
367
+ where 𝑖, 𝑗 refer to Cartesian indices. Then, the standard deviation of error 𝜖std is defined as
368
+ 𝜖std =
369
+
370
+
371
+
372
+
373
+ 1
374
+ 𝑁𝑥 × 𝑁𝑦 − 1
375
+ 𝑁𝑦
376
+ ∑︁
377
+ 𝑗=1
378
+ 𝑁𝑥
379
+ ∑︁
380
+ 𝑖=1
381
+ (𝜖𝑖 𝑗 − 𝜖𝑖 𝑗)2.
382
+ (14)
383
+ Finally, we calculate the averaged standard deviation over 1000 realizations, the cumulative error 𝜀std, as
384
+ 𝜀std = 1
385
+ 𝑘
386
+ 𝑘
387
+ ∑︁
388
+ 𝑛=1
389
+ � 𝜖std
390
+ 𝑝std
391
+
392
+ 𝑛
393
+ .
394
+ (15)
395
+ C. Hyper-parameter Optimization
396
+ The performance of both ODI and GPR methods depends on setting up proper parameters, or hyper-parameters.
397
+ For Omni-directional Integration, we adopt the state-of-art formulation with Rotating Parallel Rays to create different
398
+ integration paths [see 7, for details]. The parallel rays are rotated with an increment of 0.2 degrees, which creates a
399
+ total number of 1800 different orientations of parallel integration paths over the entire domain of calculation. The
400
+ optimal separation between adjacent parallel rays at 0.4 times of the grid size as suggested by [9] is adopted in the ODI
401
+ calculation. For GPR, the prior distribution is set with mean ¯𝑝(𝒙) = 0 and variance 𝜎(𝒙) = 1. However, correlation
402
+ length 𝑙 and assumed noise level 𝜎𝜖 still need to be optimized, which is going to be elaborated in the following sections.
403
+ In order to optimize the performance of GPR, we calculate the averaged error of 10 realizations with different
404
+ hyper-parameters sets and find the optimal hyper-parameters with the lowest error as the correlation length 𝑙 = 0.0625
405
+ and the assumed noise level 𝜎𝜖 = 6. The error is slightly smaller with assumed noise level 𝜎𝜖 less than 6. However,
406
+ because the influence of equivalent noise level is not very significant once it is smaller than 6, we choose 𝜎𝜖 = 6 as
407
+ our optimal hyper-parameter. The correlation length scale 𝑙𝑝 could be obtained by fitting the Gaussian kernel into the
408
+ correlation function of the true pressure field, which is equal to 0.0574 for the isotropic turbulence. So the correlation
409
+ length scale 𝑙𝑝 = 0.0574. Embedded noise is a uniform distribution from -12 to 12, the standard deviation of which
410
+ is 6.928. Thus the magnitude of embedded noise is 𝜎∇𝑝 = 6.918. We could find out that optimal hyper-parameters
411
+ correlation length 𝑙 approximates to correlation length scale 𝑙𝑝 while assumed noise level 𝜎𝜖 approximates to the
412
+ magnitude of embedded noise 𝜎∇𝑝. This phenomenon proves that the kernel of GPR depends on the correlation function
413
+ of the true pressure field as well as the standard deviation of noise in the observations.
414
+ 5
415
+
416
+ Fig. 3
417
+ (a): Correlation function 𝐾(𝑟) of the true pressure field and the optimal Gaussian kernel function from
418
+ curve-fitting. (b): The cumulative error of 10 realizations with different correlation length 𝑙 and assumed noise
419
+ level 𝜎𝜖 as well as the location of optimal hyper-parameters.
420
+ IV. Results
421
+ A. Error Analysis in Physical Space
422
+ The cumulative error of GPR and ODI on 150 by 150 grids as well as the cumulative error of ODI on 254 by
423
+ 254 grids are shown in Figure 4. From the result, we could observe that error of GPR converges to 0.153 over 1000
424
+ realizations. Furthermore, GPR has a similar level of accuracy with ODI method on 150 by 150 grids domain. However,
425
+ ODI on 254 by 254 grids can reach to lower cumulative error 0.148, the same as the result of previous work by Liu and
426
+ Moreto [9]. But GPR requires more memory to conduct the matrix inversion in the regression. Therefore, for large-scale
427
+ problems, it is necessary to convert matrix inversion into an iterative algorithm, such as the conjugate gradient iteration
428
+ for better efficiency, which is part of future work.
429
+ To further investigate the performance of GPR and ODI, Figure 5 shows the exact pressure field �𝑝, the pressure
430
+ field reconstructed by GPR for the instance of the worst case scenario among the 1000 realizations, pressure field
431
+ reconstructed by ODI for the instance of the worst case scenario among the 1000 realizations, the standard deviation of
432
+ reconstructed pressure field by GPR, error of GPR result as well as error of ODI result of the worst performance case
433
+ among 1000 realizations. In Figure 5, we could observe that the reconstructed pressure field by GPR is significantly
434
+ smoother than ODI result and both reconstructed pressure fields are fairly accurate compared to the exact pressure
435
+ field. Although the reconstructed pressure field by GPR has a smaller global error, it also has a larger local error
436
+ compared to the reconstructed pressure field by ODI, indicating the tendency of GPR in flattening impulsive local
437
+ pressure changes. Furthermore, the reconstructed pressure field by ODI preserves more fine structures (combined with
438
+ noise and high-frequency pressure signal) while GPR seems to have a stronger denoising effect according to the smooth
439
+ distribution.
440
+ While the mean of the posterior distribution can be used to represent the reconstructed pressure field, we could also
441
+ evaluate the accuracy of reconstruction based on the standard deviation of the posterior distribution. Notice that adding
442
+ or subtracting a constant field on the pressure does not alter the agreement with the observation of the pressure gradient.
443
+ This property, sometimes coined as “gauge invariance", has to be eliminated in order to obtain meaningful results for
444
+ uncertainty analysis. Therefore, we assume that the reconstructed pressure at a given reference point, e.g. 𝒙0 at the
445
+ center of the domain is solely due to such freedom of adding an arbitrary constant field. The variances of the pressure
446
+ field at other locations further take into account the effect of 𝜎𝑝(𝒙0), which should be subtracted to obtain a reasonable
447
+ estimation of the reconstruction uncertainty without the influence of such gauge invariance. For this reason, we here
448
+ plot 𝜎𝑝(𝑿) − 𝜎𝑝(𝒙0) in Figure 5(d).
449
+ In order to visualize how the error is propagated throughout the entire pressure field by different methods, we add a
450
+ 6
451
+
452
+ a)
453
+ b)
454
+ ×10-1
455
+ 1.0
456
+ correlation function of p
457
+
458
+ optimal parameters
459
+ 4
460
+ 1.6
461
+ fitted correlation function
462
+ 0.8
463
+ 1.4
464
+ 0.6
465
+ 1.2
466
+ 2
467
+ 0.4
468
+ 三 1.0 +
469
+ p$3
470
+ 6
471
+ 0.2
472
+ 0.8
473
+ 1
474
+ 0.0
475
+ 0.6
476
+ -0.2
477
+ 0.4 -
478
+ 0.0
479
+ 0.1
480
+ 0.2
481
+ 0.3
482
+ 0.4
483
+ 100
484
+ 5 × 100
485
+ 1/lpFig. 4
486
+ Cumulative error 𝜀std and standard deviation (𝜖std)𝑘 of 1000 realizations with correlation length 𝑙 =
487
+ 0.0625 and assumed noise level 𝜎𝜖 = 6. The bottom histogram shows the standard deviation of error (𝜖std)𝑘 in
488
+ the 𝑘-th realization. The blue bar represents the standard deviation of error by GPR and red line represents
489
+ the standard deviation of error by ODI in 150 × 150 grids. Three converged lines on the top show the cumulative
490
+ error of GPR and ODI in 150 × 150 and 254 × 254 grids.
491
+ unit impulse in 𝜕𝑝
492
+ 𝜕𝑥 at the middle of the computational domain and use GPR and ODI to reconstruct the pressure field,
493
+ respectively. Differences between the reconstructed pressure field with and without the unit impulse are then visualized
494
+ in Figure 6 to quantify the domain of influence for such point-wise perturbation. Such approaches have been adopted in
495
+ previous research to study the domain of influence or the domain of dependence to fully understand the forward and
496
+ backward propagation of perturbations in a dynamical system or data assimilation algorithm [19, 20].
497
+ The results of this impulse response have profound implications. First of all, the ODI method indicates a clear
498
+ singularity point at the location of perturbation, manifested by very large positive and negative values. The implication
499
+ here is that although ODI averages the error across the whole computational domain, the reconstructed pressure still
500
+ relies heavily on the local pressure gradient information near the point of interest. In other words, most of the local error
501
+ remains local, and correspondingly, the error diffusion is relatively not strong in comparison with that of GPR. On the
502
+ other hand, the GPR method exhibits nearly zero influence at the point of perturbation and has a larger influence slightly
503
+ farther away. This difference could explain the stronger de-noising effect in GPR than in ODI.
504
+ B. Error Analysis in Wave Number Space
505
+ The different behavior of GPR and ODI in Figure 5 leads to a comparison of power spectrum density of the
506
+ reconstructed pressure field by GPR and ODI, as shown in Figure 7. From Figure 7(a), we could see that both methods
507
+ perform well on low wave number space: the power spectrum density of GPR and ODI coincides with the power
508
+ spectrum density of true pressure field perfectly. However, in high wave number space, the power spectrum density
509
+ of different pressure field seem to diverge: GPR has a lower power spectrum density while ODI has a larger power
510
+ spectrum density compared to the power spectrum density of true pressure field. This phenomenon validates previous
511
+ observations in the pressure field shown in Figure 5, as well as the impulse response in Figure 6. GPR has a stronger
512
+ denoising effect but also smooths out some pressure information in high wave number space while ODI preserves
513
+ more fine structures. Some of them are dynamic behavior of the pressure field, others are noise in the observation.
514
+ Furthermore, Figure 7(b) clearly indicates that if the pressure gradient information is accurate, ODI can faithfully
515
+ replicate the dynamic behavior of the pressure field over the entire spectral range. However, in contrast, because
516
+ 7
517
+
518
+ 0.50
519
+ 0.20
520
+ GPR (150×150)
521
+ 0.45
522
+ ODI (254×254)
523
+ ODI (150×150)
524
+ 0.18
525
+ 0.40
526
+ 0.35
527
+ 0.16
528
+ Estd
529
+ p4s
530
+ 0.30
531
+ 0.14
532
+ 0.25
533
+ 0.20
534
+ 0.12
535
+ 0.15
536
+ 0.10
537
+ 0.10
538
+ 0
539
+ 200
540
+ 400
541
+ 600
542
+ 800
543
+ 1000
544
+ Realization kFig. 5
545
+ (a): True pressure field from isotropic turbulence DNS database. (b): Instant of realization of recon-
546
+ structed pressure field by GPR with the largest standard deviation of error 𝜖std. (c): Instant of realization of
547
+ reconstructed pressure field by ODI with the largest standard deviation of error 𝜖std. (d): Standard deviation
548
+ of reconstructed pressure field by GPR, 𝜎(𝑿) subtracted by the standard deviation of reference point 𝜎(𝒙0).
549
+ (e): Error distribution of reconstructed pressure field by GPR, obtained by subtracting (a) from (b). (f): Error
550
+ distribution of reconstructed pressure field by ODI, obtained by subtracting (a) from (c).
551
+ Fig. 6
552
+ Error Propagation of GPR and ODI, represented by the change of reconstructed pressure field when
553
+ perturbation in the form of a unit impulse of 𝜕𝑝𝜕𝑥 is added at the center of the computational domain.
554
+ 8
555
+
556
+ a)
557
+ b)
558
+ c)
559
+ 1.0
560
+ 0.8
561
+ 0.5
562
+ 0.6
563
+ Pressure
564
+ 0.0
565
+ 0.4-
566
+ -0.5
567
+ 0.2
568
+ -1.0
569
+ 0.0 -
570
+ a
571
+ d)
572
+ e)
573
+ X10-4
574
+ 2
575
+ 0.8
576
+ 4
577
+ 1
578
+ 2
579
+ 0.6
580
+ E
581
+ Error
582
+ 0
583
+ 0
584
+ 0.4
585
+ -2
586
+ 0.2
587
+ -1
588
+ -4
589
+ 0.0 -
590
+ -2
591
+ 0.25
592
+ 0.50
593
+ 0.75
594
+ 0.25
595
+ 0.50
596
+ 0.75
597
+ 0.00
598
+ 0.00
599
+ 0.00
600
+ 0.25
601
+ 0.50
602
+ 0.75ODI
603
+ GPR
604
+ ×10-4
605
+ 0.8
606
+ 2
607
+ 1
608
+ 0.6
609
+ 0
610
+ 0.4
611
+ -1
612
+ 0.2
613
+ -2
614
+ 0.0 -
615
+ 0.00
616
+ 0.25
617
+ 0.50
618
+ 0.75
619
+ 0.00
620
+ 0.25
621
+ 0.50
622
+ 0.75
623
+ a
624
+ aFig. 7
625
+ (a): Power spectrum density of true pressure field as well as reconstructed pressure field by GPR and
626
+ ODI from error embedded pressure gradients of 150 by 150 grids. (b): Power spectrum density of true pressure
627
+ field as well as reconstructed pressure field by GPR and ODI from true pressure gradients of 150 by 150 grids
628
+ the hyperparameters used in this GPR computation were optimized with the error-embedded data (therefore are flow
629
+ dependent), GPR produces a reconstructed pressure spectrum with an overall lower fluctuation amplitude over the
630
+ entire spectral domain. This indicates that the optimization of GPR needs to be adjusted according to the actual flow
631
+ properties. This problem might be solved by switching a proper kernel function rather than a Gaussian kernel in this
632
+ case since its denoising effect is too strong to preserve necessary information, which requires future work.
633
+ V. Conclusion and future work
634
+ We adopt the framework of Gaussian Process Regression (GPR) to the problem of determining the pressure fields
635
+ from measured pressure gradients, with the potential of reconstructing pressure from sparsely measured data. The
636
+ formulation naturally avoids the burden of solving Poisson equation with inaccurate boundary conditions and takes into
637
+ account the effect of measurement noise. Furthermore, this framework provides more possibilities to improvement.
638
+ From the comparison between the reconstructed pressure field by GPR and ODI, we are able to conclude that the
639
+ reconstructed pressure field by GPR achieves accuracy comparable to the state-of-art Omni-directional integration
640
+ method (ODI) and has a stronger denoising effect compared to ODI. However, pressure reconstruction by GPR might
641
+ also smooth out some pressure information in high wave number space by mistake, especially dealing with accurate
642
+ pressure gradient data. This problem might be able to be solved by switching the Gaussian kernel, which requires
643
+ further investigation.
644
+ In future directions, the following will be studied in detail: (a) improvement of computational efficiency for
645
+ large-scale problems. (b) different kernel functions for the Gaussian Process. (c) effect of the sparseness of the
646
+ observation in terms of reconstruction quality.
647
+ VI. Acknowledgments
648
+ The support from San Diego State University is gratefully acknowledged. Thanks to Jose Moreto for his assistance in
649
+ the usage of the parallel-ray Omni-directional integration code and for providing the error-embedded pressure gradients
650
+ data in previous study by Liu and Moreto [9].
651
+ References
652
+ [1] Buchta, D. A., and Freund, J. B., “The near-field pressure radiated by planar high-speed free-shear-flow turbulence,” Journal of
653
+ Fluid Mechanics, Vol. 832, 2017, pp. 383–408.
654
+ 9
655
+
656
+ a)
657
+ b)
658
+ true pressure
659
+ real pressure
660
+ TI
661
+ GPR
662
+ GPR
663
+ T
664
+ ODI
665
+ ODI
666
+ 10-1
667
+ 10-1,
668
+ 88
669
+ @
670
+
671
+ x
672
+ 10-3,
673
+ 10-3,
674
+ 10-4
675
+ 10-4 ↓
676
+ 10-2
677
+ 10-1
678
+ 100
679
+ 10-2
680
+ 10-1
681
+ 100
682
+ rn
683
+ kn[2] Wu, S. F., “Methods for reconstructing acoustic quantities based on acoustic pressure measurements,” The Journal of the
684
+ Acoustical Society of America, Vol. 124, No. 5, 2008, pp. 2680–2697.
685
+ [3] Gramann, R. A., and Dolling, D. S., “Detection of turbulent boundary-layer separation using fluctuating wall pressure signals,”
686
+ AIAA journal, Vol. 28, No. 6, 1990, pp. 1052–1056.
687
+ [4] Cerretelli, C., and Kirtley, K., “Boundary layer separation control with fluidic oscillators,” 2009.
688
+ [5] Liu, X., and Katz, J., “Instantaneous pressure and material acceleration measurements using a four-exposure PIV system,”
689
+ Experiments in fluids, Vol. 41, No. 2, 2006, pp. 227–240.
690
+ [6] Liu, X., and Katz, J., “Measurements of pressure distribution by integrating the material acceleration,” Cav03-GS-14-001, Fifth
691
+ international symposium on cavitation (CAV2003), Osaka, Japan, 2003, pp. 1–4.
692
+ [7] Liu, X., Moreto, J. R., and Siddle-Mitchell, S., “Instantaneous pressure reconstruction from measured pressure gradient using
693
+ rotating parallel ray method,” 54th AIAA Aerospace Sciences Meeting, 2016, p. 1049.
694
+ [8] Liu, X., and Katz, J., “Pressure–rate-of-strain, pressure diffusion, and velocity–pressure-gradient tensor measurements in a
695
+ cavity flow,” AIAA Journal, Vol. 56, No. 10, 2018, pp. 3897–3914.
696
+ [9] Liu, X., and Moreto, J. R., “Error propagation from the PIV-based pressure gradient to the integrated pressure by the
697
+ omnidirectional integration method,” Measurement Science and Technology, Vol. 31, No. 5, 2020, p. 055301.
698
+ [10] Moreto, J. R., Reeder, W. J., Budwig, R., Tonina, D., and Liu, X., “Experimentally Mapping Water Surface Elevation, Velocity,
699
+ and Pressure Fields of an Open Channel Flow Around a Stalk,” Geophysical Research Letters, Vol. 49, No. 7, 2022, p.
700
+ e2021GL096835.
701
+ [11] Schulz, E., Speekenbrink, M., and Krause, A., “A tutorial on Gaussian process regression: Modelling, exploring, and exploiting
702
+ functions,” Journal of Mathematical Psychology, Vol. 85, 2018, pp. 1–16.
703
+ [12] Ma, Y., He, Y., Wang, L., and Zhang, J., “Probabilistic reconstruction for spatiotemporal sensor data integrated with Gaussian
704
+ process regression,” Probabilistic Engineering Mechanics, 2022, p. 103264.
705
+ [13] Mons, V., Wang, Q., and Zaki, T. A., “Kriging-enhanced ensemble variational data assimilation for scalar-source identification
706
+ in turbulent environments,” Journal of Computational Physics, Vol. 398, 2019, p. 108856.
707
+ [14] Kim, K., Lee, D., and Essa, I., “Gaussian process regression flow for analysis of motion trajectories,” 2011 International
708
+ Conference on Computer Vision, IEEE, 2011, pp. 1164–1171.
709
+ [15] Hestenes, M. R., and Stiefel, E., “Methods of Conjugate Gradients for Solving,” Journal of research of the National Bureau of
710
+ Standards, Vol. 49, No. 6, 1952, p. 409.
711
+ [16] Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., and Eyink, G., “A public turbulence
712
+ database cluster and applications to study Lagrangian evolution of velocity increments in turbulence,” Journal of Turbulence, ,
713
+ No. 9, 2008, p. N31.
714
+ [17] Perlman, E., Burns, R., Li, Y., and Meneveau, C., “Data exploration of turbulence simulations using a database cluster,”
715
+ Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, 2007, pp. 1–11.
716
+ [18] Yeung, P., Donzis, D., and Sreenivasan, K., “Dissipation, enstrophy and pressure statistics in turbulence simulations at high
717
+ Reynolds numbers,” Journal of Fluid Mechanics, Vol. 700, 2012, pp. 5–15.
718
+ [19] Wang, Q., Wang, M., and Zaki, T. A., “What is observable from wall data in turbulent channel flow?” Journal of Fluid
719
+ Mechanics, Vol. 941, 2022, p. A48. https://doi.org/10.1017/jfm.2022.295.
720
+ [20] Wang, Q., Hasegawa, Y., and Zaki, T. A., “Spatial reconstruction of steady scalar sources from remote measurements in
721
+ turbulent flow,” Journal of Fluid Mechanics, Vol. 870, 2019, pp. 316–352.
722
+ 10
723
+
HNAzT4oBgHgl3EQfHfvA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4fec1f8d9aaed8cecac2daefc0878ea51e19d5592125c467aeb7e14bc1b48fc
3
+ size 102107
HNE1T4oBgHgl3EQfrQW4/content/2301.03353v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:071efb764273ef030c7e07bdb620bf8a5ef976f031f3cf355478a11c5d0d417f
3
+ size 1078900
IdE3T4oBgHgl3EQfuguG/content/tmp_files/2301.04685v1.pdf.txt ADDED
@@ -0,0 +1,2048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SHUNIT: Style Harmonization for Unpaired Image-to-Image Translation
2
+ Seokbeom Song1, Suhyeon Lee1, Hongje Seong1, Kyoungwon Min2, and Euntai Kim1*
3
+ 1Yonsei University, Seoul, Korea
4
+ 2Korea Electronics Technology Institute, Seongnam, Korea
5
+ {lgs5751, hyeon93, hjseong, etkim}@yonsei.ac.kr, minkw@keti.re.kr
6
+ light
7
+ red light
8
+ red light
9
+ red light
10
+ light
11
+ red light
12
+ red light
13
+ red light
14
+ light
15
+ light
16
+ light
17
+ light
18
+ input image
19
+ translated
20
+ image
21
+ I2I translation
22
+ annotation
23
+ : source domain
24
+ : target domain
25
+ : source-to-target
26
+ style mapping
27
+ Red, blue, and purple:
28
+ styles from different
29
+ categories
30
+ zoom-in
31
+ zoom-in
32
+ zoom-in
33
+ target domain images
34
+ source domain images
35
+ (a) Global I2I
36
+ (b) Class-level I2I
37
+ (c) Style harmonization I2I
38
+ Figure 1: Illustration of the concepts in unpaired I2I translation. The results are obtained on Cityscapes → ACDC (night) setting.
39
+ In the image, many head and tail lamps should be bright at night. (a) Global I2I (Huang et al. 2018b) converts all classes to
40
+ bright because it translates the image with a single source-to-target style mapping function. (b) Class-level I2I (Jeong et al.
41
+ 2021) leverages additional annotations to address the problem of (a) and performs per-class source-to-target style mapping. It
42
+ can effectively deal with multiple classes in an image, but loses the original style: All white lights and red lights become white
43
+ lights. (c) Style harmonization I2I also performs class-wise style mapping, while adaptively preserving the original styles.
44
+ Abstract
45
+ We propose a novel solution for unpaired image-to-image
46
+ (I2I) translation. To translate complex images with a wide
47
+ range of objects to a different domain, recent approaches of-
48
+ ten use the object annotations to perform per-class source-to-
49
+ target style mapping. However, there remains a point for us to
50
+ exploit in the I2I. An object in each class consists of multiple
51
+ components, and all the sub-object components have differ-
52
+ ent characteristics. For example, a car in CAR class consists
53
+ of a car body, tires, windows and head and tail lamps, etc.,
54
+ and they should be handled separately for realistic I2I trans-
55
+ lation. The simplest solution to the problem will be to use
56
+ more detailed annotations with sub-object component annota-
57
+ tions than the simple object annotations, but it is not possible.
58
+ The key idea of this paper is to bypass the sub-object com-
59
+ *Corresponding authors.
60
+ ponent annotations by leveraging the original style of the in-
61
+ put image because the original style will include the informa-
62
+ tion about the characteristics of the sub-object components.
63
+ Specifically, for each pixel, we use not only the per-class
64
+ style gap between the source and target domains but also the
65
+ pixel’s original style to determine the target style of a pixel.
66
+ To this end, we present Style Harmonization for unpaired I2I
67
+ translation (SHUNIT). Our SHUNIT generates a new style
68
+ by harmonizing the target domain style retrieved from a class
69
+ memory and an original source image style. Instead of direct
70
+ source-to-target style mapping, we aim for source and target
71
+ styles harmonization. We validate our method with extensive
72
+ experiments and achieve state-of-the-art performance on the
73
+ latest benchmark sets. The source code is available online:
74
+ https://github.com/bluejangbaljang/SHUNIT.
75
+ arXiv:2301.04685v1 [cs.CV] 11 Jan 2023
76
+
77
+ Introduction
78
+ Unpaired image-to-image (I2I) translation aims to learn
79
+ source-to-target style mapping, where source and target im-
80
+ ages are unpaired. It can be applied to data augmenta-
81
+ tion (Antoniou, Storkey, and Edwards 2017; Mariani et al.
82
+ 2018; Huang et al. 2018a; Xie et al. 2020), domain adapta-
83
+ tion (Hoffman et al. 2018; Murez et al. 2018) and various im-
84
+ age editing applications, such as style transfer (Gatys, Ecker,
85
+ and Bethge 2016; Huang and Belongie 2017; Ulyanov,
86
+ Vedaldi, and Lempitsky 2017), colorization (Zhang, Isola,
87
+ and Efros 2016; Zhang et al. 2017), and image inpaint-
88
+ ing (Iizuka, Simo-Serra, and Ishikawa 2017; Pathak et al.
89
+ 2016).
90
+ In the I2I translation, the biggest problem is how to deal
91
+ with the style variations among objects or classes. In other
92
+ words, when a global style gap is applied to an entire im-
93
+ age as in Fig. 1a, the I2I translation often results in unreal-
94
+ istic images because each class has different the style gaps
95
+ between the source domain and target domain. Recent ad-
96
+ vanced methods (Shen et al. 2019; Bhattacharjee et al. 2020;
97
+ Jeong et al. 2021; Kim et al. 2022) addressed the problem
98
+ by leveraging additional object annotations. They simplify
99
+ the task into class-level I2I translation and then perform per-
100
+ class source-to-target style mapping. This enables the net-
101
+ works to explicitly estimate class-wise target styles, but it
102
+ has a critical limitation: An object in each class consists
103
+ of multiple components, and all the sub-object components
104
+ might also have different characteristics. Let us consider the
105
+ example given in Fig. 1b.
106
+ Understandably, when a road image taken on a sunny day
107
+ is translated into a night image, head and tail lamps in a car
108
+ should be brighter while the rest of the components, such as
109
+ car body, tires, and windows, should be darker than before.
110
+ Therefore, each component in a car should be handled sep-
111
+ arately for realistic I2I translation. However, if the previous
112
+ approaches are applied to perform per-class source-to-target
113
+ style mapping, they will translate all head and tail lamps into
114
+ white lights, making unrealistic images, as shown in Fig. 1b.
115
+ Here, one might think that this issue can be addressed by an-
116
+ notating more detailed sub-object components than the sim-
117
+ ple object categories, but it is actually impossible. A brief
118
+ example is as follows. A car consists of body, window, and
119
+ tires. A tire consists of wheel and gum. In this way, sub-
120
+ object components can be divided endlessly.
121
+ To solve the above limitation of the previous class-level
122
+ I2I methods, we present Style Harmonization for unpaired
123
+ I2I translation (SHUNIT). The key idea of SHUNIT is to by-
124
+ pass the sub-object component annotations by leveraging the
125
+ original style of the input image because the original style
126
+ will include the information about the characteristics of the
127
+ sub-object components. Thus, instead of mapping source-
128
+ to-target style directly, SHUNIT harmonizes the source and
129
+ target styles to realize realistic and practical I2I translation.
130
+ As illustrated in Fig. 1c, SHUNIT uses not only the per-
131
+ class style gap between the source and target domains but
132
+ also the pixel’s original style to determine the target style
133
+ of a pixel. To achieve this, we disentangle the target style
134
+ into class-aware memory style and image-specific compo-
135
+ nent style. The class-aware memory style is stored in a style
136
+ memory, and image-specific component style is taken from
137
+ the original input image.
138
+ The goal of the style memory is to obtain class-wise
139
+ source-to-target style gaps and it is motivated by (Jeong et al.
140
+ 2021). Compared to the memory in (Jeong et al. 2021), our
141
+ style memory differs in two aspects. First, the output from
142
+ the style memory was used alone as a target style in (Jeong
143
+ et al. 2021), but the output from the memory is adaptively
144
+ aggregated (=harmonized) in this paper with the style of
145
+ the original input image to make a target style. Second, the
146
+ memory was simply updated in (Jeong et al. 2021), whereas
147
+ our style memory is jointly trained and optimized with the
148
+ other parts of SHUNIT. Specifically, the class-aware mem-
149
+ ory in (Jeong et al. 2021) was not trained but simply was
150
+ updated using the input features during the training, memo-
151
+ rizing the style features from the target domain. The gradi-
152
+ ent was not propagated to the style memory. Thus, the style
153
+ memory in (Jeong et al. 2021) cannot update their param-
154
+ eters based on the error of memory. In SHUNIT, however,
155
+ we overcome this problem by enabling the memory to learn
156
+ through backpropagation. To this end, we train the style
157
+ memory from randomly initialized parameters and introduce
158
+ style contrastive loss to constrain the memory to learn class-
159
+ wise style representations. The backpropagation forces the
160
+ style memory to reduce the final loss jointly and effectively
161
+ along with the other parts of SHUNIT. To demonstrate the
162
+ superiority of our SHUNIT, we conduct extensive experi-
163
+ ments on the latest benchmark sets and achieve state-of-the-
164
+ art performance.
165
+ Overall, the contributions of our work are summarized as
166
+ follows:
167
+ • We present a novel challenge in I2I translation: an object
168
+ might have various styles.
169
+ • We propose a new I2I method, style harmonization, that
170
+ leverages two distinct styles: class-aware memory style
171
+ and image-specific component style. To the best of our
172
+ knowledge, the style harmonization is the first method
173
+ to estimate the target style in multiple perspectives for
174
+ unpaired I2I translation.
175
+ • We achieve new state-of-the-art performance on latest
176
+ benchmarks and provide extensive experimental results
177
+ with analysis.
178
+ Related Work
179
+ Image-to-image translation.
180
+ The goal of I2I is to
181
+ learn source-to-target style mapping. For I2I translation,
182
+ pix2pix (Isola et al. 2017) proposes a general solution us-
183
+ ing conditional generative adversarial networks (Mirza and
184
+ Osindero 2014). However, it has a significant limitation:
185
+ paired training data should be used for training networks.
186
+ CycleGAN (Zhu et al. 2017) successfully addresses this
187
+ problem with a cycle consistency loss. The loss allows us to
188
+ train the networks with unpaired training data by supervis-
189
+ ing the reconstructed original image only. Based on Cycle-
190
+ GAN, many approaches (Kim et al. 2017; Choi et al. 2018)
191
+ have been proposed to tackle I2I translation take in an un-
192
+ paired manner. UNIT (Liu, Breuel, and Kautz 2017) pro-
193
+ poses another unpaired I2I translation solution by mapping
194
+
195
+ 𝑳𝒙
196
+ 𝐸��
197
+ 𝐸��
198
+ 𝑰𝒙
199
+ 𝒄𝒙
200
+ 𝒔𝒙
201
+ Read
202
+ 𝐺�
203
+ 𝑰�𝒚
204
+ Learnable Style Memory
205
+ 𝑘
206
+ 𝑣
207
+ class 1
208
+ class 2
209
+ class N
210
+ 𝑴𝒚
211
+ 𝒔�𝒚
212
+ SH ResBlk
213
+ SH ResBlk
214
+ SH ResBlk
215
+ ReLU
216
+ SHL
217
+ Conv
218
+ 𝒔�𝒚
219
+ 𝒔𝒙
220
+ ReLU
221
+ SHL
222
+ Conv
223
+ 𝒔�𝒚
224
+ 𝒔���
225
+ (a) Overall architecture
226
+ (b) SH ResBlk
227
+ Figure 2: An overview of SHUNIT. (a) From a pair of image Ix and label Lx in source domain X, the two encoders (i.e.,
228
+ Ex
229
+ c and Ex
230
+ s ) extract the content cx and component style sx, respectively. The content retrieves the memory style ˆsy. The three
231
+ features cx, sx, and ˆsy are fed to the target generator Gy, which consists of several Style Harmonization Residual Blocks (SH
232
+ ResBlk). The generator Gy outputs the translated image ˆIy. (b) The input of the SH ResBlk is the content cx for the first layer,
233
+ and the output of the previous block is used as input for the remainders. Each SH ResBlk includes two Style Harmonization
234
+ Layers (SHL) that transfer target styles, i.e., sx and ˆsy.
235
+ two images in different domains into the same latent code
236
+ in a shared-latent space. MUNIT (Huang et al. 2018b) and
237
+ DRIT (Lee et al. 2018) introduce a disentangled representa-
238
+ tion to achieve diverse and multi-modal I2I translation from
239
+ unpaired data. Basically, they perform global I2I translation
240
+ which focuses on mapping a global style on all pixels in an
241
+ image. Although they work well on object-centric images,
242
+ they bring severe artifacts for complex images, such as mul-
243
+ tiple objects being presented or large domain gap scenarios,
244
+ as illustrated in Fig. 1a. To complement the problem, recent
245
+ approaches leverage additional object annotations and per-
246
+ form class-level I2I translation.
247
+ Class-level image-to-image translation.
248
+ Recent several
249
+ approaches (Mo, Cho, and Shin 2019; Shen et al. 2019;
250
+ Bhattacharjee et al. 2020; Jeong et al. 2021; Kim et al.
251
+ 2022) propose class-level image-to-image translation so-
252
+ lutions with object annotations. Specifically, INIT (Shen
253
+ et al. 2019) generates instance-wise target domain images.
254
+ DUNIT (Bhattacharjee et al. 2020) additionally employs
255
+ an object detection network and jointly trains it with the
256
+ I2I translation network. MGUIT (Jeong et al. 2021) pro-
257
+ poses an approach to store and read class-wise style repre-
258
+ sentations with key-value memory networks (Miller et al.
259
+ 2016). This approach, however, cannot directly supervise
260
+ the memory with objective functions for I2I translation. In-
261
+ staformer (Kim et al. 2022) proposes a transformer-based
262
+ (Vaswani et al. 2017; Dosovitskiy et al. 2021) architec-
263
+ ture that mixes instance-aware content and style represen-
264
+ tations. The existing methods that leverage object annota-
265
+ tions learns the direct class-wise source-to-target style map-
266
+ ping, as shown in Fig. 1b. This effectively simplifies the I2I
267
+ translation problem into per-class I2I translation, but they
268
+ overlook an important point that not all pixels in the same
269
+ class should be translated with the same style. Our approach,
270
+ style harmonization, addresses this problem by introducing
271
+ the component style that facilitates preserving the original
272
+ style of the source image, as illustrated in Fig. 1c.
273
+ Proposed Method
274
+ Definition and Overview
275
+ Let X and Y be the visual source and target domains, respec-
276
+ tively. Given an image and the corresponding label (=bound-
277
+ ing box or segmentation mask) in X domain, our frame-
278
+ work generates a new image in Y domain while remain-
279
+ ing the semantic information in the given image. We assume
280
+ that each domain consists of images and labels denoted by
281
+ (Ix, Lx) ∈ X and (Iy, Ly) ∈ Y, and both domains have the
282
+ same set of N classes. Our framework contains the source
283
+ encoder Ex = {Ex
284
+ c , Ex
285
+ s }, target generator Gy, and target
286
+ style memory M y for source-to-target mapping, and the tar-
287
+ get encoder Ey = {Ey
288
+ c , Ey
289
+ s }, source generator Gx, source
290
+ style memory M x for target-to-source mapping. For conve-
291
+ nience, we will only describe the source-to-target direction,
292
+ and the overview of our framework is depicted in Fig. 2.
293
+ Following the previous studies (Huang et al. 2018b; Lee
294
+ et al. 2018), we assume that an image can be disentangled
295
+ into domain-invariant content and domain-specific style. For
296
+ this, we basically follow the MUNIT (Huang et al. 2018b)
297
+ architecture. The content encoder Ex
298
+ c consists of several
299
+ strided convolutional layers and residual blocks (He et al.
300
+ 2016), and all the convolutional layers are followed by
301
+ Instance Normalization (Ulyanov, Vedaldi, and Lempitsky
302
+ 2016). The content encoder extracts the domain-invariant
303
+ content feature cx from the image Ix and label Lx. The
304
+ style encoder Ex
305
+ s also consists of several strided convolu-
306
+ tional layers and residual blocks, and it extracts the compo-
307
+
308
+ 𝒄𝒙
309
+ 𝒔�𝒚
310
+ class-wise separation
311
+ 𝑣�
312
+ 𝑘�
313
+ 𝑑
314
+ softmax
315
+ class 1
316
+ 𝑣�
317
+ 𝑘�
318
+ class 2
319
+ 𝑣�
320
+ 𝑘�
321
+ class N
322
+ •••
323
+ 𝑐�
324
+
325
+ 𝑐�
326
+
327
+ 𝑐�
328
+
329
+ 𝑠̂�
330
+
331
+ 𝑠̂�
332
+
333
+ 𝑠̂�
334
+
335
+ Figure 3: Read operation in style memory. The content
336
+ feature cx is separated by the label Lx. For each class, the
337
+ memory read is independently performed. After class-wise
338
+ memory read, the memory style ˆsy is obtained by gathering
339
+ the retrieved class-wise values into the original locations. �
340
+ denotes matrix multiplication.
341
+ nent style feature sx from the image Ix. The memory style
342
+ ˆsy is read by retrieving from the learnable style memory M y
343
+ to the content feature cx. The generator Gy consists of sev-
344
+ eral style harmonization layers and residual blocks, and it
345
+ produces the translated image ˆIy from cx, sx, and ˆsy.
346
+ Style Harmonization for Unpaired Image-to-Image
347
+ Translation (SHUNIT)
348
+ The important point of SHUNIT is that two styles are em-
349
+ ployed to determine the target style: One is image-specific
350
+ component style, and the other one is class-aware memory
351
+ style. We focus on extracting two distinct styles accurately
352
+ and then harmonizing them. In what follows, we describe
353
+ the detail of each step.
354
+ Component style.
355
+ The style encoder Ex
356
+ s takes the im-
357
+ age Ix as input and extracts the style feature sx of size
358
+ H × W × C, where H, W, and C are the height, width, and
359
+ number of channels of the feature, respectively. Here, sx ex-
360
+ plicitly represents the style of the input image, thus we use
361
+ it as image-specific component style. The component style
362
+ is used together with the memory style in the style harmo-
363
+ nization layer to reduce the artifacts of the generated target
364
+ image.
365
+ Memory style.
366
+ The component style is not sufficient to
367
+ handle complex scenes with multiple objects. Therefore, we
368
+ exploit the class-specific style that leverages an object anno-
369
+ tation. To this end, we construct the class-wise style mem-
370
+ ory retrieved by the content feature. The target style memory
371
+ M y consists of N class memories to store class-wise style
372
+ representations of the target domain Y. Each class memory
373
+ M y
374
+ n has U key-value pairs (ky, vy) (Jeong et al. 2021), con-
375
+ sidering that various styles exist in one class (e.g., different
376
+ styles of headlamp and tires in CAR class). The key ky is
377
+ used for matching with the content feature and the value vy
378
+ has the class-aware style representations. The key and value
379
+ are learnable vectors, each one of size 1 × 1 × C.
380
+ Fig. 3 shows a detailed implementation of the process of
381
+ reading the corresponding memory style ˆsy from the mem-
382
+ 𝒔𝒙
383
+ 𝜷𝒙
384
+ 𝜸𝒙
385
+ 𝒔�𝒚
386
+ 𝜷𝒚
387
+ 𝜸𝒚
388
+ 𝛼�
389
+ 1 − 𝛼�
390
+ Conv
391
+ Conv
392
+ Conv
393
+ Conv
394
+ 𝜷
395
+ 𝜸
396
+ input
397
+ output
398
+ •••
399
+ class-wise 𝛼
400
+ broadcasting
401
+ norm
402
+ Figure 4: Style harmonization layer. From the component
403
+ style sx and memory style ˆsy, scale (γx and γy) and shift (βx
404
+ and βy) factors are extracted via four convolutional layers.
405
+ The alpha mask ˆα is obtained by broadcasting the class-wise
406
+ alpha α with the semantic label Lx. We weighted sum the
407
+ image and memory styles with the alpha mask, and transfer
408
+ it to the input feature. ⊙ denotes Hadamard product.
409
+ ory M y. With the semantic label, we separate the content
410
+ feature cx into {cx
411
+ 1, cx
412
+ 2, · · · , cx
413
+ N}, where cx
414
+ n denotes source
415
+ content feature for the n-th class. Let cx
416
+ n,i be the i-th pixel
417
+ of the n-th class source content feature and (ky
418
+ n,j, vy
419
+ n,j) be
420
+ the j-th key-value pair of the n-th class target style memory
421
+ M y
422
+ n. In this work, we aim to read the target memory style
423
+ ˆsy
424
+ n,i corresponding to the source content cx
425
+ n,i using the simi-
426
+ larity between the source content and key of target memory.
427
+ To this end, we calculate the similarity wx
428
+ n,i,j between cx
429
+ n,i
430
+ and ky
431
+ n,j as:
432
+ wx
433
+ n,i,j =
434
+ exp
435
+
436
+ d(cx
437
+ n,i, ky
438
+ n,j)
439
+
440
+ �U
441
+ u=1 exp
442
+
443
+ d(cx
444
+ n,i, ky
445
+ n,u)
446
+
447
+ (1)
448
+ where d(·, ·) is the cosine similarity. We then read the
449
+ memory style ˆsy
450
+ n,i corresponding to cx
451
+ n,i by calculating the
452
+ weighted sum of values in n-th class style memory:
453
+ ˆsy
454
+ n,i =
455
+ U
456
+
457
+ j=1
458
+ wx
459
+ n,i,jvy
460
+ n,j.
461
+ (2)
462
+ The same process is applied for content features of other
463
+ classes, finally extracting spatially varying target memory
464
+ style features ˆsy of size H × W × C.
465
+ Different from the previous key-value memory net-
466
+ works (Jeong et al. 2021) that learn the memory via updating
467
+ mechanism, we learn the memory through backpropagation.
468
+ The updating mechanism is used to directly store the ex-
469
+ ternal input features. However, it has a critical drawback:
470
+ The memory cannot be trained with the network jointly with
471
+ the same objective function because the gradient should be
472
+ stopped at the updated memory. To solve the problem, we
473
+ discard the update mechanism and learn the memory with
474
+ the loss functions presented in Eq. (7). The effectiveness of
475
+ our memory learning strategy is validated in the experiments
476
+ section.
477
+ Style harmonization layer.
478
+ Our goal is harmonizing the
479
+ source and target styles instead of mapping source-to-target
480
+
481
+ style directly. To this end, we propose the style harmoniza-
482
+ tion layer to adaptively aggregate the component style and
483
+ memory style. The style harmonization layer consists of sev-
484
+ eral convolution layers and class-wise alpha parameters, and
485
+ it is illustrated in Fig. 4. Here we use three conditional in-
486
+ puts: memory style, component style, and label. Convolu-
487
+ tional layers are used to compute pixel-wise scale γ and shift
488
+ β factors from the two styles. Following (Jiang et al. 2020;
489
+ Park et al. 2019; Zhu et al. 2020; Ling et al. 2021), we trans-
490
+ fer the harmonized target style by scaling and shifting the
491
+ normalized input feature with the computed factors (i.e., γ
492
+ and β). In the layer, we additionally set class-wise alpha pa-
493
+ rameters (α1, α2, · · · , αN). It is used to decide which style
494
+ has more influence for each class in the generated images.
495
+ If the alpha value is large, the component style sx has more
496
+ influence, and vice versa.
497
+ Let f, of size H × W × C, be the input feature of the
498
+ current style harmonization layer in the generator Gy. With
499
+ the style harmonizing scale γ and shift β factors, the feature
500
+ is denormalized by
501
+ γc,h,w
502
+ (fc,h,w − µc)
503
+ σc
504
+ + βc,h,w
505
+ (3)
506
+ where µc and σc are the mean and standard deviation of the
507
+ input feature f at the channel c, respectively. The modula-
508
+ tion parameters γc,h,w and βc,h,w are obtained from γx
509
+ c,h,w,
510
+ γy
511
+ c,h,w, βx
512
+ c,h,w, and βy
513
+ c,h,w, which are the scale and shift fac-
514
+ tors of the component style sx and memory style, sy respec-
515
+ tively, and they are computed by
516
+ γc,h,w = ˆαh,wγx
517
+ c,h,w + (1 − ˆαh,w)γy
518
+ c,h,w,
519
+ βc,h,w = ˆαh,wβx
520
+ c,h,w + (1 − ˆαh,w)βy
521
+ c,h,w,
522
+ (4)
523
+ where ˆα denotes the alpha mask. It is obtained by broadcast-
524
+ ing the class-wise alpha parameters to their corresponding
525
+ semantic regions of the label Lx. We experimentally demon-
526
+ strate that our style harmonization layer adaptively controls
527
+ the style of each object well, and the results are given in the
528
+ experiments section.
529
+ Loss Functions
530
+ We leverage standard loss functions used in MUNIT (Huang
531
+ et al. 2018b) to generate proper target domain images. It in-
532
+ cludes self-reconstruction Lself (Zhu et al. 2017), cycle con-
533
+ sistency Lcycle (Zhu et al. 2017), perceptual Lperc (Johnson,
534
+ Alahi, and Fei-Fei 2016) and adversarial loss Ladv (Good-
535
+ fellow et al. 2014). The detailed explanations of those loss
536
+ functions are given in the supplementary material.
537
+ In this paper, we propose two advanced loss functions to
538
+ facilitate style harmonization: content contrastive loss and
539
+ style contrastive loss. It is used with the aforementioned
540
+ standard loss functions jointly. In what follows, we intro-
541
+ duce the proposed two loss functions.
542
+ Content contrastive loss.
543
+ To extract domain invariant
544
+ content features from the content encoder, MUNIT (Huang
545
+ et al. 2018b) simply reduces the L1 distances between cx and
546
+ ˆcy. We replace this with contrastive representation learning
547
+ to improve discrimination within a class. For a content fea-
548
+ ture ˆcy
549
+ i at pixel i, which is the content feature extracted from
550
+ translated target image, we set the positive sample to cx
551
+ i and
552
+ we set the remaining features at the other pixels as negative
553
+ samples. The content contrastive loss is defined with the a
554
+ form of InfoNCE (Oord, Li, and Vinyals 2018) as:
555
+ Lcontent = −
556
+ HW
557
+
558
+ i=1
559
+ log
560
+
561
+ exp((cx
562
+ i · ˆcy
563
+ i )/τ)
564
+ �HW
565
+ j=1 exp((cx
566
+ j · ˆcy
567
+ i )/τ)
568
+
569
+ (5)
570
+ where τ is a temperature parameter. In this equation, the
571
+ features in the same class at the pixel i can be considered
572
+ as negative samples. This encourages the content encoder
573
+ to extract more diverse style representations from the style
574
+ memory within the same class. It is also applied to the target-
575
+ to-source pipeline with ˆcx and cy
576
+ Style constrative loss.
577
+ We propose the style contrastive
578
+ loss to allow the style memory to learn class-wise style rep-
579
+ resentations. Similar to the content contrastive loss, for a
580
+ style feature ˆsx
581
+ i at pixel i, which is the memory style of
582
+ target-to-source mapping, we set the positive sample to the
583
+ source component style sx
584
+ i and we set the remaining features
585
+ at the other pixels as negative samples. The style constrative
586
+ loss is defined as follows:
587
+ Lstyle = −
588
+ HW
589
+
590
+ i=1
591
+ log
592
+
593
+ exp((sx
594
+ i · ˆsx
595
+ i )/τ)
596
+ �HW
597
+ j=1 exp((sx
598
+ j · ˆsx
599
+ i )/τ)
600
+
601
+ (6)
602
+ This loss directly supervises the memory style ˆsx for the
603
+ translated target image. This improves the stability of cycle
604
+ consistency learning for reconstructing Ix from ˆIy. It is also
605
+ applied to the target styles, i.e., ˆsy and sy
606
+ Finally, all loss functions are summarized as follows:
607
+ min
608
+ (Ex,Ey,Gx,Gy) max
609
+ (Dx,Dy)L(Ex, Ey, Gx, Gy, Dx, Dy) =
610
+ λselfLself + λcycleLcycle + λpercLperc
611
+ +λadvLadv + λcontentLcontent + λstyleLstyle
612
+ (7)
613
+ where Dx and Dy denote the multi-scale discrimina-
614
+ tors (Wang et al. 2018) for each visual domain, X and Y.
615
+ The details of Lself, Lcycle, Lperc, and Ladv are described
616
+ in the supplementary material.
617
+ Experiments
618
+ In this section, we present extensive experimental results and
619
+ analysis. To demonstrate the superiority of our method, we
620
+ compare our SHUNIT with state-of-the-art I2I translation
621
+ methods. The implementation details of our method are pro-
622
+ vided in the supplementary material.
623
+ Datasets
624
+ We evaluate our SHUNIT on three I2I translation scenar-
625
+ ios: Cityscapes (Cordts et al. 2016) → ACDC (Sakaridis,
626
+ Dai, and Van Gool 2021) and INIT (Shen et al. 2019),
627
+ and KITTI (Geiger et al. 2013) → Cityscapes (Cordts
628
+ et al. 2016). In all scenarios, INIT (Shen et al. 2019),
629
+ DUNIT (Bhattacharjee et al. 2020), MGUIT (Jeong et al.
630
+ 2021), InstaFormer (Kim et al. 2022), and our method use
631
+ semantic labels provided in each dataset.
632
+
633
+ Input
634
+ CycleGAN
635
+ MUNIT
636
+ MGUIT
637
+ SHUNIT (ours)
638
+ Target domain
639
+ Figure 5: Qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image (first
640
+ column), we generate four adverse condition images using (Zhu et al. 2017; Huang et al. 2018b; Jeong et al. 2021) and SHUNIT.
641
+ In the last column, we show a sample of the real image for each adverse condition.
642
+ clear → snow
643
+ clear → rain
644
+ clear → fog
645
+ clear → night
646
+ cFID ↓
647
+ mIoU ↑
648
+ cFID ↓
649
+ mIoU ↑
650
+ cFID ↓
651
+ mIoU ↑
652
+ cFID ↓
653
+ mIoU ↑
654
+ CycleGAN (Zhu et al. 2017)
655
+ 21.88
656
+ 23.68
657
+ 20.16
658
+ 35.96
659
+ 31.72
660
+ 13.73
661
+ 15.26
662
+ 31.33
663
+ UNIT (Liu, Breuel, and Kautz 2017)
664
+ 13.89
665
+ 31.24
666
+ 16.25
667
+ 39.39
668
+ 29.36
669
+ 28.70
670
+ 12.28
671
+ 35.29
672
+ MUNIT (Huang et al. 2018b)
673
+ 13.79
674
+ 33.83
675
+ 12.62
676
+ 44.20
677
+ 29.34
678
+ 27.44
679
+ 12.56
680
+ 37.43
681
+ TSIT (Jiang et al. 2020)
682
+ 10.47
683
+ 38.08
684
+ 14.16
685
+ 46.40
686
+ 25.16
687
+ 36.68
688
+ 11.62
689
+ 35.92
690
+ MGUIT (Jeong et al. 2021)
691
+ 8.75
692
+ 33.33
693
+ 10.76
694
+ 42.60
695
+ 24.36
696
+ 10.22
697
+ 15.83
698
+ 31.36
699
+ SHUNIT (ours)
700
+ 6.62
701
+ 45.15
702
+ 8.47
703
+ 48.84
704
+ 6.53
705
+ 38.96
706
+ 14.08
707
+ 33.66
708
+ Table 1: Quantitative comparison on Cityscapes → ACDC. We measure class-wise FID (lower is better) and mIoU (higher
709
+ is better). For brevity, class-wise FID is written as cFID.
710
+ clear → snow
711
+ clear → rain
712
+ clear → fog
713
+ clear → night
714
+ AdaptSegNet (Tsai et al. 2018)
715
+ 35.3
716
+ 49.0
717
+ 31.8
718
+ 29.7
719
+ ADVENT (Vu et al. 2019)
720
+ 32.1
721
+ 44.3
722
+ 32.9
723
+ 31.7
724
+ BDL (Li, Yuan, and Vasconcelos 2019)
725
+ 36.4
726
+ 49.7
727
+ 37.7
728
+ 33.8
729
+ CLAN (Luo et al. 2019)
730
+ 37.7
731
+ 44.0
732
+ 39.0
733
+ 31.6
734
+ FDA (Yang and Soatto 2020)
735
+ 46.9
736
+ 53.3
737
+ 39.5
738
+ 37.1
739
+ SIM (Wang et al. 2020)
740
+ 33.3
741
+ 44.5
742
+ 36.6
743
+ 28.0
744
+ MRNet (Zheng and Yang 2021)
745
+ 38.7
746
+ 45.4
747
+ 38.8
748
+ 27.9
749
+ SHUNIT (ours)
750
+ 45.2
751
+ 48.8
752
+ 39.0
753
+ 33.7
754
+ Table 2: Quantitative Comparison on domain adaptation for semantic segmentation. We report mIoU for Cityscapes →
755
+ ACDC.
756
+ Cityscapes → ACDC
757
+ Cityscapes (Cordts et al. 2016)
758
+ is one of the most popular urban scene dataset. ACDC
759
+ (Sakaridis, Dai, and Van Gool 2021) is the latest dataset
760
+ with multiple adverse condition images and consists of
761
+ four conditions of street scenes: snow, rain, fog, and night.
762
+ ACDC dataset provides images with corresponding dense
763
+ pixel-level semantic annotations, and it has 19 classes the
764
+ same as Cityscapes dataset for all adverse conditions. Fol-
765
+ lowing (Sakaridis, Dai, and Van Gool 2021), we leverage
766
+ Cityscapes dataset as a clear condition and translate it to the
767
+ adverse conditions (i.e., snow, rain, fog, and night) in ACDC
768
+ dataset. Therefore, this scenario is challenging because not
769
+ only the weather conditions, but also layouts, such as cam-
770
+ era model, view, and angle, are different. To train the net-
771
+ works, 2975, 400, 400, 400, and 400 images are used for
772
+ clear, snow, rain, fog, and night conditions, respectively. For
773
+ a fair comparison on this benchmark, we reproduce existing
774
+ state-of-the-art methods (Zhu et al. 2017; Liu, Breuel, and
775
+ Kautz 2017; Huang et al. 2018b; Jiang et al. 2020; Jeong
776
+ et al. 2021) in our system. For fair comparison, we set the
777
+ number of key-value pairs for style memory to be the same
778
+ as our setting and use segmentation mask for reproducing
779
+
780
+ 国Input
781
+ CycleGAN
782
+ UNIT
783
+ MUNIT
784
+ DRIT
785
+ MGUIT
786
+ InstaFormer
787
+ SHUNIT (ours)
788
+ Figure 6: Qualitative comparison on INIT dataset. (Top to bottom) sunny→night, night→sunny, cloudy→sunny results. Our
789
+ method preserves object details and looks more realistic.
790
+ sunny → night
791
+ night → sunny
792
+ sunny → rainy
793
+ sunny → cloudy
794
+ cloudy → sunny
795
+ Average
796
+ CIS ↑
797
+ IS ↑
798
+ CIS ↑
799
+ IS ↑
800
+ CIS ↑
801
+ IS ↑
802
+ CIS ↑
803
+ IS ↑
804
+ CIS ↑
805
+ IS ↑
806
+ CIS ↑
807
+ IS ↑
808
+ CycleGAN (Zhu et al. 2017)
809
+ 0.014
810
+ 1.026
811
+ 0.012
812
+ 1.023
813
+ 0.011
814
+ 1.073
815
+ 0.014
816
+ 1.097
817
+ 0.090
818
+ 1.033
819
+ 0.025
820
+ 1.057
821
+ UNIT (Liu, Breuel, and Kautz 2017)
822
+ 0.082
823
+ 1.030
824
+ 0.027
825
+ 1.024
826
+ 0.097
827
+ 1.075
828
+ 0.081
829
+ 1.134
830
+ 0.219
831
+ 1.046
832
+ 0.087
833
+ 1.055
834
+ MUNIT (Huang et al. 2018b)
835
+ 1.159
836
+ 1.278
837
+ 1.036
838
+ 1.051
839
+ 1.012
840
+ 1.146
841
+ 1.008
842
+ 1.095
843
+ 1.026
844
+ 1.321
845
+ 1.032
846
+ 1.166
847
+ DRIT (Lee et al. 2018)
848
+ 1.058
849
+ 1.224
850
+ 1.024
851
+ 1.099
852
+ 1.007
853
+ 1.207
854
+ 1.025
855
+ 1.104
856
+ 1.046
857
+ 1.321
858
+ 1.031
859
+ 1.164
860
+ INIT (Shen et al. 2019)
861
+ 1.060
862
+ 1.118
863
+ 1.045
864
+ 1.080
865
+ 1.036
866
+ 1.152
867
+ 1.040
868
+ 1.142
869
+ 1.016
870
+ 1.460
871
+ 1.043
872
+ 1.179
873
+ DUNIT (Bhattacharjee et al. 2020)
874
+ 1.166
875
+ 1.259
876
+ 1.083
877
+ 1.108
878
+ 1.029
879
+ 1.225
880
+ 1.033
881
+ 1.149
882
+ 1.077
883
+ 1.472
884
+ 1.079
885
+ 1.223
886
+ MGUIT (Jeong et al. 2021)
887
+ 1.176
888
+ 1.271
889
+ 1.115
890
+ 1.130
891
+ 1.092
892
+ 1.213
893
+ 1.052
894
+ 1.218
895
+ 1.136
896
+ 1.489
897
+ 1.112
898
+ 1.254
899
+ Instaformer (Kim et al. 2022)
900
+ 1.200
901
+ 1.404
902
+ 1.115
903
+ 1.127
904
+ 1.158
905
+ 1.394
906
+ 1.130
907
+ 1.257
908
+ 1.141
909
+ 1.585
910
+ 1.149
911
+ 1.353
912
+ SHUNIT (ours)
913
+ 1.205
914
+ 1.503
915
+ 1.308
916
+ 1.585
917
+ 1.136
918
+ 1.609
919
+ 1.111
920
+ 1.405
921
+ 1.085
922
+ 1.315
923
+ 1.169
924
+ 1.483
925
+ Table 3: Quantitative Comparison on INIT dataset. We measure CIS and IS (higher is better).
926
+ (Jeong et al. 2021).
927
+ INIT
928
+ INIT (Shen et al. 2019) is a public benchmark set for
929
+ I2I translation. It contains street scenes images including 4
930
+ weather categories (i.e., sunny, night, rainy, and cloudy) with
931
+ the corresponding bounding box labels. Following (Shen
932
+ et al. 2019), we split the 155K images into 85% for train-
933
+ ing and 15% for testing. We conduct five translation exper-
934
+ iments: sunny ↔ night, sunny ↔ cloudy, sunny → rainy.
935
+ In this dataset, we directly copied the results of the existing
936
+ methods from (Shen et al. 2019; Bhattacharjee et al. 2020;
937
+ Jeong et al. 2021; Kim et al. 2022). Similarly, for fair com-
938
+ parison with MGUIT, the number of key-value pairs in style
939
+ memory is set equally.
940
+ KITTI → Cityscapes
941
+ KITTI is a public benchmark set
942
+ for object detection. It contains 7481 images with bounding
943
+ boxes annotations for training and 7518 images for testing.
944
+ Following the previous I2I translation methods (Bhattachar-
945
+ jee et al. 2020; Jeong et al. 2021; Kim et al. 2022), we select
946
+ the common 4 object classes (person, car, truck, bicycle) for
947
+ evaluatation.
948
+ Qualitative Comparison
949
+ Fig. 5 shows qualitative results on Cityscapes → ACDC.
950
+ Since our I2I translation setting, Cityscapes → ACDC, is
951
+ very challenging as discussed in the datasets section, ex-
952
+ isting methods cannot generate realistic images in several
953
+ scenarios. Specifically, CycleGAN (Zhu et al. 2017) often
954
+ destroys the semantic layout. MUNIT (Huang et al. 2018b)
955
+ translates images with a global style, thus it also often gen-
956
+ erates artifacts, as shown in the snow, rain, and fog images.
957
+ MGUIT (Jeong et al. 2021) also includes artifacts in the car
958
+ even though leveraging memory style. It shows the limita-
959
+ tion of the updating mechanism for training memory style,
960
+ and the limitation is clearly depicted in the challenging sce-
961
+ nario. In contrast to them, our SHUNIT accurately generates
962
+ images in the target domains without losing the original style
963
+ in the input image. In the supplementary material, we further
964
+ provide the results of UNIT (Liu, Breuel, and Kautz 2017)
965
+ and TSIT (Jiang et al. 2020).
966
+ As shown in Fig. 6, which depicts qualitative results on
967
+ INIT dataset, our method generates high-quality images in
968
+ various scenarios. In the night → sunny scenario (second
969
+ row), InstaFormer (Kim et al. 2022) translates the color of
970
+ the road lane to yellow. On the other hand, our method keeps
971
+ the color of the lane as white and generates a sunny scene by
972
+ harmonizing the target domain style retrieved from a style
973
+ memory and an image style.
974
+ Quantitative Comparison
975
+ The quantitative results on Cityscapes → ACDC are pre-
976
+ sented in Table 1. To quantify the per-class image-to-image
977
+ translation quality, we measure class-wise FID (Shim et al.
978
+ 2022). We further measure mIoU on ACDC test set. The
979
+
980
+ Pers.
981
+ Car
982
+ Truc.
983
+ Bic.
984
+ mAP
985
+ DT (Inoue et al. 2018)
986
+ 28.5
987
+ 40.7
988
+ 25.9
989
+ 29.7
990
+ 31.2
991
+ DAF (Huang et al. 2018b)
992
+ 39.2
993
+ 40.2
994
+ 25.7
995
+ 48.9
996
+ 38.5
997
+ DARL (Kim et al. 2019)
998
+ 46.4
999
+ 58.7
1000
+ 27.0
1001
+ 49.1
1002
+ 45.3
1003
+ DAOD (Rodriguez and Mikolajczyk 2019)
1004
+ 47.3
1005
+ 59.1
1006
+ 28.3
1007
+ 49.6
1008
+ 46.1
1009
+ DUNIT (Bhattacharjee et al. 2020)
1010
+ 60.7
1011
+ 65.1
1012
+ 32.7
1013
+ 57.7
1014
+ 54.1
1015
+ MGUIT (Jeong et al. 2021)
1016
+ 58.3
1017
+ 68.2
1018
+ 33.4
1019
+ 58.4
1020
+ 54.6
1021
+ InstaFormer (Kim et al. 2022)
1022
+ 61.8
1023
+ 69.5
1024
+ 35.3
1025
+ 55.3
1026
+ 55.5
1027
+ SHUNIT (ours)
1028
+ 56.3
1029
+ 74.4
1030
+ 51.9
1031
+ 53.2
1032
+ 59.0
1033
+ Table 4: Quantitative Comparison on domain adaptation for object detection. We report per-class AP for KITTI →
1034
+ Cityscapes.
1035
+ clear → snow
1036
+ clear → rain
1037
+ Mem. Comp.
1038
+ α
1039
+ cFID ↓ mIoU ↑ cFID ↓ mIoU ↑
1040
+
1041
+ 12.93
1042
+ 26.33
1043
+ 7.83
1044
+ 39.06
1045
+
1046
+
1047
+ 8.72
1048
+ 37.20
1049
+ 8.47
1050
+ 38.97
1051
+
1052
+
1053
+
1054
+ 6.62
1055
+ 44.35
1056
+ 8.47
1057
+ 42.77
1058
+ (a) Style ablation study on SHL.
1059
+ clear → snow
1060
+ clear → rain
1061
+ Lcontent
1062
+ Lstyle
1063
+ cFID ↓ mIoU ↑ cFID ↓ mIoU ↑
1064
+
1065
+ 11.06
1066
+ 32.43
1067
+ 13.23
1068
+ 38.39
1069
+
1070
+ 12.38
1071
+ 30.89
1072
+ 9.33
1073
+ 39.47
1074
+
1075
+
1076
+ 6.62
1077
+ 44.35
1078
+ 8.47
1079
+ 42.77
1080
+ (b) Ablation study on loss functions.
1081
+ clear → snow
1082
+ clear → rain
1083
+ cFID ↓
1084
+ mIoU ↑
1085
+ cFID ↓
1086
+ mIoU ↑
1087
+ Updating
1088
+ 10.55
1089
+ 36.70
1090
+ 12.05
1091
+ 38.21
1092
+ Backprop.
1093
+ 6.62
1094
+ 44.35
1095
+ 8.47
1096
+ 42.77
1097
+ (c) Style memory training strategies.
1098
+ clear → snow
1099
+ clear → rain
1100
+ cFID ↓
1101
+ mIoU ↑
1102
+ cFID ↓
1103
+ mIoU ↑
1104
+ L1
1105
+ 12.21
1106
+ 38.98
1107
+ 7.72
1108
+ 39.78
1109
+ Contrastive
1110
+ 6.62
1111
+ 44.35
1112
+ 8.47
1113
+ 42.77
1114
+ (d) L1 vs. Contrastive loss for style and content
1115
+ losses.
1116
+ clear → snow
1117
+ clear → rain
1118
+ cFID ↓ mIoU ↑
1119
+ cFID ↓ mIoU ↑
1120
+ w/o
1121
+ 6.73
1122
+ 44.11
1123
+ 9.03
1124
+ 38.72
1125
+ w/
1126
+ 6.62
1127
+ 44.35
1128
+ 8.47
1129
+ 42.77
1130
+ (e) Experimental results of label input for
1131
+ content encoder.
1132
+ Table 5: Ablation Study. We report class-wise FID and mIoU in two scenarios: clear → {snow, rain}.
1133
+ mIoU metric is used to validate the results on the practical
1134
+ problem, semantic segmentation. We generate a training set
1135
+ by Cityscapes → ACDC and then train DeepLabV2 (Chen
1136
+ et al. 2017) on it. The mIoU score is obtained with the
1137
+ trained DeepLabV2 by evaluating on ACDC test set. As
1138
+ shown in Table 1, we surpass the state-of-the-art I2I trans-
1139
+ lation methods by a significant margin in most scenarios,
1140
+ demonstrating the superiority of our style harmonization for
1141
+ unpaired I2I translation. Table 2 shows the quantitative re-
1142
+ sults of domain adaptation for semantic segmentation with
1143
+ the state-of-the-art methods. Despite we trained DeepLabV2
1144
+ with only a simple cross-entropy loss, our SHUNIT achieves
1145
+ comparable performance with the domain adaptation meth-
1146
+ ods that were trained DeepLabV2 with additional loss func-
1147
+ tions and several techniques for boosting the performance of
1148
+ mIoU score on the target domain.
1149
+ Table 3 shows another quantitative results on the testing
1150
+ split of INIT (Shen et al. 2019). To directly compare our
1151
+ method with the public results, we evaluate our method with
1152
+ Inception Score (IS) (Salimans et al. 2016) and Conditional
1153
+ Inception Score (CIS) (Huang et al. 2018b). As shown in
1154
+ Table 3, we achieve the best performance in most scenarios.
1155
+ We further evaluate our method on domain adaptation
1156
+ benchrmark following DUNIT (Bhattacharjee et al. 2020).
1157
+ We use Faster-RCNN (Ren et al. 2015) trained on the source
1158
+ domain as a detector. As shown in Table 4, we achieve the
1159
+ state-of-the-art performance.
1160
+ Ablation Study
1161
+ In this section, we study the effectiveness of each component
1162
+ in our method. We validate on Cityscapes (clear) → ACDC
1163
+ (snow/rain) scenarios and use ACDC validation set for both
1164
+ class-wise FID and mIoU1.
1165
+ Ablation study on style harmonization layer.
1166
+ We ablate
1167
+ the memory style, component style, and class-wise α in the
1168
+ style harmonization layer, and they are denoted as “Mem.”,
1169
+ “Comp.”, and “α” in Table 5a, respectively. As shown in the
1170
+ table, the memory style-only is far behind the full model.
1171
+ With component style, we can achieve performance im-
1172
+ provement on clear → snow while decreasing on clear →
1173
+ rain. We obtain significant improvement on most scenarios
1174
+ with class-wise α. The results demonstrate that the exist-
1175
+ ing approach, which only leverages the memory style, is not
1176
+ sufficient for I2I translation, and we successfully address the
1177
+ problem by adaptively harmonizing two styles.
1178
+ Ablation study on content and style losses.
1179
+ We study the
1180
+ effectiveness of the proposed two loss functions, Lstyle and
1181
+ Lcontent, by ablating them step-by-step, and the results are
1182
+ 1mIoU on test set should be evaluated on the online server
1183
+ (Sakaridis, Dai, and Van Gool 2021) and it has a limit on the num-
1184
+ ber of submissions. Therefore, we use validation set for ablation
1185
+ study.
1186
+
1187
+ given in Table 5b. As shown in the table, our model is effec-
1188
+ tive when two losses are used jointly.
1189
+ Style memory training strategy.
1190
+ As described in the pro-
1191
+ posed method section, we opt for backpropagation to train
1192
+ the style memory rather than updating the mechanism used
1193
+ in (Jeong et al. 2021). The results are shown in Table 5c. We
1194
+ surpass the existing updating method by a large margin.
1195
+ L1 vs. Contrastive loss.
1196
+ Table 5d shows the efficacy of our
1197
+ contrastive-based approach by replacing Lcontent and Lstyle
1198
+ with L1 losses as used in MUNIT (Huang et al. 2018b). The
1199
+ L1 losses are designed to reduce L1 distances within posi-
1200
+ tive pairs without consideration of negative pairs. As we dis-
1201
+ cussed in loss functions section, our method effectively en-
1202
+ courages extracting more diverse style representations, lead-
1203
+ ing to performance improvement.
1204
+ Label input for content encoder.
1205
+ Table 5e shows that la-
1206
+ bel input is not significant but always leads to performance
1207
+ improvements. Therefore, we have no reason to omit the la-
1208
+ bel input.
1209
+ Limitations
1210
+ Since our framework leverages the component style of the
1211
+ source image, the generated image’s quality relies on the
1212
+ source image’s quality. If the source image has a very bright
1213
+ colors, SHUNIT often generates a relatively bright night im-
1214
+ age. In Fig. 5, SHUNIT struggles to generate geometrically
1215
+ distinct lights from the source image. Due to the above prob-
1216
+ lems, SHUNIT cannot achieve the best performance on clear
1217
+ → night scenario in Table. 1. We believe that these problems
1218
+ can be alleviated by leveraging geometric information such
1219
+ as depth or camera pose. Additionally, our approach can give
1220
+ limited benefit to some I2I translation scenarios, such as dog
1221
+ → cat, because these tasks need to change the content; how-
1222
+ ever, we tackle the unpaired I2I translation task under the
1223
+ condition that the content will not be changed, and only the
1224
+ style will be changed.
1225
+ Conclusion
1226
+ We present a new perspective of the target style: It can
1227
+ be disentangled into class-aware and image-specific styles.
1228
+ Furthermore, our SHUNIT effectively harmonizes the two
1229
+ styles, and its superiority is demonstrated through extensive
1230
+ experiments. We believe that our proposal has the potential
1231
+ to break new ground in style-based image editing applica-
1232
+ tions such as style transfer, colorization, and image inpaint-
1233
+ ing.
1234
+ Acknowledgement
1235
+ This work was supported by Institute of Information &
1236
+ communications Technology Planning & Evaluation (IITP)
1237
+ grant funded by the Korea government (MSIT) (No.2021-
1238
+ 0-00800, Development of Driving Environment Data Trans-
1239
+ formation and Data Verification Technology for the Mutual
1240
+ Utilization of Self-driving Learning Data for Different Vehi-
1241
+ cles).
1242
+ References
1243
+ Antoniou, A.; Storkey, A.; and Edwards, H. 2017. Data aug-
1244
+ mentation generative adversarial networks. arXiv preprint
1245
+ arXiv:1711.04340.
1246
+ Bhattacharjee, D.; Kim, S.; Vizier, G.; and Salzmann, M.
1247
+ 2020. Dunit: Detection-based unsupervised image-to-image
1248
+ translation. In CVPR, 4787–4796.
1249
+ Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
1250
+ Yuille, A. L. 2017. Deeplab: Semantic image segmentation
1251
+ with deep convolutional nets, atrous convolution, and fully
1252
+ connected crfs. IEEE TPAMI, 40(4): 834–848.
1253
+ Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
1254
+ J. 2018. Stargan: Unified generative adversarial networks for
1255
+ multi-domain image-to-image translation. In CVPR, 8789–
1256
+ 8797.
1257
+ Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler,
1258
+ M.; Benenson, R.; Franke, U.; Roth, S.; and Schiele, B.
1259
+ 2016. The cityscapes dataset for semantic urban scene un-
1260
+ derstanding. In CVPR, 3213–3223.
1261
+ Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
1262
+ D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
1263
+ Heigold, G.; Gelly, S.; et al. 2021. An Image is Worth 16x16
1264
+ Words: Transformers for Image Recognition at Scale.
1265
+ In
1266
+ ICLR.
1267
+ Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image
1268
+ style transfer using convolutional neural networks. In CVPR,
1269
+ 2414–2423.
1270
+ Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R. 2013. Vision
1271
+ meets robotics: The kitti dataset. The International Journal
1272
+ of Robotics Research, 32(11): 1231–1237.
1273
+ Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
1274
+ Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
1275
+ 2014. Generative adversarial nets. NeurIPS, 27.
1276
+ He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
1277
+ learning for image recognition. In CVPR, 770–778.
1278
+ Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.;
1279
+ Saenko, K.; Efros, A.; and Darrell, T. 2018. Cycada: Cycle-
1280
+ consistent adversarial domain adaptation. In ICML, 1989–
1281
+ 1998. PMLR.
1282
+ Huang, S.-W.; Lin, C.-T.; Chen, S.-P.; Wu, Y.-Y.; Hsu, P.-
1283
+ H.; and Lai, S.-H. 2018a. Auggan: Cross domain adaptation
1284
+ with gan-based data augmentation. In ECCV, 718–731.
1285
+ Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
1286
+ in real-time with adaptive instance normalization. In ICCV,
1287
+ 1501–1510.
1288
+ Huang, X.; Liu, M.-Y.; Belongie, S.; and Kautz, J. 2018b.
1289
+ Multimodal unsupervised image-to-image translation.
1290
+ In
1291
+ ECCV, 172–189.
1292
+ Iizuka, S.; Simo-Serra, E.; and Ishikawa, H. 2017. Globally
1293
+ and locally consistent image completion. ACM Transactions
1294
+ on Graphics (ToG), 36(4): 1–14.
1295
+ Inoue, N.; Furuta, R.; Yamasaki, T.; and Aizawa, K. 2018.
1296
+ Cross-domain weakly-supervised object detection through
1297
+ progressive domain adaptation. In Proceedings of the IEEE
1298
+ conference on computer vision and pattern recognition,
1299
+ 5001–5009.
1300
+
1301
+ Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
1302
+ to-image translation with conditional adversarial networks.
1303
+ In CVPR, 1125–1134.
1304
+ Jeong, S.; Kim, Y.; Lee, E.; and Sohn, K. 2021. Memory-
1305
+ guided unsupervised image-to-image translation. In CVPR,
1306
+ 6558–6567.
1307
+ Jiang, L.; Zhang, C.; Huang, M.; Liu, C.; Shi, J.; and Loy,
1308
+ C. C. 2020.
1309
+ Tsit: A simple and versatile framework for
1310
+ image-to-image translation. In ECCV, 206–222. Springer.
1311
+ Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016.
1312
+ Perceptual
1313
+ losses for real-time style transfer and super-resolution. In
1314
+ ECCV, 694–711. Springer.
1315
+ Kim, S.; Baek, J.; Park, J.; Kim, G.; and Kim, S. 2022.
1316
+ InstaFormer: Instance-Aware Image-to-Image Translation
1317
+ with Transformer. In CVPR.
1318
+ Kim, T.; Cha, M.; Kim, H.; Lee, J. K.; and Kim, J. 2017.
1319
+ Learning to discover cross-domain relations with generative
1320
+ adversarial networks. In ICML, 1857–1865. PMLR.
1321
+ Kim, T.; Jeong, M.; Kim, S.; Choi, S.; and Kim, C. 2019. Di-
1322
+ versify and match: A domain adaptive representation learn-
1323
+ ing paradigm for object detection.
1324
+ In Proceedings of the
1325
+ IEEE/CVF Conference on Computer Vision and Pattern
1326
+ Recognition, 12456–12465.
1327
+ Kingma, D. P.; and Ba, J. 2015.
1328
+ Adam: A method for
1329
+ stochastic optimization. In ICLR.
1330
+ Lee, H.-Y.; Tseng, H.-Y.; Huang, J.-B.; Singh, M.; and Yang,
1331
+ M.-H. 2018. Diverse image-to-image translation via disen-
1332
+ tangled representations. In ECCV, 35–51.
1333
+ Li, Y.; Yuan, L.; and Vasconcelos, N. 2019. Bidirectional
1334
+ learning for domain adaptation of semantic segmentation.
1335
+ In Proceedings of the IEEE/CVF Conference on Computer
1336
+ Vision and Pattern Recognition, 6936–6945.
1337
+ Ling, J.; Xue, H.; Song, L.; Xie, R.; and Gu, X. 2021.
1338
+ Region-aware adaptive instance normalization for image
1339
+ harmonization. In CVPR, 9361–9370.
1340
+ Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
1341
+ image-to-image translation networks. NeurIPS, 30.
1342
+ Luo, Y.; Zheng, L.; Guan, T.; Yu, J.; and Yang, Y. 2019. Tak-
1343
+ ing a closer look at domain shift: Category-level adversaries
1344
+ for semantics consistent domain adaptation. In Proceedings
1345
+ of the IEEE/CVF Conference on Computer Vision and Pat-
1346
+ tern Recognition, 2507–2516.
1347
+ Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; and Mal-
1348
+ ossi, C. 2018.
1349
+ Bagan: Data augmentation with balancing
1350
+ gan. arXiv preprint arXiv:1803.09655.
1351
+ Miller, A. H.; Fisch, A.; Dodge, J.; Karimi, A.-H.; Bordes,
1352
+ A.; and Weston, J. 2016. Key-Value Memory Networks for
1353
+ Directly Reading Documents. In EMNLP.
1354
+ Mirza, M.; and Osindero, S. 2014. Conditional generative
1355
+ adversarial nets. arXiv preprint arXiv:1411.1784.
1356
+ Mo, S.; Cho, M.; and Shin, J. 2019. InstaGAN: Instance-
1357
+ aware Image-to-Image Translation. In ICLR.
1358
+ Murez, Z.; Kolouri, S.; Kriegman, D.; Ramamoorthi, R.; and
1359
+ Kim, K. 2018. Image to image translation for domain adap-
1360
+ tation. In CVPR, 4500–4509.
1361
+ Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
1362
+ learning with contrastive predictive coding. arXiv preprint
1363
+ arXiv:1807.03748.
1364
+ Park, T.; Liu, M.-Y.; Wang, T.-C.; and Zhu, J.-Y. 2019. Se-
1365
+ mantic image synthesis with spatially-adaptive normaliza-
1366
+ tion. In CVPR, 2337–2346.
1367
+ Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
1368
+ DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
1369
+ A. 2017. Automatic differentiation in pytorch.
1370
+ Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and
1371
+ Efros, A. A. 2016. Context encoders: Feature learning by
1372
+ inpainting. In CVPR, 2536–2544.
1373
+ Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
1374
+ Towards real-time object detection with region proposal net-
1375
+ works. Advances in neural information processing systems,
1376
+ 28.
1377
+ Rodriguez, A. L.; and Mikolajczyk, K. 2019. Domain adap-
1378
+ tation for object detection via style consistency.
1379
+ arXiv
1380
+ preprint arXiv:1911.10033.
1381
+ Sakaridis, C.; Dai, D.; and Van Gool, L. 2021. ACDC: The
1382
+ adverse conditions dataset with correspondences for seman-
1383
+ tic driving scene understanding. In ICCV, 10765–10775.
1384
+ Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
1385
+ ford, A.; and Chen, X. 2016. Improved techniques for train-
1386
+ ing gans. NeurIPS, 29.
1387
+ Seitzer, M. 2020. pytorch-fid: FID Score for PyTorch. https:
1388
+ //github.com/mseitzer/pytorch-fid. Version 0.2.1.
1389
+ Shen, Z.; Huang, M.; Shi, J.; Xue, X.; and Huang, T. S.
1390
+ 2019.
1391
+ Towards instance-level image-to-image translation.
1392
+ In CVPR, 3683–3692.
1393
+ Shim, S.-H.; Hyun, S.; Bae, D.; and Heo, J.-P. 2022. Local
1394
+ Attention Pyramid for Scene Image Generation. In Proceed-
1395
+ ings of the IEEE/CVF Conference on Computer Vision and
1396
+ Pattern Recognition, 7774–7782.
1397
+ Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
1398
+ lutional networks for large-scale image recognition. arXiv
1399
+ preprint arXiv:1409.1556.
1400
+ Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
1401
+ Z. 2016. Rethinking the inception architecture for computer
1402
+ vision. In CVPR, 2818–2826.
1403
+ Tsai, Y.-H.; Hung, W.-C.; Schulter, S.; Sohn, K.; Yang, M.-
1404
+ H.; and Chandraker, M. 2018. Learning to adapt structured
1405
+ output space for semantic segmentation. In Proceedings of
1406
+ the IEEE conference on computer vision and pattern recog-
1407
+ nition, 7472–7481.
1408
+ Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2016. Instance
1409
+ normalization: The missing ingredient for fast stylization.
1410
+ arXiv preprint arXiv:1607.08022.
1411
+ Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2017. Improved
1412
+ texture networks: Maximizing quality and diversity in feed-
1413
+ forward stylization and texture synthesis. In CVPR, 6924–
1414
+ 6932.
1415
+ Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
1416
+ using t-SNE. Journal of machine learning research, 9(11).
1417
+
1418
+ Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
1419
+ L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
1420
+ tention is all you need. NeurIPS, 30.
1421
+ Vu, T.-H.; Jain, H.; Bucher, M.; Cord, M.; and P´erez, P.
1422
+ 2019.
1423
+ Advent: Adversarial entropy minimization for do-
1424
+ main adaptation in semantic segmentation. In Proceedings
1425
+ of the IEEE/CVF Conference on Computer Vision and Pat-
1426
+ tern Recognition, 2517–2526.
1427
+ Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; and
1428
+ Catanzaro, B. 2018. High-resolution image synthesis and se-
1429
+ mantic manipulation with conditional gans. In CVPR, 8798–
1430
+ 8807.
1431
+ Wang, Z.; Yu, M.; Wei, Y.; Feris, R.; Xiong, J.; Hwu, W.-
1432
+ m.; Huang, T. S.; and Shi, H. 2020. Differential treatment
1433
+ for stuff and things: A simple unsupervised domain adapta-
1434
+ tion method for semantic segmentation. In Proceedings of
1435
+ the IEEE/CVF Conference on Computer Vision and Pattern
1436
+ Recognition, 12635–12644.
1437
+ Xie, X.; Chen, J.; Li, Y.; Shen, L.; Ma, K.; and Zheng, Y.
1438
+ 2020. Self-supervised cyclegan for object-preserving image-
1439
+ to-image domain adaptation. In ECCV, 498–513. Springer.
1440
+ Yang, Y.; and Soatto, S. 2020. Fda: Fourier domain adap-
1441
+ tation for semantic segmentation.
1442
+ In Proceedings of the
1443
+ IEEE/CVF Conference on Computer Vision and Pattern
1444
+ Recognition, 4085–4095.
1445
+ Zhang, R.; Isola, P.; and Efros, A. A. 2016. Colorful image
1446
+ colorization. In ECCV, 649–666. Springer.
1447
+ Zhang, R.; Zhu, J.-Y.; Isola, P.; Geng, X.; Lin, A. S.; Yu, T.;
1448
+ and Efros, A. A. 2017. Real-time user-guided image col-
1449
+ orization with learned deep priors. In SIGGRAPH.
1450
+ Zheng, Z.; and Yang, Y. 2021. Rectifying pseudo label learn-
1451
+ ing via uncertainty estimation for domain adaptive seman-
1452
+ tic segmentation. International Journal of Computer Vision,
1453
+ 129(4): 1106–1120.
1454
+ Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
1455
+ paired image-to-image translation using cycle-consistent ad-
1456
+ versarial networks. In ICCV, 2223–2232.
1457
+ Zhu, P.; Abdal, R.; Qin, Y.; and Wonka, P. 2020. Sean: Image
1458
+ synthesis with semantic region-adaptive normalization. In
1459
+ CVPR, 5104–5113.
1460
+
1461
+ Implementation Details
1462
+ Experiments Settings
1463
+ We implement our model with 1.7.1 version of Py-
1464
+ Torch (Paszke et al. 2017) framework. To train SHUNIT,
1465
+ we use a fixed learning rate of 10−4 and use the Adam op-
1466
+ timizer (Kingma and Ba 2015) with β1 and β2 of 0.5 and
1467
+ 0.999, respectively. The weight decay is set to 10−4. Our
1468
+ models are trained with a single NVIDIA RTX A6000 GPU.
1469
+ For the experiments on Cityscapes (Cordts et al. 2016) →
1470
+ ACDC (Sakaridis, Dai, and Van Gool 2021), we use RGB
1471
+ images with a size of 512 × 256 during both training and
1472
+ inference. We train the model for 50K iterations. Since the
1473
+ ACDC dataset has been published recently, no official re-
1474
+ sults are available on this dataset for the existing meth-
1475
+ ods. Therefore, we reproduced CycleGAN (Zhu et al. 2017),
1476
+ UNIT (Liu, Breuel, and Kautz 2017), MUNIT (Huang et al.
1477
+ 2018b), TSIT (Jiang et al. 2020), and MGUIT (Jeong et al.
1478
+ 2021) with their official implementation code1, 2, 3, 4.
1479
+ For the experiments on INIT (Shen et al. 2019), we use
1480
+ RGB images with a size of 360 × 360 during training while
1481
+ we use RGB images with a size of 572 × 360 during infer-
1482
+ ence. We train the model for 250K iterations. For the ex-
1483
+ periment on KITTI (Geiger et al. 2013) → Cityscapes, we
1484
+ use RGB images with a size of 540 × 360 during training
1485
+ while we use RGB images with a size of 1242 × 375 during
1486
+ inference. We train the model for 200K iterations.
1487
+ For fair comparisons with INIT (Shen et al. 2019),
1488
+ DUNIT (Bhattacharjee et al. 2020), MGUIT (Jeong et al.
1489
+ 2021), and InstaFormer (Kim et al. 2022), which used
1490
+ bounding-box labels as an additional object annotation,
1491
+ we did not use segmentation labels but used bounding-
1492
+ box labels for all experiments on both INIT and KITTI
1493
+ → Cityscapes scenarios. In addition, we reproduced
1494
+ MGUIT (Jeong et al. 2021) on Cityscapes → ACDC exper-
1495
+ iments with segmentation labels.
1496
+ Details of Network Architecture
1497
+ In the content encoder Ex
1498
+ c , we employ two convolutional
1499
+ networks, one network takes RGB input, and the other takes
1500
+ one-hot encoded semantic label input. Each network con-
1501
+ sists of Conv(input channel, 64, 7, 1, 3, IN, relu) - Conv(64,
1502
+ 128, 4, 2, 1, IN, relu) - Conv(128, 256, 4, 2, 1, IN, relu) -
1503
+ Resblk ×4 - Conv(256, 128, 1, 1, IN, relu), where IN de-
1504
+ notes the instance normalization layer (Ulyanov, Vedaldi,
1505
+ and Lempitsky 2016); Resblk denotes the residual block (He
1506
+ et al. 2016); and the components in Conv(·) denotes (input
1507
+ channel, output channel, kernel size, stride, padding, nor-
1508
+ malization, activation). The encoded RGB and semantic la-
1509
+ bel features are then concatenated along the channel dimen-
1510
+ sion, and it is the content feature cx. The style encoder Ex
1511
+ s
1512
+ 1The code of CycleGAN was taken from
1513
+ https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
1514
+ 2The code of UNIT and MUNIT were taken from
1515
+ https://github.com/NVlabs/MUNIT
1516
+ 3The code of TSIT was taken from
1517
+ https://github.com/EndlessSora/TSIT
1518
+ 4The code of MGUIT was taken from
1519
+ https://github.com/somijeong/MGUIT
1520
+ has the same network architecture as a convolutional net-
1521
+ work in the content encoder, except for the normalization
1522
+ layer. The style encoder does not use normalization layers
1523
+ to keep the original style of the input image. The generator
1524
+ Gy consists of SH Resblk ×4 - Conv(256, 128, 5, 1, 2, IN,
1525
+ relu) - Conv(128, 64, 5, 1, 2, IN, relu) - Conv(64, 3, 7, 1, 3, -,
1526
+ tanh). For the experiments on Cityscapes → ACDC, we use
1527
+ 20 key-value pairs for each class in the style memory M y
1528
+ n.
1529
+ In the rest of the experiments, we follow key-value pairs of
1530
+ MGUIT (Jeong et al. 2021).
1531
+ Details of Loss Functions
1532
+ Following MUNIT (Huang et al. 2018b), we leverage self-
1533
+ reconstruction Lself (Zhu et al. 2017), cycle consistency
1534
+ Lcycle (Zhu et al. 2017), perceptual Lperc (Johnson, Alahi,
1535
+ and Fei-Fei 2016), and adversarial Ladv (Goodfellow et al.
1536
+ 2014) losses as follows:
1537
+ Lself = ∥Ix − Gx(cx, sx)∥1 + ∥Iy − Gy(cy, sy)∥1 , (8)
1538
+ Lcycle = ∥Ix − Gx(ˆcy, ˆsx)∥1 + ∥Iy − Gy(ˆcx, ˆsy)∥1 , (9)
1539
+ Lperc =
1540
+ ���F(Ix) − F( ˆIy)
1541
+ ���
1542
+ 1 +
1543
+ ���F(Iy) − F( ˆIx)
1544
+ ���
1545
+ 1 , (10)
1546
+ Ladv =
1547
+
1548
+ log (1 − Dx(ˆIx)) + log Dx(Ix)
1549
+
1550
+ +
1551
+
1552
+ log (1 − Dy(ˆIy)) + log Dy(Iy)
1553
+
1554
+ ,
1555
+ (11)
1556
+ where F(·) is a feature map extracted from relu5 3
1557
+ layer of the ImageNet pretrained VGG-16 network (Si-
1558
+ monyan and Zisserman 2014); Dx(·) and Dy(·) are
1559
+ features
1560
+ extracted
1561
+ from
1562
+ the
1563
+ multi-scale
1564
+ discrimina-
1565
+ tors (Wang et al. 2018) for each visual domain, X
1566
+ and Y, respectively. We empirically set the hyperpa-
1567
+ rameters
1568
+ {λself, λcycle, λperc, λadv, λcontent, λstyle}
1569
+ to
1570
+ {10, 10, 1, 1, 10, 10}. The temperature τ in Lcontent and
1571
+ Lstyle is set to 0.7.
1572
+ Analysis of class-wise FID
1573
+ Recent work (Shim et al. 2022) introduced class-wise FID
1574
+ (cFID) to quantify the per-class image quality in the image
1575
+ generation task. We realized that the I2I translation task also
1576
+ has advantages if we evaluate the results with cFID. In this
1577
+ section, we provide a detailed analysis of the necessity for
1578
+ cFID on our benchmark set and the implementation detail of
1579
+ cFID for I2I translation.
1580
+ Necessity of CFID.
1581
+ By the nature of unsupervised I2I, as
1582
+ shown in Fig. 7, the class statistics between the source do-
1583
+ main (Cityscapes (Cordts et al. 2016)) and the target do-
1584
+ main (ACDC (Sakaridis, Dai, and Van Gool 2021)) are un-
1585
+ matched. However, FID ignores the unmatched class statis-
1586
+ tics because FID only uses the global embeddings to com-
1587
+ pute the distance. Therefore, the different class statistics pre-
1588
+ vent FID improvement, regardless of the generated image
1589
+ quality.
1590
+
1591
+ Figure 7: The class statistics in Cityscapes (Cordts et al. 2016) validation set vs. ACDC (Sakaridis, Dai, and Van Gool
1592
+ 2021) validation set. Even though the two datasets share the class categories, the class statistics are naturally different.
1593
+ To demonstrate the problem of FID intuitively, we il-
1594
+ lustrate an example in Fig. 8. In the figure, we translate
1595
+ a clear image sampled from Cityscapes dataset to snow
1596
+ with three methods: (a) CycleGAN (Zhu et al. 2017), (b)
1597
+ MGUIT (Jeong et al. 2021), and (c) SHUNIT. As can be
1598
+ compared qualitatively, SHUNIT generates a more realis-
1599
+ tic snow image than CycleGAN. For a quantitatively com-
1600
+ parison, we take a similar strategy used in FID: We extract
1601
+ global embeddings from a real snow image sampled from
1602
+ ACDC dataset and the generated image using Inception-
1603
+ V3 (Szegedy et al. 2016). Then, we compute the squared Eu-
1604
+ clidean distance between the two global embeddings. How-
1605
+ ever, as depicted in Fig. 8, CycleGAN (267.47) achieves bet-
1606
+ ter performance than SHUNIT (295.45) in global distance.
1607
+ The reason is that CycleGAN destroys the layout in the input
1608
+ image and follows the layout of the real snow image, result-
1609
+ ing in severe artifacts in the generated image while better
1610
+ performance in the global distance. If we extract class-wise
1611
+ embeddings and compute class-wise distance then average
1612
+ them, we can obtain a reasonable rank: SHUNIT (6.64)
1613
+ achieves the best, MGUIT (10.61) achieves the second-best,
1614
+ and CycleGAN (31.07) achieves the third. As can be ob-
1615
+ served in this example, comparing class-wise embeddings is
1616
+ a more reasonable method to evaluate the generated qual-
1617
+ ity than comparing global embeddings in unsupervised I2I
1618
+ translation.
1619
+ To further demonstrate the necessity of cFID, we plot the
1620
+ pixel-wise features of Inception-V3 (Szegedy et al. 2016) in
1621
+ Fig. 9. In Figs. 9(a), 9(b), and 9(c), Cityscapes validation
1622
+ set is used as clear images for I2I translation. In Fig. 9(d),
1623
+ ACDC validation set is used as real snow images. In the
1624
+ figure, we use the same color for the same category of the
1625
+ pixel-wise feature. As shown in the zoom-in regions, pixel-
1626
+ wise features extracted from (d) real snow images are well
1627
+ separated by class categories because the pretrained network
1628
+ is used. However, (a) CycleGAN includes various categories
1629
+ in the zoom-in region, which clearly indicates that the qual-
1630
+ ity of the generated images is low. In contrast, (c) features in
1631
+ SHUNIT are well separated by class categories as in (d) real
1632
+ snow images. This class information should be considered
1633
+ to evaluate the quality of the generated images.
1634
+ However, as shown in Table 6, CycleGAN achieves the
1635
+ best performance of FID in clear → snow scenario. There-
1636
+ fore, FID score is not reliable in unsupervised I2I transla-
1637
+ tion with multiple classes. In this paper, we simply and ef-
1638
+ fectively address the problem by computing class-wise dis-
1639
+ tances separately.
1640
+ Implementation detail of cFID for I2I translation.
1641
+ We
1642
+ measure cFID based on the official implementation of
1643
+ FID (Seitzer 2020). cFID is calculated with the Inception-
1644
+ V3 (Szegedy et al. 2016) features. We extract the features
1645
+ from the first block of the network to obtain fine-scale fea-
1646
+ tures, which effectively include features of small objects. To
1647
+ extract class-wise embeddings, we upsample the features to
1648
+ their original input size by bilinear interpolation, and then
1649
+ semantic region pooling is applied to the features. Here, we
1650
+ use the ground truth of the semantic segmentation for the
1651
+ semantic region pooling. With the class-wise embeddings,
1652
+ we compute FID for each class separately, and then cFID is
1653
+ obtained by averaging them.
1654
+ Stability of SHUNIT
1655
+ To show the stability of our model, we train SHUNIT five
1656
+ times with different random seeds on Cityscapes (clear) →
1657
+ ACDC (snow, rain), and the results are given in Table 7.
1658
+ As shown in the table, the performance gap between the
1659
+ best and worst results is reasonably small. In addition, the
1660
+ worst result also achieves the state-of-the-art performance
1661
+ over previous works. This result demonstrates that our re-
1662
+ sults for quantitative comparison are not cherry-picked and
1663
+ actually lead to performance improvements. Furthermore,
1664
+ the result promises that our strong performance can be easily
1665
+ reproduced.
1666
+
1667
+ Semantics statistics
1668
+ Cityscapes val
1669
+ ACDC val
1670
+ 0.30
1671
+ 0.25
1672
+ semantic ratio
1673
+ 0.20
1674
+ 0.15
1675
+ 0.10
1676
+ 0.05
1677
+ 0.00
1678
+ 0
1679
+ 15
1680
+ 16
1681
+ 17
1682
+ 1819I2I
1683
+ Global distance: 267.47
1684
+ Class-wise distance: 31.07
1685
+ Global distance: 357.54
1686
+ Class-wise distance: 10.61
1687
+ Global distance: 295.45
1688
+ Class-wise distance: 6.64
1689
+ (a) CycleGAN (Zhu et al. 2017)
1690
+ Input
1691
+ (b) MGUIT (Jeong et al. 2021)
1692
+ (d) Target domain
1693
+ (c) SHUNIT (ours)
1694
+ Figure 8: Illustration of comparison of global distance and class-wise distance. From a clear image, we generate snow
1695
+ images using (a) CycleGAN (Zhu et al. 2017), (b) MGUIT (Jeong et al. 2021), and (c) SHUNIT. To quantitatively evaluate the
1696
+ results, we compute distances between (a,b,c) the generated images and (d) real snow image in two methods: One is computed
1697
+ with global embeddings of Inception-V3 and the other one is computed with class-wise embeddings.
1698
+ clear → snow
1699
+ clear → rain
1700
+ clear → fog
1701
+ clear → night
1702
+ FID ↓ CFID ↓ mIoU ↑ FID ↓ CFID ↓ mIoU ↑ FID ↓ CFID ↓ mIoU ↑ FID ↓ CFID ↓ mIoU ↑
1703
+ CycleGAN (Zhu et al. 2017)
1704
+ 134.21 21.88
1705
+ 23.68 160.91 20.16
1706
+ 35.96 154.23 31.72
1707
+ 13.73 105.40 15.26
1708
+ 31.33
1709
+ UNIT (Liu, Breuel, and Kautz 2017) 136.63 13.89
1710
+ 31.24 145.79 16.25
1711
+ 39.39 190.47 29.36
1712
+ 28.70 116.39 12.28
1713
+ 35.29
1714
+ MUNIT (Huang et al. 2018b)
1715
+ 136.91 13.79
1716
+ 33.83 151.48 12.62
1717
+ 44.20 195.28 29.34
1718
+ 27.44 114.94 12.56
1719
+ 37.43
1720
+ TSIT (Jiang et al. 2020)
1721
+ 162.19 10.47
1722
+ 38.08 158.12 14.16
1723
+ 46.40 197.62 25.16
1724
+ 36.68 127.09 11.62
1725
+ 35.92
1726
+ MGUIT (Jeong et al. 2021)
1727
+ 166.76
1728
+ 8.75
1729
+ 33.33 178.59 10.76
1730
+ 42.60 190.86 24.36
1731
+ 10.22 119.11 15.83
1732
+ 31.36
1733
+ SHUNIT (ours)
1734
+ 143.21
1735
+ 6.62
1736
+ 45.15 158.96
1737
+ 8.47
1738
+ 48.84 153.19
1739
+ 6.53
1740
+ 38.96 125.80 14.08
1741
+ 33.66
1742
+ Table 6: Quantitative comparison on Cityscapes → ACDC. We measure FID, CFID (lower is better) and mIoU (higher is
1743
+ better).
1744
+ More Qualitative Results
1745
+ Cityscapes → ACDC
1746
+ We show more qualitative results on Cityscapes (clear) →
1747
+ ACDC (snow/rain/fog/night) in Figs 10 to 13. In the results,
1748
+ we additionally show the results of UNIT (Liu, Breuel, and
1749
+ Kautz 2017) and TSIT (Jiang et al. 2020), which are omitted
1750
+ in the main paper. The qualitative results demonstrate that
1751
+ our method generate more realistic images than the previ-
1752
+ ous works (Zhu et al. 2017; Liu, Breuel, and Kautz 2017;
1753
+ Huang et al. 2018b; Jiang et al. 2020; Jeong et al. 2021) in
1754
+ most cases. We further provide a comparison video in the
1755
+ supplementary material.
1756
+ KITTI → Cityscapes
1757
+ Fig. 14 shows the visual comparison of InstaFormer (Kim
1758
+ et al. 2022) and our method for domain adaptive detection on
1759
+ KITTI → Cityscapes. As shown in the figure, InstaFormer
1760
+ generates artifacts in the sky and struggles to maintain the
1761
+ sub-object components of a small object, such a car located
1762
+ in the center. In contrast, our method translates the sky to
1763
+ the Cityscapes style without artifacts, and preserves the sub-
1764
+ objects components of a small object. The more realistic
1765
+ image translation is demonstrated by a detection result: the
1766
+ Faster-RCNN (Ren et al. 2015) detects the small car located
1767
+ in the center in our image (Fig. 14c) while cannot detect it
1768
+ in InstaFormer image (Fig. 14b)
1769
+ More Quantitative Results
1770
+ Tables 8 to 11 provide the per-class IoU performance on
1771
+ ACDC test set. As shown in the tables, we achieve the best
1772
+ performance not only in mIoU but also in per-class IoU of
1773
+ the most classes on snow, rain, and fog.
1774
+
1775
+ zoom-in
1776
+ zoom-in
1777
+ zoom-in
1778
+ zoom-in
1779
+ zoom-in
1780
+ zoom-in
1781
+ zoom-in
1782
+ zoom-in
1783
+ (a) CycleGAN (Zhu et al. 2017)
1784
+ (b) MGUIT (Jeong et al. 2021)
1785
+ (c) SHUNIT (ours)
1786
+ (d) Target domain
1787
+ Figure 9: t-SNE (Van der Maaten and Hinton 2008) visualization. We plot pixel-wise features extracted from Inception-
1788
+ V3 (Szegedy et al. 2016). In (a), (b), and (c), the generated snow images, which are translated from clear images, are used for
1789
+ extracting features, while in (d), the real snow images in the ACDC validation set are used. In the figure, the same color of dots
1790
+ are in the same class category.
1791
+ clear → snow
1792
+ clear → rain
1793
+ cFID ↓
1794
+ mIoU ↑
1795
+ cFID ↓
1796
+ mIoU ↑
1797
+ CycleGAN (Zhu et al. 2017)
1798
+ 21.88
1799
+ 23.68
1800
+ 20.16
1801
+ 35.96
1802
+ UNIT (Liu, Breuel, and Kautz 2017)
1803
+ 13.89
1804
+ 31.24
1805
+ 16.25
1806
+ 39.39
1807
+ MUNIT (Huang et al. 2018b)
1808
+ 13.79
1809
+ 33.83
1810
+ 12.62
1811
+ 44.20
1812
+ TSIT (Jiang et al. 2020)
1813
+ 10.47
1814
+ 38.08
1815
+ 14.16
1816
+ 46.40
1817
+ MGUIT (Jeong et al. 2021)
1818
+ 8.75
1819
+ 33.33
1820
+ 10.76
1821
+ 42.60
1822
+ SHUNIT (trial 1, reported in the main paper)
1823
+ 6.62
1824
+ 45.15
1825
+ 8.47
1826
+ 48.84
1827
+ SHUNIT (trial 2)
1828
+ 7.18
1829
+ 44.71
1830
+ 9.53
1831
+ 49.14
1832
+ SHUNIT (trial 3)
1833
+ 6.41
1834
+ 45.94
1835
+ 8.44
1836
+ 48.01
1837
+ SHUNIT (trial 4)
1838
+ 7.56
1839
+ 38.41
1840
+ 8.34
1841
+ 48.67
1842
+ SHUNIT (trial 5)
1843
+ 6.86
1844
+ 45.41
1845
+ 8.56
1846
+ 48.70
1847
+ Table 7: Results of five trials on Cityscapes → ACDC. We
1848
+ measure class-wise FID (lower is better) and mIoU (higher
1849
+ is better). In our result, the best results are bold-faced while
1850
+ the worst results are red-colored. For brevity, class-wise FID
1851
+ is written as cFID.
1852
+
1853
+ oo
1854
+ 1
1855
+ .
1856
+ :Methods
1857
+ road
1858
+ sidewalk
1859
+ building
1860
+ wall
1861
+ fence
1862
+ pole
1863
+ traffic light
1864
+ traffic sign
1865
+ vegetation
1866
+ terrain
1867
+ sky
1868
+ person
1869
+ rider
1870
+ car
1871
+ truck
1872
+ bus
1873
+ train
1874
+ motorcycle
1875
+ bicycle
1876
+ mIoU
1877
+ CycleGAN (Zhu et al. 2017)
1878
+ 54.55 12.74 41.24 8.42 9.71 11.78 23.77 28.34 38.86 1.68 2.07 17.85 17.20 62.00 6.05 34.29 50.93 8.94 19.57 23.68
1879
+ UNIT (Liu, Breuel, and Kautz 2017) 58.88 16.27 43.10 9.74 14.35 17.47 38.47 39.71 47.97 6.98 4.17 41.25 30.11 73.35 20.49 36.20 60.74 6.75 27.48 31.24
1880
+ MUNIT (Huang et al. 2018b)
1881
+ 65.09 21.06 44.42 13.53 18.20 19.04 41.24 40.68 51.58 7.94 5.85 41.21 27.10 77.44 24.08 31.01 60.19 18.93 34.14 33.83
1882
+ TSIT (Jiang et al. 2020)
1883
+ 79.32 42.91 47.03 13.01 18.48 21.82 45.05 42.71 55.98 10.05 7.55 47.79 39.11 78.97 19.21 49.75 58.25 19.55 27.07 38.08
1884
+ MGUIT (Jeong et al. 2021)
1885
+ 69.14 31.58 49.37 7.13 6.84 18.31 28.06 32.98 64.92 9.20 51.08 32.05 37.06 74.26 4.57 30.31 60.42 6.81 19.15 33.33
1886
+ SHUNIT(ours)
1887
+ 81.62 46.12 52.33 16.03 27.34 25.07 49.22 43.19 80.08 9.41 54.61 52.95 36.23 77.66 20.22 48.18 69.04 26.47 43.12 45.15
1888
+ Table 8: Per-class IoU results on Cityscapes (clear) → ACDC (snow).
1889
+ Methods
1890
+ road
1891
+ sidewalk
1892
+ building
1893
+ wall
1894
+ fence
1895
+ pole
1896
+ traffic light
1897
+ traffic sign
1898
+ vegetation
1899
+ terrain
1900
+ sky
1901
+ person
1902
+ rider
1903
+ car
1904
+ truck
1905
+ bus
1906
+ train
1907
+ motorcycle
1908
+ bicycle
1909
+ mIoU
1910
+ CycleGAN (Zhu et al. 2017)
1911
+ 73.51 31.73 51.75 20.75 18.66 20.99 24.80 26.39 71.58 24.46 28.91 34.06 11.75 74.66 37.32 23.02 52.42 16.18 40.19 35.96
1912
+ UNIT (Liu, Breuel, and Kautz 2017) 74.20 37.16 58.67 24.76 17.98 23.51 38.65 44.07 58.10 20.11 18.63 40.51 15.17 78.89 41.53 40.16 57.62 18.57 40.20 39.39
1913
+ MUNIT (Huang et al. 2018b)
1914
+ 77.68 40.79 71.64 20.81 27.55 26.40 44.48 43.77 67.15 24.84 55.84 42.86 15.69 79.60 41.18 38.71 57.21 20.00 43.53 44.20
1915
+ TSIT (Jiang et al. 2020)
1916
+ 78.08 46.43 71.28 29.44 25.12 29.23 44.95 46.64 78.14 24.68 67.75 44.24 16.37 80.94 46.28 31.09 57.90 25.87 41.74 46.40
1917
+ MGUIT (Jeong et al. 2021)
1918
+ 73.69 31.94 80.06 19.54 14.44 24.74 37.17 34.91 79.99 21.61 93.74 34.46 13.60 76.69 27.54 38.64 60.43 16.32 31.04 42.60
1919
+ SHUNIT(ours)
1920
+ 76.41 28.42 82.03 23.44 28.12 28.81 46.15 46.78 86.54 36.26 94.36 41.39 12.79 80.74 46.90 25.71 58.57 29.93 45.09 48.84
1921
+ Table 9: Per-class IoU results on Cityscapes (clear) → ACDC (rain).
1922
+ Methods
1923
+ road
1924
+ sidewalk
1925
+ building
1926
+ wall
1927
+ fence
1928
+ pole
1929
+ traffic light
1930
+ traffic sign
1931
+ vegetation
1932
+ terrain
1933
+ sky
1934
+ person
1935
+ rider
1936
+ car
1937
+ truck
1938
+ bus
1939
+ train
1940
+ motorcycle
1941
+ bicycle
1942
+ mIoU
1943
+ CycleGAN (Zhu et al. 2017)
1944
+ 46.89 35.49 33.79 27.63 27.07 17.65 14.74 10.70 7.82 7.14 6.96 5.39 5.28 3.81 3.08 2.57 2.28 2.25 0.32 13.73
1945
+ UNIT (Liu, Breuel, and Kautz 2017) 64.21 26.65 30.18 16.54 11.36 10.77 23.89 30.93 31.44 25.16 1.68 14.22 4.55 58.45 34.28 45.42 41.64 27.20 5.79 28.70
1946
+ MUNIT (Huang et al. 2018b)
1947
+ 54.73 26.48 28.43 14.60 8.54 7.36 30.30 29.62 33.86 24.07 3.95 8.33 32.37 56.23 30.05 58.80 51.89 12.87 8.93 27.44
1948
+ TSIT (Jiang et al. 2020)
1949
+ 80.10 46.44 19.39 14.77 15.83 16.11 27.27 39.82 72.30 44.35 2.44 25.78 41.78 65.67 41.98 49.48 42.54 31.12 19.71 36.68
1950
+ MGUIT (Jeong et al. 2021)
1951
+ 54.26 11.66 21.85 5.81 0.89 8.73 3.86 11.28 22.51 7.30 1.37 1.97 3.08 34.31 1.08 0.05 3.86 0.00 0.34 10.22
1952
+ SHUNIT(ours)
1953
+ 72.35 43.36 41.68 21.42 18.13 16.08 39.11 35.90 71.56 35.10 67.93 27.53 50.45 52.55 37.31 37.06 28.32 27.64 16.57 38.96
1954
+ Table 10: Per-class IoU results on Cityscapes (clear) → ACDC (fog).
1955
+ Methods
1956
+ road
1957
+ sidewalk
1958
+ building
1959
+ wall
1960
+ fence
1961
+ pole
1962
+ traffic light
1963
+ traffic sign
1964
+ vegetation
1965
+ terrain
1966
+ sky
1967
+ person
1968
+ rider
1969
+ car
1970
+ truck
1971
+ bus
1972
+ train
1973
+ motorcycle
1974
+ bicycle
1975
+ mIoU
1976
+ CycleGAN (Zhu et al. 2017)
1977
+ 86.03 46.64 60.57 24.69 15.16 26.56 11.75 31.92 42.44 27.05 4.47 36.84 10.44 61.32 0.04 15.97 51.54 16.27 25.51 31.33
1978
+ UNIT (Liu, Breuel, and Kautz 2017) 86.03 46.74 63.33 26.69 14.80 28.41 19.25 30.92 43.94 35.14 15.34 40.08 19.55 64.43 2.51 30.81 44.15 29.44 29.00 35.29
1979
+ MUNIT (Huang et al. 2018b)
1980
+ 87.73 68.58 66.92 54.84 51.74 44.49 42.45 35.94 33.97 32.46 30.67 29.12 27.61 26.24 20.50 19.91 18.52 16.51 3.01 37.43
1981
+ TSIT (Jiang et al. 2020)
1982
+ 88.69 56.81 63.49 21.67 16.59 27.28 21.60 33.81 43.53 38.21 3.50 42.42 19.94 67.13 4.08 30.27 45.36 25.55 32.62 35.92
1983
+ MGUIT (Jeong et al. 2021)
1984
+ 86.67 44.75 66.36 24.50 16.13 28.26 8.87 32.15 42.24 8.32 8.66 37.88 10.85 61.65 2.38 19.17 46.22 20.52 30.16 31.36
1985
+ SHUNIT(ours)
1986
+ 85.65 44.84 67.98 24.53 18.98 26.66 20.57 30.32 45.02 26.21 16.61 39.13 14.40 62.68 0.56 21.13 42.92 23.59 27.76 33.66
1987
+ Table 11: Per-class IoU results on Cityscapes (clear) → ACDC (night).
1988
+
1989
+ Input
1990
+ CycleGAN
1991
+ UNIT
1992
+ MUNIT
1993
+ TSIT
1994
+ MGUIT
1995
+ SHUNIT (ours)
1996
+ Target domain
1997
+ Figure 10: More qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image
1998
+ (first row), we generate four adverse condition images using (Zhu et al. 2017; Liu, Breuel, and Kautz 2017; Huang et al. 2018b;
1999
+ Jiang et al. 2020; Jeong et al. 2021) and SHUNIT (top row to bottom row order). In the last row, we show a sample of the real
2000
+ image for each adverse condition.
2001
+
2002
+ Input
2003
+ CycleGAN
2004
+ UNIT
2005
+ MUNIT
2006
+ TSIT
2007
+ MGUIT
2008
+ SHUNIT (ours)
2009
+ Target domain
2010
+ Figure 11: More qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image
2011
+ (first row), we generate four adverse condition images using (Zhu et al. 2017; Liu, Breuel, and Kautz 2017; Huang et al. 2018b;
2012
+ Jiang et al. 2020; Jeong et al. 2021) and SHUNIT (top row to bottom row order). In the last row, we show a sample of the real
2013
+ image for each adverse condition.
2014
+
2015
+ Input
2016
+ CycleGAN
2017
+ UNIT
2018
+ MUNIT
2019
+ TSIT
2020
+ MGUIT
2021
+ SHUNIT (ours)
2022
+ Target domain
2023
+ Figure 12: More qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image
2024
+ (first row), we generate four adverse condition images using (Zhu et al. 2017; Liu, Breuel, and Kautz 2017; Huang et al. 2018b;
2025
+ Jiang et al. 2020; Jeong et al. 2021) and SHUNIT (top row to bottom row order). In the last row, we show a sample of the real
2026
+ image for each adverse condition.
2027
+
2028
+ HOTEL-RESTAURANT
2029
+ HAGNAUERHOFInput
2030
+ CycleGAN
2031
+ UNIT
2032
+ MUNIT
2033
+ TSIT
2034
+ MGUIT
2035
+ SHUNIT (ours)
2036
+ Target domain
2037
+ Figure 13: More qualitative comparison on Cityscapes (clear) → ACDC (snow/rain/fog/night). From the given clear image
2038
+ (first row), we generate four adverse condition images using (Zhu et al. 2017; Liu, Breuel, and Kautz 2017; Huang et al. 2018b;
2039
+ Jiang et al. 2020; Jeong et al. 2021) and SHUNIT (top row to bottom row order). In the last row, we show a sample of the real
2040
+ image for each adverse condition.
2041
+
2042
+ (b) InstaFormer
2043
+ (a) Input image (KITTI)
2044
+ (c) SHUNIT (ours)
2045
+ Figure 14: Qualitative comparison on domain adaptive detection for KITTI → Cityscapes. Given (a) input image (KITTI),
2046
+ (b) and (c) show the translated image and the object detection result generated by InstaFormer and our method, respectively.
2047
+ Note that the results are taken from InstaFormer paper.
2048
+
IdE3T4oBgHgl3EQfuguG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdAyT4oBgHgl3EQf5_qu/content/tmp_files/2301.00815v1.pdf.txt ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NeuroExplainer: Fine-Grained Attention
2
+ Decoding to Uncover Cortical Development
3
+ Patterns of Preterm Infants
4
+ Chenyu Xue1, Fan Wang2, Yuanzhuo Zhu2, Hui Li3, Deyu Meng1, Dinggang
5
+ Shen4, and Chunfeng Lian1
6
+ 1 School of Mathematics and Statistics,Xi’an Jiaotong University, Xi’an, China
7
+ chunfeng.lian@xjtu.edu.cn
8
+ 2 Key Laboratory of Biomedical Information Engineering of Ministry of Education,
9
+ School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
10
+ fan.wang@xjtu.edu.cn
11
+ 3 Department of Neonatology, The First Affiliated Hospital of Xi’an Jiaotong
12
+ University, Xi’an, China
13
+ 4 School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
14
+ Abstract. Deploying reliable deep learning techniques in interdisciplinary
15
+ applications needs learned models to output accurate and (even more im-
16
+ portantly) explainable predictions. Existing approaches typically expli-
17
+ cate network outputs in a post-hoc fashion, under an implicit assumption
18
+ that faithful explanations come from accurate predictions/classifications.
19
+ We have an opposite claim that explanations boost (or even determine)
20
+ classification. That is, end-to-end learning of explanation factors to aug-
21
+ ment discriminative representation extraction could be a more intu-
22
+ itive strategy to inversely assure fine-grained explainability, e.g., in those
23
+ neuroimaging and neuroscience studies with high-dimensional data con-
24
+ taining noisy, redundant, and task-irrelevant information. In this pa-
25
+ per, we propose such an explainable geometric deep network dubbed
26
+ as NeuroExplainer, with applications to uncover altered infant cortical
27
+ development patterns associated with preterm birth. Given fundamen-
28
+ tal cortical attributes as network input, our NeuroExplainer adopts a
29
+ hierarchical attention-decoding framework to learn fine-grained atten-
30
+ tions and respective discriminative representations to accurately rec-
31
+ ognize preterm infants from term-born infants at term-equivalent age.
32
+ NeuroExplainer learns the hierarchical attention-decoding modules un-
33
+ der subject-level weak supervision coupled with targeted regularizers de-
34
+ duced from domain knowledge regarding brain development. These prior-
35
+ guided constraints implicitly maximizes the explainability metrics (i.e.,
36
+ fidelity, sparsity, and stability) in network training, driving the learned
37
+ network to output detailed explanations and accurate classifications. Ex-
38
+ perimental results on the public dHCP benchmark suggest that NeuroExplainer
39
+ led to quantitatively reliable explanation results that are qualitatively
40
+ consistent with representative neuroimaging studies.
41
+ Keywords: Geometric Deep Learning · Explainability · Infant Brain
42
+ Cortical Development · AI for Neuroscience
43
+ arXiv:2301.00815v1 [cs.LG] 1 Jan 2023
44
+
45
+ 2
46
+ Authors Suppressed Due to Excessive Length
47
+ 1
48
+ Introduction
49
+ Due to the capacity of learning highly nonlinear representations in task-oriented
50
+ fashions, deep neural networks are showing promising applications in many in-
51
+ terdisciplinary communities, including biomedical image computing, neuroimag-
52
+ ing, and neuroscience studies [33]. To quantitatively analyze brain develop-
53
+ ment/degeneration or timely diagnose associated disorders, various deep learn-
54
+ ing methods have been proposed [45,28]. Most of these studies focused on the
55
+ designs of network architectures and learning strategies to produce accurate pre-
56
+ dictions/classifications. A critical challenge is that the learned models typically
57
+ lack computational interpretability and results’ explainability. From the aspect
58
+ of practical usage, neuroimaging and neuroscience studies desire AI tools that
59
+ can make accurate and (even more importantly) explainable predictions. For
60
+ example, a key value of a brain disease diagnosis network is to identify from
61
+ high-dimensional neuroimage data individualized subtle changes leading to ac-
62
+ curate classification, which can be clues for human experts to analyze disease
63
+ heterogeneity [45]. Also, the classification task to differentiate between preterm
64
+ and term-born (or male and female) infants may not be practically meaningful;
65
+ in contrast, fine-grained differences on brain cortical surfaces, identified by the
66
+ learned classification network, could be valuable factors for better understanding
67
+ featured cortical development patterns of infants from different groups.
68
+ Recently, explainable and interpretable deep learning is being actively stud-
69
+ ied in the machine learning community, with obviously more works on gridded
70
+ data (e.g., images) [11] than on non-Euclidean data (e.g., 3D meshes) [46]. Accu-
71
+ rate classification and faithful explanation are highly correlated and inseparable.
72
+ Existing methods typically adopt post-hoc techniques to explain a deep network
73
+ [46], which is first trained for a specific classification task, and then the underly-
74
+ ing (sparse) correlations between its input and output are analyzed offline, e.g.,
75
+ by backpropagating prediction gradients to the shallow layers [34]. Notably, such
76
+ post-hoc approaches are established upon a common assumption that reliable ex-
77
+ planations are the results caused by accurate predictions. This assumption could
78
+ work in general applications that have large-scale training data, while cannot al-
79
+ ways hold for neuroimaging and neuroscience research, where available data are
80
+ typically small-sized and much more complex (e.g., high-resolution cortical sur-
81
+ faces containing noisy, highly redundant, and task-irrelevant information).
82
+ Distinct to existing post-hoc methods, we have an opposite claim that ex-
83
+ plainability boosts or even determines classification, especially in those chal-
84
+ lenging tasks related to brain cortical development analyses based on high-
85
+ dimensional neuroimaging data. The key is how to construct an end-to-end
86
+ framework, where fine-grained explanation factors can be identified in a fully
87
+ learnable fashion to enhance discriminative representation extraction and finally
88
+ output accurate classification. This paper presents such an explainable geometric
89
+ deep network, called NeuroExplainer, with applications to uncover altered infant
90
+ cortical development patterns associated with preterm birth. NeuroExplainer
91
+ adopts high-resolution cortical attributes as the input to develop a hierarchi-
92
+ cal attention-decoding architecture. In the framework of weakly supervised dis-
93
+
94
+ NeuroExplainer
95
+ 3
96
+ criminative localization, our NeuroExplainer is trained by minimizing general
97
+ classification losses coupled with a set of constraints designed according to prior
98
+ knowledge regarding brain development. These targeted regularizers drive the
99
+ network to implicitly optimize the explainability metrics from multiple aspects
100
+ (i.e., fidelity, sparsity, and stability), thus capturing fine-grained explanation fac-
101
+ tors to explicitly improve classification accuracies. Experimental results on the
102
+ public dHCP benchmark suggest that our NeuroExplainer led to quantitatively
103
+ reliable explanation results that are qualitatively consistent with representative
104
+ neuroimaging studies, implying that it could be a practically useful AI tool for
105
+ other related cortical surface-based neuroimaging studies.
106
+ 2
107
+ Related Work
108
+ Deep Learning for Cortical Surface Analyses. The human cerebral cortex
109
+ is a highly folded and thin sheet of gray matter [15]. By leveraging structural
110
+ magnetic resonance imaging (MRI), such complex topology can be rendered as a
111
+ 3D mesh, with each vertex/cell presenting fundamental cortical attributes, e.g.,
112
+ cortical thickness, mean curvature, and average convexity. For brain develop-
113
+ ment/degeneration analyses, advanced geometric deep learning methods can be
114
+ potentially applied to learning from cortical surface data a powerful and efficient
115
+ classification/prediction model, either over the original 3D mesh or after mapping
116
+ it onto a spherical surface to ease the computation [47]. Although these existing
117
+ studies suggested promising accuracies of geometric deep learning in multiple
118
+ tasks (e.g., parcellation [47], registration [36], and longitudinal prediction [22]),
119
+ the learned models typically lack explainability and interpretability.
120
+ Explainability in Deep Neural Networks. The instance-level explanation
121
+ approaches aim to study why a deep model makes a specific prediction for
122
+ a given input, e.g., which part of the input contributes more to its output
123
+ classification score. Such input-dependent explanation methods can be roughly
124
+ categorized into four branches, including gradient/feature-based, perturbation-
125
+ based, decomposition-based, and surrogate-based methods [46]. As the most
126
+ straightforward strategy, gradient/feature-based approaches have been actively
127
+ studied in deep learning over gridded data [11], with some extensions to non-
128
+ Euclidean cases (e.g., graphs) [46,24]. Currently, research regarding explainable
129
+ geometric deep learning on 3D meshes (like brain cortical surfaces) is still lim-
130
+ ited [30]. More importantly, existing explanation methods (in both gridded and
131
+ non-Euclidean spaces) typically investigate network outputs in a post-hoc fash-
132
+ ion [11,46,23], assuming that faithful explanations are the results of accurate pre-
133
+ dictions/classifications. In this paper, we have an opposite claim that leveraging
134
+ domain knowledge to perform end-to-end learning of feature-based explanation
135
+ factors for discriminative representation extraction (and classification perfor-
136
+ mance enhancement) could be a more intuitive strategy to produce fine-grained
137
+ explainability in challenging tasks.
138
+
139
+ 4
140
+ Authors Suppressed Due to Excessive Length
141
+ EB-1
142
+ DB-1
143
+ A
144
+ EB-4
145
+ T A
146
+ �𝑠�, 𝑠�}
147
+ �𝑠�, 𝑠�}
148
+ DB-2
149
+ A
150
+ �𝑠�, 𝑠�}
151
+ DB-3
152
+ A
153
+ �𝑠�, 𝑠�}
154
+ C
155
+ EB-2
156
+ EB-3
157
+ Cortical attributes
158
+ Left
159
+ Right
160
+ Convexity
161
+ Mean curvature
162
+ Cortical thickness
163
+ Spherical
164
+ mapping
165
+ 1D
166
+ Conv
167
+ 1D
168
+ Conv
169
+
170
+
171
+ Input features
172
+ Share
173
+ weights
174
+ GAP
175
+ �𝑠�, 𝑠�}
176
+
177
+ Attention-gated
178
+ features
179
+ Spherical attention mechanism
180
+ Left
181
+ Right
182
+ Left
183
+ Right
184
+ Left
185
+ Right
186
+ Classification
187
+ score
188
+ Attention maps
189
+ EB
190
+ : Hexagonal Conv + Pooling (except EB-4)
191
+ : Cross-hemisphere Self-Attention
192
+ T
193
+ A : Spherical Attention Mechanism
194
+ DB
195
+ : Hexagonal Transposed Conv
196
+ + Skip connection
197
+ + Hexagonal Conv
198
+ C : GAP + 1D Conv
199
+ : Concatenation
200
+ : Multiplication
201
+ ⊙: Dot-product
202
+ Fig. 1: The schematic diagram of our NeuroExplainer that learns to capture fine-
203
+ grained explanation factors in an end-to-end attention-decoding architecture to
204
+ boost discriminative representation extraction from cortical-surface data.
205
+ 3
206
+ Method
207
+ As the schematic diagram shown in Fig. 1, our NeuroExplainer works on the
208
+ high-resolution spherical surfaces of both brain hemispheres (each with 10, 242
209
+ vertices). The inputs are fundamental vertex-wise cortical attributes, i.e., thick-
210
+ ness, mean curvature, and convexity. The architecture has two main parts, in-
211
+ cluding an encoding branch to produce initial task-related attentions on down-
212
+ sampled hemispheric surfaces, and a set of attention decoding blocks to hier-
213
+ archically propagate such vertex-wise attentions onto higher-resolution spheres,
214
+ finally capturing fine-grained explanation factors on the input high-resolution
215
+ surfaces to boost the prediction task (i.e., the differentiation between preterm
216
+ and fullterm infants in our study). The whole network is trained end-to-end by
217
+ minimizing multi-resolution classification losses, under the constraints provided
218
+ by prior-induced regularizations to enhance explanation metrics.
219
+ 3.1
220
+ Spherical Attention Encoding
221
+ The starting components of the encoding branch are four spherical convolution
222
+ blocks (i.e., EB-1 to EB-4 in Fig. 1), with the learnable parameters shared across
223
+ two hemispheric surfaces. Each EB adopts 1-ring hexagonal convolution [47]
224
+ followed by batch normalization (BN) and ReLU activation to extract vertex-
225
+ wise representations, which are then downsampled by hexagonal max pooling
226
+ [47] (except in EB-4) to serve as the input of the subsequent layer. Based on
227
+ the outputs from EB, we propose a learnable spherical attention mechanism to
228
+ conduct weakly-supervised discriminative localization.
229
+ Specifically, let Fl and Fr ∈ R162×M0 be the vertex-wise representations
230
+ (produced by EB-4) for the left and right hemispheres, respectively. We first
231
+ concatenate them as a 324 × M0 matrix, on which a self-attention operation
232
+ [38] is applied to capturing cross-hemisphere long-range dependencies to refine
233
+ the vertex-wise representations from both hemispheric surfaces, resulting in a
234
+ unified feature matrix denoted as F0 = [ˆFl; ˆFr] ∈ R324×M0. As shown in Fig.
235
+
236
+ 10242lrvatureNeuroExplainer
237
+ 5
238
+ 1, F0 is further global average pooled (GAP) across all vertices to be a holistic
239
+ feature vector f0 ∈ R1×M0 representing the whole cerebral cortex. Both F0 and
240
+ f0 are then mapped by a same vertex-wise 1D convolution (i.e., W0 ∈ RM0×2,
241
+ without bias) into the categorical space, denoted as A0 = [Al
242
+ 0; Ar
243
+ 0] ∈ R324×2
244
+ and s0, respectively. Notably, so is supervised by the one-hot code of subject’s
245
+ categorical label, by which Al
246
+ 0 and Ar
247
+ 0 highlight discriminative vertices on the
248
+ (down-sampled) left and right surfaces, respectively, considering that
249
+ s0[i] ∝
250
+
251
+ 1T F0
252
+
253
+ W0[:, i] = 1T �
254
+ [ˆFl; ˆFr]W0[:, i]
255
+
256
+ = 1T Al
257
+ 0[:, i] + 1T Ar
258
+ 0[:, i],
259
+ (1)
260
+ where so[i] (i = 0 or 1) in our study denote the prediction scores of preterm
261
+ and fullterm, respectively, and 1 is an unit vector having the same row size
262
+ with the subsequent matrix. Finally, we define the hemispheric attentions as
263
+ ¯Al
264
+ 0 = �1
265
+ i=0 s0[i]Al
266
+ 0[:, i] and ¯Ar
267
+ 0 = �1
268
+ i=0 s0[i]Ar
269
+ 0[:, i] ∈ R324×1, respectively, with
270
+ values spatially varying and depending on the relevance to subject’s category.
271
+ 3.2
272
+ Hierarchically Spherical Attention Decoding
273
+ The explanation factors captured by the encoding branch are relatively coarse,
274
+ as the receptive field of a cell on the downsampled surfaces (with 162 vertices
275
+ after three pooling operations) is no smaller than a hexagonal region of 343
276
+ cells on the input surfaces (with 10, 242 vertices). To tackle this challenge, we
277
+ design a spherical attention decoding strategy to hierarchically propagate coarse
278
+ attentions (from lower-resolution spheres) onto higher-resolution spheres, based
279
+ on which fine-grained attentions are finally produced to improve classification.
280
+ Specifically, NeuroExplainer contains three consecutive decoding blocks (i.e.,
281
+ DB-1 to DB-3 in Fig. 1). Each DB adopts both the attention-gated discriminative
282
+ representations from the preceding DB (except DB-1 that uses EB-4 outputs)
283
+ and the local-detailed representations from the symmetric EB (at the same reso-
284
+ lution) as the input. Let the attention-gated representations from the preceding
285
+ DB be Fl
286
+ G =
287
+ � ¯Al
288
+ in11×Min
289
+
290
+ ⊙ ˆFl
291
+ in and Fr
292
+ G =
293
+ � ¯Ar
294
+ in11×Min
295
+
296
+ ⊙ ˆFr
297
+ in, respectively,
298
+ where each row of ˆFin has Min channels, and ⊙ denotes element-wise dot prod-
299
+ uct. We first upsample Fl
300
+ G and Fr
301
+ G to the spatial resolution of the current DB,
302
+ by using hexagonal transposed convolutions [47] with learnable weights shared
303
+ across hemispheres. Then, the upsampled discriminative representations from
304
+ each hemisphere (say ˜Fl
305
+ G and ˜Fr
306
+ G) are channel-wisely concatenated with the lo-
307
+ cal representations from the corresponding EB (say Fl
308
+ E and Fr
309
+ E), followed by an
310
+ 1-ring convolution to produce a unified feature matrix, such as
311
+ FD = [Cθ(˜Fl
312
+ G ⊕ Fl
313
+ E); Cθ(˜Fr
314
+ G ⊕ Fr
315
+ E)],
316
+ (2)
317
+ where Cθ(·) denotes 1-ring conv parameterized by θ, and ⊕ stands for channel
318
+ concatenation. In terms of FD, the attention mechanism described in (1) is
319
+ further applied to producing refined spherical attentions and classification scores.
320
+ Finally, as shown in Fig. 1, based on the fine-grained attentions over the input
321
+ surfaces (each with 10, 242 vertices), we use GAP to aggregate the attention-
322
+ gated representations and apply an 1D conv to output the classification score.
323
+
324
+ 6
325
+ Authors Suppressed Due to Excessive Length
326
+ Original convexity
327
+
328
+ Random coarsening
329
+ -15
330
+ 10
331
+ Atypical subject
332
+
333
+ Feature matrix 𝐅�
334
+
335
+ Attention 𝐀�
336
+
337
+
338
+ Feature matrix 𝐅�
339
+
340
+ Attention 𝐀�
341
+
342
+ Typical subject
343
+ Pull
344
+ Discriminative
345
+ representation space
346
+ (a)
347
+ (b)
348
+ Fig. 2: Brief illustrations of (a) the explanation fidelity-aware contrastive learning
349
+ strategy, and (b) explanation stability-aware data augmentation strategy.
350
+ 3.3
351
+ Domain Knowledge-Guided Explanation Enhancement
352
+ In this study, we design NeuroExplainer under a central idea that task-oriented
353
+ learning of explanation factors to boost discriminative representation extraction
354
+ can inversely assure fine-grained explainability in challenging cases like learn-
355
+ ing on complex cortical-surface data. To effectively train our network for such a
356
+ purpose, we design a set of targeted regularization strategies by considering fun-
357
+ damental domain knowledge regarding infant brain development. Specifically, it
358
+ is reasonable to assume that human brains in infancy have generally consistent
359
+ developments, while the structural/functional discrepancies between different
360
+ groups (e.g., preterm and term-born) are typically localized [37,10]. Accordingly,
361
+ we require the preterm-altered cortical development patterns captured by our
362
+ NeuroExplainer to be discriminative, spatially sparse, and robust, which sug-
363
+ gests the design of the following constraints that concurrently optimize fidelity,
364
+ sparsity, and stability metrics [46] in deploying an explainable deep network.
365
+ Explanation Fidelity-Aware Contrastive Learning. Given the spherical
366
+ attention block at a specific resolution, we have A+
367
+ i
368
+ and A−
369
+ j ∈ RV ×1 as the
370
+ output attentions for a positive and negative subjects (i.e., preterm and fullterm
371
+ infants in our study), respectively, and F+
372
+ i and F−
373
+ j ∈ RV ×M are the correspond-
374
+ ing representation matrices. Based on the prior knowledge regarding infant brain
375
+ development, it is reasonable to assume that A+
376
+ i highlights atypically-developed
377
+ cortical regions caused by preterm birth. In contrast, the remaining part of the
378
+ cerebral cortex of a preterm infant (corresponding to 1 − A+
379
+ i ) still growths nor-
380
+ mally, i.e., looking globally similar to the cortex of a term-born infant.
381
+ Accordingly, as the illustration shown in Fig. 2(a), we design a fidelity-
382
+ aware contrastive penalty to regularize the learning of the attention maps and
383
+ associated representations to improve their discriminative power. Let f +
384
+ i
385
+ =
386
+ 1T �
387
+ A+
388
+ i 11×M ⊙ F+
389
+ i
390
+
391
+ and ¯f +
392
+ i
393
+ = 1T �
394
+ {1 − A+
395
+ i }11×M ⊙ F+
396
+ i
397
+
398
+ be the holistic fea-
399
+ ture vector and its inverse for the ith (positive) sample, respectively. Similarly,
400
+ f −
401
+ j = 1T �
402
+ A−
403
+ j 11×M ⊙ F−
404
+ j
405
+
406
+ denotes the holistic feature vector for the compared
407
+ jth (negative) sample. By pushing f +
408
+ i
409
+ away from both ¯f +
410
+ i
411
+ and f −
412
+ j , while pulling
413
+
414
+ Original convexitNeuroExplainer
415
+ 7
416
+ ¯f +
417
+ i
418
+ close to f −
419
+ j , we define the respective loss as
420
+ Lcontrast =
421
+ N
422
+
423
+ i̸=j
424
+ || ¯f +
425
+ i − f −
426
+ j || + max(m − || ¯f +
427
+ i − f +
428
+ i ||, 0) + max(m − ||f −
429
+ j − f +
430
+ i ||, 0),
431
+ (3)
432
+ where i and j indicate any a pair of positive and negative cases from totally N
433
+ training samples, and m is a margin setting as 1 in our implementation.
434
+ Explanation Sparsity-Aware Regularization. According to the specified
435
+ prior knowledge regarding infant brain development, the attention maps pro-
436
+ duced by our NeuroExplainer should have two featured properties in terms of
437
+ sparsity. That is, the attention map for a preterm infant (e.g., A+
438
+ i ) should be
439
+ sparse, considering that altered cortical developments are assumed to be local-
440
+ ized. In contrast, the attention map for a healthy term-born infant (e.g., A−
441
+ j )
442
+ should not be spatially informative, as all brain regions growth typically without
443
+ abnormality. To this end, we design a straightforward entropy-based regulariza-
444
+ tion to enhance results’ explainability, such as
445
+ Lentropy =
446
+ N
447
+
448
+ i̸=j
449
+ 1T �
450
+ A+
451
+ i ⊙ log(A+
452
+ i ) − A−
453
+ j ⊙ log(A−
454
+ j )
455
+
456
+ ,
457
+ (4)
458
+ where i and j indicate a positive and a negative cases from totally N training
459
+ samples, respectively, and 1 is an unit vector to sum up the values of all vertices.
460
+ Explanation Stability-Aware Regularization. We enhance the explanation
461
+ stability of our NeuroExplainer from two aspects. First, we require the spherical
462
+ attention mechanisms to robustly decode from complex cortical-surface data (po-
463
+ tentially containing perturbed and noisy information) fine-grained explanation
464
+ factors to produce accurate predictions. To this end, a customized data augmen-
465
+ tation strategy is designed to explicitly increase perturbations and variances in
466
+ preprocessing the data for training such a network. Specifically, the inputs of our
467
+ network are cortical surfaces with 10, 242 vertices that are downsampled from
468
+ the original data with 163, 842 vertices. We randomize this surface coarsening
469
+ step by quantifying a vertex’s cortical attributes (on the downsampled surface)
470
+ as the average of a random subset of the vertices from the respective hexagonal
471
+ region of the highest-resolution surface. As the examples summarized in Fig.
472
+ 2(b), such a data augmentation strategy can generate partially different training
473
+ samples from one single subject. Considering that the network is trained to pro-
474
+ duce consistently accurate predictions for all these variants with perturbations,
475
+ it inversely enhances the stability of learned explanation factors.
476
+ Second, as described in Sec. 3.2, the fine-grained explanation factors over
477
+ high-resolution cortical surface are captured by the proposed hierarchical atten-
478
+ tion decoding strategy, where coarse results from the encoder part serve as the
479
+ foundation. To further enhance the explanation stability, we design a cross-scale
480
+ consistency regularization to refine the decoding branch. Specifically, let Al
481
+ i and
482
+
483
+ 8
484
+ Authors Suppressed Due to Excessive Length
485
+ Ah
486
+ i be the spherical attentions from two different DB blocks. We simply minimize
487
+ Lconsistent =
488
+ N
489
+
490
+ i=1
491
+
492
+ Al
493
+ i − Ah
494
+ i
495
+ �2,
496
+ (5)
497
+ which encourages spherical attention maps at different spatial resolutions to be
498
+ consistent in network training.
499
+ Implementation Details. In our implementation, the feature representations
500
+ produced by EB-1 to EB-4 in Fig. 1 have 32, 64, 128, and 256 channels, respec-
501
+ tively. Correspondingly, DB-1 to DB-3, and the final classification layer have 256,
502
+ 128, 64, and 32 channels, respectively. The network was trained end-to-end by
503
+ minimizing the cross-entropy classification losses defined at three different spa-
504
+ tial resolutions (overall denoted as LCE), coupled with the regularization terms
505
+ introduced in Sec. 3.3, such as
506
+ L = LCE + λ1Lcontrast + λ2Lentropy + λ3Lconsistent,
507
+ (6)
508
+ where the tuning parameters were empirically set as λ1 = 0.2, λ3 = 0.5, and
509
+ λ3 = 0.1. The network parameters were updated by using Adam optimizer for
510
+ 500 epochs, with the initial learning rate setting as 0.001 and bath size as 20.
511
+ 4
512
+ Experiments
513
+ Dataset & Experimental Setup. We conducted experiments on the dHCP
514
+ benchmark [26]. The structural MRIs of 700 infants scanned at term-equivalent
515
+ ages (35-44 weeks postmenstrual age) were studied, including 143 preterm and
516
+ 557 term-born infants. These subjects were randomly split as a training set of 500
517
+ infants (89 preterm and 411 fullterm), and a test set of the remaining 200 infants
518
+ (54 preterm and 146 fullterm). Using the data-augmentation strategy described
519
+ in Sec. 3.3, the training set was augmented to have roughly 1, 250 subjects from
520
+ each category for balanced network training. The input spherical surfaces contain
521
+ 10, 242 vertices, and each of them has three morphological attributes, i.e., cortical
522
+ thickness, mean curvature, and convexity.
523
+ For classification, our NeuroExplainer was compared with three representa-
524
+ tive geometric deep networks, including a spherical network based on 1-ring con-
525
+ volution (SphericalCNN) [47], a MoNet reimplementation working on spherical
526
+ surfaces (SphericalMoNet) [36], and SubdivNet [16] working on original cor-
527
+ tical meshes. In addition, we conducted detailed ablation studies to verify the
528
+ efficacy of each prior-guided regularization introduced in Sec. 3.3. The classifi-
529
+ cation performance was quantified in terms of accuracy (ACC), area under the
530
+ ROC curve (AUC), sensitivity (SEN), and specificity (SPE).
531
+ On the other hand, the explanation performance of our NeuroExplainer was
532
+ compared with two representative feature-based explanation approaches, i.e.,
533
+ CAM [49] and Grad-CAM [31], which were coupled with the geometric net-
534
+ works described above for post-hoc analysis. The explanation performance was
535
+
536
+ NeuroExplainer
537
+ 9
538
+ Table 1: Classification results obtained by the competing geometric deep net-
539
+ works and different variants of our NeuroExplainer.
540
+ Competing Mehtods
541
+ ACC
542
+ AUC
543
+ SEN
544
+ SPE
545
+ SphericalCNN [47]
546
+ 0.93
547
+ 0.92
548
+ 0.76
549
+ 0.98
550
+ SphericalMoNet [36]
551
+ 0.85
552
+ 0.93
553
+ 0.65
554
+ 0.92
555
+ SubdivNet [16]
556
+ 0.79
557
+ 0.67
558
+ 0.74
559
+ 0.80
560
+ NeuroExplainer (ours)
561
+ 0.95
562
+ 0.97
563
+ 0.94
564
+ 0.95
565
+ w/o Lcontrast (3)
566
+ 0.88
567
+ 0.89
568
+ 0.80
569
+ 0.91
570
+ w/o Lentropy (4)
571
+ 0.91
572
+ 0.96
573
+ 0.74
574
+ 0.97
575
+ w/o Lconsistent (5)
576
+ 0.89
577
+ 0.95
578
+ 0.89
579
+ 0.88
580
+ quantitatively evaluated in terms of three metrics [46], i.e., Fidelity that mea-
581
+ sures the classification differences between the network captured explanation
582
+ factors and the remaining part, Sparsity of the captured explanation factors
583
+ compared to the whole surface, and Stability that measures the average clas-
584
+ sification accuracy on different perturbations of a single subject. Please refer
585
+ to [46] for more details regarding these explainability evaluation metrics.
586
+ Classification Results. The classification results obtained by different com-
587
+ peting methods are summarized in Table 1, from which we can have at least
588
+ three observations. 1) Compared with SubdivNet working on original meshes,
589
+ and the other two networks working on spherical surfaces (i.e., SphericalCNN
590
+ and SphericalMoNet), our NeuroExplainer consistently led to better classifica-
591
+ tion accuracies in terms of all metrics. 2) The improvements brought by our
592
+ method are especially significant in terms of SEN and AUC, suggesting that
593
+ it can reliably identify featured development patterns associated with preterm
594
+ birth to make accurate predictions in such an imbalanced learning task. These
595
+ results imply that our idea to capture fine-grained explanation factors in an end-
596
+ to-end fashion to boost discriminative representation extraction is beneficial for
597
+ deploying an accurate classification model in the task of learning on complex
598
+ surface data containing noisy, redundant, and task-irrelevant information.
599
+ 3) To check the efficacy of the prior-induced regularization strategies, we
600
+ orderly removed them from the loss function (6) to quantify the respective in-
601
+ fluence on classification results. From Table 1, we can see that all the three reg-
602
+ ularizations (i.e., Lcontrast, Lentropy, and Lconsistent) demonstrated significant
603
+ but different improvements on classification. Specifically, according to the com-
604
+ parison between NeuroExplainer and its variant w/o Lentropy, we can see that
605
+ such an explanation sparsity-aware regularization boosted SEN by 20%, imply-
606
+ ing its efficacy in capturing localized patterns related to preterm-altered cortical
607
+ development. By comparing NeuroExplainer with its variant w/o Lconsistent,
608
+ we can see that the explanation stability-ware regularization helped stabilize
609
+ the learning of the hierarchical attention-decoding branch, leading to relatively
610
+ large improvements of overall classification ACC (by 6%). Finally, we can see
611
+ that the explanation fidelity-aware contrastive learning strategy brought overall
612
+ the largest improvements of both ACC and AUC (by 7% and 8%, respectively),
613
+
614
+ 10
615
+ Authors Suppressed Due to Excessive Length
616
+ Table 2: Quantitative explanation results obtained by the competing post-hoc
617
+ approaches and our end-to-end NeuroExplainer.
618
+ Competing Methods
619
+ Fidelity
620
+ Sparsity Stability
621
+ CAM [49] +
622
+ SphericalCNN
623
+ 0.24
624
+ 0.91
625
+ 0.77
626
+ SphericalMoNet
627
+ 0.55
628
+ 0.93
629
+ 0.58
630
+ SubdivNet
631
+ 0.06
632
+ 0.97
633
+ 0.53
634
+ Grad-CAM [31] +
635
+ SphericalCNN
636
+ 0.22
637
+ 0.99
638
+ 0.77
639
+ SphericalMoNet
640
+ 0.42
641
+ 0.98
642
+ 0.58
643
+ SubdivNet
644
+ 0.16
645
+ 0.96
646
+ 0.53
647
+ NeuroExplainer (ours)
648
+ 0.56
649
+ 0.73
650
+ 0.96
651
+ 0
652
+ 1
653
+ Left
654
+ Right
655
+ Subject 1
656
+ Subject 2
657
+ Grad-CAM
658
+ Spherical
659
+ CNN
660
+ Spherical
661
+ MoNet
662
+ CAM
663
+ Spherical
664
+ MoNet
665
+ Spherical
666
+ CNN
667
+ Ours
668
+ Fine-
669
+ grained
670
+ Coarse-
671
+ scaled
672
+ Ours
673
+ Fine-
674
+ grained
675
+ Coarse-
676
+ scaled
677
+ CAM
678
+ Spherical
679
+ MoNet
680
+ Spherical
681
+ CNN
682
+ Grad-CAM
683
+ Spherical
684
+ CNN
685
+ Spherical
686
+ MoNet
687
+ Fig. 3: Typical examples of the explanation factors captured by the com-
688
+ peting post-hoc approaches (CAM and Grad-CAM) and our end-to-end
689
+ NeuroExplainer. Higher values indicate larger links to preterm birth.
690
+ implying its efficacy in transforming domain knowledge regarding atypical brain
691
+ development to capture fine-grained explanation factors that boost discrimina-
692
+ tive representation learning.
693
+ Explanation Results. The quantitative explanation results obtained by our
694
+ NeuroExplainer and other feature-based explanation methods (i.e., CAM and
695
+ Grad-CAM coupled with the trained geometric deep networks, respectively)
696
+ are summarized in Table 2. From Table 2, we can observe that our end-to-end
697
+ NeuroExplainer outperformed other post-hoc explanation approaches by a large
698
+ margin in terms of the three explainability metrics. Notably, the three metrics
699
+ should be analyzed concurrently in evaluating a network’s explainability [46], as
700
+ the isolated quantification of a single metric could be biased. For example, al-
701
+ though Grad-CAM+SphericalCNN led to the largest Sparsity value (= 0.99) in
702
+ our experiment, the corresponding Fidelity and Stability values are significantly
703
+ low (= 0.22 and 0.77, respectively), indicating that the very sparse explanation
704
+ factors captured by Grad-CAM+SphericalCNN are relatively uninformative and
705
+ random. In contrast, our NeuroExplainer led to significantly better Fidelity and
706
+ Stability, under reasonable Sparsity, suggesting that it can robustly identify lo-
707
+ calized preterm-altered cortical patterns from high-dimensional inputs to boost
708
+ discriminative representation learning for preterm infant recognition.
709
+
710
+ NeuroExplainer
711
+ 11
712
+ -10
713
+ 10
714
+ 0
715
+ 1
716
+ Our
717
+ NeuroExplainer
718
+ Existing Multi-Modal (dMRI + sMRI) Studies
719
+ Mean Diffusivity
720
+ Neurite Density
721
+ Cortical Thickness
722
+ Fig. 4: Comparison of the individualized preterm-altered cortical development
723
+ patterns uncovered by NeuroExplainer with the group-wise patterns identified
724
+ by existing multi-modal studies [10].
725
+ In addition to the above quantitative evaluations, we also visually compared
726
+ the attention maps produced by different competing methods, with two typical
727
+ examples presented in Fig. 3. From Fig. 3, we can have two main observations. 1)
728
+ Compared with post-hoc explanation methods (i.e., CAM and Grad-CAM), our
729
+ end-to-end NeuroExplainer stably produced more reasonable attentions. Specif-
730
+ ically, given a subject (e.g., Subject 2 in Fig. 3), CAM and Grad-CAM could
731
+ produce very different explanation results for a trained classification model (e.g.,
732
+ SphericalCNN). Similarly, a post-hoc approach (e.g., CAM) could produce dis-
733
+ tinct results for two different classification models on the same subject. Due
734
+ to the nature of end-to-end learning of explanation factors to establish classi-
735
+ fication models, our NeuroExplainer effectively avoided such a problem. More
736
+ importantly, across different subjects, our NeuroExplainer led to group-wisely
737
+ more consistent explanations than these post-hoc approaches. Also, it produced
738
+ more consistent results across hemispheres, without any related constraints dur-
739
+ ing network training. 2) We can see that the coarse attentions produced by
740
+ NeuroExplainer’s encoder are consistent with the final fine-grained outputs of
741
+ the decoder, which implies the positive effect of the cross-scale consistency reg-
742
+ ularization in enhancing explainability.
743
+ Finally, we compared the individualized preterm-altered cortical development
744
+ patterns uncovered by our NeuroExplainer with representative group-wise neu-
745
+ roimaging studies in the literature, e.g., the multi-modal (dMRI and sMRI)
746
+ quantitative analyses presented in [10]. According to the comparisons shown in
747
+ Fig. 3, we can see that our observations in this paper are consistent with [10].
748
+ The discriminative cortical regions captured by our NeuroExplainer (using solely
749
+ morphological features) are largely overlapped with the group-wise significantly
750
+ different regions identified by [10] in terms of the mean diffusivity, neurite den-
751
+ sity, and cortical thickness, respectively. For example, they both highlighted some
752
+ specific regions in the inferior parietal, medial occipital, and superior temporal
753
+ lobe, and posterior insula, which is worth deeper evaluations in the future.
754
+
755
+ 12
756
+ Authors Suppressed Due to Excessive Length
757
+ 5
758
+ Conclusion
759
+ In the paper, we have proposed an geometric deep network, i.e., NeuroExplainer,
760
+ to learn fine-grained explanation factors from complex cortical-surface data to
761
+ boost discriminative representation extraction and accurate classification model
762
+ construction. On the benchmark dHCP database, the applications of our NeuroExplainer
763
+ to uncover preterm-altered infant cortical development patterns achieved bet-
764
+ ter performance in terms of both explainability and prediction accuracy, when
765
+ compared with representative post-hoc approaches coupled with state-of-the-
766
+ art geometric deep networks. The proposed method could be a promising AI
767
+ tool applied to other similar cortical surface-based neuroimage and neuroscience
768
+ studies.
769
+ References
770
+ 1. Ball, G., Seidlitz, J., O’Muircheartaigh, J., Dimitrova, R., Fenchel, D., Makropou-
771
+ los, A., Christiaens, D., Schuh, A., Passerat-Palmbach, J., Hutter, J., et al.: Cortical
772
+ morphology at birth reflects spatiotemporal patterns of gene expression in the fetal
773
+ human brain. PLoS biology 18(11), e3000976 (2020)
774
+ 2. Ball, G., Srinivasan, L., Aljabar, P., Counsell, S.J., Durighel, G., Hajnal, J.V.,
775
+ Rutherford, M.A., Edwards, A.D.: Development of cortical microstructure in the
776
+ preterm human brain. Proceedings of the National Academy of Sciences 110(23),
777
+ 9541–9546 (2013)
778
+ 3. Bass, C., et al.: Icam-reg: Interpretable classification and regression with feature
779
+ attribution for mapping neurological phenotypes in individual scans. IEEE TMI
780
+ (2022)
781
+ 4. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-
782
+ supervised, multi-instance, and transfer learning in medical image analysis. Medical
783
+ image analysis 54, 280–296 (2019)
784
+ 5. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
785
+ in breast cancer histology images with deep neural networks. In: International
786
+ conference on medical image computing and computer-assisted intervention. pp.
787
+ 411–418. Springer (2013)
788
+ 6. Cui, H., et al.: Interpretable graph neural networks for connectome-based brain
789
+ disorder analysis. In: MICCAI. pp. 375–385. Springer (2022)
790
+ 7. Davis, D.H., Thoman, E.B.: Behavioral states of premature infants: Implications
791
+ for neural and behavioral development. Developmental Psychobiology 20(1), 25–38
792
+ (1987)
793
+ 8. De Bruijne, M.: Machine learning approaches in medical image analysis: From
794
+ detection to diagnosis (2016)
795
+ 9. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
796
+ problem with axis-parallel rectangles. Artificial intelligence 89(1-2), 31–71 (1997)
797
+ 10. Dimitrova, R., et al.: Preterm birth alters the development of cortical microstruc-
798
+ ture and morphology at term-equivalent age. NeuroImage 243, 118488 (2021)
799
+ 11. Du, M., et al.: Techniques for interpretable machine learning. Communications of
800
+ the ACM 63(1), 68–77 (2019)
801
+ 12. Fawaz, A., et al.: Benchmarking geometric deep learning for cortical segmentation
802
+ and neurodevelopmental phenotype prediction. bioRxiv (2021)
803
+
804
+ NeuroExplainer
805
+ 13
806
+ 13. Feng, Y., et al.: Meshnet: Mesh neural network for 3d shape representation. In:
807
+ AAAI. vol. 33, pp. 8279–8286 (2019)
808
+ 14. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
809
+ 15. Fischl, B., et al.: Measuring the thickness of the human cerebral cortex from mag-
810
+ netic resonance images. PNAS 97(20), 11050–11055 (2000)
811
+ 16. Hu, S.M., et al.: Subdivision-based mesh convolution networks. ACM TOG 41(3),
812
+ 1–16 (2022)
813
+ 17. Huang, Y., Chung, A.: Evidence localization for pathology images using weakly
814
+ supervised learning. In: International conference on medical image computing and
815
+ computer-assisted intervention. pp. 613–621. Springer (2019)
816
+ 18. Kostović, I., Jovanov-Milošević, N.: The development of cerebral connections dur-
817
+ ing the first 20–45 weeks’ gestation. In: seminars in fetal and neonatal medicine.
818
+ vol. 11, pp. 415–422. Elsevier (2006)
819
+ 19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
820
+ volutional neural networks. Communications of the ACM 60(6), 84–90 (2017)
821
+ 20. Li, G., et al.: Consistent reconstruction of cortical surfaces from longitudinal brain
822
+ mr images. NeuroImage 59(4), 3805–3820 (2012)
823
+ 21. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M.,
824
+ Van Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning
825
+ in medical image analysis. Medical image analysis 42, 60–88 (2017)
826
+ 22. Liu, P., et al.: Deep modeling of growth trajectories for longitudinal prediction of
827
+ missing infant cortical surfaces. In: IPMI. pp. 277–288. Springer (2019)
828
+ 23. Liu, Z., et al.: Going beyond saliency maps: Training deep models to interpret deep
829
+ models. In: IPMI. pp. 71–82. Springer (2021)
830
+ 24. Mahmood, U., et al.: Through the looking glass: deep interpretable dynamic di-
831
+ rected connectivity in resting fmri. NeuroImage p. 119737 (2022)
832
+ 25. Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T.,
833
+ Tusor, N., Hajnal, J.V., Edwards, A.D., Counsell, S.J., et al.: Regional growth and
834
+ atlasing of the developing human brain. Neuroimage 125, 456–478 (2016)
835
+ 26. Makropoulos, A., et al.: The developing human connectome project: A minimal
836
+ processing pipeline for neonatal cortical surface reconstruction. NeuroImage 173,
837
+ 88–112 (2018)
838
+ 27. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Ge-
839
+ ometric deep learning on graphs and manifolds using mixture model cnns. In:
840
+ Proceedings of the IEEE conference on computer vision and pattern recognition.
841
+ pp. 5115–5124 (2017)
842
+ 28. Ouyang, J., et al.: Self-supervised learning of neighborhood embedding for longi-
843
+ tudinal mri. MedIA 82, 102571 (2022)
844
+ 29. Quellec, G., Cazuguel, G., Cochener, B., Lamard, M.: Multiple-instance learning
845
+ for medical image and video analysis. IEEE reviews in biomedical engineering 10,
846
+ 213–234 (2017)
847
+ 30. Ribeiro, F.L., et al.: An explainability framework for cortical surface-based deep
848
+ learning. arXiv preprint arXiv:2203.08312 (2022)
849
+ 31. Selvaraju, R.R., et al.: Grad-cam: Visual explanations from deep networks via
850
+ gradient-based localization. In: CVPR. pp. 618–626 (2017)
851
+ 32. Seong, S.B., Pae, C., Park, H.J.: Geometric convolutional neural network for an-
852
+ alyzing surface-based neuroimaging data. Frontiers in neuroinformatics 12,
853
+ 42
854
+ (2018)
855
+ 33. Shen, D., et al.: Deep learning in medical image analysis. Annual Review of Biomed-
856
+ ical Engineering 19, 221 (2017)
857
+
858
+ 14
859
+ Authors Suppressed Due to Excessive Length
860
+ 34. Smilkov, D., et al.: Smoothgrad: removing noise by adding noise. arXiv preprint
861
+ arXiv:1706.03825 (2017)
862
+ 35. Srinidhi, C.L., Ciga, O., Martel, A.L.: Deep neural network models for computa-
863
+ tional histopathology: A survey. Medical Image Analysis 67, 101813 (2021)
864
+ 36. Suliman, M.A., et al.: A deep-discrete learning framework for spherical surface
865
+ registration. In: MICCAI. pp. 119–129. Springer (2022)
866
+ 37. Thompson, D.K., et al.: Tracking regional brain growth up to age 13 in children
867
+ born term and very preterm. Nature Communications 11(1), 1–11 (2020)
868
+ 38. Vaswani, A., et al.: Attention is all you need. NeurIPS 30 (2017)
869
+ 39. Volpe, J.J.: Dysmaturation of premature brain: importance, cellular mechanisms,
870
+ and potential interventions. Pediatric neurology 95, 42–66 (2019)
871
+ 40. Wang, S., Zhu, Y., Yu, L., Chen, H., Lin, H., Wan, X., Fan, X., Heng, P.A.: Rmdl:
872
+ Recalibrated multi-instance deep learning for whole slide gastric image classifica-
873
+ tion. Medical image analysis 58, 101549 (2019)
874
+ 41. Weese, J., Lorenz, C.: Four challenges in medical image analysis from an industrial
875
+ perspective (2016)
876
+ 42. Wen, J., et al.: Convolutional neural networks for classification of alzheimer’s dis-
877
+ ease: Overview and reproducible evaluation. MedIA 63, 101694 (2020)
878
+ 43. Wu, Z., Li, G., Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Registration-
879
+ free infant cortical surface parcellation using deep convolutional neural networks.
880
+ In: International Conference on Medical Image Computing and Computer-Assisted
881
+ Intervention. pp. 672–680. Springer (2018)
882
+ 44. Xu, Y., Zhu, J.Y., Eric, I., Chang, C., Lai, M., Tu, Z.: Weakly supervised
883
+ histopathology cancer image segmentation and classification. Medical image anal-
884
+ ysis 18(3), 591–604 (2014)
885
+ 45. Yang, Z., et al.: A deep learning framework identifies dimensional representations
886
+ of alzheimer¡¯s disease from brain structure. Nature Communications 12(1), 1–15
887
+ (2021)
888
+ 46. Yuan, H., et al.: Explainability in graph neural networks: A taxonomic survey.
889
+ IEEE TPAMI (2022)
890
+ 47. Zhao, F., et al.: Spherical u-net on cortical surfaces: methods and applications. In:
891
+ IPMI. pp. 855–866. Springer (2019)
892
+ 48. Zhao, F., et al.: Deep learning in cortical surface-based neuroimage analysis: a
893
+ systematic review. Intelligent Medicine (2022)
894
+ 49. Zhou, B., et al.: Learning deep features for discriminative localization. In: ICCV.
895
+ pp. 2921–2929 (2016)
896
+ 50. Zhou, Z.H.: A brief introduction to weakly supervised learning. National science
897
+ review 5(1), 44–53 (2018)
898
+
JdAyT4oBgHgl3EQf5_qu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LdFOT4oBgHgl3EQf0DSF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640a5a32714c1220f6369656fbeb9365cf2a0f18832adf43c39cbe808b0e521c
3
+ size 104081
NdFKT4oBgHgl3EQfey4y/content/2301.11826v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d629e53411aaf754d9f018c883e26bab98c22fd62f94b0744e7de54b97d22974
3
+ size 643690
NdFKT4oBgHgl3EQfey4y/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f8b83ddf4c3180def8301e39d7eb20ff167cf875bbf811329c3f87ded1ff10e
3
+ size 58214
NtFOT4oBgHgl3EQf2jTj/content/tmp_files/2301.12943v1.pdf.txt ADDED
@@ -0,0 +1,1313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Factors that affect Camera based Self-Monitoring of Vitals in the Wild
2
+ Nikhil S. Narayan
3
+ Shashanka B. R. *
4
+ Rohit Damodaran∗
5
+ Dr. Chandrashekhar Jayaram∗
6
+ Dr. M. A. Kareem
7
+ Dr. Mamta P.∗
8
+ Dr. Saravanan K. R.∗
9
+ Dr. Monu Krishnan∗
10
+ Dr. Raja Indana
11
+ MFine
12
+ Abstract
13
+ The reliability of the results of self monitoring of the
14
+ vitals in the wild using medical devices or wearables or
15
+ camera based smart phone solutions is subject to variabil-
16
+ ities such as position of placement, hardware of the device
17
+ and environmental factors. In this first of its kind study,
18
+ we demonstrate that this variability in self monitoring of
19
+ Blood Pressure (BP), Blood oxygen saturation level (SpO2)
20
+ and Heart rate (HR) is statistically significant (p < 0.05)
21
+ on 203 healthy subjects by quantifying positional and hard-
22
+ ware variability. We also establish the existance of this vari-
23
+ ability in camera based solutions for self-monitoring of vi-
24
+ tals in smart phones and thus prove that the use of camera
25
+ based smart phone solutions is similar to the use of medical
26
+ devices or wearables for self-monitoring in the wild.
27
+ 1. Introduction
28
+ Monitoring of vitals is important for identifying and
29
+ managing of diseases. Glasziou et. al. [11] identify five
30
+ phases of monitoring a disease from a chronic condition
31
+ perspective along with the interval for monitoring. These
32
+ include continuous monitoring of vitals to (a) detect abnor-
33
+ mality; (b) confirm abnormality; (c) establish plan of action
34
+ to treat the abnormality; (d) make adjustments to the treat-
35
+ ment; and (e) to confirm the success of treatment. These
36
+ phases can very well be extended to acute conditions with-
37
+ out loss of generality except for the fact that the monitor-
38
+ ing intervals may be much shorter than that for chronic
39
+ conditions and may totally be based on self-monitoring.
40
+ Self-monitoring refers to monitoring of conditions by pa-
41
+ tients/users by using medical devices that are available off-
42
+ *The authors were at MFine when the research was carried out. Prior
43
+ consent has been obtained from the authors to publish this work
44
+ the-shelf at a place of the patient’s convenience without the
45
+ intervention of a qualified medical professional to monitor
46
+ the condition. Self monitoring in the wild refers to monitor-
47
+ ing the vitals in uncontrolled environments such as outdoors
48
+ or house where the conditions with respect to lightihg, phys-
49
+ ical activity etc., dynamically change.
50
+ At certain points in time, when access to care is made
51
+ difficult either due to the unavailability of care providers
52
+ or due to environmental factors such as the most recent
53
+ COVID-19 pandemic where patients were forced to mon-
54
+ itor their conditions at home before approaching a health-
55
+ care provider, self-monitoring plays a crucial role in saving
56
+ human lives. Given the importance of self-monitoring of
57
+ diseases in recent times, there has been a flurry of activity in
58
+ research circles to come up with novel technologies that en-
59
+ able self-monitoring of vitals such as Blood Pressure (BP),
60
+ Blood oxygen saturation level (SpO2), Heart rate (HR),
61
+ Blood Glucose etc. While some of these have made it to
62
+ commercial devices such as wearables and mobile phones, a
63
+ vast majority of the technology is still restricted to academia
64
+ and research circles.
65
+ 1.1. Prior art
66
+ Of the technologies that are being researched for self-
67
+ monitoring of vitals, computer vision has received consid-
68
+ erable amount of attention the the last decade. One of the
69
+ early attempts in this direction was by Jonathan et. al., [16]
70
+ where the authors used a Nokia device to record videos at
71
+ 15 FPS of a user before and after performing a physical ac-
72
+ tivity and the change in HR calculated by employing us-
73
+ ing Photoplethysmography(PPG) Imaging. Thereafter there
74
+ have been quite a few attempts to demonstrate the capability
75
+ of using PPG signals from videos/image stream to estimate
76
+ HR in an individual [4,13,14,19,24,32].
77
+ The PPG imaging methodology employed for HR is also
78
+ a popular method to estimate SpO2 by both signal process-
79
+ 1
80
+ arXiv:2301.12943v1 [cs.CV] 30 Jan 2023
81
+
82
+ ing/mathematical models [6, 21, 31] and machine learning
83
+ [2, 3, 5, 17, 18]. A majority of smart phone PPG solutions
84
+ for SpO2 consider the video of a finger tip placed against
85
+ the back camera of the phone, hereafter referred to as Fin-
86
+ ger tip (FT) PPG, as the input to extract the PPG signals
87
+ and estimate the vital. A non-contact way to monitor SpO2
88
+ is explored in [15, 35]where a video stream of user’s face,
89
+ hereafter referred to as Face (FC) PPG, is used as input for
90
+ PPG signal extraction and SpO2 Estimation.
91
+ There has been growing interest in recent times to esti-
92
+ mate BP using PPG signals extracted either from FT PPG or
93
+ FC PPG. While, the exact relationship between PPG the sig-
94
+ nal and Blood Pressure has not been clinically established,
95
+ fitting an ML model on top of either the raw signal, or some
96
+ features extracted from the PPG signal seems to work and
97
+ is the general direction of work so far. Neural Networks
98
+ [1,9,20,33], Ensemble methods [10] and LSTM’s [27] are
99
+ some popular machine learning algorithms that have been
100
+ employed to estimate BP using either the raw PPG signal
101
+ or features extracted from the raw PPG signal as inputs to
102
+ the algorithms. Efforts towards developing contact-less so-
103
+ lutions include using a camera to capture facial videos of
104
+ the user and use deep Learning models on the extracted
105
+ rPPG(remote PPG) signals to estimate BP [29]. Transder-
106
+ mal Optical Imaging technology is another way to capture
107
+ facial blood flow changes and estimate BP in a contact-less
108
+ manner [23].
109
+ 1.2. Motivation
110
+ The algorithms discussed in Section 1.1 either use pub-
111
+ licly available datasets or data available from a limited set of
112
+ devices (usually one) to develop camera based vitals moni-
113
+ toring solutions. PhysioNet [12] is a popular database com-
114
+ monly used to develop algorithms based on Finger tip PPG.
115
+ Algorithms based on Face PPG use either [7] or [36] or
116
+ both to train the models. It is interesting to note that these
117
+ datasets are constructed under strictly controlled environ-
118
+ ment such as fixed lighting settings, fixed background, fixed
119
+ distance from camera etc., and do not account for interde-
120
+ vice variability. Thus, these datasets do not account for vari-
121
+ abilities that arise when the devices are used in the wild or
122
+ when multiple devices of different kinds are used for self-
123
+ monitoring. Some examples of variabilities that may arise
124
+ while acquiring data for self monitoring in the wild are:
125
+ • Positional Variance: (a) Wrong positioning of the BP
126
+ cuff of a digital monitor during data acquisition for
127
+ BP algorithms. Previous studies have established that
128
+ there is a significant Inter Arm BP difference when a
129
+ digital monitor is used for BP measurement [22, 26].
130
+ Several clinical studies in the past have also estab-
131
+ lished the existence of variabilities in the technique
132
+ used to measure BP by experts and the negative im-
133
+ pact that it has while monitoring in a clinical setting
134
+ Table 1. Mobile applications and wearables that support vitals
135
+ monitoring
136
+ Technology
137
+ Name
138
+ Vitals support
139
+ Solution
140
+ BP
141
+ SpO2
142
+ HR
143
+ Wearable
144
+ Apple Watch
145
+ Y
146
+ Y
147
+ IoT
148
+ GOQii
149
+ Y
150
+ Y
151
+ Y
152
+ IoT
153
+ boAT Xtend
154
+ Y
155
+ Y
156
+ IoT
157
+ One Plus
158
+ Y
159
+ Y
160
+ IoT
161
+ Fitbit
162
+ Y
163
+ Y
164
+ IoT
165
+ Oura ring
166
+ Y
167
+ IoT
168
+ Omron
169
+ Y
170
+ IoT
171
+ Mobile App
172
+ Careplix
173
+ Y
174
+ Y
175
+ Camera (FT)
176
+ MFine
177
+ Y
178
+ Y
179
+ Y
180
+ Camera (FT)
181
+ ICICI
182
+ Y
183
+ Y
184
+ Y
185
+ Camera (FC)
186
+ Anura
187
+ Y
188
+ Y
189
+ Camera (FC)
190
+ [28,30,34]. When such variabilities exist in measure-
191
+ ments taken by experts themselves, it is not uncom-
192
+ mon to expect the variability to exist while measuring
193
+ BP in a self monitoring setting. (b) Similar positional
194
+ variances exist while measuring SpO2 and HR using
195
+ pulseoximeters.
196
+ • Hardware Variance: Variabilities in the hardware used
197
+ to acquire Image / Video signals for PPG based vitals
198
+ analysis. It is a well known fact that manufacturers
199
+ of different brands of smart phones employ sensors of
200
+ different Original Equipment Manufacturers (OEM’s)
201
+ to have a competitive edge. This will directly result
202
+ in the variability of the quality of PPG signal obtained
203
+ from different sensors.
204
+ • Environmental Variance: the mobility aspect of smart
205
+ phones by default will introduce variances related to
206
+ lighting, motion etc.
207
+ In this paper we address the following questions quan-
208
+ titatively/statistically by undertaking a systematic clinical
209
+ study: (a) What variabilities exist in self monitoring of the
210
+ following vitals: BP, SpO2 and HR? (b) How do these vari-
211
+ abilities compare to the measurements obtained by an ex-
212
+ pert who is a qualified medical professional? (c) If the vari-
213
+ abilities between self-monitoring and the measurements by
214
+ an expert are similar, then how do these variabilities affect
215
+ the training of computer vision based solutions? for vitals
216
+ monitoring? (d) What do we need to do to minimise the
217
+ effect of this variability in AI based solutions?
218
+ The focus of this paper is on the variabilities associated
219
+ with Position and Hardware while Environmental Variance
220
+ will be picked up as an extension to this study to do justice
221
+ to the number of environmental factors that may influence
222
+ the outcome of self-monitoring in the wild. It should also
223
+ be noted that the primary goal of this paper is to validate
224
+ 2
225
+
226
+ Figure 1. Study setup
227
+ commercially available solutions at this point in time as we
228
+ wish to evaluate that solution which is easily accessible to
229
+ a user in the current situation given the pandemic and the
230
+ global burden on healthcare infrastructure.
231
+ 1.3. Contributions
232
+ To the best of our knowledge, there is no prior work that
233
+ has formally quantified the variabilities that exist in self-
234
+ monitoring of vitals. Since a majority of solutions in lit-
235
+ erature are targeted towards self-monitoring of vitals, it is
236
+ crucial to identify this variability and determine it’s signif-
237
+ icance in order to establish error bounds for measurements
238
+ of vitals on smartphones and wearables in the future. In this
239
+ first-of-a-kind study, we establish statistically that there is
240
+ a significant variability in the Vitals when measured by self
241
+ using medical devices that are available off the shelf. Ad-
242
+ ditionally, we also establish the existance of this variability
243
+ in camera based solutions for self-monitoring of vitals and
244
+ thus prove that the use of camera based smart phone solu-
245
+ tions is similar to the use of medical devices or wearables
246
+ for self-monitoring. Finally, discuss some methods that can
247
+ potentially be used to reduce this variability in camera based
248
+ solutions.
249
+ 2. Materials and Method
250
+ 2.1. Data
251
+ The study was conducted on 203 healthy subjects com-
252
+ prising of 112 (55%) men and 91 (45%) women in the age
253
+ range [20,55] years with an average age of 28.77 ± 5.877
254
+ years. The sample size was estimated for a 5% error at 95%
255
+ confidence interval based on the computations in [8,22,25].
256
+ Prior written consent was obtained from the subjects who
257
+ volunteered for the study as per the IRB guidelines and ap-
258
+ provals obtained for the study.
259
+ In order to monitor the vitals on medical devices, mobile
260
+ phones and wearables, we will require at least:
261
+ 1. one pair of mobile phones/smartphones with one of
262
+ the phones pre-installed with a mobile application that
263
+ measures vitals by extracting PPG signals from finger
264
+ tip image stream/video and the other from face videos
265
+ from front camera of the phone. These mobile appli-
266
+ cations are assumed to employ any one of the methods
267
+ described in Section 1.1. The exact details on the na-
268
+ ture of the algorithm are unavailable at this point in
269
+ time as the developers of the applications have not dis-
270
+ closed it publicly as either patents or publications.
271
+ The phones of the pair should be of the same
272
+ brand to eliminate the variabilities that may arise due
273
+ to differences in the hardware and software used to ac-
274
+ quire the signals (Image/Video). Since the study also
275
+ involves observing the variabilities associated with
276
+ changes in hardware and software of the smartphones,
277
+ we employ 4 pairs of phones in this study. The cri-
278
+ teria for selection of the phone brand/model is based
279
+ on price of the phone and global availability of the
280
+ phone. Lower the price, higher is the reach to the peo-
281
+ ple who would need access to affordable healthcare.
282
+ The price range under consideration for this study is
283
+ US$100-US$250. Accordingly, the following 4 mod-
284
+ els of phones are used: 1.(a) Xiaomi Note 9 Pro (Xi
285
+ N9); 1.(b) Xiaomi Note 8 Pro (Xi N8); 1.(c) Oppo A15
286
+ (Oppo); and 1.(d) Samsung M31 (SM31);
287
+ The mobile applications should be capable of
288
+ measuring all the vitals that are considered for this
289
+ study. Table 1 shows different commercially available
290
+ mobile applications and wearables along with the vi-
291
+ tals supported by each. We select one mobile appli-
292
+ cation each for Finger tip PPG based monitoring and
293
+ Face PPG based monitoring from the Mobile App cat-
294
+ egory in Table 1. Accordingly, the following mobile
295
+ applications are considered for this study: MFine for
296
+ Finger tip PPG based monitoring and ICICI mobile ap-
297
+ plication for Face PPG based monitoring.
298
+ 2. one wearable. As with the mobile phones, the wear-
299
+ able selected for this study should cover all the vitals
300
+ considered for the study. Froom Table 1 it can be seen
301
+ that the GOQii smartwatch supports all vitals and is
302
+ thus used in the study. Since we also want to study
303
+ the variabilities between wearables, we have also in-
304
+ cluded Apple Watch Series 7 in our study even though
305
+ BP monitoring capability is absent in it;
306
+ 3. a digital BP monitor. Omron HEM 7121J fully auto-
307
+ matic Digital Blood Pressure monitor is used in this
308
+ 3
309
+
310
+ 1
311
+ Observation Station 1
312
+ Observer 1
313
+ Digital BP
314
+ Mercury
315
+ ★ Pulse Oximeter
316
+ monitor
317
+ Sphygmomanometer
318
+ 1
319
+ Observation Station 2
320
+ Observer 2
321
+ Finger Tip PPG
322
+ FacePPG
323
+ Wearables
324
+ 1
325
+ Observation Station 3
326
+ Observer 3
327
+ Cardiac monitorFigure 2. Quantifying the (a,c) transverse variability; and (b,d)
328
+ angular variability in the placement of the sensor of the BP cuff
329
+ for self-monitoring
330
+ Figure 3. Variations in measuring SpO2 and HR by placing a
331
+ pulseoximeter on the index finger of the hand (a) resting on the
332
+ table; (b) resting on the table with index figer at maximum angle;
333
+ and (c) in the air.
334
+ study;
335
+ 4. a mercury based sphygmomanometer. Diamond Mer-
336
+ curial Blood Pressure apparatus was used for this
337
+ study;
338
+ 5. a pulseoximeter. BPL Smary Oxy pulseoximeter was
339
+ used for this study to measure SpO2 and Heart Rate;
340
+ and
341
+ 6. a cardiac monitor that will be used as gold standard to
342
+ eliminate the interobserver variability that may arise
343
+ with manual measurements with a sphygmomanome-
344
+ ter. Yonker YK 8000C Multi-parameter patient moni-
345
+ tor was used in this study.
346
+ Figure 4. Commercially available vitals monitoring solutions that
347
+ use (a) face videos (selfie); and (b) Finger tip videos to measure
348
+ vitals such as BP, SpO2 and HR.
349
+ 2.2. Methodology
350
+ The study setup comprises of three observation stations
351
+ in a well lit room manned by three independent observers
352
+ who are qualified medical practitioners for : (a) self mon-
353
+ itoring; (b) monitoring with camera based mobile applica-
354
+ tion and wearables; and (c) monitoring with a cardiac mon-
355
+ itor. Figure 1 illustrates the setup used for this study.
356
+ The first station is where the variability in self monitor-
357
+ ing is studied. The self monitoring exercise starts with the
358
+ subjects being asked to measure BP using a digital BP mon-
359
+ itor that is placed in front of him/her without any instruc-
360
+ tions given on how to operate the BP monitor (which also
361
+ includes the placement of the cuff on the arm). The observer
362
+ of the station then notes down the position of the sensor in
363
+ the cuff on the arm with respect to: (a) the displacement
364
+ along the arm which is quantified as per the grading in Fig
365
+ 2 (c); and (b) the approximate angle it makes with the cen-
366
+ treline (0o) of Fig 2 (d). Once the BP measurement and the
367
+ corresponding variations are recorded by the observer, the
368
+ subjects are then asked to measure the SpO2 and HR by
369
+ placing the pulseoximeter on the index finger and starting
370
+ the measurement. The observer notes down the SpO2 and
371
+ HR readings after 15s of the start of the measurement at
372
+ each of the positions indicated in Fig 3. The last step in sta-
373
+ tion 1 involves the observer measuring the Blood pressure
374
+ of the subject using a mercury based sphygmomanometer.
375
+ The subject is then asked to proceed to the second station
376
+ where the vitals are monitored using mobile based applica-
377
+ tions and wearables. As described in Section 2.1, we use 4
378
+ pairs. of mobile phones of and two wearables per subject to
379
+ monitor the vitals. One phone of each pair is used for vitals
380
+ monitoring using Face PPG and the other is used for vitals
381
+ monitoring using Finger Tip PPG. Phones in each pair be-
382
+ long to the same brand and measurements on both phones
383
+ 4
384
+
385
+ Posterior (P)
386
+ Median nerve
387
+ Brachial artery
388
+ Mediannerve
389
+ Brachial artery
390
+ Anterior (A)
391
+ (a)
392
+ (b)
393
+ p
394
+ 180°
395
+ 202.5°
396
+ 157.5°
397
+ cm
398
+ ....
399
+ 2
400
+ cm
401
+ 225°
402
+ 135°
403
+ 1 cm
404
+ 0 cm
405
+ .-1 cm
406
+ :-2 cm
407
+ 247.5°
408
+ 112.5°
409
+ -3 cm
410
+ 270°
411
+ 90°
412
+ 292.5°
413
+ 67.5°
414
+ .....
415
+ 45°
416
+ 315°
417
+ ...
418
+ ....
419
+ 337.5°
420
+ 22.5°
421
+
422
+ A
423
+ (c)
424
+ (d)1. Hand resting on
425
+ 1. Hand resting on
426
+ 1. Hand 5 cm
427
+ table
428
+ table
429
+ abovetable
430
+ 2. Index Finger with
431
+ 2. Index Finger with
432
+ Pulseoximeter
433
+ Pulseoximeter at
434
+ resting on table
435
+ maximum lift22:41网02
436
+ 72%
437
+ 21:24国·
438
+ 20%
439
+ 22:52国网·
440
+ l 70%
441
+ Knowyourhealth
442
+ <
443
+ Blood Pressure
444
+ 01:48
445
+ 124/81
446
+ mmHg
447
+ Whatdoes itmean
448
+ Your BP appears to be within normal. However, this is merely a
449
+ ConstructingthePPG
450
+ high-level analysis. We do not claim 100% accuracy.
451
+ SYS
452
+ 60
453
+ 80
454
+ 100
455
+ 120
456
+ 140
457
+ 160
458
+ 180
459
+ 200
460
+ 220
461
+ DIA
462
+ 30
463
+ 50
464
+ 70
465
+ 90
466
+ 110
467
+ 130
468
+ 150
469
+ 170
470
+ 190
471
+ Legends
472
+ oVery Low
473
+ ●Normal
474
+ ·HighBP
475
+ A
476
+ MeasurementusingMFine's BPMonitorisonlyadvisedfor
477
+ general wellbeing and fitness.
478
+ sec
479
+ Itisnotintendedformedicaluse
480
+ HeartRate
481
+ OxygenSaturation
482
+ 92 beats pm
483
+ 99%
484
+ RespiratoryRate
485
+ Heart Rate Variability
486
+ 21breaths pm
487
+ 114 ms
488
+ Stress Level
489
+ Blood Pressure
490
+ Normal
491
+ Systolic -123 mm Hg
492
+ Diastolic -78 mm Hg
493
+ Hold yourfinger overthecamera inthe same
494
+ position.
495
+ STOP
496
+ Tell a friend
497
+ MeasureAgain
498
+ 川I
499
+ 0
500
+ (a)
501
+ (q)Figure 5. Vitals monitoring using mobile phones and wearables in
502
+ the 2nd station
503
+ are taken simultaneously. The phone used for Face PPG is
504
+ placed on a mobile phone holder with the angle adjusted so
505
+ that the front camera points to the face of the subject (with
506
+ the full face in view). Figure 4 illustrates the face based
507
+ and finger tip based methods to measure Vitals on mobile
508
+ phones. Figure 5 shows the procedure followed to measure
509
+ the vitals in the second observation station. Subjects who
510
+ have completed measuring their vitals in the second station
511
+ are asked to proceed to the final observation station where
512
+ their vitals are monitored by a cardiac monitor. The mea-
513
+ surements of the final station are used as the gold standard
514
+ for evaluating the measurements obtained at each observa-
515
+ tion station.
516
+ 3. Experimental results
517
+ In this section we demonstrate the variabilities that ex-
518
+ ist in self monitoring using medical devices, mobile phones
519
+ and wearables, respectively. We use oneway ANOVA and
520
+ one tailed Student’s t-test to establish the statistical signifi-
521
+ cance of the variabilities using p-values. Where variabilities
522
+ are concerned, we use the mean and variance of differences
523
+ between the measurements of the device under considera-
524
+ tion and the gold standard which is the cardiac monitor.
525
+ 3.1. Self monitoring of vitals using medical devices
526
+ BP
527
+ The plots in Figure 6 show the variability in both
528
+ Systolic and Diastolic BP measurements when the sensor
529
+ in the cuff of the digital BP monitor is placed at different
530
+ angles around the arm and at different positions along the
531
+ arm (Left/Right). It is interesting to note that the Systole
532
+ BP measurements obtained on the Left hand showed a sta-
533
+ tistically significant difference (p < 0.05) with the read-
534
+ ings obtained from the cardiac monitor. Difference in mea-
535
+ surements between cardiac monitor and digital BP moni-
536
+ tor for Systolic BP measurement was statistically significant
537
+ (p < 0.05) while Diastolic measurements were within sta-
538
+ Table 2. Error in camera based vitals measurement on mobile
539
+ phone when readings of cardiac monitor are used as gold standard
540
+ Brand
541
+ Method
542
+ BP (S)
543
+ BP (D)
544
+ SpO2
545
+ HR
546
+ (mm/hg)
547
+ (mm/hg)
548
+ (%)
549
+ (/min)
550
+ Xi N9
551
+ FT
552
+ 2.432
553
+ −0.680
554
+ −2.277
555
+ −3.30
556
+ ±13.66
557
+ ±10.25
558
+ ±3.28
559
+ ±8.69
560
+ FC
561
+ −2.929
562
+ −2.596
563
+ −1.368
564
+ 5.758
565
+ ±20.70
566
+ ±13.60
567
+ ±2.32
568
+ ±14.70
569
+ Xi N8
570
+ FT
571
+ 1.783
572
+ −1.082
573
+ 1.233
574
+ −5.919
575
+ ±13.72
576
+ ±9.89
577
+ ±3.25
578
+ ±10.13
579
+ FC
580
+ −2.929
581
+ −2.403
582
+ −1.526
583
+ −2.103
584
+ ±18.76
585
+ ±13.835
586
+ ±2.406
587
+ ±13.96
588
+ Oppo
589
+ FT
590
+ 1.350
591
+ −1.814
592
+ −1.5
593
+ −7.70
594
+ ±13.62
595
+ ±10.00
596
+ ±3.20
597
+ ±12.25
598
+ FC
599
+ −2.070
600
+ −0.824
601
+ −1.543
602
+ 0.362
603
+ ±17.251
604
+ ±12.937
605
+ ±2.464
606
+ ±14.91
607
+ Sm 31
608
+ FT
609
+ 1.412
610
+ −1.412
611
+ 0.866
612
+ −4.797
613
+ ±13.90
614
+ ±10.24
615
+ ±5.00
616
+ ±9.94
617
+ FC
618
+ −1.964
619
+ −3.157
620
+ −1.105
621
+ 1.982
622
+ ±18.10
623
+ ±12.80
624
+ ±3.621
625
+ ±12.59
626
+ Xi N9: Xiaomi Note 9 Pro; Xi N8:Xiaomi Note 8 Pro; Oppo: Oppo
627
+ A15; Sm 31: Samsung M31; FT: Finger Tip PPG; FC: Face PPG;
628
+ BP(S): Systolic Blood Pressure; BP(D): Diastolic Blood Pressure;
629
+ SpO2: Blood Oxygen Saturation; HR: Heart Rate
630
+ tistically acceptable limits (p > 0.05). Both Systolic and
631
+ Diastolic BP readings did not show statistically significant
632
+ results (p > 0.05) when compared to the measurement by
633
+ an expert using mercury based Sphygmomanometer.
634
+ SpO2 and HR
635
+ The plots in Figure 7 shows the variabil-
636
+ ity in the measurements of both SpO2 and HR when the
637
+ pulseoximeter is clamped on to the index finger of the hand
638
+ according to the variations shown in Fig. 3.
639
+ Both SpO2 and Heart Rate showed statistically signifi-
640
+ cant difference (p < 0.05) between pulseoximeter and car-
641
+ diac monitor readings at all positions. A one way ANOVA
642
+ performed on the pulseoximeter readings at different posi-
643
+ tions of hand and index finger showed no statistically signif-
644
+ icant difference (p > 0.05) between the readings for SpO2.
645
+ Heart Rate on the other hand showed a statistically signifi-
646
+ cant difference (p < 0.05) between the readings at different
647
+ positions.
648
+ 3.2. Self monitoring of vitals using mobile devices
649
+ Figure 8 shows the rate of failure in measuring the vitals
650
+ on each of the phones considered for this experiment. It can
651
+ be seen that Face PPG in general has a higher rate of failure
652
+ compared to Finger tip PPG. While Finger tip PPG based
653
+ methods had average failure rates of 14.676 ± 7.383%,
654
+ 15.796 ± 4.197% and 15.049 ± 9.088% for BP, SpO2 and
655
+ 5
656
+
657
+ Select wearable and
658
+ Select phone pair
659
+ measure vitals
660
+ Record values
661
+ Measure vitals
662
+ +
663
+ N
664
+ Are all wearables
665
+ Finger Tip
666
+ Face PPG
667
+ covered?
668
+ PPG
669
+ N
670
+ Are all phone
671
+ Y
672
+ pairs covered?
673
+ Record values
674
+ Proceed to next stationFigure 6. Variability in self monitoring of Blood Pressure (BP) using digital BP monitors. (a,d,g). Variations in the angular placement of
675
+ the sensor (in the cuff) on the arm near the synovial joint; (b,e,h). Variations in the placement of the sensor (in the cuff) along the arm near
676
+ the synovial joint; (c,f,i). Variations in the selection of the arm [Left/Right] to place the sensor for BP measurement.
677
+ HR, respectively, Face PPG based methods had average fail-
678
+ ure rates of 24.875 ± 15.216%, 24.129 ± 15.941% and
679
+ 23.631±16.169%. The plots in Fig. 9 shows the number of
680
+ attempts it took for those subjects where it was possible to
681
+ successfully obtain a measurement. The percentage of users
682
+ who could get successful readings in the 1st, 2nd and 3rd
683
+ attempts for Finger tip PPG, respectively stood at 67.492 ±
684
+ 18.201%, 31.451±18.504% and 1.056±1.241%, while for
685
+ Face PPG it was 73.072±15.959%, 25.199±15.324% and
686
+ 1.728 ± 1.658% for 1st, 2nd and 3rd attempts, respectively.
687
+ Table 2 shows that the error between the measurements
688
+ obtained from Finger tip PPG based methods and cardiac
689
+ monitor are in general lower compared to those obtained be-
690
+ tween Face PPG and cardiac monitor. However, the results
691
+ of Finger tip PPG based measurements statistically varied
692
+ across the phones for the same user while it remained quite
693
+ similar for Face PPG across the phones as indicated by the
694
+ p-values of Table 3.
695
+ 6
696
+
697
+ Angularvariation
698
+ Transversevariation
699
+ Choice of Hand for Measurement
700
+ Errorin measurement [Systole]
701
+ measurement [Systole]
702
+ measurement [Systole]
703
+ Errorin
704
+ Error
705
+ 30
706
+ -2.0
707
+ -1.0
708
+ 0.0
709
+ 2.0
710
+ 3.0
711
+ Left
712
+ Right
713
+ Distance from center (in cm)
714
+ Hand
715
+ Angle (in degrees)
716
+ (b)
717
+ (c)
718
+ (a)
719
+ Error in measurement [Diastole]
720
+ iastole]l
721
+ measurement [Diastole]
722
+ in measurement [Di
723
+ 2
724
+ 20
725
+ u!
726
+ Error
727
+ Error
728
+ 60
729
+ 3.0
730
+ 2.0
731
+ Distance from center (in cm)
732
+ Left
733
+ Right
734
+ Hand
735
+ Angle (in degrees)
736
+ (e)
737
+ (f)
738
+ (d)
739
+ 20.0
740
+ 17.5
741
+ .20
742
+ 15.0
743
+ .00
744
+ samples
745
+ Number of samples
746
+ 12.5
747
+ -2.0
748
+ -1.0
749
+ 2.0
750
+ Left
751
+ Right
752
+ Distance from center (in cm)
753
+ Hand
754
+ Angle (in degrees)
755
+ (h)
756
+ (i)
757
+ (g)Figure 7. Positional variability in measuring SpO2 and HR using
758
+ pulseoximeter
759
+ Table 3. Results of ANOVA on measurements of vitals across
760
+ phones
761
+ Method
762
+ BP (S)
763
+ BP (D)
764
+ SpO2
765
+ HR
766
+ FT (p-value)
767
+ 0.00002
768
+ 0.00002
769
+ 0.0
770
+ 0.067
771
+ FC (p-value)
772
+ 0.967
773
+ 0.397
774
+ 0.520
775
+ 0.04
776
+ BP(S): Systolic Blood Pressure; BP(D): Diastolic Blood Pressure;
777
+ SpO2: Blood Oxygen Saturation; HR: Heart Rate
778
+ Table 4. Error in vitals measurement on wearables when readings
779
+ of cardiac monitor are used as gold standard
780
+ Brand
781
+ BP (S)
782
+ BP (D)
783
+ SpO2
784
+ HR
785
+ (mm/hg)
786
+ (mm/hg)
787
+ (%)
788
+ (/min)
789
+ GOQii
790
+ 2.015
791
+ −0.492
792
+ −0.940
793
+ −4.422
794
+ ±14.73
795
+ ±11.58
796
+ ±3.725
797
+ ±10.53
798
+ Apple watch
799
+ NA
800
+ NA
801
+ −0.744
802
+ −4.536
803
+ ±3.884
804
+ ±9.744
805
+ 3.3. Self monitoring of vitals using wearable
806
+ There were no failures in measuring BP on GOQii and
807
+ HR on both GOQii and Apple Watch. There was however
808
+ a 2% failure rate while measuring SpO2 on Apple Watch.
809
+ The results of Table 4 show that while GOQii smart watch
810
+ has a lower error rate for HR, Apple Watch has a lower error
811
+ Table 5. Results of ANOVA on measurements of vitals across
812
+ wearables
813
+ Method
814
+ SpO2
815
+ HR
816
+ p-value
817
+ 2.14
818
+ 0.928
819
+ SpO2: Blood Oxygen Saturation; HR: Heart Rate
820
+ Table 6. p-value of differences in measurements between a device
821
+ and the cardiac monitor using t-test
822
+ Brand
823
+ Method
824
+ BP (S)
825
+ BP (D)
826
+ SpO2
827
+ HR
828
+ (mm/hg)
829
+ (mm/hg)
830
+ (%)
831
+ (/min)
832
+ E
833
+ -
834
+ 0.457
835
+ 0.457
836
+ 0.0009
837
+ 0.0009
838
+ DM
839
+ -
840
+ 0.537
841
+ 0.537
842
+ 0.0009
843
+ 0.0009
844
+ Xi N9
845
+ FT
846
+ 0.017
847
+ 0.780
848
+ 0.0
849
+ 0.011
850
+ FC
851
+ 0.009
852
+ 0.121
853
+ 0.0
854
+ 0.00038
855
+ Xi N8
856
+ FT
857
+ 0.269
858
+ 0.622
859
+ 0.0
860
+ 0.0001
861
+ FC
862
+ 0.237
863
+ 0.279
864
+ 0.0
865
+ 0.784
866
+ Oppo
867
+ FT
868
+ 0.940
869
+ 0.005
870
+ 0.00001
871
+ 0.0
872
+ FC
873
+ 0.015
874
+ 0.080
875
+ 0.026
876
+ 0.001
877
+ SM31
878
+ FT
879
+ 0.646
880
+ 0.098
881
+ 0.025
882
+ 0.002
883
+ FC
884
+ 0.085
885
+ 0.008
886
+ 0.022
887
+ 0.751
888
+ GO
889
+ -
890
+ 0.033
891
+ 0.578
892
+ 0.0002
893
+ 0.0007
894
+ AW
895
+ -
896
+ -
897
+ -
898
+ 0.007
899
+ 0.0002
900
+ Xi N9: Xiaomi Note 9 Pro; Xi N8:Xiaomi Note 8 Pro; Oppo: Oppo
901
+ A15; Sm 31: Samsung M31; E: Expert; DM: Digital BP Monitor; GO:
902
+ GOQii Smart watch; AW: Apple Watch; FT: Finger Tip PPG; FC:
903
+ Face PPG; BP(S): Systolic Blood Pressure; BP(D): Diastolic Blood
904
+ Pressure; SpO2: Blood Oxygen Saturation; HR: Heart Rate
905
+ rate for SpO2 when the results of cardiac monitor are used
906
+ as the gold standard for comparison. The measurements
907
+ between the two wearables were not statistically significant
908
+ as is evident from Table 5.
909
+ 3.4. Overall Comparison
910
+ The results of Table 6 shows that the inter-observer vari-
911
+ ability was statistically insignificant. While Finger tip PPG
912
+ based measurements were in agreement with the gold stan-
913
+ dard for BP, the rest of the methods for all vitals showed
914
+ statistically significant differences between the device mea-
915
+ surements and gold standard.
916
+ 4. Discussion, Conclusion and Future work
917
+ In this study we have shown that statistically significant
918
+ variations exist in self monitoring of vitals using medical
919
+ devices. One potential solution to address this is to sen-
920
+ sitise users to the correct procedure to be followed while
921
+ performing self-monitoring. An alternative to this would be
922
+ to ask the subjects to use mobile based or wearable based
923
+ solutions where the degrees of freedom for variabilities are
924
+ fewer and easily manageable.
925
+ 7
926
+
927
+ Positional variation
928
+ 0
929
+ 5
930
+ 0
931
+ 0
932
+ 0
933
+ [Sp02]
934
+ 0
935
+ -5
936
+ 00
937
+ 00
938
+ 0000
939
+ -10
940
+ 8
941
+ 0
942
+ 0
943
+ -15
944
+ -20
945
+ -25
946
+ 0
947
+ 0
948
+ 0
949
+ -30
950
+ 0
951
+ 0
952
+ -35
953
+ Resting
954
+ Max Angle
955
+ Air
956
+ Position of index finger
957
+ (a)
958
+ 30 -
959
+ 8
960
+ 8
961
+ 20 -
962
+ [HR]
963
+ 8
964
+ 10
965
+ measurements
966
+ -10
967
+ m
968
+ -20
969
+ rror
970
+ E -30
971
+ 0
972
+ 0
973
+ 8
974
+ -40
975
+ Resting
976
+ Max Angle
977
+ Air
978
+ Position of index finger
979
+ (b)Figure 8. Failure rates in phones while measuring vitals using Finger tip PPG and Face PPG methods
980
+ Figure 9. The number of attempts required to get a successful
981
+ measurement of at least one vital
982
+ The variabilities in self monitoring and monitoring with
983
+ Mobiles and Wearables are similar. The ground truth mea-
984
+ surements for algorithms on mobiles and wearables are ob-
985
+ tained from experts who either use digital monitors or mer-
986
+ cury based monitors (for BP) to measure vitals. Since an in-
987
+ herent variability existis in the technique used by experts as
988
+ noted in [28,30,34], this variability creeps into the training
989
+ data for mobiles and wearables. What is even more interest-
990
+ ing is the fact that the user variability in self monitoring and
991
+ that by experts is more or less similar and thus the variabili-
992
+ ties in self monitoring and that in mobiles and wearables are
993
+ similar. A potential solution to eliminate this variability in
994
+ training data will be to use the positional variability charts
995
+ of Fig. 2 and Fig. 3 as reference while acquiring ground
996
+ truth data for vitals. From the plots of Fig. 6, it can be
997
+ seen that the position of the sensor in the BP cuff between
998
+ [315o,22.5o] and [0cm,1cm] would result in less variability
999
+ in BP measurements and thus result in consistent Ground
1000
+ Truth BP readings. Whereas, measurements taken with the
1001
+ hand in resting position with the index finger horizontally
1002
+ placed on the table is the ideal position to obtain Ground
1003
+ Truth measurements for SpO2 and HR.
1004
+ Variabilities in hardware used for imaging within mo-
1005
+ bile phones result in statistically significant inconsistencies
1006
+ across mobile phones of different brand. Not only are the
1007
+ results inconsistent, it also takes multiple attempts on cer-
1008
+ tain phones with certain technologies to get the measure-
1009
+ ments right. This will lead to bad user experience and loss
1010
+ of trust in the solution for vitals monitoring thereby result-
1011
+ ing in a loss of adoptability of mobile camera based solu-
1012
+ tions for self-monitoring of vitals in the wild. One potential
1013
+ solution to reduce this variability will be to use camera cali-
1014
+ bration techniques which will normalize the color and white
1015
+ balance of the image stream or video that is being acquired
1016
+ for PPG signal construction.
1017
+ Face PPG in general had a higher success rate compared
1018
+ to Finger tip PPG and that the varaibilty across phones for
1019
+ Face PPG was statistically insignificant compared to that of
1020
+ the Finger tip PPG based methods. This is a direct result of
1021
+ the experimental setup, where the phones were placed on a
1022
+ mobile holder for Face PPG and the user was asked to hold
1023
+ the phone for Finger tip PPG. This indicates the influence
1024
+ of the following two environment factors in the consistency
1025
+ of results: (a) lighting condition (the study was in a well lit
1026
+ room); and (b) motion artifacts. The impact of environmen-
1027
+ tal factors as contributors for variability in self monitoring
1028
+ will be considered as an extension to this study.
1029
+ Conclusion and Future Work
1030
+ In this paper we demon-
1031
+ strate the various variabilities that exist while performing
1032
+ self-monitoring of vitals using smart phones, wearables and
1033
+ medical devices and establish the statistical significance of
1034
+ the results of each when compared to the gold standard mea-
1035
+ surement obtained from a cardiac monitor. The study of en-
1036
+ vironmental factors for variability in self monitoring, cam-
1037
+ era calibration for minimising hardware variability and PPG
1038
+ signal quality improvements will be extensions to our cur-
1039
+ rent work on Self monitoring in the wild using camera based
1040
+ solutions.
1041
+ 8
1042
+
1043
+ BP Measurement
1044
+ SpO2 Measurement
1045
+ HR Measurement
1046
+ Finger Tip PPG
1047
+ Finger Tip PPG
1048
+ Finger Tip PPG
1049
+ Face PPG
1050
+ Face PPG
1051
+ Face PPG
1052
+ 40
1053
+ 40
1054
+ 40 -
1055
+ (%)
1056
+ (%)
1057
+ (%)
1058
+ failure
1059
+ 30
1060
+ 30
1061
+ of failure (
1062
+ 30
1063
+ 20
1064
+ 20
1065
+ Rate
1066
+ Rate
1067
+ 10
1068
+ 10 -
1069
+ 10 -
1070
+ 0 :
1071
+ 0
1072
+ -0
1073
+ Xiaomi N9 Xiaomi N8 Oppo A15 Samsung M31
1074
+ Xiaomi N9 Xiaomi N8 Oppo A15 Samsung M31
1075
+ Xiaomi N9 Xiaomi N8 Oppo A15 Samsung M31
1076
+ Phone brand
1077
+ Phone brand
1078
+ Phone brandFingertip PPG
1079
+ Face PPG
1080
+ 1st attempt
1081
+ 1st attempt
1082
+ 2nd Attempt
1083
+ 2nd Attempt
1084
+ 80
1085
+ >=3 attempts
1086
+ 80
1087
+ >=3 attempts
1088
+ (%)
1089
+ 60
1090
+ Percentage
1091
+ 60
1092
+ 40
1093
+ 40
1094
+ 20
1095
+ 20
1096
+ XiaomiN9XiaomiN8OppoA15SamsungM31
1097
+ XiaomiN9
1098
+ 9XiaomiN8OppoA15SamsungM31
1099
+ Phone brand
1100
+ PhonebrandReferences
1101
+ [1] Sanghyun Baek, Jiyong Jang, Sung-Hwan Cho, Jong Min
1102
+ Choi, and Sungroh Yoon. Blood pressure prediction by a
1103
+ smartphone sensor using fully convolutional networks. In
1104
+ 2020 42nd Annual International Conference of the IEEE En-
1105
+ gineering in Medicine & Biology Society (EMBC), pages
1106
+ 188–191. IEEE, 2020. 2
1107
+ [2] Domenico Luca Carn`ı, Domenico Grimaldi, Alfonso Nas-
1108
+ tro, Vitaliano Spagnuolo, and Francesco Lamonaca. Blood
1109
+ oxygenation measurement by smartphone. IEEE Instrumen-
1110
+ tation & Measurement Magazine, 20(3):43–49, 2017. 2
1111
+ [3] Domenico Luca Carni, Domenico Grimaldi, Paolo F Sci-
1112
+ ammarella, Francesco Lamonaca, and Vitaliano Spagnuolo.
1113
+ Setting-up of ppg scaling factors for spo2% evaluation by
1114
+ smartphone.
1115
+ In 2016 IEEE International Symposium on
1116
+ Medical Measurements and Applications (MeMeA), pages 1–
1117
+ 5. IEEE, 2016. 2
1118
+ [4] Ayan Chatterjee and Uttam Kumar Roy.
1119
+ Ppg based heart
1120
+ rate algorithm improvement with butterworth iir filter and
1121
+ savitzky-golay fir filter.
1122
+ In 2018 2nd International Con-
1123
+ ference on Electronics, Materials Engineering & Nano-
1124
+ Technology (IEMENTech), pages 1–6. IEEE, 2018. 1
1125
+ [5] Firmin Leroy Kateu Demlabim, Gentian Jakllari, and Em-
1126
+ manuel Chaput.
1127
+ Smartphox:
1128
+ Smartphone-based pulse
1129
+ oximetry using a meta-region of interest. In 20th Interna-
1130
+ tional Conference on Pervasive Computing and Communi-
1131
+ cations (PerCom 2022), 2022. 2
1132
+ [6] Xinyi Ding, Damoun Nassehi, and Eric C Larson. Measur-
1133
+ ing oxygen saturation with smartphone cameras using con-
1134
+ volutional neural networks. IEEE journal of biomedical and
1135
+ health informatics, 23(6):2603–2610, 2018. 2
1136
+ [7] Justin R Estepp, Ethan B Blackford, and Christopher M
1137
+ Meier.
1138
+ Recovering pulse rate during motion artifact with
1139
+ a multi-imager array for non-contact imaging photoplethys-
1140
+ mography.
1141
+ In 2014 IEEE International Conference on
1142
+ Systems, Man, and Cybernetics (SMC), pages 1462–1469.
1143
+ IEEE, 2014. 2
1144
+ [8] Salvador Fonseca-Reyes, Avril M Forsyth-MacQuarrie, and
1145
+ Javier Eduardo Garc´ıa de Alba-Garc´ıa. Simultaneous blood
1146
+ pressure measurement in both arms in hypertensive and non-
1147
+ hypertensive adult patients.
1148
+ Blood pressure monitoring,
1149
+ 17(4):149–154, 2012. 3
1150
+ [9] Aman Gaurav, Maram Maheedhar, Vijay N. Tiwari, and Ran-
1151
+ gavittal Narayanan. Cuff-less ppg based continuous blood
1152
+ pressure monitoring — a smartphone based approach.
1153
+ In
1154
+ 2016 38th Annual International Conference of the IEEE En-
1155
+ gineering in Medicine and Biology Society (EMBC), pages
1156
+ 607–610, 2016. 2
1157
+ [10] Aman Gaurav, Maram Maheedhar, Vijay N Tiwari, and Ran-
1158
+ gavittal Narayanan. Cuff-less ppg based continuous blood
1159
+ pressure monitoring—a smartphone based approach. In 2016
1160
+ 38th annual international conference of the IEEE engineer-
1161
+ ing in medicine and biology society (EMBC), pages 607–610.
1162
+ IEEE, 2016. 2
1163
+ [11] Paul Glasziou, Les Irwig, and David Mant. Monitoring in
1164
+ chronic disease: a rational approach. Bmj, 330(7492):644–
1165
+ 648, 2005. 1
1166
+ [12] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M
1167
+ Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mi-
1168
+ etus, George B Moody, Chung-Kang Peng, and H Eugene
1169
+ Stanley. Physiobank, physiotoolkit, and physionet: compo-
1170
+ nents of a new research resource for complex physiologic
1171
+ signals. circulation, 101(23):e215–e220, 2000. 2
1172
+ [13] Mathew Gregoski, Alexey Vertegel, and Frank Treiber. Pho-
1173
+ toplethysmograph (ppg) derived heart rate (hr) acquisition
1174
+ using an android smart phone. In Proceedings of the 2nd
1175
+ Conference on Wireless Health, pages 1–2, 2011. 1
1176
+ [14] Mathew J Gregoski, Martina Mueller, Alexey Vertegel,
1177
+ Aleksey Shaporev, Brenda B Jackson, Ronja M Frenzel,
1178
+ Sara M Sprehn, and Frank A Treiber. Development and val-
1179
+ idation of a smartphone heart rate acquisition application for
1180
+ health promotion and wellness telehealth applications. In-
1181
+ ternational journal of telemedicine and applications, 2012,
1182
+ 2012. 1
1183
+ [15] Alessandro R Guazzi, Mauricio Villarroel, Joao Jorge,
1184
+ Jonathan Daly, Matthew C Frise, Peter A Robbins, and Li-
1185
+ onel Tarassenko. Non-contact measurement of oxygen sat-
1186
+ uration with an rgb camera.
1187
+ Biomedical optics express,
1188
+ 6(9):3320–3338, 2015. 2
1189
+ [16] E Jonathan and Martin Leahy. Investigating a smartphone
1190
+ imaging unit for photoplethysmography. Physiological mea-
1191
+ surement, 31(11):N79, 2010. 1
1192
+ [17] Avneendra K Kanva, Chandan J Sharma, and Sujay Deb. De-
1193
+ termination of spo 2 and heart-rate using smartphone cam-
1194
+ era. In Proceedings of The 2014 International Conference
1195
+ on Control, Instrumentation, Energy and Communication
1196
+ (CIEC), pages 237–241. IEEE, 2014. 2
1197
+ [18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
1198
+ Imagenet classification with deep convolutional neural net-
1199
+ works. Advances in neural information processing systems,
1200
+ 25, 2012. 2
1201
+ [19] Sungjun Kwon, Hyunseok Kim, and Kwang Suk Park. Vali-
1202
+ dation of heart rate extraction using video imaging on a built-
1203
+ in camera system of a smartphone. In 2012 annual interna-
1204
+ tional conference of the IEEE engineering in medicine and
1205
+ biology society, pages 2174–2177. IEEE, 2012. 1
1206
+ [20] Francesco
1207
+ Lamonaca,
1208
+ Kurt
1209
+ Barbe,
1210
+ Yuriy
1211
+ Kurylyak,
1212
+ Domenico Grimaldi, Wendy Van Moer, Angelo Furfaro, and
1213
+ Vitaliano Spagnuolo.
1214
+ Application of the artificial neural
1215
+ network for blood pressure evaluation with smartphones. In
1216
+ 2013 IEEE 7th International Conference on Intelligent Data
1217
+ Acquisition and Advanced Computing Systems (IDAACS),
1218
+ volume 1, pages 408–412. IEEE, 2013. 2
1219
+ [21] Francesco Lamonaca, Domenico Luca Carn`ı, Domenico
1220
+ Grimaldi, Alfonso Nastro, Maria Riccio, and Vitaliano Spag-
1221
+ nolo. Blood oxygen saturation measurement by smartphone
1222
+ camera. In 2015 IEEE International Symposium on Medi-
1223
+ cal Measurements and Applications (MeMeA) Proceedings,
1224
+ pages 359–364. IEEE, 2015. 2
1225
+ [22] Deirdre Lane, Michele Beevers, Nicola Barnes, James
1226
+ Bourne, Andrew John, Simon Malins, and D Gareth Beev-
1227
+ ers. Inter-arm differences in blood pressure: when are they
1228
+ clinically significant? Journal of hypertension, 20(6):1089–
1229
+ 1095, 2002. 2, 3
1230
+ 9
1231
+
1232
+ [23] Hong Luo, Deye Yang, Andrew Barszczyk, Naresh Vempala,
1233
+ Jing Wei, Si Jia Wu, Paul Pu Zheng, Genyue Fu, Kang Lee,
1234
+ and Zhong-Ping Feng.
1235
+ Smartphone-based blood pressure
1236
+ measurement using transdermal optical imaging technology.
1237
+ Circulation: Cardiovascular Imaging, 12(8):e008857, 2019.
1238
+ 2
1239
+ [24] Kenta Matsumura and Takehiro Yamakoshi. iphysiometer: a
1240
+ new approach for measuring heart rate and normalized pulse
1241
+ volume using only a smartphone. Behavior research meth-
1242
+ ods, 45(4):1272–1278, 2013. 1
1243
+ [25] Gad Mendelson, Doron Nassimiha, and Wilbert S Aronow.
1244
+ Simultaneous measurements of blood pressures in right and
1245
+ left brachial arteries. Cardiology in Review, 12(5):276–278,
1246
+ 2004. 3
1247
+ [26] Susan Orme, Susan G Ralph, Andrew Birchall, PETER
1248
+ Lawson-Matthew, KATHERINE McLean, and KEVIN S
1249
+ Channer. The normal range for inter-arm differences in blood
1250
+ pressure. Age and ageing, 28(6):537–542, 1999. 2
1251
+ [27] Mustafa Radha, Koen De Groot, Nikita Rajani, Cybele CP
1252
+ Wong, Nadja Kobold, Valentina Vos, Pedro Fonseca, Niko-
1253
+ laos Mastellos, Petra A Wark, Nathalie Velthoven, et al.
1254
+ Estimating blood pressure trends and the nocturnal dip
1255
+ from photoplethysmography.
1256
+ Physiological measurement,
1257
+ 40(2):025006, 2019. 2
1258
+ [28] Gretchen M Ray, James J Nawarskas, and Joe R Anderson.
1259
+ Blood pressure monitoring technique impacts hypertension
1260
+ treatment. Journal of general internal medicine, 27(6):623–
1261
+ 629, 2012. 2, 8
1262
+ [29] Fabian Schrumpf, Patrick Frenzel, Christoph Aust, Georg
1263
+ Osterhoff, and Mirco Fuchs. Assessment of deep learning
1264
+ based blood pressure prediction from ppg and rppg signals.
1265
+ In Proceedings of the IEEE/CVF Conference on Computer
1266
+ Vision and Pattern Recognition, pages 3820–3830, 2021. 2
1267
+ [30] Matthias B Schulze, Anja Kroke, Rodolfo Saracci, and
1268
+ Heiner Boeing. The effect of differences in measurement
1269
+ procedure on the comparability of blood pressure estimates
1270
+ in multi-centre studies. Blood pressure monitoring, 7(2):95–
1271
+ 104, 2002. 2, 8
1272
+ [31] Christopher G Scully, Jinseok Lee, Joseph Meyer, Alexan-
1273
+ der M Gorbach,
1274
+ Domhnull Granquist-Fraser,
1275
+ Yitzhak
1276
+ Mendelson, and Ki H Chon. Physiological parameter moni-
1277
+ toring from optical recordings with a mobile phone. IEEE
1278
+ Transactions on Biomedical Engineering, 59(2):303–306,
1279
+ 2011. 2
1280
+ [32] Sarah Ali Siddiqui, Yuan Zhang, Zhiquan Feng, and Anton
1281
+ Kos. A pulse rate estimation algorithm using ppg and smart-
1282
+ phone camera. Journal of medical systems, 40(5):1–6, 2016.
1283
+ 1
1284
+ [33] Gaˇsper
1285
+ Slapniˇcar,
1286
+ Nejc
1287
+ Mlakar,
1288
+ and
1289
+ Mitja
1290
+ Luˇstrek.
1291
+ Blood pressure estimation from photoplethysmogram us-
1292
+ ing a spectro-temporal deep neural network.
1293
+ Sensors,
1294
+ 19(15):3420, 2019. 2
1295
+ [34] Ivan Villegas, Isabel C Arias, Adriana Botero, and Alejan-
1296
+ dro Escobar.
1297
+ Evaluation of the technique used by health-
1298
+ care workers for taking blood pressure.
1299
+ Hypertension,
1300
+ 26(6):1204–1206, 1995. 2, 8
1301
+ [35] Bing Wei, Xiaopei Wu, Chao Zhang, and Zhao Lv. Analy-
1302
+ sis and improvement of non-contact spo2 extraction using an
1303
+ rgb webcam. Biomedical Optics Express, 12(8):5227–5245,
1304
+ 2021. 2
1305
+ [36] Zheng Zhang, Jeff M Girard, Yue Wu, Xing Zhang, Peng
1306
+ Liu, Umur Ciftci, Shaun Canavan, Michael Reale, Andy
1307
+ Horowitz, Huiyuan Yang, et al.
1308
+ Multimodal spontaneous
1309
+ emotion corpus for human behavior analysis. In Proceed-
1310
+ ings of the IEEE conference on computer vision and pattern
1311
+ recognition, pages 3438–3446, 2016. 2
1312
+ 10
1313
+
NtFOT4oBgHgl3EQf2jTj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
O9FPT4oBgHgl3EQfnTX9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd913f051eab0757593ab513a85a5ee9c6ba1ed22e8e9e519743fdfa631b8f61
3
+ size 76923
PNAzT4oBgHgl3EQflP3v/content/tmp_files/2301.01546v1.pdf.txt ADDED
@@ -0,0 +1,1638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01546v1 [math.AP] 4 Jan 2023
2
+ On the first Robin eigenvalue of the Finsler
3
+ p-Laplace operator as p Ñ 1
4
+ Rosa Barbato˚, Francesco Della Pietra˚, Gianpaolo Piscitelli˚
5
+ Abstract. Let Ω be a bounded, connected, sufficiently smooth open set,
6
+ p ą 1 and β P R. In this paper, we study the Γ-convergence, as p Ñ 1`, of
7
+ the functional
8
+ Jppϕq “
9
+ ż
10
+
11
+ F pp∇ϕqdx ` β
12
+ ż
13
+ BΩ
14
+ |ϕ|p FpνqdHN´1
15
+ ż
16
+
17
+ |ϕ|p dx
18
+ where ϕ P W 1,ppΩqzt0u and F is a sufficientely smooth norm on Rn. We
19
+ study the limit of the first eigenvalue λ1pΩ, p, βq “ infϕPW 1,ppΩq
20
+ ϕ‰0
21
+ Jppϕq, as
22
+ p Ñ 1`, that is:
23
+ ΛpΩ, βq “
24
+ inf
25
+ ϕPBV pΩq
26
+ ϕı0
27
+ |Du|F pΩq ` mintβ, 1u
28
+ ż
29
+ BΩ
30
+ |ϕ| FpνqdHN´1
31
+ ż
32
+
33
+ |ϕ| dx
34
+ .
35
+ Furthermore, for β ą ´1, we obtain an isoperimetric inequality for ΛpΩ, βq
36
+ depending on β.
37
+ The proof uses an interior approximation result for BV pΩq functions by
38
+ C8pΩq functions in the sense of strict convergence on Rn and a trace inequal-
39
+ ity in BV with respect to the anisotropic total variation.
40
+ MSC 2020: 28A75, 35J25, 35P15.
41
+ Keywords and phrases:
42
+ Finsler p-Laplace eigenvalues; Γ-convergence;
43
+ Isoperimetric inequalities; Trace inequalities; Strict interior approximation.
44
+ ∗Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Universit`a degli studi di Napoli Federico
45
+ II, Via Cintia, Monte S. Angelo - 80126 Napoli, Italia.
46
+ Email: f.dellapietra@unina.it (corresponding author), gianpaolo.piscitelli@unina.it
47
+ 1
48
+
49
+ Contents
50
+ 1
51
+ Introduction
52
+ 2
53
+ 2
54
+ Notation and preliminaries
55
+ 4
56
+ 2.1
57
+ The Finsler norm . . . . . . . . . . . . . . . . . . . .
58
+ 4
59
+ 2.2
60
+ Anisotropic curvatures
61
+ . . . . . . . . . . . . . . . . .
62
+ 6
63
+ 2.3
64
+ The anisotropic total variation
65
+ . . . . . . . . . . . . .
66
+ 7
67
+ 3
68
+ An anisotropic trace inequality
69
+ 8
70
+ 4
71
+ Interior approximation
72
+ 11
73
+ 5
74
+ The first Robin eigenvalue of the Finsler p-Laplacian as p Ñ 1 14
75
+ 5.1
76
+ The case p “ 1
77
+ . . . . . . . . . . . . . . . . . . . . .
78
+ 15
79
+ 5.2
80
+ Γ-convergence of Jp . . . . . . . . . . . . . . . . . . .
81
+ 19
82
+ 5.3
83
+ An isoperimetric inequality . . . . . . . . . . . . . . .
84
+ 22
85
+ 1 Introduction
86
+ Let Ω be a bounded, connected, sufficiently smooth open set, p ą 1 and β P R. In
87
+ this paper, we study the asympthotic behaviour, as p Ñ 1`, of the following minimum
88
+ problem
89
+ λ1pΩ, p, βq “
90
+ inf
91
+ ϕPW 1,ppΩq
92
+ ϕ‰0
93
+ Jppϕq
94
+ (1.1)
95
+ where
96
+ Jppϕq “
97
+ ż
98
+
99
+ F pp∇ϕqdx ` β
100
+ ż
101
+ BΩ
102
+ |ϕ|p FpνqdHN´1
103
+ ż
104
+
105
+ |ϕ|p dx
106
+ ,
107
+ (1.2)
108
+ ν is the outer normal to BΩ and F is a sufficiently smooth norm on Rn. If u P W 1,ppΩq
109
+ is a minimizer of (1.1), then it solves the following Robin eigenvalue problem
110
+ #
111
+ ´Qpu “ λ1pΩ, p, βq |u|p´2 u
112
+ in Ω
113
+ F p´1p∇uqFξp∇uq ¨ ν ` βFpνq |u|p´2 u “ 0
114
+ on BΩ,
115
+ where Qpu is the anisotropic p´Laplace operator
116
+ Qpu :“ div
117
+ ˆ1
118
+ p∇ξrF psp∇uq
119
+ ˙
120
+ .
121
+ From the point of view of finding optimal domains for λ1pΩ, pβq, there is a significant
122
+ difference from the case of β ą 0 to the case β ă 0. It is known that the optimal shape
123
+ 2
124
+
125
+ with a volume constraint for (1.1) depends on the sign of β. For positive values of the
126
+ Robin parameter, the so-called Wulff shape (see Section 2 for details) is a minimizer [9]:
127
+ λ1pΩ, p, βq ě λ1pW, p, βq
128
+ where |W| “ |Ω|.
129
+ If β ă 0, the problem is not completely solved, even in the Euclidean case (that is when
130
+ Fpξq “
131
+
132
+ i ξ2
133
+ i ). Indeed, in 1977 Bareket [5] conjectured that, the first eigenvalue is
134
+ maximized by a ball in the class of the smooth bounded domains of given volume. In
135
+ [13] it has been showed that it is true for domains close, in certain sense, to a ball.
136
+ Subsequently, the authors in [15] (see [19] for the p-Laplacian case) have disproved the
137
+ conjecture for |β| large enough and have showed that it is true for small values of |β|
138
+ in suitable class of domains. In the Finsler setting, this problem has been addressed in
139
+ [23].
140
+ Our final aim is to obtain optimal shapes for the limiting functional of (1.1), as
141
+ p Ñ 1`. To do that, we first study the limit of λ1pΩ, pβq. In particular, we prove that
142
+ when β ą ´1, the functional Jp, defined in (1.2), Γ´converges, as p Ñ 1`, to
143
+ Jpϕq “
144
+ |Dϕ|F pΩq ` mint1, βu
145
+ ż
146
+ BΩ
147
+ |ϕ| FpνqdHN´1
148
+ ż
149
+
150
+ |ϕ| dx
151
+ ,
152
+ where |Dϕ|F pΩq is the anisotropic total variation of ϕ (see Section 2 for the precise
153
+ definition). This will imply that
154
+ lim
155
+ pÑ1` λ1pΩ, p, βq “ Λpβ, Ωq :“
156
+ inf
157
+ ϕPBV pΩq Jpϕq.
158
+ (1.3)
159
+ Then, we prove an isoperimetric inequality for ΛpΩ, βq. In particular, we obtain that
160
+ keeping the volume of Ω fixed, the Wulff shape minimises ΛpΩ, βq when β ě 0, and
161
+ maximises it when ´1 ă β ă 0.
162
+ The proof of the convergence result, and then of the two isoperimetric inequalities,
163
+ relies on two results on the anisotropic total variation, which are also of independent
164
+ interest. The first one is a trace inequality in the BV space:
165
+ ż
166
+ BΩ
167
+ |u| Fpνq dHN´1 ď c1 |Du|F pΩq ` c2
168
+ ż
169
+
170
+ |u| dx,
171
+ @u P BV pΩq,
172
+ (1.4)
173
+ where c1 and c2 are two constants which depend on the geometry of the domain. This
174
+ inequality has been revealed very useful in capillarity problems, and it has been studied
175
+ for example in [4, 16, 17].
176
+ The second key result is an interior approximation for BV functions by smooth func-
177
+ tions with compact support. It is well known that if Ω is an open set, then the total
178
+ variation of a function u P BV pΩq can be approximated with the corresponding total
179
+ variation of a sequence in C8pΩq.
180
+ Actually, an analogous result is not true in gen-
181
+ eral if one need to axpproximate |Du| with a sequence of C8 function with compact
182
+ 3
183
+
184
+ support in Ω. In order to do that, more regularity is needed on Ω. In the Euclidean
185
+ setting, this problem has been addressed in [20, 24]. In this paper, we show that for any
186
+ u P BV pΩq X LppΩq, for some p P r1, 8q, there exists a sequence tukukPN Ď C8
187
+ 0 pΩq such
188
+ that, for any q P r1, ps,
189
+ uk Ñ u in LqpΩq
190
+ and
191
+ |Duk|F pRNq Ñ |Du|F pRNq.
192
+ We finally stress that the problem we deal with is strictly related to capillarity prob-
193
+ lems. We refer the reader, for example, to [16, 17] for the Euclidean case and to [8] for
194
+ the anisotropic case.
195
+ The structure of the paper is the following. In Section 2, we review some useful tools
196
+ on the Finsler norm, the anisotropic curvature and functions of bounded variation. In
197
+ Section 3 we prove the anisotropic trace inequality for general domains, and for smooth
198
+ domains. In Section 4, we give the strict approximation result and finally, in Section 5
199
+ we prove the Γ´convergence results and the isoperimetric inequality for ΛpΩ, βq.
200
+ 2 Notation and preliminaries
201
+ In this Section we give several definitions and properties related the Finsler norm. In
202
+ particular, we review some basic facts on the anisotropic total variation of a BV function,
203
+ and on the anisotropic curvatures.
204
+ 2.1 The Finsler norm
205
+ Throughout the paper we will assume that F is a convex, even, 1´homogeneous function
206
+ ξ P RN ÞÑ Fpξq P r0, `8r,
207
+ such that
208
+ Fptξq “ |t|Fpξq,
209
+ t P R, ξ P RN,
210
+ (2.1)
211
+ and such that
212
+ a|ξ| ď Fpξq,
213
+ ξ P RN,
214
+ (2.2)
215
+ for some constant a ą 0. It is easily seen that this hypothesis assure the existence of a
216
+ positive constant b ě a such that
217
+ Fpξq ď b|ξ|,
218
+ ξ P RN.
219
+ Throughout the paper, we will also assume that F belongs to C2pRNzt0uq and that
220
+ ∇2
221
+ ξrF 2spξq is positive definite in RNzt0u.
222
+ (2.3)
223
+ The assumption (2.3) on F ensures that the operator
224
+ Qpu :“ div
225
+ ˆ1
226
+ p∇ξrF psp∇uq
227
+ ˙
228
+ 4
229
+
230
+ is elliptic, therefore there exists a positive constant γ such that
231
+ nÿ
232
+ i,j“1
233
+ ∇2
234
+ ξiξjrF pspηqξiξj ě γ|η|p´2|ξ|2
235
+ @η P RNzt0u, @ξ P RN.
236
+ The polar function F o : RN Ñ r0, `8r of F is
237
+ F opvq “ sup
238
+ ξ‰0
239
+ ξ ¨ v
240
+ Fpξq.
241
+ It is easily seen that also F o is a convex function satisfying the properties (2.1) and (2.2).
242
+ Furthermore, we have
243
+ Fpvq “ sup
244
+ ξ‰0
245
+ ξ ¨ v
246
+ F opξq,
247
+ and from this follows that
248
+ |ξ ¨ η| ď FpξqF opηq
249
+ @ξ, η P RN.
250
+ (2.4)
251
+ The Wulff shape centered at the origin is the set denoted by
252
+ W “ tξ P RN : F opξq ă 1u.
253
+ We denote κN “ |W|, where |W| is the Lebesgue measure of W. More generally,
254
+ the set Wrpx0q indicates rW ` x0, that is the Wulff shape centered at x0 with measure
255
+ κNrN. If no ambiguity occurs, we will write Wr instead of Wrp0q.
256
+ The functions F and F o enjoy the following properties:
257
+ Fξpξq ¨ ξ “ Fpξq,
258
+ F o
259
+ ξ pξq ¨ ξ “ F opξq
260
+ @ξ P RNzt0u,
261
+ (2.5)
262
+ FpF o
263
+ ξ pξqq “ F opFξpξqq “ 1
264
+ @ξ P RNzt0u,
265
+ (2.6)
266
+ F opξqFξpF o
267
+ ξ pξqq “ FpξqF o
268
+ ξ pFξpξqq “ ξ
269
+ @ξ P RNzt0u,
270
+ (2.7)
271
+ where Fξ “ ∇Fpξq.
272
+ Given a bounded domain Ω, the anisotropic distance of x P Ω to BΩ is defined as
273
+ dF pxq :“ inf
274
+ yPBΩ F opx ´ yq,
275
+ x P Ω.
276
+ We highlight that, when Fpξq “
277
+
278
+ i ξ2
279
+ i , then dF “ dE is the Euclidean distance
280
+ function from the boundary.
281
+ The function dF is a uniform Lipschitz function in Ω, and
282
+ Fp∇dF pxqq “ 1
283
+ a.e. in Ω.
284
+ We have that dF P W 1,8
285
+ 0
286
+ pΩq. Many properties of the anisotropic distance function are
287
+ studied in [7].
288
+ Finally, the anisotropic inradius of Ω is
289
+ RF pΩq “ maxtdF pxq, x P Ωu,
290
+ that is the radius of the largest Wulff shape Wrpxq contained in Ω.
291
+ 5
292
+
293
+ 2.2 Anisotropic curvatures
294
+ Here we recall some properties of the anisotropic mean curvature, as well as an integra-
295
+ tion formula in anisotropic normal coordinates. We refer to [7] for further details.
296
+ If Ω has a C2 boundary, the anisotropic outer normal to BΩ is defined as
297
+ nF pyq “ Fξpνpyqq,
298
+ y P BΩ,
299
+ where νpyq is the Euclidean outer normal to BΩ at y. Moreover, by (2.6) it holds that
300
+ F opnFpyqq “ 1.
301
+ Let us denote by TyBΩ the tangent space to BΩ at y; the anisotropic Weingarten map is
302
+ defined as
303
+ dnF : TyBΩ Ñ TnpyqW.
304
+ The eigenvalues κF
305
+ 1 ď κF
306
+ 2 ď . . . ď κF
307
+ N´1 of this map are called the anisotropic principal
308
+ curvatures at y (see also [25]). The anisotropic mean curvature of BΩ at a point y is
309
+ defined as
310
+ HF pyq “ κF
311
+ 1 pyq ` . . . κF
312
+ N´1pyq,
313
+ y P BΩ.
314
+ The anisotropic distance dF is a C2 function in a tubular neighborhood of BΩ; hence
315
+ we are in position to define the matrix-valued function
316
+ Wpyq “ ´Fξξp∇dF pyqq∇2dF pyq,
317
+ y P BΩ.
318
+ Based on this function, it is possible to give a different definition of the anisotropic
319
+ principal curvatures [7, Remark 5.9]. Since Wpyqv P TyBΩ, for any v P Rn, it remains
320
+ defined the map Wpyq: Ty Ñ Ty, as Wpyqw “ Wpyqw, w P Ty. The matrix Wpyq (that is,
321
+ in general, non-symmetric) admits the real eigenvalues κF
322
+ 1 pyq ď κF
323
+ 2 pyq ď . . . ď κF
324
+ N´1pyq.
325
+ Actually, the definition is equivalent to the preceding one. Moreover, it holds that
326
+ HF pyq “ div rFξ p´∇dFpyqqs “ TrpWpyqq
327
+ (see also [25, Sec. 3]).
328
+ To state the change of variable formula in anisotropic normal coordinates, we need
329
+ some preliminary definitions.
330
+ Let
331
+ Φpy, tq “ y ´ tFξpνpyqq,
332
+ y P BΩ,
333
+ t P R
334
+ and for y P BΩ,
335
+ ℓpyq “ suptdF pzq, z P Ω and y P Πpzqqu
336
+ where
337
+ Πpzq “ tη P BΩ: dF pzq “ F opz ´ ηqu
338
+ (2.8)
339
+ is the set of the anisotropic projections of a point z P Ω on BΩ.
340
+ Then, we recall the following
341
+ 6
342
+
343
+ Theorem 2.1. ([7, Theorem 7.1]) For every h P L1pΩq, it holds
344
+ ż
345
+
346
+ hpxqdx “
347
+ ż
348
+ BΩ
349
+ Fpνpyqq
350
+ ż ℓpyq
351
+ 0
352
+ hpΦpy, tqqJpy, tq dt dHN´1pyq,
353
+ where
354
+ Jpy, tq “
355
+ N´1
356
+ ź
357
+ i“1
358
+ p1 ´ tκF
359
+ i pyqq.
360
+ (2.9)
361
+ Since 1 ´ tκF
362
+ i pyq ą 0 for any i “ 1, . . . , N ´ 1 ([7, Lemma 5.4]), Jpy, tq is positive.
363
+ Moreover it holds that
364
+ ´ d
365
+ dt rJpy, tqs
366
+ Jpy, tq
367
+
368
+ N´1
369
+ ÿ
370
+ i“1
371
+ κF
372
+ i pyq
373
+ 1 ´ tκF
374
+ i pyq.
375
+ (2.10)
376
+ Finally, we conclude this section, by recalling that, for any x P Ω such that Πpxq “ tyu,
377
+ it holds that ([7, Lemma 4.3]):
378
+ ∇dF pxq “ ´
379
+ νpyq
380
+ Fpνpyqq.
381
+ (2.11)
382
+ 2.3 The anisotropic total variation
383
+ Let u P BV pΩq, the total variation of u with respect to F is defined as
384
+ |Du|F pΩq “ sup
385
+
386
+
387
+ u divpgq dx
388
+ : g P C1
389
+ 0pΩ; RNq, F opgq ď 1
390
+ *
391
+ and the perimeter of a set E with respect to F is:
392
+ PF pE; Ωq “ |DχE|F pΩq “ sup
393
+
394
+ E
395
+ divpgq dx
396
+ : g P C1
397
+ 0pΩ; RNq, F opgq ď 1
398
+ *
399
+ .
400
+ Moreover,
401
+ PF pE; Ωq “
402
+ ż
403
+ ΩXB˚E
404
+ FpνEqdHN´1
405
+ where B˚E is the reduced boundary of Ω and νE is the Euclidean normal to BE.
406
+ Let us fix u P BV pΩq and assume that u ” 0 in RNzΩ. Then u P BV pRNq and
407
+ |Du|F pRNq “ |Du|F pΩq `
408
+ ż
409
+ BΩ
410
+ |u|FpνqdHN´1
411
+ (2.12)
412
+ (see for example [6, Lemma 3.9]).
413
+ For the anisotropic perimeter, an isoperimetric inequality holds. More precisely,
414
+ PF pΩq ě PF pWRq,
415
+ (2.13)
416
+ where WR is the Wulff shape with the same measure of Ω (see for example [14, Theorem
417
+ 2.10]).
418
+ The following approximation results in BV hold (refer to [4], [18, Theorem 1.17] for
419
+ the Euclidean case and to [1, Proposition 2.1] for the Finsler case).
420
+ 7
421
+
422
+ Proposition 2.2. Let f P BV pΩq, then there exists a sequence tfkukPN Ď C8pΩq such
423
+ that:
424
+ lim
425
+ kÑ`8
426
+ ż
427
+
428
+ |fk ´ f| dx “ 0
429
+ and
430
+ lim
431
+ kÑ`8 |Dfk|F pΩq “ |Df|F pΩq.
432
+ Proposition 2.3. Let E be a set of finite perimeter in Ω. A sequence of C8 sets tEkuk
433
+ exists, such that:
434
+ lim
435
+ kÑ`8
436
+ ż
437
+
438
+ |χEk ´ χE| dx “ 0
439
+ and
440
+ lim
441
+ kÑ`8 |DχEk|F pΩq “ PF pE; Ωq.
442
+ 3 An anisotropic trace inequality
443
+ In this section we prove a trace inequality in BV with respect to the anisotropic total
444
+ variation. We first give the result in a general case (Proposition 3.1), then we refine the
445
+ constants involved in the inequality by requiring more regularity on the boundary of Ω
446
+ (Proposition 3.2).
447
+ Firstly, let us set
448
+ qpyq “ lim
449
+ ρÑ0` sup
450
+ $
451
+
452
+
453
+ &
454
+
455
+
456
+ %
457
+ ż
458
+ BΩ
459
+ χAFpνqdHN´1
460
+ |DχA|F pΩq
461
+ : A Ă Ω X Bρpyq, |A| ą 0, PF pA; Ωq ă `8
462
+ ,
463
+ /
464
+ /
465
+ .
466
+ /
467
+ /
468
+ -
469
+ and Q “ supyPBΩ qpyq. The following inequality generalizes the trace inequality given in
470
+ [4, Theorem 4].
471
+ Proposition 3.1. Let Ω be a bounded open set with HN´1pΩq ă `8, and let u be a
472
+ function in BV pΩq. Then for any ε ą 0, it holds
473
+ ż
474
+ BΩ
475
+ |u|FpνqdHN´1 ď pQ ` εq|Du|F pΩq ` cpΩ, εq
476
+ ż
477
+
478
+ |u|dx,
479
+ (3.1)
480
+ where cpΩ, εq does not depend on u.
481
+ Proof. Let us fix y P BΩ and ρpyq ą 0 such that
482
+ ż
483
+ BΩ
484
+ χBFpνqdHN´1 ď pQ ` εq|DχB|F pΩq,
485
+ 8
486
+
487
+ for any B Ă Ω X Bρpyqpyq with PF pB; Ωq ă `8.
488
+ If sptpuq Ă Bρpyqpyq, then
489
+ ż
490
+ BΩ
491
+ |u|FpνqdHN´1 “
492
+ ż
493
+ BΩ
494
+ Fpνq
495
+ ˆż `8
496
+ 0
497
+ χt|u|ątupyqdt
498
+ ˙
499
+ dHN´1
500
+
501
+ ż `8
502
+ 0
503
+ ˆż
504
+ BΩ
505
+ Fpνqχt|u|ątupyqdHN´1
506
+ ˙
507
+ dt ď pQ ` εq
508
+ ż `8
509
+ 0
510
+ |Dχt|u|ątu|F pΩqdt.
511
+ By using the coarea formula, we have
512
+ ż
513
+ BΩ
514
+ |u|FpνqdHN´1 ď pQ ` εq|D|u||F pΩq ď pQ ` εq|Du|F pΩq.
515
+ Let tBρpyquyPBΩ be a cover of BΩ and let us extract a finite sub-cover B1, . . . , Bk.
516
+ Now, considering a partition of unity ϕ1, . . . , ϕk such that
517
+ 0 ď ϕi ď 1,
518
+ ϕi P C1
519
+ 0pBiq,
520
+ kÿ
521
+ i“1
522
+ ϕipyq “ 1
523
+ if y P BΩ.
524
+ If f P BV pΩq, then
525
+ ż
526
+ BΩ
527
+ |u| F pνq dHN´1 ď pQ ` εq
528
+ ˇˇˇˇˇD
529
+ ˜ kÿ
530
+ i“1
531
+ ϕiu
532
+ ¸ˇˇˇˇˇ
533
+ F
534
+ pΩq
535
+ ď pQ ` εq
536
+ kÿ
537
+ i“1
538
+ p|ϕiDu|F pΩq ` |uDϕi|F pΩqq
539
+ “ pQ ` εq
540
+ kÿ
541
+ i“1
542
+ ˆż
543
+
544
+ ϕid|Du|F `
545
+ ż
546
+
547
+ ud |Dϕi|F pΩq
548
+ ˙
549
+ ď pQ ` εq |Du|F pΩq ` cpΩ, εq
550
+ ż
551
+
552
+ |u| dx.
553
+ If the boundary of Ω is sufficilently smooth, we can show that Q can be taken equal
554
+ to 1 and ε “ 0. More precisely, we have the following.
555
+ Proposition 3.2. Let Ω be a bounded open connected set of class C2. Then there exists
556
+ a positive constant c such that
557
+ ż
558
+ BΩ
559
+ |u| Fpνq dHN´1 ď |Du|F pΩq ` c
560
+ ż
561
+
562
+ |u| dx,
563
+ @u P BV pΩq.
564
+ (3.2)
565
+ Proof. Since Ω is C2, then a uniform sphere condition of radius r ą 0 holds, in the sense
566
+ that for every point y P BΩ there exists z P Ω such that y P Brpzq Ă Ω. Let R Ps0, `8r
567
+ be the maximum of the principal radii of curvature of BW. Such maximum exists being
568
+ 9
569
+
570
+ F (and F o) strongly convex. If κF
571
+ 1 , . . . , κF
572
+ N´1 are the anisotropic principal curvatures,
573
+ we have that
574
+ κiF pyq ď 1
575
+ µ,
576
+ i “ 1, . . . , N ´ 1,
577
+ with µ “
578
+ r
579
+ R ([7, Lemma 5.4]). Therefore, in the set Ω µ
580
+ 2 :“
581
+
582
+ x P Ω : dF pxq ă µ
583
+ 2
584
+ (
585
+ , it
586
+ holds that dF is C2 ([7, Lemma 4.1 and Theorem 4.16]) and
587
+ κF
588
+ i pyq
589
+ 1 ´ κF
590
+ i pyqdF pxq ď
591
+ $
592
+ &
593
+ %
594
+ 0
595
+ if κF
596
+ i ď 0
597
+ 2
598
+ µ
599
+ if 0 ă κF
600
+ i ď 1
601
+ µ,
602
+ where y P BΩ is the anisotropic projection of x P Ω on BΩ. Then
603
+ N´1
604
+ ÿ
605
+ i“1
606
+ κiFpyq
607
+ 1 ´ κiFpyqdF pxq ď 2N ´ 1
608
+ µ
609
+ (3.3)
610
+ for x P Ω µ
611
+ 2 . We may restrict ourselves to the case u is nonnegative and smooth. Inte-
612
+ grating by parts and recalling that Fp∇dF pxqq “ 1 in Ω, it holds that
613
+ ż
614
+
615
+ ´∆FdF pxq upxq
616
+ ´µ
617
+ 2 ´ dF pxq
618
+ ¯`
619
+ dx
620
+
621
+ ż
622
+
623
+ Fξp∇dF pxqq ¨ ∇upxq
624
+ ´µ
625
+ 2 ´ dF pxq
626
+ ¯`
627
+ dx
628
+ ´
629
+ ż
630
+ Ω µ
631
+ 2
632
+ upxqFξp∇dF pxqq ¨ ∇dF pxq dx ´ µ
633
+ 2
634
+ ż
635
+ BΩ
636
+ upxqFξp∇dF pxqq ¨ ν dx
637
+
638
+ ż
639
+
640
+ Fξp∇dF pxqq¨∇upxq
641
+ ´µ
642
+ 2 ´ dF pxq
643
+ ¯`
644
+ dx´
645
+ ż
646
+ Ω µ
647
+ 2
648
+ upxq dx`µ
649
+ 2
650
+ ż
651
+ BΩ
652
+ upyq FpνqdHN´1.
653
+ Now, we estimate the term
654
+ ż
655
+
656
+ Fξp∇dF pxqq ¨ ∇upxq
657
+ ´µ
658
+ 2 ´ dF pxq
659
+ ¯`
660
+ dx.
661
+ By (2.4) and (2.6) it holds that
662
+ ż
663
+
664
+ Fξp∇dF pxqq ¨ ∇upxq
665
+ ´µ
666
+ 2 ´ dF pxq
667
+ ¯`
668
+ dx ě ´µ
669
+ 2
670
+ ż
671
+
672
+ Fp∇upxqq dx.
673
+ (3.4)
674
+ On the other hand, the change of variable formula (2.1) gives that
675
+ ż
676
+
677
+ Fξp∇dF pxqq ¨ ∇upxq
678
+ ´µ
679
+ 2 ´ dF pxq
680
+ ¯`
681
+ dx
682
+
683
+ ż
684
+ BΩ
685
+ Fpνq
686
+ ż µ
687
+ 2
688
+ 0
689
+ ´µ
690
+ 2 ´ t
691
+ ¯ d
692
+ dtrupφpy, tqqsJpy, tqdt dHN´1.
693
+ 10
694
+
695
+ Integrating by parts and using the fact that Jpy, 0q “ 1, the above integral becomes
696
+ ´ µ
697
+ 2
698
+ ż
699
+ BΩ
700
+ upyqFpνqdHN´1pyq ´
701
+ ż
702
+ BΩ
703
+ Fpνq
704
+ ż µ
705
+ 2
706
+ 0
707
+ upφpy, tqq
708
+ ´µ
709
+ 2 ´ t
710
+ ¯ dJ
711
+ dt dt dHN´1pyq
712
+ `
713
+ ż
714
+ BΩ
715
+ Fpνq
716
+ ż µ
717
+ 2
718
+ 0
719
+ upφpy, tqqJpy, tqdt dHN´1pyq
720
+ ď ´µ
721
+ 2
722
+ ż
723
+ BΩ
724
+ upyqFpνqdHN´1pyq ` pN ´ 1q
725
+ ż
726
+ BΩ
727
+ Fpνq
728
+ ż µ
729
+ 2
730
+ 0
731
+ upyqJpy, tq dt dHN´1pyq
732
+ `
733
+ ż
734
+ BΩ
735
+ Fpνq
736
+ ż µ
737
+ 2
738
+ 0
739
+ upφpy, tqqJpy, tqdt dHN´1pyq
740
+ “ ´µ
741
+ 2
742
+ ż
743
+ BΩ
744
+ upyqFpνqdHN´1pyq ` N
745
+ ż
746
+
747
+ u dx
748
+ where in the inequality we have used (2.10) and the bound (3.3). Hence, joining with
749
+ (3.4) it holds that
750
+ ż
751
+ BΩ
752
+ upyqFpνqdHN´1 ď |Du|F pΩq ` 2N
753
+ µ
754
+ ż
755
+
756
+ upxq dx.
757
+ Remark 3.3. Using the notation of the above theorem, we explicitly observe that the
758
+ constant in (3.2) is
759
+ c “ 2N
760
+ µ .
761
+ 4 Interior approximation
762
+ Now we provide an approximation result for BV -functions by smooth functions with
763
+ compact support in Ω.
764
+ We preliminary state two useful lemmas. Firstly, we recall from [20, Lemma 3.2] the
765
+ following result on diffeomorphic perturbations of sets Ω with Lipschitz boundary. We
766
+ denote by ι and I the identical vector and matrix function, respectively.
767
+ Lemma 4.1. Let Ω Ă RN be a bounded open set with Lipschitz boundary. Then there
768
+ exists τ0 ą 0 and, for 0 ď τ ď τ0, a family of C8´diffeomorphisms Φτ : RN Ñ RN with
769
+ inverses Ψτ such that
770
+ • Φ0 “ Ψ0 “ ι;
771
+ • Φτ Ñ ι and Ψτ Ñ ι as τ Ñ 0 uniformly on RN;
772
+ • ∇Φτpxq Ñ I and ∇Ψτpxq Ñ I as τ Ñ 0 uniformly with respect to x on RN;
773
+ 11
774
+
775
+ • ΦτpΩq Ť Ω for all τ P p0, τ0s.
776
+ Now, we give the anisotropic version of the change of coordinates formula for BV -
777
+ functions, stated in [18, Lemma 10.1].
778
+ Lemma 4.2. Let u be a function in BVlocpΩq, Φ : RN Ñ RN be a diffeomorphism and
779
+ A Ť Ω. Then
780
+ ˇˇDpu ˝ Φ´1q
781
+ ˇˇ
782
+ F pΦpAqq “ |HDu|F pAq,
783
+ (4.1)
784
+ where H “ | det ∇Φ|r∇Φs´1.
785
+ Proof. Let us consider u P C1pΩq and g P C1
786
+ 0pA; RNq, then the following change of area
787
+ formula holds
788
+ ż
789
+ ΦpAq
790
+ pg ˝ Φ´1q ¨ ∇pu ˝ Φ´1qdx “
791
+ ż
792
+ ΦpAq
793
+ pg ˝ Φ´1q ¨ pp∇u ˝ Φ´1q∇Φ´1qdx
794
+
795
+ ż
796
+ A
797
+ g ¨ p∇up∇Φ´1 ˝ Φqq| det ∇Φ|dz
798
+
799
+ ż
800
+ A
801
+ g ¨ pH∇uqdz.
802
+ (4.2)
803
+ Thus, the thesis (4.1) holds for u in C1pΩq, that is
804
+ ż
805
+ ΦpAq
806
+ Fp∇pu ˝ Φ´1qqdx “
807
+ ż
808
+ A
809
+ FpH∇uqdx.
810
+ Suppose now that u P BVlocpΩq.
811
+ By Proposition 2.2 we can approximate u by a
812
+ sequence tuiu Ă C8. Moreover, the corresponding functions ui˝Φ´1 converge to u˝Φ´1
813
+ in L1pAq.
814
+ Hence, we can pass to the limit in (4.2), obtaining
815
+ ż
816
+ ΦpAq
817
+ pg ˝ Φ´1q ¨ dDpu ˝ Φ´1q “
818
+ ż
819
+ A
820
+ g ¨ H dDu “
821
+ ż
822
+ A
823
+ g ¨ pHνqd |Du|
824
+ (4.3)
825
+ where ν is obtained by differentiating Du with respect to |Du|.
826
+ If F opgq ď 1, then also F opg ˝ Φ´1q ď 1 and sptpg ˝ Φ´1qq Ď ΦpAq. Therefore, by
827
+ definition of total variation with respect to F, we have
828
+ ż
829
+ A
830
+ g ¨ pHνqd |Du| ď
831
+ ˇˇDpu ˝ Φ´1q
832
+ ˇˇ
833
+ F pΦpAqq,
834
+ (4.4)
835
+ The inequality (2.4) implies that
836
+ sup
837
+ F opgqď1
838
+ ż
839
+ A
840
+ g ¨ pHνq d |Du| “ |HDu|F pAq.
841
+ Hence, taking the supremum on the left hand side in (4.4), it holds
842
+ |HDu|F pAq ď
843
+ ˇˇDpu ˝ Φ´1q
844
+ ˇˇ
845
+ F pΦpAqq.
846
+ 12
847
+
848
+ For the reverse inequality, we consider g “ γ ˝ Φ P C1
849
+ 0pA; RNq, where γ P C1
850
+ 0pΦpAq; RNq
851
+ and F opγq ď 1. Therefore g ˝ Φ´1 “ γ and by (4.3), we have
852
+ ż
853
+ ΦpAq
854
+ γ ¨ dDpu ˝ Φ´1q “
855
+ ż
856
+ A
857
+ pγ ˝ Φq ¨ pHνqd |Du| pAq
858
+ ď
859
+ ż
860
+ A
861
+ F opγ ˝ Φq|H|d|Du|F ď
862
+ ż
863
+ A
864
+ |H| d |Du|F .
865
+ Hence, we have
866
+ ˇˇDpu ˝ Φ´1q
867
+ ˇˇ
868
+ F pΦpAqq ď |HDu|F pAq.
869
+ At this stage, we are in position to state the main approximation result.
870
+ Theorem 4.3. Let Ω Ă RN be an open bounded set with Lipschitz boundary and let
871
+ u P BV pΩq X LppΩq for some p P r1, 8q. Then there exists a sequence tukukPN Ď C8
872
+ 0 pΩq
873
+ such that, for any q P r1, ps,
874
+ uk Ñ u in LqpΩq
875
+ and
876
+ |Duk|F pRNq Ñ |Du|F pRNq.
877
+ Proof. Let us fix a family pΦτq0ďτďτ0 of diffeomorphisms fron RN to RN with inverses
878
+ pΨτq0ďτďτ0 according to Lemma 4.1, and consider
879
+ uτ :“ u ˝ Ψτ
880
+ for
881
+ τ P r0, τ0s.
882
+ By construction uτ “ 0 a.e. outside a compact subset of Ω. By [20, Theorem 3.1], we
883
+ know that uτ P LppΩq for all τ P r0, τ0s, uτ Ñ u in LppΩq and also in LppRNq.
884
+ The change of coordinates formula in Lemma 4.2 implies that
885
+ |Duτ|F pRNq “
886
+ ż
887
+ RN
888
+ ˇˇp∇ΨτqT ˇˇ |detp∇Φτq| d |Du|F .
889
+ Thus uτ P BV pRNq and, since the integrand on the right hand side uniformly converges
890
+ to 1,
891
+ lim
892
+ τÑ0` |Duτ|F pRNq “ |Du|F pRNq
893
+ It remains only to prove that there exists vτ P C8
894
+ 0 pΩq such that
895
+ ||uτ ´ vτ||p ă τ
896
+ and
897
+ ˇˇ|Duτ|F pRNq ´ |Dvτ|F pRNq
898
+ ˇˇ ă τ.
899
+ The first convergence (in Lp) has been proved in [20, Theorem 3.1]; meanwhile the
900
+ convergence of the total variation is based on the following argument.
901
+ For any ε ą 0, let us consider the mollification uε :“ uτ ˚ ηε, where ηεpxq “:
902
+ ε´nηpε´1xq, for the standard mollifier η. Hence uε Ñ uτ in LppΩq and for the zero
903
+ extensions, in L1pRNq [3, Proposition 3.2.c].
904
+ 13
905
+
906
+ Then, by the lower semicontinuity of the anisotropic total variation, we have
907
+ |Duτ|F pRNq ď lim
908
+ εÑ0` inf |Duε|F pRNq.
909
+ Therefore, it remains to prove the opposite inequality
910
+ lim
911
+ εÑ0` sup |Duε|F pRNq ď |Duτ|F pRNq.
912
+ (4.5)
913
+ Let us choose ϕ P C8
914
+ 0 pRN, RNq with F opϕq ď 1 and calculate
915
+ ż
916
+ RN uε ˚ divpϕqdx
917
+ ż
918
+ RN uτpηε ˚ div ϕqdx “
919
+ ż
920
+ RN uτ divpηε ˚ ϕqdx ď |Duτ|F pRNq, (4.6)
921
+ where the inequality in the last term holds since F opηε ˚ ϕq ď 1. Indeed, by using the
922
+ 1-homogeneity of F o and Jensen’s Inequality (see, for instance, [22, Lemma 1.8.2]), we
923
+ gain that
924
+ F o
925
+ ˆż
926
+ RN ηǫpx ´ yqϕpyqdy
927
+ ˙
928
+ ď
929
+ ż
930
+ RN F opηǫpx´yqϕpyqqdy “
931
+ ż
932
+ RN ηεpx´yqF opϕpyqqdy ď 1.
933
+ Hence, by passing to the limit in (4.5), we reach the inequality (4.6) by the arbitrariness
934
+ of ϕ.
935
+ 5 The first Robin eigenvalue of the Finsler p-Laplacian as p Ñ 1
936
+ In this Section, we give an application of the results proved above to a Robin eigenvalue
937
+ problem. More precisely, our aim is analyze the Γ-limit of the functional
938
+ Jppϕq “
939
+ ż
940
+
941
+ F pp∇ϕqdx ` β
942
+ ż
943
+ BΩ
944
+ |ϕ|p FpνqdHN´1
945
+ ż
946
+
947
+ |ϕ|p dx
948
+ ,
949
+ ϕ P W 1,ppΩqzt0u,
950
+ (5.1)
951
+ where Ω is a bounded, connected, sufficiently smooth open set, p ą 1 and β P R, and
952
+ prove an isoperimetric inequality for the limit, as p Ñ 1`, of the first eigenvalue
953
+ λ1pΩ, p, βq “
954
+ inf
955
+ ϕPW 1,ppΩq
956
+ ϕ‰0
957
+ Jppϕq,
958
+ (5.2)
959
+ depending on the value of the parameter β. A key point for proving this result is the
960
+ convergence of the functional Jp.
961
+ We first recall the following existence result for (5.2) holds.
962
+ Theorem 5.1 ([9, 12]). Let p ą 1, β P R and Ω bounded Lipschitz domain. Then there
963
+ exists a minimum u P C1,αpΩq X CpΩq of (5.2) that satisfies
964
+ #
965
+ ´Qpu “ λpΩ, p, βq |u|p´2 u
966
+ in Ω
967
+ F p´1p∇uqFξp∇uq ¨ ν ` βFpνq |u|p´2 u “ 0
968
+ on BΩ.
969
+ (5.3)
970
+ Moreover, u does not change sign in Ω. Finally, λ1pΩ, p, βq is positive if β ą 0, while is
971
+ negative if β ă 0.
972
+ 14
973
+
974
+ 5.1 The case p “ 1
975
+ In order to study the limit case of Jp as p goes to 1, we consider the functional
976
+ Jpϕq “
977
+ |Dϕ|F pΩq ` mintβ, 1u
978
+ ż
979
+ BΩ
980
+ |ϕ| FpνqdHN´1
981
+ ż
982
+
983
+ |ϕ| dx
984
+ ,
985
+ (5.4)
986
+ where ϕ P BV pΩq and u ı 0. Hence, we study the associated minimum problem
987
+ ΛpΩ, βq “
988
+ inf
989
+ ϕPBV pΩq
990
+ ϕı0
991
+ Jpϕq.
992
+ (5.5)
993
+ Depending on β, we will impose different assumptions on the regularity of the domain.
994
+ Indeed:
995
+ • if β ě 0, we will suppose that BΩ is Lipschitz;
996
+ • if ´1 ă β ă 0, we will assume that BΩ is C2.
997
+ In particular, this difference depends on the fact that in the case β ă 0 we use the trace
998
+ inequality, studied in Section 3.
999
+ Finally, if β ď ´1 the problem is not well posed; indeed if β ă ´1, then ΛpΩ, βq “ ´8
1000
+ while if β “ ´1, Λ is finite but can be not achieved, also in the case of smooth domains.
1001
+ For further details, we refer the reader to the Euclidean case treated in [10].
1002
+ Let us discuss the presence of the term mintβ, 1u in (5.4). For any value of β, it could
1003
+ seem more natural to study the problem
1004
+ λpΩ, 1, βq “
1005
+ inf
1006
+ ϕPBV pΩq
1007
+ ϕ‰0
1008
+ |Dϕ|F pΩq ` β
1009
+ ż
1010
+ BΩ
1011
+ |ϕ| FpνqdHN´1
1012
+ ż
1013
+
1014
+ |ϕ| dx
1015
+ .
1016
+ (5.6)
1017
+ Actually, we have that for β ě 1 it holds
1018
+ λpΩ, 1, βq “ ΛpΩ, βq “ hF pΩq,
1019
+ where hF pΩq is the first Cheeger constant of Ω in the Finsler setting (see e.g. [6]):
1020
+ hF pΩq “
1021
+ inf
1022
+ ϕPBV pΩq
1023
+ ϕı0
1024
+ |Dϕ|F pRNq
1025
+ ż
1026
+
1027
+ |ϕ| dx
1028
+ “ inf
1029
+ EĎΩ
1030
+ PF pE; Ωq
1031
+ |E|
1032
+ .
1033
+ (5.7)
1034
+ Indeed, in this case, it is immediate to see that
1035
+ λpΩ, 1, βq ě hF pΩq.
1036
+ 15
1037
+
1038
+ On the other hand, if u is a minimizer of (5.6), then, by Theorem 4.3, there exists
1039
+ uk P C8
1040
+ 0 pΩq such that
1041
+ uk
1042
+ Lq
1043
+ ÝÑ u,
1044
+ ||∇uk||L1pΩq
1045
+ L1
1046
+ ÝÑ |Du|F pRNq,
1047
+ for any q ď
1048
+ N
1049
+ N ´ 1. Therefore
1050
+ λpΩ, 1, βq ď
1051
+ lim
1052
+ kÑ`8
1053
+ ż
1054
+
1055
+ Fp∇ukqdx
1056
+ ż
1057
+
1058
+ |uk| dx
1059
+ “ hF pΩq.
1060
+ Now we focus on the possibility of studying the minimization problem (5.5) restricting
1061
+ our analysis to characteristic functions. Hence if E Ď Ω, we have
1062
+ JpχEq “
1063
+ PF pE; Ωq ` mint1, βu
1064
+ ż
1065
+ BΩXB˚E
1066
+ FpνEqdHN´1
1067
+ |E|
1068
+ .
1069
+ By denoting
1070
+ RpE, βq :“ JpχEq,
1071
+ we consider the minimization problem
1072
+ ℓpΩ, βq “ inf
1073
+ EĎΩ RpE, βq.
1074
+ (5.8)
1075
+ Before proving the equivalence between problems (5.5) and (5.8), we need the following
1076
+ result on the lower semicontinuity of the numerator of the functional J.
1077
+ Lemma 5.2. Let β ě ´1. The functional
1078
+ Gpuq “ |Du|F pΩq ` mint1, βu
1079
+ ż
1080
+ BΩ
1081
+ |u|FpνqdHN´1
1082
+ is lower semicontinuous on BV pΩq with respect to the topology of L1pΩq.
1083
+ Proof. If β ě 0, the lower semicontinuity (with Ω Lipschitz) follows immediately by the
1084
+ lower semicontinuity of each term. Then we assume β ă 0 (and Ω in C2). The proof is
1085
+ an adaptation of [21, Proposition 1.2] to the Finsler case.
1086
+ Let u P BV pΩq, and let us consider a sequence tukukPN Ď BV pΩq converging to u in
1087
+ L1pΩq; we have the following estimate
1088
+ Gpuq ´ Gpukq ď |Du|F pΩq ´ |Duk|F pΩq `
1089
+ ż
1090
+ BΩ
1091
+ |u ´ uk|FpνqdHN´1.
1092
+ (5.9)
1093
+ Now, for a fixed δ ą 0, let us define Ωδ “ tx P Ω : dEpxq ă δu, where dE is the standard
1094
+ Euclidean distance to the boundary of Ω ; moreover let us consider vδ “ p1´χδqpu´ukq,
1095
+ 16
1096
+
1097
+ where χδ is a cut-off function such that χδ “ 1 in ΩzΩδ and |∇χδ| ď 2
1098
+ δ in Ω. The trace
1099
+ inequality (3.2) applied to vδ gives
1100
+ ż
1101
+ BΩ
1102
+ |u´uk|FpνqdHN´1 ď |Dpu ´ ukq|F pΩδq` 2b
1103
+ δ
1104
+ ż
1105
+ Ωδ
1106
+ |u´uk|dx`c
1107
+ ż
1108
+ Ωδ
1109
+ |u´uk|dx. (5.10)
1110
+ Moreover, we have
1111
+ |Dpu ´ ukq|F pΩδq ď |Du|F pΩδq ` |Duk|F pΩδq ` |Dpu ´ ukq|F pBpΩzΩδqq,
1112
+ (5.11)
1113
+ but last term is zero on a set of δ’s of positive measure because u ´ uk P BV pΩq, for all
1114
+ k P N. Hence, by (5.9)-(5.10)-(5.11), we gain:
1115
+ Gpuq ´ Gpukq ď |Du|F pΩq ` |Du|F pΩδq ´ |Duk|F pΩzΩδq `
1116
+ ˆ2b
1117
+ δ ` c
1118
+ ˙ ż
1119
+ Ωδ
1120
+ |u ´ uk|dx.
1121
+ By the lower semicontinuity of the functional |Duk|F pΩzΩδq in L1pΩzΩδq, we have that
1122
+ lim sup
1123
+ kÑ`8
1124
+ rGpuq ´ Gpukqs ď 2|Du|F pΩδq.
1125
+ The conclusion follows by sending δ Ñ 0`.
1126
+ At this stage, we state the main existence result of the minimum problem (5.5).
1127
+ Theorem 5.3. For any β ą ´1, there exists a minimum to problem (5.5). In particular,
1128
+ it holds
1129
+ ΛpΩ, βq “ ℓpΩ, βq.
1130
+ Moreover, if u P BV pΩq is a minimum of (5.5), then
1131
+ ΛpΩ, βq “ Rptu ą tu, βq,
1132
+ for some t P R.
1133
+ Proof. Let un be a minimizing sequence in BV pΩq of (5.5), such that }un}L1pΩq “ 1. If
1134
+ β ą 0, then un is bounded in BV pΩq and hence
1135
+ un
1136
+ ˚á u in BV pΩq
1137
+ and
1138
+ un
1139
+ L1
1140
+ ÝÑ u.
1141
+ In particular, if β ě 1, Jpunq “ |Dun|F pRNq, by using the lower semicontinuity of the
1142
+ anisotropic total variation [2], we obtain that
1143
+ Jpuq ď lim inf
1144
+ n
1145
+ Jpunq.
1146
+ Hence u is the minimum of the functional J.
1147
+ If 0 ă β ă 1, let Ωδ “ tx P Ω | dEpxq ă δu, with δ ą 0. We have
1148
+ |Dun|F pΩq “ |Dun|F pΩzΩδq ` |Dun|F pΩδq ě |Dun|F pΩzΩδq ` β |Dun|F pΩδq
1149
+ 17
1150
+
1151
+ and hence
1152
+ Jpunq ě |Dun|F pΩzΩδq ` β
1153
+
1154
+ |Dun|F pΩδq `
1155
+ ż
1156
+ BΩ
1157
+ |un| FpνqdHN´1
1158
+
1159
+ .
1160
+ Moreover, by the lower semicontinuity of J, we have
1161
+ lim inf
1162
+ n
1163
+ Jpunq ě |Dun|F pΩzΩδq ` β |Dun|F pRNzpΩzΩδqq.
1164
+ By using the fact that u P BV pΩq, we obtain that
1165
+ lim inf
1166
+ n
1167
+ Jpunq ě Jpuq,
1168
+ as δ Ñ 0.
1169
+ Now, let us take ´1 ă β ă 0. It easily seen that Jpunq ď C. Using the trace inequality
1170
+ (3.2), we obtain
1171
+ Jpunq ě p1 ` βq |Dun|F pΩq ` cβ ě cβ
1172
+ and
1173
+ |Dun|F pΩq ď
1174
+ C
1175
+ 1 ` β ´
1176
+ βc
1177
+ 1 ` β .
1178
+ Being un P BV pΩq and by the fact that the functional J is lower semicontinuous (proved
1179
+ in Lemma 5.2), we have that u is a minimum of J.
1180
+ Now, we want to prove last part of the Theorem. Obviously, we have
1181
+ ΛpΩ, βq ď ℓpΩ, βq.
1182
+ To prove the reverse inequality, we take u P BV pΩq a minimizer of (5.5). By using the
1183
+ coarea formula
1184
+ |Du|F pΩq “
1185
+ ż `8
1186
+ ´8
1187
+ PF ptu ą tu, Ωqdt,
1188
+ we have
1189
+ ΛF pΩ, βq “
1190
+ ż `8
1191
+ ´8
1192
+ PFptu ą tu, Ωqdt ` mintβ, 1u
1193
+ ż `8
1194
+ ´8
1195
+ HN´1pBΩ X Btu ą tuqFpνqdt
1196
+ ż `8
1197
+ ´8
1198
+ |tu ą tu| dt
1199
+
1200
+ ż `8
1201
+ ´8
1202
+ Rptu ą tu, βq |tu ą tu| dt
1203
+ ż `8
1204
+ ´8
1205
+ |tu ą tu| dt
1206
+ ě inf
1207
+ EĎΩ RpE, βq
1208
+ “ ℓpΩ, βq.
1209
+ 18
1210
+
1211
+ This shows that ΛpΩ, βq “ ℓpΩ, βq and, in particular, we have that
1212
+ ż `8
1213
+ ´8
1214
+ tRptu ą tu, βq ´ ℓpΩ, βqu |tu ą tu| dt “ 0
1215
+ and using the definition of ℓpΩ, βq we observe that the integrand is nonnegative.
1216
+ In
1217
+ particular, u ı 0 and we have that ΛpΩ, βq “ Rptu ą tu, βq.
1218
+ 5.2 Γ-convergence of Jp
1219
+ Now we will prove that the functional Jp Γ´converges to the functional J, as p Ñ 1`.
1220
+ Definition 5.4. A functional Jp Γ-converges to J as p Ñ 1` in the weak˚ topology of
1221
+ BV pΩq if, for any u P BV pΩq, the following hold:
1222
+ (i) For any sequence up P BV pΩq which converges to u weak˚ in BV pΩq as p Ñ 1`,
1223
+ then
1224
+ lim inf
1225
+ pÑ1` Jppupq ě Jpuq.
1226
+ (5.12)
1227
+ (ii) There exists a sequence up P W 1,ppΩq which converges to u weak˚ in BV pΩq as
1228
+ p Ñ 1`, such that
1229
+ lim sup
1230
+ pÑ1` Jppupq ď Jpuq.
1231
+ (5.13)
1232
+ Now, we are in position to prove the convergence theorem for the functional Jp.
1233
+ Theorem 5.5. Let β ą ´1, then Jp Γ-converges to J as p Ñ 1`.
1234
+ Proof. Let us suppose up P W 1,ppΩq and ||up||LppΩq “ 1.
1235
+ We give the proof by dis-
1236
+ tinguishing the possible values of β.
1237
+ In any cases, we will have to prove (5.12) and
1238
+ (5.13).
1239
+ The case β ě 1. Let us fix a sequence up P W 1,ppΩq weak˚ converging to u in BV pΩq,
1240
+ as p Ñ 1`. By using the H¨older-type inequality contained for example in [11, Proposition
1241
+ A.1], we have:
1242
+ ˆż
1243
+
1244
+ Fp∇upqdx `
1245
+ ż
1246
+ BΩ
1247
+ |up|FpνqdHN´1
1248
+ ˙p
1249
+ ď
1250
+ ˆż
1251
+
1252
+ Fp∇upqpdx `
1253
+ ż
1254
+ BΩ
1255
+ |up|pFpνqdHN´1
1256
+ ˙
1257
+ p|Ω| ` PF pΩqqp´1 .
1258
+ Hence we have
1259
+ lim inf
1260
+ pÑ1` Jppupq ě |Du|F pΩq `
1261
+ ż
1262
+ BΩ
1263
+ |u|FpνqdHN´1 “ |Du|F pRNq “ Jpuq.
1264
+ This proves (5.12).
1265
+ 19
1266
+
1267
+ To give the proof of (5.13), we observe that, by Theorem 4.3, there exists a se-
1268
+ quence tukukPN Ď C8
1269
+ 0 pΩq such that, for any q P r1, ps, uk converges to u in LqpΩq
1270
+ and ||Fp∇ukq||L1pΩq converges to |Du|F pRNq as k Ñ `8. Moreover, it easily seen that
1271
+ that ||Fp∇ukq||LppΩq converges to ||Fp∇ukq||L1pΩq and hence we have that there exists a
1272
+ subsequence pk Ñ 1`, as k Ñ `8, such that ||FpDukq||pk
1273
+ Lpk pΩq converges to |Du|F pRNq
1274
+ as k Ñ `8. This implies that lim supkÑ`8 Jpkpukq ě Jpuq, that concludes the proof of
1275
+ (5.13).
1276
+ The case 0 ď β ă 1. Let us consider a sequence up weak˚ converging to u in BV pΩq,
1277
+ as p Ñ 1`. A simple application of the Young inequality ap ě pab ´ pp ´ 1qb
1278
+ p
1279
+ p´1 with
1280
+ b “ 1
1281
+ p, yields to
1282
+ Jppupq “
1283
+ ż
1284
+
1285
+ F pp∇upqdx ` β
1286
+ ż
1287
+ BΩ
1288
+ |up|pFpνqdHN´1
1289
+ ě
1290
+ ż
1291
+
1292
+ Fp∇upqdx ` β
1293
+ ż
1294
+ BΩ
1295
+ |up|FpνqdHN´1 ´ p ´ 1
1296
+ p
1297
+ p|Ω| ` PF pΩqq ,
1298
+ Therefore, the conclusion (5.12) follows by applying the Proposition 5.2.
1299
+ In order to get the second claim, Proposition 2.2 assures the existence of a sequence
1300
+ uk P C8pΩq strongly converging to u in L1pΩq and }FpDukq}L1pΩq converges to |Du|F pΩq,
1301
+ as k Ñ `8. Moreover ukFpνq converges to uFpνq in L1pBΩ, HN´1q. An argument sim-
1302
+ ilar to the previous case leads us to say that }FpDukq}LpkpΩq converges to |Du|F pΩq and
1303
+ ż
1304
+ BΩ
1305
+ |uk|pFpνqdHN´1 converges to
1306
+ ż
1307
+ BΩ
1308
+ |u|FpνqdHN´1, as k Ñ `8. Hence the sequence
1309
+ tukukPN satisfies (5.13).
1310
+ The case ´1 ă β ă 0. Let us consider a sequence up P W 1,ppΩq weak˚ converging to
1311
+ u in BV pΩq, as p Ñ 1`.
1312
+ For any δ ą 0, let us set Ωδ “ tx P Ω : dEpxq ă δu and consider a smooth function ψ
1313
+ equal to zero in ΩzΩδ and to one on BΩ, such that |∇ψ| ď 2
1314
+ δ .
1315
+ The trace inequality (3.2) applied to the function v “ pu ´ |up|p´1upqψ gives
1316
+ ż
1317
+ BΩ
1318
+ |u ´ |up|p´1up|FpνqdHN´1
1319
+ ď |Dpu ´ |up|p´1upq|F pΩδq `
1320
+ ˆ2b
1321
+ δ ` c
1322
+ ˙ ż
1323
+ Ωδ
1324
+ |u ´ |up|p´1up|dx
1325
+ ď |Du|F pΩδq `
1326
+ ż
1327
+ Ωδ
1328
+ Fp∇p|up|p´1upqqdx `
1329
+ ˆ2b
1330
+ δ ` c
1331
+ ˙ ż
1332
+ Ωδ
1333
+ |u ´ |up|p´1up|dx,
1334
+ (5.14)
1335
+ where we have used that |Dpu´|up|p´1upq|F pBΩδq “ 0 for a set of δ’s of positive measure
1336
+ because u ´ |up|p´1up P BV pΩq.
1337
+ 20
1338
+
1339
+ By using (5.14), we have
1340
+ Jpuq ´ Jppupq “ |Du|F pΩq ´
1341
+ ż
1342
+
1343
+ F pp∇upqdx ` β
1344
+ ż
1345
+ BΩ
1346
+ p|u| ´ |up|p´1upqFpνqdHN´1
1347
+ ď |Du|FpΩq ´
1348
+ ż
1349
+
1350
+ F pp∇upqdx ` |β||Du|F pΩδq
1351
+ ` |β|
1352
+ ż
1353
+ Ωδ
1354
+ Fp∇p|up|p´1upqqdx ` |β|
1355
+ ˆ2b
1356
+ δ ` c
1357
+ ˙ ż
1358
+ Ωδ
1359
+ |u ´ |up|p´1up|dx :“ A.
1360
+ (5.15)
1361
+ Since
1362
+ 1
1363
+ |β| ą 1, we have
1364
+ A ď 2|Du|F pΩδq ` |Du|F pΩzΩδq ´
1365
+ ż
1366
+
1367
+ Fp∇upqpdx `
1368
+ ż
1369
+ ΩzΩδ
1370
+ Fp∇p|up|p´1upqqdx
1371
+ `
1372
+ ˆK
1373
+ δ ` c
1374
+ ˙ ż
1375
+ Ωδ
1376
+ |u ´ |up|p´1up|dx.
1377
+ (5.16)
1378
+ The Young inequality gives that
1379
+ ż
1380
+
1381
+ Fp∇p|up|p´1upqqdx “
1382
+ ż
1383
+
1384
+ p|up|p´1Fp∇upqdx
1385
+ ď
1386
+ ż
1387
+
1388
+ F pp∇upqdx ` pp ´ 1q
1389
+ ż
1390
+
1391
+ |up|pdx.
1392
+ (5.17)
1393
+ Furthermore by (5.15), (5.16) and (5.17), we have that
1394
+ Jpuq ´ Jppupq ď 2|Du|F pΩδq ` |Du|F pΩzΩδq ´
1395
+ ż
1396
+ ΩzΩδ
1397
+ Fp∇p|up|p´1upqqdx
1398
+ ` pp ´ 1q
1399
+ ż
1400
+
1401
+ |up|pdx `
1402
+ ˆK
1403
+ δ ` c
1404
+ ˙ ż
1405
+ Ωδ
1406
+ |u ´ |up|p´1up|dx.
1407
+ Since up converges to u in LqpΩq, then |up|p´1up converges to u in L1pΩq, as p Ñ 1`.
1408
+ Hence, by taking p Ñ 1`, we have
1409
+ lim sup
1410
+ pÑ1` rJpuq ´ Jppupqs ď 2|Du|F pΩδq.
1411
+ By sending δ Ñ 0`, we obtain (5.12).
1412
+ Finally, the inequality (5.13) is obtained as in the previous case.
1413
+ The proof of the Γ-convergence of the functional Jp is useful to prove the convergence
1414
+ of the eigenvalues and eigenfunction, as p Ñ 1`.
1415
+ Proposition 5.6. For any β ą ´1, it holds
1416
+ lim
1417
+ pÑ1` λ1pΩ, p, βq “ ΛpΩ, βq.
1418
+ Moreover, the minimizers up P W 1,ppΩq of (5.1), with }u}LppΩq “ 1, weak˚ converge to
1419
+ a minimizer u P BV pΩq of (5.4) as p Ñ 1`.
1420
+ 21
1421
+
1422
+ Proof. The Theorem 5.5 assures the existence of a sequence wp converging to a fixed
1423
+ minimizer ¯u of (5.4). Let us consider the sequence of minimizers up of (5.4), we have:
1424
+ lim sup
1425
+ pÑ1` Jppupq ď lim sup
1426
+ pÑ1` Jppwpq ď Jp¯uq “ ΛpΩ, βq.
1427
+ (5.18)
1428
+ This means that Jppupq is upper bounded for any p ą 1. If β ă 0, by the trace inequality
1429
+ (3.2), we have that
1430
+ ż
1431
+
1432
+ F pp∇upqdx ď ΛpΩ, βq ´ β|Dpup
1433
+ pq|F pΩq ´ βc,
1434
+ and, by (5.17) and (2.1), that
1435
+ p1 ` βqap
1436
+ ż
1437
+
1438
+ |∇up|pdx ď ΛpΩ, βq ´ βc ´ βpp ´ 1q.
1439
+ Hence, by the compactness, we have that up is upper bounded in BV pΩq. If β ě 0, this
1440
+ directly follows from (5.18). Therefore up weak˚ converges to u in BV pΩq.
1441
+ Finally, by (5.12) and (5.18), we have that
1442
+ ΛpΩ, βq “ Jp¯uq ď Jpuq ď lim inf
1443
+ pÑ1` Jppupq ď lim sup
1444
+ pÑ1` Jppupq ď ΛpΩ, βq,
1445
+ and hence the conclusion by observing that λ1pΩ, p, βq “ Jppupq.
1446
+ 5.3 An isoperimetric inequality
1447
+ Here we treat the shape optimization problem for ΛpΩ, βq. To this aim, we briefly recall
1448
+ the properties of the eigenvalue problem λ1pWR, p, βq and then we prove an explicit
1449
+ computation for ΛpWR, βq. By Theorem 5.1, a minimizer of (5.2) solves the following
1450
+ problem:
1451
+ #
1452
+ ´Qpu “ λ1pWR, p, βq |u|p´2 u
1453
+ in WR
1454
+ pFp∇uqqp´1Fξp∇uq ¨ ν ` βFpνq |u|p´2 u “ 0
1455
+ on BWR.
1456
+ (5.19)
1457
+ In particular, the following result holds (refer to in [9] for the positive values of the Robin
1458
+ parameter).
1459
+ Theorem 5.7. If up P C1,αpWRq X CpWRq is a positive solution of (5.19), then there
1460
+ exists a monotone function ϕp “ ϕpprq, r P r0, Rs, such that ϕp P C8p0, RqXC1pr0, Rsq,
1461
+ and
1462
+ $
1463
+
1464
+ &
1465
+
1466
+ %
1467
+ uppxq “ ϕppF opxqq
1468
+ in WR
1469
+ ϕ
1470
+ 1
1471
+ pp0q “ 0
1472
+
1473
+ 1
1474
+ ppRq|p´2ϕ1
1475
+ ppRq ` βϕppRqp´1 “ 0.
1476
+ (5.20)
1477
+ Moreover, ϕp is decreasing if β ą 0, while is increasing if β ă 0.
1478
+ 22
1479
+
1480
+ We first compute ΛpWR, βq.
1481
+ Proposition 5.8. If β ą ´1, then
1482
+ ΛpWR, βq “ ˆβhF pWRq “ ˆβ N
1483
+ R ,
1484
+ (5.21)
1485
+ where ˆβ “ mintβ, 1u.
1486
+ Proof. If β ě 0, we recall that
1487
+ ΛpWR, βq “
1488
+ inf
1489
+ EĎWR JpχEq.
1490
+ By using Theorem 5.3 and the isoperimetric inequality, we have
1491
+ RpE, βq “ JpχEq
1492
+
1493
+ PF pE, WRq ` ˆβ
1494
+ ż
1495
+ BWRXBE
1496
+ FpνEqdHN´1
1497
+ |E|
1498
+ ě ˆβ PF pEq
1499
+ |E|
1500
+ ě ˆβ PF pWrq
1501
+ |Wr|
1502
+ ě ˆβ PF pWRq
1503
+ |WR|
1504
+ “ ˆβ N
1505
+ R ,
1506
+ where Wr is the wulff shape of radius r ă R, with |Wr| “ |E|.
1507
+ This proves ΛpWR, βq ě ˆβ N
1508
+ R . For the reverse inequality we take E “ WR, hence
1509
+ ΛpWR, βq “ ℓpWR, βq ď RpWR, βq “ ˆβ N
1510
+ R .
1511
+ Now, we study the case ´1 ă β ă 0 and we will make use of the Γ-convergence.
1512
+ Hence, let up P W 1,ppWRq a minimizer of (5.2). We know, thanks to the Proposition
1513
+ 5.6, that
1514
+ lim
1515
+ pÑ1` λ1pWR, p, βq “ ΛpWR, βq
1516
+ and we take up “ ϕp as in (5.20). So, the minimizer converges strongly in L1pWRq to
1517
+ u P BV pWRq, almost everywhere in WR and up
1518
+ ˚á u in BV pΩq for p Ñ 1`. Moreover,
1519
+ up is radially increasing, hence u is nondecreasing and this implies that its superlevel
1520
+ sets tu ą tu are concentric Wulff shapes tr ă F opxq ă Ru and, by Theorem 5.3, it holds
1521
+ that
1522
+ ΛpWR, βq “ N
1523
+ R
1524
+ p r
1525
+ RqN´1 ` β
1526
+ 1 ´ p r
1527
+ RqN´1
1528
+ for some r P r0, Rr. Therefore, by minimizing the function
1529
+ fptq “ tN´1 ` β
1530
+ 1 ´ tN
1531
+ t P r0, 1r,
1532
+ we observe that the minimum is attained at t “ 0. Hence, the thesis follows.
1533
+ 23
1534
+
1535
+ Finally, we prove an isoperimetric inequality for ΛpΩ, βq when a volume constraint
1536
+ holds: if β ě 0, the Wulff shape is a minimizer and, if β ă 0, it is a maximizer for
1537
+ ΛpΩ, βq.
1538
+ Proposition 5.9. If β ě 0 and WR is the wulff shape of radius R and |WR| “ |Ω|, then
1539
+ ΛpWR, βq ď ΛpΩ, βq.
1540
+ If ´1 ă β ă 0, then
1541
+ ΛpWR, βq ě ΛpΩ, βq.
1542
+ Proof. If β ě 0, by using the same argument of the Proposition 5.8, we have that then
1543
+ RpE, βq “ JpχEq ě ˆβ PF pWRq
1544
+ |WR|
1545
+ “ ˆβ N
1546
+ R “ ΛpWR, βq,
1547
+ for any E Ď Ω. The conclusion follows by passing to the infimum on the set E Ď Ω and
1548
+ using Theorem 5.3.
1549
+ If ´1 ă β ă 0, then using the isoperimetric inequality [14] and (5.21), we have that
1550
+ ΛpΩ, βq ď β PF pΩq
1551
+ |Ω|
1552
+ ď β PF pWRq
1553
+ |WR|
1554
+ “ ΛpWR, βq.
1555
+ Acknowledgement
1556
+ This work has been partially supported by the MIUR-PRIN 2017 grant “Qualitative
1557
+ and quantitative aspects of nonlinear PDE’s”, by GNAMPA of INdAM, by the FRA
1558
+ Project (Compagnia di San Paolo and Universit`a degli studi di Napoli Federico II)
1559
+ 000022--ALTRI_CDA_75_2021_FRA_PASSARELLI.
1560
+ References
1561
+ [1] A. Alvino, V. Ferone, G. Trombetti, and P.-L. Lions. Convex symmetrization and
1562
+ applications. Ann. Inst. H. Poincar´e C Anal. Non Lin´eaire, 14(2):275–293, 1997. 7
1563
+ [2] M. Amar and G. Bellettini. A notion of total variation depending on a metric with
1564
+ discontinuous coefficients. In Annales de l’Institut Henri Poincar´e C, Analyse non
1565
+ lin´eaire, volume 11, pages 91–133. Elsevier, 1994. 17
1566
+ [3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free
1567
+ discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press,
1568
+ Oxford University Press, New York, 2000. 13
1569
+ [4] G. Anzellotti and M. Giaquinta. Funzioni BV e tracce. Rendiconti del Seminario
1570
+ Matematico della Universit`a di Padova, 60:1–21, 1978. 3, 7, 8
1571
+ 24
1572
+
1573
+ [5] M. Bareket. On an isoperimetric inequality for the first eigenvalue of a boundary
1574
+ value problem. SIAM Journal on Mathematical Analysis, 8(2):280–287, 1977. 3
1575
+ [6] V. Caselles, G. Facciolo, and E. Meinhardt. Anisotropic Cheeger sets and applica-
1576
+ tions. SIAM J. Imaging Sci., 2(4):1211–1254, 2009. 7, 15
1577
+ [7] G. Crasta and A. Malusa. The distance function from the boundary in a Minkowski
1578
+ space.
1579
+ Transactions of the American Mathematical Society, 359(12):5725–5759,
1580
+ 2007. 5, 6, 7, 10
1581
+ [8] G. De Philippis and F. Maggi. Regularity of free boundaries in anisotropic capillarity
1582
+ problems and the validity of Young’s law.
1583
+ Archive for Rational Mechanics and
1584
+ Analysis, 216(2):473–568, 2015. 4
1585
+ [9] F. Della Pietra and N. Gavitone. Faber-Krahn inequality for anisotropic eigenvalue
1586
+ problems with Robin boundary conditions. Potential Anal., 41(4):1147–1166, 2014.
1587
+ 3, 14, 22
1588
+ [10] F. Della Pietra, C. Nitsch, F. Oliva, and C. Trombetti. On the behavior of the
1589
+ first eigenvalue of the p-Laplacian with Robin boundary conditions as p goes to 1.
1590
+ Advances in Calculus of Variations, 2022. 15
1591
+ [11] F. Della Pietra, F. Oliva, and S. Segura de Leon.
1592
+ Behaviour of solutions to
1593
+ p-Laplacian with Robin boundary conditions as p goes to 1.
1594
+ arXiv preprint
1595
+ arXiv:2204.01814, 2022. 19
1596
+ [12] F. Della Pietra and G. Piscitelli. Sharp estimates for the first Robin eigenvalue of
1597
+ nonlinear elliptic operators. arXiv preprint arXiv:2204.01814, 2022. 14
1598
+ [13] V. Ferone, C. Nitsch, and C. Trombetti. On a conjectured reverse Faber-Krahn
1599
+ inequality for a Steklov–type Laplacian eigenvalue. Communications on Pure &
1600
+ Applied Analysis, 14(1):63, 2015. 3
1601
+ [14] I. Fonseca and S. M¨uller. A uniqueness proof for the Wulff theorem. Proceedings
1602
+ of the Royal Society of Edinburgh Section A: Mathematics, 119(1-2):125–136, 1991.
1603
+ 7, 24
1604
+ [15] P. Freitas and D. Krejˇciˇr´ık.
1605
+ The first Robin eigenvalue with negative boundary
1606
+ parameter. Advances in Mathematics, 280:322–339, 2015. 3
1607
+ [16] C. Gerhardt. Existence and regularity of capillary surfaces. Boll. Un. Mat. Ital.
1608
+ (4), 10:317–335, 1974. 3, 4
1609
+ [17] E. Giusti. The equilibrium configuration of liquid drops. Journal f¨ur die reine und
1610
+ angewandte Mathematik, 329:53–63, 1981. 3, 4
1611
+ [18] E. Giusti.
1612
+ Minimal surfaces and functions of bounded variation, volume 80.
1613
+ Springer, 1984. 7, 12
1614
+ 25
1615
+
1616
+ [19] H. Kovaˇr´ık and K. Pankrashkin. On the p-Laplacian with Robin boundary condi-
1617
+ tions and boundary trace theorems. Calculus of Variations and Partial Differential
1618
+ Equations, 2(56):1–29, 2017. 3
1619
+ [20] S. Littig and F. Schuricht. Convergence of the eigenvalues of the p-Laplace operator
1620
+ as p goes to 1. Calc. Var. Partial Differential Equations, 49(1-2):707–727, 2014. 4,
1621
+ 11, 13
1622
+ [21] L. Modica. Gradient theory of phase transitions with boundary contact energy.
1623
+ Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire, 4(5):487–512, 1987.
1624
+ 16
1625
+ [22] C. B. Morrey Jr. Multiple integrals in the calculus of variations. Classics in Math-
1626
+ ematics. Springer-Verlag, Berlin, 2008. Reprint of the 1966 edition [MR0202511].
1627
+ 14
1628
+ [23] G. Paoli and L. Trani. Two estimates for the first Robin eigenvalue of the Finsler
1629
+ Laplacian with negative boundary parameter. Journal of Optimization Theory and
1630
+ Applications, 181(3):743–757, 2019. 3
1631
+ [24] T. Schmidt. Strict interior approximation of sets of finite perimeter and functions of
1632
+ bounded variation. Proceedings of the American Mathematical Society, 143(5):2069–
1633
+ 2084, 2015. 4
1634
+ [25] G. Wang and C. Xia.
1635
+ A sharp lower bound for the first eigenvalue on Finsler
1636
+ manifolds. Annales de l’IHP Analyse non lin´eaire, 30(6):983–996, 2013. 6
1637
+ 26
1638
+
PNAzT4oBgHgl3EQflP3v/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QdAyT4oBgHgl3EQftvmX/content/tmp_files/2301.00601v1.pdf.txt ADDED
@@ -0,0 +1,1552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Naturality of the ∞-Categorical Enriched Yoneda Embedding
2
+ Shay Ben Moshe
3
+ Abstract
4
+ We make Hinich’s ∞-categorical enriched Yoneda embedding natural. To do so, we exhibit
5
+ it as the unit of a partial adjunction between the functor taking enriched presheaves and
6
+ Heine’s functor taking a tensored category to an enriched category. Furthermore, we study a
7
+ finiteness condition of objects in a tensored category called being atomic, and show that the
8
+ partial adjunction restricts to a (non-partial) adjunction between taking enriched presheaves
9
+ and taking atomic objects.
10
+ Contents
11
+ 1
12
+ Introduction
13
+ 2
14
+ 1.1
15
+ Overview
16
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
+ 2
18
+ 1.2
19
+ Relation to Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
+ 4
21
+ 1.3
22
+ Further Questions
23
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
+ 5
25
+ 1.4
26
+ Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
+ 6
28
+ 2
29
+ Generalities on Enriched Categories
30
+ 6
31
+ 2.1
32
+ Enriched Categories and Tensored Categories . . . . . . . . . . . . . . . . . . . . . .
33
+ 7
34
+ 2.2
35
+ Enriched Yoneda Lemma and Weighted Colimits . . . . . . . . . . . . . . . . . . . .
36
+ 7
37
+ 3
38
+ Partial Adjunction
39
+ 10
40
+ 4
41
+ 2-Categorical Structures
42
+ 11
43
+ 4.1
44
+ Adjunctions in O-Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . .
45
+ 12
46
+ 4.2
47
+ Tensored Categories
48
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
+ 15
50
+ 4.3
51
+ Tensored Categories to Enriched Categories . . . . . . . . . . . . . . . . . . . . . . .
52
+ 16
53
+ 4.4
54
+ Evaluation and Enriched Hom in Tensored Categories
55
+ . . . . . . . . . . . . . . . . .
56
+ 17
57
+ 5
58
+ Atomic Objects, Presheaves and Yoneda
59
+ 19
60
+ 5.1
61
+ Internally Left Adjoints
62
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
+ 20
64
+ 5.2
65
+ Atomic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
+ 20
67
+ 5.3
68
+ Atomics–Presheaves Adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
+ 23
70
+ 6
71
+ Heine’s Enriched Yoneda Embedding
72
+ 24
73
+ References
74
+ 25
75
+ 1
76
+ arXiv:2301.00601v1 [math.CT] 2 Jan 2023
77
+
78
+ 1
79
+ Introduction
80
+ 1.1
81
+ Overview
82
+ 1.1.1
83
+ Partial Adjunction
84
+ The main goal of this paper is to make Hinich’s enriched Yoneda embedding in the ∞-categorical
85
+ setting from [Hin20] into a natural transformation. We work in the framework of enriched ∞-
86
+ categories as developed in [Hin20, Hin21, GH15, Hei20]. These source differ in notation, and we
87
+ introduce our notation along the paper. For brevity, henceforth we use the term (enriched) category
88
+ to mean an (enriched) ∞-category, and a 2-category to mean an (∞, 2)-category. Throughout this
89
+ paper we fix a presentably monoidal category V ∈ Alg(PrL).
90
+ For every V-enriched category C0 ∈ CatV and a presentably V-tensored category D ∈ LModV(PrL),
91
+ Hinich defined an (unenriched) category of V-functors FunV(C0, D) ∈ PrL. Using this, he defined a
92
+ presentably V-tensored category of enriched presheaves PV(C0) := FunVrev(Cop
93
+ 0 , V) ∈ LModV(PrL).
94
+ One of the main results of [Hin20] is the construction of a V-enriched Yoneda embedding
95
+ よV : C0 → PV(C0),
96
+ namely, an object of FunV(C0, PV(C0)) ∈ PrL, satisfying the enriched Yoneda lemma. However,
97
+ this map is not shown to be natural in C0, which is the central question of the present paper.
98
+ In a sequel paper [Hin21], Hinich shows that his enriched Yoneda embedding enjoys the following
99
+ universal property:
100
+ Theorem 1.1 ([Hin21, 6.4.7]). Let C0 ∈ CatV. Then, for every D ∈ LModV(PrL), composition
101
+ with the enriched Yoneda embedding induces an equivalence
102
+ (よV)∗ : FunL
103
+ V(PV(C0), D) ∼
104
+ −→ FunV(C0, D).
105
+ This almost exhibits よV as a unit of an adjunction, but there are two problems:
106
+ (1) FunV(C0, D) is not the hom in any category (note that C0 is V-enriched while D is V-tensored).
107
+ (2) C0 is small while D is large.
108
+ To solve Problem (1), we use the fact that presentably V-tensored categories produce V-enriched
109
+ categories, as was first proven in [GH15, Corollary 7.4.9], and made functorial in the work of [Hei20],
110
+ a special case of which reads as follows:
111
+ Theorem 1.2 ([Hei20, Corollary 7.16]). There is an functor
112
+ χ: LModV(PrL) → �
113
+ CatV
114
+ witnessing the source as a (non-full non-wide) subcategory of the target.
115
+ We shall also use [Hei20, Theorem 5.3], showing that for every C0 ∈ CatV and D ∈ LModV(PrL)
116
+ there is an equivalence FunV(C0, D)≃ ∼= homV(C0, χ(D)), where the right hand side denotes the
117
+ space of morphisms in �
118
+ CatV. Combining these result, in Proposition 2.12 we conclude that there is
119
+ an isomorphism of spaces
120
+ homL
121
+ V(PV(C0), D) ∼
122
+ −→ homV(C0, χ(D)),
123
+ 2
124
+
125
+ where the left hand side denotes the underlying space of FunL
126
+ V(PV(C0), D).
127
+ To deal with Problem (2), we recall that one can define adjoints partially, namely an adjoint
128
+ and a (co)unit map defined only on a full subcategory (or, more generally, relative to a functor), see
129
+ Definition 3.1. Furthermore, we recall the folklore result that (partial) adjoints can be constructed
130
+ point-wise, as we show in Proposition 3.5.
131
+ With these results in mind, we deduce our first main result:
132
+ Theorem A (Theorem 3.6). The functor χ: LModV(PrL) → �
133
+ CatV has a partial left adjoint
134
+ PV : CatV → LModV(PrL) with partial unit agreeing with the enriched Yoneda embedding.
135
+ In particular, for every f : C0 → D0 in CatV, we get an induced V-linear left adjoint f! : PV(C0) →
136
+ PV(D0), and an isomorphism f!よV ∼= よVf, as explained in Corollary 3.8.
137
+ 1.1.2
138
+ Atomics–Presheaves Adjunction
139
+ In a somewhat different direction, we study atomic objects, a finiteness condition on objects of
140
+ presentably V-tensored categories. We show that this condition is closely related to the enriched
141
+ Yoneda embedding, and, in particular, gives another solution for Problem (2), leading to a (non-
142
+ partial) adjunction.
143
+ Let C ∈ LModV(PrL), and let X ∈ C. The functor − ⊗ X : V → C is a V-linear left adjoint
144
+ functor. We say that X is atomic if the right adjoint homV(X, −) is itself a left adjoint and the
145
+ canonical lax V-linear structure on it is strong (see Definition 5.4). These objects form a small
146
+ full V-subcategory Cat ⊂ χ(C). We show that the construction C �→ Cat is functorial in internally
147
+ left adjoint functors, that is, V-linear left adjoint functors L: C → D ∈ LModV(PrL) whose right
148
+ adjoint is itself a left adjoint and the canonical lax V-linear structure on it is strong. Namely, we
149
+ obtain a functor
150
+ (−)at : LModV(PrL)iL → CatV.
151
+ As a key example, in Proposition 5.17 we show that for any C0 ∈ CatV and X ∈ C0, the
152
+ image よV(X) ∈ PV(C0) is atomic.
153
+ To see this, recall that by the enriched Yoneda lemma
154
+ homV(よV(X), −) is given by evaluation at X, which preserves (co)limits and is V-linear, as we
155
+ show in Proposition 4.24. Therefore, we get a factorization of the enriched Yoneda embedding
156
+ through the atomics よV : C0 → PV(C0)at.
157
+ Furthermore, we show that the functoriality of PV
158
+ obtained in Theorem A sends V-functors to internally left adjoints, namely, restricts to a functor
159
+ PV : CatV → LModV(PrL)iL.
160
+ Our second main result is that the partial adjunction of Theorem A restricts accordingly:
161
+ Theorem B (Theorem 5.20). There is an adjunction
162
+ PV : CatV ⇄ LModV(PrL)iL :(−)at
163
+ with unit agreeing with the enriched Yoneda embedding.
164
+ In particular, for every f : C0 → D0 in CatV, the V-linear left adjoint f! : PV(C0) → PV(D0),
165
+ is internally left adjoint, and thus admits a right adjoint f ⊛ : PV(D0) → PV(C0) which is itself
166
+ a V-linear left adjoint. Using this, in Corollary 5.23 we show that f ⊛(G)(X) ∼= G(f(X)). We
167
+ warn the reader that this does not imply that f ⊛ is the functor given by pre-composition, see
168
+ Subsection 1.3.1 for further discussion.
169
+ 3
170
+
171
+ 1.1.3
172
+ 2-Categorical Structures
173
+ In our discussion of atomic objects and their relation to the enriched Yoneda embedding, we use
174
+ certain 2-categorical aspects of the theory of enriched categories and tensored categories. Notably,
175
+ we have considered the condition for a V-linear left adjoint functor to be internally left adjoint,
176
+ which we show has a particularly simple 2-categorical interpretation.
177
+ In Definition 4.12 we recall that the category of V-tensored categories and lax V-linear functors
178
+ enhances to a 2-category LModlax
179
+ V . We show that a 1-morphism in that 2-category is a left adjoint, if
180
+ and only if it is strong V-linear and left adjoint (on the underlying category). This result is a special
181
+ case of a more general result we deduce from Lurie’s work on relative adjunctions and [HHLN20a],
182
+ concerning the 2-category Monlax
183
+ O
184
+ of O-monoidal categories and lax O-monoidal functors for some
185
+ operad O, which may be of independent interest.
186
+ Corollary C (Corollary 4.11). The left adjoints in Monlax
187
+ O
188
+ are the lax O-monoidal functors that
189
+ are strong and fiber-wise left adjoint.
190
+ The category LModV(PrL) also enhances into a 2-category, which by the above result is a full 2-
191
+ subcategory LModV(PrL) ⊂ LModlax
192
+ V ( �
193
+ Cat)L of the left adjoints in the 2-category LModlax
194
+ V ( �
195
+ Cat).
196
+ Furthermore, using the above result again, we see that internally left adjoints are precisely the left
197
+ adjoint morphisms in the 2-category LModV(PrL).
198
+ As explained in [Hei20, 7.10], by [GH15, Proposition 5.7.16], the category of V-enriched cate-
199
+ gories also enhances to a 2-category CatV. Furthermore, by [Hei20, Theorem 7.11], the functor χ
200
+ of Theorem 1.2 enhances to a 2-functor. Using these results we also deduce the following result
201
+ which may be of independent interest. Here a 2-functor is called 2-fully faithful if it induces an
202
+ isomorphism on hom categories, i.e. if it exhibits the source as a full 2-subcategory of the target.
203
+ Corollary D (Corollary 4.19, Corollary 5.3). The functor χ enhances to a 2-fully faithful 2-functor
204
+ χ: LModV(PrL) → ( �
205
+ CatV)L.
206
+ Taking left adjoints again we get the 2-fully faithful 2-functor
207
+ χ: LModV(PrL)iL → ( �
208
+ CatV)LL.
209
+ In particular, for f : C0 → D0 in CatV, since f! : PV(C0) → PV(D0) is internally left adjoint, we
210
+ get a corresponding double adjunction χ(f!) ⊣ χ(f ⊛) ⊣ χ(f⊛) in �
211
+ CatV.
212
+ 1.2
213
+ Relation to Previous Work
214
+ This paper shares many of the ideas on atomic objects developed in our previous paper with
215
+ Tomer Schlank, most notably [BMS21, Theorem D]. To avoid the usage of enriched categories,
216
+ in our previous paper we work over a mode M, that is, an idempotent algebra in PrL. The key
217
+ feature of modes is that LModM(PrL) is a full subcategory of PrL, namely, a left adjoint functor is
218
+ automatically (and uniquely) M-linear. This allowed us, for example, to simplify the definition of
219
+ X being atomic to having homM(X, −): C → M commute with colimits (and thus automatically
220
+ M-linear). Particularly, in the previous paper we have ignored the M-enriched structure on the
221
+ category of atomic objects. In addition, we worked with unenriched presheaves and the unenriched
222
+ Yoneda embedding, further tensored with M.
223
+ In particular, [BMS21, Theorem D] is a weaker
224
+ statement than the main results of the present paper in these respects.
225
+ 4
226
+
227
+ On the other hand, in the unenriched context, the two different functorialities of presheaves
228
+ and naturalities of the Yoneda embedding were shown coincide, contrary to the enriched case of
229
+ the present paper (see the discussion in Subsection 1.3.1). In addition, our goal in the previous
230
+ paper was different. The unenriched presheaves functor is endowed with a symmetric monoidal
231
+ structure, and through the adjunction, this makes the atomics functor lax symmetric monoidal,
232
+ and the Yoneda a symmetric monoidal natural transformation. In the present paper we do not deal
233
+ with the multiplicative structure (though see the discussion in Subsection 1.3.4).
234
+ 1.3
235
+ Further Questions
236
+ We now list several further questions left open, which we expect have a positive answer, but we do
237
+ not know how to approach.
238
+ 1.3.1
239
+ Naturality for Pre-composition
240
+ The first question is closely related to [Ram22] and [HHLN20b, Corollary F], which deal with the
241
+ case V = S.
242
+ Recall that using the universal property of PV(C0), we deduced Theorem A, assembling PV into
243
+ a functor, and the enriched Yoneda embedding into a natural transformation. In addition, we saw
244
+ that f! has a right adjoint f ⊛, and we showed that f ⊛(G)(X) ∼= G(f(X)).
245
+ The construction of PV(C0) as enriched functors from Cop
246
+ 0
247
+ to V shows that it admits an-
248
+ other functoriality in C0. More specifically, [Hin20, 6.1.4] implies that it assembles into a functor
249
+ PV : CatV → (PrR)op, sending f to f ∗ : PV(D0) → PV(C0) given by pre-composition, admitting a
250
+ left adjoint f?, commonly spelled “f lower what”. Note that this functoriality does not a priori
251
+ give the V-tensored structure. Also note that f ⊛(G)(X) ∼= G(f(X)) ∼= f ∗(G)(X), however it is not
252
+ clear that this holds naturally in X, G or C0.
253
+ Furthermore, Hinich’s construction of the enriched Yoneda embedding, as described for example
254
+ in [Hin21, 7.3.1 and 7.3.2], seems to interact with the f ∗, and thus f?, functoriality, but we don’t
255
+ know how to extract naturality from his results.
256
+ Question 1.3. Can the f? functoriality be extended to V-modules?
257
+ Can the enriched Yoneda
258
+ embedding be made natural for the f? functoriality? Do these agree with the f! functoriality and
259
+ naturality of the enriched Yoneda embedding?
260
+ 1.3.2
261
+ Heine’s and Hinich’s Enriched Yoneda Embeddings
262
+ In [Hei20], Heine also defines an enriched Yoneda embedding よV
263
+ Heine : C0 → χ(PV(C0)) by different
264
+ means. As we explain in Section 6, the main results of this paper hold for this version as well,
265
+ producing an adjunction
266
+ PV
267
+ Heine : CatV ⇄ LModV(PrL)iL :(−)at
268
+ with unit agreeing with Heine’s enriched Yoneda embedding. The uniqueness of adjoints implies that
269
+ there is a natural isomorphism ψ: PV
270
+ Heine
271
+
272
+ −→ PV, together with an isomorphism ψよV
273
+ Heine ∼= よV. On
274
+ the other hand, by the construction of the adjunction, for every C0 ∈ CatV there is an isomorphism
275
+ PV
276
+ Heine(C0) ∼= PV(C0). We thus get an automorphism PV(C0)
277
+ ψC0
278
+ −−→ PV
279
+ Heine(C0) ∼= PV(C0). It is not
280
+ clear to us that this automorphism is the identity. Showing this is equivalent to showing that these
281
+ two versions of the enriched Yoneda embedding coincide.
282
+ 5
283
+
284
+ Question 1.4. Do the enriched Yoneda embeddings constructed by Hinich and Heine coincide?
285
+ Namely, is the above automorphism the identity?
286
+ 1.3.3
287
+
288
+ Cat-Enrichment
289
+ Recall that χ enhances to a 2-functor. Furthermore, the universal property of the enriched Yoneda
290
+ embedding of Theorem 1.1 is originally stated for functor categories, though one of the sides is not
291
+ constructed as the �
292
+ Cat-enriched hom in a category. This leads to the following question:
293
+ Question 1.5. Can the (partial) adjunctions be made �
294
+ Cat-enriched?
295
+ 1.3.4
296
+ Multiplicative Structure
297
+ For simplicity, assume that V is presentably symmetric monoidal. [Hei20, Corollary 7.16] enhances
298
+ χ into a symmetric monoidal functor. Via the adjunction, it may be possible to endow PV with an
299
+ oplax symmetric monoidal structure, either by making the subfunctor (−)at lax symmetric monoidal
300
+ and using the main result of [HHLN20a], or by proving a version of it for partial adjunctions
301
+ and directly applying to PV. Analogously to the case of V = S, one would expect the resulting
302
+ oplax symmetric monoidal structure on PV to be strong, and thus make the adjunction symmetric
303
+ monoidal. Assuming this, for any operad O, we get that if C0 is O-monoidal, then PV(C0) and the
304
+ enriched Yoneda embedding are endowed with an O-monoidal structure.
305
+ Separately, in [Hin21, 7.2], Hinich studies the multiplicative structure of enriched presheaves and
306
+ the enriched Yoneda embedding. In particular, under the above assumptions, he endows PV(C0) and
307
+ the enriched Yoneda embedding with an O-monoidal structure. He further proves an O-monoidal
308
+ version of the universal property of Theorem 1.1.
309
+ Question 1.6. Can the adjunction be made symmetric monoidal? Does the induced O-monoidal
310
+ structure on PV(C0) and the enriched Yoneda embedding agree with those constructed by Hinich?
311
+ 1.4
312
+ Acknowledgments
313
+ We would like to thank Lior Yanovski for numerous useful conversations about atomic objects,
314
+ enriched categories and weighted colimits. We also thank Shai Keidar, Shaul Ragimov, Maxime
315
+ Ramzi and Noam Zimhoni for comments on earlier drafts of this paper. Particularly, we thank
316
+ Maxime for pointing several subtle missing components in earlier drafts, and suggesting corrections
317
+ for some of them.
318
+ 2
319
+ Generalities on Enriched Categories
320
+ In this section we review some generalities on enriched categories, their relationship to tensored
321
+ categories, and the enriched Yoneda embedding. We shall not delve into the details of the con-
322
+ structions, as most of them will not play a role in the present paper, but rather only the formal
323
+ properties of the resulting objects.
324
+ 6
325
+
326
+ 2.1
327
+ Enriched Categories and Tensored Categories
328
+ Definition 2.1. We denote the (large) category of V-enriched categories, defined in [Hin20, 7.1.2],
329
+ by CatV. For C0, D0 ∈ CatV, we denote the space of V-functors between them by homV(C0, D0) ∈ S.
330
+ Similarly, we let �
331
+ CatV be the (huge) category of large V-enriched categories.
332
+ V-enriched categories are closely related to categories tensored over V, as was first proven in
333
+ [GH15, Corollary 7.4.9], and made functorial in the work of [Hei20].
334
+ Indeed, Heine constructs
335
+ the category ωLModlax
336
+ V
337
+ (denoted ωLModV there) of weakly V-tensored categories and lax V-linear
338
+ functors, and a full subcategory ωLModcl,lax
339
+ V
340
+ thereof on the closed weakly V-tensored categories.
341
+ Theorem 2.2 ([Hei20, Theorem 7.3 and Proposition 7.8]). There is an equivalence
342
+ χ: ωLModcl,lax
343
+ V
344
+
345
+ −→ CatV.
346
+ Considering the large version of this equivalence, one can restrict the source to the subcategory
347
+ with objects presentable categories with V-action commuting with colimits (which are automatically
348
+ closed) and morphisms the (strong) V-linear left adjoint functors.
349
+ Definition 2.3. We define the category of presentably V-tensored categories to be PrL
350
+ V := LModV(PrL).
351
+ For C, D ∈ PrL
352
+ V, we denote the space of V-linear left adjoint functors between them by homL
353
+ V(C, D) ∈
354
+ �S, which is the space of objects of the category FunL
355
+ V(C, D) ∈ �
356
+ Cat.
357
+ Corollary 2.4 ([Hei20, Corollary 7.16]). There is a functor
358
+ χ: PrL
359
+ V → �
360
+ CatV.
361
+ witnessing the source as a (non-full non-wide) subcategory of the target.
362
+ For C ∈ PrL
363
+ V, this constructs χ(C) ∈ �
364
+ CatV, both of which have the same underlying category
365
+ and thus space of objects.
366
+ 2.2
367
+ Enriched Yoneda Lemma and Weighted Colimits
368
+ In [Hin20, Hin21] Hinich constructs enriched presheaves and the enriched Yoneda embedding, which
369
+ we recall in this subsection.
370
+ We begin with Hinich’s model for the category of V-functors from a V-enriched category to a
371
+ V-tensored category. In Hinich’s model, a V-enriched category C0 ∈ CatV is an algebra in some
372
+ operad constructed from the space of objects C≃
373
+ 0 (see [Hin20, 3.1.1]). For a presentably V-tensored
374
+ category D ∈ PrL
375
+ V, Hinich endows the (unenriched) category of functors Fun(C≃
376
+ 0 , D) with a left
377
+ module structure over this operad (see [Hin20, 6.1.1]). In particular, one can take left C0-modules
378
+ inside.
379
+ Definition 2.5 ([Hin20, 6.1.3]). Let C0 ∈ CatV and D ∈ PrL
380
+ V, then the category of V-functors from
381
+ C0 to D is defined to be
382
+ FunV(C0, D) := LModC0(Fun(C≃
383
+ 0 , D)) ∈ PrL.
384
+ We note that FunV(C0, D) is indeed presentable. To see this, note that Fun(C≃
385
+ 0 , D) is an (unen-
386
+ riched) presheaf category, and thus is presentable by [Lur09, Proposition 5.5.3.6]. Then, the module
387
+ category FunV(C0, D) is also presentable by [Lur17, Corollary 4.2.3.7].
388
+ 7
389
+
390
+ Remark 2.6. We warn the reader that in [Hei20], FunV(C0, D) is denoted by FunV(C0, χ(D)).
391
+ Definition 2.7 ([Hin20, 6.2.2]). Let C0 ∈ CatV. The V-tensored category of V-enriched presheaves
392
+ is defined to be
393
+ PV(C0) := FunVrev(Cop
394
+ 0 , V) ∈ PrL
395
+ V.
396
+ Remark 2.8. V is a V-V-bimodule in PrL. One of the V-module structures is used to define the
397
+ presentable category of Vrev-enriched functors, and the other is used to endow the resulting category
398
+ with a V-module structure.
399
+ We now record the main results about Hinich’s enriched Yoneda embedding. We remark that
400
+ in [Hin20, 6.2.7], Hinich proves his version of the enriched Yoneda lemma, very closely related to
401
+ (1) of Theorem 2.9.
402
+ However, the form described below is somewhat different, and relies on a
403
+ definition of homV and the evaluation at X that were not introduced thus far. We postpone these
404
+ definitions to Definition 4.20 and Definition 4.23, and the proof to Proposition 4.25, but include
405
+ the statement here for completeness of the exposition. Note that (1) (as well as (2)) will not be
406
+ used before Section 5.
407
+ Theorem 2.9 ([Hin20, Hin21]). Let C0 ∈ CatV. Then, there is a V-enriched Yoneda embedding
408
+ V-functor
409
+ よV : C0 → PV(C0),
410
+ that is, an object of FunV(C0, PV(C0)). For every D ∈ PrL
411
+ V, there is a weighted colimit functor
412
+ colim(−)
413
+ C0 (−): PV(C0) × FunV(C0, D) → D.
414
+ These satisfy the following properties:
415
+ (1) For every X ∈ C0, the functor homV(よV(X), −): PV(C0) → V agrees with evaluation at X
416
+ as V-linear functors.
417
+ (2) colim(−)
418
+ C0 (−) commutes with colimits in both arguments separately, and commutes with the
419
+ V-action in the first argument.
420
+ (3) There is an equivalence
421
+ (よV)∗ : FunL
422
+ V(PV(C0), D) ⇄ FunV(C0, D) :colim(−)
423
+ C0 (−).
424
+ Proof. よV is constructed in [Hin20, 6.2.4]. (1) is deferred to Proposition 4.25, though see [Hin20,
425
+ 6.2.7]. colim(−)
426
+ C0 (−) is constructed in [Hin21, 6.2.2], where (2) is explained. (3) is [Hin21, 6.3.3 and
427
+ 6.4.6].
428
+ In [Hei20, Theorem 5.3, see also the discussion in the beginning of Section 5], Heine shows that
429
+ FunV(C0, D) is closely related to the hom in V-enriched categories via χ (see also [Hin20, 6.3.6]).
430
+ We recall a special case of Heine’s results as follows:
431
+ Proposition 2.10 ([Hei20, Theorem 5.3]). Let C0 ∈ CatV and D ∈ PrL
432
+ V, then there is an equiva-
433
+ lence
434
+ FunV(C0, D)≃ ∼= homV(C0, χ(D))
435
+ 8
436
+
437
+ natural in C0 and D. Namely, there is a natural isomorphism between the functors
438
+ (CatV)op × PrL
439
+ V
440
+ i×χ
441
+ −−→ (�
442
+ CatV)op × �
443
+ CatV
444
+ homV
445
+ −−−−→ �S
446
+ and
447
+ (CatV)op × PrL
448
+ V
449
+ FunV(−,−)
450
+ −−−−−−−→ Cat
451
+ (−)≃
452
+ −−−→ S ⊂ �S
453
+ We use this to transform the enriched Yoneda embedding to a morphism in �
454
+ CatV, and deduce a
455
+ universal property similar to (3) of Theorem 2.9 where both the source and the target are the hom
456
+ in some category.
457
+ Definition 2.11. We denote by the same notation the enriched Yoneda embedding V-functor
458
+ よV : C0 → χ(PV(C0)), corresponding to the enriched Yoneda embedding under the equivalence
459
+ FunV(C0, PV(C0))≃ ∼= homV(C0, χ(PV(C0))).
460
+ Proposition 2.12. Let C0 ∈ CatV and D ∈ PrL
461
+ V, then the composition
462
+ homL
463
+ V(PV(C0), D)
464
+ χ−→ homV(χ(PV(C0)), χ(D))
465
+ (よV)∗
466
+ −−−−→ homV(C0, χ(D))
467
+ is an equivalence.
468
+ Proof. Naturality in the PrL
469
+ V coordinate of Proposition 2.10 shows that for C0 ∈ CatV and D, E ∈
470
+ PrL
471
+ V we get a commutative square:
472
+ homL
473
+ V(E, D)
474
+ homV(χ(E), χ(D))
475
+ hom(FunV(C0, E)≃, FunV(C0, D)≃)
476
+ hom(homV(C0, χ(E)), homV(C0, χ(D)))
477
+ χ
478
+
479
+ Using the exponential adjunction we get a commutative square:
480
+ homL
481
+ V(E, D) × FunV(C0, E)≃
482
+ homV(χ(E), χ(D)) × homV(C0, χ(E))
483
+ FunV(C0, D)≃
484
+ homV(C0, χ(D))
485
+ χ
486
+
487
+
488
+
489
+ Taking E = PV(C0), and picking the point よV ∈ FunV(C0, PV(C0))≃, we get a commutative square:
490
+ homL
491
+ V(PV(C0), D)
492
+ homV(χ(PV(C0)), χ(D))
493
+ FunV(C0, D)≃
494
+ homV(C0, χ(D))
495
+ χ
496
+ (よV)∗
497
+ (よV)∗
498
+
499
+ The left morphism is an equivalence by applying (−)≃ to (3) of Theorem 2.9. Thus, the left-bottom
500
+ composition is an equivalence, and by the commutativity of the diagram, so is the upper-right
501
+ composition, concluding the proof.
502
+ 9
503
+
504
+ 3
505
+ Partial Adjunction
506
+ In this section we prove Theorem A, namely the naturality of the enriched Yoneda embedding.
507
+ To do so, we first define (unenriched) partial adjunctions. Then, we show the folklore result that
508
+ (partial) adjoints can be constructed point-wise, from which the naturality of the enriched Yoneda
509
+ embedding follows immediately.
510
+ Definition 3.1. Let L: C0 → D0 be a functor, and i: E0 → D0 another functor. The data of
511
+ a partial right adjoint (of L relative to i) is a functor R: E0 → C0 and a natural transformation
512
+ ε: LR ⇒ i called the partial counit, such that for every X ∈ C0 and Y ∈ E0 the composition
513
+ homC0(X, RY )
514
+ L−→ homD0(LX, LRY )
515
+ εY ◦−
516
+ −−−→ homD0(LX, iY )
517
+ is an isomorphism. A partial left adjoint with a partial unit is defined dually, by taking (−)op.
518
+ Remark 3.2. What we call a partial adjunction is typically called a relative adjunction. However, in
519
+ Section 4 we use the distinct concept of relative adjunctions developed by Lurie. To avoid confusion,
520
+ we call what is typically called a relative adjunction a partial adjunction.
521
+ Remark 3.3. In this paper we only use the notion of a partial adjunction when i: E0 → D0 is an
522
+ inclusion of a full subcategory. In this case, one can think of R as an adjoint defined only partially
523
+ on D0, justifying the name.
524
+ Remark 3.4. Unlike in a standard adjunction, a partial adjunction is not a symmetric concept.
525
+ Particularly, note that there is no partial unit (in fact, L and R can not be composed in the other
526
+ direction).
527
+ Proposition 3.5. Let L: C0 → D0 be a functor, and i: E0 → D0 another functor. Assume that
528
+ for every Y ∈ E0 we are given an object RY ∈ C0 and a morphism εY : LRY → iY , such that for
529
+ every X ∈ C0 the composition
530
+ homC0(X, RY )
531
+ L−→ homD0(LX, LRY )
532
+ εY ◦−
533
+ −−−→ homD0(LX, iY )
534
+ is an isomorphism. Then, R and ε assemble into the data of a partial right adjoint.
535
+ Proof. Consider the functor ˜R: D0 → P(C0) given by the composition
536
+ D0
537
+ よD0
538
+ −−−→ P(D0)
539
+ L∗
540
+ −−→ P(C0),
541
+ which sends Z ∈ D0 to homD0(L(−), Z): Cop
542
+ 0 → S.
543
+ Let Y ∈ E0. Consider the natural transformation
544
+ homC0(−, RY )
545
+ L−→ homD0(L(−), LRY )
546
+ εY ◦−
547
+ −−−→ homD0(L(−), iY ) = ˜R(iY ).
548
+ (1)
549
+ By assumption, it is an isomorphism at every X ∈ C0, and thus it is a natural isomorphism.
550
+ Namely, the presheaf ˜R(iY ) ∈ P(C0) is representable by RY ∈ C0. In other words, the composition
551
+ ˜Ri: E0 → P(C0) lands in the essential image of the (unenriched) Yoneda embedding よC0 : C0 →
552
+ P(C0). As the Yoneda embedding is fully faithful, we get an induced functor R: E0 → C0, together
553
+ with a natural isomorphism よC0R ∼= ˜Ri = L∗よD0i of functors E0 → P(C0).
554
+ 10
555
+
556
+ By construction, R agrees with RY at every Y ∈ E0. Furthermore, the natural isomorphism at
557
+ Y is given by (1), constructed via εY . We now extract the partial counit ε: LR ⇒ i. Consider the
558
+ following composition:
559
+ よD0LR
560
+ (1)
561
+ ∼= (LR)!よE0
562
+ (2)
563
+ ⇒ (LR)!R∗よC0R
564
+ (3)
565
+ ∼= (LR)!R∗L∗よD0i
566
+ ∼= (LR)!(LR)∗よD0i
567
+ (4)
568
+ ⇒ よD0i.
569
+ (1) is naturality of the (unenriched) Yoneda embedding. (2) is the fact that R is a functor, giving
570
+ homE0(−, −) ⇒ homC0(R(−), R(−)), which by exponential adjunction is the same as よE0 ⇒
571
+ R∗よC0R. (3) is the isomorphism よC0R ∼= L∗よD0i. (4) is the counit of the adjunction (LR)! ⊣
572
+ (LR)∗. Thus, we have constructed a natural transformation よD0LR ⇒ よD0i. Since よD0 is fully
573
+ faithful, this induces a natural transformation ε: LR ⇒ i. Recall that the isomorphism used at
574
+ step (3) is given at Y ∈ E0 by (1), which shows that ε indeed agrees with εY .
575
+ Theorem 3.6. The functor χ: PrL
576
+ V → �
577
+ CatV has a partial left adjoint PV : CatV → PrL
578
+ V with partial
579
+ unit よV : id|CatV → χ PV, agreeing with enriched presheaves and enriched Yoneda embedding.
580
+ Proof. This follows immediately from Proposition 2.12 and (the dual statement to) Proposition 3.5.
581
+ Definition 3.7. For f : C0 → D0 a morphism in CatV, we denote the induced morphism in PrL
582
+ V
583
+ by f! : PV(C0) → PV(D0).
584
+ An instance of the naturality of the enriched Yoneda embedding is the following:
585
+ Corollary 3.8. Let f : C0 → D0. Then, よV
586
+ D0f ∼= χ(f!)よV
587
+ C0 in homV(C0, χ(PV(D0))). Similarly,
588
+ よV
589
+ D0f ∼= f!よV
590
+ C0 in FunV(C0, PV(D0)) of Definition 2.5.
591
+ Proof. The first part is an immediate application of the adjunction of Theorem 3.6. For the sec-
592
+ ond part, recall from Proposition 2.10 that there is a natural isomorphism homV(−, χ(−)) ∼=
593
+ FunV(−, −)≃.
594
+ Recall that in Definition 2.11 we have defined よV
595
+ C0 ∈ homV(C0, χ(PV(C0))) to
596
+ be the map corresponding to よV
597
+ C0 ∈ FunV(C0, PV(C0)) via this isomorphism, and similarly for
598
+ D0. By applying the naturality of the isomorphism in the target to the morphism f!, we get that
599
+ χ(f!)よV
600
+ C0 ∈ homV(C0, χ(PV(D0))) corresponds to f!よV
601
+ C0 ∈ FunV(C0, PV(D0)). Similarly, by ap-
602
+ plying the naturality of the isomorphism in the source to the morphism f, we get that よV
603
+ D0f ∈
604
+ homV(C0, χ(PV(D0))) corresponds to よV
605
+ D0f ∈ FunV(C0, PV(D0)). Thus, under the natural isomor-
606
+ phism, the isomorphism よV
607
+ D0f ∼= χ(f!)よV
608
+ C0 corresponds to an isomorphism よV
609
+ D0f ∼= f!よV
610
+ C0.
611
+ 4
612
+ 2-Categorical Structures
613
+ In this section we study certain 2-categorical aspects of enriched categories and tensored categories.
614
+ The first main result of this section is Corollary 4.11, showing that a lax O-monoidal functor between
615
+ 11
616
+
617
+ O-monoidal categories is a left adjoint in the 2-category Monlax
618
+ O , if and only if it is strong O-monoidal
619
+ and fiber-wise left adjoint. This is proven by applying Lurie’s [Lur17, §7.3.2 Relative Adjunctions] to
620
+ the 2-categories constructed in [HHLN20a]. From this, we deduce Corollary 4.13, the corresponding
621
+ result for lax V-linear functors between V-tensored categories. Then, after recalling that in [Hei20,
622
+ Theorem 7.11] Heine shows that χ is a 2-functor, we deduce Corollary 4.19, our second main
623
+ result, which says that χ enhances to a 2-fully faithful 2-functor χ: PrL
624
+ V → ( �
625
+ CatV)L. Finally, in
626
+ Proposition 4.25 we finish the proof of (1) of Theorem 2.9.
627
+ 4.1
628
+ Adjunctions in O-Monoidal Categories
629
+ Definition 4.1 ([HHLN20a, 3.1.7]). Let B be a a category. Denote by Cocartlax
630
+ B
631
+ the 2-category
632
+ of cocartesian fibrations over B and functors over B.
633
+ We shall not recall the precise definition of this 2-category (for which we refer the reader to
634
+ [HHLN20a, 3.1.7]), rather, let us recall its objects, 1-morphisms and 2-morphisms.
635
+ Proposition 4.2. Cocartlax
636
+ B
637
+ has
638
+ • objects: cocartesian fibrations q: C → B,
639
+ • 1-morphisms: functors over B, namely, a 1-morphism from q: C → B to p: D → B is a
640
+ functor F : C → D and a natural isomorphism pF ∼= q,
641
+ • 2-morphisms: natural transformations over B, namely, a 2-morphism from F to G is a natural
642
+ transformation α: F ⇒ G and an identification of the natural transformation q ∼= pF
643
+
644
+ ==⇒
645
+ pG ∼= q with idq, i.e. exhibiting the following square as commutative:
646
+ pF
647
+ pG
648
+ q
649
+ q
650
+
651
+
652
+
653
+ Proof. By construction, the underlying category of the 2-category Cocartlax
654
+ B is the full subcategory
655
+ of Cat/B on the cocartesian fibrations, which explains the objects and the 1-morphisms. For the 2-
656
+ morphisms, we recall that as explained in [HHLN20a, 3.1.9], a 2-morphism is commutative diagram
657
+ of the form:
658
+ C × [1]
659
+ D
660
+ B
661
+ q
662
+ p
663
+ ¯α
664
+ Under the exponential adjunction, ¯α: C × [1] → D corresponds to the natural transformation
665
+ α: F ⇒ G, and the isomorphism p¯α ∼= q corresponds to the identification pα ∼= idq.
666
+ Lemma 4.3. A 2-morphism in Cocartlax
667
+ B
668
+ given by α: F ⇒ G together with an identification
669
+ pα ∼= idq is invertible if and only if α is invertible.
670
+ 12
671
+
672
+ Proof. Clearly, if the 2-morphism is invertible then in particular α is.
673
+ For the other direction,
674
+ assume that α has an inverse α−1 : G ⇒ F.
675
+ We shall enhance it to an inverse 2-morphism in
676
+ Cocartlax
677
+ B . Consider the following diagram:
678
+ pF
679
+ pG
680
+ pF
681
+ q
682
+ q
683
+ q
684
+
685
+
686
+
687
+
688
+ pα−1
689
+ The identification pα ∼= idq is precisely an (invertible) 3-morphism in Cat making the left square
690
+ commute. The outer square commutes as pα−1pα ∼= idpF ∼= idq. Thus, by composing the outer
691
+ square with the inverse of the left square, we get commutativity data for the right square. This
692
+ makes α−1 into a 2-morphism in Cocartlax
693
+ B , which by construction is the required inverse.
694
+ Our next goal is to understand left adjoints in the 2-category Cocartlax
695
+ B , achieved in Proposi-
696
+ tion 4.8. To that end, we shall employ Lurie’s [Lur17, §7.3.2 Relative Adjunctions]. The definitions
697
+ and results in that section are phrased for cartesian fibrations and right adjoints, which by taking
698
+ (−)op correspond to our case of cocartesian fibrations and left adjoints, as we present here.
699
+ First, we recall that in a 2-category, we say that a 1-morphism L: X → Y is a left adjoint
700
+ if there exists a 1-morphism R: Y → X and two 2-morphisms u: idX ⇒ RL and c: LR ⇒ idY
701
+ satisfying the zigzag identities, namely
702
+ (R
703
+ uR
704
+ ==⇒ RLR
705
+ Rc
706
+ ==⇒ R) ∼= idR,
707
+ (L
708
+ Lu
709
+ ==⇒ LRL
710
+ cL
711
+ ==⇒ L) ∼= idL.
712
+ We also recall that to check that L is a left adjoint, we can check a weaker condition:
713
+ Lemma 4.4 ([RV22, 2.1.11]). In any 2-category, a 1-morphism L: X → Y is a left adjoint if and
714
+ only if there exist a 1-morphism R: Y → X and 2-morphisms u: idX ⇒ RL and c: LR ⇒ idY such
715
+ that the zigzag morphisms
716
+ R
717
+ uR
718
+ ==⇒ RLR
719
+ Rc
720
+ ==⇒ R,
721
+ L
722
+ Lu
723
+ ==⇒ LRL
724
+ cL
725
+ ==⇒ L
726
+ are invertible (in which case there exists a possibly different 2-morphism ˜c: LR ⇒ idY for which
727
+ the zigzag identities hold).
728
+ Proof. The proof of [RV22, 2.1.11] works in an arbitrary 2-category, although stated in the context
729
+ of functors between (∞-)categories.
730
+ Definition 4.5 ([Lur17, Definition 7.3.2.2]). Let
731
+ C
732
+ D
733
+ B
734
+ q
735
+ p
736
+ L
737
+ be a commutative diagram of categories. We say that L admits a relative right adjoint if L has
738
+ a (non-relative) right adjoint R: D → C, and the counit map c: LR ⇒ idD satisfies the condition
739
+ that pc is equivalent to idp (and in particular qR ∼= p).
740
+ 13
741
+
742
+ Remark 4.6. The definition of [Lur17, Definition 7.3.2.2] is via the two equivalent conditions of
743
+ [Lur17, Proposition 7.3.2.1]. First, we note that these are phrased for admitting a relative left
744
+ adjoint, but the theory is symmetric via taking (−)op. Second, Lurie assumes that p and q are
745
+ categorical fibrations, but every functor is equivalent to a categorical fibration, so this assumption
746
+ can be dropped. Finally, and most importantly, we note that our definition clearly implies condition
747
+ (1) and is implied by condition (2) in [Lur17, Proposition 7.3.2.1], and thus is also equivalent to
748
+ them.
749
+ Proposition 4.7. A 1-morphism L: C → D over B in Cocartlax
750
+ B
751
+ is a left adjoint if and only if L
752
+ admits a relative right adjoint.
753
+ Proof. If L is a left adjoint in Cocartlax
754
+ B then it clearly admits a relative right adjoint. For the other
755
+ direction, assume that L admits a relative right adjoint, and we shall show that it is a left adjoint
756
+ in Cocartlax
757
+ B . Let R: D → C, u: idC ⇒ RL and c: LR ⇒ idD be the (non-relative) adjunction
758
+ data, satisfying that pc ∼= idp. The identification pc ∼= idp makes c into a 2-morphism in Cocartlax
759
+ B .
760
+ This also identifies qR ∼= p, making R into a 1-morphism in Cocartlax
761
+ B . In the rest of the proof we
762
+ make u into a 2-morphism as well, and show that L is a left adjoint using Lemma 4.4.
763
+ We begin by making u into a 2-morphism. Consider the following diagram:
764
+ pL
765
+ pLRL
766
+ pL
767
+ q
768
+ q
769
+ q
770
+ pLu
771
+ pcL
772
+
773
+
774
+
775
+ The upper composition is p(−) applied the zigzag morphism, which is equivalent to idpL, thus
776
+ making the outer square commute. The assumption that pc is equivalent to idp makes the right
777
+ square commute. Thus, by composing the outer square with the inverse of the right square, we get
778
+ that the left square commutes as well. In other words, we obtained an identification of pLu with
779
+ idq. The identification pL ∼= q thus shows that we got an identification of qu with idq, making u
780
+ into a 2-morphism.
781
+ By Lemma 4.4, to see that L is a left adjoint in Cocartlax
782
+ B
783
+ it suffices to check that the zigzag
784
+ morphisms corresponding to these 2-morphisms are invertible. By Lemma 4.3, a 2-morphism in
785
+ Cocartlax
786
+ B is invertible if and only if the underlying natural transformations are invertible. Indeed,
787
+ the underlying natural transformations are simply
788
+ R
789
+ uR
790
+ ==⇒ RLR
791
+ Rc
792
+ ==⇒ R,
793
+ L
794
+ Lu
795
+ ==⇒ LRL
796
+ cL
797
+ ==⇒ L
798
+ which are invertible (in fact, equivalent to the identities) by the assumption that u and c are a unit
799
+ and a counit for a (non-relative) adjunction L ⊣ R.
800
+ The following is a recast of [Lur17, Proposition 7.3.2.6] in an appropriate 2-category.
801
+ Proposition 4.8. The left adjoints in Cocartlax
802
+ B
803
+ are those functors over B that preserve cocarte-
804
+ sian morphisms and are fiber-wise left adjoint
805
+ (Cocartlax
806
+ B )L = CocartL-fw
807
+ B
808
+ .
809
+ Proof. By Proposition 4.7, a 1-morphism L between two cocartesian fibrations is a left adjoint if
810
+ and only if it admits a relative right adjoint. Thus by (the (−)op of) [Lur17, Proposition 7.3.2.6],
811
+ 14
812
+
813
+ L is a left adjoint if and only if it preserves locally cocartesian morphisms and is fiber-wise left
814
+ adjoint. By [Lur09, Proposition 2.4.2.8], locally cocartesian morphisms and cocartesian morphisms
815
+ coincide, concluding the proof.
816
+ Remark 4.9. There is a possible alternative route to Proposition 4.8.
817
+ Recall that [HHLN20a,
818
+ Theorem E] shows that Cocartlax
819
+ B
820
+ ∼= Funlax(B, Cat), where the right hand side denotes the 2-
821
+ category of functors and lax natural transformations. Additionally, [Hau20, Theorem 4.6] shows that
822
+ for any 2-categories X, Y, the left adjoints in Funlax(X, Y) are those lax natural transformations
823
+ which are strong and point-wise left adjoint. Combined, this would imply Proposition 4.8. However,
824
+ the definition of Funlax in [HHLN20a] and [Hau20] rely on two different models of the Gray tensor
825
+ product, which to the best of our knowledge were not shown to be equivalent so far, and thus this
826
+ does not constitute a complete proof.
827
+ In the rest of the subsection we follow the notations of [HHLN20a, 3.4] for operads. Namely, an
828
+ operad O is a functor O → Fin∗ (satisfying certain properties), whereas in [Lur17], it is typically
829
+ denoted by O⊗.
830
+ Definition 4.10 ([HHLN20a, 3.4.1]). Let O be an operad. Let Monlax
831
+ O
832
+ ⊂ Cocartlax
833
+ O
834
+ be the 1-
835
+ full 2-subcategory on the O-monoidal categories and lax O-monoidal functors (i.e. functors over O
836
+ preserving cocartesian morphisms lying over inert morphisms).
837
+ The following is a recast of [Lur17, Corollary 7.3.2.7] in an appropriate 2-category.
838
+ Corollary 4.11. The left adjoints in Monlax
839
+ O
840
+ are those lax O-monoidal functors that are strong
841
+ and fiber-wise left adjoint
842
+ (Monlax
843
+ O )L = MonL-fw
844
+ O
845
+ .
846
+ Proof. For the first direction, note that a left adjoint in Monlax
847
+ O
848
+ is in particular a left adjoint in
849
+ Cocartlax
850
+ O , thus it is strong O-monoidal (preserves all cocartesian morphisms) and fiber-wise left
851
+ adjoint.
852
+ For the second direction, let L: C → D over O in MonL-fw
853
+ O
854
+ . As MonL-fw
855
+ O
856
+ ⊂ CocartL-fw
857
+ O
858
+ =
859
+ (Cocartlax
860
+ O )L, there is a right adjoint R: D → C over O in Cocartlax
861
+ O
862
+ with some unit and counit.
863
+ Since Monlax
864
+ O
865
+ is a 1-full 2-subcategory of Cocartlax
866
+ O , all we need to show is that the right adjoint
867
+ is in Monlax
868
+ O , whence the unit and counit are also automatically there. Namely, we need to know
869
+ that R: D → C is lax O-monoidal, which follows from the construction, as explained in [Lur17,
870
+ Corollary 7.3.2.7].
871
+ 4.2
872
+ Tensored Categories
873
+ As explained in [Hei20, 7.10], the category ωLModlax
874
+ V
875
+ is enhanced to a 2-category, and thus so is its
876
+ full subcategory LModlax
877
+ V . We repeat the construction in more detail, building on the definitions
878
+ above. See also [Bar22, Definition 2.14] for a closely related discussion.
879
+ We recall the operad Assoc classifying an associative algebra, and the operad LM classifying
880
+ an associative algebra and a left module over it. Consider the monoidal category V as an object in
881
+ Mon(Cat) ∼= MonAssoc ⊂ Monlax
882
+ Assoc. This leads us to the following:
883
+ Definition 4.12. We define the 2-category of V-tensored categories and lax V-linear functors to
884
+ be LModlax
885
+ V
886
+ := {V} ×Monlax
887
+ Assoc Monlax
888
+ LM.
889
+ 15
890
+
891
+ As a particular case of Corollary 4.11, we deduce the following, which is an “if and only if”
892
+ version of [Lur17, Example 7.3.2.8 and Remark 7.3.2.9] phrased in an appropriate 2-category.
893
+ Corollary 4.13. The left adjoints in LModlax
894
+ V
895
+ are those lax V-linear functors that are strong
896
+ V-linear and left adjoint (on the underlying category)
897
+ (LModlax
898
+ V )L = LModL-fw
899
+ V
900
+ .
901
+ Proof. The result follows from Corollary 4.11 by taking O = LM, and pulling back over V. In more
902
+ detail, consider the following diagram:
903
+ (LModlax
904
+ V )L
905
+ (Monlax
906
+ LM)L
907
+ {V}L
908
+ (Monlax
909
+ Assoc)L
910
+ {V}
911
+ Monlax
912
+ Assoc
913
+
914
+ The bottom square is a pullback square because the lower right morphism is an inclusion of a
915
+ 2-subcategory, and the lower left morphism is the map from a point to itself. The upper square
916
+ is a pullback square, because (−)L commutes with limits, as it is given by hom from the walking
917
+ adjunction. Therefore, the outer square is also a pullback square. We thus finish by Corollary 4.11.
918
+ Remark 4.14. Definition 4.12 and Corollary 4.13 work for an arbitrary monoidal category V, without
919
+ needing to assume that it is presentably monoidal.
920
+ We now enhance PrL
921
+ V of Definition 2.3 to a 2-category.
922
+ Definition 4.15. We define the 2-category of presentably V-tensored categories to be the 1-full
923
+ 2-subcategory PrL
924
+ V := LModV(PrL) ⊂ LModlax
925
+ V ( �
926
+ Cat) on the objects and morphisms of PrL
927
+ V.
928
+ Proposition 4.16. There is a full 2-subcategory inclusion
929
+ PrL
930
+ V ⊂ (LModcl,lax
931
+ V
932
+ ( �
933
+ Cat))L.
934
+ Proof. First, we claim that there is a full 2-subcategory inclusion
935
+ PrL
936
+ V = LModV(PrL) ⊂ LModcl,L-fw
937
+ V
938
+ ( �
939
+ Cat).
940
+ It is indeed an inclusion, since a presentably V-tensored category is automatically closed, and mor-
941
+ phism in both categories are the V-linear functors that are left adjoint on the underlying category.
942
+ Second, by Corollary 4.13, the target is (LModcl,lax
943
+ V
944
+ ( �
945
+ Cat))L, which finishes the argument.
946
+ 4.3
947
+ Tensored Categories to Enriched Categories
948
+ We recall that CatV can be enhanced into a 2-category, as explained for example in [Hei20, 7.10].
949
+ Indeed, by [GH15, Proposition 5.7.16], the functor Alg(PrL) → PrL given by V �→ CatV is lax
950
+ symmetric monoidal. Since V is a S-module in PrL, we get that CatV is a Cat-module in PrL as
951
+ well, which indeed models a 2-category (for example via χ).
952
+ 16
953
+
954
+ Definition 4.17. We denote the 2-category of V-enriched categories by CatV.
955
+ Heine shows that χ of Theorem 2.2 enhances to a 2-equivalence.
956
+ Theorem 4.18 ([Hei20, Theorem 7.11]). The equivalence of Theorem 2.2 enhances to a 2-equivalence
957
+ χ: ωLModcl,lax
958
+ V
959
+
960
+ −→ CatV.
961
+ Using this we deduce the following:
962
+ Corollary 4.19. The functor from Corollary 2.4 enhances to a 2-fully faithful 2-functor
963
+ χ: PrL
964
+ V → ( �
965
+ CatV)L.
966
+ Proof. Consider the large version of Theorem 4.18, namely ωLModcl,lax
967
+ V
968
+ ( �
969
+ Cat)
970
+
971
+ −→ �
972
+ CatV, and re-
973
+ strict it to the full 2-subcategory LModcl,lax
974
+ V
975
+ ( �
976
+ Cat). Taking left adjoints and using Proposition 4.16,
977
+ we get the 2-fully faithful 2-functor PrL
978
+ V ⊂ (LModcl,lax
979
+ V
980
+ ( �
981
+ Cat))L → ( �
982
+ CatV)L.
983
+ 4.4
984
+ Evaluation and Enriched Hom in Tensored Categories
985
+ In this subsection, we introduce homV in the presentably V-tensored context and show that it satis-
986
+ fies expected properties for adjunction in Proposition 4.21 (see also Remark 4.22 for the connection
987
+ to adjunction in V-enriched categories). With this definition in mind, we finish the proof of (1) of
988
+ Theorem 2.9 in Proposition 4.25.
989
+ Let C ∈ PrL
990
+ V. We have an equivalence of categories FunL
991
+ V(V, C) ∼
992
+ −→ C given by evaluation at 1V.
993
+ Recall from Proposition 4.16 that there is a full 2-subcategory inclusion PrL
994
+ V ⊂ (LModcl,lax
995
+ V
996
+ ( �
997
+ Cat))L.
998
+ Thus, passing to right adjoint, gives us a map FunL
999
+ V(V, C) → Funlax-V(C, V)op. Composing the two
1000
+ and taking (−)op, we get Cop → Funlax-V(C, V).
1001
+ Definition 4.20. We let homV(−, −): Cop × C → V to be the functor corresponding to the above
1002
+ under the exponential adjunction. By construction, it is lax V-linear in the second argument.
1003
+ Namely, this construction sends X to the lax V-linear functor homV(X, −): C → V, right adjoint
1004
+ to the V-linear left adjoint − ⊗ X : V → C.
1005
+ Proposition 4.21. Let L: C → D ∈ PrL
1006
+ V be a V-linear left adjoint functor, and let R: D → C
1007
+ denote its right adjoint. Then there is a natural isomorphism
1008
+ homV(L(−), −) ∼= homV(−, R(−))
1009
+ of functors Cop × D → V lax V-linear in the second coordinate.
1010
+ Proof. Indeed, consider the following diagram:
1011
+ C
1012
+ FunL
1013
+ V(V, C)
1014
+ Funlax-V(C, V)
1015
+ D
1016
+ FunL
1017
+ V(V, D)
1018
+ Funlax-V(D, V)
1019
+ L
1020
+ L◦−
1021
+ −◦R
1022
+
1023
+
1024
+ 17
1025
+
1026
+ The left square commutes by passing to the right adjoints and noting that evaluation at 1V com-
1027
+ mutes with post-composition. To see that the right square commutes, recall that the horizontal
1028
+ morphisms were constructed by the full 2-subcategory inclusion PrL
1029
+ V ⊂ (LModcl,lax
1030
+ V
1031
+ ( �
1032
+ Cat))L and
1033
+ passing to the right adjoints, and the vertical morphisms are also adjoints in the same category, so
1034
+ the commutativity is the fact that the right adjoint of a composition is the composition of the right
1035
+ adjoints in reverse order.
1036
+ Remark 4.22. We note that Proposition 4.21 is in the context of presentably V-tensored categories,
1037
+ and not that of V-enriched categories. One of the main features of χ is that the V-enrichment
1038
+ of χ(C) is given by homV(X, Y ), as is shown in [GH15, Corollary 7.4.9]. By Corollary 4.19, the
1039
+ adjunction L ⊣ R produces an adjunction χ(L) ⊣ χ(R) in �
1040
+ CatV.
1041
+ One might expect that this
1042
+ adjunction provides a natural isomorphism similar to the one of Proposition 4.21 for the V-enriched
1043
+ hom’s of χ(C) and χ(D). However, we do not provide such a natural isomorphism, nor show its
1044
+ compatibility with the one constructed above.
1045
+ Let C0 ∈ CatV, X ∈ C0 and D ∈ PrL
1046
+ V.
1047
+ Recall from Definition 2.5 that FunV(C0, D) :=
1048
+ LModC0(Fun(C≃
1049
+ 0 , D)). Consider i: pt → C≃
1050
+ 0 choosing X, and the following diagram:
1051
+ D
1052
+ Fun(pt, D)
1053
+ Fun(C≃
1054
+ 0 , D)
1055
+ LModC0(Fun(C≃
1056
+ 0 , D))
1057
+ i!
1058
+ i∗
1059
+ free
1060
+ forget
1061
+ Here the dashed arrows are the left adjoints of the solid arrows. Also recall from Definition 2.7 that
1062
+ if we replace C0 by Cop
1063
+ 0
1064
+ and let D = V, the V-functor category is PV(C0). Moreover, in this case
1065
+ the three categories in the diagram are presentably V-tensored and the two left adjoint functors are
1066
+ V-linear, as in [Hin20, 6.2.3]. Via Proposition 4.16, the right adjoints are canonically lax V-linear.
1067
+ Definition 4.23. Let C0 ∈ CatV, X ∈ C0 and D ∈ PrL
1068
+ V be as above. We define the evaluation at
1069
+ X functor evalX : FunV(C0, D) → D by evalX := i∗ ◦ forget. For the case evalX : PV(C0) → V, it is
1070
+ canonically lax V-linear.
1071
+ Proposition 4.24. Let C0 ∈ CatV and D ∈ PrL
1072
+ V, and consider FunV(C0, D) ∈ PrL. Then evalX
1073
+ commutes with (co)limits (i.e. (co)limits are computed level-wise), and are jointly conservative over
1074
+ all X.
1075
+ For PV(C0) ∈ PrL
1076
+ V, the lax V-linear structure on evalX is strong (i.e., the V-action is
1077
+ level-wise).
1078
+ Proof. Recall that evalX = i∗ ◦ forget. The functor forget commutes with all (co)limits by [Lur17,
1079
+ Corollary 4.2.3.3 and Corollary 4.2.3.5] as the forgetful from modules, while i∗ commutes with
1080
+ (co)limits as they are computed level-wise in (unenriched) functor categories.
1081
+ The forgetful from modules is always conservative by [Lur17, Corollary 4.2.3.2], and the evalu-
1082
+ ation at X functors Fun(C≃
1083
+ 0 , D) → D are jointly conservative.
1084
+ For the case of PV(C0), the V-action is by construction given level-wise, as explained in [Hin20,
1085
+ 6.2.3].
1086
+ Finally, we are in position to prove our variant of Hinich’s enriched Yoneda lemma, appearing
1087
+ as (1) of Theorem 2.9.
1088
+ Proposition 4.25. Let C0 ∈ CatV, then homV(よV(X), −) ∼= evalX as lax V-linear functors, and
1089
+ in particular homV(よV(X), −) is also strong V-linear.
1090
+ 18
1091
+
1092
+ Proof. We need to show that homV(よV(X), −) ∼= evalX as lax V-linear functors. By construction,
1093
+ this is equivalent to showing that −⊗よV(X) ∼= free ◦i! as V-linear functors. Consider the following
1094
+ diagram:
1095
+ V
1096
+ Fun(Cop,≃
1097
+ 0
1098
+ , V)
1099
+ LModCop
1100
+ 0 (Fun(Cop,≃
1101
+ 0
1102
+ , V))
1103
+ S
1104
+ Fun(Cop,≃
1105
+ 0
1106
+ , S)
1107
+ −⊗1V
1108
+ hom(1V,−)
1109
+ −⊗1V
1110
+ hom(1V,−)
1111
+ i!
1112
+ i∗
1113
+ i!
1114
+ i∗
1115
+ free
1116
+ forget
1117
+ Here the dashed arrows are the left adjoints of the solid arrows. Clearly, the solid square commutes,
1118
+ and thus, the dashed square obtained by passing to left adjoints also commutes.
1119
+ By [Hin20, 6.2.6], we have that よV(X) ∼= free((−⊗1V)◦よ(X)), where here よ(X) ∈ Fun(Cop,≃
1120
+ 0
1121
+ , S)
1122
+ is the image of X under the (unenriched) Yoneda embedding. Applying the naturality of the (un-
1123
+ enriched) Yoneda embedding to i: pt → S, and noting that よ: pt → S sends よ(pt) = pt, we get
1124
+ that よ(X) = よ(i(pt)) ∼= i!(よ(pt)) ∼= i!(pt). Using the commutativity of the dashed square above,
1125
+ we conclude that
1126
+ よV(X) ∼= free((− ⊗ 1V) ◦ よ(X)) ∼= free((− ⊗ 1V) ◦ i!(pt)) ∼= free(i!1V).
1127
+ Since free and i! are V-linear functors, we finally get that
1128
+ − ⊗ よV(X) ∼= − ⊗ free(i!1V) ∼= free ◦i!(− ⊗ 1V) ∼= free ◦i!
1129
+ as V-linear functors, concluding the proof.
1130
+ 5
1131
+ Atomic Objects, Presheaves and Yoneda
1132
+ In this section, building on the 2-categorical results of the previous section, we study internally left
1133
+ adjoint functors and atomic objects, and connect them to the enriched Yoneda embedding.
1134
+ We begin in Definition 5.1 by defining internally left adjoints between presentably V-tensored
1135
+ categories. Namely, V-linear left adjoint functors, whose right adjoints are also left adjoint and their
1136
+ canonical lax V-linear structure is strong. Following this, in Definition 5.4 we define a finiteness
1137
+ condition called being atomic. We say that X in C ∈ PrL
1138
+ V is atomic if − ⊗ X : V → C is internally
1139
+ left adjoint, that is, if homV(X, −) commutes with colimits and is V-linear. For instance, in the case
1140
+ V = Sp, this coincides with condition of being compact. From the definition, internally left adjoints
1141
+ send atomic objects to atomic objects. The key technical result of this section is Proposition 5.16,
1142
+ giving a converse result under the assumption that the source category is generated from the atomics
1143
+ under weighted colimits.
1144
+ Next, in Proposition 5.17 we show that よV(X) is atomic in PV(C0), and in Proposition 5.18 we
1145
+ show that together they generate PV(C0) under weighted colimits. This allows us to use Proposi-
1146
+ tion 5.16 to prove Theorem 5.20, the main result of this section. This result says that the partial
1147
+ adjunction of Theorem 3.6 restricts to a (non-partial) adjunction between the enriched presheaves
1148
+ functor and taking the atomics, with the unit being (the factorization through the atomics of) the
1149
+ enriched Yoneda embedding.
1150
+ 19
1151
+
1152
+ 5.1
1153
+ Internally Left Adjoints
1154
+ Definition 5.1. A V-linear left adjoint functor is called internally left adjoint if it is left adjoint
1155
+ in the 2-category PrL
1156
+ V. We denote the wide 2-subcategory on the internally left adjoint functors by
1157
+ PriL
1158
+ V := (PrL
1159
+ V)L. For C, D ∈ PriL
1160
+ V , we denote the category of V-linear internally left adjoint functors
1161
+ between them by FuniL
1162
+ V (C, D) ∈ �
1163
+ Cat and the corresponding homiL
1164
+ V (C, D) ∈ �S.
1165
+ Note that for any V-linear left adjoint functor L: C → D, Proposition 4.16 shows that it admits
1166
+ a lax V-linear right adjoint R: D → C.
1167
+ Proposition 5.2. A V-linear left adjoint functor L: C → D is internally left adjoint if and only if
1168
+ the lax V-linear right adjoint R: D → C is strong and itself a left adjoint.
1169
+ Proof. As above, R is a morphism in LModcl,lax
1170
+ V
1171
+ ( �
1172
+ Cat) between objects of the 2-subcategory PrL
1173
+ V,
1174
+ and the condition is that it is in fact a morphism in that 2-subcategory. By Proposition 4.16, PrL
1175
+ V
1176
+ is a full 2-subcategory of (LModcl,lax
1177
+ V
1178
+ ( �
1179
+ Cat))L, thus the condition is that R is a morphism in that
1180
+ 2-subcategory. The result then follows from Corollary 4.13.
1181
+ Taking left adjoints in Corollary 4.19, we immediately get:
1182
+ Corollary 5.3. χ restricts to a 2-fully faithful 2-functor
1183
+ χ: PriL
1184
+ V → ( �
1185
+ CatV)LL.
1186
+ 5.2
1187
+ Atomic Objects
1188
+ Definition 5.4. Let C ∈ PrL
1189
+ V. We say that X ∈ C is atomic if the functor − ⊗ X : V → C is
1190
+ internally left adjoint. We denote the full V-subcategory on the atomic objects by Cat ⊂ χ(C).
1191
+ Example 5.5. The unit 1V ∈ V is always atomic, because − ⊗ 1V is the identity functor.
1192
+ Example 5.6 ([BMS21, Proposition 2.6]). In the case V = Sp, atomic objects coincide with compact
1193
+ objects.
1194
+ Recall that for C ∈ PrL
1195
+ V, there is an equivalence FunL
1196
+ V(V, C)
1197
+
1198
+ −→ C given by evaluation at 1V,
1199
+ with inverse sending X to − ⊗ X : V → C. Thus, immediately from the definition, we deduce the
1200
+ following:
1201
+ Proposition 5.7. Evaluation at 1V induces an equivalence FuniL
1202
+ V (V, C) ∼
1203
+ −→ Cat.
1204
+ Since the right adjoint of − ⊗ X : V → C is homV(X, −): C → V, the following follows immedi-
1205
+ ately from Proposition 5.2.
1206
+ Proposition 5.8. An object X ∈ C is atomic if and only if homV(X, −): C → V preserves colimits
1207
+ and the lax V-linear structure is strong.
1208
+ Proposition 5.9. The atomics are a small V-enriched category.
1209
+ Proof. The argument is identical to [BMS21, Proposition 2.7]. We repeat the details for the conve-
1210
+ nience of the reader.
1211
+ Let κ be a regular cardinal such that the unit 1V is κ-compact, namely hom(1V, −): V → S
1212
+ commutes with κ-filtered colimits. We show that all atomic objects are κ-compact. Let C ∈ PrL
1213
+ V
1214
+ 20
1215
+
1216
+ and let X ∈ C be atomic.
1217
+ By Proposition 5.8, homV(X, −): C → V commutes with κ-filtered
1218
+ colimits. Since hom(X, −) ∼= hom(1V ⊗ X, −) ∼= hom(1V, homV(X, −)), we get that hom(X, −)
1219
+ also commutes with κ-filtered colimits, i.e. X is κ-compact. We have shown that Cat ⊆ Cκ, the
1220
+ latter being a small category, concluding the proof.
1221
+ Proposition 5.10. Let L: C → D be an internally left adjoint, i.e. a morphism in PriL
1222
+ V , then
1223
+ it sends atomics to atomics.
1224
+ Thus, the V-functor χ(L): χ(C) → χ(D) factors to a V-functor
1225
+ L: Cat → Dat.
1226
+ Proof. Let X ∈ Cat. Then, since L is V-linear, we have a natural isomorphism −⊗LX ∼= L(−⊗X)
1227
+ of functors V → D. Since both − ⊗ X and L are internally left adjoints, so is − ⊗ LX, i.e. LX is
1228
+ atomic as required.
1229
+ Recall that Cat is a full V-subcategory of χ(C), thus Cat → χ(C) is a subobject (indeed, the
1230
+ space of maps to Cat is exactly the subspace of maps to χ(C) that land in Cat). Furthermore, by
1231
+ Proposition 5.10, the restriction of internally left adjoint functors to the atomics factor through
1232
+ the atomics. Thus, by [Ram22, Proposition A.1], this assembles into an induced subfunctor, which
1233
+ furthermore lands in CatV ⊂ �
1234
+ CatV.
1235
+ Definition 5.11. We denote the induced subfunctor of atomics by
1236
+ (−)at : PriL
1237
+ V → CatV,
1238
+ equipped with a natural transformation (−)at ⇒ χ|PriL
1239
+ V of functors PriL
1240
+ V → �
1241
+ CatV.
1242
+ Definition 5.12. Let C ∈ PrL
1243
+ V. We say that a collection of atomic objects B ⊆ Cat are atomic
1244
+ generators, if C is generated from B under weighted colimits. If such B exists, we say that C is
1245
+ molecular.
1246
+ Remark 5.13. We note that this definition a priori differs from our definition of molecular in [BMS21]
1247
+ (where we work over a mode). We expect that closure under weighted colimits coincides with closure
1248
+ under colimits and the V-action, but we are unaware of a proof of this statement. Such a result
1249
+ would make the connection transparent.
1250
+ We now wish to prove a converse to Proposition 5.10 under the assumption that the source is
1251
+ molecular. To that end, we begin with the following.
1252
+ Definition 5.14. Let I ∈ CatV and C ∈ PrL
1253
+ V, and fix f ∈ FunV(I, C). By (2) of Theorem 2.9, the
1254
+ functor colim(−)
1255
+ I
1256
+ (f): PV(I) → C is colimit preserving, i.e. a left adjoint, and V-linear. We denote
1257
+ the lax V-linear right adjoint by
1258
+ homV(f(−), −): C → PV(I).
1259
+ Lemma 5.15. There is a natural isomorphism of lax V-linear functors
1260
+ evali ◦ homV(f(−), −) ∼= homV(f(i), −).
1261
+ Proof. Observe that we have an equivalence of V-linear left adjoint functors
1262
+ colim(−)
1263
+ I
1264
+ (f) ◦ (− ⊗ よV(i)) = colim(−⊗よV(i))
1265
+ I
1266
+ (f)
1267
+ (1)
1268
+ ∼= − ⊗ colimよV(i)
1269
+ I
1270
+ (f)
1271
+ (2)
1272
+ ∼= − ⊗ f(i),
1273
+ 21
1274
+
1275
+ where (1) follows from (2) of Theorem 2.9, and (2) follows from (3) of Theorem 2.9. Passing to the
1276
+ lax V-linear right adjoints, we get
1277
+ homV(よV(i), homV(f(−), −)) ∼= homV(f(i), −).
1278
+ We finish by recalling that homV(よV(i), −) is the evaluation at i by (1) of Theorem 2.9.
1279
+ Proposition 5.16. Let L: C → D be in PrL
1280
+ V. If C is molecular and L sends a collection of atomics
1281
+ generators B ⊂ Cat to atomic objects of D, then L is internally left adjoint.
1282
+ Proof. We adapt the proof of [BMS21, Proposition 2.18]. We wish to show that R: D → C, the
1283
+ right adjoint of L, is itself a left adjoint and that the lax V-action is strong. Thus, it suffices to
1284
+ show that for any v ∈ V and Y : I → D, the canonical map v ⊗ colimI RYi → R(v ⊗ colimI Yi) is an
1285
+ isomorphism. By the (unenriched) Yoneda lemma in the category C, this is equivalent to checking
1286
+ that for every X ∈ C the map
1287
+ hom(X, v ⊗ colim
1288
+ I
1289
+ RYi) → hom(X, R(v ⊗ colim
1290
+ I
1291
+ Yi))
1292
+ (2)
1293
+ is an isomorphism. We will in fact show the stronger statement that
1294
+ homV(X, v ⊗ colim
1295
+ I
1296
+ RYi) → homV(X, R(v ⊗ colim
1297
+ I
1298
+ Yi))
1299
+ (3)
1300
+ is an isomorphism, which implies the previous statement by taking hom(1V, −). Let A ⊂ C be the
1301
+ collection of objects X for which it is an isomorphism, and we will show that A = C.
1302
+ We first show that B ⊂ A. Let X ∈ B. By Proposition 4.21, the following diagram commutes,
1303
+ and both vertical maps are isomorphisms:
1304
+ v ⊗ colimI homV(X, RYi)
1305
+ homV(X, v ⊗ colimI RYi)
1306
+ homV(X, R(v ⊗ colimI Yi))
1307
+ v ⊗ colimI homV(LX, Yi)
1308
+ homV(LX, v ⊗ colimI Yi)
1309
+
1310
+
1311
+ The upper-left morphism is an isomorphism because X is atomic, and similarly the bottom mor-
1312
+ phism is an isomorphism because LX is atomic since X ∈ B and L sends B to atomic objects. This
1313
+ shows that the upper-right morphism is an isomorphism as well.
1314
+ We now show that A is closed under weighted colimits.
1315
+ Let J ∈ CatV, W ∈ PV(J), and
1316
+ f ∈ FunV(J, C) a V-functor landing in A ⊂ C. We show that X := colimW
1317
+ J (f) is in A. By definition,
1318
+ homV(f(−), −): C → PV(J) is the lax V-linear right adjoint of colim(−)
1319
+ J
1320
+ (f): PV(J) → C. Thus, by
1321
+ Proposition 4.21 we have a natural isomorphism of functors C → V
1322
+ homV
1323
+ C(X, −) = homV
1324
+ C(colimW
1325
+ J (f), −) ∼= homV
1326
+ PV(J)(W, homV(f(−), −)).
1327
+ Thus it suffices to check that the map
1328
+ homV
1329
+ C(f(−), v ⊗ colim
1330
+ I
1331
+ RYi) → homV
1332
+ C(f(−), R(v ⊗ colim
1333
+ I
1334
+ Yi))
1335
+ ∈ PV(J)
1336
+ is an isomorphism. By Proposition 4.24, the evaluation at j ∈ J are jointly conservative, so it
1337
+ suffices to check that the map is an isomorphism after evaluation at every j. By Lemma 5.15, this
1338
+ means that we need to check that
1339
+ homV(f(j), v ⊗ colim
1340
+ I
1341
+ RYi) → homV(f(j), R(v ⊗ colim
1342
+ I
1343
+ Yi))
1344
+ 22
1345
+
1346
+ is an isomorphism, which holds since by assumption f lands in A.
1347
+ Recall that B are atomic generators of C, and we have shown that B ⊂ A and that A is closed
1348
+ under weighted colimits, thus A = C, as required.
1349
+ 5.3
1350
+ Atomics–Presheaves Adjunction
1351
+ Proposition 5.17. Let C0 ∈ CatV, then the enriched Yoneda embedding lands in the atomic objects,
1352
+ yielding a V-functor よV : C0 → PV(C0)at.
1353
+ Proof. Recall from Proposition 5.8 that よV(X) is atomic if and only if homV(よV(X), −): PV(C0) →
1354
+ V preserves colimits and the lax V-linear structure is strong. By (1) of Theorem 2.9, this V-functor
1355
+ is the evaluation at X, concluding the proof by Proposition 4.24.
1356
+ We thus get an induced natural transformation よV : id ⇒ PV(−)at of functors CatV → CatV.
1357
+ Proposition 5.18. The category PV(C0) is molecular, with the image of the enriched Yoneda
1358
+ embedding as atomic generators.
1359
+ Proof. By Proposition 5.17, the image of よV are atomic in PV(C0).
1360
+ The fact that PV(C0) is
1361
+ generated from the image of enriched Yoneda embedding under weighted colimits is [Hin21, 6.3.1],
1362
+ recalled as (3) of Theorem 2.9.
1363
+ Proposition 5.19. The functor PV : CatV → PrL
1364
+ V of Theorem 3.6 lands in PriL
1365
+ V .
1366
+ Proof. Let f : C0 → D0 be a V-functor, and we need to show that f! : PV(C0) → PV(D0) is internally
1367
+ left adjoint.
1368
+ Recall from Proposition 5.18 that PV(C0) is molecular with the image of よV
1369
+ C0 as
1370
+ atomic generators. As in Corollary 3.8, naturality of the enriched Yoneda embedding says that
1371
+ よV
1372
+ D0f ∼= f!よV
1373
+ C0.
1374
+ Thus, f! sends the image of よV
1375
+ C0 to the image of よV
1376
+ D0 which are atomic in
1377
+ PV(D0). Thus, f! sends a collection of atomic generators to atomic objects, so it is internally left
1378
+ adjoint by Proposition 5.16.
1379
+ Theorem 5.20. The partial adjunctions of Theorem 3.6 restricts to an adjunction
1380
+ PV : CatV ⇄ PriL
1381
+ V :(−)at
1382
+ with unit the enriched Yoneda embedding よV : id ⇒ PV(−)at.
1383
+ Proof. We need to check that for any C0 ∈ CatV and D ∈ PriL
1384
+ V , the map
1385
+ homiL
1386
+ V (PV(C0), D)
1387
+ (−)at
1388
+ −−−→ homV(PV(C0)at, Dat)
1389
+ (よV)∗
1390
+ −−−−→ homV(C0, Dat)
1391
+ (4)
1392
+ is an equivalence. Recall that
1393
+ homL
1394
+ V(PV(C0), D)
1395
+ χ−→ homV(χ(PV(C0)), χ(D))
1396
+ (よV)∗
1397
+ −−−−→ homV(C0, χ(D))
1398
+ (5)
1399
+ is an equivalence. Furthermore, both the first and last spaces in (4) are a collection of connected
1400
+ components of the first and last spaces in (5), showing that the composition in (4) is an inclusion
1401
+ of connected components.
1402
+ To finish the argument, we need to show that the composition in (4) hits every connected
1403
+ component.
1404
+ To that end, let f : C0 → Dat be a V-functor.
1405
+ We can post-compose it with the
1406
+ 23
1407
+
1408
+ inclusion V-functor Dat → D, and using (5) we get ˜f : PV(C0) → D in PrL
1409
+ V. It is left to show that ˜f
1410
+ is internally left adjoint. Recall that the image of the enriched Yoneda embedding forms a collection
1411
+ of atomic generators by Proposition 5.18. Furthermore, by construction, ˜f(よV(X)) = f(X) ∈ Dat
1412
+ is atomic. Thus, we have shown that ˜f sends a collection of atomic generators to atomics, so it is
1413
+ indeed internally left adjoint by Proposition 5.16.
1414
+ We extend our notations from Definition 3.7:
1415
+ Definition 5.21. For f : C0 → D0 a morphism in CatV, consider the internally left adjoint functor
1416
+ f! : PV(C0) → PV(D0). It has a right adjoint in PrL
1417
+ V, i.e. a V-linear left and right adjoint functor
1418
+ denoted f ⊛ : PV(D0) → PV(C0). This functor thus has a further lax V-linear right adjoint denoted
1419
+ f⊛ : PV(C0) → PV(D0).
1420
+ Using Corollary 5.3 we get the composition
1421
+ χ PV : CatV
1422
+ PV
1423
+ −−→ PriL
1424
+ V
1425
+ χ−→ (�
1426
+ CatV)LL,
1427
+ allowing to pass the (double) adjunction to �
1428
+ CatV.
1429
+ Corollary 5.22. For f : C0 → D0 a morphism in CatV, we get a double adjunction χ(f!) ⊣ χ(f ⊛) ⊣
1430
+ χ(f⊛) in �
1431
+ CatV.
1432
+ Corollary 5.23. Let f : C0 → D0 in CatV, then f ⊛(G)(X) ∼= G(f(X)).
1433
+ Proof. By Corollary 3.8 we have f!よV ∼= よVf in FunV(C0, PV(D0)). We thus get
1434
+ f ⊛(G)(X) ∼= homV(よV(X), f ⊛(G)) ∼= homV(f!(よV(X)), G) ∼= homV(よV(f(X)), G) ∼= G(f(X)),
1435
+ where the first and last steps follow from the enriched Yoneda lemma of (1) of Theorem 2.9, the
1436
+ second step is by Proposition 4.21, and the third step is by the isomorphism above.
1437
+ 6
1438
+ Heine’s Enriched Yoneda Embedding
1439
+ Independently of Hinich’s enriched Yoneda embedding, in [Hei20], Heine defines an enriched Yoneda
1440
+ embedding as well, which satisfies the exact same universal property appearing in Proposition 2.12.
1441
+ Theorem 6.1 ([Hei20, Corollary 6.2]). Let C0 ∈ CatV.
1442
+ There is a V-natural transformation
1443
+ よV
1444
+ Heine : C0 → χ(PV(C0)). For every D ∈ PrL
1445
+ V, the composition
1446
+ homL
1447
+ V(PV(C0), D)
1448
+ χ−→ homV(χ(PV(C0)), χ(D))
1449
+ (よV
1450
+ Heine)∗
1451
+ −−−−−−→ homV(C0, χ(D))
1452
+ is an equivalence.
1453
+ We also note these versions of the enriched Yoneda embedding agree point-wise. In particular,
1454
+ Heine’s version also satisfies the enriched Yoneda lemma.
1455
+ Proposition 6.2. For every X ∈ C0, there is an isomorphism よV
1456
+ Heine(X) ∼= よV(X). In particular,
1457
+ homV(よV
1458
+ Heine(X), −): PV(C0) → V is given by evaluation at X.
1459
+ 24
1460
+
1461
+ Proof. Consider the composition
1462
+ C≃
1463
+ 0
1464
+
1465
+ −→ Fun(Cop,≃
1466
+ 0
1467
+ , S)
1468
+ 1V⊗−
1469
+ −−−−→ Fun(Cop,≃
1470
+ 0
1471
+ , V)
1472
+ free
1473
+ −−→ LModCop
1474
+ 0 (Fun(Cop,≃
1475
+ 0
1476
+ , V)) = PV(C0).
1477
+ By [Hin20, 6.2.6] and [Hei20, Proposition 6.5], よV(X) and よV
1478
+ Heine(X) (respectively) are the image
1479
+ of X under this composition.
1480
+ The second part then follows from (1) of Theorem 2.9.
1481
+ Note that these two results do not show that Hinich’s and Heine’s enriched Yoneda embeddings
1482
+ agree as functors, but rather only up to an automorphism of PV(C0) (which may not be the identity).
1483
+ See Subsection 1.3.2 for further discussion. Nevertheless, we now explain that the main results of
1484
+ this paper hold for Heine’s enriched Yoneda embedding as well.
1485
+ The proofs in Section 3 and
1486
+ Section 5 have relied on the the universal property of Proposition 2.12 and the enriched Yoneda
1487
+ lemma of (1) of Theorem 2.9 for よV. These two results also hold for よV
1488
+ Heine by the above. We
1489
+ also used weighted colimits, and their relationship with the enriched Yoneda embedding appearing
1490
+ in (2) and (3) of Theorem 2.9. However, this was only used in the proof of Proposition 5.18, whose
1491
+ statement is about the image of the enriched Yoneda embedding which is the same for よV and
1492
+ よV
1493
+ Heine by Proposition 6.2, and in the proof of Lemma 5.15, whose statement does not involve
1494
+ the enriched Yoneda embedding. Thus, we see that the results of Section 3 and Section 5 hold
1495
+ for Heine’s enriched Yoneda embedding as well. Notably, the analogue of Theorem 5.20 gives an
1496
+ adjunction
1497
+ PV
1498
+ Heine : CatV ⇄ PriL
1499
+ V :(−)at
1500
+ with unit Heine’s enriched Yoneda embedding よV
1501
+ Heine : id ⇒ PV
1502
+ Heine(−)at.
1503
+ References
1504
+ [Bar22]
1505
+ Shaul Barkan. Explicit Square Zero Obstruction Theory. 2022. arXiv:2211.07034v1
1506
+ [math.AT].
1507
+ [BMS21]
1508
+ Shay Ben Moshe and Tomer M. Schlank. Higher Semiadditive Algebraic K-Theory and
1509
+ Redshift. 2021. arXiv:2111.10203v1 [math.KT].
1510
+ [GH15]
1511
+ David Gepner and Rune Haugseng.
1512
+ Enriched ∞-categories via non-symmetric ∞-
1513
+ operads. Advances in Mathematics, 279:575–716, 2015.
1514
+ [Hau20]
1515
+ Rune Haugseng. On lax transformations, adjunctions, and monads in (∞, 2)-categories.
1516
+ 2020. arXiv:2002.01037v2 [math.CT].
1517
+ [Hei20]
1518
+ Hadrian Heine. An equivalence between enriched ∞-categories and ∞-categories with
1519
+ weak action. 2020. arXiv:2009.02428v1 [math.AT].
1520
+ [HHLN20a] Rune Haugseng, Fabian Hebestreit, Sil Linskens, and Joost Nuiten. Lax monoidal ad-
1521
+ junctions, two-variable fibrations and the calculus of mates. 2020. arXiv:2011.08808v2
1522
+ [math.CT].
1523
+ [HHLN20b] Rune Haugseng, Fabian Hebestreit, Sil Linskens, and Joost Nuiten.
1524
+ Two-variable
1525
+ fibrations, factorisation systems and ∞-categories of spans. 2020. arXiv:2011.11042v2
1526
+ [math.CT].
1527
+ 25
1528
+
1529
+ [Hin20]
1530
+ Vladimir Hinich. Yoneda lemma for enriched ∞-categories. Advances in Mathematics,
1531
+ 367:107129, 2020.
1532
+ [Hin21]
1533
+ Vladimir Hinich.
1534
+ Colimits in enriched ∞-categories and Day convolution.
1535
+ 2021.
1536
+ arXiv:2101.09538v1 [math.CT].
1537
+ [Lur09]
1538
+ Jacob Lurie. Higher Topos Theory (AM-170). Princeton University Press, 2009.
1539
+ [Lur17]
1540
+ Jacob Lurie. Higher Algebra. https://www.math.ias.edu/~lurie/papers/HA.pdf,
1541
+ 2017.
1542
+ [Ram22]
1543
+ Maxime Ramzi.
1544
+ The Yoneda embedding is natural.
1545
+ 2022.
1546
+ arXiv:2209.12575v2
1547
+ [math.CT].
1548
+ [RV22]
1549
+ Emily Riehl and Dominic Verity. Elements of ∞-Category Theory. Cambridge Studies
1550
+ in Advanced Mathematics. Cambridge University Press, 2022.
1551
+ 26
1552
+