jackkuo commited on
Commit
e9bd518
·
verified ·
1 Parent(s): 986c566

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9AzT4oBgHgl3EQfhPxU/content/2301.01481v1.pdf +3 -0
  2. -9AzT4oBgHgl3EQfhPxU/vector_store/index.faiss +3 -0
  3. -9AzT4oBgHgl3EQfhPxU/vector_store/index.pkl +3 -0
  4. -NAyT4oBgHgl3EQfqfhf/content/tmp_files/2301.00543v1.pdf.txt +904 -0
  5. -NAyT4oBgHgl3EQfqfhf/content/tmp_files/load_file.txt +0 -0
  6. .gitattributes +56 -0
  7. 0dAzT4oBgHgl3EQfefzh/content/tmp_files/2301.01439v1.pdf.txt +1737 -0
  8. 0dAzT4oBgHgl3EQfefzh/content/tmp_files/load_file.txt +0 -0
  9. 0tAyT4oBgHgl3EQf1PlJ/content/tmp_files/2301.00731v1.pdf.txt +742 -0
  10. 0tAyT4oBgHgl3EQf1PlJ/content/tmp_files/load_file.txt +0 -0
  11. 1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss +3 -0
  12. 1dA0T4oBgHgl3EQfMv9X/vector_store/index.pkl +3 -0
  13. 1dAzT4oBgHgl3EQfevzu/content/tmp_files/2301.01443v1.pdf.txt +551 -0
  14. 1dAzT4oBgHgl3EQfevzu/content/tmp_files/load_file.txt +303 -0
  15. 4NE3T4oBgHgl3EQfQAnJ/content/tmp_files/2301.04409v1.pdf.txt +2068 -0
  16. 4NE3T4oBgHgl3EQfQAnJ/content/tmp_files/load_file.txt +0 -0
  17. 4tFIT4oBgHgl3EQf7Ctv/content/2301.11396v1.pdf +3 -0
  18. 4tFIT4oBgHgl3EQf7Ctv/vector_store/index.faiss +3 -0
  19. 4tFIT4oBgHgl3EQf7Ctv/vector_store/index.pkl +3 -0
  20. 5dE1T4oBgHgl3EQf6gWk/vector_store/index.faiss +3 -0
  21. 6NE1T4oBgHgl3EQfTQM9/content/tmp_files/2301.03075v1.pdf.txt +1491 -0
  22. 6NE1T4oBgHgl3EQfTQM9/content/tmp_files/load_file.txt +0 -0
  23. 6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf +3 -0
  24. 6tE2T4oBgHgl3EQf7Qi3/vector_store/index.pkl +3 -0
  25. 89E1T4oBgHgl3EQfUAPq/vector_store/index.pkl +3 -0
  26. 99A0T4oBgHgl3EQfO__U/vector_store/index.pkl +3 -0
  27. 99E0T4oBgHgl3EQfwwHR/content/2301.02638v1.pdf +3 -0
  28. 99E0T4oBgHgl3EQfwwHR/vector_store/index.faiss +3 -0
  29. 99E0T4oBgHgl3EQfwwHR/vector_store/index.pkl +3 -0
  30. 9NFLT4oBgHgl3EQfty_-/content/tmp_files/2301.12153v1.pdf.txt +0 -0
  31. 9NFLT4oBgHgl3EQfty_-/content/tmp_files/load_file.txt +0 -0
  32. ANE4T4oBgHgl3EQf4w6U/content/2301.05316v1.pdf +3 -0
  33. ANE4T4oBgHgl3EQf4w6U/vector_store/index.faiss +3 -0
  34. ANE4T4oBgHgl3EQf4w6U/vector_store/index.pkl +3 -0
  35. BtE0T4oBgHgl3EQfQAAH/content/2301.02185v1.pdf +3 -0
  36. BtE0T4oBgHgl3EQfQAAH/vector_store/index.faiss +3 -0
  37. BtE0T4oBgHgl3EQfQAAH/vector_store/index.pkl +3 -0
  38. ENE0T4oBgHgl3EQfQgDK/content/2301.02195v1.pdf +3 -0
  39. ENE0T4oBgHgl3EQfQgDK/vector_store/index.faiss +3 -0
  40. ENE0T4oBgHgl3EQfQgDK/vector_store/index.pkl +3 -0
  41. EtE1T4oBgHgl3EQfqgU3/content/tmp_files/2301.03343v1.pdf.txt +1037 -0
  42. EtE1T4oBgHgl3EQfqgU3/content/tmp_files/load_file.txt +0 -0
  43. GdAyT4oBgHgl3EQfSvfs/vector_store/index.faiss +3 -0
  44. GdE0T4oBgHgl3EQfRQBK/content/tmp_files/2301.02204v1.pdf.txt +397 -0
  45. GdE0T4oBgHgl3EQfRQBK/content/tmp_files/load_file.txt +223 -0
  46. GtAzT4oBgHgl3EQfHftK/content/tmp_files/2301.01045v1.pdf.txt +2577 -0
  47. GtAzT4oBgHgl3EQfHftK/content/tmp_files/load_file.txt +0 -0
  48. H9AzT4oBgHgl3EQfU_x9/content/2301.01276v1.pdf +3 -0
  49. H9AzT4oBgHgl3EQfU_x9/vector_store/index.faiss +3 -0
  50. H9AzT4oBgHgl3EQfU_x9/vector_store/index.pkl +3 -0
-9AzT4oBgHgl3EQfhPxU/content/2301.01481v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d08b4e9476069e073997aa320a0fd1d0568f8f16c14f7fdc7678fa04234b48
3
+ size 1564617
-9AzT4oBgHgl3EQfhPxU/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b1b9fdbf9c41a900369f168351bebd702c488928368687438e15322c56c799d
3
+ size 3080237
-9AzT4oBgHgl3EQfhPxU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f74d7bc7722810a8b8b73897e94d7f80c07fafae0a0510c2c3e4be9d05edbd4
3
+ size 104199
-NAyT4oBgHgl3EQfqfhf/content/tmp_files/2301.00543v1.pdf.txt ADDED
@@ -0,0 +1,904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00543v1 [math.GR] 2 Jan 2023
2
+ ON PSEUDO-REAL FINITE SUBGROUPS OF PGL3(C)
3
+ E. BADR AND A. ELGUINDY
4
+ Abstract. Let G be a finite subgroup of PGL3(C), and let σ be the generator
5
+ of Gal(C/R).
6
+ We say that G has a real field of moduli if σG and G are
7
+ PGL3(C)-conjugates, that is, if ∃ φ ∈ PGL3(C) such that φ−1 G φ =
8
+ σG.
9
+ Furthermore, we say that R is a field of definition for G or that G is definable
10
+ over R if G is PGL3(C)-conjugate to some G′ ⊂ PGL3(R). In this situation,
11
+ we call G′ a model for G over R. If G has R as a field of definition but is not
12
+ definable over R, then we call G pseudo-real.
13
+ In this paper, we first show that any finite cyclic subgroup G = Z/nZ in
14
+ PGL3(C) has a real field of moduli and we provide a necessary and sufficient
15
+ condition for G = Z/nZ to be definable over R; see Theorems 2.1, 2.2, and
16
+ 2.3. We also prove that any dihedral group D2n with n ≥ 3 in PGL3(C) is
17
+ definable over R; see Theorem 2.4. Furthermore, we study all six classes of
18
+ finite primitive subgroups of PGL3(C), and show that all of them except the
19
+ icosahedral group A5 are pseudo-real; see Theorem 2.5, whereas A5 is definable
20
+ over R. Finally, we explore the connection of these notions in group theory
21
+ with their analogues in arithmetic geometry; see Theorem 2.6 and Example
22
+ 2.7.
23
+ 1. Introduction
24
+ The projective general linear group over the complex numbers PGL3(C) is widely
25
+ studied in several branches of mathematics for many reasons. Some of these mo-
26
+ tivations come from algebraic geometry, arithmetic geometry, and also from group
27
+ theory. We give some examples of such motivations.
28
+ (1) In complex algebraic geometry, PGL3(C) can be viewed as the automorphism
29
+ group Aut(P2(C)) of the complex projective plane P2(C), see [11, Example 7.1.1] for
30
+ example. Moreover, any isomorphism between two smooth complex plane curves
31
+ C and C′ of a fixed degree d ≥ 4 is induced by an element of PGL3(C), see [8,
32
+ Theorem 1]. For such a curve we have the finiteness result | Aut(C)| < +∞ due to
33
+ Hurwitz [19], hence we can view Aut(C) as a finite subgroup of PGL3(C) acting on
34
+ a non-singular plane model F(X, Y, Z) = 0 for C inside P2(C). It is thus natural to
35
+ classify finite subgroups G in PGL3(C). Based on geometrical methods, Mitchell
36
+ [23] achieved such classification. Recently, Harui [12] made Mitchell’s classification
37
+ more precise under the assumption that G = Aut(C) for some smooth plane curves
38
+ C.
39
+ However, some of these groups live in a short exact sequence, hence group
40
+ extension problems arise, which can sometimes be hard to solve.
41
+ Another parallel line of research is to obtain the stratification of C-isomorphism
42
+ classes of smooth plane curves of a fixed degree d by their automorphism groups.
43
+ Henn in his PhD dissertation [13] and Komiya-Kuribayashi [22] accomplished this
44
+ task for smooth quartic curves (d = 4), Badr-Bars [3, 4, 5] for smooth quinitcs
45
+ (d = 5) and for smooth sextics (d = 6).
46
+ 2020 Mathematics Subject Classification. 20G20, 14L35, 14H37, 22F50.
47
+ Key words and phrases. Projective linear groups; Field of moduli; Fields of definitions; Pseudo-
48
+ real; Smooth plane curves; Automorphism groups.
49
+ 1
50
+
51
+ 2
52
+ E. BADR AND A. ELGUINDY
53
+ (2) In complex arithmetic geometry, the problem of studying fields of definition
54
+ versus fields of moduli for a Riemann surface S has attracted a lot of recent research.
55
+ For example, we refer to [1, 2, 7, 9, 14, 15, 16, 18, 21].
56
+ More precisely, a subfield K of C is called a field of definition for S if there exists
57
+ a model of S defined by polynomials with coefficients in K. The field of moduli
58
+ for S is the intersection of all fields of definition for S. The work of Koizumi [20]
59
+ guarantee the existence of a model for S over a finite extension of its field of moduli.
60
+ In this direction, the surface S is said to be pseudo-real if its field of moduli is a
61
+ subfield of R, but S does not have R as a field of definition.
62
+ The above aspects from algebraic geometry and arithmetic geometry are the
63
+ main motivation for us to extend the notions of fields of definition, fields of moduli,
64
+ pseudo-real, to the study of arithmetic groups. Indeed, there has been other in-
65
+ stances in which it has been fruitful to translate concepts from arithmetic geometry
66
+ to group theory, as we illustrate next.
67
+ (3) In group theory, we can measure to which extent an infinite group Γ is
68
+ similar to an abelian group by computing its Jordan constant, denoted by J(Γ).
69
+ It is defined to be the smallest positive integer such that any finite subgroup of Γ
70
+ has an abelian normal subgroup with index not exceeding J(Γ). This definition
71
+ originated from the theory of abelian varieties, more specifically, [24, Definition
72
+ 2.1].
73
+ Concerning the Jordan constant J(PGL3(K)), where K is a field of characteristic
74
+ 0, Hu [17] showed that it assumes only one of the values: 360, 168, 60, 24, 12, 6,
75
+ depending on whether
76
+
77
+ 5 or ζ3 belongs to K or not. Here ζ3 denotes a primitive 3rd
78
+ root of unity in K, a fixed algebraic closure of K. In particular, J(PGL3(C)) = 360,
79
+ see [17, Theorem 1.2] for full details.
80
+ Notations. Throughout the paper, we use the following notations.
81
+ • Norm(G, PGL3(C)) is the normalizer of G inside PGL3(C),
82
+ • ζn = e
83
+ 2πi
84
+ n , a fixed primitive nth root of unity in C.
85
+ • We shall view C× as a subgroup of GL3(C) by identifying 0 ̸= c ∈ C with
86
+ diag(c, c, c). If A is in GL3(C), we let π(A) denote its image under the
87
+ canonical projection onto PGL3(C), namely π(A) is the coset (or equiva-
88
+ lence class) C×A. To ease notation, we occasionally continue to use A in
89
+ place of π(A) when the context is clear.
90
+ • If A = (ai,j) ∈ GL3(C), then the projective linear transformation π(A) ∈
91
+ PGL3(K) is sometimes written as
92
+ [a1,1X + a1,2Y + a1,3Z : a2,1X + a2,2Y + a2,3Z : a3,1X + a3,2Y + a3,3Z].
93
+ • The Galois group Gal(C/R)- action on PGL3(C) is a left action, denoted
94
+ by σφ for any φ ∈ PGL3(C).
95
+ • For c ∈ C, ℜ(c) and ℑ(c) denote the real and the imaginary parts of c
96
+ respectively, and |c| denotes the absolute value of c.
97
+ 2. Main results
98
+ Let G ⊂ PGL3(C) be cyclic of order 1 < n < +∞. Up to PGL3(C)-conjugation,
99
+ such G is generated by a diagonal element A := diag(1, ζa
100
+ n, ζb
101
+ n), for some 0 ≤ a <
102
+ b ≤ n − 1 such that gcd(a, b) = 1.
103
+ Theorem 2.1. Let G = ⟨A⟩ ⊂ PGL3(C) be a cyclic group of order n as above.
104
+ Then, we have that
105
+ (1) G always has a real field of moduli.
106
+
107
+ ON PSEUDO-REAL FINITE SUBGROUPS IN PGL3(C)
108
+ 3
109
+ (2) R is a field of definition for G if and only if A and A−1 are conjugates via a
110
+ transformation of the shape φ σφ−1 for some φ ∈ PGL3(C). In this situation,
111
+ φ−1 G φ would give a model for G over R.
112
+ An homology of period n is a projective linear transformation of the plane P2(C),
113
+ which is PGL3(C)-conjugate to diag(1, 1, ζn). Such a transformation fixes point-
114
+ wise a projective line L, its axis, and a point P ∈ P2(C) − L, its center. In its
115
+ canonical form, the line is L : Z = 0 and the point is P = (0 : 0 : 1). Otherwise, it
116
+ is a non-homology.
117
+ In particular, we have:
118
+ Theorem 2.2. Let G = ⟨A⟩ ⊂ PGL3(C) be a cyclic group of order n as above.
119
+ Then, there exists a model for G over R if and only if n = 2 or n > 2 such that
120
+ a + b, a − 2b or 2a − b equals 0 mod n. In particular, any cyclic group generated by
121
+ a homology of period n ≥ 3 is pseudo-real.
122
+ Furthermore, we can get a model for G over R generated by
123
+ φ−1 A φ =
124
+
125
+
126
+ 2ℑ(α β)
127
+ 0
128
+ 0
129
+ 0
130
+ 2ℑ(α β ζa
131
+ n)
132
+ 2|β|2 sin(2πa/n)
133
+ 0
134
+ −2|α|2 sin(2πa/n)
135
+ 2ℑ(α β ζ−a
136
+ n )
137
+
138
+
139
+ for some α, β ∈ C∗
140
+ The above results can be reformulated using characteristic polynomials of lifts
141
+ to B ∈ GL3(C). If we denote the characteristic polynomial of such B by fB(t),
142
+ then it is straightforward to see that for c ∈ C∗
143
+ fcB(t) = c3fB(t/c).
144
+ (2.1)
145
+ So while we can not attach a single polynomial as a characteristic polynomial
146
+ to an element A ∈ PGL3(C), we can attach to such an A an equivalence class
147
+ of polynomials in C[t] coming from the action given by (2.1).
148
+ Such classes are
149
+ preserved under conjugation in PGL3(C), and we can prove the following result.
150
+ Corollary 2.3. A finite cyclic group G of order n ≥ 3 is definable over R if there
151
+ exists A ∈ GL3(C) such that π(A) (the image of A in PGL3(C) under the natural
152
+ projection) generates G in PGL3(C) and the characteristic polynomial fA(t) ∈ R[t].
153
+ The converse is not necessarily true.
154
+ For G = D2n, a dihedral group in PGL3(C), we prove:
155
+ Theorem 2.4. Any dihedral group D2n of order 2n with n ≥ 3 in PGL3(C) is
156
+ conjugate to ⟨B, π(A)⟩, where B = [X : Z : Y ] and A = diag(1, ζa
157
+ n, ζ−a
158
+ n ) for some
159
+ integer a such that gcd(n, a) = 1. Moreover, we always can descend it to R as
160
+ ⟨ φ−1 B φ, φ−1 A φ⟩, where φ−1 A φ is as given in Theorem 2.2 and
161
+ φ−1 B φ =
162
+
163
+
164
+ 2ℑ(α β)
165
+ 0
166
+ 0
167
+ 0
168
+ −2ℑ(α β)
169
+ −2ℑ(β2)
170
+ 0
171
+ 2ℑ(α2)
172
+ 2ℑ(α β)
173
+
174
+
175
+ for some α, β ∈ C∗.
176
+ When G is one of the finite primitive subgroup of PGL3(C), we show the follow-
177
+ ing.
178
+ Theorem 2.5. Any of the finite primitive subgroups namely, the Hessian groups
179
+ Hess∗, for ∗ = 216, 72 and 36, the Klein group PSL(2, 7) of order 168, the icosa-
180
+ hedral group A5 of order 60 and the alternating group A6 of order 360, has a real
181
+ field of moduli. Moreover, none of them descends to R except A5. More concretely,
182
+
183
+ 4
184
+ E. BADR AND A. ELGUINDY
185
+ we always can descend A5 to R as φ−1 ⟨ A, B, C⟩ φ, such that φ−1 A φ and φ−1 B φ
186
+ are as given in Theorem 2.4 with n = 5 and a = 4, and φ−1 C φ equals
187
+
188
+
189
+ 4ℑ(α β)
190
+ 8ℑ(α β) ℜ(α)
191
+ 8ℑ(α β) ℜ(β)
192
+ 2ℑ(β)
193
+ 2
194
+
195
+ cos(4π/5)ℑ(αβ) − cos(2π/5)ℑ(αβ)
196
+
197
+ −2 cos(2π/5)ℑ(β2)
198
+ 2ℑ(α)
199
+ 2 cos(2π/5)ℑ(α2)
200
+ 2
201
+
202
+ cos(4π/5)ℑ(αβ) + cos(2π/5)ℑ(αβ)
203
+
204
+
205
+  ,
206
+ for some α, β ∈ C∗.
207
+ A connection with these notions in arithmetic geometry is described by the next
208
+ result.
209
+ Theorem 2.6. Let C : F(X, Y, Z) = 0 be a smooth plane curve over C. If C has a
210
+ real field of moduli in the Arithmetic Geometry sense, then its automorphism group
211
+ Aut(C) has a real field of moduli in the Group Theory sense.
212
+ The converse of Theorem 2.6 is not necessarily true. Below is a counter example.
213
+ Example 2.7. There are infinitely many smooth plane quintic curves defined over
214
+ C by an equation of the form
215
+ Cα,β : X5 + Y 5 + Z5 + αX(Y Z)2 + βX3(Y Z) = 0,
216
+ such that the automorphism group Aut(Cα,β) = D10 has a real field of moduli, but
217
+ Cα,β does not have a real field of moduli as its field of moduli.
218
+ 3. The case when G is cyclic
219
+ Suppose that G = ⟨diag(1, ζa
220
+ n, ζb
221
+ n)⟩ in PGL3(C) such that 0 ≤ a < b ≤ n − 1 and
222
+ gcd(a, b) = 1.
223
+ Since the complex conjugation automorphism σ : C → C sends ζn �→ ζ−1
224
+ n , then
225
+ σG = ⟨diag(1, ζ−a
226
+ n , ζ−b
227
+ n )⟩ = G. In particular, G has a real field of moduli. This
228
+ proves Theorem 2.1-(1).
229
+ To prove Theorem 2.1-(2), we assume that G descends to R. That is, there exists
230
+ φ ∈ PGL3(C) satisfying φ−1 A φ ∈ PGL3(R), where A = diag(1, ζa
231
+ n, ζb
232
+ n). This holds
233
+ if and only if
234
+ φ−1 A φ = σ �
235
+ φ−1 A φ
236
+
237
+ = σφ−1 A−1 σφ,
238
+ which we can read in two different ways. First as
239
+
240
+ φ σφ−1�−1 A
241
+
242
+ φ σφ−1�
243
+ = A−1,
244
+ which shows that A and A−1 are conjugates via φ σφ−1. Second as
245
+ φ−1 A φ = σ �
246
+ φ−1 A φ
247
+
248
+ ,
249
+ which shows that φ−1 A φ ∈ PGL3(R) as claimed.
250
+ We need the following lemma to discuss Theorem 2.2.
251
+ Lemma 3.1. Assume A and B are matrices in GL3(C) such that π(A) and π(B)
252
+ are PGL3(C)-conjugates (where π denotes the natural projection from GL3(C) to
253
+ PGL3(C)), then there is a constant c ∈ C∗ such that the eigenvalues of B are
254
+ precisely cν1, cν2, cν3, where ν1, ν2, ν3 are the eigenvalues of A.
255
+ Proof. Suppose that there is an ψ ∈ PGL3(C) such that ψ−1 π(A) ψ = π(B) in
256
+ PGL3(C). Then, this equation corresponds to ψ−1 A ψ = (1/c)B in GL3(C) for
257
+ some c ∈ C∗. Hence, A and (1/c)B are similar matrices in GL3(C), so by elementary
258
+ linear algebra, we guarantee that their characteristic polynomials have the same
259
+ roots, say ν1, ν2, ν3 . Therefore, the eigenvalues of B are cν1, cν2, cν3.
260
+
261
+ We now present the proof of Theorem 2.2.
262
+
263
+ ON PSEUDO-REAL FINITE SUBGROUPS IN PGL3(C)
264
+ 5
265
+ Proof. (of the necessity direction) First, assume that G is generated by a homology
266
+ A = diag(1, 1, ζn). Since {c, c, c ζn} ̸= {1, 1, ζ−1
267
+ n } for any c ∈ C∗ unless n = 2, then
268
+ A and A−1 are never PGL3(C)-conjugates for n ≥ 3 by Lemma 3.1. In particular,
269
+ G does not have a model over R by Theorem 2.1.
270
+ Secondly, assume that G is generated by a non-homology A = diag(1, ζa
271
+ n, ζb
272
+ n)
273
+ such that {c, c ζa
274
+ n, c ζb
275
+ n} = {1, ζ−a
276
+ n , ζ−b
277
+ n } for some c ∈ C∗. Then, c is either 1, ζ−a
278
+ n
279
+ or
280
+ ζ−b
281
+ n . Moreover,
282
+ - if c = 1, then ζa
283
+ n = ζ−a
284
+ n , ζb
285
+ n = ζ−b
286
+ n
287
+ or ζa
288
+ n = ζ−b
289
+ n . That is, 2a = 2b = 0 mod n or
290
+ a + b = 0 mod n. We discard the case 2a = 2b = 0 mod n as it implies that n or
291
+ n/2 would divide gcd(a, b) = 1, a contradiction because n ≥ 3. This leaves us with
292
+ a + b = 0 mod n.
293
+ - if c = ζ−a
294
+ n , then ζb−a
295
+ n
296
+ = ζ−b
297
+ n , and n | a − 2b = 0 mod n.
298
+ - if c = ζ−b
299
+ n , then ζa−b
300
+ n
301
+ = ζ−a
302
+ n , and 2a − b = 0 mod n.
303
+ This completes the necessity part.
304
+
305
+ Proof. (of the sufficiency direction) If G is cyclic generated by a homology of period
306
+ 2, then G is PGL3(C)-conjugate to ⟨diag(1, 1, −1)⟩ in PGL3(R), and we are done.
307
+ Otherwise, G is generated by a non-homology A = diag(1, ζa
308
+ n, ζb
309
+ n) of order n ≥ 3
310
+ such that a + b, a − 2b or 2a − b equals 0 mod n. First, we show that any of the
311
+ last two situation can be reduced to the first one. Indeed, if A = diag(1, ζ2b
312
+ n , ζb
313
+ n),
314
+ then one can take ψ = [Y : Z : X] so that
315
+ ψ−1 A ψ = diag(ζb
316
+ n, 1, ζ2b
317
+ n ) = diag(1, ζ−b
318
+ n , ζb
319
+ n) = diag(1, ζa′
320
+ n , ζ−a′
321
+ n
322
+ ) in PGL3(C),
323
+ where a′ := −b. Similarly, if A = diag(1, ζa
324
+ n, ζ2a
325
+ n ), then take ψ = [Z : X : Y ] to get
326
+ ψ−1 A ψ = diag(ζa
327
+ n, ζ2a
328
+ n , 1) = diag(1, ζa
329
+ n, ζ−a
330
+ n ) in PGL3(C).
331
+ Now we are going to handle the situation when n divides a + b. Take
332
+ φ =
333
+
334
+
335
+ 1
336
+ 0
337
+ 0
338
+ 0
339
+ α
340
+ β
341
+ 0
342
+ α
343
+ β
344
+
345
+  ∈ PGL3(C).
346
+ One easily verifies that φ σφ−1 = [X : Z : Y ] ∈ Norm(G, PGL3(C)) such that
347
+ [X : Z : Y ] A [X : Z : Y ] = A−1. In particular, we deduce by Theorem 2.1 that
348
+ φ−1 G φ ≤ PGL3(R) is a model of G over R. More specifically,
349
+ φ−1 A φ
350
+ =
351
+
352
+
353
+ 2ℑ(α β) i
354
+ 0
355
+ 0
356
+ 0
357
+ β
358
+ −β
359
+ 0
360
+ −α
361
+ α
362
+
363
+  diag(1, ζa
364
+ n, ζ−a
365
+ n )
366
+
367
+
368
+ 1
369
+ 0
370
+ 0
371
+ 0
372
+ α
373
+ β
374
+ 0
375
+ α
376
+ β
377
+
378
+
379
+ =
380
+
381
+
382
+ 2ℑ(α β) i
383
+ 0
384
+ 0
385
+ 0
386
+ ζa
387
+ n β
388
+ −ζ−a
389
+ n
390
+ β
391
+ 0
392
+ −ζa
393
+ n α
394
+ ζ−a
395
+ n
396
+ α
397
+
398
+
399
+
400
+
401
+ 1
402
+ 0
403
+ 0
404
+ 0
405
+ α
406
+ β
407
+ 0
408
+ α
409
+ β
410
+
411
+
412
+ =
413
+
414
+
415
+ 2ℑ(α β) i
416
+ 0
417
+ 0
418
+ 0
419
+ 2ℑ(α β ζa
420
+ n) i
421
+ 2|β|2 sin(2πa/n) i
422
+ 0
423
+ −2|α|2 sin(2πa/n) i
424
+ 2ℑ(α β ζ−a
425
+ n ) i
426
+
427
+
428
+ =
429
+
430
+
431
+ 2ℑ(α β)
432
+ 0
433
+ 0
434
+ 0
435
+ 2ℑ(α β ζa
436
+ n)
437
+ 2|β|2 sin(2πa/n)
438
+ 0
439
+ −2|α|2 sin(2πa/n)
440
+ 2ℑ(α β ζ−a
441
+ n )
442
+
443
+  ∈ PGL3(R).
444
+ This completes the proof of Theorem 2.2.
445
+
446
+ Next, assume that G is generated by a non-homology π(A) ∈ PGL3(C) of order
447
+ n ≥ 3. As a consequence Theorem 2.2, we can say that fA(t) ∈ R[t] is a sufficient
448
+ (rather than necessary) condition for G to descend to R.
449
+
450
+ 6
451
+ E. BADR AND A. ELGUINDY
452
+ Proof. (of Corollary 2.3) By Lemma 3.1, there exists c ∈ C∗ such that
453
+ fA(t) = (t − c)(t − cζa
454
+ n)(t − cζb
455
+ n) ∈ R[t].
456
+ Moreover, the roots c, c ζa
457
+ n, c ζb
458
+ n of fA(t) are pairwise distinct, since π(A) is a non-
459
+ homology in PGL3(C) by assumption.
460
+ Now, the coefficients c3ζa+b
461
+ n
462
+ , c(1+ζa
463
+ n +ζb
464
+ n), c2(ζa+b
465
+ n
466
+ +ζa
467
+ n +ζb
468
+ n) belong to R. Thus
469
+ there are r, r′ ∈ R such that ζa+b
470
+ n
471
+ = r/c3 and ζa
472
+ n + ζb
473
+ n = r′/c− 1. Consequently, the
474
+ last condition becomes c2(r/c3+r′/c−1) ∈ R, in other words, c3−r′c2+r′′c−r = 0
475
+ for some r, r′, r′′ ∈ R. This means that c ∈ C is algebraic over R of degree dividing
476
+ 3. Since C/R is a field extension of degree 2, then c must be algebraic over R of
477
+ degree 1. Therefore, c ∈ R, which in turns implies that ζa+b
478
+ n
479
+ , ζa
480
+ n + ζb
481
+ n ∈ R.
482
+ Clearly, ζa+b
483
+ n
484
+ ∈ R only if a+b = k( n
485
+ 2 ) with k = 1, 2 or 3, since 3 ≤ a+b ≤ 2n−3.
486
+ If k = 1 or 3, then ζa+b
487
+ n
488
+ = −1 and ζa
489
+ n + ζb
490
+ n = ζa
491
+ n − ζ−a
492
+ n
493
+ = 2 sin(2π a/n) i /∈ R, a
494
+ contradiction. Hence k = 1 and a + b = 0 mod n. By Theorem 2.2 we deduce that
495
+ G descends to R, which was to be shown.
496
+ To see that the converse does not hold in general, take A = diag(ζ3
497
+ 5, ζ4
498
+ 5, ζ2
499
+ 5)
500
+ in GL3(C). Clearly, fA(t) /∈ R[t]. However, G = ⟨π(A)⟩ is definable over R by
501
+ Theorem 2.2, since π(A) = diag(1, ζ5, ζ−1
502
+ 5 ) = diag(1, ζa
503
+ n, ζb
504
+ n) with n | a + b.
505
+
506
+ 4. The case when G is a Dihedral group
507
+ Suppose that G = ⟨A, B : An = B2 = 1, BAB = A−1⟩ is a dihedral group D2n
508
+ in PGL3(C) with n ≥ 3. There is no loss of generality to take A = diag(1, ζa
509
+ n, ζb
510
+ n)
511
+ up to conjugation and projective equivalence.
512
+ Since A and A−1 are PGL3(C)-
513
+ conjugates via B, then, by Theorem 2.2, A must be a non-homology. Moreover,
514
+ we can always reduce to the case b = −a modulo n. Furthermore, we can assume
515
+ by [18, Lemma 2.3.7] that B belongs to PBD(2, 1). Since BAB = A−1, we obtain
516
+ B = [X : νZ : ν−1Y ] for some ν ∈ C∗.
517
+ Through a projective transformation
518
+ ψ = diag(1, λν, λ), which is in Norm (⟨A⟩, PGL3(C)), we can further reduce to
519
+ ν = 1. Eventually, we conclude:
520
+ Lemma 4.1. For each fixed integer n ≥ 3, there is, up to PGL3(C)-conjugation, a
521
+ unique dihedral group D2n of order 2n. More precisely, any such group is conjugate
522
+ to the group generated by B = [X : Z : Y ] and A = diag(1, ζn, ζ−1
523
+ n ).
524
+ Now, we will prove that a dihedral group G = ⟨ A, B⟩ as above has a real field
525
+ of moduli, moreover, it descends to R.
526
+ Proof. Since σ A = A−1 and σ B = B−1, then σG = G and G has a real field of
527
+ moduli.
528
+ On the other hand, we have seen in Theorem 2.2 that φ−1 A φ ∈ PGL3(R)
529
+ through a projective transformation φ of the shape:
530
+ φ =
531
+
532
+
533
+ 1
534
+ 0
535
+ 0
536
+ 0
537
+ α
538
+ β
539
+ 0
540
+ α
541
+ β
542
+
543
+  .
544
+ It remains to see that φ−1 B φ ∈ PGL3(R) so that φ−1 G φ is a model of G over R.
545
+ Indeed, we have
546
+
547
+ ON PSEUDO-REAL FINITE SUBGROUPS IN PGL3(C)
548
+ 7
549
+ φ−1 B φ
550
+ =
551
+
552
+
553
+ 2ℑ(α β) i
554
+ 0
555
+ 0
556
+ 0
557
+ β
558
+ −β
559
+ 0
560
+ −α
561
+ α
562
+
563
+  [X : Z : Y ]
564
+
565
+
566
+ 1
567
+ 0
568
+ 0
569
+ 0
570
+ α
571
+ β
572
+ 0
573
+ α
574
+ β
575
+
576
+
577
+ =
578
+
579
+
580
+ 2ℑ(α β)
581
+ 0
582
+ 0
583
+ 0
584
+ −β
585
+ β
586
+ 0
587
+ α
588
+ −α
589
+
590
+
591
+
592
+
593
+ 1
594
+ 0
595
+ 0
596
+ 0
597
+ α
598
+ β
599
+ 0
600
+ α
601
+ β
602
+
603
+
604
+ =
605
+
606
+
607
+ 2ℑ(α β) i
608
+ 0
609
+ 0
610
+ 0
611
+ −2ℑ(α β) i
612
+ −2ℑ(β2) i
613
+ 0
614
+ 2ℑ(α2) i
615
+ 2ℑ(α β) i
616
+
617
+
618
+ =
619
+
620
+
621
+ 2ℑ(α β)
622
+ 0
623
+ 0
624
+ 0
625
+ −2ℑ(α β)
626
+ −2ℑ(β2)
627
+ 0
628
+ 2ℑ(α2)
629
+ 2ℑ(α β)
630
+
631
+  ∈ PGL3(R).
632
+
633
+ This completes the proof of Theorem 2.4.
634
+ 5. The cases when G is a finite primitive subgroup of PGL3(C)
635
+ Recall that the finite primitive subgroups PGL3(C) are the Hessian groups Hess∗,
636
+ for ∗ = 216, 72, 36, the alternating groups A∗, for ∗ = 5, 6, and the Klein group
637
+ PSL(2, 7) of order 168. We study their definability over R in this section.
638
+ 5.1. The Hessian groups Hess∗. The Hessian group of order 216, denoted by
639
+ Hess216, is unique up to conjugation in PGL3(C). See [23, p. 217] or [18, Lemma
640
+ 2.3.7] for more details. For instance, we fix Hess216 = ⟨S, T, U, V ⟩ where
641
+ S = diag(1, ζ3, ζ−1
642
+ 3 ), U = diag(1, 1, ζ3), V =
643
+
644
+
645
+ 1
646
+ 1
647
+ 1
648
+ 1
649
+ ζ3
650
+ ζ−1
651
+ 3
652
+ 1
653
+ ζ−1
654
+ 3
655
+ ζ3
656
+
657
+  , T = [Y : Z : X].
658
+ Also, we consider the Hessian subgroup of order 72, Hess72 = ⟨S, T, V, UV U −1⟩,
659
+ and the Hessian subgroup of order 36, Hess36 = ⟨S, T, V ⟩.
660
+ Concerning the Hessian groups Hess∗, for ∗ ∈ {36, 72, 216}. We first show
661
+ Proposition 5.1. Any of the Hessian groups Hess∗ has a real field of moduli.
662
+ Proof. It is easy to see that σS = S−1, σU = U −1, and σT = T . Furthermore
663
+ σV = 3V −1 in GL3(C), hence we also have σV = V −1 in PGL3(C). It follows that
664
+ σ Hess∗ = Hess∗ if ∗ = 216 or 36. So Hess216 and Hess36 indeed have a real field of
665
+ moduli. For Hess72, we get σ Hess72 = ⟨S, T, V, U −1V −1U⟩ ⊂ Hess216; another copy
666
+ of Hess72 inside Hess216. The Group structure of Hess216 [10] assures that all copies
667
+ of Hess72 are Hess216-conjugates, that is to say, there is a projective transformation
668
+ ψ ∈ Hess216 such that ψ−1 Hess72 ψ = σ Hess72. From this we obtain that Hess72
669
+ has a real field of moduli as well.
670
+
671
+ As a consequence,
672
+ Corollary 5.2. The Hessian groups Hess∗ for ∗ = 216, 72 and 36 are all pseudo-
673
+ real.
674
+ Proof. It is easy to see that ST = T S, so ⟨S, T ⟩ is isomorphic to C3 × C3. By [17,
675
+ Lemma 5.2] (see also [25, Section 4]), C3 ×C3 is a subgroup of PGL3(K) if and only
676
+ if the field K contains a nontrivial cube root of unity. Since ζ3 /∈ R, we can’t reduce
677
+ ⟨S, T ⟩ to a subgroup of PGL3(R) as ζ3 /∈ R. In particular, φ−1 Hess∗ φ ⊈ PGL3(R)
678
+ for any φ ∈ PGL3(C). Combining with Proposition 5.1, we conclude that Hess∗ is
679
+ pseudo-real for ∗ = 216, 72 and 36 as claimed.
680
+
681
+
682
+ 8
683
+ E. BADR AND A. ELGUINDY
684
+ 5.2. The alternating groups A5 and A6. We first note that PGL3(C) possesses
685
+ a single conjugacy class isomorphic to each of A5 and A6, see [23, p. 224, 225] or [18,
686
+ Lemma 2.3.7]. Therefore, for i ∈ {5, 6} Ai and σ Ai must be PGL3(C)-conjugates.
687
+ In other words, Ai has a real field of moduli.
688
+ Since A6 contains C3 × C3 as a subgroup, then we can use the same argument
689
+ as in Corollary 5.2 to deduce the following.
690
+ Corollary 5.3. The alternating group A6 is pseudo-real.
691
+ For the icosahedral group A5, the situation is different. To study it we fix the
692
+ copy G := ⟨A, B, C⟩ in PGL3(C), where
693
+ A = diag(1, ζ−1
694
+ 5 , ζ5), B = [X : Z : Y ], C =
695
+
696
+
697
+ 2
698
+ 2
699
+ 2
700
+ 1
701
+ cos(4π/5)
702
+ cos(2π/5)
703
+ 1
704
+ cos(2π/5)
705
+ cos(4π/5)
706
+
707
+  .
708
+ According to [18, Lemma 2.3.7 ], G is PGL3(C)-conjugate to A5. Any subgroup of
709
+ PGL3(C) isomorphic to A5 is PGL3(C) conjugate to G.
710
+ Now, we are going to construct an explicit model for G over R.
711
+ Recall, from our study above of the Dihedral group in §4, that ⟨ A, B⟩ descends to
712
+ R via a transformation of the shape
713
+ φ =
714
+
715
+
716
+ 1
717
+ 0
718
+ 0
719
+ 0
720
+ α
721
+ β
722
+ 0
723
+ α
724
+ β
725
+
726
+  ∈ PGL3(C).
727
+ Moreover, one can check that φ−1 C φ equals
728
+
729
+
730
+ 4ℑ(α β)
731
+ 8ℑ(α β) ℜ(α)
732
+ 8ℑ(α β) ℜ(β)
733
+ 2ℑ(β)
734
+ 2
735
+
736
+ cos(4π/5)ℑ(αβ) − cos(2π/5)ℑ(αβ)
737
+
738
+ −2 cos(2π/5)ℑ(β2)
739
+ 2ℑ(α)
740
+ 2 cos(2π/5)ℑ(α2)
741
+ 2
742
+
743
+ cos(4π/5)ℑ(αβ) + cos(2π/5)ℑ(αβ)
744
+
745
+
746
+  ,
747
+ in PGL3(R). Thus all generators of G when conjugated by the same φ become in
748
+ PGL3(R), hence the same is true for the whole group and the result follows.
749
+ 5.3. The Klein group PSL(2, 7). Again, there is a single conjugacy class of
750
+ PSL(2, 7) in PGL3(C). Thus it has a real field of moduli. Also, we know by [18,
751
+ Lemma 2.3.7] that a representative of such a class contains the element diag(1, ζ7, ζ3
752
+ 7).
753
+ Theorem 2.2 applies to n = 7, a = 1, b = 3 to conclude that PSL(2, 7) is not defin-
754
+ able over R.
755
+ 6. Connection to Arithmetic Geometry
756
+ Let C : F(X, Y, Z) = 0 be a non-singular plane curve defined over C with non-
757
+ trivial automorphism group Aut(C) in PGL3(C),
758
+ Lemma 6.1. We have Aut(σC) = σ Aut(C)
759
+ Proof. For any φ ∈ Aut(C), φF(X, Y, Z) = cF(X, Y, Z) for some c ∈ C∗. Applying
760
+ σ to both sides yields
761
+ σ(c) σF(X, Y, Z) = σ �φF(X, Y, Z)
762
+
763
+ =
764
+ σφ (σF(X, Y, Z)) .
765
+ That is, σφ leaves invariant σC : σF(X, Y, Z) = 0. Equivalently, σφ ∈ Aut(σC),
766
+ hence σ Aut(C) ⊆ Aut(σC).
767
+ By a similar argument we can show the other inclusion.
768
+
769
+ Theorem 6.2. Let C : F(X, Y, Z) = 0 be a smooth plane curve over C. If C has
770
+ a real field of moduli in the Arithmetic Geometry sense, then Aut(C) has
771
+ a real
772
+ field of moduli in the Group Theory sense.
773
+ The converse need not be true.
774
+
775
+ ON PSEUDO-REAL FINITE SUBGROUPS IN PGL3(C)
776
+ 9
777
+ Proof. Since C : F(X, Y, Z) = 0 has a real field of moduli, then it must be the case
778
+ that σC : σF(X, Y, Z) = 0 and C : F(X, Y, Z) = 0 are C-projectively equivalent
779
+ (isomorphic over C). Moreover, any isomorphism between complex non-singular
780
+ plane curves C and C′ is always given by a projective transformation φ ∈ PGL3(C)
781
+ such that their automorphism groups are conjugates via this φ. As a consequence,
782
+ we obtain that φ−1 Aut(C) φ = Aut(σC), which equals σ Aut(C) by Lemma 6.1.
783
+ Thus Aut(C) has a real field of moduli as claimed.
784
+ To complete the argument, Example 6.3 below provides infinitely many counter
785
+ examples that Aut(C) can descend R, but C : F(X, Y, Z) = 0 does not even have
786
+ a real field of moduli.
787
+
788
+ Example 6.3. Consider the two-dimensional family Ca,b of smooth plane quintic
789
+ curves given by
790
+ Ca,b : X5 + Y 5 + Z5 + iaX(Y Z)2 + ibX3(Y Z),
791
+ where a, b ∈ R∗ such that a/b ̸= (c5 − 3)c2
792
+ 2c5 − 1 ζm
793
+ 10 for any c ∈ C∗ and m ∈ {±1, ±3, 5}.
794
+ • Non-singularity. We first note that no singular points lie over Y = 0.
795
+ Indeed, if C has singularity at (α : 0 : β), then α and β must be 0 in
796
+ order to satisfy FX = FZ = 0, a contradiction. Second, the resultant of
797
+ f1(X, Z) := FY (X, 1, Z) and f2(X, Z) := FZ(X, 1, Z) with respect to X is
798
+ given by
799
+ ResX(f1, f2) = −125 i b3 (Z5 − 1)3.
800
+ Using MATHEMATICA, one can verify that we have singular points over
801
+ Z5 = 1 only if a/b = (c5 − 3)c2
802
+ 2c5 − 1 ζm
803
+ 10 for some c ∈ C∗ and m ∈ {±1, ±3, 5},
804
+ which is absurd by assumption.
805
+ • Automorphism group. The stratification of smooth plane quintics by
806
+ their automorphism groups in [3, 6] assures that the group D10 gener-
807
+ ated by ρ1 = diag(1, ζ5, ζ−1
808
+ 5 ) and ρ2 = [X : Z : Y ] is a always a sub-
809
+ group of automorphisms for Ca,b. Moreover, if Ca,b admits a larger auto-
810
+ morphism group, then it should be GAP(150, 5) = (Z/5Z)2 ⋊ S3, where
811
+ in this situation Ca,b is K-isomorphic to the Fermat quintic curve F5;
812
+ the most symmetric smooth quintic curve.
813
+ In particular, there must
814
+ be an extra automorphism ρ3 /∈ ⟨ρ1⟩ of order 5 that commutes with
815
+ ρ1 as any Z/5Z inside (Z/5Z)2 ⋊ S3 is contained in a (Z/5Z)2.
816
+ See
817
+ Group Structure of (Z/5Z)2 ⋊ S3 [10]. Straightforward calculations in PGL3(C)
818
+ lead to ρ3 = diag(1, α, β) with α5 = β5 = 1. Checking the action of such
819
+ an automorphism on the defining equation of Ca,b tells us that a = b = 0
820
+ or ρ3 ∈ ⟨ρ1⟩. Therefore, Aut(Ca,b) = D10 = ⟨ρ1, ρ2⟩.
821
+ Now, we conclude by Theorem 2.4 that Aut(Ca,b) descends to R.
822
+ • Ca,b does not have a real field of moduli. Suppose that C is a member
823
+ of the family Ca,b such that C has a real field of moduli. Hence C and σC
824
+ are C-projectively equivalent via some φ ∈ PGL3(C). Since C and σC
825
+ belong to the same family Ca,b, we have σ Aut(C) = Aut(C) = ⟨ρ1, ρ2⟩.
826
+ In particular, φ should be in the normalizer of ⟨ρ1, ρ2⟩ in PGL3(C). We
827
+ reduce to the case φ−1ρ1φ = ρ1 or ρ−1 as {c, cζ5, cζ−1
828
+ 5 } ̸= {1, ζ2
829
+ 5, ζ−2
830
+ 5 } or
831
+ {1, ζ3
832
+ 5, ζ−3
833
+ 5 } for any c ∈ C∗ by Lemma 3.1. Consequently, φ = diag(1, α, β)
834
+ or [X : αZ : βY ] for some α, β ∈ C∗. Because φC = σC, we must have
835
+ α5 = β5 = 1 and αβ = (αβ)2 = −1. The last condition is inconsistent,
836
+ which means that C and σC are never C-isomorphic.
837
+
838
+ 10
839
+ E. BADR AND A. ELGUINDY
840
+ References
841
+ [1] M. Artebani and S. Qusipe, Fields of moduli and fields of definition of odd signature curves,
842
+ Arch. Math. 99 (2012), 333-343.
843
+ [2] M. Artebani, M. Carvacho, R. A. Hidalgo, and S. Quispe, A tower of Riemann surfaces which
844
+ cannot be defined over their field of moduli, Glasgow Math. J. 59 (2017), 379-393.
845
+ [3] E. Badr and F. Bars, Automorphism groups of nonsingular plane curves of degree 5. Comm.
846
+ Algebra 44 (2016), no. 10, 4327-4340. MR 3508302.
847
+ [4] E. Badr and F. Bars, On fake ES-irreducibile components of certain strata of smooth plane
848
+ sextics. Preprint 2022, https://doi.org/10.48550/arXiv.2208.08904.
849
+ [5] E. Badr and F. Bars, The stratification by automorphism groups of smooth plane sextics
850
+ curves. Preprint 2022, https://doi.org/10.48550/arXiv.2208.12749.
851
+ [6] E. Badr and E. Lorenzo. A note on the stratification of smooth plane curves of genus 6.
852
+ Colloq. Math. 192, (2020), 207-222.
853
+ [7] E. Badr, R. A. Hidalgo, and S. Quispe, Non-hyperelliptic Riemann surfaces with real field of
854
+ moduli but not definable over the reals, Arch. Math. 110 (2018), 219-222.
855
+ [8] H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185- 189. MR
856
+ 529972.
857
+ [9] C. J. Earle, On the moduli of closed Riemann surfaces with symmetries, In: Advances in
858
+ the Theory of Riemann Surfaces, L.V. Ahlfors et al. (Eds.), 119-130, Princeton Univ. Press,
859
+ Princeton, 1971.
860
+ [10] T. Dokchitser, GroupNames, https://people.maths.bris.ac.uk/ matyd/GroupNames/about.html
861
+ [11] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate
862
+ Texts in Mathematics, No. 52. MR 0463157.
863
+ [12] T. Harui, Automorphism groups of plane curves. Kodai Math. J. 42 (2), (2019), 308-331.
864
+ [13] P. Henn, Die Automorphismengruppen dar algebraischen Functionenkorper vom Geschlecht
865
+ 3. Inagural-dissertation, Heidelberg, 1976.
866
+ [14] R. A. Hidalgo, Non-hyperelliptic Riemann surfaces with real field of moduli but not definable
867
+ over the reals, Arch. Math. 93 (2009), 219-222.
868
+ [15] R. A. Hidalgo and S. Quispe, Fields of moduli of some special curves, J. Pure Appl. Algebra
869
+ 220 (2022), 55-60.
870
+ [16] R. A. Hidalgo and T. Shaska, On the field of moduli of superelliptic curves: In higher genus
871
+ curves in mathematical physics and arithmetic geometry. Commun. Contemp. Math. 703
872
+ (2018).
873
+ [17] Y. Hu, Jordan constant for PGL3(K), arXiv:2206.02186v1 [math.RT], 5 June 2022.
874
+ [18] B. Huggins, Fields of moduli and fields of definition of curves. ProQuest LLC, Ann Arbor,
875
+ MI, 2005, PhD Thesis University of California, Berkeley. MR2708514
876
+ [19] A. Hurwitz, ¨Uber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann.
877
+ 41 (1892), no. 3, 403-442. MR 1510753.
878
+ [20] S. Koizumi,
879
+ Fields of moduli for polarized abelian varieties and for curves, Nagoya Math.
880
+ J. 48 (1972), 37-55.
881
+ [21] A. Kontogeorgis, Field of moduli versus field of definition for cyclic covers of the projective
882
+ line, J. Th´eor. Nombres Bordeaux 21 (2009), 679-692.
883
+ [22] A. Kuribayashi and K. Komiya, On Weierstrass points and automorphisms of curves of genus
884
+ three. Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978),
885
+ [23] H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer.
886
+ Math. Soc. 12 (1911), no. 2, 207-242. MR 1500887.
887
+ [24] V. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of
888
+ algebraic varieties. Affine Algebraic Geometry: The Russell Festschrift, CRM Proceedings
889
+ and Lecture Notes, 54 (2011), 289-311.
890
+ [25] E. Yasinsky, The Jordan constant for Cremona group of rank 2, Korean Math. Soc. 54, no.
891
+ 5 (2017), 1859-1871.
892
+ • Eslam Badr
893
+ Mathematics Department, Faculty of Science, Cairo University, Giza-Egypt
894
+ Email address: eslam@sci.cu.edu.eg
895
+ Mathematics and Actuarial Science Department (MACT), American University in
896
+ Cairo (AUC), New Cairo-Egypt
897
+ Email address: eslammath@aucegypt.edu
898
+ • Ahmad El-Guindy
899
+
900
+ ON PSEUDO-REAL FINITE SUBGROUPS IN PGL3(C)
901
+ 11
902
+ Mathematics Department, Faculty of Science, Cairo University, Giza, Egypt
903
+ Email address: aelguindy@sci.cu.edu.eg
904
+
-NAyT4oBgHgl3EQfqfhf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -1078,3 +1078,59 @@ ndE0T4oBgHgl3EQfqAGQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
1078
  kb_37/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1079
  89AzT4oBgHgl3EQf-_4J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1080
  aNE4T4oBgHgl3EQfnw2m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
  kb_37/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1079
  89AzT4oBgHgl3EQf-_4J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1080
  aNE4T4oBgHgl3EQfnw2m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1081
+ v9FJT4oBgHgl3EQffixw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1082
+ W9E1T4oBgHgl3EQfvgXD/content/2301.03401v1.pdf filter=lfs diff=lfs merge=lfs -text
1083
+ 5dE1T4oBgHgl3EQf6gWk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1084
+ kb_37/content/kb_37.pdf filter=lfs diff=lfs merge=lfs -text
1085
+ yNAzT4oBgHgl3EQftP0T/content/2301.01671v1.pdf filter=lfs diff=lfs merge=lfs -text
1086
+ rNFRT4oBgHgl3EQffDdP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1087
+ ptFRT4oBgHgl3EQfdjek/content/2301.13568v1.pdf filter=lfs diff=lfs merge=lfs -text
1088
+ o9FPT4oBgHgl3EQfLTSh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1089
+ kdE3T4oBgHgl3EQfJgnA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1090
+ kdE3T4oBgHgl3EQfJgnA/content/2301.04345v1.pdf filter=lfs diff=lfs merge=lfs -text
1091
+ yNAzT4oBgHgl3EQftP0T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1092
+ GdAyT4oBgHgl3EQfSvfs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1093
+ qdE0T4oBgHgl3EQfaQC1/content/2301.02333v1.pdf filter=lfs diff=lfs merge=lfs -text
1094
+ j9E1T4oBgHgl3EQf0QVw/content/2301.03453v1.pdf filter=lfs diff=lfs merge=lfs -text
1095
+ 4tFIT4oBgHgl3EQf7Ctv/content/2301.11396v1.pdf filter=lfs diff=lfs merge=lfs -text
1096
+ hdA0T4oBgHgl3EQfIP8h/content/2301.02071v1.pdf filter=lfs diff=lfs merge=lfs -text
1097
+ OtFOT4oBgHgl3EQf3zQR/content/2301.12947v1.pdf filter=lfs diff=lfs merge=lfs -text
1098
+ itAzT4oBgHgl3EQfbPyr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1099
+ v9FJT4oBgHgl3EQffixw/content/2301.11557v1.pdf filter=lfs diff=lfs merge=lfs -text
1100
+ BtE0T4oBgHgl3EQfQAAH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1101
+ jdFPT4oBgHgl3EQfFjQr/content/2301.13000v1.pdf filter=lfs diff=lfs merge=lfs -text
1102
+ u9E3T4oBgHgl3EQf-QtO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1103
+ UNAyT4oBgHgl3EQfVvd8/content/2301.00149v1.pdf filter=lfs diff=lfs merge=lfs -text
1104
+ OtFOT4oBgHgl3EQf3zQR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1105
+ ANE4T4oBgHgl3EQf4w6U/content/2301.05316v1.pdf filter=lfs diff=lfs merge=lfs -text
1106
+ UNAyT4oBgHgl3EQfVvd8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1107
+ 99E0T4oBgHgl3EQfwwHR/content/2301.02638v1.pdf filter=lfs diff=lfs merge=lfs -text
1108
+ l9FPT4oBgHgl3EQf3jX-/content/2301.13191v1.pdf filter=lfs diff=lfs merge=lfs -text
1109
+ QdA0T4oBgHgl3EQfDf80/content/2301.02003v1.pdf filter=lfs diff=lfs merge=lfs -text
1110
+ XNE0T4oBgHgl3EQf3QLX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1111
+ 4tFIT4oBgHgl3EQf7Ctv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1112
+ otE1T4oBgHgl3EQf1wXJ/content/2301.03472v1.pdf filter=lfs diff=lfs merge=lfs -text
1113
+ H9AzT4oBgHgl3EQfU_x9/content/2301.01276v1.pdf filter=lfs diff=lfs merge=lfs -text
1114
+ rdAzT4oBgHgl3EQfrf1b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1115
+ j9E1T4oBgHgl3EQf0QVw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1116
+ mdAyT4oBgHgl3EQfYvcB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1117
+ qtFPT4oBgHgl3EQf9DUp/content/2301.13210v1.pdf filter=lfs diff=lfs merge=lfs -text
1118
+ mdAyT4oBgHgl3EQfYvcB/content/2301.00207v1.pdf filter=lfs diff=lfs merge=lfs -text
1119
+ H9AzT4oBgHgl3EQfU_x9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1120
+ BtE0T4oBgHgl3EQfQAAH/content/2301.02185v1.pdf filter=lfs diff=lfs merge=lfs -text
1121
+ -9AzT4oBgHgl3EQfhPxU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1122
+ ANE4T4oBgHgl3EQf4w6U/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1123
+ rdAzT4oBgHgl3EQfrf1b/content/2301.01644v1.pdf filter=lfs diff=lfs merge=lfs -text
1124
+ ENE0T4oBgHgl3EQfQgDK/content/2301.02195v1.pdf filter=lfs diff=lfs merge=lfs -text
1125
+ qtFPT4oBgHgl3EQf9DUp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1126
+ -9AzT4oBgHgl3EQfhPxU/content/2301.01481v1.pdf filter=lfs diff=lfs merge=lfs -text
1127
+ jdE4T4oBgHgl3EQfsg0n/content/2301.05216v1.pdf filter=lfs diff=lfs merge=lfs -text
1128
+ LdE1T4oBgHgl3EQfGwON/content/2301.02918v1.pdf filter=lfs diff=lfs merge=lfs -text
1129
+ W9E1T4oBgHgl3EQfvgXD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1130
+ T9FIT4oBgHgl3EQffis3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1131
+ ENE0T4oBgHgl3EQfQgDK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1132
+ T9FIT4oBgHgl3EQffis3/content/2301.11279v1.pdf filter=lfs diff=lfs merge=lfs -text
1133
+ 99E0T4oBgHgl3EQfwwHR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1134
+ 1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1135
+ 6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf filter=lfs diff=lfs merge=lfs -text
1136
+ cdAyT4oBgHgl3EQf-foD/content/2301.00891v1.pdf filter=lfs diff=lfs merge=lfs -text
0dAzT4oBgHgl3EQfefzh/content/tmp_files/2301.01439v1.pdf.txt ADDED
@@ -0,0 +1,1737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Convergence of Adaptive Mixed Interior Penalty Dis-
2
+ continuous Galerkin Methods for H(cur l)-Elliptic
3
+ Problems
4
+ K. Liu1, M. Tang2,, X. Q. Xing2 and L. Q. Zhong2
5
+ 1 School of Sciece, East China University of Technology, Nanchang, 330013, China
6
+ 2 School of Mathematical Sciences, South China Normal University, Guangzhou,
7
+ 510631, China
8
+ Abstract. In this paper, we study the convergence of adaptive mixed interior penalty
9
+ discontinuous Galerkin method for H(cur l)-elliptic problems. We first get the mixed
10
+ model of H(cur l)-elliptic problem by introducing a new intermediate variable. Then
11
+ we discuss the continuous variational problem and discrete variational problem, which
12
+ based on interior penalty discontinuous Galerkin approximation. Next, we construct the
13
+ corresponding posteriori error indicator, and prove the contraction of the summation of
14
+ the energy error and the scaled error indicator. At last, we confirm and illustrate the
15
+ theoretical result through some numerical experiments.
16
+ AMS subject classifications: 65M15,65N12,65N30
17
+ Key words: Adaptive mixed interior penalty discontinuous Galerkin methods, Convergence, H(cur l)-
18
+ elliptic problems.
19
+ 1. Introduction
20
+ Let Ω ⊂ �3 be Lipschitz bounded polygonal domain with a single connected boundary
21
+ ∂ Ω. We consider the following H(cur l)-elliptic problem
22
+ ∇ × µ∇ × u + κu = f
23
+ in
24
+ Ω,
25
+ (1.1)
26
+ u × n = 0
27
+ on
28
+ ∂ Ω,
29
+ (1.2)
30
+ where n is the unit normal vector of the boundary ∂ Ω, f ∈ L2(Ω), µ and κ are piecewise
31
+ constants is consistent with the initial partition �0 for Ω and satisfy µ1 < µ < µ2 and
32
+ κ1 < κ < κ2, here, µi and κi(i = 1,2) are positive constants. By introducing an auxiliary
33
+ ∗Corresponding author. Email addresses: liukai@ecut.edu.cn (K. Liu), mingtang@m.scnu.edu.cn (M.
34
+ Tang),xingxq@scnu.edu.cn(X. Q. Xing), zhong@m.scnu.edu.cn (L. Q. Zhong)
35
+ 1
36
+ arXiv:2301.01439v1 [math.NA] 4 Jan 2023
37
+
38
+ 2
39
+ K Liu et al.
40
+ variable p = µ∇ × u, then we get the mixed scheme with the boundary value problem
41
+ (1.1)-(1.2)
42
+ p = µ∇ × u
43
+ in
44
+ Ω,
45
+ (1.3)
46
+ ∇ × p + κu = f
47
+ in
48
+ Ω,
49
+ (1.4)
50
+ u × n = 0
51
+ on
52
+ ∂ Ω.
53
+ (1.5)
54
+ The mixed finite element method is very convenient for processing high-order equations
55
+ and equations containing two or more unknown functions, which has attracted widespread
56
+ attention. For mixed finite element method, there are only few research results for Maxwell
57
+ problem [13] and Maxwell’s eigenvalue problem [12,14,15].
58
+ Adaptive finite element method automatically refines and optimizes meshes accord-
59
+ ing to the singularity of solutions. It is a highly reliable and efficient numerical calculation
60
+ method. At present, the convergence analysis research of the adaptive mixed finite element
61
+ method for the elliptic equation is relatively complete. Chen, Holst and Xu [7] proved the
62
+ convergence analysis of the adaptive mixed finite element algorithm for elliptic equations.
63
+ Du and Xie [10] proved the convergence analysis of the adaptive mixed finite element
64
+ algorithm for the convection diffusion equation. However, there are only few research
65
+ results on the posterior error estimator of Maxwell’s equations for the adaptive mixed fi-
66
+ nite element method. For example, Carstensen and Ma [5] establishes the convergence of
67
+ adaptive mixed finite element methods for second-order linear non-self-adjoint indefinite
68
+ elliptic problems. Carstensen, Hoppe, Sharma and Warburton [4] designs and analyzes
69
+ the posterior error estimation of the adaptive hybrid conforming finite element method of
70
+ H(cur l)-elliptic problem. Recently, Chung, Yuen and Zhong [8] present a-posteriori error
71
+ analysis for the staggered discontinuous Galerkin method. As far as we know, there are not
72
+ any published literatures for the convergence analysis of the adaptive mixed finite element
73
+ method for the boundary value problem(1.3)-(1.5). Our contributions in this paper are to
74
+ • construct a new error estimator, which does not include the negative power of the
75
+ local mesh size in the jump term for the traditional DG method;
76
+ • get the convergence of the Adaptive Mixed Interior Penalty Discontinuous Galerkin
77
+ (AMIPDG) method by using the similar technique used in [2]. However, this tech-
78
+ nique in [2] can not be used directly for mixed forms.
79
+ We present our main result in the following theorem.
80
+ Theorem 1.1. Let {�k,Uk,Qk, uk, pk,η(uk, pk;�k)}k≥0 be the sequence of meshes, finite
81
+ element space, mixed discrete solution and posterior error estimate indicator produced by the
82
+ AMIPDG algorithm. Then there exist constants ρ > 0 and δ ∈ (0,1), which depend on
83
+ marking parameter and the shape regularity of the initial mesh �0, such that
84
+ ∥|u − uk+1|∥2
85
+ k+1 + ρη2(uk+1, pk+1;�k+1) ≤ δ
86
+
87
+ ∥|u − uk|∥2
88
+ k + ρη2(uk, pk;�k)
89
+
90
+ .
91
+ Therefore, for a given precision, the AMIPDG method will terminate after a finite number of
92
+ operations.
93
+
94
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
95
+ 3
96
+ For convenience, we let C denote a generic positive constant which may be different
97
+ at different occurrences and adopt the following notation. The subscripted constant Ci
98
+ represents a particularly important constant. a ≲ b means a ≤ C b for some constants C
99
+ which are independent of mesh sizes.
100
+ The rest of this paper is organized as follows. In Section 2, we first present the contin-
101
+ uous variational problem, the discrete variational problem, and the procedure of AMIPDG.
102
+ In Section 3, we first show the upper bound estimate of the error, which is key to the con-
103
+ vergence analysis, then we prove the indicator reduction and the convergence of AMIPDG
104
+ algorithm. In Section 4, we provide some numerical experiments to illustrate the effective-
105
+ ness of the AMIPDG.
106
+ 2. Adaptive Mixed interior penalty discontinuous Galerkin method
107
+ In this section, we introduce the continuous variational problem, the discrete variational
108
+ problem of mixed internal penalty discontinuous finite element method, and the procedure
109
+ of AMIPDG.
110
+ 2.1. Continuous variational problem
111
+ For an open and connected bounded domain D ⊂ �3, we denote by L2(D) (resp.
112
+ L2(D) := (L2(D))3) the spaces of square-integrable functions (resp. vector fields) on D
113
+ with inner product (·,·)0,D. We define the spaces
114
+ H(cur l; D) = {u ∈ L2(D) : ∇ × u ∈ L2(D)},
115
+ H(div; D) = {u ∈ L2(D) : ∇ · u ∈ L2(D)},
116
+ with
117
+ (u, v)cur l,D := (u, v)0,D + (∇ × u,∇ × v)0,D,
118
+ ∀u, v ∈ H(cur l; D),
119
+ (u, v)div,D := (u, v)0,D + (∇ · u,∇ · v)0,D,
120
+ ∀u, v ∈ H(div; D),
121
+ and the induced norm as:
122
+ ∥u∥2
123
+ cur l,D := ∥u∥2
124
+ 0,D + ∥∇ × u∥2
125
+ 0,D, ∀u ∈ H(cur l, D),
126
+ ∥u∥2
127
+ div,D := ∥u∥2
128
+ 0,D + ∥∇ · u∥2
129
+ 0,D,
130
+ ∀u ∈ H(div, D),
131
+ respectively, where ∥ · ∥L2(D) := (·,·)1/2
132
+ D
133
+ denotes the norm of the space L2(D) or L2(D). We
134
+ also define H0(cur l; D) = {v ∈ H(cur l; D) : v × n = 0 on ∂ D} in the trace sense.
135
+ Next, we first define two space U := H0(curl;Ω),Q := L2(Ω). Then, the mixed vari-
136
+ ational problem of the mixed boundary value problem (1.3)-(1.5) reads as: find (u, p) ∈
137
+ U × Q such that:
138
+ a(p,q) − b(u,q) = ℓ1(q),
139
+ ∀q ∈ Q,
140
+ (2.1)
141
+ d(v, p) + c(u, v) = ℓ2(v),
142
+ ∀v ∈ U.
143
+ (2.2)
144
+
145
+ 4
146
+ K Liu et al.
147
+ The bilinear forms a, b, c and the functionals ℓ1(·),ℓ2(·) are given by
148
+ a(p,q) := (p,q),
149
+ (2.3)
150
+ b(u,q) := (µ∇ × u,q),
151
+ (2.4)
152
+ c(u, v) := (κu, v),
153
+ (2.5)
154
+ d(v, p) := (∇ × v, p)
155
+ (2.6)
156
+ ℓ1(q) := 0,
157
+ (2.7)
158
+ ℓ2(v) := ( f , v).
159
+ (2.8)
160
+ The operator-theoretic framework involves operator � : (U × Q) → (U × Q)∗ defined
161
+ by
162
+ (� (u, p))(v,q) := a(p,q) − b(u,q) + d(v, p) + c(u, v),∀u, v ∈ U, p,q ∈ Q,
163
+ (2.9)
164
+ where (Q × U)∗ is the dual spaces of (Q × U). Then we can rewrite (2.1)-(2.2) as
165
+ (� (u, p))(v,q) = ℓ(v,q),
166
+ (2.10)
167
+ with ℓ(v,q) = ℓ1(q) + ℓ2(v), and ℓi are given by (2.7)-(2.8).
168
+ Then, we state the well-posedness of the variational problem (2.1)-(2.2) in the follow-
169
+ ing lemma, and it can be found in section 3 of [3].
170
+ Lemma 2.1. Under the assumptions on the problem of (1.1)-(1.2), � is a continuous and
171
+ bijective linear operator. Hence, for any ℓ = (ℓ1,ℓ2) ∈ (Q×U)∗, the mixed variational problem
172
+ (2.1)-(2.2) has a unique solution (u, p) ∈ (U × Q), which satisfy the following continuously
173
+ ∥(u, p)∥U×Q := (∥u∥2
174
+ curl,Ω + ∥p∥2
175
+ 0)1/2 ≲ ∥ℓ1∥Q∗ + ∥ℓ2∥U∗.
176
+ (2.11)
177
+ 2.2. Discrete variational problem
178
+ We suppose that �h is a family of shape regularity, quasi-uniform and conform tetrahe-
179
+ dral generation on Ω. Let hτ = |τ|1/3 denote the mesh size with |τ| being the volume of
180
+ τ ∈ �h.
181
+ Define the discontinuous finite element function space �(�h) as:
182
+ �(�h) = {v ∈ L2(Ω) : vτ = v|τ ∈ (Pl(τ))3,
183
+ ∀τ ∈ �h},
184
+ where Pl(τ) is the set of polynomials defined in the volume τ whose degree does not exceed
185
+ l, where l ≥ 1 is an integer.
186
+ Let �h, � 0
187
+ h and � ∂
188
+ h denote the set of the all faces of its volumes, and the set of internal
189
+ faces, and the set of boundary faces, respectively. Thus, �h = � 0
190
+ h
191
+
192
+ � ∂
193
+ h . Let H1(Ω;�h) be
194
+ the space of piecewise Sobolev functions defined by
195
+ H1(Ω;�h) =
196
+
197
+ v ∈ L2(Ω) : vτ = v|τ ∈ H1(τ),
198
+ ∀ τ ∈ �h
199
+
200
+ .
201
+
202
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
203
+ 5
204
+ and H1(Ω;�h) = (H1(Ω;�h))3. Let L2(�h) be the set of L2 functions defined on �h. More-
205
+ over, we define the following inner products
206
+ (v, w)� ′
207
+ h
208
+ =
209
+
210
+ τ∈� ′
211
+ h
212
+
213
+ τ
214
+ v · wdx,
215
+ ∀v, w ∈ L2(Ω), ∀�
216
+
217
+ h ⊂ �h,
218
+ < v, w >� ′
219
+ h
220
+ =
221
+
222
+ f ∈� ′
223
+ h
224
+
225
+ f
226
+ v · wds,
227
+ ∀v, w ∈ L2(�h), ∀�
228
+
229
+ h ⊂ �h.
230
+ For f ∈ � 0
231
+ h , we have τi ∈ �h(i = 1,2), such that f = ∂ τ1 ∩ ∂ τ2. Then we denote the
232
+ jump and average of v as:
233
+ [[v]]
234
+ =
235
+ v1 × n1 + v2 × n2,
236
+ ∀v ∈ H1(Ω;�h),
237
+ {{v}}
238
+ =
239
+ v1 + v2
240
+ 2
241
+ ,
242
+ ∀v ∈ H1(Ω;�h),
243
+ where v i denote the values of v on v|τi(i = 1,2) and ni denote the out unit normal vectors
244
+ on f exterior v|τi.
245
+ For f ∈ � ∂
246
+ h , we have τ ∈ �h, such that f = ∂ τ ∩ ∂ Ω. Then we denote the jump and
247
+ average of v as:
248
+ [[v]] = vτ × n∂ Ω, {{v}} = vτ.
249
+ (2.12)
250
+ Next, we give the corresponding discrete scheme of (2.1)-(2.2). Firstly, we define the
251
+ corresponding discrete space as follow
252
+ Uh := {vh ∈ �(�h)|
253
+ [[vh]]|f = 0,∀f ∈ � ∂
254
+ h },
255
+ Qh := �(�h).
256
+ Then, the formulation of the discrete Mixed Interior Penalty Discontinuous Galerkin (MIPDG)
257
+ method reads: find (uh, ph) ∈ (Uh,Qh) such that
258
+ ah(ph,qh) − bh(uh,qh) = ℓ1,h(qh) + d1,h(uh,qh),
259
+ ∀qh ∈ Qh,
260
+ (2.13)
261
+ dh(vh, ph) + ch(uh, vh) = ℓ2,h(vh) + d2,h(uh, vh),
262
+ ∀vh ∈ Uh,
263
+ (2.14)
264
+ where
265
+ ah(ph,qh) := (ph,qh)�h,
266
+ bh(uh,qh) := (µ∇ × uh,qh)�h,
267
+ ch(uh, vh) := (κuh, vh)�h,
268
+ dh(vh, ph) := (∇ × vh, ph)�h,
269
+ ℓ1,h(qh) := 0,
270
+ ℓ2,h(vh) := ( f , vh)�h,
271
+ d1,h(uh,qh) := − < {{µqh}},[[uh]] >�h,
272
+ d2,h(uh, vh) :=< ({{µ∇ × uh}} − αh−1
273
+ f [[uh]]),[[vh]] >�h,
274
+
275
+ 6
276
+ K Liu et al.
277
+ here the constant α > 0 denote the penalty parameter, hf denote the diameter of the
278
+ circumcircle of f . Thus hτ ≈ hf .
279
+ Remark 2.1. The calculation of ∇ × uh in the bilinear terms are piecewise derivations.
280
+ The standard symmetric Interior Penalty Discontinuous Galerkin (IPDG) method of the
281
+ boundary value problem (1.1)-(1.2) is to find uh ∈ Uh, such that
282
+ aIP(uh, vh)
283
+ := (κuh, vh)�h + (µ∇ × uh,∇ × vh)�h− < {{µ∇ × vh}},[[uh]] >�h
284
+ − < {{µ∇ × uh}},[[vh]] >�h +αh−1
285
+ f
286
+ < [[uh]],[[vh]] >�h
287
+ (2.15)
288
+ = ( f , vh)�h.
289
+ The following lemma shows that the discrete variational problems (2.13)-(2.14) and (2.15)
290
+ are equivalent.
291
+ Lemma 2.2. [ [3], Theorem 4.1] The formulations (2.13)-(2.14) and (2.15) are formally
292
+ equivalent in the following sense. If (uh, ph) ∈ (Uh,Qh) are the solution of discrete variational
293
+ problem (2.13)-(2.14), then uh ∈ Uh solves (2.15). Conversely, if uh ∈ Uh solves (2.15), then
294
+ there exists some ph ∈ Qh such that (uh, ph) ∈ (Uh,Qh) are the solution of (2.13)-(2.14).
295
+ Ayuso de Dios, Hiptmair and Pagliantini proved the well-posedness of (2.15) in section
296
+ 2 of [1]. Therefore, by combining Lemma 2.2, we obtain the well-posedness of discrete
297
+ variational problems (2.13)-(2.14).
298
+ 2.3. Adaptive Mixed Interior Penalty Discontinuous Galerkin method(AMIPDG)
299
+ Our adaptive cycle can be implemented by the following algorithm:
300
+ Next, we will discuss each step in AEFEM in detail.
301
+ 2.3.1. Procedure SOLVE
302
+ For f ∈ L2(Ω), and a shape regular mesh �k, Let (uk, pk) be the exact MIPDG solution of
303
+ (2.13)-(2.14). Here, we assume that the solutions (uk, pk) can be solved accurately.
304
+ 2.3.2. Procedure ESTIMATE
305
+ A posteriori error indicator is an essential ingredient of adaptivity. They are computable
306
+ quantities depending on the computed solution(s) and data that provide information about
307
+ the quality of approximation and may consequently be used to make judicious mesh modi-
308
+ fications. Here, we design a new posteriori error estimation indicator for equations (2.13)-
309
+ (2.14), which is similar to that in [20]. For τ ∈ �h, f ∈ �h and (vh,qh) ∈ Uh × Qh, the
310
+ residual a posteriori error estimator for the symmetric AMIPDG method is given by
311
+ η2(vh,qh;τ) :
312
+ =
313
+ ∥R1(vh,qh)∥2
314
+ L2(τ) + h2
315
+ τ
316
+
317
+ ∥R2(vh,qh)∥2
318
+ L2(τ) + ∥R3(vh)∥2
319
+ L2(τ)
320
+
321
+ +
322
+
323
+ f ∈∂ τ
324
+ hf
325
+
326
+ ∥J1(qh)∥2
327
+ L2(f ) + ∥J2(vh)∥2
328
+ L2(f )
329
+
330
+ .
331
+ (2.16)
332
+
333
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
334
+ 7
335
+ Algorithm 2.1 Adaptive Mixed Interior Penalty Discontinuous Galerkin Method (AMIPDG)
336
+ cycle
337
+ Input initial triangulation �0; data f ; tolerance tol; marking parameter θ ∈ (0,1).
338
+ Output a triangulation �J; MIPDG solution (uJ, pJ).
339
+ η = 1; k = 0;
340
+ while η ≥ tol
341
+ SOLVE solve discrete varational problem (2.13)-(2.14) on �k to get the solution (uk, pk);
342
+ ESTIMATE compute the posterior error estimator η = η(uk, pk,�k) by using (2.17);
343
+ MARK seek a minimum cardinality �k ⊂ �k such that
344
+ η2 �
345
+ uk, pk,�k
346
+
347
+ ≥ θη2 �
348
+ uk, pk,�k
349
+
350
+ ;
351
+ REFINE bisect elements in �k and the neighboring elements to form a conforming �k+1;
352
+ k = k + 1;
353
+ end
354
+ uJ = uk; pJ = pk; �J = �k;
355
+ They consist of the element residuals and face jump residuals as
356
+ R1(vh,qh)|τ := qh|τ − µ∇ × vh|τ,
357
+ R2(vh,qh)|τ := f |τ − (∇ × qh + κvh)|τ,
358
+ R3(vh)|τ := ∇ · ( f |τ − κvh|τ),
359
+ J1(qh)|f := [[qh]],
360
+ J2(vh)|f := [[(f − κvh)]].
361
+ where hf denote the diameter of the circumcircle of f , and hτ ≈ hf .
362
+ For any set � ′
363
+ h ⊆ �h, the error indicator is defined as
364
+ η2(vh,qh;� ′
365
+ h ) =
366
+
367
+ τ∈� ′
368
+ h
369
+ η2(vh,qh;τ).
370
+ (2.17)
371
+ 2.3.3. Procedure MARK
372
+ We use the Dörfler mark which was proposed by Dörfler [9]. Set marking parameter θ ∈
373
+ (0,1), the module MARK outputs a subset of marked elements �k ⊂ �k with minimal
374
+ cardinality, such that
375
+ η2(v k,q k;�k) ≥ θη2(v k,q k;�k).
376
+ (2.18)
377
+ 2.3.4. Procedure REFINE
378
+ Our implementation of REFINE uses the longest edge bisection strategy. A detailed intro-
379
+ duction about the longest edge bisection strategy was provided in [6]. To avoid confusion,
380
+ the relationship between the two tetrahedral meshes �h and �H that are nested into each
381
+
382
+ 8
383
+ K Liu et al.
384
+ other is defined as: �h is the new mesh division of �H after one cycle of the above cycle
385
+ process, abbreviated as �H ≤ �h.
386
+ 3. Convergence of AMIPDG algorithm
387
+ In this section, we establish the upper bound estimate of the error. Subsequently, we
388
+ demonstrate that the sum of the energy error and the error estimator between two consec-
389
+ utive adaptive loops is a contraction. Finally, we proof that the AMIPDG is convergence.
390
+ 3.1. The upper bound estimate of the error
391
+ In this subsection, before establishing the reliability of a posteriori error estimator, we
392
+ need to define the corresponding DG norm, for any (v,q) ∈ U × Q and (vh,qh) ∈ Uh × Qh,
393
+ ∥(v,q)
394
+
395
+ (vh,qh)∥2
396
+ DG := ∥q − qh∥2
397
+ L2(Ω) + ∥κ(v − vh)∥2
398
+ L2(Ω)
399
+ +
400
+
401
+ τ∈�h
402
+ ∥µ∇ × (v − vh)∥2
403
+ L2(τ) +
404
+
405
+ f ∈�h
406
+ αh−1
407
+ f
408
+ < [[vh]],[[vh]] >f .
409
+ (3.1)
410
+ Remark 3.1. For any v ∈ U and vh ∈ Uh, we have
411
+ ∥[[vh]]∥2
412
+ L2(f ) = ∥[[(v − vh)]]∥2
413
+ L2(f ),
414
+ ∀f ∈ �h.
415
+ In fact, v ∈ U implies that [[v]]|f = 0 (see Chapter 5 of [16]).
416
+ We summarize our main result in this subsection as follows.
417
+ Theorem 3.1. Let (u, p) ∈ U×Q and (uh, ph) ∈ Uh ×Qh be the solutions of (2.1)-(2.2) and
418
+ (2.13)-(2.14), respectively. Let η(uh, ph;�h) be the residual error indicator of (2.17). Then
419
+ we have the following estimate
420
+ ∥(u, p) − (uh, ph)∥2
421
+ DG ≤ C1η2(uh, ph;�h),
422
+ (3.2)
423
+ where the constant C1 depending on the shape regularity of mesh.
424
+ Let (uh, ph) ∈ Uh × Qh be the solution of (2.13)-(2.14), similarly to [4], we introduce
425
+ the nonconformity of the MSIPDG method results in some consistency error:
426
+ ζ := min
427
+ ˜vh∈U
428
+ � �
429
+ τ∈�h
430
+ (∥uh − ˜vh∥2
431
+ L2(τ) + ∥∇ × (uh − ˜vh)∥2
432
+ L2(τ))
433
+ �1/2.
434
+ (3.3)
435
+ We denote that ˜uh ∈ U is the unique minimizer of (3.3), namely
436
+ ˜ζ =
437
+ � �
438
+ τ∈�h
439
+ (∥uh − ˜uh∥2
440
+ L2(τ) + ∥∇ × (uh − ˜uh)∥2
441
+ L2(τ))
442
+ �1/2.
443
+ (3.4)
444
+
445
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
446
+ 9
447
+ Lemma 3.1. Let (u, p) ∈ U × Q and (uh, ph) ∈ Uh × Qh be the solutions of (2.1)-(2.2) and
448
+ (2.13)-(2.14), respectively, let ˜uh be the unique minimizer of (3.3), then
449
+ ∥(u − ˜uh, p − ph)∥U×Q = (∥u − ˜uh∥2
450
+ curl,Ω + ∥p − ph∥2
451
+ 0)1/2 ≲ ∥˜ℓ1∥Q∗ + ∥˜ℓ2∥U∗,
452
+ where the residuals ˜ℓ1 ∈ Q∗ and ˜ℓ2 ∈ U∗ defined by
453
+ ˜ℓ1(q) = ℓ1(q) − a(ph,q) + b(˜uh,q),
454
+ ∀q ∈ Q,
455
+ (3.5)
456
+ ˜ℓ2(v) = ℓ2(v) − d(v, ph) − c(˜uh, v),
457
+ ∀v ∈ U.
458
+ (3.6)
459
+ Proof. For any q1,q2,q ∈ Q and any v1, v2, v ∈ U. we have the following property by
460
+ (2.9)
461
+ (� (v1 + v2,q1 + q2))(v,q)
462
+ = a(q1 + q2,q) − b(v1 + v2,q) + d(v,q1 + q2) + c(v1 + v2, v)
463
+ = a(q1,q) − b(v1,q) + d(v,q1) + c(v1, v)
464
+ +a(q2,q) − b(v2,q) + d(v,q2) + c(v2, v)
465
+ = (� (v1,q1))(v,q) + (� (v2,q2))(v,q).
466
+ Thus,
467
+ (� (u − ˜uh, p − ph))(v,q)
468
+ = (� (u, p))(v,q) − (� (˜uh, ph))(v,q)
469
+ = (ℓ1(q) + ℓ2(v)) − (a(ph,q) − b(˜uh,q) + d(v, ph) + c(˜uh, v))
470
+ = ˜ℓ1(q) + ˜ℓ2(v).
471
+ In fact that (u − ˜uh, p −ph) ∈ U ×Q and combining the Lemma 2.1 can concludes the proof.
472
+ Next, we will provide upper bounds for ∥˜ℓ1∥Q∗ and ∥˜ℓ2∥U∗ in Lemmas 3.2 and 3.4,
473
+ respectively.
474
+ Lemma 3.2. Let (uh, ph) ∈ Uh × Qh be the solutions of (2.13)-(2.14), and ˜uh be the unique
475
+ minimizer of (3.3). Then we get the estimate of the linear functional ˜ℓ1 defined in (3.5) as
476
+ following
477
+ ∥˜ℓ1∥Q∗ ≲
478
+ � �
479
+ τ∈�h
480
+ ∥R1(uh, ph)∥2
481
+ L2(τ)
482
+ �1/2 +
483
+ � �
484
+ τ∈�h
485
+ ∥∇ × (˜uh − uh)∥2
486
+ L2(τ)
487
+ �1/2.
488
+ (3.7)
489
+ Proof. For any q ∈ Q, by the definition of ˜ℓ1, we have
490
+ ˜ℓ1(q) =
491
+
492
+ τ∈�h
493
+
494
+ τ
495
+
496
+ (µ∇ × uh − ph) + µ∇ × (˜uh − uh)
497
+
498
+ · qdx.
499
+
500
+ 10
501
+ K Liu et al.
502
+ Then applying the Hölder inequality and the Cauchy-Schwarz inequality,
503
+ |˜ℓ1(q)| ≤
504
+
505
+ τ∈�h
506
+ ∥µ∇ × uh − ph∥L2(τ)∥q∥L2(Ω) +
507
+
508
+ τ∈�h
509
+ ∥µ∇ × (˜uh − uh)∥L2(τ)∥q∥L2(Ω)
510
+
511
+ �� �
512
+ τ∈�h
513
+ ∥R1(uh, ph)∥2
514
+ L2(τ)
515
+ �1/2 +
516
+ � �
517
+ τ∈�h
518
+ ∥∇ × (˜uh − uh)∥2
519
+ L2(τ)
520
+ �1/2�
521
+ ∥q∥L2(Ω),
522
+ conclude the proof.
523
+ Before estimating the term ∥˜ℓ2∥U∗, we need to introduce the following interpolation
524
+ operator with the corresponding approximations.
525
+ Lemma 3.3. [ [19], Theorem 1] Let Nd1
526
+ 0(Ω;�h) be the lowest order edge elements of Nédélec
527
+ first family. Then there exists an operator Πh : H0(curl;Ω) → Nd1
528
+ 0(Ω;�h) with the following
529
+ properties: For every v ∈ H0(curl;Ω), there exist ϕ ∈ H1
530
+ 0(Ω) and z ∈ H1
531
+ 0(Ω), such that
532
+ v − Πhv = ∇ϕ + z.
533
+ And for any τ ∈ �h and f ∈ �h, we have
534
+ h−1
535
+ τ ∥ϕ∥L2(τ) + ∥∇ϕ∥L2(τ) ≲ hτ∥v∥L2(Ωτ),
536
+ h−1
537
+ τ ∥z∥L2(τ) + ∥∇z∥L2(τ) ≲ hτ∥∇ × v∥L2(Ωτ),
538
+ where Ωτ =
539
+
540
+ f ∈τ
541
+ Ωf , Ωf = {τ′ ∈ �h, f ∈ τ′}, and the constants depending on the shape
542
+ regularity of the mesh.
543
+ Lemma 3.4. Let (uh, ph) ∈ Uh × Qh be the solution of (2.13)-(2.14), and ˜uh be the unique
544
+ solution of (3.3). Then the linear functional ˜ℓ2 defined in (3.6) satisfies the following estimate
545
+ ∥˜ℓ2∥U∗ ≲
546
+ � �
547
+ τ∈�
548
+ h2
549
+ τ(∥R2(uh, ph)∥2
550
+ L2(τ) + ∥R2(uh)∥2
551
+ L2(τ))
552
+ +
553
+
554
+ f ∈�
555
+ hf (∥J1(ph)∥2
556
+ L2(f ) + ∥J2(uh)∥2
557
+ L2(f )) +
558
+
559
+ τ∈�
560
+ ∥uh − ˜uh∥2
561
+ L2(τ)
562
+ �1/2
563
+ .
564
+ (3.8)
565
+ Proof. For any v ∈ U and Πh given by Lemma 3.3, we have
566
+ v − Πhv = ∇ϕ + z,
567
+ (3.9)
568
+ where ϕ ∈ H1
569
+ 0(Ω) and z ∈ H1
570
+ 0(Ω). According to linearity of the operator ˜ℓ2 and (3.9), we
571
+ have
572
+ ˜ℓ2(v) = ˜ℓ2(Πhv) + ˜ℓ2(v − Πhv) = ˜ℓ2(Πhv) + ˜ℓ2(∇ϕ) + ˜ℓ2(z).
573
+ (3.10)
574
+ We will next estimate the three terms on the right hand side of (3.10).
575
+
576
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
577
+ 11
578
+ For the first term ˜ℓ2(Πhv) of (3.10), using the definition of ˜ℓ2, we have
579
+ ˜ℓ2(Πhv)
580
+ =
581
+ ℓ2(Πhv) − d(Πhv, ph) − c(˜uh,Πhv)
582
+ =
583
+ ℓ2(Πhv) − d(Πhv, ph) − c(uh,Πhv) + c(uh − ˜uh,Πhv).
584
+ Noting that Πhv ∈ Nd1
585
+ 0(Ω;�h) ⊆ Uh has zero jumps, and combining (2.14), we have
586
+ ℓ2(Πhv) − d(Πhv, ph) − c(uh,Πhv) = ℓ2,h(Πhv) − dh(Πhv, ph) − ch(uh,Πhv) = 0.
587
+ Thus, we have
588
+ ˜ℓ2(Πhv)
589
+ =
590
+ c(vh − ˜uh,Πhv)
591
+ =
592
+ c(vh − ˜uh, v) + c(vh − ˜uh,Πhv − v)
593
+
594
+ ∥κ∥0,∞∥vh − ˜uh∥0,�h(∥v∥0,�h + ∥Πhv − v∥0,�h).
595
+ Then using (3.9), triangle inequality and Lemma 3.3, we get
596
+ ˜ℓ2(Πhv)
597
+
598
+ ∥κ∥0,∞∥vh − ˜uh∥0,�h(∥v∥0,�h + ∥∇ϕ + z∥0,�h)
599
+
600
+ ∥κ∥0,∞∥vh − ˜uh∥0,�h(∥v∥0,�h + ∥∇ϕ∥0,�h + ∥z∥0,�h)
601
+
602
+ ∥κ∥0,∞∥vh − ˜uh∥0,�h∥v∥curl,�h.
603
+ (3.11)
604
+ For the second term ˜ℓ2(∇ϕ) of (3.10), using the definition of ˜ℓ2, (2.8), (2.4), (2.6) and
605
+ the fact ∇ × ∇ϕ = 0, which implies
606
+ ˜ℓ2(∇ϕ)
607
+ =
608
+ ℓ2(∇ϕ) − d(∇ϕ, ph) − c(˜uh,∇ϕ)
609
+ =
610
+ ( f ,∇ϕ) − (∇ × ∇ϕ, ph) − (κ˜uh,∇ϕ)
611
+ =
612
+ ( f ,∇ϕ) − (κ˜uh,∇ϕ).
613
+ (3.12)
614
+ By (3.12) and Green’s formula, we have
615
+ ˜ℓ2(∇ϕ)
616
+ =
617
+ ( f ,∇ϕ) − (κuh,∇ϕ) + (κ(uh − ˜uh),∇ϕ)
618
+
619
+
620
+ τ∈�h
621
+ (R3(uh),ϕ)0,τ +
622
+
623
+ f ∈�h
624
+ < J2(uh),ϕ >0,f +(κ(uh − ˜uh),∇ϕ).
625
+ Applying the Cauchy-Schwarz inequality, Lemma 3.3 and trace inequality, we have
626
+ ˜ℓ2(∇ϕ) ≤
627
+ � �
628
+ τ∈�h
629
+ h2
630
+ τ∥R3(uh)∥2
631
+ 0,τ +
632
+
633
+ f ∈�h
634
+ hf ∥J2(uh)∥2
635
+ 0,f
636
+ +
637
+
638
+ τ∈�h
639
+ ∥κ∥0,∞∥uh − ˜uh∥2
640
+ 0,τ
641
+ �1/2
642
+ ∥v∥curl,�h.
643
+ (3.13)
644
+
645
+ 12
646
+ K Liu et al.
647
+ Similarly, for the third term ˜ℓ2(z) of (3.10), we have
648
+ ˜ℓ2(z)
649
+ =
650
+ ( f , z) − (∇ × z, ph) − (κ˜uh, z)
651
+ =
652
+ ( f , z) − (∇ × z, ph) − (κuh, z) + (κ(uh − ˜uh), z)
653
+
654
+ � �
655
+ τ∈�h
656
+ h2
657
+ τ∥R2(uh, ph)∥2
658
+ 0,τ +
659
+
660
+ f ∈�h
661
+ hf ∥J1(ph)∥2
662
+ 0,f
663
+ +
664
+
665
+ τ∈�h
666
+ ∥κ∥0,∞∥uh − ˜uh∥2
667
+ 0,τ
668
+ �1/2
669
+ ∥v∥curl,�h.
670
+ (3.14)
671
+ Substituting (3.11), (3.13) and (3.14) into (3.10), the proof is completed.
672
+ Notice that both (3.7) and (3.8) are related to the terms
673
+
674
+ τ∈�h
675
+ ∥∇ × (˜uh − uh)∥2
676
+ L2(τ) and
677
+
678
+ τ∈�
679
+ ∥uh − ˜uh∥2
680
+ L2(τ), which are a part of ˜ζ. Therefore, we prove upper bounds for ˜ζ in the
681
+ following Lemma.
682
+ Lemma 3.5. Let (uh, ph) ∈ Uh × Qh be the solutions of (2.13)-(2.14) and ˜ζ be consistency
683
+ error of (3.4), we have
684
+ ˜ζ2 ≲ η2(uh, ph;�h).
685
+ (3.15)
686
+ Proof. For any vh ∈ Uh, there exit an interpolation operator �h : H1(Ω;�h) → Uc
687
+ h, such
688
+ that(see Proposition 4.5 of [11])
689
+ ∥vh − �hvh∥2
690
+ L2(Ω) ≲
691
+
692
+ f ∈�h
693
+ hf ∥[[vh]]∥2
694
+ L2(f ),
695
+ (3.16)
696
+
697
+ τ∈�h
698
+ ∥∇ × (vh − �hvh)∥2
699
+ L2(τ) ≲
700
+
701
+ f ∈�h
702
+ h−1
703
+ f ∥[[vh]]∥2
704
+ L2(f ).
705
+ (3.17)
706
+ Then, combining (3.3), (3.4), (3.16), (3.17), and the fact hf < 1, we get
707
+ ˜ζ2
708
+ =
709
+
710
+ τ∈�h
711
+ (∥uh − ˜uh∥2
712
+ L2(τ) + ∥∇ × (uh − ˜uh)∥2
713
+ L2(τ))
714
+
715
+
716
+ τ∈�h
717
+ (∥uh − �huh∥2
718
+ L2(τ) + ∥∇ × (uh − �huh)∥2
719
+ L2(τ))
720
+
721
+
722
+ f ∈�h
723
+ hf ∥[[uh]]∥2
724
+ L2(f ) +
725
+
726
+ f ∈�h
727
+ h−1
728
+ f ∥[[uh]]∥2
729
+ L2(f )
730
+
731
+
732
+ f ∈�h
733
+ h−1
734
+ f ∥[[uh]]∥2
735
+ L2(f ).
736
+ (3.18)
737
+ Noting that (uh, ph) ∈ Uh × Qh is the solution of discrete variational problem (2.13)-
738
+ (2.14). Then by using Lemma 2.2, we know that uh is the solution of discrete variational
739
+ problem (2.15). Hence, we have ( see Lemma 5 of [20])
740
+ α∥h−1/2
741
+ f
742
+ [[uh]]∥L2(�h) ≲ η(uh, ph;�h).
743
+ (3.19)
744
+
745
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
746
+ 13
747
+ At last, combining (3.18) and (3.19), we have
748
+ ˜ζ2
749
+
750
+ η2(uh, ph;� ).
751
+ Combining Lemmas 3.1, 3.2, 3.4 and 3.5, we will prove Theorem 3.1.
752
+ Proof. [ Proof of Theorem 3.1:] By using (3.1), the triangle inequality, (3.4), Lemmas
753
+ 3.1, 3.2, 3.4, 3.5 and (3.19), we get
754
+ ∥(u, p) − (uh, ph)∥2
755
+ DG
756
+
757
+ ∥p − ph∥2
758
+ L2(Ω) + ∥κ(u − uh)∥2
759
+ L2(Ω)
760
+ +
761
+
762
+ τ∈�h
763
+ ∥∇ × µ(u − uh)∥2
764
+ L2(τ) +
765
+
766
+ f ∈�h
767
+ αh−1
768
+ f
769
+ < [[uh]],[[uh]] >f
770
+
771
+ ∥p − ph∥2
772
+ L2(Ω) + ∥u − ˜uh∥2
773
+ cur l,Ω + ˜ζ2 +
774
+
775
+ f ∈�h
776
+ αh−1
777
+ f
778
+ < [[uh]],[[uh]] >f
779
+ =
780
+ ∥(u − ˜uh, p − ph)∥U×Q + ˜ζ2 +
781
+
782
+ f ∈�h
783
+ αh−1
784
+ f
785
+ < [[uh]],[[uh]] >f
786
+
787
+ ∥˜ℓ1∥2
788
+ Q∗ + ∥˜ℓ2∥2
789
+ U∗ + ˜ζ2 +
790
+
791
+ f ∈�h
792
+ αh−1
793
+ f
794
+ < [[uh]],[[uh]] >f
795
+
796
+ C1η2(uh, ph;�h).
797
+ 3.2. The error reduces on two successive meshes
798
+ For convenience, for any v ∈ U and vh ∈ Uh, we denote
799
+ ∥|v − vh|∥2
800
+ h
801
+ =
802
+ ∥κ(v − vh)∥2
803
+ L2(Ω) +
804
+
805
+ τ∈�h
806
+ ∥∇ × µ(v − vh)∥2
807
+ L2(τ)
808
+ +
809
+
810
+ f ∈�h
811
+ αh−1
812
+ f
813
+ < [[vh]],[[vh]] >f .
814
+ (3.20)
815
+ Let Uc
816
+ h be the H(cur l) conforming subspace of Uh given by
817
+ Uc
818
+ h := Uh ∩ H0(curl;Ω).
819
+ Then, there is a subspace U⊥
820
+ h which can orthogonally decompose Uh under L2 inner product
821
+ such that Uh := Uc
822
+ h ⊕ U⊥
823
+ h . Especially, if (uh, ph) ∈ Uh × Qh is the solution of (2.13)-(2.14),
824
+ then we have
825
+ ∥|u⊥
826
+ h |∥2
827
+ h ≲ α
828
+
829
+ f ∈∂ τ
830
+ ∥h−1/2
831
+ f
832
+ [[uh]]∥2
833
+ L2(f ).
834
+ (3.21)
835
+ In fact, from the Lemma 2.2, notice that uh satisfies the IPDG scheme of (2.15), and ac-
836
+ cording to Lemma 2 in [20], we can obtain (3.21).
837
+
838
+ 14
839
+ K Liu et al.
840
+ In order to easily estimate the jump term of face �h, we need to introduce the lifting
841
+ operators and the corresponding stability estimates, more details are referenced to Propo-
842
+ sition 12 in [18].
843
+ Let �h : H1(Ω;�h) → Uh be the lifting operators, which satisfies the following equality
844
+
845
+
846
+ �h(v) · wdx =< [[v]],{{w}} >�h,
847
+ ∀w ∈ Uh,
848
+ (3.22)
849
+ and
850
+ ∥�h(v)∥L2(Ω) ≤ C� ∥h−1/2[[v]]∥L2(�h),
851
+ (3.23)
852
+ where the constant C� depending on the shape regularity of mesh �h and the degree of
853
+ polynomial l.
854
+ Lemma 3.6. Let (u, p) ∈ U × Q and (uh, ph) ∈ Uh × Qh be the solutions of (2.1)-(2.2) and
855
+ (2.13)-(2.14), respectively, we have
856
+ ∥p − ph∥L2(Ω)
857
+
858
+ ∥∇ × (u − uh)∥L2(Ω) + η(uh, ph;�h),
859
+ (3.24)
860
+ ∥ph − pH∥L2(Ω)
861
+
862
+ ∥∇ × (uh − uH)∥L2(Ω)
863
+ +
864
+
865
+ η(uh, ph;�h) + η(uH, pH;�H)
866
+
867
+ .
868
+ (3.25)
869
+ Proof. Noting that Qh ⊆ Q, and using (2.1), the definition of R1(uh, ph) and (2.16), we
870
+ have
871
+ ∥p − ph∥L2(�h)
872
+
873
+ sup
874
+ ∀q∈Q
875
+ (p − ph,q)�h
876
+ ∥q∥L2(�h)
877
+ =
878
+ sup
879
+ ∀q∈Q
880
+ (µ∇ × u,q)�h −
881
+
882
+ R1(uh, ph) + µ∇ × uh,q
883
+
884
+ �h
885
+ ∥q∥L2(�h)
886
+
887
+ sup
888
+ ∀q∈Q
889
+ (µ∇ × (u − uh),q)�h −
890
+
891
+ R1(uh, ph),q
892
+
893
+ �h
894
+ ∥q∥L2(�h)
895
+
896
+ ∥∇ × (u − uh)∥L2(�h) + η(uh, ph;�h).
897
+ Similarly, using the definition of R1(uh, ph), (2.13), (3.21)-(3.23), and the fact [[uh]] =
898
+
899
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
900
+ 15
901
+ [[uc
902
+ h + u⊥
903
+ h ]] = [[u⊥
904
+ h ]], we have
905
+ ∥ph − pH∥L2(�h) ≤
906
+ sup
907
+ ∀qh∈Qh
908
+ (ph − pH,qh)�h
909
+ ∥qh∥L2(�h)
910
+
911
+ sup
912
+ ∀qh∈Qh
913
+ (ph,qh)�h −
914
+
915
+ R1(uH, pH) + µ∇ × uH,qh
916
+
917
+ �h
918
+ ∥qh∥L2(�h)
919
+
920
+ sup
921
+ ∀qh∈Qh
922
+ (µ∇ × uh,qh)�h+ < {{qh}},[[µuh]] >�h −
923
+
924
+ R1(uH, pH) + µ∇ × uH,qh
925
+
926
+ �h
927
+ ∥qh∥L2(�h)
928
+ =
929
+ sup
930
+ ∀qh∈Qh
931
+ (µ∇ × (uh − uH),qh)�h+ < {{qh}},[[µuh]] >�h −
932
+
933
+ R1(uH, pH),qh
934
+
935
+ �h
936
+ ∥qh∥L2(�h)
937
+
938
+ ∥∇ × (uh − uH)∥L2(�h) + ∥h−1/2
939
+ τ
940
+ [[uh]]∥L2(�h) + η(uH, pH;�H)
941
+
942
+ ∥∇ × (uh − uH)∥L2(�h) + C� ∥h−1/2
943
+ τ
944
+ [[u⊥
945
+ h ]]∥L2(�h) + η(uH, pH;�H)
946
+
947
+ ∥∇ × (uh − uH)∥L2(τ) +
948
+
949
+ η(uh, ph;�h) + η(uH, pH;�H)
950
+
951
+ .
952
+ Remark 3.2. Noting that ∥(u, p)−(uh, ph)∥2
953
+ DG+η2(uh, ph;�h) and ∥|u−uh|∥2
954
+ h+η2(uh, ph;�h)
955
+ are equivalent. In fact, by (3.24), we first know that
956
+ ∥(u, p) − (uh, ph)∥2
957
+ DG + η2(uh, ph;�h)
958
+ = ∥|u − uh|∥2
959
+ h + ∥p − ph∥2
960
+ L2(�h) + η2(uh, ph;�h)
961
+ ≲ ∥|u − uh|∥2
962
+ h + η2(uh, ph;�h).
963
+ Secondly, it is shown by the definition of ∥ · ∥DG
964
+ ∥|u − uh|∥2
965
+ h + η2(uh, ph;�h) ≤ ∥(u, p) − (uh, ph)∥2
966
+ DG + η2(uh, ph;�h).
967
+ Thus, we next only need to consider the convergence of ∥|u − uh|∥2
968
+ h + η2(uh, ph;�h).
969
+ We first show that the error plus some quantity reduces with a fixed factor on two
970
+ successive meshes.
971
+ Lemma 3.7. Given f ∈ L2(Ω) and two tetrahedral mesh �h and �H, where �H ≤ �h. Let
972
+ (u, p) ∈ U × Q be the solution of (2.1)-(2.2), and (uh, ph) ∈ Uh × Qh, (uH, pH) ∈ UH × QH
973
+ be the solutions of (2.13)-(2.14), respectively. Then there exit two constants δ1,δ2 ∈ (0,1),
974
+ such that
975
+ ∥|u − uh|∥2
976
+ h
977
+
978
+ (1 + δ1)∥|u − uH|∥2
979
+ H − 1 − δ2
980
+ 2
981
+ ∥|uh − uH|∥2
982
+ h
983
+ +
984
+ C3
985
+ δ1δ2α
986
+
987
+ η2(uh, ph;�h) + η2(uH, pH;�H)
988
+
989
+ .
990
+ (3.26)
991
+ where C3 depending on the C� .
992
+
993
+ 16
994
+ K Liu et al.
995
+ Proof. Choosing that q = ∇ × v, and subtracting (2.1) from (2.2), we obtain
996
+ (κu, v) + (µ∇ × u,∇ × v) = ( f , v).
997
+ (3.27)
998
+ Subtracting (2.15) from (3.27) with v = vh = uc
999
+ h − uc
1000
+ H, and using [[uc
1001
+ h − uc
1002
+ H]] = 0, we
1003
+ have
1004
+ (κ(u − uh), uc
1005
+ h − uc
1006
+ H)0,�h + (µ∇ × (u − uh),∇ × (uc
1007
+ h − uc
1008
+ H))0,�h
1009
+ + < [[uh]],{{µ∇ × (uc
1010
+ h − uc
1011
+ H)}} >�h= 0,
1012
+ which leads to
1013
+ (κ(u − uh), uc
1014
+ h − uc
1015
+ H)0,�h + (µ∇ × (u − uh),∇ × (uc
1016
+ h − uc
1017
+ H))0,�h
1018
+ = − < [[uh]],{{µuc
1019
+ h − uc
1020
+ H}} >�h .
1021
+ (3.28)
1022
+ Using (3.22) and (3.23), we have
1023
+ < [[uh]],{{∇ × (uc
1024
+ h − uc
1025
+ H)}} >�h
1026
+ =
1027
+ (�h(uh),∇ × (uc
1028
+ h − uc
1029
+ H))0,�h
1030
+ ≤ C� ∥h−1/2[[uh]]∥0,�h∥∇ × (uc
1031
+ h − uc
1032
+ H)∥0,�h.
1033
+ (3.29)
1034
+ Let uh = uc
1035
+ h + u⊥
1036
+ h and uH = uc
1037
+ H + u⊥
1038
+ H, we have
1039
+ uh + uc
1040
+ H − uc
1041
+ h = uH − u⊥
1042
+ H + u⊥
1043
+ h ,
1044
+ (3.30)
1045
+ where uc
1046
+ H ∈ Uc
1047
+ H, uc
1048
+ h ∈ Uc
1049
+ h, u⊥
1050
+ H ∈ U⊥
1051
+ H, u⊥
1052
+ h ∈ U⊥
1053
+ h . By (3.30), (3.28), (3.29) and Young’s
1054
+ inequality, we get
1055
+ ∥|u − uh|∥2
1056
+ h
1057
+ = ∥κ(u − uh)∥2
1058
+ L2(Ω) + ∥∇ × µ(u − uh)∥2
1059
+ L2(Ω)
1060
+ +
1061
+
1062
+ f ∈�h
1063
+ αh−1
1064
+ f
1065
+ < [[(u − uh)]],[[u − uh]] >�h
1066
+ = ∥|u − uh − uc
1067
+ H + uc
1068
+ h|∥2
1069
+ h − ∥|uc
1070
+ h − uc
1071
+ H|∥2
1072
+ h − 2(κ(u − uh), uc
1073
+ h − uc
1074
+ H)0,�h
1075
+ −2(µ∇ × (u − uh),∇ × (uc
1076
+ h − uc
1077
+ H))0,�h
1078
+ −2
1079
+
1080
+ f ∈�h
1081
+ αh−1
1082
+ f
1083
+ < [[(u − uh)]],[[uc
1084
+ h − uc
1085
+ H]] >
1086
+ ≲ ∥|u − uH|∥2
1087
+ H + 2∥|u − uH|∥H∥|u⊥
1088
+ h − u⊥
1089
+ H|∥h + ∥|u⊥
1090
+ h − u⊥
1091
+ H|∥2
1092
+ h − ∥|uc
1093
+ h − uc
1094
+ H|∥2
1095
+ h
1096
+ +2∥h−1/2[[uh]]∥0,�h∥∇ × (uc
1097
+ h − uc
1098
+ H)∥0,�h
1099
+ ≤ (1 + δ1)∥|u − uH|∥2
1100
+ H + (1 + 1
1101
+ δ1
1102
+ )∥|u⊥
1103
+ h − u⊥
1104
+ H|∥2
1105
+ h − (1 − ˆδ2C� )∥|uc
1106
+ h − uc
1107
+ H|∥2
1108
+ h
1109
+ +C�
1110
+ ˆδ2
1111
+ ∥h−1/2[[uh]]∥2
1112
+ 0,�h
1113
+ = (1 + δ1)∥|u − uH|∥2
1114
+ H + (1 + 1
1115
+ δ1
1116
+ )∥|u⊥
1117
+ h − u⊥
1118
+ H|∥2
1119
+ h − (1 − δ2)∥|uc
1120
+ h − uc
1121
+ H|∥2
1122
+ h
1123
+ +
1124
+ C2
1125
+
1126
+ δ2
1127
+ ∥h−1/2[[uh]]∥2
1128
+ 0,�h,
1129
+
1130
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
1131
+ 17
1132
+ where δ2 = ˆδ2C� . Using uc
1133
+ H = uH − u⊥
1134
+ H, uc
1135
+ h = uh − u⊥
1136
+ h , triangle inequality and average
1137
+ inequality, we have
1138
+ ∥|uc
1139
+ h − uc
1140
+ H|∥2
1141
+ h ≥ 1
1142
+ 2∥|uh − uH|∥2
1143
+ h − ∥|u⊥
1144
+ h − u⊥
1145
+ H|∥2
1146
+ h.
1147
+ By triangle inequality and (3.21), we obtain
1148
+ ∥|u⊥
1149
+ h − u⊥
1150
+ H|∥2
1151
+ h
1152
+
1153
+ 2(∥|u⊥
1154
+ h |∥2
1155
+ h + ∥|u⊥
1156
+ H|∥2
1157
+ H)
1158
+
1159
+ 2α∥h−1/2[[u⊥
1160
+ h ]]∥2
1161
+ 0,�h + 2α∥h−1/2[[u⊥
1162
+ H]]∥2
1163
+ 0,�h.
1164
+ Combining [[uH]] = [[u⊥
1165
+ H + uc
1166
+ H]] = [[u⊥
1167
+ H]] and (3.19), we have
1168
+ ∥|u − uh|∥2
1169
+ h
1170
+
1171
+ (1 + δ1)∥|u − uH|∥2
1172
+ H − 1 − δ2
1173
+ 2
1174
+ ∥|uh − uH|∥2
1175
+ h
1176
+ +
1177
+ C3
1178
+ δ1δ2α
1179
+
1180
+ η2(uh, ph;�h) + η2(uH, pH;�H)
1181
+
1182
+ .
1183
+ 3.3. Contraction of the error estimator
1184
+ In this subsection, we prove the reduction of error indicators. Let us first consider the
1185
+ effect of changing the finite element function used in the estimator.
1186
+ Lemma 3.8. Given f ∈ L2(Ω) and two tetrahedral mesh �h, �H with �H ≤ �h. Let (vh,qh) ∈
1187
+ Uh × Qh and (v H,q H) ∈ UH × QH. For any ε > 0, we have
1188
+ η2(vh,qh;�h) ≤ (1 + ε)η2(v H,q H;�h) + Cε∥(vh,qh) − (v H,q H)∥2
1189
+ DG,
1190
+ (3.31)
1191
+ where Cε depending on the ε, and the mesh size h < 1.
1192
+ Proof.
1193
+ For any τ∗ ∈ �h, we will discuss each of the five components of the mark
1194
+ η2(vh,qh;�h).
1195
+ Firstly, using the definition of R1(vh,qh) and triangle inequality, we have
1196
+ ∥R1(vh,qh)∥L2(τ∗)
1197
+ (3.32)
1198
+ = ∥qh − µ∇ × vh∥L2(τ∗)
1199
+ = ∥qh − q H + µ∇ × (v H − vh) + q H − µ∇ × v H∥L2(τ∗)
1200
+ ≲ ∥q H − ∇ × v H∥L2(τ∗) + ∥qh − q H∥L2(τ∗) + ∥∇ × (vh − v H)∥L2(τ∗).
1201
+ Secondly, using the definition of R2(vh,qh), triangle inequality and inverse inequality,
1202
+ we get
1203
+ hτ∗∥R2(vh,qh)∥L2(τ∗)
1204
+ (3.33)
1205
+ = hτ∗(∥ f − ∇ × qh − κvh∥L2(τ∗))
1206
+ = hτ∗(∥ f − ∇ × (qh − q H) − κ(vh − v H) − ∇ × q H − κv H∥L2(τ∗))
1207
+ ≤ hτ∗(∥ f − ∇ × q H − κv H∥L2(τ∗) + ∥∇ × (qh − q H)∥L2(τ∗) + ∥κ(vh − v H)∥L2(τ∗))
1208
+ ≲ hτ∗(∥R2(v H,q H)∥L2(τ∗) + h−1
1209
+ τ∗ ∥(qh − q H)∥L2(τ∗) + ∥κ(vh − v H)∥L2(τ∗))
1210
+ ≲ hτ∗∥R2(v H,q H)∥L2(τ∗) + ∥(qh − q H)∥L2(τ∗) + hτ∗∥κ(vh − v H)∥L2(τ∗).
1211
+
1212
+ 18
1213
+ K Liu et al.
1214
+ Similarly, using the definition of R3(vh), triangle inequality and inverse inequality, we
1215
+ get
1216
+ hτ∗∥R3(vh)∥L2(τ∗)
1217
+ (3.34)
1218
+ = hτ∗∥∇ · ( f − κvh)∥L2(τ∗)
1219
+ = hτ∗∥∇ · ( f − κv H + κv H − κvh)∥L2(τ∗)
1220
+ ≤ hτ∗(∥∇ · ( f − κv H)∥L2(τ∗) + ∥∇ · κ(v H − vh)∥L2(τ∗))
1221
+ ≲ hτ∗(∥R3(v H)∥L2(τ∗) + h−1
1222
+ τ∗ ∥κ(v H − vh)∥L2(τ∗))
1223
+ ≲ hτ∗∥R3(v H)∥L2(τ∗) + ∥κ(v H − vh)∥L2(τ∗).
1224
+ Next, we discuss the jump J1(qh) and J2(vh). For any f ∈ �(�h), we let f = τ1
1225
+
1226
+
1227
+ τ2
1228
+
1229
+ with τ1
1230
+ ∗,τ2
1231
+ ∗ ∈ �h. Furthermore, using the definition of J1(qh), triangle inequality and trace
1232
+ inequality, we have
1233
+ h1/2
1234
+ f
1235
+ ∥J1(qh)∥L2(f )
1236
+ (3.35)
1237
+ = h1/2
1238
+ f
1239
+ ∥[[qh]]∥L2(f )
1240
+ = h1/2
1241
+ f
1242
+ ∥[[q H + qh − q H]]∥L2(f )
1243
+ ≤ h1/2
1244
+ f
1245
+ (∥[[q H]]∥L2(f ) + ∥[[qh − q H]]∥L2(f ))
1246
+ ≤ h1/2
1247
+ f
1248
+ ∥[[q H]]∥L2(f ) + h1/2
1249
+ f
1250
+ ∥(qh − q H)|τ1
1251
+ ∗∥L2(f ) + h1/2
1252
+ f
1253
+ ∥(qh − q H)|τ2
1254
+ ∗∥L2(f )
1255
+ ≲ h1/2
1256
+ f
1257
+ ∥J1(q H)∥L2(f ) + ∥(qh − q H)∥L2(τ1
1258
+ ∗∪τ2
1259
+ ∗).
1260
+ Similarly, using the definition of J2(vh), triangle inequality and trace inequality, we
1261
+ have
1262
+ h1/2
1263
+ f
1264
+ ∥J2(vh)∥L2(f )
1265
+ (3.36)
1266
+ = h1/2
1267
+ f
1268
+ ∥[[( f − κvh)]]∥L2(f )
1269
+ = h1/2
1270
+ f
1271
+ ∥[[( f − κv H + κv H − κvh)]]∥L2(f )
1272
+ ≤ h1/2
1273
+ f
1274
+ (∥[[(f − κv H)]]∥L2(f ) + ∥[[κ(v H − vh)]]∥L2(f ))
1275
+ ≤ h1/2
1276
+ f
1277
+ ∥J2(v H)∥L2(f ) + h1/2
1278
+ f
1279
+ (∥κ(v H − vh)|τ1
1280
+ ∗∥L2(f ) + ∥κ(v H − vh)|τ2
1281
+ ∗∥L2(f ))
1282
+ ≲ h1/2
1283
+ f
1284
+ ∥J2(v H)∥L2(f ) + ∥κv H − κvh∥L2(τ1
1285
+ ∗∪τ2
1286
+ ∗).
1287
+ Finally, the desired result (3.31) is obtained by combining (3.32)-(3.36), Young’s in-
1288
+ equality and the shape regularity of mesh �h.
1289
+ We then prove the contraction of the error estimator under the assumptions on the
1290
+ problem of (2.13)-(2.14).
1291
+ Lemma 3.9. Given constant θ ∈ (0,1) and two tetrahedral mesh �h, �H(�H ≤ �h). Let
1292
+ (uH, pH) ∈ UH × QH be the solution of (2.13)-(2.14), and ��H−→�h = �H \ (�h ∩ �H) be the
1293
+
1294
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
1295
+ 19
1296
+ set of all element refined into �h on �H. Then, there is a constant λ ∈ (0,1) independent of
1297
+ mesh size, such that
1298
+ η2(uH, pH;�h) ≤ η2(uH, pH;�H) − λη2(uH, pH;��H→�h).
1299
+ (3.37)
1300
+ Proof. Assume that the tetrahedral mesh τ ∈ �H is divided into two new tetrahedral
1301
+ mesh τ1
1302
+ ∗ and τ2
1303
+ ∗ with equal volumes, where τ1
1304
+ ∗,τ2
1305
+ ∗ ∈ �h. Thus, h3
1306
+ τ1
1307
+ ∗ = |τ1
1308
+ ∗| = |τ2
1309
+ ∗| = h3
1310
+ τ2
1311
+ ∗ =
1312
+ 2−1h3
1313
+ τ by the shape regularity of mesh, which implies hτ1
1314
+ ∗ = hτ2
1315
+ ∗ = 2−1/3hτ. Then, we have
1316
+ ∥R1(uH, pH)∥2
1317
+ L2(τ1
1318
+ ∗) + ∥R1(uH, pH)∥2
1319
+ L2(τ2
1320
+ ∗) ≤ ∥R1(uH, pH)∥2
1321
+ L2(τ),
1322
+ (3.38)
1323
+ and
1324
+ h2
1325
+ τ1
1326
+ ∗(∥R2(uH, pH)∥2
1327
+ L2(τ1
1328
+ ∗) + ∥R3(uH)∥2
1329
+ L2(τ1
1330
+ ∗))
1331
+ + h2
1332
+ τ2
1333
+ ∗(∥R2(uH, pH)∥2
1334
+ L2(τ2
1335
+ ∗) + ∥R3(uH)∥2
1336
+ L2(τ2
1337
+ ∗))
1338
+ ≤ 2−2/3h2
1339
+ τ(∥R2(uH, pH)∥2
1340
+ L2(τ) + ∥R3(uH)∥2
1341
+ L2(τ)).
1342
+ (3.39)
1343
+ For any f ∈ ∂ (τ1
1344
+ ∗ ∪ τ2
1345
+ ∗), which can be divided into three parts;
1346
+ (1) For the first part, there are two of the faces are constant and belong to τ .
1347
+ (2) For the second part, there are two new faces that overlap and are used to divide the
1348
+ mesh τ. Since (uH, ph) ∈ UH × QH is a continuous polynomial in the region τ, it follows
1349
+ that the value of [[ph]] and [[( f − κuH)]] on this surface is equal to zero.
1350
+ (3) For the third part, there are four faces that are obtained by dividing the two faces
1351
+ in the τ into two.
1352
+ Furthermore, we obtain
1353
+ η2(uH, pH;τ1
1354
+ ∗) + η2(uH, pH;τ2
1355
+ ∗) ≤ γη2(uH, pH;τ).
1356
+ (3.40)
1357
+ where constant γ ∈ (0,1) independent of mesh τ.
1358
+ Next, since ��H→�h represents the part of the set in the tetrahedral set �H that will
1359
+ be used to be refined, it follows that ��H→�h ⊂ �H. Let ��H→�h denote the part of the
1360
+ cell set that has been refined in the tetrahedral set �H, we have ��h→�H ∈ �h. Obviously,
1361
+ �H \��H→�h = �h \��H→�h. Then combining the (3.40), and the marking strategy (2.18),
1362
+ we have
1363
+ η2(uH, pH;�h)
1364
+ =
1365
+ η2(uH, pH;�h \ ��H→�h) + η2(uH, pH;��H→�h)
1366
+
1367
+ η2(uH, pH;�H \ ��H→�h) + γη2(uH, pH;��H→�h)
1368
+
1369
+ η2(uH, pH;�H) + (γ − 1)η2(uH, pH;��H→�h)
1370
+
1371
+ η2(uH, pH;�H) − λη2(uH, pH;��H→�h),
1372
+ where λ = 1 − γ ∈ (0,1) independent of mesh size.
1373
+ Now, we combine the Lemmas 3.6, 3.8 and 3.9 to prove the reduction of error indicators.
1374
+
1375
+ 20
1376
+ K Liu et al.
1377
+ Lemma 3.10. Given a constant θ ∈ (0,1) and two tetrahedral mesh �h, �H(�H ≤ �h). Let
1378
+ (uh, ph) ∈ Uh × Qh and (uH, pH) ∈ UH × QH be the solutions of (2.13)-(2.14), respectively.
1379
+ For any ε > 0 and λ ∈ (0,1), we have
1380
+ (1 − Cε
1381
+ α )η2(uh, ph;�h)
1382
+
1383
+ (1 + ε + Cε
1384
+ α )η2(uH, pH;�H)
1385
+ − (1 + ε)λη2(uH, pH;��H→�h) + Cε∥|uh − uH|∥2
1386
+ h,
1387
+ (3.41)
1388
+ where constant Cε depending on the ε and mesh size.
1389
+ Proof. Using the Lemmas 3.6, 3.8 and 3.9, we have
1390
+ η2(uh, ph;�h)
1391
+
1392
+ (1 + ε)
1393
+
1394
+ η2(uH, pH;�H) − λη2(uH, pH;��H→�h)
1395
+
1396
+ +Cε∥(uh, ph) − (uH, pH)∥2
1397
+ DG
1398
+
1399
+ (1 + ε)
1400
+
1401
+ η2(uH, pH;�H) − λη2(uH, pH;��H→�h)
1402
+
1403
+ +Cε∥|uh − uH|∥2
1404
+ h + ∥ph − pH∥2
1405
+ L2(Ω)
1406
+
1407
+ (1 + ε)
1408
+
1409
+ η2(uH, pH;�H) − λη2(uH, pH;��H→�h)
1410
+
1411
+ +Cε∥|uh − uH|∥2
1412
+ h + Cε
1413
+ α
1414
+
1415
+ η2(uh, ph;�h) + η2(uH, pH;�H)
1416
+
1417
+ ,
1418
+ which completes the proof.
1419
+ 3.4. Convergence result
1420
+ Now, we proved that the sum of the norm of the error and the scaled error indicator is
1421
+ attenuated.
1422
+ Theorem 3.2. For a given θ ∈ (0,1),let {�k,Uk,Qk, uk, pk,η(uk, pk;�k)}k≥0 be the se-
1423
+ quence of meshes, Mixed discrete solution (defined by (2.13)-(2.14)), and the estimate in-
1424
+ dicator produced by the AMIPDG algorithm. Then there exist constants ρ > 0, δ ∈ (0,1),
1425
+ which depend on marking parameter θ and the shape regularity of the initial mesh �0, such
1426
+ that
1427
+ ∥|u − uk+1|∥2
1428
+ k+1 + ρη2(uk+1, pk+1;�k+1) ≤ δ
1429
+
1430
+ ∥|u − uk|∥2
1431
+ k + ρη2(uk, pk;�k)
1432
+
1433
+ .
1434
+ Proof. Setting �ρ = 1−δ2
1435
+ 2Cε , then multiply the both sides of the (3.41) inequality by �ρ, we
1436
+ get
1437
+ �ρ(1 − Cε
1438
+ α )η2(uk+1, pk+1;�k+1)
1439
+ ≤ �ρ(1 + ε + Cε
1440
+ α )η2(uk, pk;�k) − �ρ(1 + ε)λη2(uk, pk;��k→�k+1)
1441
+ +1 − δ2
1442
+ 2
1443
+ ∥|uk+1 − uk|∥2
1444
+ h.
1445
+ (3.42)
1446
+
1447
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
1448
+ 21
1449
+ Next, by the (3.26) and (3.42), we have
1450
+ ∥|u − uk+1|∥2
1451
+ k+1 + �ρ(1 − Cε
1452
+ α )η2(uk+1, pk+1;�k+1)
1453
+ ≤ (1 + δ1)∥|u − uk|∥2
1454
+ k +
1455
+ C3
1456
+ δ1δ2α
1457
+
1458
+ η2(v k+1,q k+1;�k+1) + η2(v k,q k;�k)
1459
+
1460
+ +�ρ(1 + ε + Cε
1461
+ α )η2(uk, pk;�k) − �ρ(1 + ε)λη2(uk, pk;��k→�k+1).
1462
+ (3.43)
1463
+ First move the term and then according to Dörfler marking strategy (2.18), the Theorem
1464
+ 3.1 and ∥| · |∥h ≤ ∥ · ∥DG, we know −η2(v k,q k;��k→�k+1) ≤ −θη2(v k,q k;�k), then
1465
+ ∥|u − uk+1|∥2
1466
+ k+1
1467
+ +
1468
+ �ρ(1 − Cε
1469
+ α −
1470
+ C3
1471
+ �ρδ1δ2α)η2(uk+1, pk+1;�k+1)
1472
+
1473
+ (1 + δ1)∥|u − uk|∥2
1474
+ k − �ρ(1 + ε)λθ
1475
+ 2
1476
+ η2(uk, pk;�k)
1477
+ +�ρ
1478
+
1479
+ 1 + ε + Cε
1480
+ α +
1481
+ C3
1482
+ �ρδ1δ2α − (1 + ε)λθ
1483
+ 2
1484
+
1485
+ η2(uk, pk;�k)
1486
+
1487
+ (1 + δ1 −
1488
+ �ρ(1 + ε)λθC−1
1489
+ 1
1490
+ 2
1491
+ )∥|u − uk|∥2
1492
+ k
1493
+ +�ρ
1494
+
1495
+ 1 + ε + Cε
1496
+ α +
1497
+ C3
1498
+ �ρδ1δ2α − (1 + ε)λθ
1499
+ 2
1500
+
1501
+ η2(uk, pk;�k).
1502
+ For convenience, denote
1503
+ β1
1504
+ =
1505
+ 1 − Cε
1506
+ α −
1507
+ C3
1508
+ �ρδ1δ2α,
1509
+ β2
1510
+ =
1511
+ 1 + δ1 −
1512
+ �ρ(1 + ε)λθC−1
1513
+ 1
1514
+ 2
1515
+ ,
1516
+ β3
1517
+ =
1518
+ (1 + ε)(1 − λθ
1519
+ 2 ) + Cε
1520
+ α +
1521
+ C3
1522
+ �ρδ1δ2α.
1523
+ Thus
1524
+ ∥|u − uk+1|∥2
1525
+ k+1 + �ρβ1η2(uk+1, pk+1;�k+1) ≤ β2∥|u − uk|∥2
1526
+ k + �ρβ3η2(uk, pk;�k).
1527
+ Next, we firstly choose δ1 =
1528
+ �ρ(1+ε)λθC−1
1529
+ 1
1530
+ 4
1531
+ , then select the appropriate δ2 to make �ρ =
1532
+ 1−δ2
1533
+ 2Cε smaller to ensure 0 < δ1 < 1, Secondly, we let ε > 0 and (1 + ε)(1 − λθ
1534
+ 2 ) = 1 − λθ
1535
+ 4 (
1536
+ λθ ∈ (0,1)), therefore
1537
+ β2 = 1 − δ1 ∈ (0,1), (1 + ε)(1 − λθ
1538
+ 2 ) < 1.
1539
+ Furthermore, we choose a sufficiently large penalty parameter α such that
1540
+ β1 > β3.
1541
+
1542
+ 22
1543
+ K Liu et al.
1544
+ Finally, there is a constant δ = max{β2, β1
1545
+ β3 }. Then, we let ρ = �ρβ1, and obtain
1546
+ ∥|u − uk+1|∥2
1547
+ k+1 + ρη2(uk+1, pk+1;�k+1) ≤ δ
1548
+
1549
+ ∥|u − uk|∥2
1550
+ k + ρη2(uk, pk;�k)
1551
+
1552
+ .
1553
+ Corollary 3.1. Under the conditions of Theorem 3.2, we have
1554
+ ∥(u, p) − (uk, pk)∥2
1555
+ DG + ρη2(uk, pk;�k) ≤ δk �Cδ.
1556
+ where �Cδ = C
1557
+
1558
+ ∥(u, p) − (u0, p0)∥2
1559
+ DG + ρη2(u0, p0;�0)
1560
+
1561
+ . Therefore, for a given precision,
1562
+ the AMIPDG method will terminate after a finite number of operations.
1563
+ Proof. Using the Remark 3.2 and Theorem 3.2, we have
1564
+ ∥(u, p) − (uk, pk)∥2
1565
+ DG + ρη2(uk, pk;�k)
1566
+
1567
+ C
1568
+
1569
+ ∥|u − uk|∥2
1570
+ k + ρη2(uk, pk;�k)
1571
+
1572
+
1573
+ δk �Cδ.
1574
+ 4. Numerical experiments
1575
+ In this section, we test some numerical experiments to show the efficiency and the
1576
+ robustness of AMIPDG. We carry out these numerical experiments by using the MATLAB
1577
+ software package iFEM [6]. In Experiments 4.1 and 4.2, we take p = ∇ × u.
1578
+ In Example 4.1, we discuss the influence of the penalty parameter α on the error in
1579
+ ∥ · ∥DG norm, and observe the dependency of the condition number of stiffness matrix on
1580
+ α.
1581
+ Example 4.1. Let Ω := [0,1] × [0,1] × [0,1], we construct the following analytical solution
1582
+ of the model (1.1)-(1.2):
1583
+ u =
1584
+
1585
+
1586
+ x(x − 1)y(y − 1)z(z − 1)
1587
+ sin(πx)sin(πy)sin(πz)
1588
+ (1 − ex)(1 − ex−1)(1 − e y)(1 − e y−1)(1 − ez)(1 − ez−1)
1589
+
1590
+ �.
1591
+ It is easy to see that the solution u satisfies the boundary condition u × n = 0 on ∂ Ω.
1592
+ In this example, we get a uniform mesh by partitioning the x−, y− and z−axes into
1593
+ equally distributed M(M ≥ 2) subintervals, and then dividing one cube into six tetrahe-
1594
+ drons. Let h = 1/M be mesh sizes for different tetrahedrons meshes. We fixed mesh with
1595
+ h = 1/4 and report the error estimates in ∥ · ∥DG norm and condition number of stiffness
1596
+ matrices for different penalty parameters α = 1,10,100,500 and 1000 in Table 1. We note
1597
+ that ∥u − uh∥0 increases at first and then decreases as the penalty parameter α increases.
1598
+
1599
+ Convergence of AMIPDG methods for H(cur l)-elliptic problems
1600
+ 23
1601
+ Table 1: The error in ∥ · ∥DG norms and condition number of stiffness matrices with h = 1/4.
1602
+ α
1603
+ 1
1604
+ 10
1605
+ 100
1606
+ 500
1607
+ 1000
1608
+
1609
+
1610
+ p − ph, u − uh
1611
+
1612
+ ∥DG
1613
+ 3.949e+00
1614
+ 1.133e-00
1615
+ 8.614e-01
1616
+ 8.649e-01
1617
+ 8.659e-01
1618
+ Cond
1619
+ 3.235e+04
1620
+ 7.021e+04
1621
+ 5.959e+05
1622
+ 2.995e+06
1623
+ 6.150e+06
1624
+ The condition numbers of stiffness matrices increase with the increase of penalty parame-
1625
+ ters α.
1626
+ As a way to balance, in the following numerical tests, we always choose α = 100.
1627
+ Noting that we only consider uniform meshes in Example 4.1. Next we test adaptive
1628
+ meshes.
1629
+ Example 4.2. Let Ω := [0,1] × [0,1] × [0,1], we construct the following analytical solution
1630
+ of the model (1.1)-(1.2)
1631
+ u =
1632
+
1633
+
1634
+
1635
+ x(x−1)y(y−1)z(z−1)
1636
+ x2+y2+z2+0.001
1637
+ x(x−1)y(y−1)z(z−1)
1638
+ x2+y2+z2+0.001
1639
+ − x(x−1)y(y−1)z(z−1)
1640
+ x2+y2+z2+0.001
1641
+
1642
+
1643
+ �.
1644
+ Note that the solution u satisfies the condition u × n = 0 on ∂ Ω.
1645
+ The right of Figure 1 shows an adaptively refined mesh with marking parameter- θ =
1646
+ 0.7 after k = 18. The grid is locally refined near the origin.
1647
+ Figure 1: Left: the initial mesh with 1152 DoFs. Right: the adaptive mesh(θ = 0.7) with 181104 DoFs
1648
+ after 18 refinements.
1649
+ The Figure 2 shows the curves of log N−logη
1650
+
1651
+ uk, pk;�k
1652
+
1653
+ for parameters θ = 0.3,0.5,0.7.
1654
+ The curves indicate the convergence and the quasi-optimality of the adaptive algorithm
1655
+ AMIPDG of η
1656
+
1657
+ uk, pk;�k
1658
+
1659
+ .
1660
+ Acknowledgment
1661
+ The first author is supported by the East China University of Technology (DHBK2019209)
1662
+ and Jiangxi Province Education Department (GJJ200755). The second, third and fourth
1663
+ authors are supported by the National Natural Science Foundation of China (Grant No.
1664
+ 12071160). The third author is also supported by the National Natural Science Foundation
1665
+ of China (Grant No. 11901212).
1666
+
1667
+ 24
1668
+ K Liu et al.
1669
+ Figure 2: Quasi optimality of the AMIPDG of the error η
1670
+
1671
+ uk, pk;�k
1672
+
1673
+ with different marking parameters
1674
+ θ.
1675
+ References
1676
+ [1] B. AYUSO DE DIOS, R. HIPTMAIR AND C.L. PAGLIANTINI, Auxiliary space preconditioners
1677
+ for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients. IMA J.
1678
+ Numer. Anal. 37(2017), pp, 646-686.
1679
+ [2] A. BONITO AND R.H. NOCHETTO, Quasi-optimal convergence rate of an adaptive discontin-
1680
+ uous Galerkin method. SIAM J. Numer. Anal. 48(2010), pp. 734–771.
1681
+ [3] C. CARSTENSEN AND R.H. HOPPE, Unified framework for an a posteriori error analysis of
1682
+ non-standard finite element approximations of H(cur l)-elliptic problems. J. Numer. Math.
1683
+ 17(2009), pp. 27–44.
1684
+ [4] C. CARSTENSEN, R.H. HOPPR, N. SHARMA AND T. WARBURTON, Adaptive hybridized in-
1685
+ terior penalty discontinuous galerkin methods for H(cur l)–elliptic problems. Numer. Math.
1686
+ Theor. Meth. Appl. 4(2011), pp. 13–37.
1687
+ [5] C. CARSTENSEN AND R. MA, Adaptive mixed finite element methods for non-self-adjoint
1688
+ indefinite second-order elliptic pdes with optimal rates. SIAM J. Numer. Anal. 59(2021), pp.
1689
+ 955–982.
1690
+ [6] L. CHEN, iFEM: an innovative finite element method package in MATLAB. Technical report,
1691
+ University of California at Irvine (2009).
1692
+ [7] L. CHEN, M. HOLST AND J.C. XU,
1693
+ Convergence and optimality of adaptive mixed finite
1694
+ element methods. Math. Comp. 78(2009), pp. 35–53.
1695
+ [8] E.T. CHUNG, M.C. YUEN AND L.Q. ZHONG, A-posteriori error analysis for a staggered dis-
1696
+ continuous Galerkin discretization of the time-harmonic Maxwell’s equations. Appl. Math.
1697
+ Comput. 237(2014), pp. 613–631.
1698
+ [9] L. DÖRFLER, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal.
1699
+ 33(1996), pp. 1106–1124.
1700
+ [10] S.H. DU AND X.P. XIE,
1701
+ Convergence of an adaptive mixed finite element method for
1702
+
1703
+ Rate of convergence is CN-0.33
1704
+ 10
1705
+ adaptive refiniment = 0.3
1706
+ adaptive refiniment =0.5
1707
+ adaptive refiniment =0.7
1708
+ CN-0.33
1709
+ 104
1710
+ 105
1711
+ Number of unknownsConvergence of AMIPDG methods for H(cur l)-elliptic problems
1712
+ 25
1713
+ convection-diffusion-reaction equations. Sci. China Math. 58(2015), pp. 1327–1348.
1714
+ [11] P. HOUSTON, I. PERUGIA, A. SCHNEEBELI ADN D. SCHÖTZAU, Interior penalty method for
1715
+ the indefinite time-harmonic Maxwell equations. Numer. Math. 100(2005), pp. 485–518.
1716
+ [12] W. JIANG, N. LIU, Y. TANG AND Q.H. LIU,
1717
+ Mixed finite element method for 2D vector
1718
+ Maxwell’s eigenvalue problem in anisotropic media. Progress In Electromagnetics Research
1719
+ 148(2014), pp. 159–170.
1720
+ [13] C. JOG AND A. NANDY, Mixed finite elements for electromagnetic. Comput. Math. Appl.
1721
+ 68(2014), pp. 887–902.
1722
+ [14] F. KIKUCHI,
1723
+ Mixed and penalty formulations for finite element analysis of an eigenvalue
1724
+ problem in electromagnetism. Comput. Methods Appl. Mech. Engrg. 64(1987), pp. 509–521.
1725
+ [15] N. LIU, L. TOBÓN, Y. TANG AND Q.H. LIU, Mixed spectral element method for 2D Maxwell’s
1726
+ eigenvalue problem. Commun. Comput. Phys. 17(2015), pp. 458–486.
1727
+ [16] P. MONK, Finite Element Methods for Maxwell Equations. Numerical Mathematics and Scientific
1728
+ Computation. Oxford University Press, Oxford(2003).
1729
+ [17] J.C. NÉDÉLEC, Mixed finite elements in �3. Numer. Math. 35(1980), pp. 315–341.
1730
+ [18] I. PERUGIA, D. SCHÖTZAU AND P. MONK, Stabilized interior penalty methods for the time-
1731
+ harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191(2002), pp. 4675–4697.
1732
+ [19] J. SCHÖBERL, A posteriori error estimates for Maxwell equations. Math. Comp. 77(2008),
1733
+ pp. 633–649.
1734
+ [20] X.Q. XING AND L.Q. ZHONG, A posteriori error estimate of discontinuous Galerkin Method
1735
+ for H(curl)-elliptic problems (in Chinese). Journal of South China Normal University (Natural
1736
+ Science Edition). 44(2012), pp. 18–21.
1737
+
0dAzT4oBgHgl3EQfefzh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tAyT4oBgHgl3EQf1PlJ/content/tmp_files/2301.00731v1.pdf.txt ADDED
@@ -0,0 +1,742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00731v1 [math.DS] 2 Jan 2023
2
+ Feuerbach’s and Poncelet’s theorems meet in space
3
+ (On the occasion of their bicentennial)
4
+ E. A. Avksentyev
5
+ December 29, 2022
6
+ Abstract
7
+ Three-dimensional analogues of the Feuerbach theorem are proposed in this paper. One of them
8
+ concerns some tetrahedron analogue of the Euler circle. Another one is pretty interesting «up-in-ex-
9
+ touch» construction. And the third one, it turns out, is closely related to Poncelet’s theorem. This is
10
+ very beautiful Grace’s theorem. It seems that this theorem is not widely known, and that no elementary
11
+ proof has been given. Such an elementary proof of the Grace theorem is obtained in this paper by using
12
+ properties of imaginary generators on a sphere and of isotropic tangents to a conic. An applying of the
13
+ Grace theorem leads to several corollaries. One of them is Laguerre’s theorem, which generalizes the
14
+ Euler-Chapple formulas. Further, we consider a spatial analog of Poncelet’s theorem. We prove that
15
+ the Grace spheres touch some fixed sphere under the Poncelet rotation of bicentric tetrahedron. Finaly,
16
+ going out from a plane into the third dimension, we obtain a new proof of Feuerbach’s theorem and
17
+ perhaps the shortest proof of Euler-Chapple formulas.
18
+ Введение
19
+ Данная работа посвящена двум знаменитым геометрическим теоремам, кажется никак не связанным
20
+ между собой, разве что они были опубликованны в один год двести лет назад [5, 14]. Приведем их
21
+ формулировки
22
+ Теорема (Feuerbach, 1822). Окружность девяти точек произвольного треугольника касается его
23
+ вписанной и трех вневписанных окружностей.
24
+ Теорема (Poncelet, 1822). Пусть для двух данных коник существует вписано-описанный в них
25
+ многоугольник. Тогда этот многоугольник может динамически «вращаться» около данных коник,
26
+ оставаясь вписано-описанным в них.
27
+ У обеих теорем есть масса обобщений, но пространственные аналоги, насколько нам известно,
28
+ имеются только у теоремы Понселе. Их довольно много (см., например, [6,8,9,15]) и среди них есть
29
+ множество замечательных, но малоизвестных результатов.
30
+ Задача трехмерного обобщения теоремы Фейербаха поставлена еще более ста лет назад в моно-
31
+ графии Кулиджа [2]:
32
+ «The geometry of the tetrahedron lags far behind that of the triangle... Is there an analogue
33
+ to Feuerbach’s theorem? Above all what corresponds to the Hart systems? ...These difficult
34
+ but important and interesting questions offer ample scope for serious work» (p. 247).
35
+ Теорема Фейербаха содержит в себе два удивительных геометрических факта. Первый состоит в
36
+ том, что четыре замечательные окружности треугольника – вписанная и три описанные – имеют об-
37
+ щую касательную окружность. Второй же заключается в том, что эта общая касательная окружность
38
+ является еще и окружностью девяти точек, которая и без того сама по себе замечательна.
39
+ Первая попытка найти аналог теоремы Фейербаха в пространстве приводит к вопросу: существу-
40
+ ет ли сфера, которая касалась бы вписанной и вневписанных сфер?
41
+ Но здесь нас ожидает первый «сюрприз»: у произвольного тетраэдра кроме обычных четырех
42
+ вневписанных сфер, аналогичных трем вневписанным сферам треугольника, существует еще три
43
+ дважды-вневписанные сферы или чердачные (от англ. «roof»), как они названы в [20] (см. также [21]).
44
+ Т.е., всего существует целых восемь сфер (см. рис. 1), касающихся граней тетраэдра! Назовем
45
+ их касательными сферами. Было бы слишком оптимистично ожидать, что все восемь касательных
46
+ 1
47
+
48
+ Рис. 1: Восемь касательных сфер тетраэдра
49
+ сфер могли бы касаться ��дной сферы. И действительно, ответ на поставленный вопрос оказывается
50
+ отрицательным: в общем случае произвольного тетраэдра такой сферы не существует.
51
+ Проверить это очень легко: для этого достаточно рассмотреть лишь один пример подходящего
52
+ тетраэдра. И нет сомнений, что такой знаток геометрии как Кулидж хорошо знал, что такой сферы
53
+ в общем случае нет. Однако, он все-таки поставил вопрос поиска трехмерных аналогов теоремы
54
+ Фейербаха, находя его важным, интересным и открывающим «широкие возможности для серьезной
55
+ работы».
56
+ В каком же направлении искать тогда аналоги теоремы Фейербаха в пространстве? Кажется,
57
+ что осталась лишь задача описания частных случаев тетраэдров, у которых существует сфера, ка-
58
+ сающаяся внутренним или внешним образом пяти, шести, семи или всех восьми касательных сфер.
59
+ В работе [11] есть некоторое продвижение в этой задаче и для существования такой сферы получе-
60
+ ны аналитические условия в специальных связанных с тетраэдром пентасферических координатах.
61
+ К сожалению, эти условия весьма громоздкие и из них совершенно не ясно, существуют ли такие
62
+ тетраэдры и как они устроены. Таким образом, задача в такой постановке остается незакрытой.
63
+ Возникает еще идея поискать пространственный аналог теоремы Фейербаха в таком направле-
64
+ нии: существует ли окружность, действительная или мнимая, которая касалась бы всех восьми
65
+ касательных сфер? Кажется маловероятным, что ответ мог бы быть положительным, но задача пред-
66
+ ставляется интересной.
67
+ Оставив пока эти вопросы, мы приведем далее целых три трехмерных аналога теоремы Фейербаха.
68
+ Первый аналог, которую мы хотим предложить в § 1 в качестве трехмерного обобщения теоремы
69
+ Фейербаха, является довольно интересным фактом. У него очень простое доказательство, которое,
70
+ 2
71
+
72
+ тем не менее, раскрывает связь этой конструкции с неевклидовой геометрией и приводит к трехмер-
73
+ ному обобщению окружности Эйлера. Поэтому из трех аналогов этот наиболее аутентичен.
74
+ Второй является очень красивой теоремой геометрии тетраэдра, открытой сто двадцать пять лет
75
+ назад, но, кажется, до сих пор малоизвестной. Ее единственное оригинальное доказательство столь
76
+ сложно, что есть целая статья с его реконструкцией. В § 2 мы получим элементарное доказательство
77
+ этой теоремы, в котором обнаружится ее связь с теоремой Понселе. Второй аналог выглядит наименее
78
+ аутентичным, но на наш взгляд, он ближе и роднее к теореме Фейербаха, чем другие два.
79
+ Третий аналог представляет из себя довольно интересную конструкцию касающихся сфер, кото-
80
+ рую мы назвали «up-in-ex-touch»-конструкция. Мы приведем ее в конце § 3, в котором мы также
81
+ получим, возможно, самое короткое доказательство формул Эйлера-Чаппла.
82
+ С помощью теоремы Грейса мы в §4 получим короткое и простое доказательство теоремы Лагерра,
83
+ обобщающей формулы Эйлера-Чаппла. §5 посвящен трехмерному аналогу формул Эйлера-Чаппла.
84
+ Далее в §6 мы рассмотрим пространственные аналоги теоремы Понселе. Мы покажем, что при
85
+ вращении Понселе вписано-вневписанного тетраэдра его сферы Грейса касаются некоторой фикси-
86
+ рованной сферы.
87
+ В конце, совершая «выход в пространство», мы дадим новое доказательство теоремы Фейербаха.
88
+ 1 Первый аналог теоремы Фейербаха для тетраэдра
89
+ Итак, рассмотрим произвольный тетраэдр общего вида, у которого имеется восемь касательных сфер.
90
+ В качестве первого аналога теоремы Фейербаха для тетраэдра предлагаем следующую теорему.
91
+ Теорема 1.1. Существует четыре круговых конуса, каждый из которых касается всех восьми его
92
+ касательных сфер.
93
+ Доказательство. Рассмотрим сферу ζD с центром в вершине D тетраэдра ABCD и спроектируем
94
+ из центра D на сферу ζD все восемь касательных сфер. Их проекциями будут четыре окружности
95
+ на сфере ζD, поскольку каждая пара гомотетичных относительно D сфер спроектируются в одну и
96
+ ту же окружность. Эти четыре окружности касаются сторон сферического треугольника, стороны
97
+ которого являются проекциями плоскостей трехгранного угла при вершине D. По теореме Фейербаха
98
+ для сферического треугольника существует окружность, касающаяся этих четырех окружностей.
99
+ Конус с вершиной D, содержащий эту окружность, очевидно удовлетворяет утверждению теоремы.
100
+ Такой конус есть у каждой вершины.
101
+
102
+ Теорема Фейербаха в сферической геометрии, в той облегченной форме, которую мы использо-
103
+ вали в доказательстве, равносильна теореме Харта (см. [2]). Таким образом, в какой-то степени мы
104
+ ответили на оба вопроса Кулиджа, которые мы цитировали во введении. На самом деле, можно про-
105
+ двинуться еще дальше в этом направлении, если применить результат Акопяна [19], в котором он
106
+ нашел такие свойства окружности Харта, которые во многом аналогичны свойствам окружности
107
+ девяти точек. Хотя в [19] все утверждения формулируются для плоскости Лобачевского, но мы их
108
+ естественным образом адаптируем применительно к трехгранным углам нашего тетраэдра.
109
+ Избытком трехгранного угла называется величина, равная разнице между суммой его двух-
110
+ гранных углов и 180◦. Медиатором трехгранного угла назовем плоскость, содержащую его ребро
111
+ и делящую его на два трехгранных угла с равными избытками. При рассмотренной выше проекции
112
+ трехгранного угла на сферу медиатор переходит в сферическую чевиану, делящую пополам пло-
113
+ щадь соответственного треугольника (в [19] эта чевиана называется биссектором или биссекторным
114
+ отрезком). Три медиатора пересекаются по прямой, которую можно назвать псевдоцентроидалью,
115
+ поскольку ей соответствует псевдоцентроид сферического треугольника.
116
+ Четыре прямые из одного пучка назовем вписанной четверкой, если все они являются образую-
117
+ щими одного кругового конуса. Следующее утверждение является аналогом Леммы 5 из [19].
118
+ 3
119
+
120
+ Предложение 1.2. Пусть a, b, c – ребра трехгранного угла с вершиной D. Тогда существует един-
121
+ ственная тройка прямых ha, hb, hc, лежащих в плоскостях ⟨ab⟩, ⟨ac⟩, ⟨bc⟩ соответственно, таких
122
+ что четверки {a, b, ha, hb}; {a, c, ha, hc}; {b, c, hb, hc} являются вписанными.
123
+ Плоскости aha, bhb, chc являются аналогами так называемых псевдовысот, которым в [19] дается
124
+ еще и другое определение через углы. Эти три плоскости пересекаются по общей прямой, назовем ее
125
+ псевдоортоцентралью по аналогии с псевдоортоцентрами гиперболических треугольников.
126
+ Круговой конус, содержащий все три ребра трехгранного угла в качестве своих образующих,
127
+ назовем описанным.
128
+ В [19, §§ 4-6] показано, что основания трех псевдовысот и трех биссекторных чевиан лежат на
129
+ одной окружности. Центр этой окружности лежит на одной прямой с центром описанной, псевдоцен-
130
+ троидом и всевдоортоцентром. Сформулируем аналогичные утверждение для тетраэдра.
131
+ Теорема 1.3 (Конус Эйлера трехгранного угла). У любого трехгранного угла основания трех его
132
+ медиаторов и трех его псевдовысот лежат на одном круговом конусе.
133
+ Теорема 1.4 (Плоскость Эйлера трехгранного угла). У произвольного трехгранного угла четыре
134
+ прямых – псевдоцентроидаль, псевдоортоцентраль, ось описанного конуса и ось конуса Эйлера –
135
+ лежат в одной плоскости.
136
+ Главным же результатом работы [19] является гиперболический аналог теоремы Фейербаха, со-
137
+ гласно которому окружность Эйлера гиперболического треугольника касается его вписанной и трех
138
+ вневписанных окружностей. Применительно к тетраэдру мы получаем следующее усиление Теоре-
139
+ мы 1.1
140
+ Теорема 1.5 (Аналог теоремы Фейербаха для тетраэдра). Четыре конуса Эйлера трехгранных углов
141
+ тетраэдра касаются всех восьми его касательных сфер.
142
+ Отметим несколько вопросов, которые возникают в связи с рассмотренными конструкциями.
143
+ Вопрос 1.6. Инцидентны ли какие либо из следующих четверок замечательных прямых тетраэд-
144
+ ра: псевдоцентроидали, псевдоортоцентрали, оси четырех описанных конусов, оси четырех конусов
145
+ Эйлера?
146
+ Вопрос 1.7. Существуют ли еще какие-либо квадрики, касающиеся всех касательных сфер, отлич-
147
+ ные от четырех конусов Эйлера и четырех плоскостей граней?
148
+ Вопрос 1.8. Любые три конуса общего положения пересекаются в восьми точках. Не окажется
149
+ ли так, что четыре конуса Эйлера тетраэдра имеют восемь общих точек? Есть ли какие-то
150
+ примечательные свойства биквадратических кривых, по которым пересекаются конусы Эйлера?
151
+ 2 Теорема Грейса как трехмерный аналог теоремы Фейербаха
152
+ Более ста лет назад, британский математик Джон Хилтон Грейс в своей работе [7] открыл и доказал
153
+ следующее замечательное свойство касательных сфер тетраэдра.
154
+ Теорема 2.1 (Grace, 1897). Касательные сферы тетраэдра ABCD могут быть разбиты на че-
155
+ тыре пары так, что парные сферы гомотетичны с центром D, и для каждой пары существует
156
+ касающаяся их сфера, проходящая через вершины A, B, C.
157
+ Замечание 2.2. Все касательные сферы можно разбить на две группы по четыре сферы. В одну
158
+ входят вписанная и три дважды-вневписанные сферы, а в другую – четыре вневписанные. Любые
159
+ две сферы из разных групп гомотетичны относительно одной из вершин тетраэдра. Для каждой
160
+ 4
161
+
162
+ такой пары сфер существует единственная касающаяся их сфера Грейса, которая проходит через
163
+ вершины грани, противоположной к той вершине, относительно которой данная пара касательных
164
+ сфер гомотетична. Таким образом, всего получается шестнадцать сфер Грейса: для каждой из
165
+ четырех граней тетраэдра через ее вершины проходит четыре различные сферы Грейса.
166
+ Теорема Грейса связывает касательные сферы тетраэдра с замечательными точками, его верши-
167
+ нами, с помощью общих касающихся их сфер. Это ее сближает с теоремой Фейербаха, с которой она,
168
+ на наш взгляд, сравнима по красоте и имеет некоторое сходство. В этом смысле, можно было бы
169
+ считать теорему Грейса неким трехмерным аналогом теоремы Фейербаха.
170
+ Рис. 2: Сфера Грейса GD, касающаяся вписанной сферы σ, вневписанной сферы σD и проходящая через A, B, C.
171
+ В недавней статье [13] Maehara и Martini замечают, что «по-видимому, эта теорема малоизвестна
172
+ и до сих пор не имеет элементарного доказательства». В качестве результата они приводят такое
173
+ доказательство, но лишь для частного случая триортогонального тетраэдра, пользуясь при этом
174
+ аналитической техникой.
175
+ Оригинальное же доказательство Грейса очень красивое и геометрическое, но довольно трудное.
176
+ Поскольку Грейс дал лишь его набросок, Maehara и Tokushige в работе [12] подробно реконструиро-
177
+ вали это доказательство.
178
+ Мы получим элементарное и вполне короткое геометрическое доказательство теоремы Грейса,
179
+ но сначала напомним некоторые определения и факты проективной геометрии. Пусть E3 – веще-
180
+ ственное трехмерное евклидово пространство. Мы будет рассматривать его проективное пополнение
181
+ «бесконечно удаленной» плоскостью. Эта модель проективного пространства получается переходом
182
+ от декартовых координат (x, y, z) в E3 к однородным координатам (x : y : z : w), в которых бесконеч-
183
+ но удаленной плоскости соответствуют точки с координатами (x : y : z : 0). Кроме того рассмотрим
184
+ комплексификацию пространства, позволяя координатам принимать комплексные значения. Добав-
185
+ ленные точки будем называть мнимыми.
186
+ Записывая в однородных координатах (x : y : z : w) общее уравнение сферы
187
+ x2 + y2 + z2 + 2axw + 2byw + 2czw + dw2 = 0,
188
+ легко видеть, что она пересекает бесконечно-удаленную плоскость w = 0 по кривой
189
+ x2 + y2 + z2 = 0, w = 0,
190
+ 5
191
+
192
+ D
193
+ GD
194
+ A
195
+ C
196
+ B
197
+ ODкоторая является общей для всех сфер. Она называется абсолютной окружностью.
198
+ Всякая плоскость пересекает абсолютную окружность в двух сточках – круговых точках этой
199
+ плоскости. В однородных координатах (x : y : z) на плоскости ее круговыми точками являются точки
200
+ I = (1 : i : 0) и J = (1 : −i : 0). Все окружности плоскости проходят через ее круго��ые точки и каждая
201
+ коника плоскости, проходящая через ее круговые точки, является окружностью (см. [16, § 4·8]).
202
+ Прямая, пересекающая абсолютную окружность, называется изотропной. Каждая такая прямая
203
+ является, естественно, мнимой.
204
+ Предложение 2.3 ( [22, Гл. 12, § 2]). Касательные к невырожденной конике, проведенные из любого
205
+ ее фокуса, являются изотропными.
206
+ Таким образом, каждая прямая, проходящая через фокус коники и круговую точку ее плоскости,
207
+ является изотропной. Для окружности это означает, что касательные из ее центра проходят через
208
+ круговые точки.
209
+ Образующей квадрики называется прямая, которая целиком принадлежит поверхности этой квад-
210
+ рики. В комплексном проективном пространстве все невырожденные квадрики эквивалентны.
211
+ Предложение 2.4 ( [9, § 2]).
212
+ (i) Через каждую точку невырожденной квадрики проходят ровно две образующие, действительны
213
+ или мнимые. Касательная плоскость пересекает квадрику по двум образующим, проходящим
214
+ через точку касания.
215
+ (ii) Все образующие квадрики распадаются на два семейства таким образом, что любые две обра-
216
+ зующие из одного семейства не пересекаются, а любые две образующие из разных семейств
217
+ пересекаются. Через любую точку образующей одного семейства проходит единственная об-
218
+ разующая другого семейства.
219
+ (iii) Любая плоскость, проходящая через образующую квадрики касается этой квадрики в некото-
220
+ рой точке этой образующей.
221
+ Пусть даны две сферы γ и η. Рассмотрим множество M(γ, η) сфер, которые касаются обеих сфер
222
+ γ и η. Заметим что множество M(γ, η) распадается на два класса эквивалентности по типу касаний.
223
+ Если сфера α касается γ и η одинаковым образом (обеих внутренним, или обеих внешним), то α
224
+ принадлежит одному классу. Если же α касается γ и η различным образом (одной сферы внутренним,
225
+ а другой внешним, или наоборот), то α принадлежит другому классу. Прямые, проходящие через
226
+ точки касания γ и η со сферами одного класса, проходят через общую точку. Для сфер одного класса
227
+ эта точка – один из двух центров инверсии, переводящей γ и η друг в друга, а для сфер другого
228
+ класса – второй такой центр (эти точки – центры подобия сфер γ и η).
229
+ Замечание 2.5. Все это имеет место быть и в случае, если, скажем, сфера η вырождается в
230
+ плоскость π (сферу бесконечно большого радиуса). Тогда рассмотренные выше инверсные центры γ
231
+ и π – это точки сферы γ, касательные плоскости в которых параллельны π.
232
+ Следующая теорема является главным результатом этого параграфа. Она описывает семейство
233
+ коник σ, которые вместе с данной окружностью Σ образуют 3-пару Понселе (Σ, σ), т.е. для них суще-
234
+ ствует треугольник, вписанный в Σ и описанный около σ. Из этой теоремы практически мгновенно
235
+ следует теорема Грейса, что мы сразу покажем после ее формулировки.
236
+ Теорема 2.6 (О 3-парах Понселе). Пусть даны плоскость π и окружность Σ на ней. Фиксируем
237
+ сферу γ, содержащую окружность Σ, и р��ссмотрим множество M(γ, π) сфер, касающихся сферы
238
+ γ и плоскости π. Тогда если сферы α и β пробегают разные классы множества M(γ, π), то описан-
239
+ ный около них конус K высекает на плоскости π семейство коник σ, образующих 3-пару Понселе с
240
+ окружностью Σ.
241
+ 6
242
+
243
+ Доказательство Теоремы Грейса. Пусть α и β – две касательные сферы тетраэдра ABCD, гомо-
244
+ тетичные относительно вершины D. Рассмотрим сферу γ, касающуюся сфер α и β и проходящую
245
+ через вершины A и B. Таких сфер, вообще говоря, целых четыре. Но две из них в данном случае
246
+ вырождены в плоскости ⟨DAB⟩ и ⟨ABC⟩, которые принадлежат разным классам множества M(α, β).
247
+ Тогда оставшиеся две сферы тоже принадлежат разным классам и в качестве γ выберем ту, которая
248
+ принадлежит другому, нежели плоскость ⟨ABC⟩, классу. Пусть она пересекает плоскость ⟨ABC⟩ по
249
+ окружности Σ. Описанный около α и β конус с вершиной D пересекает плоскость ⟨ABC⟩ по конике
250
+ σ, касающейся сторон треугольника ABC. По Теореме о 3-парах Понселе вершина C также должна
251
+ лежать на окружности Σ.
252
+
253
+ Доказательство Теоремы 2.6 о 3-парах Понселе.
254
+ Пусть Fα и Fβ – тоски касания сфер α и β с плоскостью π, которые по теореме Данделена (1822, [3])
255
+ являются фокусами коники σ. Далее будем считать, что точки Fα и Fβ не совпадают друг с другом
256
+ и с центром окружности Σ. Эти частные случаи сводятся к общему малым шевелением сфер α и β и
257
+ утверждение теоремы для них получается предельным переходом. Если I – одна из круговых точек
258
+ плоскости π, то I ∈ Σ. Обозначим через Pα и Pβ точки вторичного пересечения прямых IFα и IFβ с
259
+ коникой Σ. Тогда треугольник IPαPβ вписан в окружность Σ, прямые IPα и IPβ касаются коники σ,
260
+ и нам достаточно доказать, в силу теоремы Понселе, что прямая PαPβ тоже касается коники σ.
261
+ Рис. 3: 3-пары Понселе (Σ, σ). Мнимые касательные представлены дугообразными розовыми отрезками.
262
+ Пусть A и B – точки касания сферы γ со сферами α и β. Заметим, что прямая IFα является
263
+ образующей сферы α. Обозначим через lA одну из двух образующих сферы α в точке A, которая
264
+ пересекает образующую IFα (т.е. lA и IFα принадлежат разным семействам образующих сферы γ).
265
+ Поскольку lA является также образующей и сферы γ, точка пересечения lA ∩ IFα – это одна из двух
266
+ точек пересечения прямой IFα со сферой γ, т.е. это либо точка I, либо точка Pα.
267
+ Заметим, что первый случай не возможен в силу нашей договоренности считать, что точка Fα
268
+ отлична от центра окружности Σ. В самом деле, I лежала бы тогда в пересечении касательных плос-
269
+ костей сферы α в точках A и Fα, т.е. полярно-сопряженная к AFα относительно α прямая содержала
270
+ бы круговую точку I. А так как она вещественная и потому не может быть изотропной, она являлась
271
+ 7
272
+
273
+
274
+ T
275
+ A
276
+ P
277
+ a
278
+ P
279
+ Fp
280
+ D
281
+ Fa
282
+ Bбы бесконечно-удаленной, т.е. касательные плоскости сферы α в точках A и Fα были бы параллельны,
283
+ а точка Fα совпадала бы с центром окружности Σ.
284
+ Таким образом, прямая APα является общей образующей lA сфер α и γ в точке A, и а��алогично,
285
+ прямая BPβ совпадает с lB – одной из двух общих образующих сфер β и γ в точке B. Покажем, что
286
+ lA и lB компланарны.
287
+ Для этого рассмотрим гомотетию с центром A, переводящую α в γ. Пусть gA – образующая
288
+ сферы γ, в которую переходит образующая IFα сферы α. Заметим, что
289
+ 1) I ∈ gA, поскольку gA ∥ IFα,
290
+ 2) прямая gA инцидентна с прямой lA, т. к. прямая lA инвариантна при рассмотренной гомоте-
291
+ тии и инцидентна с прямой IFα. Т. е. gA и lA – две образующие сферы γ, принадлежащие разным
292
+ семействам.
293
+ Аналогично, если gB – образующая сферы γ, в которую переходит образующая IFβ сферы β при
294
+ гомотетии с центром B, переводящей β в γ, то
295
+ 3) I ∈ gB,
296
+ 4) gB и lB – тоже две образующие сферы γ, принадлежащие разным семействам.
297
+ Из замечания 2.5 следует, что прямые gA и gB проходят через различные инверсные центры
298
+ сферы γ и плоскости π, а потому различны. Тогда из 1) и 3) следует, что образующие gA и gB сферы
299
+ α имеют общую точку и, значит, принадлежат разным семействам, откуда в силу 2) и 4) следует, что
300
+ образующие lA и lB тоже из разных семейств, а потому компланарны.
301
+ Теперь рассмотрим плоскость ⟨lA; lB⟩, которая в силу утверждения [iii] Предложения 2.4 касается
302
+ обеих сфер α и β. Заметим, что вершина конуса K содержит прямую AB. Действительно, поскольку
303
+ конус K пересекает π по невырожденной конике, его вершина не лежит на π. Так как α и β из
304
+ разных классов множества M(γ, π), то γ и π из разных классов множества M(α, β). Значит, прямая
305
+ AB проходит через инверсный центр сфер α и β, который не лежит на плоскости π.
306
+ Т.о., ⟨lA; lB⟩ – касательная плоскость конуса K, а потому пересекает плоскость π по прямой,
307
+ касающейся коники σ. Осталось заметить, что ⟨lA; lB⟩ пересекает π по прямой PαPβ, и таким образом,
308
+ треугольник IPαPβ является вписано-описанным.
309
+
310
+ 3 Формулы Эйлера-Чаппла и up-in-ex-touch-аналог теоремы Фейер-
311
+ баха
312
+ Теорема 3.1 (Euler, Chapple). Пусть R, r и ra – радиусы описанной, вписанной и вневписанной
313
+ окружностей произвольного треугольника, d и da – расстояния от центра описанной окружности
314
+ до центров вписанной и вневписанной. Тогда выполняются следующие соотношения
315
+ d2 = R2 − 2Rr
316
+ (1)
317
+ d2
318
+ a = R2 + 2Rra
319
+ (2)
320
+ Мы приведем два, наверное, самых коротких доказательства этой теоремы. Для этого рассмотрим
321
+ сферу ∆, построенную диаметрально на описанной окружности, наовем ее описанной сферой тре-
322
+ угольника, сферу δ радиуса r, касающуюся плоскости треугольника в центре его вписанной окруж-
323
+ ности, наовем ее вписано-поднятой, и сферу δa радиуса ra, касающуюся плоскости треугольника в
324
+ центре соответствующей вневписанной окружности, наовем ее вневписано-поднятой.
325
+ Заметим, что соотношения (1), (2) можно переписать в виде равенств
326
+ d2 + r2 = (R − r)2,
327
+ d2 + r2
328
+ a = (R + ra)2,
329
+ которые равносильны касанию сфер ∆ и δ, ∆ и δa.
330
+ 8
331
+
332
+ Рис. 4: Сферы ∆ и δ касаются друг друга
333
+ Доказательство 1. Касания ∆ и δ, ∆ и δa сразу следует
334
+ из Теоремы Грейса. Действительно, рассмотрим тетраэдр с
335
+ основанием ABC и вершиной D на бесконечно��ти в перпен-
336
+ дикулярном к плоскости (ABC) направлении. Тогда сфера
337
+ δ является его вписанной сферой, симметричная ей относи-
338
+ тельно плоскости (ABC) – его вневписанной сферой, а сле-
339
+ довательно, сфера ∆ – его сферой Грейса. Для пары ∆ и δa
340
+ рассуждение аналогично.
341
+
342
+ Это доказательство примечательно своей лаконичностью
343
+ и красотой, но использование сложной Теоремы Грейса мо-
344
+ жет выглядеть как «стрельба из пушки по воробьям». Поэто-
345
+ му приводим другое
346
+ Доказательство 2. Сделаем инверсию относительно сфе-
347
+ ры, построенной диаметрально на вписанной окружности.
348
+ Заметим, что сфера ∆ переходит в сферу ∆′, построенную
349
+ диаметрально на окружности, проходящей через середины сторон треугольника Жергона (верши-
350
+ нами которого являются точки касания вписанной окружности △ABC со сторонами). А сфера δ
351
+ переходит в плоскость δ′, удаленную от плоскости (ABC) параллельно на расстояние r
352
+ 2 . Поскольку,
353
+ радиус сферы ∆′, очевидно, тоже равен r
354
+ 2, сферы ∆′ и δ′, а следовательно, и сферы ∆ и δ касаются
355
+ друг друга.
356
+
357
+ Заметим, что доказанное свойство касания сферы ∆ с четырьмя сферами δ, δa, δb, δc является
358
+ своего рода тоже неким аналогом теоремы Фейербаха в пространстве.
359
+ Теорема 3.2 (Up-in-ex-touch). Описанная сфера треугольника касается его вписано-поднятой и че-
360
+ тырех вневписано-поднятых сфер.
361
+ Рис. 5: Up-in-ex-touch-аналог теоремы Фейербаха.
362
+ 9
363
+
364
+ Заметим также, что сфера ∆ касается не только сфер δ, δa, δb, δc, но и еще четырех симметричных
365
+ им относительно плоскости треугольника, т.е. целых восьми сфер.
366
+ 4 Теорема Лагерра и ее применение к тетраэдру
367
+ Теорема 4.1 (Laguerre [10], 1879). Окружность Σ радиуса R с центром в точке O и коника σ с
368
+ фокусами Fα, Fβ и малой полуосью b образуют 3-пару Понселе тогда и только тогда, когда выпол-
369
+ няется соотношение
370
+ (R2 − d2
371
+ α)(R2 − d2
372
+ β) = 4R2b2,
373
+ (3)
374
+ где dα = |OFα|, dβ = |OFβ|.
375
+ Замечание 4.2. Малая полуось b может быть как действительной (у эллипсов), так и мнимой (у
376
+ гипербол). В первом случае из формулы Лагерра видно, что фокусы эллипса должны лежать либо
377
+ оба внутри окружности, либо оба вне. Во втором случае, у гиперболы, один фокус должен лежать
378
+ внутри окружности, другой – снаружи.
379
+ Замечание 4.3. Если коника σ является параболой, то условие существования вписано-описанных
380
+ треугольников для пары (Σ, σ) становится совсем простым: d = R, где d = |OF|, т.е. фокус F
381
+ параболы должен лежать на окружности. Это следует из известной теоремы Ламбера.
382
+ Доказательство Теоремы Лагерра (⇒) Пусть γ – произвольная сфера, содержащая окружность Σ,
383
+ а cфера α касается в точке Fα плоскости π, содержащей окружность Σ, а также касается сферы γ.
384
+ Рассмотрим произвольный вписано-описанный треугольник ABC и проведем через его стороны ка-
385
+ сательные плоскости к сфере α. Они пересекаются в некоторой точке D, образуя тетраэдр ABCD,
386
+ у которого сфера α является одной из касательных сфер, а γ – сферой Грейса, которая касает-
387
+ ся также другой касатеьной сферы β тетраэдра ABCD, гомотетичной α относительно вершины D.
388
+ Как известно, сферы α и β касаются плоскости π в точках, изогонально сопряженных относительно
389
+ △ABC. Кроме того, поскольку Fα и Fβ – фокусы вписанной в △ABC коники σ, они также изого-
390
+ нально сопряжены. Отсюда заключаем, что сфера β касается плоскости π в точке Fβ.
391
+ Нам понадобится одна очень простая лемма
392
+ Лемма 4.4 (Thebault [17], 1922). Для малой полуоси b коники, высекаемой описанным около сфер α
393
+ и β конусом на их общей касательной плоскости, выполняется соотношение
394
+ |b2| = rαrβ
395
+ (4)
396
+ Пусть Sα и Sβ – две диаметрально противоположные точки на γ в перпендикулярном к плоскости
397
+ π направлении, которые являются инверсными центрами сферы γ и плоскости π (см. замечание 2.5).
398
+ Учитывая, что сферы α и β принадлежат разным классам множества M(γ, π) (см. доказательство
399
+ теоремы Грейса), легко выразить радиусы сфер α и β:
400
+ rα =
401
+ ����
402
+ Σ(Fα)
403
+ 2π(Sα)
404
+ ���� ,
405
+ rβ =
406
+ ����
407
+ Σ(Fβ)
408
+ 2π(Sβ)
409
+ ���� ,
410
+ (5)
411
+ где Σ(Fα) = d2
412
+ α − R2 и Σ(Fβ) = d2
413
+ β − R2 – степени точек Fα и Fβ относительно окружности Σ,
414
+ а π(Sα), π(Sβ) – расстояния от точек Sα и Sβ до плоскости π.
415
+ Перемножим равенства (5) и учтем, что π(Sα)π(Sβ) = R2. Получим, что в равенстве (3) левая и
416
+ правая части равны по модулю. Правая часть отрицательна только в случае, если коника σ является
417
+ гиперболой. Такое происходит только тогда, когда сферы α и β касаются описанного около них
418
+ конуса с вершиной D по разные стороны от D, а плоскости π – по одну сторону. Тогда сферы γ они
419
+ должны касаться по разные стороны, а следовательно, точки Fα и Fβ их касания с π относительно
420
+ 10
421
+
422
+ окружности Σ лежат тоже по разные стороны и левая часть (3) в этом случае также отрицательна.
423
+ Таким образом, модули можно снять и равенство (3) считать доказанным.
424
+ (⇐) Пусть выполняется (3). Если коники (Σ, σ) не образуют 3-пару Понселе, то можно изменить
425
+ малую полуось b коники σ так, чтобы они образовали 3-пару Понселе. Тогда по уже доказанному
426
+ тоже должно выполняться равенство (3), следовательно величина b не изменилась, т.е. (Σ, σ) как раз
427
+ и образуют 3-пару Понселе
428
+
429
+ Теорема Лаггера, примененная к тетраэдру, позволяет получить следующее интересное метриче-
430
+ ское соотношение для касательных сфер тетраэдра.
431
+ Теорема 4.5. Пусть ∆D – сфера, описанная около грани ABC тетраэдра ABCD, α и β – две
432
+ касательные сферы, гомотетичные относительно D. Тогда произведение косинусов углов, которые
433
+ сфера ∆D образует с α и β (среди них один угол мнимый), равно 1, если α и β касаются ⟨ABC⟩ с
434
+ одной стороны, или −1, если с разных.
435
+ cos(�
436
+ ∆D, α) cos(�
437
+ ∆D, β) = sign k,
438
+ (6)
439
+ где k – коэффициент упомянутой гомотетии с центром D.
440
+ Доказательство Пусть OD и R – центр и радиус сферы ∆D; rα, rβ – радиусы сфер α и β; Dα, Dβ –
441
+ расстояния между центрами ∆D и α, ∆D и α; dα, dβ – расстояния от OD до точек Fα и Fβ касания
442
+ плоскости ⟨ABC⟩ со сферами α и β. Пусть Σ = ⊙(ABC), а конус K с вершиной D, описанный около
443
+ α и β, пересекает плоскость ⟨ABC⟩ по конике σ.
444
+ Воспол��зуемся леммой 4.4 и заметим, что в нашей конструкции с тетраэдром равенство (4) можно
445
+ уточнить
446
+ b2 = rαrβ sign k,
447
+ (7)
448
+ поскольку b2 может быть отрицательным, только если коника σ является гиперболой, что возможно
449
+ лишь в том случае, если вершина конуса K является центром отрицательной гомотетии сфер α и β,
450
+ т.е. они вписаны в K по разные стороны от его вершины.
451
+ По теореме Лагерра для пары (Σ, σ) имеем
452
+ (R2 − d2
453
+ α)(R2 − d2
454
+ β) = 4R2b2,
455
+ (8)
456
+ По теореме Пифагора
457
+ d2
458
+ α = D2
459
+ α − r2
460
+ α,
461
+ d2
462
+ β = D2
463
+ β − r2
464
+ β
465
+ Подставляя эти равенства и (7) в соотношение (8), получаем требуемое соотношение
466
+ R2 + r2
467
+ α − D2
468
+ α
469
+ 2R rα
470
+ ·
471
+ R2 + r2
472
+ β − D2
473
+ β
474
+ 2R rβ
475
+ = sign k
476
+
477
+ 5 Трехмерный аналог формулы Эйлера-Чаппла
478
+ В связи с теоремой Эйлера-Чаппла возникает естественный вопрос о возможности ее трехмерного
479
+ обобщения на случай тетраэдра. Этот вопрос был поставлен впервые Ж. Д. Жергонном в 1816 году
480
+ в издаваемом им журнале1 в виде краткой сноски, относящейся к тетраэдру с радиусами описанной
481
+ сферы R, вписанной – r и расстоянием d между их центрами:
482
+ 1Annales de math´ematiques pures et appliqu´ees, 6 (1815-1816), p. 228.
483
+ 11
484
+
485
+ «Il
486
+ serait
487
+ sur-tout
488
+ int´eressant
489
+ de
490
+ savoir
491
+ si
492
+ d
493
+ peut
494
+ ˆetre
495
+ exprim´e
496
+ uniquement
497
+ en fonction de R et r.
498
+ J. D. G.»
499
+ Спустя восемь лет в том же журнале было опубликовано положительное решение этой задачи в
500
+ работе Дюрранда [4], где он доказал следующее соотношение:
501
+ d2 = (R + r)(R − 3r).
502
+ (9)
503
+ Этот результат получил широкое признание и в течение многих лет на него ссылались в литерату-
504
+ ре, например, в таких почтенных изданиях как Математическая энциклопедия Клейна «Encyklop¨adie
505
+ der mathematischen Wissenschaften» [18] (первая в мире математическая энциклопедия) и «Enciclopedia
506
+ delle matematiche elementari» [1] (крупнейшая энциклопедия по математике, изданная в Италии). Од-
507
+ нако, формула Дюрранда (9) оказалась неверной, а ответ на вопрос Жергонна – отрицательным: не
508
+ существует общей для всех тетраэдров функциональной зависимости между R, r и d. Доказатель-
509
+ ство Дюрранда было практически безупречным, но незаметная ошибка заключалась в его убежден-
510
+ ности, что описанная и вписанная сфера непременно должны иметь некоторую зависимость. Вопрос
511
+ Жергонна можно было бы сформулировать так: каковы условия существования вписано-описанного
512
+ тетраэдра для двух данных сфер?
513
+ Оказывается никаких необходимых условий для этого не требуется.
514
+ Теорема 5.1. Для любых двух невырожденных квадрик общего положения существует бесконечное
515
+ семейство вписано-описанных тетраэдров. Любая касательная плоскость ко вписанной квадрике
516
+ может содержать грань такого тетраэдра, а его вершиной может быть произвольная точка
517
+ описанной квадрики.
518
+ В работе Фонтене [6] 1899 года эта теорема считается уже известной (см. также [8]).
519
+ Итак, в отличие от плоского случая в пространстве для любых двух произвольных сфер всегда
520
+ существует вписано-описанный в них тетраэдр, причем он может динамически вращаться около этих
521
+ сфер, все время оставаясь вписано-описанным. При этом, любая точка описанной сферы может быть
522
+ вершиной такого тетраэдра.
523
+ Но оказывается, что не для любых двух вещественных сфер такой тетраэдр может быть веще-
524
+ ственным. Критерием существования вещественного вписано-описанного тетраэдра является следу-
525
+ ющее условие Грейса, исправляющее соотношение Дюрранда (9):
526
+ Теорема 5.2 (Grace [8], 1917). Для данных двух сфер S и T необходимым и достаточным условием
527
+ существования вписано-описанного вещественного тетраэдра, у которого вершины лежат на S, а
528
+ плоскости граней касаются T, является следующее условие в зависимости от взаимного располо-
529
+ жения S и T:
530
+ (a) T вложена в S и
531
+ d2 ⩽ (R + r)(R − 3r);
532
+ (b) T и S расположены одна вне другой;
533
+ (c) T и S пересекаются по действительной окружности и
534
+ d2 ⩽ (R − r)(R + 3r).
535
+ 6 Вращение Понселе вписано-описанного тетраэдра
536
+ Теорема 5.1 позволяет рассмотреть динамику «вращения» вписано-описанного тетраэдра. Эта дина-
537
+ мика не столь однозначна, как в плоской теореме Понселе. Это показывает следующая теорема.
538
+ 12
539
+
540
+ Теорема 6.1 ( [8]). Пусть вершины тетраэдра лежат на квадрике S, а грани касаются квадрики
541
+ T. Тогда при фиксации плоскости π одной из его граней противоположная вершина P может при
542
+ этом варьироваться, пробегая плоское сечение π′ квадрики S.
543
+ Таким образом, тетраэдр вращается с намного большей свободой, чем вписано-описанный мно-
544
+ гоугольник. Когда выбрана плоскость π, существует целая коника для выбора произвольной точки
545
+ на ней в качестве вершины P, а для каждой такой пары P и π существует однопараметрическое
546
+ семейство вписано-описанных треугольников, каждый из которых может быть противоположной к
547
+ вершине P гранью вписано-описанного тетраэдра. Таким образом, в общем случае существует 4-
548
+ параметрическое семейство тетраэдров.
549
+ У плоской теоремы Понселе есть такой «эффект замыкания»: если начиная с некоторой начальной
550
+ точки A1 строится последовательно вписано-описанная ломаная A1A2 . . . An и оказывается, что звено
551
+ A1An тоже касается вписанной коники, замыкая ее, то такое замыкание будет происходить всегда.
552
+ Если же, по аналогии, строить вписано-описанный тетраэдр для двух данных квадрик S и T,
553
+ последовательно выбирая касательные плоскости его граней, то возникает следующий вопрос. Когда
554
+ мы провели уже три плоскости, которые образовали вписано-описанный трехгранный угол, всегда
555
+ ли можно его замкнуть четвертой плоскостью, чтобы образовался вписано-описанный тетраэдр?
556
+ Ответ дает следующая теорема Фонтене.
557
+ Теорема 6.2 (Fonten´e [6]). Последовательный процесс построения вписано-описанного тетраэдра
558
+ всегда замыкается тогда и только тогда, когда квадрики S и T имеют четыре общих образующих.
559
+ В этом случае, плоскость π и вершина P могут быть выбраны совсем произвольно и, таким
560
+ образом, существует 5-параметрическое семейство вписано-описанных тетраэдров.
561
+ Теорема 6.3. Пусть фиксированы описанная сфера S тетраэдра и одна из восьми его касательных
562
+ сфер T, а тетраэдр динамически «вращается» около них, оставаясь вписано-описанным. Тогда все
563
+ четыре касающиеся T сферы Грейса все время касаются некоторой фиксированной сферы, концен-
564
+ тричной с описанной сферой S.
565
+ Доказательство. Пусть сфера Грейса G проходит через вершины грани a и пусть вписанная
566
+ сфера S касается сферы G в точке P, а плоскости ⟨a⟩ – в точке Q. Обозначим центры сфер S
567
+ и T через OS и OT . Прямая PQ при вращении тетраэдра проходит через фиксированную точку –
568
+ предельную точку K пучка сфер ⟨S, T⟩. Кроме того, на прямой PQ лежит инверсный центр E сферы
569
+ G и плоскости ⟨a⟩, касательная в котором к G параллельна плоскости ⟨a⟩. Следовательно, OSE∥OT Q
570
+ и △OSEK ∼ △OT QK, откуда получаем такое выражение
571
+ OSE = OSK
572
+ OT K · rT ,
573
+ правая часть которого является величиной постоянной при вращении тетраэдра. Тогда, сфера с ради-
574
+ усом, равным этой величине, и центром в точке OS касается сферы Грейса в любой момент вращения.
575
+
576
+ 7 Доказательство теоремы Фейербаха через выход в пространство
577
+ Пусть δ – вписанная окружность треугольника ABC с центром в точке I и радиусом r, H – ор-
578
+ тоцентр треугольника ABC, точки A1, B1, C1, I1 – середины отрезков AH, BH, CH, IH (I1 – инцентр
579
+ △A1B1C1). Описанная около △A1B1C1 окружность ϑ – это окружность девяти точек △ABC. Пусть
580
+ также ⊙a, ⊙b, ⊙c – окружности с диаметрами BC, CA, AB, ∆ и Θ – сферы, построенные диаметраль-
581
+ но на окружностях δ и θ.
582
+ 13
583
+
584
+ Доказательство Теоремы Фейербаха.
585
+ Заметим, что касание окружностей δ и θ равносильно касанию сфер ∆ и Θ. По Теореме 3.2 для
586
+ △A1B1C1 его описанная сфера Θ касается его вписано-поднятой сферы Υ. Поэтому касание Θ и ∆
587
+ равносильно тому, что сфера Θ инвариантна при инверсии, переводящей сферы ∆ и Υ друг в друга.
588
+ Заметим, что центр S этой инверсии расположен над точкой H на высоте r (т.е. SH⊥(ABC), |SH| =
589
+ r), а коэффициент инверсии (квадрат радиуса сферы инверсии) равен |IH| · |I1H| = |IH|2
590
+ 2
591
+ . Таким
592
+ образом, достаточно доказать равенство Θ(S) = |IH|2
593
+ 2
594
+ , которое в силу того, что Θ(S) = θ(H) + r2,
595
+ равносильно соотношению
596
+ |IH|2 − 2r2 = 2θ(H)
597
+ (10)
598
+ Заметим, что левая часть равенства (10) равна степени точки H относительно окружности ξ
599
+ радиуса r
600
+
601
+ 2 с центром I (ξ высекает на сторонах △ABC равные отрезки длины 2r). Осталось вос-
602
+ пользоваться следующим замечательным свойством окружности ξ.
603
+ Теорема 7.1. Окружности ξ, ⊙a, ⊙b, ⊙c имеют общий радикальный центр в точке H.
604
+ Тогда заметим, что степень точки H относительно окружности θ в два раза меньше ее степени
605
+ относительно окружностей ⊙a, ⊙b, ⊙c и равенство (10) равносильно утверждению ξ(H) = ⊙a(H) =
606
+ ⊙b(H) = ⊙c(H) Теоремы 7.1.
607
+
608
+ Для доказательства Теоремы 7.1 рассмотрим окружность χa, диаметром которой является жер-
609
+ гониана вершины A (т.е. отрезок, соединяющий A с точкой касания вписанной окружности δ со
610
+ стороной BC) и воспользуемся следующим свойством окружности χa, возможно, имеющим и само-
611
+ стоятельный интерес.
612
+ Лемма 7.2 (χa-лемма). Окружности χa, ξ, ⊙a принадлежат одному пучку.
613
+ Доказательство Теоремы 7.1. Достаточно проверить, что H ∈ rad(ξ, ⊙a).
614
+ Заметим, что rad(χa, ⊙b) – это высота AH, rad(⊙a, ⊙b) – это высота CH, следовательно,
615
+ H = rad(χa, ⊙a, ⊙b) ∈ rad(χa, ⊙a) = rad(ξ, ⊙a),
616
+ где последнее равенство верно в силу χa-леммы.
617
+
618
+ Доказательство χa-леммы.
619
+ Воспользуемся следующим известным метрическим соотношением для пучков окружностей.
620
+ Лемма 7.3 (О пучке). Если окружности α, β, γ лежат в одном пучке, то для любой точки P ∈ γ
621
+ отношение ее степеней относительно α и β постоянно, причем
622
+ α(P)
623
+ β(P) = dαγ
624
+ dβγ
625
+ ,
626
+ (11)
627
+ где dαγ и dβγ – расстояния между центрами α, γ и β, γ.
628
+ Верно и обратное утверждение.
629
+ Лемма 7.4 (Обратная лемма о пучке). Пусть центры окружностей α, β, γ коллинеарны, и на
630
+ окружности γ имеется такая точка P, для которой выполняется соотношение (11). Тогда окруж-
631
+ ности α, β, γ принадлежат одному пучку.
632
+ 14
633
+
634
+ Рис. 6: Окружности ξ, χa, ⊙a принадлежат одному пучку
635
+ В качестве окружностей α, β, γ из Обратной леммы о пучке возьмем окружности ⊙a, ξ, χa, центры
636
+ M, I, L которых лежат на средней линии ML треугольника APQ. При этом,
637
+ LM
638
+ LI = AQ
639
+ AN = ra
640
+ r .
641
+ Для точки P ∈ χa имеем
642
+ α(P) = −(p − b)(p − c),
643
+ β(P) = −r2.
644
+ Тогда (11) запишется в виде соотношения
645
+ (p − b)(p − c)
646
+ r2
647
+ = ra
648
+ r ,
649
+ которое равносильно легко проверяемому равенству
650
+ (p − b)(p − c) = r ra.
651
+
652
+ Доказательство χa-леммы выходом в пространство. Заметим, что окружности χa, δ и окруж-
653
+ ность ⊙P Q с диаметром на отрезке PQ лежат в одном пучке. Поднимем их центры перпендикулярно
654
+ плоскости ⟨ABC⟩, сохраняя коллинеарность: L → L, I → I, M → M, и пусть LL = r
655
+ 2, II = r. Тогда
656
+ легко найти, что MM = r + ra
657
+ 2
658
+ . При этом сферы S(L), S(J), S(M) с центрами L, I, M, содержащие
659
+ окружности χa, δ, ⊙P Q соответственно, также принадлежат одному пучку. Рассмотрим плоскость
660
+ π∥⟨ABC⟩, проходящую через I, и ортогональную проекцию △ABC → △A′B′C′ на плоскость π. Оста-
661
+ лось заметить, что сечениями сфер S(L), S(J), S(M) плоскостью π являются окружности ξ′, χ′
662
+ a, ⊙′
663
+ a.
664
+ Действительно, для сечений S(L), S(I) это очевидно, а для S(M) это легко проверить, поскольку
665
+ квадрат радиуса окружности ее сечения плоскостью π равен
666
+ |MP|2 +
667
+ �ra + r
668
+ 2
669
+ �2
670
+
671
+ �ra − r
672
+ 2
673
+ �2
674
+ = |MP|2 +rar = |MP|2 +(p−b)(p−c) = |MP|2 +|BP|·|CP| =
675
+ � a
676
+ 2
677
+ �2
678
+ .
679
+ Так как при пересечении сфер пучка плоскостью получается пучок окружностей, то ξ′, χ′
680
+ a, ⊙′
681
+ a
682
+ принадлежат одному пучку.
683
+
684
+ 15
685
+
686
+ 3
687
+ N
688
+ L
689
+ H
690
+ B
691
+ M
692
+ P
693
+ CСписок литературы
694
+ [1]
695
+ Biggiogero G.,
696
+ La geometria del tetraedro. In: Enciclopedia delle Matematiche Elementari. A cura di
697
+ L. Berzotari, G. Vivanti e D. Gigli. Volume II, parte I. Milano 1937. Ristampa anastatica, Maggio 1943, p. 237.
698
+ [2] Coolidge J. L., A treatise on the circle and the sphere, Oxford: Clarendon Press, 1916.
699
+ [3] Dandelin G., M´emoire sur quelques propri´et´es remarquables de la focale parabolique, Nouveaux m´emoires de
700
+ l’Acad´emie rouale des sciences et belles-lettres de Bruxelles, T. 2 (1822) 171-200.
701
+ [4] Durrande J. B., D´emonstrations ´el´ementaires des principales propriet´es des hexagones inscrits et circonscrits
702
+ au cercle, suivies de la solution de divers probl`emes de la g´eometrie. Dissertation de la g´eometrie pure. Annales
703
+ de math´ematiques pures et appliqu´ees, 14 (1823- 1824) 29-63.
704
+ [5] Feuerbach K. W., Eigenschaften einiger merkw¨urdigen Punkte des geradlinigen Dreiecks, N¨urnberg, 1822.
705
+ [6]
706
+ Fonten´e G.,
707
+ Sur des poly`edres mobiles comparables aux polygones de Poncelet,
708
+ Nouvelles annales de
709
+ math´ematiques 3e s´erie, tome 18 (1899) 67-74.
710
+ [7] Grace J. H., Circles, spheres, and linear complexes, Trans. Cambridge Philosophical Soc. 14 (1898) 153–190.
711
+ [8] Grace J. H., Tetrahedra in relation to spheres and quadrics, Proc. London Math. Soc. 17 (1918) 259-271.
712
+ [9] Griffiths Ph., Harris J., A Poncelet theorem in space, Comm Math. Helv., 52 (1977) 145-160.
713
+ [10] Laguerre E. N., Sur la relation qui existe entre un cercle circonscrit `а un triangle et les ´el´ements d’une conique
714
+ inscrite dans ce triangle, Nouvelles annales de math´ematiques 2e s´erie, tome 18 (1879) 241-246.
715
+ [11] Lewis T. C., Is there an analogue in solid geometry to Feuerbach’s theorem, Messenger of Mathematics, volume
716
+ 49 (1919) 187-192.
717
+ [12]
718
+ Hiroshi Maehara, Norihide Tokushige,
719
+ Schl¨afli’s double six, Lie’s line-sphere transformation, and Grace’s
720
+ theorem, European Journal of Combinatorics, 30 (2009) 1337–1351.
721
+ [13]
722
+ Hiroshi Maehara, Horst Martini, Tangent Spheres of Tetrahedra and a Theorem of Grace, The American
723
+ Mathematical Monthly, 127:10 (2020) 897-910
724
+ [14] Poncelet J. - V., Trait´e des propri´et´es projectives des figures, Gauthier-Villars, Paris, 1822.
725
+ [15] Protasov V. Yu., Generalized closing theorems, Elem. Math., 66 (2011) 98-117.
726
+ [16] Sommerville, D. M. Y., Analytical geometry of three dimensions, Cambridge University Press, 1943.
727
+ [17] Thebault V., Sur un theoreme classique de Dandelin, Nouvelles annales de mathematiques 5e serie, t. 1 (1922)
728
+ 200-205.
729
+ [18] Zacharias M. Elementargeometrie und elementare nicht-euklidische Geometrie in synthetischer Behandlung. In:
730
+ Encyklop¨adie der Mathematischen Wissenschaften mit Einschluß ihrer Anwendungen. Drifter Band. Geometric.
731
+ Redigiert yon W. Fr. Meyer und H. Mohrmann. B. G. ˙Teubner, Leipzig, 1914-1931, S. 1059.
732
+ [19]
733
+ Акопян А. В.,
734
+ О некоторых классических конструкциях в геометрии Лобачевского,
735
+ Матем. просв.,
736
+ выпуск 13 (2009) 155–170.
737
+ [20] Берже М., Геометрия, М. Мир, 1984.
738
+ [21] Заславский А. А., Сравнительная геометрия треугольника и тетраэдра, Матем. просв., вып. 8 (2004)
739
+ 78–92
740
+ [22] Фиников С. П., Аналитическая геометрия, Москва, 1952.
741
+ 16
742
+
0tAyT4oBgHgl3EQf1PlJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dA0T4oBgHgl3EQfMv9X/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e029f237af3297266b95dfbf08e89b275cb74db1efba6f1448b06efacfba3c93
3
+ size 4784173
1dA0T4oBgHgl3EQfMv9X/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c5e99ee97fadf397dab70a0c2f87bf125968574238a05ec6f08689b346a326
3
+ size 167994
1dAzT4oBgHgl3EQfevzu/content/tmp_files/2301.01443v1.pdf.txt ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A QUANTUM APPROACH FOR STOCHASTIC CONSTRAINED BINARY OPTIMIZATION
2
+ Sarthak Gupta and Vassilis Kekatos
3
+ Bradley Dept. of ECE, Virginia Tech, Blacksburg, VA 24061, USA; {gsarthak,kekatos}@vt.edu
4
+ ABSTRACT
5
+ Analytical and practical evidence indicates the advantage
6
+ of quantum computing solutions over classical alternatives.
7
+ Quantum-based heuristics relying on the variational quantum
8
+ eigensolver (VQE) and the quantum approximate optimiza-
9
+ tion algorithm (QAOA) have been shown numerically to
10
+ generate high-quality solutions to hard combinatorial prob-
11
+ lems, yet incorporating constraints to such problems has
12
+ been elusive. To this end, this work puts forth a quantum
13
+ heuristic to cope with stochastic binary quadratically con-
14
+ strained quadratic programs (QCQP). Identifying the strength
15
+ of quantum circuits to efficiently generate samples from prob-
16
+ ability distributions that are otherwise hard to sample from,
17
+ the variational quantum circuit is trained to generate binary-
18
+ valued vectors to approximately solve the aforesaid stochastic
19
+ program. The method builds upon dual decomposition and
20
+ entails solving a sequence of judiciously modified standard
21
+ VQE tasks. Tests on several synthetic problem instances us-
22
+ ing a quantum simulator corroborate the near-optimality and
23
+ feasibility of the method, and its potential to generate feasible
24
+ solutions for the deterministic QCQP too.
25
+ Index Terms— QAOA, VQE, dual decomposition, quan-
26
+ tum unconstrained binary optimization (QUBO).
27
+ 1. INTRODUCTION
28
+ Quantum computers exhibit an innate ability to handle ex-
29
+ ponentially large computations in a parallel fashion yet with
30
+ a strong probabilistic flavor.
31
+ Quantum algorithms such as
32
+ Shor’s integer factorization, Grover’s search, and the linear
33
+ system solver of Harrow-Hassidim-Lloyd (HHL) can attain
34
+ polynomial or even exponential speedups over the best known
35
+ algorithms on classical computers [1]. Nonetheless, some of
36
+ these quantum algorithms presume a large number of qubits
37
+ on fault-tolerant quantum computers. In the near-term inter-
38
+ mediate scale (NISQ) era, quantum computers are noisy and
39
+ thus oftentimes limited in terms of number of gates and/or
40
+ qubits. With such limitations in mind, variational quantum
41
+ algorithms have been suggested as promising tools to practi-
42
+ cally showcase quantum advantage in the NISQ setup [2].
43
+ This work was supported by a seed funding grant from the Virginia Com-
44
+ monwealth Cybersecurity Initiative (CCI) – Southwest Virginia node.
45
+ Variational quantum computers involve a sequence of pa-
46
+ rameterized gates. Their parameters are updated externally
47
+ by a classical computer in a closed-loop fashion to steer the
48
+ quantum state towards a desirable direction. The variational
49
+ quantum eigensolver (VQE) used to provide high-quality
50
+ solutions to combinatorial problems is a representative ex-
51
+ ample. The Quantum Approximate Optimization Algorithm
52
+ (QAOA) [3] is a special instance of VQE. In QAOA, not
53
+ only the parameters but also the architecture of the quan-
54
+ tum circuit become problem-dependent. The quantum circuit
55
+ trained by QAOA operates as a sampler to efficiently gener-
56
+ ate near-optimal solutions of binary quadratic problems (e.g.,
57
+ MAXCUT); see [4] for a summary of claims on QAOA.
58
+ While most VQE/QAOA schemes target unconstrained
59
+ problems, dealing with constraints is crucial to several appli-
60
+ cations in machine learning, wireless communications, and
61
+ financial (stock trading) optimization.
62
+ Adding constraints
63
+ to QAOA or adiabetic quantum computing [5] (the QAOA
64
+ counterpart for non-gate-based quantum computers) has been
65
+ pursued in two ways.
66
+ One approach has been to convert
67
+ the constrained problem into an unconstrained minimization
68
+ of a Lagrangian-like function [6, 7]. However, the weights
69
+ for constraint penalties can be safely selected only if con-
70
+ straints are expressed as Boolean functions or linear equal-
71
+ ities. An alternative approach modifies the architecture of
72
+ the quantum circuit (via the mixer Hamiltonian of QAOA)
73
+ to confine quantum states on the subspace spanned by con-
74
+ straints [8, 9, 4, 10]. Nonetheless, constructing such ‘driver’
75
+ mixer Hamiltonians is again highly problem-dependent and
76
+ often limited to equality constraints. Reference [11] devel-
77
+ ops a quantum adiabetic approach to tackle binary linearly-
78
+ constrained quadratic programs. It targets the dual problem
79
+ and interfaces the quantum computer with a branch-and-
80
+ bound scheme ran classically. Reference [12] treats mixed-
81
+ binary quadratic-plus-convex problems using the alternating
82
+ direction method of multipliers (ADMM) to split binary
83
+ and continuous variables into separate minimizations, solved
84
+ by QAOA and classical convex optimizers respectively per
85
+ ADMM iteration.
86
+ Relation to prior work.
87
+ Addressing binary QCQPs by
88
+ quantum heuristics has been largely unexplored to the au-
89
+ thors’ knowledge. We put forth a quantum-based heuristic
90
+ to solve a stochastic binary QCQP. Harnessing the power of
91
+ quantum circuits to sample from probability mass functions
92
+ arXiv:2301.01443v1 [quant-ph] 4 Jan 2023
93
+
94
+ (PMF) that are hard to sample classically, we devise a dual
95
+ decomposition technique that solves a sequence of standard
96
+ VQE tasks to systematically adjust Lagrangian multipliers.
97
+ Numerical tests using quantum computer simulators pro-
98
+ vided by IBM evaluate this technique on randomly generated
99
+ stochastic and deterministic binary QCQPs.
100
+ 2. QUANTUM COMPUTING PRELIMINARIES
101
+ A quantum system consisting of n quantum bits (qubits) is de-
102
+ scribed by an exponentially large state vector |x⟩ ∈ CN with
103
+ N = 2n assuming the system is in a pure state. The Dirac no-
104
+ tation |x⟩ named ket emphasizes that vector x is unit-norm or
105
+ �N−1
106
+ k=0 |xk|2 = 1. If ek is the k-th canonical vector of length
107
+ N, we can write |x⟩ = �N−1
108
+ k=0 xk |ek⟩. The vector ek is of-
109
+ tentimes alternatively expressed as |ek⟩ = |k⟩, where k is the
110
+ binary representation of index k. For example, a system with
111
+ n = 2 qubits has a state in C4, which is spanned by canonical
112
+ vectors {ek}3
113
+ k=0 and e0 = [1 0 0 0]⊤ = |00⟩. Vector |x⟩
114
+ provides a statistical characterization for the quantum state:
115
+ If we measure the quantum system output, its qubits will be
116
+ in configuration |k⟩ with probability |xk|2 for all k. Symbol
117
+ ⟨x| termed bra denotes the conjugate transpose of |x⟩, while
118
+ the braket ⟨x|y⟩ denotes the inner product between states.
119
+ The fundamental operations we can perform on a quan-
120
+ tum system is evolution and measurement. The former can
121
+ be described by the application of a unitary U on state |x⟩
122
+ to produce state |y⟩ = U |x⟩. Although U is exponentially
123
+ large, it is usually implemented efficiently using quantum
124
+ gates. Among various types of measurements, we focus on
125
+ projective measurements. A projective measurement is asso-
126
+ ciated with a Hermitian matrix (named observable) and its
127
+ eigenvalue decomposition H = �M
128
+ m=1 λmvmvH
129
+ m. If such
130
+ measurement is performed on |x⟩, outcome m is observed
131
+ with probability pm := | ⟨x|vm⟩ |2. Define a random variable
132
+ taking value λm when outcome m is observed. The expected
133
+ value of this variable is ⟨x|H|x⟩ = �M
134
+ m=1 pmλm. If H is di-
135
+ agonal, the measurement is on the computational basis. This
136
+ is practically important because now vm = em, outcome m
137
+ relates to |m⟩, and each qubit can be measured individually.
138
+ If quantum system i has been prepared in state |xi⟩ for
139
+ i = 1, 2, their joint state would be |x1⟩ ⊗ |x2⟩, where ⊗
140
+ is the Kronecker product. This is oftentimes represented as
141
+ |x1⟩ |x2⟩ or |x1, x2⟩. The Kronecker product rule generalizes
142
+ to the composition of n systems. For example, |1⟩ |1⟩ |0⟩ =
143
+ e1 ⊗ e1 ⊗ e0 = e6 = |110⟩, where the canonical vectors
144
+ shown in the middle are in R2 and those at the end are in R8.
145
+ 3. VARIATIONAL QUANTUM EIGENSOLVER (VQE)
146
+ VQE is a heuristic approach to find near-optimal solutions for
147
+ combinatorial problems of the general form
148
+ min
149
+ b∈{0,1}n f(b).
150
+ (1)
151
+ A particular example of interest is the quadratic unconstrained
152
+ binary optimization (QUBO) problem with
153
+ f(b) = b⊤Ab + b⊤c + d
154
+ (2)
155
+ which is known to be NP-hard. For later developments, it is
156
+ convenient to reformulate QUBO in terms of the spin {±1}
157
+ variables through the transformation
158
+ si = 1 − 2bi = (−1)bi for i = 0, . . . , n − 1.
159
+ (3)
160
+ Collecting the spin variables in vector s = 1 − 2b, the
161
+ quadratic objective can be equivalently expressed as
162
+ f(b) = ¯f(s) = s⊤ ¯As + s⊤¯c + ¯d
163
+ (4)
164
+ where ¯A := 1
165
+ 4A; ¯c := − 1
166
+ 2(A1 + c); and ¯d := 1
167
+ 41⊤A1 +
168
+ 1
169
+ 21⊤c + d. We next explain how VQE samples high-quality
170
+ solutions of (1) by solving an eigenvalue minimization task.
171
+ The VQE method falls under the family of variational
172
+ quantum algorithms. The term variational pertains to the fact
173
+ that the quantum circuit is not fixed, but parameterized by
174
+ relatively few parameters collected in vector θ ∈ RP . These
175
+ parameters are iteratively adjusted by classical computer in
176
+ a closed-loop fashion so that the quantum system eventually
177
+ reaches a desirable state. The process resembles the training
178
+ of a neural network whose weights are updated by an opti-
179
+ mization algorithm. Similarly to neural networks where the
180
+ learner has to select an architecture (e.g., network depth/width
181
+ and type of activations), the parameterized form (also termed
182
+ ansatz) of the variational quantum circuit is specified a pri-
183
+ ori. We will be using a 2-local ansatz where single-qubit RY
184
+ gates are applied to all qubits, followed by a full entanglement
185
+ circuit, all repeated for 3 layers (iterations) [2].
186
+ Given θ and driven by input |0⟩n, the quantum circuit pro-
187
+ duces at its output the quantum state |x(θ)⟩ = U(θ) |0⟩n for
188
+ a unitary N × N matrix U(θ). To simplify notation, we will
189
+ oftentimes write |x⟩ in lieu of |x(θ)⟩. Albeit |x⟩ ∈ CN is
190
+ exponentially long, it can be easily generated by the quan-
191
+ tum circuit though it cannot be read out of the circuit as a
192
+ vector in a computationally efficient manner. Instead, it is rel-
193
+ atively easy to sample from it. Every time we run the quan-
194
+ tum circuit driven by |0⟩n, we will be observing one of the
195
+ binary outputs |k⟩ = |ek⟩ with probability pk := |xk|2 for
196
+ k = 0, . . . , N − 1. The quantum circuit thus serves as an ef-
197
+ ficient sampler from the exponentially large probability mass
198
+ function (PMF) {pk}N−1
199
+ k=0 .
200
+ To exploit this sampling property, we next relate the cost
201
+ f(b) with a so-termed Hamiltonian matrix H so that
202
+ H |ek⟩ = f(|k⟩) |ek⟩
203
+ for all k.
204
+ (5)
205
+ Matrix H is apparently diagonal and carries all N function
206
+ evaluations f(ek) on its diagonal. Moreover, the canonical
207
+ vectors ek constitute the eigenvectors of H, each with cor-
208
+ responding eigenvalue f(|k⟩). Therefore, the minimization
209
+
210
+ in (1) can be reformulated as the problem of finding the eigen-
211
+ vector corresponding to the minimum eigenvalue of H
212
+ min
213
+ |x⟩ ⟨x| H |x⟩ .
214
+ (6)
215
+ As long as |x⟩ is allowed to take any of the values {ek}N−1
216
+ k=0 ,
217
+ the minimizer of (6) corresponds to the minimizer of (1). For
218
+ example, if a quantum system has n = 3 qubits, its state
219
+ would be |x⟩ ∈ C8. Here ek’s are the columns of the identity
220
+ matrix I8. If the minimizer of (6) is |e5⟩ = |b1b2b3⟩ = |101⟩,
221
+ then the minimizer of (1) is b = [1 0 1]⊤; and vice versa.
222
+ Although H is exponentially large, it can be implemented
223
+ using only O(n2) quantum gates since it can be expressed as
224
+ H =
225
+ n−1
226
+
227
+ i=0
228
+ n−1
229
+
230
+ j=0
231
+ ¯AijZiZj +
232
+ n−1
233
+
234
+ i=0
235
+ ¯ciZi + ¯dIN
236
+ (7)
237
+ where the N × N Hermitian matrix Zi is defined as
238
+ Zi = I2 ⊗ · · · ⊗ Z ⊗ · · · ⊗ I2 with Z =
239
+ � 1
240
+ 0
241
+ 0
242
+ −1
243
+
244
+ .
245
+ This is a Kronecker product involving (n − 1) identity matri-
246
+ ces I2 and one Pauli-Z operator Z applied to the i-th qubit.
247
+ Matrix H as defined in (7) is obviously diagonal. To estab-
248
+ lish (5), note first that Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩, or
249
+ more compactly, Z |b⟩ = (−1)b |b⟩. Consequently, when Zi
250
+ is applied to a state |b⟩ = |b1b2 · · · bn⟩, the effect is Zi |b⟩ =
251
+ (−1)bi |b⟩ = si |b⟩ from (3). Similarly, it also holds that
252
+ ZiZj |b⟩ = sisj |b⟩. Property (5) now follows immediately
253
+ by postmultiplying (7) by any |ek⟩ and using f(b) = ¯f(s).
254
+ If |x⟩ in (6) is restricted to set E := {ek}N−1
255
+ k=0 , problem
256
+ (6) is as hard as (1). VQE relaxes (6) to the set of all quantum
257
+ states |x(θ)⟩ that can be parameterized by the chosen ansatz
258
+ and via θ. Problem (6) is then solved over θ rather than |x⟩
259
+ min
260
+ θ
261
+ F(θ) := ⟨x(θ)|H|x(θ)⟩ .
262
+ (8)
263
+ From the eigenvalue property (5), it follows ⟨en| H |ek⟩ =
264
+ f(|k⟩) for all k. How about ⟨x| H |x⟩ for a general state |x⟩?
265
+ Because |x⟩ = �N−1
266
+ k=0 xk |ek⟩, it is easy to show that
267
+ ⟨x|H|x⟩ =
268
+ N−1
269
+
270
+ k=0
271
+ |xk|2f(|k⟩) =
272
+ N−1
273
+
274
+ k=0
275
+ pkf(|k⟩).
276
+ (9)
277
+ In other words, function F(θ) is the average of f under the
278
+ PMF defined by |x⟩. For instance, the random outcome |k⟩ =
279
+ |101⟩ occurring with probability |x5|2 is assigned to the ran-
280
+ dom variable f taking the value f([1 0 1]⊤). Hence, func-
281
+ tion F(θ) is really an expectation (an observable in the quan-
282
+ tum computation parlance) of function f(b) when b is drawn
283
+ from the PMF {|xk(θ)|2}N−1
284
+ k=0 . Ideally, the global minimizer
285
+ θ of (8) defines a PMF via |x(θ)⟩ that samples with non-zero
286
+ probability only the canonical vectors |ek⟩ associated with the
287
+ smallest eigenvalue of H.
288
+ Problem (8) is solved in a hybrid fashion: The quantum
289
+ computer samples from |x(θ)⟩ and estimates F(θ) and pos-
290
+ sibly its gradient ∇θF. A classical computer uses the pre-
291
+ vious information and iteratively updates θ based on a zero-
292
+ or first-order optimization algorithm, such as gradient descent
293
+ or Bayesian optimization. As with training neural networks,
294
+ F(θ) is nonconvex due to the form of the ansatz. Moreover,
295
+ the ensemble statistic F(θ) cannot be computed exactly, but
296
+ estimated as the sample average ˆF(θ) := �R
297
+ r=1 f(br)/R
298
+ over R runs, where br is the quantum output after run r.
299
+ 4. CONSTRAINED VQE
300
+ As discussed earlier, VQE provides a successful heuristic for
301
+ solving QUBO through the variational formulation of (8).
302
+ Can VQE be generalized to deal with a binary QCQP of the
303
+ ensuing form?
304
+ min
305
+ b∈{0,1}n f0(b)
306
+ (10)
307
+ s.to fm(b) ≤ 0,
308
+ m = 1 : M.
309
+ Here fm(b) := b⊤Amb + b⊤cm + dm for m = 0, . . . , M.
310
+ Solving such problems is also known to be NP-hard. Provid-
311
+ ing a quantum heuristic to directly deal with (10) seems to
312
+ be challenging. To this end, we relax expectations and aim
313
+ at designing a quantum state |x⟩ from which we can draw
314
+ binary-valued b that solve the stochastic binary QCQP:
315
+ min
316
+ |x⟩
317
+ Ex[f0(b)]
318
+ (11)
319
+ s.to Ex[fm(b)] ≤ 0,
320
+ m = 1 : M.
321
+ As in the unconstrained setup, rather than minimizing over
322
+ |x⟩, we propose optimizing over a PMF parameterized by θ
323
+ and captured by quantum state |x(θ)⟩. Specifically, we sug-
324
+ gest solving the constrained minimization
325
+ min
326
+ θ
327
+ F0(θ)
328
+ (12)
329
+ s.to Fm(θ) ≤ 0 :
330
+ λm,
331
+ m = 1 : M
332
+ where each observable Fm(θ) := ⟨x(θ)|Hm|x(θ)⟩ depends
333
+ on the Hamiltonian Hm defined similar to H in (7) for all
334
+ m. Heed that problem (12) can be reformulated and solved
335
+ as a linear program (LP) over the PMF of b. Nonetheless,
336
+ that requires evaluating {fm(b)}M
337
+ m=0 for all 2n values of b.
338
+ Moreover, the optimization variable of this LP is the vector
339
+ of PMF values that is exponentially large too. That is also the
340
+ case with standard VQE/QAOA.
341
+ Contrary to (10), problem (12) is over the continuous vari-
342
+ able θ, and thus, we can associate a dual variable λm for each
343
+ constraint and define its Lagrangian function
344
+ L(θ; λ) := F0(θ) +
345
+ M
346
+
347
+ m=1
348
+ λmFm(θ)
349
+ (13)
350
+
351
+ where λ ∈ RM collects all dual variables. Problem (12) could
352
+ be solved via dual decomposition, according to which λ is
353
+ updated iteratively via a subgradient ascent step on L as
354
+ λt+1
355
+ m
356
+ := max
357
+
358
+ λt
359
+ m + µtFm(θt), 0
360
+
361
+ , m = 1 : M
362
+ (14)
363
+ for a positive step size µt = µ0/(t + α) with α > 0, and θt
364
+ is a minimizer of the Lagrangian L(θ; λt) evaluated at λt:
365
+ θt ∈ arg min
366
+ θ ⟨x(θ)|H0 +
367
+ M
368
+
369
+ m=1
370
+ λt
371
+ mHm|x(θ)⟩ .
372
+ (15)
373
+ Problem (15) takes the QUBO form of (8), and is therefore
374
+ amenable to standard VQE or even the celebrated QAOA ap-
375
+ proach. Under the latter, the ansatz takes a particular form that
376
+ depends on the problem Hamiltonian H0 + �M
377
+ m=1 λt
378
+ mHm.
379
+ Here, we used a problem-independent ansatz under the gen-
380
+ eral VQE framework and leave QAOA for future work.
381
+ 5. NUMERICAL TESTS
382
+ The novel solver for (12) was implemented in Python us-
383
+ ing the Qiskit library [13].
384
+ The VQE class in Qiskit was
385
+ used to solve the minimization for the primal update (15).
386
+ In addition to providing the ansatz described in Section 3,
387
+ the VQE class was configured with the ‘SLSQP’ optimizer.
388
+ The maximum number of iterations was set to 1, 000, and we
389
+ used the aer simulator statevector quantum simu-
390
+ lation backend. For the dual update in (14), constraint vi-
391
+ olations were measured over the observables Hm using the
392
+ minimum eigenstate returned by VQE. The stopping criteria
393
+ ∥λt −λt−1∥2 ≤ 1·10−5 was utilized to ascertain the conver-
394
+ gence of the dual updates (14).
395
+ To illustrate the application of the proposed strategy to
396
+ solving the stochastic binary QCQP in (11), several 2-bit
397
+ problem instances were sampled randomly by drawing the
398
+ entries of {A0, c0, d0} and {A1, c1, d1} from the standard
399
+ normal distribution, while ensuring the resulting problem was
400
+ feasible. The VQE approach was compared against a linear
401
+ program that finds a PMF solving (12); this was possible due
402
+ to the small value of 2n. For the two approaches, the obtained
403
+ PMFs along with the associated dual variables are reported in
404
+ Table 1 for 4 randomly sampled problem instances.
405
+ To study the scalability of the approach and to verify the
406
+ compatibility of the solutions with the deterministic QCQP
407
+ in (10), we also sampled 30 feasible 5-bit problem instances
408
+ with three constraints each. The quadratic cost and constraint
409
+ functions were generated as in the previous test. To avoid
410
+ instances with non-binding constraints, the constants dm in
411
+ the constraint functions were manually adjusted so that at
412
+ least one of the constraints was active and yielded a non-zero
413
+ dual variable. From the sampled problems, it was found that
414
+ the dual decomposition involving VQE was able to produce
415
+ the optimal solutions for 28 out of the 30 problem instances
416
+ Table 1. Comparing the exact solution of (12) obtained via a
417
+ linear program and the proposed quantum-based approach.
418
+ #
419
+ Found PMF
420
+ Dual
421
+ Quantum
422
+ LP
423
+ Quantum
424
+ LP
425
+ 1
426
+ [0.44, 0, 0.56, 0]
427
+ [0.44, 0, 0.56, 0]
428
+ 0.854
429
+ 0.851
430
+ 2
431
+ [0.71, 0, 0.29, 0]
432
+ [0.70, 0, 0.30, 0]
433
+ 0.337
434
+ 0.337
435
+ 3
436
+ [0, 0.80, 0, 0.20]
437
+ [0, 0.80, 0, 0.20]
438
+ 0.459
439
+ 0.459
440
+ 4
441
+ [0, 0, 0.61, 0.39]
442
+ [0, 0, 0.60, 0.40]
443
+ 0.566
444
+ 0.566
445
+ Fig. 1. Convergence of dual variables under dual updates (14)
446
+ for a stochastic binary QCQP with M = 3 constraints.
447
+ tested, whereas infeasible binary candidates were obtained for
448
+ the remaining 2 instances. Figure 1 illustrates the conver-
449
+ gence of the dual variables for one of the problem instances,
450
+ where all three constraints were found to be active.
451
+ 6. CONCLUSIONS
452
+ A novel generalization of VQE to address the need for dealing
453
+ with stochastic binary QCQPs has been developed. Lever-
454
+ aging dual decomposition, the approach entails solving a
455
+ sequence of judiciously modified VQE tasks. Numerical tests
456
+ demonstrate that upon convergence of the constrained VQE
457
+ algorithm, the variational quantum circuit is able to sample
458
+ from a stochastic policy to generate binary-valued vectors
459
+ that minimize the binary QCQP and satisfy its constraints
460
+ in expectation. Some of these samples seem to be feasible
461
+ for the deterministic binary QCQP too. This novel heuristic
462
+ sets the foundation for further developments towards con-
463
+ strained discrete optimization.
464
+ We are currently exploring
465
+ several exciting directions: i) Coupling this approach with
466
+ QAOA rather than VQE; ii) skipping the nested optimization
467
+ in (15) through a primal-dual decomposition alternative as
468
+ in [14, 15]; and iii) dealing with mixed-binary setups.
469
+
470
+ Convergence of dual variables
471
+ 入1
472
+ 1.2
473
+ 入2
474
+ 入3
475
+ 1.0
476
+ 0.8
477
+ 0.6
478
+ 0.4
479
+ 0.2
480
+ 0.0
481
+ 0
482
+ 20
483
+ 40
484
+ 60
485
+ 80
486
+ 100
487
+ 120
488
+ 140
489
+ Iterations7. REFERENCES
490
+ [1] Michael A. Nielsen and Isaac L. Chuang,
491
+ Quantum
492
+ Computation and Quantum Information,
493
+ Cambridge
494
+ University Press, 2000.
495
+ [2] Osvaldo Simeone,
496
+ “An introduction to quantum ma-
497
+ chine learning for engineers,” Foundations and Trends
498
+ in Signal Processing, vol. 16, no. 1–2, pp. 1–223, 2022.
499
+ [3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, “A
500
+ quantum approximate optimization algorithm applied
501
+ to a bounded occurrence constraint problem,”
502
+ arXiv:
503
+ Quantum Physics, 2014.
504
+ [4] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel,
505
+ D. Venturelli, and R. Biswas, “From the quantum ap-
506
+ proximate optimization algorithm to a quantum alternat-
507
+ ing operator ansatz,” Algorithms, vol. 12, no. 2, pp. 34,
508
+ 2019.
509
+ [5] C. C. McGeoch,
510
+ Adiabatic quantum computation
511
+ and quantum annealing: Theory and practice, vol. 5,
512
+ Springer, Switzerland, 2014.
513
+ [6] A. Lucas, “Ising formulations of many NP problems,”
514
+ Frontiers in Physics, vol. 2, no. 5, pp. 1–15, 2014.
515
+ [7] M. Ohzeki, “Breaking limitation of quantum annealer in
516
+ solving optimization problems under constraints,” Sci-
517
+ entific reports, vol. 10, no. 1, pp. 1–12, 2020.
518
+ [8] I. Hen and M. S. Sarandy,
519
+ “Driver Hamiltonians for
520
+ constrained optimization in quantum annealing,” Phys.
521
+ Rev. A, vol. 93, no. 6, pp. 062312, 2016.
522
+ [9] I. Hen and F. M. Spedalieri, “Quantum annealing for
523
+ constrained optimization,” Phys. Rev. Appl., vol. 5, no.
524
+ 63, pp. 034007, 2016.
525
+ [10] S. Hadfield, Z.Wang, E. G. Rieffel, B. O’Gorman,
526
+ D. Venturelli, and R. Biswas, “Quantum approximate
527
+ optimization with hard and soft constraints,” in ACM
528
+ Intl. Workshop on Post Moore’s Era Supercomputing,
529
+ New York, NY, 2017, pp. 15–21.
530
+ [11] Pooya Ronagh, Brad Woods, and Ehsan Iranmanesh,
531
+ “Solving constrained quadratic binary problems via
532
+ quantum adiabatic evolution,” Quantum Info. Comput.,
533
+ vol. 16, no. 11–12, pp. 1029–1047, Sept. 2016.
534
+ [12] Claudio Gambella and Andrea Simonetto,
535
+ “Multi-
536
+ block ADMM heuristics for mixed-binary optimization
537
+ on classical and quantum computers,” IEEE Trans. on
538
+ Quantum Engineering, vol. 1, pp. 1–22, 10 2020.
539
+ [13] “Qiskit: An open-source framework for quantum com-
540
+ puting,” 2021.
541
+ [14] S. Gupta, S. Misra, D. Deka, and V. Kekatos, “DNN-
542
+ based policies for stochastic AC-OPF,” in Proc. Power
543
+ Syst. Comput. Conf., Porto, Portugal, June 2021,
544
+ (to
545
+ appear also in the Elsevier Electric Power Systems Re-
546
+ search).
547
+ [15] S. Gupta, V. Kekatos, and M. Jin, “Controlling smart
548
+ inverters using proxies: A chance-constrained DNN-
549
+ based approach,” IEEE Trans. Smart Grid, vol. 13, no.
550
+ 2, pp. 1310–1321, Mar. 2022.
551
+
1dAzT4oBgHgl3EQfevzu/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf,len=302
2
+ page_content='A QUANTUM APPROACH FOR STOCHASTIC CONSTRAINED BINARY OPTIMIZATION Sarthak Gupta and Vassilis Kekatos Bradley Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
3
+ page_content=' of ECE, Virginia Tech, Blacksburg, VA 24061, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
4
+ page_content=' {gsarthak,kekatos}@vt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
5
+ page_content='edu ABSTRACT Analytical and practical evidence indicates the advantage of quantum computing solutions over classical alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
6
+ page_content=' Quantum-based heuristics relying on the variational quantum eigensolver (VQE) and the quantum approximate optimiza- tion algorithm (QAOA) have been shown numerically to generate high-quality solutions to hard combinatorial prob- lems, yet incorporating constraints to such problems has been elusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
7
+ page_content=' To this end, this work puts forth a quantum heuristic to cope with stochastic binary quadratically con- strained quadratic programs (QCQP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
8
+ page_content=' Identifying the strength of quantum circuits to efficiently generate samples from prob- ability distributions that are otherwise hard to sample from, the variational quantum circuit is trained to generate binary- valued vectors to approximately solve the aforesaid stochastic program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
9
+ page_content=' The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
10
+ page_content=' Tests on several synthetic problem instances us- ing a quantum simulator corroborate the near-optimality and feasibility of the method, and its potential to generate feasible solutions for the deterministic QCQP too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
11
+ page_content=' Index Terms— QAOA, VQE, dual decomposition, quan- tum unconstrained binary optimization (QUBO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
12
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
13
+ page_content=' INTRODUCTION Quantum computers exhibit an innate ability to handle ex- ponentially large computations in a parallel fashion yet with a strong probabilistic flavor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
14
+ page_content=' Quantum algorithms such as Shor’s integer factorization, Grover’s search, and the linear system solver of Harrow-Hassidim-Lloyd (HHL) can attain polynomial or even exponential speedups over the best known algorithms on classical computers [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
15
+ page_content=' Nonetheless, some of these quantum algorithms presume a large number of qubits on fault-tolerant quantum computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
16
+ page_content=' In the near-term inter- mediate scale (NISQ) era, quantum computers are noisy and thus oftentimes limited in terms of number of gates and/or qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
17
+ page_content=' With such limitations in mind, variational quantum algorithms have been suggested as promising tools to practi- cally showcase quantum advantage in the NISQ setup [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
18
+ page_content=' This work was supported by a seed funding grant from the Virginia Com- monwealth Cybersecurity Initiative (CCI) – Southwest Virginia node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
19
+ page_content=' Variational quantum computers involve a sequence of pa- rameterized gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
20
+ page_content=' Their parameters are updated externally by a classical computer in a closed-loop fashion to steer the quantum state towards a desirable direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
21
+ page_content=' The variational quantum eigensolver (VQE) used to provide high-quality solutions to combinatorial problems is a representative ex- ample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
22
+ page_content=' The Quantum Approximate Optimization Algorithm (QAOA) [3] is a special instance of VQE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
23
+ page_content=' In QAOA, not only the parameters but also the architecture of the quan- tum circuit become problem-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
24
+ page_content=' The quantum circuit trained by QAOA operates as a sampler to efficiently gener- ate near-optimal solutions of binary quadratic problems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
25
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
26
+ page_content=', MAXCUT);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
27
+ page_content=' see [4] for a summary of claims on QAOA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
28
+ page_content=' While most VQE/QAOA schemes target unconstrained problems, dealing with constraints is crucial to several appli- cations in machine learning, wireless communications, and financial (stock trading) optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
29
+ page_content=' Adding constraints to QAOA or adiabetic quantum computing [5] (the QAOA counterpart for non-gate-based quantum computers) has been pursued in two ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
30
+ page_content=' One approach has been to convert the constrained problem into an unconstrained minimization of a Lagrangian-like function [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
31
+ page_content=' However, the weights for constraint penalties can be safely selected only if con- straints are expressed as Boolean functions or linear equal- ities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
32
+ page_content=' An alternative approach modifies the architecture of the quantum circuit (via the mixer Hamiltonian of QAOA) to confine quantum states on the subspace spanned by con- straints [8, 9, 4, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
33
+ page_content=' Nonetheless, constructing such ‘driver’ mixer Hamiltonians is again highly problem-dependent and often limited to equality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
34
+ page_content=' Reference [11] devel- ops a quantum adiabetic approach to tackle binary linearly- constrained quadratic programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
35
+ page_content=' It targets the dual problem and interfaces the quantum computer with a branch-and- bound scheme ran classically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
36
+ page_content=' Reference [12] treats mixed- binary quadratic-plus-convex problems using the alternating direction method of multipliers (ADMM) to split binary and continuous variables into separate minimizations, solved by QAOA and classical convex optimizers respectively per ADMM iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
37
+ page_content=' Relation to prior work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
38
+ page_content=' Addressing binary QCQPs by quantum heuristics has been largely unexplored to the au- thors’ knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
39
+ page_content=' We put forth a quantum-based heuristic to solve a stochastic binary QCQP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
40
+ page_content=' Harnessing the power of quantum circuits to sample from probability mass functions arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
41
+ page_content='01443v1 [quant-ph] 4 Jan 2023 (PMF) that are hard to sample classically, we devise a dual decomposition technique that solves a sequence of standard VQE tasks to systematically adjust Lagrangian multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
42
+ page_content=' Numerical tests using quantum computer simulators pro- vided by IBM evaluate this technique on randomly generated stochastic and deterministic binary QCQPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
43
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
44
+ page_content=' QUANTUM COMPUTING PRELIMINARIES A quantum system consisting of n quantum bits (qubits) is de- scribed by an exponentially large state vector |x⟩ ∈ CN with N = 2n assuming the system is in a pure state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
45
+ page_content=' The Dirac no- tation |x⟩ named ket emphasizes that vector x is unit-norm or �N−1 k=0 |xk|2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
46
+ page_content=' If ek is the k-th canonical vector of length N, we can write |x⟩ = �N−1 k=0 xk |ek⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
47
+ page_content=' The vector ek is of- tentimes alternatively expressed as |ek⟩ = |k⟩, where k is the binary representation of index k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
48
+ page_content=' For example, a system with n = 2 qubits has a state in C4, which is spanned by canonical vectors {ek}3 k=0 and e0 = [1 0 0 0]⊤ = |00⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
49
+ page_content=' Vector |x⟩ provides a statistical characterization for the quantum state: If we measure the quantum system output, its qubits will be in configuration |k⟩ with probability |xk|2 for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
50
+ page_content=' Symbol ⟨x| termed bra denotes the conjugate transpose of |x⟩, while the braket ⟨x|y⟩ denotes the inner product between states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
51
+ page_content=' The fundamental operations we can perform on a quan- tum system is evolution and measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
52
+ page_content=' The former can be described by the application of a unitary U on state |x⟩ to produce state |y⟩ = U |x⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
53
+ page_content=' Although U is exponentially large, it is usually implemented efficiently using quantum gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
54
+ page_content=' Among various types of measurements, we focus on projective measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
55
+ page_content=' A projective measurement is asso- ciated with a Hermitian matrix (named observable) and its eigenvalue decomposition H = �M m=1 λmvmvH m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
56
+ page_content=' If such measurement is performed on |x⟩, outcome m is observed with probability pm := | ⟨x|vm⟩ |2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
57
+ page_content=' Define a random variable taking value λm when outcome m is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
58
+ page_content=' The expected value of this variable is ⟨x|H|x⟩ = �M m=1 pmλm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
59
+ page_content=' If H is di- agonal, the measurement is on the computational basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
60
+ page_content=' This is practically important because now vm = em, outcome m relates to |m⟩, and each qubit can be measured individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
61
+ page_content=' If quantum system i has been prepared in state |xi⟩ for i = 1, 2, their joint state would be |x1⟩ ⊗ |x2⟩, where ⊗ is the Kronecker product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
62
+ page_content=' This is oftentimes represented as |x1⟩ |x2⟩ or |x1, x2⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
63
+ page_content=' The Kronecker product rule generalizes to the composition of n systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
64
+ page_content=' For example, |1⟩ |1⟩ |0⟩ = e1 ⊗ e1 ⊗ e0 = e6 = |110⟩, where the canonical vectors shown in the middle are in R2 and those at the end are in R8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
65
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
66
+ page_content=' VARIATIONAL QUANTUM EIGENSOLVER (VQE) VQE is a heuristic approach to find near-optimal solutions for combinatorial problems of the general form min b∈{0,1}n f(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
67
+ page_content=' (1) A particular example of interest is the quadratic unconstrained binary optimization (QUBO) problem with f(b) = b⊤Ab + b⊤c + d (2) which is known to be NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
68
+ page_content=' For later developments, it is convenient to reformulate QUBO in terms of the spin {±1} variables through the transformation si = 1 − 2bi = (−1)bi for i = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
70
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
71
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
72
+ page_content=' (3) Collecting the spin variables in vector s = 1 − 2b, the quadratic objective can be equivalently expressed as f(b) = ¯f(s) = s⊤ ¯As + s⊤¯c + ¯d (4) where ¯A := 1 4A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
73
+ page_content=' ¯c := − 1 2(A1 + c);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
74
+ page_content=' and ¯d := 1 41⊤A1 + 1 21⊤c + d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
75
+ page_content=' We next explain how VQE samples high-quality solutions of (1) by solving an eigenvalue minimization task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
76
+ page_content=' The VQE method falls under the family of variational quantum algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
77
+ page_content=' The term variational pertains to the fact that the quantum circuit is not fixed, but parameterized by relatively few parameters collected in vector θ ∈ RP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
78
+ page_content=' These parameters are iteratively adjusted by classical computer in a closed-loop fashion so that the quantum system eventually reaches a desirable state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
79
+ page_content=' The process resembles the training of a neural network whose weights are updated by an opti- mization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
80
+ page_content=' Similarly to neural networks where the learner has to select an architecture (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
81
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
82
+ page_content=', network depth/width and type of activations), the parameterized form (also termed ansatz) of the variational quantum circuit is specified a pri- ori.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
83
+ page_content=' We will be using a 2-local ansatz where single-qubit RY gates are applied to all qubits, followed by a full entanglement circuit, all repeated for 3 layers (iterations) [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
84
+ page_content=' Given θ and driven by input |0⟩n, the quantum circuit pro- duces at its output the quantum state |x(θ)⟩ = U(θ) |0⟩n for a unitary N × N matrix U(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
85
+ page_content=' To simplify notation, we will oftentimes write |x⟩ in lieu of |x(θ)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
86
+ page_content=' Albeit |x⟩ ∈ CN is exponentially long, it can be easily generated by the quan- tum circuit though it cannot be read out of the circuit as a vector in a computationally efficient manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
87
+ page_content=' Instead, it is rel- atively easy to sample from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
88
+ page_content=' Every time we run the quan- tum circuit driven by |0⟩n, we will be observing one of the binary outputs |k⟩ = |ek⟩ with probability pk := |xk|2 for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
89
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
91
+ page_content=' , N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
92
+ page_content=' The quantum circuit thus serves as an ef- ficient sampler from the exponentially large probability mass function (PMF) {pk}N−1 k=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
93
+ page_content=' To exploit this sampling property, we next relate the cost f(b) with a so-termed Hamiltonian matrix H so that H |ek⟩ = f(|k⟩) |ek⟩ for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
94
+ page_content=' (5) Matrix H is apparently diagonal and carries all N function evaluations f(ek) on its diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
95
+ page_content=' Moreover, the canonical vectors ek constitute the eigenvectors of H, each with cor- responding eigenvalue f(|k⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
96
+ page_content=' Therefore, the minimization in (1) can be reformulated as the problem of finding the eigen- vector corresponding to the minimum eigenvalue of H min |x⟩ ⟨x| H |x⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
97
+ page_content=' (6) As long as |x⟩ is allowed to take any of the values {ek}N−1 k=0 , the minimizer of (6) corresponds to the minimizer of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
98
+ page_content=' For example, if a quantum system has n = 3 qubits, its state would be |x⟩ ∈ C8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
99
+ page_content=' Here ek’s are the columns of the identity matrix I8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
100
+ page_content=' If the minimizer of (6) is |e5⟩ = |b1b2b3⟩ = |101⟩, then the minimizer of (1) is b = [1 0 1]⊤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
101
+ page_content=' and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
102
+ page_content=' Although H is exponentially large, it can be implemented using only O(n2) quantum gates since it can be expressed as H = n−1 � i=0 n−1 � j=0 ¯AijZiZj + n−1 � i=0 ¯ciZi + ¯dIN (7) where the N × N Hermitian matrix Zi is defined as Zi = I2 ⊗ · · · ⊗ Z ⊗ · · · ⊗ I2 with Z = � 1 0 0 −1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
103
+ page_content=' This is a Kronecker product involving (n − 1) identity matri- ces I2 and one Pauli-Z operator Z applied to the i-th qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
104
+ page_content=' Matrix H as defined in (7) is obviously diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
105
+ page_content=' To estab- lish (5), note first that Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩, or more compactly, Z |b⟩ = (−1)b |b⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
106
+ page_content=' Consequently, when Zi is applied to a state |b⟩ = |b1b2 · · · bn⟩, the effect is Zi |b⟩ = (−1)bi |b⟩ = si |b⟩ from (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
107
+ page_content=' Similarly, it also holds that ZiZj |b⟩ = sisj |b⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
108
+ page_content=' Property (5) now follows immediately by postmultiplying (7) by any |ek⟩ and using f(b) = ¯f(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
109
+ page_content=' If |x⟩ in (6) is restricted to set E := {ek}N−1 k=0 , problem (6) is as hard as (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
110
+ page_content=' VQE relaxes (6) to the set of all quantum states |x(θ)⟩ that can be parameterized by the chosen ansatz and via θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
111
+ page_content=' Problem (6) is then solved over θ rather than |x⟩ min θ F(θ) := ⟨x(θ)|H|x(θ)⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
112
+ page_content=' (8) From the eigenvalue property (5), it follows ⟨en| H |ek⟩ = f(|k⟩) for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
113
+ page_content=' How about ⟨x| H |x⟩ for a general state |x⟩?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
114
+ page_content=' Because |x⟩ = �N−1 k=0 xk |ek⟩, it is easy to show that ⟨x|H|x⟩ = N−1 � k=0 |xk|2f(|k⟩) = N−1 � k=0 pkf(|k⟩).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
115
+ page_content=' (9) In other words, function F(θ) is the average of f under the PMF defined by |x⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
116
+ page_content=' For instance, the random outcome |k⟩ = |101⟩ occurring with probability |x5|2 is assigned to the ran- dom variable f taking the value f([1 0 1]⊤).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
117
+ page_content=' Hence, func- tion F(θ) is really an expectation (an observable in the quan- tum computation parlance) of function f(b) when b is drawn from the PMF {|xk(θ)|2}N−1 k=0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
118
+ page_content=' Ideally, the global minimizer θ of (8) defines a PMF via |x(θ)⟩ that samples with non-zero probability only the canonical vectors |ek⟩ associated with the smallest eigenvalue of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
119
+ page_content=' Problem (8) is solved in a hybrid fashion: The quantum computer samples from |x(θ)⟩ and estimates F(θ) and pos- sibly its gradient ∇θF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
120
+ page_content=' A classical computer uses the pre- vious information and iteratively updates θ based on a zero- or first-order optimization algorithm, such as gradient descent or Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
121
+ page_content=' As with training neural networks, F(θ) is nonconvex due to the form of the ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
122
+ page_content=' Moreover, the ensemble statistic F(θ) cannot be computed exactly, but estimated as the sample average ˆF(θ) := �R r=1 f(br)/R over R runs, where br is the quantum output after run r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
123
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
124
+ page_content=' CONSTRAINED VQE As discussed earlier, VQE provides a successful heuristic for solving QUBO through the variational formulation of (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
125
+ page_content=' Can VQE be generalized to deal with a binary QCQP of the ensuing form?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
126
+ page_content=' min b∈{0,1}n f0(b) (10) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
127
+ page_content='to fm(b) ≤ 0, m = 1 : M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
128
+ page_content=' Here fm(b) := b⊤Amb + b⊤cm + dm for m = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
130
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
131
+ page_content=' , M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
132
+ page_content=' Solving such problems is also known to be NP-hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
133
+ page_content=' Provid- ing a quantum heuristic to directly deal with (10) seems to be challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
134
+ page_content=' To this end, we relax expectations and aim at designing a quantum state |x⟩ from which we can draw binary-valued b that solve the stochastic binary QCQP: min |x⟩ Ex[f0(b)] (11) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
135
+ page_content='to Ex[fm(b)] ≤ 0, m = 1 : M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
136
+ page_content=' As in the unconstrained setup, rather than minimizing over |x⟩, we propose optimizing over a PMF parameterized by θ and captured by quantum state |x(θ)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
137
+ page_content=' Specifically, we sug- gest solving the constrained minimization min θ F0(θ) (12) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
138
+ page_content='to Fm(θ) ≤ 0 : λm, m = 1 : M where each observable Fm(θ) := ⟨x(θ)|Hm|x(θ)⟩ depends on the Hamiltonian Hm defined similar to H in (7) for all m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
139
+ page_content=' Heed that problem (12) can be reformulated and solved as a linear program (LP) over the PMF of b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
140
+ page_content=' Nonetheless, that requires evaluating {fm(b)}M m=0 for all 2n values of b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
141
+ page_content=' Moreover, the optimization variable of this LP is the vector of PMF values that is exponentially large too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
142
+ page_content=' That is also the case with standard VQE/QAOA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
143
+ page_content=' Contrary to (10), problem (12) is over the continuous vari- able θ, and thus, we can associate a dual variable λm for each constraint and define its Lagrangian function L(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
144
+ page_content=' λ) := F0(θ) + M � m=1 λmFm(θ) (13) where λ ∈ RM collects all dual variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
145
+ page_content=' Problem (12) could be solved via dual decomposition, according to which λ is updated iteratively via a subgradient ascent step on L as λt+1 m := max � λt m + µtFm(θt), 0 � , m = 1 : M (14) for a positive step size µt = µ0/(t + α) with α > 0, and θt is a minimizer of the Lagrangian L(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
146
+ page_content=' λt) evaluated at λt: θt ∈ arg min θ ⟨x(θ)|H0 + M � m=1 λt mHm|x(θ)⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
147
+ page_content=' (15) Problem (15) takes the QUBO form of (8), and is therefore amenable to standard VQE or even the celebrated QAOA ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
148
+ page_content=' Under the latter, the ansatz takes a particular form that depends on the problem Hamiltonian H0 + �M m=1 λt mHm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
149
+ page_content=' Here, we used a problem-independent ansatz under the gen- eral VQE framework and leave QAOA for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
150
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
151
+ page_content=' NUMERICAL TESTS The novel solver for (12) was implemented in Python us- ing the Qiskit library [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
152
+ page_content=' The VQE class in Qiskit was used to solve the minimization for the primal update (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
153
+ page_content=' In addition to providing the ansatz described in Section 3, the VQE class was configured with the ‘SLSQP’ optimizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
154
+ page_content=' The maximum number of iterations was set to 1, 000, and we used the aer simulator statevector quantum simu- lation backend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
155
+ page_content=' For the dual update in (14), constraint vi- olations were measured over the observables Hm using the minimum eigenstate returned by VQE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
156
+ page_content=' The stopping criteria ∥λt −λt−1∥2 ≤ 1·10−5 was utilized to ascertain the conver- gence of the dual updates (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
157
+ page_content=' To illustrate the application of the proposed strategy to solving the stochastic binary QCQP in (11), several 2-bit problem instances were sampled randomly by drawing the entries of {A0, c0, d0} and {A1, c1, d1} from the standard normal distribution, while ensuring the resulting problem was feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
158
+ page_content=' The VQE approach was compared against a linear program that finds a PMF solving (12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
159
+ page_content=' this was possible due to the small value of 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
160
+ page_content=' For the two approaches, the obtained PMFs along with the associated dual variables are reported in Table 1 for 4 randomly sampled problem instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
161
+ page_content=' To study the scalability of the approach and to verify the compatibility of the solutions with the deterministic QCQP in (10), we also sampled 30 feasible 5-bit problem instances with three constraints each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
162
+ page_content=' The quadratic cost and constraint functions were generated as in the previous test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
163
+ page_content=' To avoid instances with non-binding constraints, the constants dm in the constraint functions were manually adjusted so that at least one of the constraints was active and yielded a non-zero dual variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
164
+ page_content=' From the sampled problems, it was found that the dual decomposition involving VQE was able to produce the optimal solutions for 28 out of the 30 problem instances Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
165
+ page_content=' Comparing the exact solution of (12) obtained via a linear program and the proposed quantum-based approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
166
+ page_content=' # Found PMF Dual Quantum LP Quantum LP 1 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
167
+ page_content='44, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
168
+ page_content='56, 0] [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
169
+ page_content='44, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
170
+ page_content='56, 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
171
+ page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
172
+ page_content='851 2 [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
173
+ page_content='71, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
174
+ page_content='29, 0] [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
175
+ page_content='70, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
176
+ page_content='30, 0] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
177
+ page_content='337 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
178
+ page_content='337 3 [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
179
+ page_content='80, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
180
+ page_content='20] [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
181
+ page_content='80, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
182
+ page_content='20] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
183
+ page_content='459 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
184
+ page_content='459 4 [0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
185
+ page_content='61, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
186
+ page_content='39] [0, 0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
187
+ page_content='60, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
188
+ page_content='40] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
189
+ page_content='566 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
190
+ page_content='566 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
191
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
192
+ page_content=' Convergence of dual variables under dual updates (14) for a stochastic binary QCQP with M = 3 constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
193
+ page_content=' tested, whereas infeasible binary candidates were obtained for the remaining 2 instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
194
+ page_content=' Figure 1 illustrates the conver- gence of the dual variables for one of the problem instances, where all three constraints were found to be active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
195
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
196
+ page_content=' CONCLUSIONS A novel generalization of VQE to address the need for dealing with stochastic binary QCQPs has been developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
197
+ page_content=' Lever- aging dual decomposition, the approach entails solving a sequence of judiciously modified VQE tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
198
+ page_content=' Numerical tests demonstrate that upon convergence of the constrained VQE algorithm, the variational quantum circuit is able to sample from a stochastic policy to generate binary-valued vectors that minimize the binary QCQP and satisfy its constraints in expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
199
+ page_content=' Some of these samples seem to be feasible for the deterministic binary QCQP too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
200
+ page_content=' This novel heuristic sets the foundation for further developments towards con- strained discrete optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
201
+ page_content=' We are currently exploring several exciting directions: i) Coupling this approach with QAOA rather than VQE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
202
+ page_content=' ii) skipping the nested optimization in (15) through a primal-dual decomposition alternative as in [14, 15];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
203
+ page_content=' and iii) dealing with mixed-binary setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
204
+ page_content=' Convergence of dual variables 入1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
205
+ page_content='2 入2 入3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
206
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
207
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
208
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
209
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
210
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
211
+ page_content='0 0 20 40 60 80 100 120 140 Iterations7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
212
+ page_content=' REFERENCES [1] Michael A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
213
+ page_content=' Nielsen and Isaac L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
214
+ page_content=' Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
215
+ page_content=' [2] Osvaldo Simeone, “An introduction to quantum ma- chine learning for engineers,” Foundations and Trends in Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
216
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
217
+ page_content=' 1–2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
218
+ page_content=' 1–223, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
219
+ page_content=' [3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, “A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem,” arXiv: Quantum Physics, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
220
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
221
+ page_content=' Hadfield, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
222
+ page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
223
+ page_content=' O’Gorman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
224
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
225
+ page_content=' Rieffel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
226
+ page_content=' Venturelli, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
227
+ page_content=' Biswas, “From the quantum ap- proximate optimization algorithm to a quantum alternat- ing operator ansatz,” Algorithms, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
228
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
229
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
230
+ page_content=' 34, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
231
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
232
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
233
+ page_content=' McGeoch, Adiabatic quantum computation and quantum annealing: Theory and practice, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
234
+ page_content=' 5, Springer, Switzerland, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
235
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
236
+ page_content=' Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
237
+ page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
238
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
239
+ page_content=' 1–15, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
240
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
241
+ page_content=' Ohzeki, “Breaking limitation of quantum annealer in solving optimization problems under constraints,” Sci- entific reports, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
242
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
243
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
244
+ page_content=' 1–12, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
245
+ page_content=' [8] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
246
+ page_content=' Hen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
247
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
248
+ page_content=' Sarandy, “Driver Hamiltonians for constrained optimization in quantum annealing,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
249
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
250
+ page_content=' A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
251
+ page_content=' 93, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
252
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
253
+ page_content=' 062312, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
254
+ page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
255
+ page_content=' Hen and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
256
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
257
+ page_content=' Spedalieri, “Quantum annealing for constrained optimization,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
258
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
259
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
260
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
261
+ page_content=' 5, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
262
+ page_content=' 63, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
263
+ page_content=' 034007, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
264
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
265
+ page_content=' Hadfield, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
266
+ page_content='Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
267
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
268
+ page_content=' Rieffel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
269
+ page_content=' O’Gorman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
270
+ page_content=' Venturelli, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
271
+ page_content=' Biswas, “Quantum approximate optimization with hard and soft constraints,” in ACM Intl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
272
+ page_content=' Workshop on Post Moore’s Era Supercomputing, New York, NY, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
273
+ page_content=' 15–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
274
+ page_content=' [11] Pooya Ronagh, Brad Woods, and Ehsan Iranmanesh, “Solving constrained quadratic binary problems via quantum adiabatic evolution,” Quantum Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
275
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
276
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
277
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
278
+ page_content=' 11–12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
279
+ page_content=' 1029–1047, Sept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
280
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
281
+ page_content=' [12] Claudio Gambella and Andrea Simonetto, “Multi- block ADMM heuristics for mixed-binary optimization on classical and quantum computers,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
282
+ page_content=' on Quantum Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
283
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
284
+ page_content=' 1–22, 10 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
285
+ page_content=' [13] “Qiskit: An open-source framework for quantum com- puting,” 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
286
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
287
+ page_content=' Gupta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
288
+ page_content=' Misra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
289
+ page_content=' Deka, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
290
+ page_content=' Kekatos, “DNN- based policies for stochastic AC-OPF,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
291
+ page_content=' Power Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
292
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
293
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
294
+ page_content=', Porto, Portugal, June 2021, (to appear also in the Elsevier Electric Power Systems Re- search).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
295
+ page_content=' [15] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
296
+ page_content=' Gupta, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
297
+ page_content=' Kekatos, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
298
+ page_content=' Jin, “Controlling smart inverters using proxies: A chance-constrained DNN- based approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
299
+ page_content=' Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
300
+ page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
301
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
302
+ page_content=' 1310–1321, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
303
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/1dAzT4oBgHgl3EQfevzu/content/2301.01443v1.pdf'}
4NE3T4oBgHgl3EQfQAnJ/content/tmp_files/2301.04409v1.pdf.txt ADDED
@@ -0,0 +1,2068 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mon. Not. R. Astron. Soc. 000, 1–13 (2021)
2
+ Printed 12 January 2023
3
+ (MN LATEX style file v2.2)
4
+ Comprehensive spectroscopic and photometric study of
5
+ pulsating eclipsing binary star AI Hya
6
+ F. Kahraman Ali¸cavu¸s1,2⋆, T. Pawar3†, K. G. He�lminiak3, G. Handler4, A. Moharana3,
7
+ F. Ali¸cavu¸s1,2, P. De Cat5, F. Leone6,7, G. Catanzaro7, M. Giarrusso7,8, N. Ukita9,10,
8
+ E. Kambe11
9
+ 1C¸anakkale Onsekiz Mart University, Faculty of Science, Physics Department, 17100, Canakkale, Turkey
10
+ 2C¸anakkale Onsekiz Mart University, Astrophysics Research Center and Ulupınar Observatory, TR-17100, anakkale, Turkey
11
+ 3Nicolaus Copernicus Astronomical Center, Department of Astrophysics, ul. Rabia´nska 8, PL-87-100 Toru´n, Poland
12
+ 4Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warsaw, Poland
13
+ 5Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussel, Belgium
14
+ 6Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Universit?a di Catania, Via S. Sofia 78, I-95123 Catania, Italy
15
+ 7INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy
16
+ 8University of Florence, Department of Physics and Astronomy, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
17
+ 9Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232, Japan
18
+ 10The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
19
+ 11Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720, USA
20
+ Accepted ... Received ...; in original form ...
21
+ ABSTRACT
22
+ The pulsating eclipsing binaries are remarkable systems that provide an opportu-
23
+ nity to probe the stellar interior and to determine the fundamental stellar parameters
24
+ precisely. Especially the detached eclipsing binary systems with (a) pulsating compo-
25
+ nent(s) are significant objects to understand the nature of the oscillations since the
26
+ binary effects in these systems are negligible. Recent studies based on space data have
27
+ shown that the pulsation mechanisms of some oscillating stars are not completely
28
+ understood. Hence, comprehensive studies of a number of pulsating stars within de-
29
+ tached eclipsing binaries are important. In this study, we present a detailed analysis
30
+ of the pulsating detached eclipsing binary system AI Hya which was studied by two
31
+ independent groups with different methods. We carried out a spectroscopic survey to
32
+ estimate the orbital parameters via radial velocity measurements and the atmospheric
33
+ parameters of each binary component using the composite and/or disentangled spec-
34
+ tra. We found that the more luminous component of the system is a massive, cool
35
+ and chemically normal star while the hotter binary component is a slightly metal-rich
36
+ object. The fundamental parameters of AI Hya were determined by the analysis of
37
+ binary variations and subsequently used in the evolutionary modelling. Consequently,
38
+ we obtained the age of the system as 850 ± 20 Myr and found that both binary com-
39
+ ponents are situated in the δ Scuti instability strip. The frequency analysis revealed
40
+ pulsation frequencies between the 5.5 – 13.0 d−1 and we tried to estimate which binary
41
+ component is the pulsating one. However, it turned out that those frequencies could
42
+ originate from both binary components.
43
+ Key words:
44
+ stars: binaries: eclipsing – stars: atmospheres – stars: fundamental
45
+ parameters – stars: variables: δ Scuti – stars: individual: AI Hya
46
+ ⋆ E-mail: filizkahraman01@gmail.com
47
+ † E-mail: pawar@ncac.torun.pl
48
+ 1
49
+ INTRODUCTION
50
+ To understand the universe, it is necessary to comprehend
51
+ stars which are its building blocks. For a deep investigation
52
+ of stars, we should know their basic stellar parameters such
53
+ © 2021 RAS
54
+ arXiv:2301.04409v1 [astro-ph.SR] 11 Jan 2023
55
+
56
+ 2
57
+ F. Kahraman Ali¸cavu¸s et. al.
58
+ as mass (M), radius (R) and chemical composition. Binary
59
+ stars, in particular the eclipsing ones, are the most suitable
60
+ objects to derive these parameters as M and R can be de-
61
+ rived with an accuracy better than 1% (Torres, Andersen, &
62
+ Gim´enez 2010; Southworth 2013). Therefore, these systems
63
+ are substantial for a better understanding of the universe,
64
+ our Galaxy, and, most directly, stellar evolution. However,
65
+ eclipsing binary systems as such do not provide information
66
+ about the stellar interior. This is where the pulsating stars
67
+ come in. The oscillation frequencies of pulsating stars can be
68
+ used to probe the stellar interior by applying asteroseismic
69
+ methods, making eclipsing binary systems with (a) pulsat-
70
+ ing component(s) one of the most valuable tools to improve
71
+ our knowledge of stellar evolution.
72
+ Various types of pulsating stars in different evolution-
73
+ ary states exist. Some of them, such as β Cephei, δ Scuti, and
74
+ γ Doradus stars (Lampens 2021; Southworth 2021), are also
75
+ found in eclipsing binary systems. The δ Scuti variables are
76
+ the most common pulsating stars found in eclipsing bina-
77
+ ries because of their relatively short pulsation periods. The
78
+ δ Scuti stars are A to F-type dwarf or giant stars generally
79
+ exhibiting pressure mode oscillations with periods between
80
+ 18 min and 8 h and amplitudes below 0m.1 in the V-band
81
+ (Aerts, Christensen-Dalsgaard, & Kurtz 2010). Their the-
82
+ oretical instability strip (e.g. Dupret et al. 2005) indicates
83
+ the location of objects in the Hertzsprung-Russell (H-R) di-
84
+ agram that are expected to show δ Scuti-type oscillations.
85
+ Thanks to space missions such as Kepler (Borucki et al.
86
+ 2010) and the Transiting Exoplanet Survey Satellite (TESS,
87
+ Ricker et al. 2014), we learned that δ Scuti stars are also ob-
88
+ served beyond the borders of the theoretical instability strip,
89
+ showing the necessity to revise them (Uytterhoeven et al.
90
+ 2011; Antoci et al. 2014; Bowman & Kurtz 2018). Accord-
91
+ ing to the latest catalog of δ Scuti stars in eclipsing binaries,
92
+ there are around 90 such objects (Kahraman Ali¸cavu¸s et al.
93
+ 2017). This number is now increasing especially by the dis-
94
+ coveries of new systems from the investigation of the space
95
+ data (e.g. Kahraman Ali¸cavu¸s et al. 2022; Gaulme & Guzik
96
+ 2019). The pulsations of the δ Scuti stars in eclipsing bina-
97
+ ries are affected by the other binary component (Kahraman
98
+ Ali¸cavu¸s et al. 2017; Liakos & Niarchos 2017). Indeed, their
99
+ pulsation period (Ppuls) decreases when the orbital period
100
+ (Porb) becomes shorter and, hence, the other component ap-
101
+ proaches the pulsating component. It was also thought that
102
+ the tidal forces between the binary components can alter the
103
+ pulsation axis (Kurtz et al. 2020). The first observational
104
+ proof of this was presented by Handler et al. (2020) thanks
105
+ to the high-quality data of TESS. These authors showed that
106
+ in some binary systems the pulsation axis can align with the
107
+ orbital axis because of the tidal forces. This type of object
108
+ is now known as tidally tilted pulsators and they are a clear
109
+ proof of binary effects on pulsations.
110
+ For a deep understanding of the effects of binarity on
111
+ pulsations in eclipsing binary systems and on stellar evolu-
112
+ tion and structure, comprehensive investigations of such sys-
113
+ tems are necessary. AI Hya (V = 9m.35) is an eclipsing binary
114
+ system with a δ Scuti component consisting of a F2m and
115
+ F0V star (Stancliffe et al. 2015). It has an eccentric orbit and
116
+ an orbital period of 8.289649(2) days (Kreiner 2004). Spec-
117
+ troscopic observations revealed that AI Hya is a double-lined
118
+ binary system (Popper 1988). In a recent study, an updated
119
+ photometric analysis based on the TESS data of AI Hya was
120
+ given which shows that the secondary component exhibits
121
+ multiperiodic oscillations (Lee, Hong, & Kristiansen 2020).
122
+ However, no detailed spectral analysis with high-resolution
123
+ spectra has been carried out for the system so far. There-
124
+ fore, we provide a detailed photometric and spectral analysis
125
+ of AI Hya in this study to reveal the true character of this
126
+ interesting object.
127
+ Two teams were working on this system independently.
128
+ One group was led by TP (group-P with KH, AM, NU, and
129
+ EK) and the second group by FKA (group-K with GH, FA,
130
+ PDC, FL, GC, and MG). We used the same photometric but
131
+ different spectroscopic data. We compared our partial re-
132
+ sults as the work progressed. However, the overall approach
133
+ used by each group was different. In the end, we combined
134
+ our results to obtain the final parameters of the system.
135
+ The paper is organized as follows. In Sect. 2 the observa-
136
+ tional data are introduced. The radial velocity and spectral
137
+ analyses are given in Sect. 3 and Sect. 4, respectively. The
138
+ binary modelling and the pulsation frequency analysis are
139
+ presented in Sect. 5 and Sect. 6. In Sect. 7, discussions and
140
+ conclusions are given.
141
+ 2
142
+ OBSERVATIONAL DATA
143
+ In the photometric analysis of AI Hya, TESS data was used
144
+ by both groups. TESS was launched in April 2018 mainly to
145
+ detect new exoplanets (Ricker et al. 2014). TESS has moni-
146
+ tored almost the entire sky which has been subdivided into
147
+ sectors that are observed for about 27 days each. The TESS
148
+ observations were taken in 2-min. short (SC) and 30-min
149
+ long (LC) cadence in the nominal phase of the mission (first
150
+ two years). For the extended mission, the LC was reduced
151
+ to 10-min. The data are available in the Barbara A. Mikul-
152
+ ski Archive for Telescopes (MAST)1 where they are released
153
+ in different versions: simple aperture photometry (SAP) and
154
+ pre-search data conditioning SAP fluxes (PDCSAP). AI Hya
155
+ was observed in one sector only (sector 7). The 2-min SAP
156
+ fluxes were used in our analysis since SAP fluxes have lower
157
+ flux uncertainty and 2-min data are more suitable for the
158
+ analysis of AI Hya (see Sect. 6). They were converted into
159
+ magnitude by using the same method as Kahraman Ali¸cavu¸s
160
+ et al. (2022).
161
+ Photometric data from ground-based surveys also exist,
162
+ e.g. from ASAS 3 (Pojma´nski 2002) and ASAS-SN (Jayas-
163
+ inghe et al. 2018), but they are of inferior quality and do not
164
+ allow for proper analysis of pulsations. The TESS sector 7
165
+ data are the best ones available so far, although AI Hya will
166
+ again be visible in the satellite’s field of view in sector 61.
167
+ The spectroscopic data of the system were taken from
168
+ four different instruments. The list of the instruments and
169
+ the basic information about them are given in Table 1. One
170
+ spectrum was taken with Catania Astrophysical Observatory
171
+ Spectropolarimeter (CAOS, Leone, et al. 2016). The CAOS
172
+ is a high-resolution, fibre-fed, cross-dispersed ´echelle spec-
173
+ trograph installed to the 91-cm telescope at the Catania
174
+ Astrophysical Observatory (Mt. Etna, Italy). Three spectra
175
+ of AI Hya were collected from the CORALIE ´echelle spec-
176
+ trograph which is mounted on the 1.2-m Leonhard Euler
177
+ 1 https://mast.stsci.edu
178
+ © 2021 RAS, MNRAS 000, 1–13
179
+
180
+ Comprehensive study of AI Hya
181
+ 3
182
+ Table 1. Information about the spectroscopic observations. N,
183
+ R and SNR represent the number of the spectra, resolving power
184
+ and the signal-to-noise ratio, respectively.
185
+ Spectrometer
186
+ N
187
+ Observations
188
+ R
189
+ SNR
190
+ Spectral
191
+ years
192
+ range [˚A]
193
+ CAOS
194
+ 1
195
+ 2021
196
+ 38000
197
+ 50
198
+ 415 − 670
199
+ CORALIE
200
+ 3
201
+ 2015
202
+ 60000
203
+ 20 − 34
204
+ 390 − 680
205
+ HERMES
206
+ 15
207
+ 2020
208
+ 85000
209
+ 50 − 70
210
+ 377 − 900
211
+ HIDES
212
+ 13
213
+ 2014 − 2017
214
+ 50000
215
+ 40 − 88
216
+ 408 − 752
217
+ telescope at La Silla Observatory (Chile) (Pepe et al. 2018).
218
+ The High Efficiency and Resolution Mercator ´echelle spec-
219
+ trograph (HERMES) was also used to obtain high-resolution
220
+ spectra of AI Hya. HERMES is mounted on the 1.2-m Mer-
221
+ cator telescope at the Roque de Los Muchchos observa-
222
+ tory on the Canary Island La Palma in Spain (Raskin et
223
+ al. 2011). The last instrument used in this study is the
224
+ HIgh-Dispersion ´Echelle spectrograph (HIDES). HIDES is
225
+ attached to the 1.88-m telescope of Okayama astrophysical
226
+ observatory in Japan (Kambe et al. 2013). The spectra of
227
+ CORALIE and HIDES were taken by group-P, while the
228
+ spectra of CAOS and HERMES were gathered by group-K.
229
+ In total 32 spectra of AI Hya were gathered and these spec-
230
+ tra are well distributed in orbital phases of AI Hya. Each
231
+ group used the obtained spectra to measure the radial ve-
232
+ locity (vr ) changes. Additionally, these data were taken into
233
+ account to derive the atmospheric parameters (e.g. effective
234
+ temperature Teff, surface gravity log g, metallicity) and the
235
+ projected rotational velocity (v sin i) of the components of
236
+ AI Hya.
237
+ 3
238
+ RADIAL VELOCITY ANALYSIS
239
+ The vr values of the AI Hya system were measured with
240
+ different approaches by both group-P and group-K using
241
+ different spectra taken from the distinct instruments.
242
+ 3.1
243
+ vr measurements
244
+ Group-P
245
+ calculated
246
+ the
247
+ vr
248
+ values
249
+ from
250
+ HIDES
251
+ and
252
+ CORALIE
253
+ spectra,
254
+ using
255
+ the
256
+ two-dimensional
257
+ cross-
258
+ correlation todcor program (Zucker & Mazeh 1994). In the
259
+ analysis, a synthetic spectrum was used as a template and
260
+ this spectrum was generated using an ATLAS9 model at-
261
+ mosphere (Kurucz 1993) having Teff, metallicity [M/H] and
262
+ v sin i parameters of 6800 K, 0.0 and 30 km s−1, respectively.
263
+ When a template with 60 km s−1(the v sin i value found in
264
+ further analysis) was used, the results did not improve in
265
+ terms of rms of the orbital fit, nor did the uncertainties of
266
+ orbital elements. Moreover, some points, with the smallest
267
+ difference in vr measurements, seemed to suffer from sys-
268
+ tematic effects, and had to be rejected. We therefore believe
269
+ the use of 30 km s−1templates was justified. The calculated
270
+ vr values for each binary component are given in Table A1.
271
+ Group-K used the RaVeSpAn code (Pilecki et al. 2017)
272
+ to determine the vr values of the binary components using
273
+ the broadening function formalism. In the analysis, local
274
+ thermodynamic equilibrium (LTE) synthetic spectra with
275
+ atmospheric parameters similar to that of group-P were used
276
+ as templates (Coelho et al. 2005). The spectra of CAOS and
277
+ HERMES were used in the vr measurements. The resulting
278
+ vr measurements are given in Table A1.
279
+ 3.2
280
+ vr curve modelling
281
+ For the spectroscopic orbital fitting, group-P used all the
282
+ available vr measurements, including those made by group-
283
+ K and from Popper (1988). Group-P used the v2fit code
284
+ (Konacki et al. 2010) which adjusts a double-Keplerian with
285
+ a Levenberg-Marquardt algorithm. In this analysis, the am-
286
+ plitude of vr curves (K), Porb, the time of phase zero (T0),
287
+ mass centre’s velocity (γ), eccentricity (e) and argument of
288
+ the periastron (ω) were set as free parameters. Thanks to
289
+ the long time span of the data (>51 years), it was possi-
290
+ ble to detect the apsidal motion ( ˙ω) of the binary’s orbit:
291
+ 0.186(56) deg/yr. This is in reasonable agreement (1.75σ)
292
+ with the value given by Lee, Hong, & Kristiansen (2020):
293
+ 0.075(31) deg/yr. The results of the analysis are given in
294
+ Table 2 and the theoretical vr curve fits to the measured vr
295
+ data are illustrated in Fig.1.
296
+ Group-K used the rvfit code2 for the radial velocity
297
+ analysis. The rvfit program can analyse single and double-
298
+ lined binary systems by using the adaptive simulated an-
299
+ nealing method (Iglesias-Marzoa et al. 2015). In the analy-
300
+ sis, the Porb taken from Kreiner (2004) was considered as a
301
+ fixed parameter. Other orbital parameters such as T0, K, γ,
302
+ ω and e were taken as free parameters during the analysis.
303
+ Both groups vr measurements were used in the analysis and
304
+ as a result, the orbital parameters of the system were ob-
305
+ tained. The resulting parameters of the current vr analysis
306
+ are given in Table 2. The consistency between the theoretical
307
+ vr curve and measurements is shown in Fig. 2.
308
+ Both groups found the resulting mass ratio (q
309
+ =
310
+ M2/M1
311
+ =
312
+ K1/K2)3 larger than 1 (1.075 ± 0.011 and
313
+ 1.080 ± 0.007 for groups -K and -P, respectively). Accord-
314
+ ing to this q value, the vr curve and the results, the star
315
+ (generally called secondary) covered by the hotter binary
316
+ component at orbital phase 0.5 is more massive than the
317
+ hotter binary component (primary). To test these findings,
318
+ binary modelling is necessary. Therefore, these results will
319
+ be tested in the binary modelling sections.
320
+ 4
321
+ SPECTRAL ANALYSIS
322
+ 4.1
323
+ Group-K
324
+ 4.1.1
325
+ Spectral disentangling
326
+ To obtain the atmospheric parameters (Teff, log g), v sin i
327
+ and the chemical composition of each binary component of
328
+ AI Hya, a detailed spectral analysis is necessary. As AI Hya
329
+ is a double-lined binary system, its spectrum consists of the
330
+ spectral lines of both binary components. Therefore, group-
331
+ K carried out a spectral disentangling analysis to extract the
332
+ individual spectra of each binary component from the com-
333
+ posite spectra of AI Hya. In the analysis, the code fdbinary
334
+ 2 http://www.cefca.es/people/riglesias/rvfit html
335
+ 3 The subscripts 1 and 2 refer to hotter primary and cooler sec-
336
+ ondary components, respectively.
337
+ © 2021 RAS, MNRAS 000, 1–13
338
+
339
+ 4
340
+ F. Kahraman Ali¸cavu¸s et. al.
341
+ Table 2. The results of the radial velocity analysis. The sub-
342
+ scripts 1 and 2 refer to hotter primary and cooler secondary com-
343
+ ponents, respectively. a shows the fixed parameters.
344
+ Parameter
345
+ Group-P
346
+ Group-K
347
+ T0 (HJD)
348
+ 2458491.570 ± 0.028
349
+ 2452506.383 ± 0.032
350
+ Porb(d)
351
+ 8.289761 ± 0.000027
352
+ 8.2896490a
353
+ γ (km/s)
354
+ 45.90 ± 0.24
355
+ 45.70 ± 0.35
356
+ K1 (km/s)
357
+ 90.42 ± 0.37
358
+ 89.52 ± 0.65
359
+ K2 (km/s)
360
+ 83.71 ± 0.46
361
+ 83.29 ± 0.63
362
+ e
363
+ 0.2419 ± 0.0036
364
+ 0.2432 ± 0.0050
365
+ ω (deg)
366
+ 254.03 ± 1.30
367
+ 250.92 ± 1.63
368
+ ˙ω (deg/yr)
369
+ 0.186 ± 0.056
370
+ a1 sin i (R⊙)
371
+ 14.380 ± 0.061
372
+ 14.222 ± 0.105
373
+ a2 sin i (R⊙)
374
+ 13.312 ± 0.072
375
+ 13.233 ± 0.101
376
+ a sin i (R⊙)
377
+ 27.692 ± 0.094
378
+ 27.454 ± 0.145
379
+ M1 sin3 i (M⊙)
380
+ 1.992 ± 0.023
381
+ 1.950 ± 0.033
382
+ M2 sin3 i (M⊙)
383
+ 2.151 ± 0.022
384
+ 2.095 ± 0.035
385
+ q = M2/M1
386
+ 1.080 ± 0.007
387
+ 1.075 ± 0.011
388
+ 50
389
+ 25
390
+ 0
391
+ 25
392
+ 50
393
+ 75
394
+ 100
395
+ 125
396
+ RV (Km/s)
397
+ =245.283
398
+ =253.526
399
+ =254.424
400
+ Popper_rv1
401
+ Popper_rv2
402
+ Group-P_rv1
403
+ Group-P_rv2
404
+ Group-K_rv1
405
+ Group-K_rv2
406
+ 0.0
407
+ 0.2
408
+ 0.4
409
+ 0.6
410
+ 0.8
411
+ 1.0
412
+ Phase
413
+ 10
414
+ 0
415
+ 10
416
+ O-C
417
+ Figure 1. Upper panel: The model vr fit to the combined vr mea-
418
+ surements from Popper (1988), Group-P (HIDES+CORALIE)
419
+ and Group-K (HERMES+CAOS). Lower panel: residuals. Model
420
+ made by Group-P.
421
+ was used (Ilijic et al. 2004). fdbinary is capable of disen-
422
+ tangling a composite spectrum, which includes flux contri-
423
+ butions from two or three components, in Fourier space.
424
+ Before the analysis with fdbinary, one should know the
425
+ light contributions of the binary components at the orbital
426
+ phases corresponding to the times the spectra were taken.
427
+ These values should be fixed during the analysis. Hence,
428
+ to determine the light contributions of both binary compo-
429
+ nents at the different orbital phases, we carried out a pre-
430
+ liminary binary modelling of AI Hya by taking Teff of the
431
+ TESS Input Catalog (TIC; Stassun et al. 2019) as the Teff
432
+ of the hotter component. The analysis was performed utiliz-
433
+ ing the Wilson-Devinney code (Wilson & Devinney 1971).
434
+ As a result of this preliminary analysis, it was found that
435
+ the hotter and cooler binary components contribute around
436
+ 38% and 62% to the total, respectively. However, one should
437
+ keep in mind that these light contributions change accord-
438
+ ing to the orbital phases. For example, the primary eclipse
439
+ Figure 2. Upper panel: The model vr fit to the vr measure-
440
+ ments of Groups-K and -P. Lower panel: residuals. Model made
441
+ by Group-K.
442
+ is a total eclipse where the light contribution of the hotter
443
+ components is negligible.
444
+ In the analysis, we used the HERMES spectra as they
445
+ are well distributed over the orbital phases and have a higher
446
+ resolving power. Taking into account the observation time
447
+ of each HERMES spectrum, the light contributions at these
448
+ times were first determined using the fluxes measured from
449
+ the photometric solution and subsequently fixed during the
450
+ analysis. In addition to this, we also fixed all results de-
451
+ rived in the vr analysis during the spectral disentangling.
452
+ For the disentangling progress, we used the spectral inter-
453
+ val of ∼4200 − 6400 ˚A by ignoring the parts polluted by tel-
454
+ luric lines. For the analysis, this spectral window was di-
455
+ vided into 15 spectral parts with steps of ∼ 100 − 150 ˚A.
456
+ Each small spectral part was then analysed separately. As
457
+ a result, we obtained the individual spectra of each binary
458
+ component. The separated spectra derived with fdbinary
459
+ were re-normalised by taking into account the light ratio of
460
+ the binary components, as described by Ilijic et al. (2004).
461
+ 4.1.2
462
+ Determination of the atmospheric parameters and
463
+ chemical compositions
464
+ After the individual spectra of the components of AI Hya
465
+ were obtained, we were able to determine the atmospheric
466
+ parameters, v sin i, and the chemical composition. To de-
467
+ rive these parameters, we used the plane-parallel and line-
468
+ blanketed local thermodynamic equilibrium (LTE) ATLAS9
469
+ model atmospheres (Kurucz 1993) and the synthe code
470
+ (Kurucz & Avrett 1981) to generate theoretical spectra.
471
+ First, the hydrogen lines of the binary components were used
472
+ to obtain initial Teff values.
473
+ In this analysis, the Hβ lines of the components were
474
+ compared with many theoretical Hβ lines which were de-
475
+ rived for a wide range of Teff (5000 − 9000 K) with a step
476
+ size of 100 K, where log g and metallicity were fixed to 4.0
477
+ and solar, respectively. During the analysis, we took into
478
+ account the minimization method described by Catanzaro,
479
+ Leone, & Dall (2004) and successfully applied in a series
480
+ © 2021 RAS, MNRAS 000, 1–13
481
+
482
+ 150
483
+ 100
484
+
485
+
486
+ xnl↓
487
+ 50
488
+ Normalized
489
+
490
+ 0
491
+
492
+
493
+
494
+
495
+ CAOS
496
+ 50
497
+ △ CORALIE
498
+ HERMES
499
+ HIDES
500
+ -100
501
+ 15
502
+ 10
503
+ A
504
+ 1
505
+ s
506
+ 5
507
+
508
+
509
+ uy)
510
+
511
+
512
+ 采米
513
+ 0
514
+
515
+
516
+ 5
517
+
518
+ O-C.
519
+ 15
520
+ 15
521
+ 10
522
+ 5
523
+ uy)
524
+ 中谷
525
+
526
+ 日米日
527
+
528
+ -5E
529
+ -10
530
+ -
531
+ 0
532
+ 15
533
+ 0.0
534
+ 0.2
535
+ 0.6
536
+ 0.8
537
+ 1.0
538
+ 0.4
539
+ PhaseComprehensive study of AI Hya
540
+ 5
541
+ Figure 3. Theoretical hydrogen line fits (red dashed lines) to
542
+ the Hβ lines (solid black line) of the hotter and cooler binary
543
+ components (Group-K).
544
+ of papers (i.e., Catanzaro et al. 2022, 2019). Consequently,
545
+ the Teff of the hotter and cooler components were found to
546
+ be 7500 ± 200 K and 7000 ± 150 K, respectively. We did not
547
+ attempt to optimize log g because the hydrogen lines are
548
+ not sensitive to this parameter for stars cooler than 8000 K
549
+ (Smalley et al. 2002). The best theoretical Hβ line fits to the
550
+ separated spectra of the components are shown in Fig. 3.
551
+ We also determined values for log g, the microturbulent
552
+ velocity ξ, and v sin i by improving the initially determined
553
+ Teff value using the excitation potential−abundance rela-
554
+ tionship. For the correct atmospheric parameters, different
555
+ excitation potentials of the same element should give the
556
+ same abundances. Therefore, by using this relation for iron
557
+ (Fe), we determined the atmospheric parameters. Detailed
558
+ information about this analysis method is given by Kahra-
559
+ man Ali¸cavu¸s et al. (2016). The results of this analysis are
560
+ listed in Table 3. To determine the errors on the atmospheric
561
+ parameters, we checked how their values change for differ-
562
+ ences in the excitation potential−abundance correlation of
563
+ about 5%.
564
+ In the next step, the chemical composition of the binary
565
+ components was derived after fixing the atmospheric param-
566
+ eters to their final values. For the chemical abundance deter-
567
+ mination, we first identified the lines based on the Kurucz
568
+ line list4. The spectral synthesizing method and the identi-
569
+ fied lines were used in this examination. Consequently, the
570
+ chemical compositions of both binary components were ob-
571
+ tained and the results are listed in Table 4. The consistency
572
+ between the synthetic and observed spectra of both binary
573
+ 4 http://kurucz.harvard.edu/linelists.html
574
+ Figure 4. Consistency between the synthetic (dashed-lines) and
575
+ disentangled spectra of the components of AI Hya (Group-K).
576
+ Figure 5. Abundance distribution of the components of AI Hya
577
+ relative to solar values (Asplund et al. 2009) (Group-K).
578
+ components is illustrated in Fig. 4. The abundance distribu-
579
+ tions relative to solar abundance (Asplund et al. 2009) are
580
+ shown in Fig. 5, indicating that the hotter binary component
581
+ has an overabundance compared to the Sun for some ele-
582
+ ments. The errors of the chemical compositions were deter-
583
+ mined including the uncertainties in the derived atmospheric
584
+ parameters and the effects of the resolving power and the
585
+ SNR of the spectra, as described by Kahraman Ali¸cavu¸s et
586
+ al. (2016).
587
+ 4.2
588
+ Group-P
589
+ For the spectral decomposition and analysis, group-P used
590
+ the HIDES data only. Spectral analysis was performed on
591
+ both the observed composite spectra and the disentangled
592
+ spectra of the individual components. For the spectral disen-
593
+ tangling, we used a python wrapper5 made for using version
594
+ 3 of fdbinary (FD3; Ilijic et al. 2004). A particular por-
595
+ tion of the total spectra was taken to ensure good quality
596
+ in terms of SNR and spectral features. The light fractions
597
+ used for the disentangling procedure were obtained from the
598
+ light curve analysis as 38% and 62% for the primary and sec-
599
+ ondary respectively.
600
+ 4.2.1
601
+ gssp
602
+ On the other hand, we also modelled the composite spec-
603
+ trum using the gssp composite module of the Grid Search
604
+ 5 https://github.com/ayushmoharana/fd3 initiator
605
+ © 2021 RAS, MNRAS 000, 1–13
606
+
607
+ 1.0
608
+ 0.8
609
+ 0.6
610
+ 0.4
611
+ xn
612
+ T
613
+ 0.2
614
+ otter
615
+ Normalized
616
+ 0.0
617
+ 1.0
618
+ 0.8
619
+ 0.6
620
+ 0.4
621
+ 0.2
622
+ Al
623
+ cooler
624
+ 0.0
625
+ 4800
626
+ 4820
627
+ 4840
628
+ 4860
629
+ 4880
630
+ 4900
631
+ 4920
632
+ Wavelength (A)Al HyaHot
633
+ xnl
634
+ 1.0
635
+ Normalized
636
+ 0.9
637
+ Fel
638
+ Fel
639
+ 0.8
640
+ Fel
641
+ Fel
642
+ 0.7
643
+ 5439
644
+ 5448
645
+ 5427
646
+ 5430
647
+ 5433
648
+ 5436
649
+ 5444
650
+ Wavelength (A)
651
+ xn
652
+ 00
653
+ .0
654
+ Normalized
655
+ Fel
656
+ Fel
657
+ 0.9
658
+ Fel
659
+ Fel
660
+ Fel
661
+ 0.8
662
+ 5382
663
+ 5385
664
+ 5400
665
+ 5403
666
+ 5379
667
+ 5391
668
+ 5394
669
+ 5397
670
+ 5388
671
+ Wavelength (A)3
672
+ Hotter star
673
+ Cooler star
674
+ loge(El)-
675
+ O
676
+ Mg
677
+ Si
678
+ Ca
679
+ Sc
680
+ Cr
681
+ Fe
682
+ Ti
683
+ Mn
684
+ Ni
685
+ Element6
686
+ F. Kahraman Ali¸cavu¸s et. al.
687
+ Table 3. The final atmospheric parameters and v sin i value of the hot (primary) and cool binary components of AI Hya. log ϵ (Fe)
688
+ represent the relative abundance with respect to hydrogen (H=12.0)
689
+ .
690
+ Group-K
691
+ Teff (K)
692
+ log g (cgs)
693
+ ξ (km s−1)
694
+ v sin i (km s−1)
695
+ log ϵ (Fe)
696
+ Primary
697
+ 7700 ± 100
698
+ 3.8 ± 0.1
699
+ 3.4 ± 0.3
700
+ 57 ± 6
701
+ 8.25 ± 0.54
702
+ Secondary
703
+ 7200 ± 100
704
+ 3.6 ± 0.2
705
+ 1.9 ± 0.3
706
+ 64 ± 4
707
+ 7.64 ± 0.20
708
+ Group-P (gssp)
709
+ Teff (K)
710
+ log g (cgs)
711
+ ξ (km s−1)
712
+ v sin i (km s−1)
713
+ [M/H]
714
+ Primary
715
+ 7350 ± 300
716
+ 3.8 (fixed)
717
+ 4.83 ± 1.15
718
+ 50 (fixed)
719
+ 0.14 ± 0.14
720
+ Secondary
721
+ 7150 ± 250
722
+ 3.6 (fixed)
723
+ 3.07 ± 0.52
724
+ 62 (fixed)
725
+ 0.06 ± 0.10
726
+ Group-P (iSpec)
727
+ Teff (K)
728
+ log g (cgs)
729
+ ξ (km s−1)
730
+ v sin i (km s−1)
731
+ [M/H]
732
+ Primary
733
+ 7300 ± 170
734
+ 3.83 (fixed)
735
+ 5.33 ± 0.86
736
+ 50 (fixed)
737
+ 0.15 (fixed)
738
+ Secondary
739
+ 7260 ± 175
740
+ 3.58 (fixed)
741
+ 3.98 ± 0.70
742
+ 62 (fixed)
743
+ 0.01 (fixed)
744
+ Table 4. Abundances of individual elements of the binary com-
745
+ ponents and Sun (Asplund et al. 2009).
746
+ Group-K
747
+ Elements
748
+ Hotter
749
+ Cooler
750
+ Solar
751
+ component
752
+ component
753
+ abundance
754
+ 12Mg
755
+ 7.96 ± 0.16
756
+ 8.01 ± 0.63
757
+ 7.60 ± 0.04
758
+ 14Si
759
+ 8.03 ± 0.36
760
+ 7.12 ± 0.51
761
+ 7.51 ± 0.03
762
+ 20Ca
763
+ 6.93 ± 0.27
764
+ 6.69 ± 0.27
765
+ 6.34 ± 0.04
766
+ 21Sc
767
+ 3.11 ± 0.32
768
+ 3.15 ± 0.04
769
+ 22Ti
770
+ 5.71 ± 0.49
771
+ 5.17 ± 0.30
772
+ 4.95 ± 0.05
773
+ 24Cr
774
+ 6.63 ± 0.42
775
+ 5.80 ± 0.30
776
+ 5.64 ± 0.04
777
+ 25Mn
778
+ 6.84 ± 0.82
779
+ 6.06 ± 0.45
780
+ 5.43 ± 0.05
781
+ 26Fe
782
+ 8.25 ± 0.23
783
+ 7.64 ± 0.24
784
+ 7.50 ± 0.04
785
+ 28Ni
786
+ 7.44 ± 0.38
787
+ 6.73 ± 0.33
788
+ 6.22 ± 0.04
789
+ Group-P (iSpec)
790
+ Elements
791
+ Hotter
792
+ Cooler
793
+ Solar
794
+ component
795
+ component
796
+ abundance
797
+ 24Cr
798
+ 5.95 ± 0.19
799
+ 5.63 ± 0.23
800
+ 5.64 ± 0.04
801
+ 26Fe
802
+ 7.83 ± 0.16
803
+ 7.48 ± 0.17
804
+ 7.50 ± 0.04
805
+ 28Ni
806
+ 6.76 ± 0.18
807
+ 6.53 ± 0.22
808
+ 6.22 ± 0.04
809
+ in Stellar Parameter (gssp) software package (Tkachenko
810
+ 2015). As its name implies, gssp is based on a grid search
811
+ in the fundamental atmospheric parameters. It uses the
812
+ method of atmosphere models and spectrum synthesis,
813
+ which performs a comparison of the observations with the-
814
+ oretical spectra from the grid. These synthetic spectra are
815
+ calculated using the synthV LTE-based radiative transfer
816
+ code (Tsymbal 1996) and a grid of atmospheric models pre-
817
+ computed using llmodels (Shulyak et al. 2004). Specifi-
818
+ cally, in the composite module, the user can set the radial
819
+ velocity of the components as a free parameter so that all
820
+ the possible combinations of the synthetic spectra of primary
821
+ and secondary from the computed grid are used to build the
822
+ composite theoretical spectra of the binary. This synthetic
823
+ spectrum is then compared against the a-priori normalized
824
+ observed spectrum and a χ2 merit function is used to judge
825
+ the goodness of the fit.
826
+ The broadening function (BF) is a representation of
827
+ spectral profiles in velocity space. The BF contains signa-
828
+ tures of the vr shifts of different lines and also intrinsic stel-
829
+ lar effects like rotational broadening, spots, pulsations, etc.
830
+ (Rucinski 1999). We calculated the BF for one of the com-
831
+ posite spectra of AI Hya to estimate v sin i values for the
832
+ primary and secondary components, respectively. This pro-
833
+ cess serves to remove the degeneracy between v sin i and
834
+ other atmospheric parameters like T eff and [M/H]. A mod-
835
+ ified version of the treatment described in Rucinski (1999)
836
+ was adopted and a multi Gaussian fit was implemented. The
837
+ BF was calculated in a wavelength range of 4080-5000 ˚A. A
838
+ synthetic solar-type spectrum with zero projected rotational
839
+ velocity v sin i was used as our template. To deal with the
840
+ noise in the data, a Gaussian smoother of 3 km s−1 rolling
841
+ window was applied to the BF. Two clear peaks were visible
842
+ in the velocity space, as shown in Figure 6, corresponding
843
+ to the primary and secondary components. The peaks were
844
+ fitted with the rotational profile,
845
+ G(v) = A
846
+
847
+ �c1
848
+
849
+ 1 −
850
+
851
+ v
852
+ vmax
853
+ �2
854
+ + c2
855
+
856
+ 1 −
857
+
858
+ v
859
+ vmax
860
+ �2��
861
+ �+lv+k
862
+ (1)
863
+ where A is the area under the profile, vmax is the maximum
864
+ velocity shift which occurs at the equator (Gray 2005), c1
865
+ and c2 are constants which are a function of limb darkening
866
+ themselves, while l and k are correction factors to the BF
867
+ continuum. The BF fit was calculated for the spectra with
868
+ the highest SNR and good separation between the compo-
869
+ nents in velocity space. The best BF fit to the line profile of
870
+ the primary and secondary binary components are shown in
871
+ Fig.6. Fixing the obtained values of v sin i from this analysis
872
+ and log g from the light curve solution, the gssp composite
873
+ fitting routine was applied to obtain stellar temperatures
874
+ Teff (1,2), microturbulent velocities ξ and global metallicities
875
+ [M/H].
876
+ The step size of the grid gives us a rough idea of the
877
+ errors involved. However, to obtain more robust error esti-
878
+ mates we plotted the χ2 data for each parameter and fitted
879
+ a parabola to obtain the minimum; its distance to the in-
880
+ tercepts on the abscissa are taken as the errors. These pa-
881
+ rameters are obtained for a total of four spectra and then
882
+ averaged out. The remaining spectra were not suitable for
883
+ © 2021 RAS, MNRAS 000, 1–13
884
+
885
+ Comprehensive study of AI Hya
886
+ 7
887
+ 100
888
+ 50
889
+ 0
890
+ 0.3
891
+ 0.4
892
+ 0.5
893
+ 0.6
894
+ 0.7
895
+ 0.8
896
+ Primary
897
+ 50
898
+ 100
899
+ 150
900
+ 0.3
901
+ 0.4
902
+ 0.5
903
+ 0.6
904
+ 0.7
905
+ 0.8
906
+ 0.9
907
+ 1.0
908
+ Secondary
909
+ Relative Flux
910
+ 2457109.96513 BJD
911
+ Radial Velocities (km/s)
912
+ Figure 6. Broadening functions for the primary and secondary
913
+ components of AI Hydrae calculated using HIDES spectra (epoch:
914
+ 2457109.96513 HJD), which provided a good SNR and velocity
915
+ separation between the two components. The blue, dashed line
916
+ represents best-fit rotational function (Group-P).
917
+ 5320
918
+ 5330
919
+ 5340
920
+ 5350
921
+ 5360
922
+ 5370
923
+ 5380
924
+ 5390
925
+ 5400
926
+ Wavelength (A)
927
+ 0.75
928
+ 0.80
929
+ 0.85
930
+ 0.90
931
+ 0.95
932
+ 1.00
933
+ 1.05
934
+ Normalized Flux
935
+ Data
936
+ Model
937
+ Figure 7. A snippet of the best-fit model generated by gssp for
938
+ the given set of parameters (Group-P).
939
+ the analysis in gssp due to lower SNR. The results of the
940
+ analysis are compiled in Table 3 and a sample of the fit to
941
+ one of the spectra is shown in Figure 7.
942
+ 4.2.2
943
+ iSpec
944
+ A complimentary spectroscopic analysis was performed on
945
+ the disentangled spectra of the primary and secondary stars
946
+ using iSpec (Blanco-Cuaresma et al. 2014). Before the anal-
947
+ ysis, the spectra are treated for vr offset and continuum cor-
948
+ rection. Estimates of flux errors were introduced as a sum of
949
+ errors calculated from SNR, and flux-scaled residuals from
950
+ the disentangled routine. For the spectroscopic analysis we
951
+ fixed the log g parameter with values obtained from the light
952
+ curve solution and limb darkening parameters with values
953
+ adopted from Claret & Bloemen (2011).
954
+ We fit the model using the spectral synthesis approach.
955
+ This is done by implementing the use of the spectrum code
956
+ (Gray & Corbally 1994), a marcs (Gustafsson et al. 2008)
957
+ grid of model atmospheres, and solar abundances taken from
958
+ Asplund et al. (2009). We adopt a two-step process. The ini-
959
+ tial run is aimed at estimating the global metallicity ([M/H])
960
+ by keeping it as a free parameter. The macroturbulent ve-
961
+ locity (vmac) and alpha enhancement parameters were set
962
+ to zero as vmac has a negligible contribution for stars in the
963
+ concerned temperature range and alpha enhancement, when
964
+ set as a free parameter, produced implausible values. v sin i
965
+ was set to the values obtained by the BF analysis. We com-
966
+ pared the obtained value for [M/H] with results from the
967
+ gssp analysis and found it to be consistent with the errors.
968
+ The average value of [M/H] was calculated and fixed for the
969
+ next step where we fit for temperature Teff, microturbulent
970
+ velocity ξ, and abundances of Iron (Fe), Nickel (Ni) and
971
+ Chromium (Cr), as these were the prominent lines in the
972
+ chosen spectral range.
973
+ The output parameters obtained from iSpec are given
974
+ in Table 3 and Table 4. It is to be noted that Fe, Ni, and Cr
975
+ are more abundant in the primary compared to solar values
976
+ and those of the secondary star. This trend in the abun-
977
+ dances is in agreement with the values obtained by group-K.
978
+ The output parameters for the secondary star agree fairly
979
+ well with those from the gssp analysis and from the group-
980
+ K. The best fit solution for the primary component, as in
981
+ the case of gssp analysis, also hinted towards a lower Teff
982
+ compared to the group-K solution.
983
+ 5
984
+ BINARY MODELLING
985
+ 5.1
986
+ Group-K
987
+ To update the fundamental stellar parameters (M, R) of
988
+ AI Hya, we performed binary modelling with the help of the
989
+ determined atmospheric parameters and the results of the
990
+ vr investigation.
991
+ In binary modelling, the TESS data were used. How-
992
+ ever, the shapes of the eclipses of AI Hya are distorted due
993
+ to the pulsations. Thus we first cleaned the pulsations and
994
+ only then carried out the binary modelling. Therefore, the
995
+ Period04 program (Lenz & Breger 2005) was used to detect
996
+ the variations caused by oscillations. The derived pulsation
997
+ frequencies6 were cleaned from the light curve and the resid-
998
+ uals were used in the binary modelling.
999
+ In this analysis, we used the Wilson-Devinney code
1000
+ (Wilson & Devinney 1971) combined with Monte-Carlo sim-
1001
+ ulations (Zola et al. 2004, 2010). The pulsation removed data
1002
+ were binned to around 4000 points to be used in the binary
1003
+ modelling code. AI Hya is classified as a detached binary
1004
+ system in the literature (Lee, Hong, & Kristiansen 2020).
1005
+ According to their results (e.g., for Ω, q, a), both compo-
1006
+ nents do not seem to fill their Roche lobe, hence the sys-
1007
+ tem is defined as a detached binary. Also, the morphology
1008
+ of the light curve, i.e. very small ellipsoidal variations and
1009
+ eclipses spanning a small fraction of the orbital period, con-
1010
+ firm this classification. Therefore, a detached binary config-
1011
+ uration was considered our analysis. In the modelling, we
1012
+ took some parameters fixed, such as the Teff of the hotter
1013
+ component, Porb, q taken from our results and bolometric
1014
+ albedos (Ruci´nski 1969), bolometric gravity-darkening coef-
1015
+ ficient (von Zeipel 1924), and the logarithmic limb darken-
1016
+ ing coefficient (van Hamme 1993) taken the same as given
1017
+ Kahraman Ali¸cavu¸s & Ali¸cavu¸s (2019). The orbital inclina-
1018
+ tion (i), Teff of the cooler component, phase shift (φ), e, a,
1019
+ ω, and dimensionless potential (Ω) of the components were
1020
+ set free.
1021
+ 6 The frequencies given in Sect. 6.
1022
+ © 2021 RAS, MNRAS 000, 1–13
1023
+
1024
+ 8
1025
+ F. Kahraman Ali¸cavu¸s et. al.
1026
+ Table 5. Results of the light curve analysis and the fundamental
1027
+ stellar parameters. The Subscripts 1, 2 and 3 represent the hotter,
1028
+ the cooler, and third binary components, respectively. a Shows
1029
+ the Fixed Parameters.
1030
+ Parameter
1031
+ Value
1032
+ Value
1033
+ Group-K
1034
+ Group-P
1035
+ i (o)
1036
+ 89.866 ± 0.015
1037
+ 89.837 ± 0.136
1038
+ T 1a (K)
1039
+ 7700 ± 100
1040
+ 7330 ± 170
1041
+ T 2 (K)
1042
+ 7180 ± 230
1043
+ 7210 ± 150
1044
+ Ω1
1045
+ 11.412 ± 0.046
1046
+ -
1047
+ Ω2
1048
+ 8.961 ± 0.035
1049
+ -
1050
+ Phase shift
1051
+ -0.0310 ± 0.0001
1052
+ -
1053
+ q
1054
+ 1.074a
1055
+ 1.075
1056
+ r1∗ (mean)
1057
+ 0.1001 ± 0.0036
1058
+ 0.1015 ± 0.0005
1059
+ r2∗ (mean)
1060
+ 0.1412 ± 0.0026
1061
+ 0.1412 ± 0.0006
1062
+ l1 / (l1+l2)
1063
+ 0.381 ± 0.016
1064
+ 0.374 ±0.02
1065
+ l2 / (l1+l2)
1066
+ 0.619 ± 0.016
1067
+ 0.616 ± 0.02
1068
+ l3
1069
+ 0.0
1070
+ 0.0
1071
+ Derived Quantities
1072
+ M1 (M⊙)
1073
+ 1.950 ± 0.033
1074
+ 1.950 ± 0.033
1075
+ M2 (M⊙)
1076
+ 2.096 ± 0.035
1077
+ 2.096 ± 0.035
1078
+ R1 (R⊙)
1079
+ 2.754 ± 0.015
1080
+ 2.787 ± 0.020
1081
+ R2 (R⊙)
1082
+ 3.863 ± 0.021
1083
+ 3.877 ± 0.026
1084
+ log (L1/L⊙)
1085
+ 1.381 ± 0.034
1086
+ 1.311 ± 0.081
1087
+ log (L2/L⊙)
1088
+ 1.554 ± 0.035
1089
+ 1.549 ± 0.097
1090
+ log g1 (cgs)
1091
+ 3.848 ± 0.003
1092
+ 3.838 ± 0.005
1093
+ log g2 (cgs)
1094
+ 3.586 ± 0.003
1095
+ 3.582 ± 0.005
1096
+ Mbol1 (mag)
1097
+ 1.30 ± 0.08
1098
+ 1.474 ± 0.202
1099
+ Mbol2 (mag)
1100
+ 0.87 ± 0.08
1101
+ 0.877 ± 0.243
1102
+ MV 1 (mag)
1103
+ 1.25 ± 0.08
1104
+ 1.424 ± 0.208
1105
+ MV 2 (mag)
1106
+ 0.79 ± 0.08
1107
+ 0.822 ± 0.258
1108
+ Distance (pc)
1109
+ 659 ± 30
1110
+ 642 ± 36
1111
+ As a result of this analysis, the fundamental parameters
1112
+ of both components of AI Hya were calculated. Additionally,
1113
+ the bolometric (Mbol) and absolute (MV ) magnitudes were
1114
+ estimated. The jktabsdim code (Southworth, Maxted, &
1115
+ Smalley 2004b) and the bolometric correction (Eker et al.
1116
+ 2020) are used in the calculations of these parameters. The
1117
+ outcome of the binary modelling is given in Table 5 and the
1118
+ consistency of the theoretical light curve with the observa-
1119
+ tion is shown in Fig. 8.
1120
+ When the results of this analysis were examined, one
1121
+ can notice that the more luminous star is the more massive
1122
+ and also the cooler component. This result is consistent with
1123
+ the results found in the vr analysis by group-K.
1124
+ 5.2
1125
+ Group-P
1126
+ Aiming to determine precise physical and orbital parame-
1127
+ ters of AI Hya, we performed its modelling in version 40 of
1128
+ the jktebop (Southworth, Maxted, & Smalley 2004b). This
1129
+ program is written by J. Southworth and aimed at modelling
1130
+ light curves of detached eclipsing binaries and is based on
1131
+ the ebop program (Popper & Etzel 1981). The code treats
1132
+ stars as spheres to calculate the eclipse shapes, and biaxial
1133
+ ellipsoids to calculate proximity effects. The light curves are
1134
+ calculated by numerical integration of concentric circles over
1135
+ each stellar surface. It can deal with stellar oblateness of up
1136
+ Figure 8. Theoretical binary modelling fit without spot assump-
1137
+ tion (solid-line) (Group-K).
1138
+ to 4% making it a good choice for AI Hya. The photometric
1139
+ data remain the same as used by Group-K.
1140
+ The parameters set as free are Porb, time of minima
1141
+ of the primary eclipse To, inclination i, eccentricity e, ar-
1142
+ gument of periastron ω, surface brightness ratio J (sec-
1143
+ ondary/primary), ratio of radii ( rA
1144
+ rB ), and the sum of radii
1145
+ (rA+rB). These radii are relative to the semi-major axis. For
1146
+ the limb darkening coefficients, we use a logarithmic law and
1147
+ set their initial values according to Claret (2017). The coef-
1148
+ ficients were fixed for the initial fit and were perturbed at
1149
+ the error estimation step.
1150
+ The code gives an option to include multiple sine and
1151
+ polynomial functions during the light curve modelling to ac-
1152
+ count for periodic and long-term trends. We use this func-
1153
+ tionality to our advantage to pseudo-model the observed
1154
+ pulsations so that their effect on the binary model is mini-
1155
+ mal, giving us an improved precision. We analyse the out-of-
1156
+ eclipse portions of the light curve using pyriod7, and use the
1157
+ frequencies to initialise the sinusoids in the jktebop input
1158
+ files. This is done in an iterative way where we add one sine
1159
+ with a constant period and fit for its epoch and amplitude.
1160
+ The frequency is kept if the model is improved significantly;
1161
+ otherwise the next most prominent frequency is taken. In
1162
+ this analysis, we used a total of 9 sines, which is the limit
1163
+ for jktebop. The number of independent frequencies of AI
1164
+ Hya is higher than this maximum limit, hence we are left
1165
+ with some residual pulsation signals as seen in Figure 9 and
1166
+ Figure 10.
1167
+ Once the sines are fixed to the best fit values of epoch,
1168
+ period and amplitudes, we make the Monte Carlo runs for
1169
+ error estimation. The results of this analysis are mentioned
1170
+ in Table 5, in comparison to the values obtained by group-K.
1171
+ Similarly to the other group, we used the results of vr, and
1172
+ jktebop solutions to calculate a set of absolute parameters,
1173
+ including masses, radii, luminosities, and distance. The ef-
1174
+ fective temperatures mentioned in the table are an average
1175
+ over the sum of Teff obtained from gssp and iSpec analysis.
1176
+ 7 https://github.com/keatonb/Pyriod
1177
+ © 2021 RAS, MNRAS 000, 1–13
1178
+
1179
+ 1.0
1180
+ 0.9
1181
+ xnl
1182
+ Normalised f
1183
+ 0.8
1184
+ 0.7
1185
+ 0.6
1186
+ Data
1187
+ Model
1188
+ 0.03
1189
+ Res.
1190
+ 0.00
1191
+ 0.03
1192
+ 0.0
1193
+ 0.1
1194
+ 0.2
1195
+ 0.3
1196
+ 0.4
1197
+ 0.5
1198
+ 0.6
1199
+ 0.7
1200
+ 0.8
1201
+ 0.9
1202
+ 1.0
1203
+ 1.1
1204
+ 1.2
1205
+ PhaseComprehensive study of AI Hya
1206
+ 9
1207
+ Figure 9. jktebop model with 9 sines used to model the pulsa-
1208
+ tions (Group-P).
1209
+ Figure 10. Zoomed-in view of the model over an orbit (Group-
1210
+ P).
1211
+ 6
1212
+ FREQUENCY ANALYSIS OF THE
1213
+ PULSATIONS
1214
+ AI Hya was observed by TESS during observation sector 7
1215
+ in January/February 2019. We used the Simple Aperture
1216
+ Photometry data from the 2-min cadence light curves avail-
1217
+ able at the Mikulski Archive for Space Telescopes8 (MAST).
1218
+ This time series spans 24.45 d and contains 16362 measure-
1219
+ ments. To determine the pulsation frequencies, we used only
1220
+ the data that were taken out of eclipse, which reduced the
1221
+ data set to 14019 measurements (time span 24.07 d).
1222
+ This time series was analysed using the Period04 soft-
1223
+ ware (Lenz & Breger 2005) by group-K. This package applies
1224
+ single-frequency power spectrum analysis and simultaneous
1225
+ multi-frequency sine-wave fitting. These sine-wave fits are
1226
+ subtracted from the data and the residuals examined for
1227
+ the presence of further periodicities. The application of this
1228
+ procedure to AI Hya is illustrated in Fig. 11.
1229
+ During such a process, it is important to decide where
1230
+ to stop. Often this is facilitated via the application of SNR
1231
+ criteria. In this work, we have adopted the strategy proposed
1232
+ by Breger et al. (1993) which is to compute the ratio of the
1233
+ signal amplitude relative to the local noise level to deter-
1234
+ mine whether the frequency under consideration represents
1235
+ a significant detection. Whereas Breger et al. (1993) propose
1236
+ SNR > 4 for a detection, recent findings for space-based data
1237
+ 8 https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
1238
+ Figure 11. The Fourier Transform of the out-of-eclipse TESS
1239
+ light curve of AI Hya (top) and subsequent prewhitening steps.
1240
+ The blue arrows denote the signals detected. Outside of the fre-
1241
+ quency range shown no significant signal is present.
1242
+ Table 6. A least squares fit of the pulsation frequencies of AI
1243
+ Hya. Formal error estimates for the independent frequencies and
1244
+ phases (Montgomery & O’Donoghue 1999) are given in braces in
1245
+ units of the last digits after the comma.
1246
+ Frequency
1247
+ Amplitude
1248
+ SNR
1249
+ d−1
1250
+ mmag
1251
+ ±0.02
1252
+ ν1
1253
+ 6.2412(1)
1254
+ 4.75
1255
+ 54.2
1256
+ ν2
1257
+ 9.2654(4)
1258
+ 1.18
1259
+ 9.7
1260
+ ν3
1261
+ 9.9065(4)
1262
+ 1.20
1263
+ 9.4
1264
+ ν4
1265
+ 12.715(1)
1266
+ 0.48
1267
+ 4.5
1268
+ ν5
1269
+ 12.928(1)
1270
+ 0.54
1271
+ 5.4
1272
+ ν6
1273
+ 9.3689(4)
1274
+ 1.42
1275
+ 11.5
1276
+ 3νorb
1277
+ 0.3619
1278
+ 1.76
1279
+ 7.5
1280
+ 4νorb
1281
+ 0.4825
1282
+ 1.32
1283
+ 5.9
1284
+ ν7
1285
+ 5.5599(7)
1286
+ 0.78
1287
+ 8.3
1288
+ ν8
1289
+ 5.7804(1)
1290
+ 0.69
1291
+ 7.5
1292
+ 2νorb
1293
+ 0.2413
1294
+ 1.75
1295
+ 7.3
1296
+ ν9
1297
+ 5.6375(7)
1298
+ 0.73
1299
+ 7.7
1300
+ ν10
1301
+ 7.136(1)
1302
+ 0.37
1303
+ 6.0
1304
+ ν11
1305
+ 7.751(1)
1306
+ 0.39
1307
+ 5.2
1308
+ ν12
1309
+ 9.3051(6)
1310
+ 0.82
1311
+ 6.7
1312
+ ν13
1313
+ 9.8432(8)
1314
+ 0.69
1315
+ 5.3
1316
+ ν3 + ν7
1317
+ 15.464(1)
1318
+ 0.43
1319
+ 5.6
1320
+ (e.g., Baran & Koen 2021) suggest that a more conservative
1321
+ limit must be chosen. Given the restricted frequency range
1322
+ in which we search for periodicities, our requirement was
1323
+ SNR > 4.5. Furthermore, in unresolved frequency spectra,
1324
+ the periodic content present in the time series can easily
1325
+ be overinterpreted (Balona 2014) which suggests caution re-
1326
+ garding the present data set. Consequently, we stopped the
1327
+ frequency search after the detection of 17 signals (lowest
1328
+ panel of Fig. 11). More periodicities are certainly present,
1329
+ but these need to await a longer data set for reliable detec-
1330
+ tion. We list the frequency solution so derived in Table 6.
1331
+ © 2021 RAS, MNRAS 000, 1–13
1332
+
1333
+ 8.5
1334
+ 8.6
1335
+ 8.7
1336
+ 08.8
1337
+ a
1338
+ M
1339
+ 8.9
1340
+ 9.0
1341
+ Data
1342
+ 9.1
1343
+ Model
1344
+ Residuals
1345
+ 0.01
1346
+ Resi.
1347
+ 0.00
1348
+ 0.01
1349
+ 0.0
1350
+ 0.2
1351
+ 0.4
1352
+ 0.6
1353
+ 0.8
1354
+ 1.0
1355
+ 1.2
1356
+ Phase8.48
1357
+ 8.49
1358
+ 0
1359
+ 8.50
1360
+ 8.51
1361
+ Data
1362
+ Model
1363
+ 1494
1364
+ 1496
1365
+ 1495
1366
+ 1498
1367
+ 1497
1368
+ 1499
1369
+ 1500
1370
+ 1501
1371
+ 1502
1372
+ Time (ID-2457000) days10
1373
+ F. Kahraman Ali¸cavu¸s et. al.
1374
+ This table also contains three harmonics of the orbital
1375
+ period. These are not pulsation frequencies, but a conse-
1376
+ quence of residual binary-induced variability (see Section on
1377
+ binary modeling for a discussion). The pulsation frequencies
1378
+ themselves were found in an interval between 5.5 – 13.0 d−1,
1379
+ with one possible combination frequency. It is however not
1380
+ clear whether this is a real combination or just a numeri-
1381
+ cal coincidence keeping in mind the short data set, hence
1382
+ poor frequency resolution. Our frequency solution is similar
1383
+ to that reported by Lee, Hong, & Kristiansen (2020) apart
1384
+ from their identification of possible combination frequencies
1385
+ that are partly implausible.
1386
+ To use the pulsations to learn more about the indi-
1387
+ vidual components by applying asteroseismic methods, it
1388
+ is essential to know from which star the pulsations orig-
1389
+ inate. A quick look at the TESS light curve reveals that
1390
+ pulsations are clearly visible during the total part of the
1391
+ primary eclipse, meaning that the secondary is the source
1392
+ of the highest amplitude oscillations. However, both com-
1393
+ ponents of AI Hya are located within the pulsational in-
1394
+ stability strip of the δ Scuti stars (Murphy et al. 2019, see
1395
+ Fig. 12), thus the primary may pulsate as well. δ Scuti stars
1396
+ generally pulsate in pressure and mixed modes of low ra-
1397
+ dial order (e.g., Breger 2000). Using the stellar parameters
1398
+ from Table 5, we can compute the expected frequency of the
1399
+ radial fundamental mode of both pulsators from the pulsa-
1400
+ tion constant Q = P
1401
+
1402
+ ρ/ρ⊙ = PM 1/2R−3/2, assuming Q to
1403
+ be 0.033 d for this mode (Fitch 1981). We thus expect the
1404
+ radial fundamental mode frequency of the primary compo-
1405
+ nent to be around 9.3 d−1, and around 5.8 d−1 for the sec-
1406
+ ondary component, respectively. In Table 6 oscillation fre-
1407
+ quencies around both these values are seen, which allows
1408
+ no more than the educated guess that the pulsations below
1409
+ ∼ 8 d−1 would arise from the secondary component, whereas
1410
+ the higher frequency modes could originate from either star.
1411
+ A determination of the origin of the pulsations from the
1412
+ orbital light time effect is unfortunately out of reach. The
1413
+ expected light time effect would be about 30 s (cf. Table 2).
1414
+ An attempt to measure the effect for the strongest pulsa-
1415
+ tion frequency yielded 35 ± 111 s, a null result. To conclude,
1416
+ because it is impossible to say with confidence which pulsa-
1417
+ tion frequencies arise from which component of AI Hya, an
1418
+ asteroseismic analysis cannot be carried out.
1419
+ 7
1420
+ EVOLUTIONARY MODELS
1421
+ The evolutionary status of the binary components was ex-
1422
+ amined by utilizing the Modules for Experiments in Stel-
1423
+ lar Astrophysics (mesa) evolution code (Paxton et al. 2011,
1424
+ 2013) which includes a binary module (Paxton et al. 2015) to
1425
+ examine the binary orbital evolution and to determine the
1426
+ initial parameters of binary systems. In this examination,
1427
+ various evolutionary models were generated considering dif-
1428
+ ferent metallicity (Z). In the models, MESA equation-of-
1429
+ state (EOS) were used. The EOS tables are based on the
1430
+ OPAL EOS tables (Rogers & Nayfonov 2002). The OPAL
1431
+ opacity tables and the default solar mixtures were adopted
1432
+ as Z initial fraction from Asplund et al. (2009). Helium
1433
+ mass fraction were taken Y=0.28, for Z=0.02. Convective
1434
+ core overshoot was described by the exponentially decaying
1435
+ prescription of Herwig (2000) and overshooting parameter
1436
+ adopted 0.20 for both components (Claret & Torres (2016)
1437
+ find 0.208 for both components). A mixing length αMLT
1438
+ value of 1.8 was used as the theoretical δ Scuti instability
1439
+ strip (Dupret et al. 2004, 2005) was obtained with this αMLT
1440
+ value.
1441
+ Taking into account the calculated parameters in the
1442
+ binary modelling for both groups, the evolutionary status
1443
+ of the binary components was investigated. As a result, we
1444
+ found that the secondary (more luminous) binary compo-
1445
+ nent can be represented with the same evolutionary tracks
1446
+ according to both groups’ results. However, the less lumi-
1447
+ nous primary component’s position was determined with
1448
+ different Z parameters as the parameters of this star were
1449
+ found to be slightly different in the study of the two groups.
1450
+ According to the evolutionary models, the Z parameters of
1451
+ both binary components were found similar to solar (As-
1452
+ plund et al. 2009) within the errors which differs from the
1453
+ results of the groups as we determined that the less luminous
1454
+ component’s atmosphere is somewhat enhanced in metals.
1455
+ The results of this analysis are given in Table 7 and a H-R
1456
+ diagram is shown in Fig. 12. The observational borders of
1457
+ the δ Scuti instability strip were taken from Murphy et al.
1458
+ (2019). As can be seen from the H-R diagram, both binary
1459
+ components are placed inside the δ Scuti instability strip.
1460
+ 8
1461
+ DISCUSSION AND CONCLUSIONS
1462
+ In this analysis, we present the results of the detailed anal-
1463
+ ysis of AI Hya carried out by two independent groups. The
1464
+ system was observed with different high-resolution spectro-
1465
+ graphs (R≳38000). The radial velocity variations of AI Hya
1466
+ were modelled using the vr measurements of both groups
1467
+ and the orbital parameters such as T0, Porb, e and q were
1468
+ updated. The resulting parameters of the analysis of both
1469
+ groups are consistent with each other within the errors and
1470
+ they slightly differ from the results of Popper (1988). Espe-
1471
+ cially the e value shows a discrepancy. Popper (1988) found
1472
+ e to be 0.2301 ± 0.0015 while in our study it was determined
1473
+ as 0.2419 ± 0.0036 and 0.2432 ± 0.0050 by group-P and -K,
1474
+ respectively.
1475
+ Since our high-resolution spectra are spread over all or-
1476
+ bital phases, we were able to derive the atmospheric param-
1477
+ eters of both binary components by modelling either the
1478
+ composite spectra or the spectra of the individual compo-
1479
+ nents after applying spectral disentangling. To derive the
1480
+ atmospheric parameters, v sin i and the chemical composi-
1481
+ tion of the binary components, group-K analysed disentan-
1482
+ gled spectra of the components, while group-P performed
1483
+ their analysis using both the composite and disentangled
1484
+ spectra. As a result, group-K found that the more lumi-
1485
+ nous star is cooler than the less luminous component. They
1486
+ found the Teff
1487
+ values from the Hβ line fit and Fe lines
1488
+ to be 7500 ± 200 K and 7700 ± 100 K for the primary and
1489
+ 7000 ± 150 K and 7200 ± 100 K for the secondary compo-
1490
+ nent, respectively. Group-P used two different codes in their
1491
+ analysis. With the gssp code analysis they found a similar
1492
+ result with group-K even though the resulting Teff values
1493
+ differ from each other, they determined that the more lu-
1494
+ minous star is cooler (7150 ± 250 K) and less luminous one
1495
+ is hotter (7350 ± 300 K). In the iSpec analysis of group-P,
1496
+ Teff values of both components were found similar to the
1497
+ © 2021 RAS, MNRAS 000, 1–13
1498
+
1499
+ Comprehensive study of AI Hya
1500
+ 11
1501
+ Table 7. Results obtained from the best-fit evolutionary models.
1502
+ Parameter
1503
+ Group-K
1504
+ Group-P
1505
+ P initial (days)
1506
+ 8.34 (1)
1507
+ 8.34 (1)
1508
+ einitial
1509
+ 0.242 (2)
1510
+ 0.243 (2)
1511
+ Z1
1512
+ 0.013 (2)
1513
+ 0.016 (2)
1514
+ Z2
1515
+ 0.018 (2)
1516
+ 0.018 (2)
1517
+ Age (Myr)
1518
+ 850 (20)
1519
+ 860 (20)
1520
+ results of the gssp analysis within error bars. The primary’s
1521
+ temperature is the most significant discrepancy between the
1522
+ values derived by the two groups. The exact reason for this
1523
+ temperature inconsistency is not fully understood, although
1524
+ it is still only at a level of ∼1.1σ.
1525
+ In the chemical abundance analysis, both groups found
1526
+ the less luminous but hotter binary component to show
1527
+ overabundance while the other component has chemical
1528
+ abundance similar to solar. Both groups determined the
1529
+ abundances of some individual elements such as iron (Fe).
1530
+ They derived Fe abundances as 8.25 ± 0.23 (group-K) and
1531
+ 7.83 ± 0.16 (group-P). These values are consistent with each
1532
+ other within their 1σ errors, and both demonstrate that the
1533
+ hotter component has a slightly metal-rich chemical abun-
1534
+ dance compared to solar values (see Table 4). This comes
1535
+ somewhat to a surprise, as this binary system should have
1536
+ been formed in the same interstellar environment and hence
1537
+ its components should have the same chemical composition.
1538
+ The difference could be due to the consequences of the evolu-
1539
+ tion of the system. If AI Hya had a very eccentric orbit when
1540
+ the system was formed, there could be some material flows
1541
+ from one component to another that could have changed the
1542
+ diffusion in one component. Another explanation was given
1543
+ by Yushchenko et al. (2015) and they pointed out that pos-
1544
+ sible gas and dust accretion from the circumstellar envelope
1545
+ could alter the atmospheric composition of one component.
1546
+ After the determination of the atmospheric parameters,
1547
+ they were used as input in the binary modelling. Overall,
1548
+ even though both working groups used different approaches
1549
+ to estimate the parameters of the binary component of
1550
+ AI Hya, the values determined by both groups are found to
1551
+ be consistent with each other within the error bars. The two
1552
+ groups obtained very similar M and R values with a ⩽1.7%
1553
+ and ∼0.5% accuracy, respectively. When we compare these
1554
+ values with the ones found by Lee, Hong, & Kristiansen
1555
+ (2020), we notice that there are slight differences, especially
1556
+ in the R parameters, and there is significant diversity in the
1557
+ calculated distance. These differences could be caused by
1558
+ the different assumptions of the atmospheric parameters.
1559
+ The evolutionary status of the system was examined
1560
+ and it was found that both binary components are inside the
1561
+ δ Scuti instability strip. The age of the system is determined
1562
+ as well. According to the determined ages, we could say that
1563
+ AI Hya is in an important evolutionary phase in terms of
1564
+ binary evolution. The rapidly evolving massive component
1565
+ will begin the mass transfer process to the less massive one
1566
+ approximately 20 Myr from now. This situation could cause
1567
+ significant variations in the oscillation properties. Increas-
1568
+ ing the number of such bodies is important in terms of ex-
1569
+ amining the pulsating structures before the mass transfer
1570
+ processes.
1571
+ The pulsation properties of AI Hya were examined us-
1572
+ Figure 12. The positions of the binary components in the H-R
1573
+ diagram according the results of both group-K (g-K) and group-P
1574
+ (g-P). The instability strip (IS) borders of the δ Scuti stars were
1575
+ taken from Murphy et al. (2019).
1576
+ ing the TESS data. However, the system has only one sector
1577
+ of SC data, which offers us a poor frequency resolution. In
1578
+ the analysis, pulsation frequencies were found between 5.5
1579
+ and 13 d−1. As both binary components are placed in the
1580
+ δ Scuti instability strip, we were unable to say whether one
1581
+ or both pulsate. Apart from that, we could not find pulsa-
1582
+ tions related to the orbital frequency.
1583
+ As a result of this study, we thoroughly examined
1584
+ a detached binary system showing oscillations. This kind
1585
+ of objects is particularly important to examine the insta-
1586
+ bility strip of δ Scuti stars since they allow us to deter-
1587
+ mine fundamental astrophysical, atmospheric parameters
1588
+ and the chemical abundances of individual binary compo-
1589
+ nents. Hence an increasing number of analyses of such sys-
1590
+ tems is expected to be essential to deeply understand the
1591
+ nature of pulsations.
1592
+ ACKNOWLEDGMENTS
1593
+ The authors would like to thank the reviewer for useful
1594
+ comments and suggestions that helped to improve the
1595
+ publication. This study has been supported by the Sci-
1596
+ entific and Technological Research Council (TUBITAK)
1597
+ project 120F330. GH thanks the Polish National Center
1598
+ for Science (NCN) for supporting the study through
1599
+ grants 2015/18/A/ST9/00578 and 2021/43/B/ST9/02972.
1600
+ TP’s research is supported through NCN OPUS project
1601
+ number 2017/27/B/ST9/02727. AM’s acknowledges the
1602
+ support provided by the Polish National Science Centre
1603
+ (NCN) OPUS project number 2017/27/B/ST9/02727 and
1604
+ 2021/41/N/ST9/02746. Based on observations made with
1605
+ the Mercator Telescope, operated on the island of La Palma
1606
+ by the Flemish Community, at the Spanish Observatorio
1607
+ del Roque de los Muchachos of the Instituto de Astrof`ısica
1608
+ de Canarias. The TESS data presented in this paper were
1609
+ obtained from the Mikulski Archive for Space Telescopes
1610
+ (MAST). Funding for the TESS mission is provided by
1611
+ © 2021 RAS, MNRAS 000, 1–13
1612
+
1613
+ 2.0
1614
+ tAl Hya
1615
+ 1.8
1616
+ 1.6
1617
+ (L/ Lo)
1618
+ 1.4
1619
+ 1.2
1620
+ Primary (g-K), ☆ Primary (g-P)
1621
+ Secondary (g-K), ☆ Secondary (g-P)
1622
+ 1.950 MO track (Z=0.013)
1623
+ 1.950 MO track (Z=0.016)
1624
+ 1.0
1625
+ 2.096 MO track (Z=0.018)
1626
+ IS
1627
+ 0.8
1628
+ 4.00
1629
+ 3.95
1630
+ 3.90
1631
+ 3.85
1632
+ 3.80
1633
+ 3.75
1634
+ 3.70
1635
+ 3.65
1636
+ 3.60
1637
+ log T (K)12
1638
+ F. Kahraman Ali¸cavu¸s et. al.
1639
+ the NASA Explorer Program. This work has made use
1640
+ of data from the European Space Agency (ESA) mission
1641
+ Gaia (http://www.cosmos.esa.int/gaia), processed by the
1642
+ Gaia Data Processing and Analysis Consortium (DPAC,
1643
+ http://www.cosmos.esa.int/web/gaia/dpac/consortium).
1644
+ Funding for the DPAC has been provided by national
1645
+ institutions, in particular the institutions participating
1646
+ in the Gaia Multilateral Agreement. This research has
1647
+ made use of the SIMBAD data base, operated at CDS,
1648
+ Strasbourq, France.
1649
+ DATA AVAILABILITY
1650
+ The data underlying this work will be shared at reasonable
1651
+ request to the corresponding author.
1652
+ REFERENCES
1653
+ Aerts C., Christensen-Dalsgaard J., Kurtz D. W., 2010,
1654
+ aste.book
1655
+ Antoci
1656
+ V.,
1657
+ Cunha
1658
+ M.,
1659
+ Houdek
1660
+ G.,
1661
+ Kjeldsen
1662
+ H.,
1663
+ Trampedach R., Handler G., L¨uftinger T., et al., 2014,
1664
+ ApJ, 796, 118. doi:10.1088/0004-637X/796/2/118
1665
+ Asplund M., Grevesse N., Sauval A. J., Scott P., 2009,
1666
+ ARA&A, 47, 481
1667
+ Balona L. A., 2014, MNRAS, 439, 3453
1668
+ Baran, A. S. & Koen, C., 2021, AcA, 71, 113
1669
+ Blanco-Cuaresma S., Soubiran C., Heiter U., Jofr´e P., 2014,
1670
+ A&A, 569, A111. doi:10.1051/0004-6361/201423945
1671
+ Borucki W. J., Koch D., Basri G., Batalha N., Brown
1672
+ T., Caldwell D., Caldwell J., et al., 2010, Sci, 327, 977.
1673
+ doi:10.1126/science.1185402
1674
+ Bowman D. M., Kurtz D. W., 2018, MNRAS, 476, 3169.
1675
+ doi:10.1093/mnras/sty449
1676
+ Breger, M., 2000, in Delta Scuti and Related Stars, ed. M.
1677
+ Breger & M. H. Montgomery, ASP Conf. Ser. 210, 3
1678
+ Breger, M., et al., 1993, A&A, 271, 482
1679
+ Catanzaro G., Leone F., Dall T. H., 2004, A&A, 425, 641
1680
+ Catanzaro G., Colombo C., Ferrara C., Giarrusso M., 2022,
1681
+ MNRAS, 515, 4350. doi:10.1093/mnras/stac1723
1682
+ Catanzaro
1683
+ G.,
1684
+ Bus`a
1685
+ I.,
1686
+ Gangi
1687
+ M.,
1688
+ Giarrusso
1689
+ M.,
1690
+ Leone
1691
+ F.,
1692
+ Munari
1693
+ M.,
1694
+ 2019,
1695
+ MNRAS,
1696
+ 484,
1697
+ 2530.
1698
+ doi:10.1093/mnras/stz080
1699
+ Claret
1700
+ A.,
1701
+ 2017,
1702
+ A&A,
1703
+ 600,
1704
+ A30.
1705
+ doi:10.1051/0004-
1706
+ 6361/201629705
1707
+ Claret
1708
+ A.,
1709
+ Torres
1710
+ G.,
1711
+ 2016,
1712
+ A&A,
1713
+ 592,
1714
+ A15.
1715
+ doi:10.1051/0004-6361/201628779
1716
+ Coelho P., Barbuy B., Mel´endez J., Schiavon R. P.,
1717
+ Castilho B. V., 2005, A&A, 443, 735. doi:10.1051/0004-
1718
+ 6361:20053511
1719
+ Dupret M.-A., Grigahc`ene A., Garrido R., Gabriel M., Scu-
1720
+ flaire R., 2004, A&A, 414, L17
1721
+ Dupret M.-A., Grigahc`ene A., Garrido R., Gabriel M.,
1722
+ Scuflaire R., 2005, A&A, 435, 927. doi:10.1051/0004-
1723
+ 6361:20041817
1724
+ Eker Z., Soydugan F., Bilir S., Bakı¸s V., Ali¸cavu¸s F.,
1725
+ ¨Ozer S., Aslan G., et al., 2020, MNRAS, 496, 3887.
1726
+ doi:10.1093/mnras/staa1659
1727
+ Fitch, W. S., 1981, ApJ 249, 218
1728
+ Gaia Collaboration, 2022, Gaia DR3: data release content
1729
+ and main properties. A&A, in prep.
1730
+ Gaulme
1731
+ P.,
1732
+ Guzik
1733
+ J.
1734
+ A.,
1735
+ 2019,
1736
+ A&A,
1737
+ 630,
1738
+ A106.
1739
+ doi:10.1051/0004-6361/201935821
1740
+ Gray
1741
+ R.
1742
+ O.,
1743
+ Corbally
1744
+ C.
1745
+ J.,
1746
+ 1994,
1747
+ AJ,
1748
+ 107,
1749
+ 742.
1750
+ doi:10.1086/116893
1751
+ Gustafsson B., Edvardsson B., Eriksson K., Jørgensen
1752
+ U. G., Nordlund ˚A., Plez B., 2008, A&A, 486, 951.
1753
+ doi:10.1051/0004-6361:200809724
1754
+ Grevesse N., Asplund M., Sauval A. J., 2007, SSRv, 130,
1755
+ 105. doi:10.1007/s11214-007-9173-7
1756
+ Iglesias-Marzoa, R., L´opez-Morales, M., & Jes´us Ar´evalo
1757
+ Morales, M. 2015, pasp, 127,567
1758
+ Handler G., Kurtz D. W., Rappaport S. A., Saio H.,
1759
+ Fuller J., Jones D., Guo Z., et al., 2020, NatAs, 4, 684.
1760
+ doi:10.1038/s41550-020-1035-1
1761
+ Herwig F., 2000, A&A, 360, 952
1762
+ Ilijic S., Hensberge H., Pavlovski K., Freyhammer L. M.,
1763
+ 2004, ASPC, 318, 111
1764
+ Jayasinghe T., et al., 2018, MNRAS, 477, 3145
1765
+ Joergensen H. E., Gronbech B., 1978, A&A, 66, 377
1766
+ Kahraman Ali¸cavu¸s F., et al., 2016, MNRAS, 458, 2307
1767
+ Kahraman Ali¸cavu¸s F., Soydugan E., Smalley B., Kub´at
1768
+ J., 2017, MNRAS, 470, 915. doi:10.1093/mnras/stx1241
1769
+ Kahraman Ali¸cavu¸s F., Ali¸cavu¸s F., 2019, MNRAS, 488,
1770
+ 5279. doi:10.1093/mnras/stz2003
1771
+ Kahraman Ali¸cavu¸s F., G¨um¨u¸s D., Kırmızıta¸s ¨O., Ekinci
1772
+ ¨O., C¸avu¸s S., Kaya Y. T., Ali¸cavu¸s F., 2022, RAA, 22,
1773
+ 085003. doi:10.1088/1674-4527/ac71a4
1774
+ Kambe E., et al., 2013, PASJ, 65, 15 ¸s
1775
+ Konacki
1776
+ M.,
1777
+ Muterspaugh
1778
+ M.
1779
+ W.,
1780
+ Kulkarni
1781
+ S.
1782
+ R.,
1783
+ He�lminiak K. G., 2010, ApJ, 719, 1293. doi:10.1088/0004-
1784
+ 637X/719/2/1293
1785
+ Kreiner J. M., 2004, AcA, 54, 207
1786
+ Kurtz D. W., Handler G., Rappaport S. A., Saio H., Fuller
1787
+ J., Jacobs T., Schmitt A., et al., 2020, MNRAS, 494, 5118.
1788
+ doi:10.1093/mnras/staa989
1789
+ Kurucz R. L., Avrett E. H., 1981, SAOSR, 391,
1790
+ Kurucz R., 1993, KurCD, 13,
1791
+ Lampens
1792
+ P.,
1793
+ 2021,
1794
+ Galax,
1795
+ 9,
1796
+ 28.
1797
+ doi:10.3390/galaxies9020028
1798
+ Lee J. W., Hong K., Kristiansen M. H., 2020, PASJ, 72,
1799
+ 37. doi:10.1093/pasj/psaa020
1800
+ Lenz P., Breger M., 2005, CoAst, 146, 53
1801
+ Leone F., et al., 2016, AJ, 151, 116
1802
+ Liakos
1803
+ A.,
1804
+ Niarchos
1805
+ P.,
1806
+ 2017,
1807
+ MNRAS,
1808
+ 465,
1809
+ 1181.
1810
+ doi:10.1093/mnras/stw2756
1811
+ Montgomery M. H., O’Donoghue D., 1999, Delta Scuti Star
1812
+ Newsletter 13, 28
1813
+ Murphy S., Hey D., Van Reeth, T., Bedding T., 2019, MN-
1814
+ RAS 485, 2380
1815
+ Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P.,
1816
+ Timmes F., 2011, ApJS, 192, 3
1817
+ Paxton B., et al., 2013, ApJS, 208, 4
1818
+ Paxton B., et al., 2015, ApJS, 220, 15
1819
+ Pepe F., Bouchy F., Mayor M., Udry S., 2018, haex.book,
1820
+ 190. doi:10.1007/978-3-319-55333-7 190
1821
+ Pilecki B., Gieren W., Smolec R., Pietrzy´nski G., Thomp-
1822
+ son I. B., Anderson R. I., Bono G., et al., 2017, ApJ, 842,
1823
+ 110. doi:10.3847/1538-4357/aa6ff7
1824
+ Pojma´nski G., 2002, AcA, 52, 397
1825
+ Popper
1826
+ D.
1827
+ M.,
1828
+ Etzel
1829
+ P.
1830
+ B.,
1831
+ 1981,
1832
+ AJ,
1833
+ 86,
1834
+ 102.
1835
+ © 2021 RAS, MNRAS 000, 1–13
1836
+
1837
+ Comprehensive study of AI Hya
1838
+ 13
1839
+ doi:10.1086/112862
1840
+ Popper D. M., 1988, AJ, 95, 190. doi:10.1086/114627
1841
+ Raskin G., et al., 2011, A&A, 526, A69
1842
+ Ricker G. R., Winn J. N., Vanderspek R., Latham D. W.,
1843
+ Bakos G. ´A., Bean J. L., Berta-Thompson Z. K., et al.,
1844
+ 2014, SPIE, 9143, 914320. doi:10.1117/12.2063489
1845
+ Rogers
1846
+ F.
1847
+ J.,
1848
+ Nayfonov
1849
+ A.,
1850
+ 2002,
1851
+ ApJ,
1852
+ 576,
1853
+ 1064.
1854
+ doi:10.1086/341894
1855
+ Ruci´nski S. M., 1969, AcA, 19, 245
1856
+ Smalley B., Gardiner R. B., Kupka F., Bessell M. S., 2002,
1857
+ A&A, 395, 601
1858
+ Southworth
1859
+ J.,
1860
+ Zucker
1861
+ S.,
1862
+ Maxted
1863
+ P.
1864
+ F.
1865
+ L.,
1866
+ Smal-
1867
+ ley B., 2004, MNRAS, 355, 986. doi:10.1111/j.1365-
1868
+ 2966.2004.08389.x
1869
+ Southworth J., Maxted P. F. L., Smalley B., 2004, MNRAS,
1870
+ 351, 1277
1871
+ Southworth J., 2013, A&A, 557, A119. doi:10.1051/0004-
1872
+ 6361/201322195
1873
+ Southworth
1874
+ J.,
1875
+ 2021,
1876
+ Univ,
1877
+ 7,
1878
+ 369.
1879
+ doi:10.3390/universe7100369
1880
+ Stancliffe R. J., Fossati L., Passy J.-C., Schneider F. R. N.,
1881
+ 2015, A&A, 575, A117. doi:10.1051/0004-6361/201425126
1882
+ Stassun K. G., Oelkers R. J., Paegert M., Torres G., Pep-
1883
+ per J., De Lee N., Collins K., et al., 2019, AJ, 158, 138.
1884
+ doi:10.3847/1538-3881/ab3467
1885
+ Shulyak D., Tsymbal V., Ryabchikova T., St¨utz C.,
1886
+ Weiss W. W., 2004, A&A, 428, 993. doi:10.1051/0004-
1887
+ 6361:20034169
1888
+ Torres G., Andersen J., Gim´enez A., 2010, A&ARv, 18, 67.
1889
+ doi:10.1007/s00159-009-0025-1
1890
+ Tsymbal V., 1996, ASPC, 108, 198
1891
+ Uytterhoeven K., Moya A., Grigahc`ene A., Guzik J. A.,
1892
+ Guti´errez-Soto J., Smalley B., Handler G., et al., 2011,
1893
+ A&A, 534, A125. doi:10.1051/0004-6361/201117368
1894
+ van Hamme W., 1993, AJ, 106, 2096
1895
+ von Zeipel H., 1924, MNRAS, 84, 665
1896
+ Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605
1897
+ Yushchenko A. V., Gopka V. F., Kang Y.-W., Kim C., Lee
1898
+ B.-C., Yushchenko V. A., Dorokhova T. N., et al., 2015,
1899
+ AJ, 149, 59. doi:10.1088/0004-6256/149/2/59
1900
+ Zucker
1901
+ S.,
1902
+ Mazeh
1903
+ T.,
1904
+ 1994,
1905
+ ApJ,
1906
+ 420,
1907
+ 806.
1908
+ doi:10.1086/173605
1909
+ Zola S., et al., 2004, AcA, 54, 299
1910
+ Zola S., Gazeas K., Kreiner J. M., Ogloza W., Siwak M.,
1911
+ Koziel-Wierzbowska D., Winiarski M., 2010, MNRAS,
1912
+ 408, 464
1913
+ Rucinski S., 1999, ASPC, 185, 82
1914
+ Gray D. F., 2005, oasp.book
1915
+ Claret
1916
+ A.,
1917
+ Bloemen
1918
+ S.,
1919
+ 2011,
1920
+ A&A,
1921
+ 529,
1922
+ A75.
1923
+ doi:10.1051/0004-6361/201116451
1924
+ Rucinski S., 1999, TJPh, 23, 271
1925
+ Tkachenko A., 2015, A&A, 581, A129. doi:10.1051/0004-
1926
+ 6361/201526513
1927
+ Table A1. The vr measurements. The subscripts “1” and “2”
1928
+ represent the more and the less luminous components, respec-
1929
+ tively.
1930
+ HJD
1931
+ vr,1
1932
+ vr,2
1933
+ Instrument
1934
+ +2450000
1935
+ (km s−1)
1936
+ (km s−1)
1937
+ 9263.45270
1938
+ -12.6 ± 2.8
1939
+ 109.3 ± 2.7
1940
+ CAOS
1941
+ 9161.65803
1942
+ 132.8 ± 1.8
1943
+ -48.3 ± 1.7
1944
+ HERMES
1945
+ 9162.64306
1946
+ 109.8 ± 2.0
1947
+ -21.7 ± 1.5
1948
+ HERMES
1949
+ 9230.65226
1950
+ 121.5 ± 1.6
1951
+ -24.7 ± 1.8
1952
+ HERMES
1953
+ 9231.66393
1954
+ 124.1 ± 1.7
1955
+ -24.9 ± 1.7
1956
+ HERMES
1957
+ 9233.62648
1958
+ 59.8 ± 5.7
1959
+ 36.1 ± 3.4
1960
+ HERMES
1961
+ 9234.55784
1962
+ 20.6 ± 2.1
1963
+ 72.1 ± 2.5
1964
+ HERMES
1965
+ 9237.61273
1966
+ 15.0 ± 1.6
1967
+ 77.3 ± 1.5
1968
+ HERMES
1969
+ 9235.43315
1970
+ -46.3 ± 1.5
1971
+ 130.3 ± 1.8
1972
+ HERMES
1973
+ 9257.49195
1974
+ 98.8 ± 1.8
1975
+ -2.9 ± 2.0
1976
+ HERMES
1977
+ 9260.61123
1978
+ -33.9 ± 1.7
1979
+ 117.9 ± 1.9
1980
+ HERMES
1981
+ 9276.55613
1982
+ 96.6 ± 2.0
1983
+ -8.4 ± 1.2
1984
+ HERMES
1985
+ 9296.42427
1986
+ 88.7 ± 1.7
1987
+ -3.8 ± 2.0
1988
+ HERMES
1989
+ 9297.44747
1990
+ 126.7 ± 1.8
1991
+ -37.4 ± 2.2
1992
+ HERMES
1993
+ 9298.45846
1994
+ 113.5 ± 1.7
1995
+ -16.0 ± 1.8
1996
+ HERMES
1997
+ 9299.46357
1998
+ 78.1 ± 2.1
1999
+ 12.5 ± 2.3
2000
+ HERMES
2001
+ 7075.62231
2002
+ -39.7 ± 1.5
2003
+ 129.9 ± 0.5
2004
+ CORALIE
2005
+ 7076.63954
2006
+ -20.4 ± 1.2
2007
+ 120.0 ± 1.3
2008
+ CORALIE
2009
+ 7109.63123
2010
+ -17.9 ± 2.4
2011
+ 126.0 ± 1.3
2012
+ CORALIE
2013
+ 7022.31643
2014
+ 118.5 ± 1.9
2015
+ -31.4 ± 0.5
2016
+ HIDES
2017
+ 7060.09414
2018
+ -13.6 ± 0.7
2019
+ 118.2 ± 0.6
2020
+ HIDES
2021
+ 7109.96513
2022
+ -18.6 ± 1.1
2023
+ 114.6 ± 0.6
2024
+ HIDES
2025
+ 7114.92732
2026
+ 120.1 ± 1.2
2027
+ -34.0 ± 0.7
2028
+ HIDES
2029
+ 7146.98403
2030
+ 118.5 ± 1.3
2031
+ -42.9 ± 0.8
2032
+ HIDES
2033
+ 7147.96084
2034
+ 131.3 ± 1.2
2035
+ -42.3 ± 0.6
2036
+ HIDES
2037
+ 7363.28986
2038
+ 135.7 ± 0.6
2039
+ -48.4 ± 0.7
2040
+ HIDES
2041
+ 7755.22744
2042
+ -34.0 ± 0.7
2043
+ 126.5 ± 0.7
2044
+ HIDES
2045
+ 7813.13416
2046
+ -25.2 ± 0.8
2047
+ 124.3 ± 0.9
2048
+ HIDES
2049
+ 7814.08321
2050
+ -28.3 ± 0.9
2051
+ 126.6 ± 0.9
2052
+ HIDES
2053
+ 7846.01822
2054
+ -10.8 ± 1.7
2055
+ 113.4 ± 1.0
2056
+ HIDES
2057
+ 8035.34461
2058
+ 101.6 ± 0.7
2059
+ -13.9 ± 0.8
2060
+ HIDES
2061
+ 8066.24908
2062
+ 85.2 ± 0.8
2063
+ -4.1 ± 1.3
2064
+ HIDES
2065
+ This paper has been typeset from a TEX/ LATEX file prepared
2066
+ by the author.
2067
+ © 2021 RAS, MNRAS 000, 1–13
2068
+
4NE3T4oBgHgl3EQfQAnJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4tFIT4oBgHgl3EQf7Ctv/content/2301.11396v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c34e9fdcac538452e1b0b8fed87ac7cf9cfab239f87c3b0eb8dc377a1293062
3
+ size 1727682
4tFIT4oBgHgl3EQf7Ctv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50def715f9ed1d2ca9d3a8a54901cca3900bdd97f2beb1c71ed2cebc8587880e
3
+ size 4259885
4tFIT4oBgHgl3EQf7Ctv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:436080ac86a600c01de70ef846d0b00b89e5010bbdb65254ef928d7a2791292c
3
+ size 157212
5dE1T4oBgHgl3EQf6gWk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a72fca7fdf7da2bf0fbd049f445fcb360035c4113e190fbbdc1330feb584cb0
3
+ size 5963821
6NE1T4oBgHgl3EQfTQM9/content/tmp_files/2301.03075v1.pdf.txt ADDED
@@ -0,0 +1,1491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03075v1 [math.DS] 8 Jan 2023
2
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN
3
+ MAPPINGS AND SMOOTHNESS ANALYSIS
4
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
5
+ Abstract. Let T be a self-map on a metric space (X, d). Then T is called
6
+ Kannan map if there exists α, 0 < α < 1
7
+ 2, such that
8
+ d(T(x), T(y)) ≤ α[d(x, T(x)) + d(y, T(y))], for all x, y ∈ X.
9
+ This paper aims to introduce a new method to construct fractal functions
10
+ using Kannan mappings. First, we give the rigorous construction of fractal
11
+ functions with the help of the Kannan iterated function system (IFS). We also
12
+ show the existence of a Borel probability measure supported on the attractor
13
+ of the Kannan IFS satisfying the strong separation condition. Moreover, we
14
+ study the smoothness of the constructed fractal functions. We end the paper
15
+ with some examples and graphical illustrations.
16
+ 1. INTRODUCTION
17
+ The concept of fractal interpolation function (FIF) was introduced by Barnsley
18
+ [2, 3] through iterated function system (IFS), and their construction is rooted in the
19
+ theory of IFS [9]. The FIF is an interpolation function whose graph is an invariant
20
+ set of an IFS. The pioneering research on fractal interpolation has gotten much at-
21
+ tention in the literature, and it continues to flourish. The concept of FIF has been
22
+ extended and generalized in several ways given in the literature. Wang and Yu [27]
23
+ gave the construction of new class IFSs with variable parameters and generated as-
24
+ sociated FIFs. Also, they studied the smoothness and stability of FIFs under some
25
+ conditions on data points. The construction of nonlinear FIF using Matkowski and
26
+ the Rakotch fixed point theorems is given in [20]. In this order, Songli [21] gave
27
+ the construction of nonlinear FIF on Sierpi´nski gasket. The reader may refer to
28
+ books [3, 16] for the details on fractal functions. The fractal dimension is one of
29
+ the major themes in fractal geometry. Many works on the fractal dimensions of
30
+ fractals functions are in the literature. There are various approaches, such as the
31
+ mass-distribution principle, potential theory, Fourier transform, positive operators,
32
+ etc., to compute or estimate the Hausdorff dimension of a set [11, 26]. Using the
33
+ potential theoretic approach, Barnsley gave results on the Hausdorff dimension of
34
+ an affine FIF in [3]. Falconer [11] also gave the estimate of the Hausdorff dimension
35
+ of an affine FIF. The results on the Hausdorff dimension using the positive oper-
36
+ ators approach are given in [26]. Priyadarshi [19] gave an algorithm to determine
37
+ lower bounds for the Hausdorff dimension of a set of complex continued fractions
38
+ and estimated the best lower bound. Jha and Verma [12] established very inter-
39
+ esting results for fractal dimensions of fractal functions and some invariant sets.
40
+ 2020 Mathematics Subject Classification.
41
+ 28A80, 47H10, 28A33, 28A78.
42
+ Key words and phrases. Kannan IFS, Fractal Functions, Borel Probability Measure, Fractal
43
+ Dimension.
44
+ 1
45
+
46
+ 2
47
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
48
+ They estimated fractal dimensions for a class of FIFs, widely known as α-fractal
49
+ functions, by using function spaces such as H¨older space, oscillation space, and
50
+ space of bounded variation. Ruan et al. [22] estimated the box dimension of the
51
+ new class of linear FIFs by using the δ-covering method. Additionally, they have
52
+ established a relationship between the order of fractional integral and box dimen-
53
+ sions of two linear FIFs. As we know, recurrent FIF is the generalization of linear
54
+ FIF, and the graph of recurrent FIF is the invariant set of recurrent IFS. Barnsley
55
+ and Massopust [4] gave results on the bilinear FIFs and their box dimension. Few
56
+ recent developments on fractal dimensions can be seen in [6, 24, 25]. Cheng et
57
+ al. [6] introduced the notion of upper metric mean dimension with potential on
58
+ any subset via Carath´eodory-Pesin structures. Selmi [24] studied the multifractal
59
+ Hausdorff and packing dimensions of Borel probability measures and studied their
60
+ behaviors under orthogonal projections. In this order, Selimi estimated the multi-
61
+ fractal Hausdorff and the packing dimensions of product measures in [25].
62
+ Barnsley [2, 3] considered the collection of self-contraction mappings and used the
63
+ Hutchinson operator and Banach fixed point principle to construct fractal functions.
64
+ Kannan [13, 14] introduced a new fixed point theorem widely known as Kannan
65
+ fixed point theorem.
66
+ Other related results on Kannan mapping can be seen in
67
+ [8, 10]. By using the concept of Kannan mapping, Sahu et al. [23] introduced the
68
+ notion of the Kannan iterated function system.
69
+ Theorem 1.1. [14] Let T is a map of the complete metric space X into itself and
70
+ if
71
+ d(T (x), T (y)) ≤ α[d(x, T (x)) + d(y, T (y))], ∀ x, y ∈ X, 0 < α < 1
72
+ 2.
73
+ Then T has the unique fixed point in X.
74
+ A natural question arises can we construct fractal functions using the concept
75
+ of Kannan fixed point theory? This question motivates us to conduct the current
76
+ study. In this study, we use the concept of Kannan IFS and Kannan fixed point
77
+ theorem and derive very interesting results.
78
+ This paper is organized as follows: Section 2 is devoted to preliminaries and required
79
+ terminologies related to this article. Section 3 presents the construction of fractal
80
+ functions and the existence of self-similar measures. In Section 4, the smoothness
81
+ result of the Kannan fractal function is given. The graphical illustration of the
82
+ Kannan fractal functions is given in Section 5.
83
+ 2. Background and preliminaries
84
+ This section aims to provide some basic definitions and results that act as prelude
85
+ to this article. Let F ̸= ∅ be a subset of Rn. The diameter of F is given by
86
+ diamd(F) = sup {d(x, y) : x, y ∈ F} .
87
+ If {Fi} is a countable (or finite) collection of sets having a diameter at most δ
88
+ which cover set E ⊆ Rn, then we say that {Fi} is a δ-cover of E. For δ > 0 and a
89
+ non-negative real number s, we define
90
+ Hs
91
+ δ,d(E) = inf
92
+ � ∞
93
+
94
+ i=1
95
+ diamd(Fi)s : {Fi} is a δ − cover of E
96
+
97
+ .
98
+ Definition 2.1. The s-dimensional Hausdorff measure of set E is given by Hs(E) =
99
+ limδ→0 Hs
100
+ δ (E).
101
+
102
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
103
+ 3
104
+ Definition 2.2. ( Hausdorff dimension) Let s ≥ 0 and E ⊆ Rn. The Hausdorff
105
+ dimension of E is defined as
106
+ dimH(E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) = ∞}.
107
+ Definition 2.3. (Box Dimension) Let E ⊆ Rn be bounded and non-empty and let
108
+ Nδ(E) be the smallest number of sets of diameter at most δ which cover E. The
109
+ lower box dimension of E is
110
+ dimB(E) = lim
111
+ δ→0
112
+ log Nδ(E)
113
+ − log δ
114
+ ,
115
+ and the upper box dimension of E is
116
+ dimB(E) = lim
117
+ δ→0
118
+ log Nδ(E)
119
+ − log δ
120
+ ,
121
+ If both lower and upper box dimensions are the same, then that quantity is called
122
+ the box dimension of E and it is given by
123
+ dimB(E) = lim
124
+ δ→0
125
+ log Nδ(E)
126
+ − log δ
127
+ .
128
+ For the details on the Hausdorff and box dimensions, the reader may be referred
129
+ to [11].
130
+ Definition 2.4. Let d1 and d2 are two matrices on X, then d1 and d2 are topo-
131
+ logically equivalent if and only if
132
+ d1(xn, x) → 0 ⇐⇒ d2(xn, x) → 0,
133
+ for {xn} ⊂ X and x ∈ X.
134
+ Let d1 and d2 are two matrices on X, then d1 and d2 are metrically equivalent if
135
+ and only if there exists c1, c2 > 0 and x, y ∈ X such that
136
+ c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y).
137
+ Fractal Interpolation Function. Now, we introduce FIF in brief.
138
+ Here, we
139
+ consider a set for interpolation as {(xn, yn) : n = 1, 2, . . . , N}.
140
+ We set J =
141
+ {1, 2, ..., N − 1}, I = [x1, xN] and for j ∈ J, let Ij = [xj, xj+1]. For j ∈ J, let
142
+ Lj : I → Ij be a contractive homomorphism such that
143
+ Lj(x1) = xj, Lj(xN) = xj+1, j ∈ J.
144
+ Now, define Fj : K = I × R → R, j ∈ J, which is a contraction in the second
145
+ variable, that is, |Fj(x, y) − Fj(x, y′)|≤ rj|y − y′|, for all x ∈ I, rj ∈ [0, 1) and
146
+ y, y′ ∈ R and satisfying Fj(x1, y1) = yj, Fj(xN, yN) = yj+1, j ∈ J. We shall take
147
+ (2.1)
148
+ Lj(x) = ajx + bj Fj(x, y) = αjy + qj(x),
149
+ In the above expression aj and bj are determined by using conditions Lj(x1) =
150
+ xj, Lj(xN) = xj+1. Here, αj is the scaling factor with |αj|< 1 and continuous
151
+ functions qj : I → R, j ∈ J satisfy “join-up conditions” imposed for the bivariate
152
+ maps Fj. That is, qj(x1) = yj − αjy1 and qj(xN) = yj+1 − αjyN for all j ∈ J. Now
153
+ define functions Wj : I × R → I × R for j ∈ J by
154
+ Wj(x, y) = (Lj(x), Fj(x, y)).
155
+
156
+ 4
157
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
158
+ Theorem 1 in [3] says that the IFS I := {I × R; W1, W2, . . . , WN−1} defined above
159
+ has a unique attractor which is the graph of a function f which satisfies the following
160
+ functional equation reflects self-referentiality:
161
+ f(x) = αjf(L−1
162
+ j (x)) + qj(L−1
163
+ j (x)), x ∈ Ij, j ∈ J.
164
+ The above function f is known as the fractal interpolation function.
165
+ Kannan mapping. In 1969, Kannan [13] introduced a mapping, which was an
166
+ improvement over the contraction mapping, known as Kannan mapping, defined as
167
+ follows:
168
+ If there exists a number α, 0 < α < 1
169
+ 2, such that, for all x, y ∈ X,
170
+ d(T (x), T (y)) ≤ α[d(x, T (x)) + d(y, T (y))].
171
+ Then T is called a Kannan mapping and α is called Kannan-contractivity factor
172
+ of T . Let Tn : X → X are Kannan mappings having contractivity factor αn, for
173
+ n = 1, 2, . . ., N and (X, d) be a complete metric space. Then, the set {X; Tn, n =
174
+ 1, 2, . . ., N} is said to be Kannan IFS.
175
+ Remark 2.5. Let f : [0, 1] → [0, 1] be defined by f(x) = x
176
+ 3. Then this function f is
177
+ a contraction mapping with contraction factor 1
178
+ 3, but it is not a Kannan mapping.
179
+ On the other hand, the function g : [0, 1] → [0, 1] defined by
180
+ g(x) =
181
+
182
+ x
183
+ 4, if 0 ≤ x < 1
184
+ 2
185
+ x
186
+ 5,
187
+ if 1
188
+ 2 ≤ x ≤ 1.
189
+ is a Kannan mapping with β = 4
190
+ 9 but it is not a contraction mapping. The concepts
191
+ of the Kannan operator and contraction are independent. The self-map T given in
192
+ the previous example is Kannan, but it is not a contraction due to its discontinuity.
193
+ The following simple note can be seen in [10]. However, we include its details
194
+ for the reader’s convenience.
195
+ Note 2.6. Let (X, d) be a metric space and T : X → X is contraction with constant
196
+ c < 1
197
+ 3. Then T is Kannan contractive with respect to metric d.
198
+ Because of the contractivity of T , we have
199
+ d(T (x1), T (x2)) ≤ cd(x1, x2) ≤ cd(x1, T x1)+cd(T x1, T x2)+c(T x2, x2), ∀ x1, x2 ∈ X.
200
+ This turns
201
+ d(T (x1), T (x2)) ≤ α[d(x1, T (x1)) + d(x2, T (x2))], ∀ x1, x2 ∈ X.
202
+ Since 0 < α :=
203
+ c
204
+ 1−c < 1
205
+ 2, T is a Kannan mapping.
206
+ Proposition 2.7. Let X be a complete metric space and d1 and d2 are equivalent
207
+ metrics on X, i.e., there exist positive constants c1, c2 such that
208
+ c1d1(x1, x2) ≤ d2(x1, x2) ≤ c2d1(x1, x2), x1, x2 ∈ X.
209
+ If T is a contraction on X with respect to the metric d1 then there exists an m ∈ N
210
+ such that T m is a Kannan contraction with respect to the metric d2.
211
+ Proof. Since T is contraction on (X, d1), there exits 0 ≤ k < 1 such that
212
+ d1(T x1, T x2) ≤ kd1(x1, x2), x1, x2 ∈ X.
213
+
214
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
215
+ 5
216
+ Whence d2(T x1, T x2) ≤ c2d1(T x1, T x2) ≤ c2kd1(x1, x2) ≤
217
+
218
+ c2
219
+ c1 k
220
+
221
+ d2(x1, x2). Take
222
+ m ∈ N such that c2
223
+ c1 km < 1
224
+ 3. Then
225
+ d2(T mx1, T mx2) ≤ c2d1(T mx1, T mx2) ≤ c2kmd1(x1, x2) ≤
226
+
227
+ c2
228
+ c1
229
+ km
230
+
231
+ d2(x1, x2).
232
+ Hence, T m is a contraction with respect to the metric d2.
233
+ From Note 2.6, we
234
+ conclude that T m is a Kannan contraction with respect to the metric d2. Thus, the
235
+ proof is completed.
236
+
237
+ Theorem 2.8. [14] Let T is a map of the complete metric space X into itself and
238
+ if
239
+ d(T (x), T (y)) ≤ α[d(x, T (x)) + d(y, T (y))], ∀ x, y ∈ X, 0 < α < 1
240
+ 2.
241
+ Then T has the unique fixed point in X.
242
+ The Hausdorff distance from the set A to the set B is defined as
243
+ h(A, B) = max{sup
244
+ a∈A
245
+ inf
246
+ b∈B d(a, b), sup
247
+ b∈B
248
+ inf
249
+ a∈A d(a, b)}.
250
+ Note 2.9. In [23, Lemma 3.5] the authors claimed that for all B, C ∈ H(X),
251
+ h(T (B), T (C)) ≤ β[h(B, T (B)) + h(C, T (C))].
252
+ The above claim is not true, for instance, see the following example, which is
253
+ borrowed from [8].
254
+ Example 2.10. Let X = {0, 1, 2}, and the function d : X × X → R and the map
255
+ f : X → X be given by
256
+ d(0, 0) = d(1, 1) = d(2, 2) = 0
257
+ d(0, 1) = d(1, 0) = 5, d(1, 2) = d(2, 1) = 2, d(0, 2) = d(2, 0) = 3
258
+ f(1) = f(2) = 2, f(0) = 1.
259
+ Then the map f : X → X is Kannan on (X, d) with contractivity factor α ∈ [ 2
260
+ 5, 1
261
+ 2)
262
+ but the map T : H(X) → H(X) given by T (B) = ∪x∈Bf(x) for all B ∈ H(X) is
263
+ not a Kannan map on (H(X), h(d)) for any contractivity factor α ∈ [0, 1
264
+ 2).
265
+ Remark 2.11. The above example does not work for the following lemma due to
266
+ different contractive factors. Here, we correct Lemma 3.5 of [23], and we show that
267
+ it holds under certain additional conditions.
268
+ Lemma 2.12. Suppose T : X → X be a continuous Kannan mapping on the metric
269
+ space (X, d) with contractivity factor 0 < β < 1
270
+ 6. Then T : H(X) → H(X) given by
271
+ T (B) = {T (x) : x ∈ B} for every B ∈ H(X) is Kannan mapping on (H(X), h(d))
272
+ with contractivity factor 0 < γ =
273
+ β
274
+ (1−4β) < 1
275
+ 2.
276
+ Proof. Let us first recall a basic real-analysis result that the image of a compact
277
+ set under a continuous map is compact. Since T is continuous, it maps H(X) into
278
+ itself. Now, since T is Kannan mapping on (X, d), for x, y ∈ X, we have
279
+ d(T (x), T (y)) ≤ β[d(x, T (x)) + d(y, T (y))]
280
+ ≤ β[d(x, T (y)) + d(T (y), T (x)) + d(y, T (x)) + d(T (x), T (y))]
281
+ = β[d(x, T (y)) + d(y, T (x))] + 2βd(T (x), T (y)).
282
+
283
+ 6
284
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
285
+ So, we obtain
286
+ d(T (x), T (y)) ≤
287
+ β
288
+ (1 − 2β)[d(x, T (y)) + d(y, T (x))].
289
+ Now, for B, C ∈ H(X)
290
+ sup
291
+ x∈B
292
+ inf
293
+ y∈C d(T (x), T (y)) ≤
294
+ β
295
+ (1 − 2β)[sup
296
+ x∈B
297
+ inf
298
+ y∈C d(x, T (y)) + sup
299
+ x∈B
300
+ inf
301
+ y∈C d(y, T (x))].
302
+ That is,
303
+ sup
304
+ x∈B
305
+ inf
306
+ y∈C d(T (x), T (y)) ≤
307
+ β
308
+ (1 − 2β)[h(B, T (C)) + h(C, T (B))].
309
+ Thanks to the triangle inequality,
310
+ h(T (B), T (C)) ≤
311
+ β
312
+ (1 − 2β)[h(B, T (B)) + h(T (B), T (C))
313
+ +h(C, T (C)) + h(T (C), T (B))].
314
+ Consequently,
315
+
316
+ 1 −
317
+
318
+ (1 − 2β)
319
+
320
+ h(T (B), T (C)) ≤
321
+ β
322
+ (1 − 2β)[h(B, T (B)) + h(C, T (C))].
323
+ Therefore,
324
+ h(T (B), T (C)) ≤ γ[h(B, T (B)) + h(C, T (C))],
325
+ where γ =
326
+ β
327
+ (1−4β) < 1
328
+ 2 for 0 < β < 1
329
+ 6. This completes the proof.
330
+
331
+ Theorem 2.13. For a complete metric space (X, d), let Tn : n = 1, 2, ..., N are
332
+ continuous Kannan mappings on (H(X), h) with contractivity factor 0 < βn <
333
+ 1
334
+ 6, for all n. Define T : H(X) → H(X) by T (B) = ∪N
335
+ n=1Tn(B) for each B ∈
336
+ H(X). Then T is a Kannan mapping with contractivity factor γ = max{γn : n =
337
+ 1, 2, ..., N}.
338
+ Proof. For B, C ∈ H(X), we have
339
+ h(T (B), T (C)) = h(T1(B) ∪ T2(B) ∪ . . . ∪ Tn(B), T1(C) ∪ T2(C) ∪ . . . ∪ Tn(C))
340
+ ≤ max{h(T1(B), T1(C)), h(T2(B), T2(C)), . . . , h(Tn(B), Tn(C))}.
341
+ By using the above lemma, we obtain
342
+ h(T (B), T (C))
343
+ = max
344
+
345
+ β1
346
+ 1 − 4β1
347
+ [h(B, T1(B)) + h(C, T1(C))],
348
+ β2
349
+ 1 − 4β2
350
+ [h(B, T2(B))
351
+ + h(C, T2(C))], . . . ,
352
+ βn
353
+ 1 − 4βn
354
+ [h(B, Tn(B)) + h(C, Tn(C))]
355
+
356
+ ≤ max
357
+ 1≤i≤n
358
+
359
+ βi
360
+ 1 − 4βi
361
+
362
+ [max{h(B, T1(B)), h(B, T2(B)), ..., h(B, Tn(B))}
363
+ + max{h(C, T1(C)), h(C, T2(C)), ..., h(C, Tn(C))}]
364
+ ≤ max
365
+ 1≤i≤n{γi}[h(B, T1(B) ∪ T2(B)) . . . ∪ Tn(B) + h(C, T1(C) ∪ T2(C)) . . . ∪ Tn(C)]
366
+ ≤ γ[h(B, T (B)) + h(C, T (C))],
367
+
368
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
369
+ 7
370
+ where γ = max1≤i≤n{γi} = max1≤i≤n
371
+
372
+ βi
373
+ 1−4βi
374
+
375
+ < 1
376
+ 2. Hence, T is Kannan with
377
+ contractivity factor γ.
378
+
379
+ Remark 2.14. In [8] Dung et al. proposed a question, whether their results are true
380
+ or not for n ≥ 3. In this order, in the above theorem, we show that T is Kannan
381
+ for all n. Moreover, from Theorem 2.8, T has a unique fixed point.
382
+ We use the following notations throughout the article: C(I) denotes the set of
383
+ continuous functions f : I = [x0, xN] → [a, b]. Let C∗(I) ⊂ C(I) and given by
384
+ C∗ = {f ∈ C(I) : f(x0) = y0, f(xN) = yn}. K = I × R.
385
+ Let us define a metric dθ on K as follows
386
+ dθ((x, y), (z, w)) = |x − z|+θ|y − w|, θ > 0.
387
+ Note that (C∗(I), Hθ) is a complete metric space with respect to Hausdorff metric
388
+ Hθ, where
389
+ Hθ(f, g) = Hθ(Gf, Gg) = max{ sup
390
+ x∈Gf
391
+ inf
392
+ y∈Gg dθ(x, y), sup
393
+ y∈Gg
394
+ inf
395
+ x∈Gf dθ(x, y)}.
396
+ In the following section, we give the construction of fractal functions using Kannan
397
+ IFS and the existence of self-similar measures.
398
+ 3. Construction of fractal functions via Kannan Iterated function
399
+ systems
400
+ Let Fi : K → [a, b] be continuous mappings and satisfying for some k ≥ 0, and
401
+ 0 ≤ βi < 1
402
+ 2
403
+ |Fi(x, y)−Fi(w, y)|≤ k|x−w|, |Fi(x, y)−Fi(x, z)|≤ βi
404
+
405
+ |y −Fi(., y)|+|z −Fi(., z)|
406
+
407
+ for all x, w ∈ I, y, z ∈ [a, b], and i = 1, 2, . . . , N. Now, let {K; Wi, i = 1, 2, . . ., N}
408
+ be an IFS with
409
+ Wi(x, y) = (Li(x), Fi(x, y)) = (aix + bi, Fi(x, y)),
410
+ where transformations are constrained by the data according to
411
+ Wi(x0, y0) = (xi−1, yi−1), Wi(xN, yN) = (xi, yi)
412
+ for i = 1, 2, . . . , N. For all i = 1, 2, ..., N, Wi : K → K are Kannan mappings. Then
413
+ {K; Wi : i = 1, 2, ..., N} is the Kannan IFS.
414
+ Theorem 3.1. Let N > 1, and {K; Wi, i = 1, 2, . . . , N} denote the IFS defined as
415
+ above, associated with the set of data
416
+ {(xi, yi) : i = 1, 2, ..., N} such that amax = max
417
+ i (xi+1 − xi) < 1
418
+ 3.
419
+ Then, there is a metric dθ on K = I × R, equivalent to the Euclidean metric such
420
+ that for all i = 1, 2, ..., N, Wi are Kannan maps with respect to dθ.
421
+
422
+ 8
423
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
424
+ Proof. For all (x, y), (w, z) ∈ K, we have
425
+ dθ(Wi(x, y), Wi(w, z)) = dθ
426
+
427
+ (Li(x), Fi(x, y)), (Li(w), Fi(w, z))
428
+
429
+ = |Li(x) − Li(w)|+θ|Fi(x, y) − Fi(w, z)|
430
+ ≤ |ai||x − w|+θ|Fi(x, y) − Fi(w, z)|
431
+ ≤ amax|x − w|+θ|Fi(x, y) − Fi(w, z)|.
432
+ Now, thanks to the triangle inequality, we have
433
+ |x − w|≤ |x − Li(x)|+|Li(x) − Li(w)|+|Li(w) − w|,
434
+ this further yields
435
+ |x − w|≤
436
+ 1
437
+ 1 − amax
438
+ (|x − Li(x)|+|Li(w) − w|).
439
+ We now estimate
440
+ |Fi(x, y) − Fi(w, z)|≤ |Fi(x, y) − Fi(w, y)|+|Fi(w, y) − Fi(w, z)|
441
+ ≤ k|x − w|+βi
442
+
443
+ |y − Fi(w, y)|+|z − Fi(w, z)|
444
+
445
+ ≤ k|x − w|+βi
446
+
447
+ |y − Fi(x, y)|+|Fi(x, y) − Fi(w, y)|+|z − Fi(w, z)|
448
+
449
+ ≤ k|x − w|+βi
450
+
451
+ |y − Fi(x, y)|+k|x − w|+|z − Fi(w, z)|
452
+
453
+ ≤ (k + kβmax)|x − w|+βmax
454
+
455
+ |y − Fi(x, y)|+|z − Fi(w, z)|
456
+
457
+ .
458
+ With the help of the above estimates, we obtain
459
+ dθ(Wi(x, y), Wi(w, z))
460
+ = amax + (k + kβmax)θ
461
+ 1 − amax
462
+ (|x
463
+ − Li(x)|+|Li(w) − w|) + βmaxθ
464
+
465
+ |y − Fi(x, y)|+|z − Fi(w, z)|
466
+
467
+ ≤ γ
468
+
469
+ dθ((x, y), Wi(x, y)) + dθ((w, z), Wi(w, z))
470
+
471
+ ,
472
+ where γ = max
473
+
474
+ amax+(k+kβmax)θ
475
+ 1−amax
476
+ , βmaxθ
477
+
478
+ . Using the condition amax < 1
479
+ 3, we may
480
+ choose a suitable (sufficiently small) θ > 0 such that γ < 1
481
+ 2. For this value of θ, the
482
+ mapping Wi is a Kannan mapping, completing the proof.
483
+
484
+ Remark 3.2. From the above proof, if amax < 1
485
+ 5 then we may choose a suitable
486
+ (sufficiently small) θ > 0 such that the Kannan contractivity factor γ < 1
487
+ 4.
488
+ Theorem 3.3. Let N > 1 and {K; Wi, i = 1, 2, . . ., N} denote the IFS defined as
489
+ above, associated with the set of data
490
+ {(xi, yi) : i = 1, 2, ..., N} such that amax = max
491
+ i (xi+1 − xi) < 1
492
+ 7.
493
+ Then, there exists a unique non empty compact set G ⊂ K = I × [a, b] such that
494
+ G = ∪N
495
+ i=1Wi(G).
496
+
497
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
498
+ 9
499
+ Proof. On similar lines of the proof of Theorem 3.1, we have
500
+ dθ(Wi(x, y), Wi(w, z)) ≤ γ
501
+
502
+ dθ((x, y), Wi(x, y)) + dθ((w, z), Wi(w, z))
503
+
504
+ ,
505
+ where γ = max
506
+
507
+ amax+(k+kβmax)θ
508
+ 1−amax
509
+ , βmaxθ
510
+
511
+ . Using the condition amax < 1
512
+ 7, we may
513
+ choose a suitable (sufficiently small) θ > 0 such that γ < 1
514
+ 6. For this value of θ,
515
+ the mapping Wi is a Kannan mapping with contractivity factor γ < 1
516
+ 6. Now, using
517
+ Theorem 2.13 and Remark 2.14, we obtain a unique compact set G satisfying
518
+ G = ∪N
519
+ i=1Wi(G).
520
+ This completes the proof.
521
+
522
+ Theorem 3.4. Let the IFS {K; Wi, i = 1, 2, ..., N} defined as above associated with
523
+ the set of data
524
+ {(xi, yi) : i = 1, 2, ..., N} such that amax = max
525
+ i (xi+1 − xi) < 1
526
+ 5.
527
+ Let G denote the attractor of the IFS. Then, G is the graph Gf of continuous
528
+ function f : [x0, xN] → [a, b] satisfying f(xi) = yi for all i = 0, 1, ..., N. That is,
529
+ Gf = {(x, f(x)) : x ∈ [x0, xN]},
530
+ where f(xi) = yi for all i = 0, 1, ..., N.
531
+ Proof. Let C∗(I) = {f ∈ C(I) : f(x1) = y1, f(xN) = yN}. Here, C∗(I) is a
532
+ closed subset of C(I) and (C∗(I), Hθ) is a complete metric space. Define Read-
533
+ Bajraktarevi´c (RB) operator T : C∗(I) → C∗(I) by
534
+ (3.1)
535
+ (T g)(x) = Fi(L−1
536
+ i (x), g(L−1
537
+ i (x))).
538
+ Now, we show that T is a Kannan mapping w.r.t. Hθ. We will proceed as follows.
539
+ Here, graphs of T g and T h are given by
540
+ GT g = {(x, T g(x)) : x ∈ I}
541
+ and
542
+ GT h = {(y, T h(y)) : y ∈ I}.
543
+ Let (x, T g(x)) ∈ GT g and (y, T h(y)) ∈ GT h. Since Wi is Kannan with contractivity
544
+ factor γ, from Theorem 3.1, we get
545
+
546
+
547
+ (x, T g(x)), (y, T h(y))
548
+
549
+ = dθ
550
+
551
+ (x, Fi(L−1
552
+ i (x), g(L−1
553
+ i
554
+ (x))), (y, Fi(L−1
555
+ i (y), h(L−1
556
+ i (y))))
557
+
558
+ = dθ
559
+
560
+ (Li(w), Fi(w, g(w)), (Li(z), Fi(z, g(z))
561
+
562
+ = dθ
563
+
564
+ Wi(w, g(w)), Wi(z, h(z))
565
+
566
+ ≤ γ
567
+
568
+
569
+
570
+ (w, g(w)), Wi(w, g(w))
571
+
572
+ + dθ
573
+
574
+ (z, h(z)), Wi(z, h(z))
575
+ ��
576
+ = γ
577
+
578
+
579
+
580
+ L−1
581
+ i (x), g(L−1
582
+ i (x)), (x, T g(x))
583
+
584
+ + dθ
585
+
586
+ L−1
587
+ i (y), h(L−1
588
+ i (y)), (y, T h(y))
589
+ ��
590
+ ,
591
+
592
+ 10
593
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
594
+ where w = L−1
595
+ i (x) and z = L−1
596
+ i (y). Thanks to the triangle inequality,
597
+
598
+
599
+ (x, T g(x)), (y, T h(y))
600
+
601
+ ≤ γ
602
+
603
+
604
+
605
+ (L−1
606
+ i (x), g(L−1
607
+ i
608
+ (x))), (y, T g(y))
609
+
610
+ + dθ
611
+
612
+ (x, T g(x)), (y, T h(y))
613
+
614
+ + dθ
615
+
616
+ (L−1
617
+ i (y), h(L−1
618
+ i (y))), (x, T h(x))
619
+
620
+ + dθ
621
+
622
+ (x, T g(x)), (y, T h(y))
623
+ ��
624
+ .
625
+ On taking infimum both sides, we have
626
+ inf
627
+ y ∈I dθ
628
+
629
+ (x, T g(x)), (y, T h(y))
630
+
631
+ ≤ γ
632
+
633
+ inf
634
+ y∈I dθ
635
+
636
+ (L−1
637
+ i (x), g(L−1
638
+ i
639
+ (x))), (y, T g(y))
640
+
641
+ + inf
642
+ y∈I dθ
643
+
644
+ (L−1
645
+ i (y), h(L−1
646
+ i (y))), (x, T h(x))
647
+
648
+ + 2 inf
649
+ y∈I dθ
650
+
651
+ (x, T g(x)), (y, T h(y))
652
+ ��
653
+ .
654
+ That is,
655
+ (1 − 2γ) inf
656
+ y ∈I dθ
657
+
658
+ (x, T g(x)), (y, T h(y))
659
+
660
+ ≤ γ
661
+
662
+ inf
663
+ y∈I dθ
664
+
665
+ (L−1
666
+ i (x), g(L−1
667
+ i (x))), (y, T g(y))
668
+
669
+ + inf
670
+ y∈I dθ
671
+
672
+ (L−1
673
+ i (y), h(L−1
674
+ i (y))), (x, T h(x))
675
+ ��
676
+ .
677
+ By taking supremum over x ∈ I, we have
678
+ Hθ(GT g, GT h) ≤
679
+ γ
680
+ 1 − 2γ [Hθ(Gg, GT g) + Hθ(Gh, GT h)].
681
+ That is,
682
+ Hθ(T g, T h) ≤
683
+ γ
684
+ 1 − 2γ
685
+
686
+ Hθ(g, T g) + Hθ(h, T h)
687
+
688
+ .
689
+ Since amax < 1
690
+ 5, Remark 3.2 yields that β :=
691
+ γ
692
+ 1−2γ < 1
693
+ 2. Therefore, T is Kannan
694
+ w.r.t. Hθ. By Theorem 2.8 , T has a unique fixed point f ∈ C∗(I). Further, it is
695
+ easy to check that f interpolates the data set. Now, we show that the graph Gf of
696
+ f is an attractor of the IFS. Since Wi(x, y) = (Li(x), Fi(x, y)) for all i = 1, 2, ..., N,
697
+ I = ∪j∈JLj(I), and from the functional Equation 2.1, we get that
698
+ Wi(Gf) = Wi({(x, f(x)) : x ∈ [x0, xN]})
699
+ = {(Li(x), Fi(x, f(x))) : x ∈ [x0, xN]}
700
+ = {(Li(x), f(Li(x))) : x ∈ [x0, xN]}
701
+ = {(x, f(x)) : x ∈ [xi−1, xi]}.
702
+ Hence
703
+ Gf = {(x, f(x)) : x ∈ [x0, xN]}
704
+ = ∪N
705
+ i=1{(x, f(x)) : x ∈ [xi−1, xi]}
706
+ = ∪N
707
+ i=1Wi(Gf).
708
+ By Theorem 3.3, G is the unique attractor of the IFS {K; Wi, i = 1, 2, ..., N}. Thus,
709
+ G = Gf. This completes the proof.
710
+
711
+
712
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
713
+ 11
714
+ Example 3.5. The continuous function h : [−1, 21
715
+ 10] → [−1, 21
716
+ 10] defined by
717
+ h(x) =
718
+
719
+ x2
720
+ 4 − x
721
+ 8 , if − 1 ≤ x < 1
722
+ 2
723
+ x2
724
+ 5 − x
725
+ 10,
726
+ if 1
727
+ 2 ≤ x ≤ 21
728
+ 10.
729
+ is Kannan mapping with β = 10
730
+ 21 but it is not a contraction mapping.
731
+ First, we show that T is Kannan contraction, and we choose β = 10
732
+ 21 < 1
733
+ 2.
734
+ (i) For the range −1 ≤ x, y < 1
735
+ 2, we have
736
+ |T (x) − T (y)|= 1
737
+ 8|x(2x − 1) − y(2y − 1)|
738
+ and
739
+ |x − T (x)|+|y − T (y)|= 1
740
+ 8
741
+
742
+ |x|9 − 2x|+|y||9 − 2y|
743
+
744
+ .
745
+ For β = 10
746
+ 21, we can see that
747
+ |T (x) − T (y)|≤ β
748
+
749
+ |x − T (x)|+|y − T (y)|
750
+
751
+ .
752
+ (ii) For 1
753
+ 2 ≤ x, y < 21
754
+ 10, we have
755
+ |T (x) − T (y)|= 1
756
+ 10|x(2x − 1) − y(2y − 1)|
757
+ and
758
+ |x − T (x)|+|y − T (y)|= 1
759
+ 10
760
+
761
+ |x|11 − 2x|+|y||11 − 2y|
762
+
763
+ .
764
+ For β = 10
765
+ 21, we can see that
766
+ |T (x) − T (y)|≤ β
767
+
768
+ |x − T (x)|+|y − T (y)|
769
+
770
+ .
771
+ (iii) For −1 ≤ x < 1
772
+ 2 and 1
773
+ 2 ≤ y < 21
774
+ 10, we have
775
+ |T (x) − T (y)|= |x(2x − 1)
776
+ 8
777
+ − y(2y − 1)
778
+ 10
779
+ |
780
+ and
781
+ |x − T (x)|+|y − T (y)|=
782
+ �1
783
+ 8|x|9 − 2x|+ 1
784
+ 10|y||11 − 2y|
785
+
786
+ .
787
+ For β = 10
788
+ 21, we can see that
789
+ |T (x) − T (y)|≤ β
790
+
791
+ |x − T (x)|+|y − T (y)|
792
+
793
+ .
794
+ Now, one can see that T is not a contraction because for x = −1, y = −0.99, we
795
+ have
796
+ |T (x) − T (y)|= 0.2537 > |x − y|= 0.01.
797
+ Remark 3.6. In this order, we can construct many different Kannan mappings with
798
+ the help of the functional Equation 2.1
799
+ Fj(x, y) = αjy + qj(x), j ∈ J.
800
+ For, instance
801
+ Fj(x, y) = T (y) + qj(x),
802
+
803
+ 12
804
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
805
+ where
806
+ T (y) =
807
+
808
+ y2
809
+ 4 − y
810
+ 8, if − 1 ≤ y < 1
811
+ 2
812
+ y2
813
+ 5 − y
814
+ 10,
815
+ if 1
816
+ 2 ≤ y ≤ 21
817
+ 10,
818
+ and qj : I → R, j ∈ J are suitable continuous functions satisfying qj(x1) = yj −αjy1
819
+ and qj(xN) = yj+1 − αjyN for all j ∈ J.
820
+ 3.1. Existence of Self-Similar Measures.
821
+ Definition 3.7. Let I = {K; Wi : i = 1, 2, ..., N} be an IFS and A be the attarctor
822
+ of the IFS I. Then, we say that I satisfies strong separation condition (SSC) if
823
+ Wi(A) ∩ Wj(A) = ∅ whenever i ̸= j.
824
+ Note that there are several separation conditions are available for any IFS, for
825
+ instance, [9, 11].
826
+ Hutchinson [9] computed the Hausdorff dimension of self-similar sets under the
827
+ open set condition. Assuming the SSC, Priyadarshi and his collaborators [26] gave
828
+ a formula for the Hausdorff dimension of the invariant set of generalized graph-
829
+ directed systems.
830
+ Theorem 3.8. Let I = {K; Ti : i = 1, 2, ..., N} be an IFS consisting of Kannan
831
+ mappings satisfies the SSC. Let (p1, p2, · · · , pN) be a probability vector. Then, there
832
+ exists a Borel probability measure µ∗ supported on the attractor A of the IFS such
833
+ that
834
+ µ∗ =
835
+ N
836
+
837
+ i=1
838
+ piµ∗ ◦ T −1
839
+ i
840
+ .
841
+ Proof. Since the Kannan IFS {K; Ti : i = 1, 2, ..., N} satisfies the SSC. That is,
842
+ Ti(A) ∩ Tj(A) = φ ∀ i ̸= j. Let E0 = A. We have
843
+ A =
844
+ N
845
+
846
+ i=1
847
+ Ti(A) =
848
+ N
849
+
850
+ i,j=1
851
+ Tij(A) =
852
+ N
853
+
854
+ i1,i2,...,in
855
+ Ti1,i2,...,in(A).
856
+ For k = 1, 2, ..., we define Ek as follows:
857
+ Ek =
858
+
859
+ Ti1i2···ik(A) : ij ∈ {1, 2, ..., N}, j = 1, 2, ..., k
860
+
861
+ ,
862
+ where Ek denotes the collection of disjoint Borel subsets of A. Let B ∈ Ek. Note
863
+ that each B is contained in one of the sets in Ek−1 and contains a finite number
864
+ of the sets in Ek+1. We can see that |Ti1i2···ik(A)|→ 0 as k → ∞ as follows. Let
865
+ Ti : A → A and |A|= supx,y∈A d(x, y) = d(x0, y0), x0, y0 ∈ A. Since Ti is Kannan
866
+ contraction, we have
867
+ d(Ti(x), Ti(y)) ≤ βi[d(x, Ti(x)) + d(y, Ti(y))]
868
+ ≤ βi[d(x0, y0) + d(x0, y0)]
869
+ ≤ 2βid(x0, y0).
870
+ By taking supremum of both side, we have
871
+ sup
872
+ x,y∈A
873
+ d(Ti(x), Ti(y)) ≤ 2βid(x0, y0),
874
+ and 2βi < 1. Now,
875
+ |Ti(A)|≤ 2βid(x0, y0) = ci|A|, ci = 2βi.
876
+
877
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
878
+ 13
879
+ In a similar way, we get
880
+ |Ti1i2···ik(A)|≤ ck
881
+ max|A|→ 0 when k → ∞,
882
+ where cmax = 2βmax = 2 max{β1, β2, ..., βk}.
883
+ Let a probability vector p = (p1, p2, ..., pN) satisfying pi > 0 for all i and �N
884
+ i=1 pi =
885
+ 1. We assign µ(A) with µ(A) = 1 = �N
886
+ i=1 pi. Let B ∈ Ek such that B = Ti1i2···ik(A).
887
+ Let Ek = �
888
+ B∈Ek B = �
889
+ ij,j=1,2,...,k Ti1i2···ik(A) = A. Hence, we have µ(C) = 0 ∀ C
890
+ with C ∩ A = ∅ and E = � Ek
891
+ � Rn \Ek and µ(Rn) = 1. It follows that (Cf. [11,
892
+ Proposition 1.7]) the definition of µ may be extended to all subsets of Rn so that
893
+ µ becomes a measure. Now, we show that µ = �N
894
+ i=1 piµ ◦ T −1
895
+ i
896
+ .
897
+ Let Tj(A) be an arbitrary cylinder in the first stage. Then
898
+ N
899
+
900
+ i=1
901
+ piµ ◦ T −1
902
+ i
903
+ (Tj(A)) = pjµ(A) = pj,
904
+ and from the construction of measure µ, we have µ(Tj(A)) = pj.
905
+ Therefore,
906
+ µ(Tj(A)) = �N
907
+ i=1 piµ ◦ T −1
908
+ i
909
+ (Tj(A)) = pj for all j.
910
+ Similarly, we have µ(B) =
911
+ �N
912
+ i=1 piµ ◦ T −1
913
+ i
914
+ (B) for all cylinders B ∈ Ek at any stage k. Thus, the proof is
915
+ complete.
916
+
917
+ Remark 3.9. Recall that the collection of all Borel probability measures on Rn, de-
918
+ noted by P(Rn), is a complete metric space with respect to the Monge-Kantorovich
919
+ metric dH defined as
920
+ dH(µ, ν) = sup
921
+ �����
922
+
923
+ fdµ(x) −
924
+
925
+ fdν(x)
926
+ ���� : where f : Rn → R, Lip(f) ≤ 1
927
+
928
+ .
929
+ Define a mapping M : P(Rn) → P(Rn) by M(µ) = �N
930
+ i=1 piµ ◦ f −1
931
+ i
932
+ . Now, we have
933
+ dH(M(µ), M(ν)) = sup
934
+ ����
935
+
936
+ fdM(µ)(x) −
937
+
938
+ fdM(ν)(x)
939
+ ��� : Lip(f) ≤ 1
940
+
941
+ = sup
942
+ ����
943
+ N
944
+
945
+ i=1
946
+ pi
947
+
948
+ fdµ ◦ f −1
949
+ i
950
+ (x) −
951
+ N
952
+
953
+ i=1
954
+ pi
955
+
956
+ fdν ◦ f −1
957
+ i
958
+ (x)
959
+ ��� : Lip(f) ≤ 1
960
+
961
+ .
962
+ Hutchinson [9] showed that if all fi are contractions, then M is the contraction
963
+ with respect to the Monge-Kantorovich metric.
964
+ Here, a natural question arises
965
+ whether M is Kannan with respect to the Monge-Kantorovich metric when all fi
966
+ are Kannan. It is open for further investigation.
967
+ 4. Smooth fractal functions
968
+ Let us denote the space of m-times continuously differentiable functions by
969
+ Cm(I).
970
+ Now, we define a new metric with the help of Hausdorff distance such
971
+ as
972
+ D(g, h) := max
973
+ 0≤k≤m Hθ(Gg(k), Gh(k)),
974
+ where Hθ(Gg, Gh) denotes the Hausdorff distance induced from the metric dθ be-
975
+ tween the graphs of f and g.
976
+ Since Hθ(Gg, Gh) and ∥g − h∥∞ are equivalent,
977
+ (Cm(I), D) will be a complete metric space.
978
+
979
+ 14
980
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
981
+ Theorem 4.1. Let g ∈ Cm(I), where m ∈ N. Suppose that Lj : I → Ij is affine
982
+ map defined by Lj(x) = ajx + bj satisfying Lj(x1) = xj, Lj(xN) = xj+1, j ∈ J and
983
+ Fj(x, y) = αjy + qj(x). Let q(k)
984
+ j
985
+ (x1) = g(k)(x1), q(k)
986
+ j
987
+ (xN) = g(k)(xN), j ∈ J, 0 ≤
988
+ k ≤ m, and scaling factor αj satisfying αj < ak
989
+ 5 , where ak = min{ak
990
+ j : j ∈ J}.
991
+ Then T has a unique fractal function f ∗
992
+ ∆ ∈ Cm
993
+ ∗ (I). Moreover, dimH(Gr(f ∗
994
+ ∆)) =
995
+ dimB(Gr(f ∗
996
+ ∆)) = 1.
997
+ Proof. Let Cm
998
+ ∗ (I) = {g ∈ Cm(I) : h(k)(x1) = g(k)(x1), h(k)(xN) = g(k)(xN), 0 ≤
999
+ k ≤ m}. Here, Cm
1000
+ ∗ (I) is a closed subset of Cm(I). It can be seen that (Cm
1001
+ ∗ (I), D) is
1002
+ a complete metric space. Define the RB operator T : Cm
1003
+ ∗ (I) → Cm
1004
+ ∗ (I) by
1005
+ (T g)(x) = αjf(L−1
1006
+ j (x)) + qj(L−1
1007
+ j (x)), x ∈ Ij, j ∈ J.
1008
+ It can be observed that T is well-defined. Let g, h ∈ Cm
1009
+ ∗ (I),
1010
+ D(g, h) := max
1011
+ 0≤k≤m Hθ(Gg(k), Gh(k))
1012
+ for each 0 ≤ k ≤ m, we have
1013
+ (T g)(k)(x) = a−k
1014
+ j [αjg(k)(L−1
1015
+ j (x)) + q(k)
1016
+ j
1017
+ (L−1
1018
+ j (x))].
1019
+ ˆF k
1020
+ j (x, y) = a−k
1021
+ j αjy + a−k
1022
+ j q(k)
1023
+ j
1024
+ (x) and ˆW k
1025
+ j (x, y) = (Lj(x), ˆF k
1026
+ j (x, y)). It can be seen
1027
+ that ˆ
1028
+ W k
1029
+ j are Kannan contractions as follows.
1030
+ D( ˆW k
1031
+ j (x1, y1), ˆW k
1032
+ j (x2, y2))
1033
+ ≤ αj
1034
+ ak D((x1, y1), (x2, y2))
1035
+ ≤ αj
1036
+ ak D((x1, y1), ˆ
1037
+ W k
1038
+ j (x1, y1)) + αj
1039
+ ak D( ˆ
1040
+ W k
1041
+ j (x1, y1), ˆ
1042
+ W k
1043
+ j (x2, y2)) + αj
1044
+ ak D( ˆ
1045
+ W k
1046
+ j (x2, y2), (x2, y2)).
1047
+ Hence, we obtain
1048
+ D( ˆW k
1049
+ j (x1, y1), ˆW k
1050
+ j (x2, y2)) ≤
1051
+ αj
1052
+ ak − αj
1053
+ [D((x1, y1), ˆW k
1054
+ j (x1, y1))+D((x2, y2), ˆ
1055
+ W k
1056
+ j (x2, y2))].
1057
+ Hence, ˆ
1058
+ W k
1059
+ j are Kannan contractions with contractivity factor
1060
+ αj
1061
+ ak−αj .
1062
+ Now, we show that T is Kannan w.r.t. metric D. That is
1063
+ D(T g, T h) ≤ γ′[D(g, T g) + D(h, T h)].
1064
+ Let (x, (T g)(k)(x)) ∈ G(T g)(k) and (y, (T h)(k)(y)) ∈ G(T h)(k). We have
1065
+
1066
+
1067
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1068
+
1069
+ = dθ
1070
+ ��
1071
+ x, ˆF k
1072
+ j (L−1
1073
+ j (x), g(k)(L−1
1074
+ j (x)))
1075
+
1076
+ ,
1077
+
1078
+ y, ˆF k
1079
+ j (L−1
1080
+ j (y), h(k)(L−1
1081
+ j (y)))
1082
+ ��
1083
+ = dθ
1084
+ ��
1085
+ Lj(w), ˆF k
1086
+ j (w, g(k)(w))
1087
+
1088
+ ,
1089
+
1090
+ Lj(z), ˆF k
1091
+ j (z, h(k)(z))
1092
+ ��
1093
+ = dθ
1094
+
1095
+ ˆW k
1096
+ j (w, g(k)(w)), ˆ
1097
+ W k
1098
+ j (z, h(k)(z))
1099
+
1100
+ .
1101
+
1102
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
1103
+ 15
1104
+ Since ˆ
1105
+ W k
1106
+ j
1107
+ are Kannan contraction and by substituting again w = L−1
1108
+ j (x) and
1109
+ z = L−1
1110
+ j (y), we have
1111
+
1112
+
1113
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1114
+
1115
+
1116
+ αj
1117
+ ak − αj
1118
+
1119
+
1120
+
1121
+ (L−1
1122
+ j (x), g(k)(L−1
1123
+ j (x))), ˆ
1124
+ W k
1125
+ j (L−1
1126
+ j (x), g(k)(L−1
1127
+ j (x)))
1128
+
1129
+ + dθ
1130
+
1131
+ (L−1
1132
+ j (y), h(k)(L−1
1133
+ j (y))), ˆW k
1134
+ j (L−1
1135
+ j (y), h(k)(L−1
1136
+ j (y)))
1137
+ ��
1138
+ =
1139
+ αj
1140
+ ak − αj
1141
+
1142
+
1143
+
1144
+ L−1
1145
+ j (x), g(k)(L−1
1146
+ j (x)), (x, (T g)(k)(x))
1147
+
1148
+ + dθ
1149
+
1150
+ L−1
1151
+ j (y), h(k)(L−1
1152
+ j (y)), (y, (T h)(k)(y))
1153
+ ��
1154
+
1155
+ αj
1156
+ ak − αj
1157
+
1158
+
1159
+
1160
+ (L−1
1161
+ j (x), g(k)(L−1
1162
+ j (x))), (y, (T g)(k)(y))
1163
+
1164
+ + dθ
1165
+
1166
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1167
+
1168
+ + dθ
1169
+
1170
+ (L−1
1171
+ j (y), h(k)(L−1
1172
+ j (y))), (x, (T h)(k)(x))
1173
+
1174
+ + dθ
1175
+
1176
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1177
+ ��
1178
+ .
1179
+ On taking infimum both sides, we have
1180
+ inf
1181
+ y∈I dθ
1182
+
1183
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1184
+
1185
+
1186
+ αj
1187
+ ak − αj
1188
+
1189
+ inf
1190
+ y∈I dθ
1191
+
1192
+ (L−1
1193
+ j (x), g(k)(L−1
1194
+ j (x))), (y, (T g)(k)(y))
1195
+
1196
+ + inf
1197
+ y∈I dθ
1198
+
1199
+ (L−1
1200
+ j (y), (h)(k)(L−1
1201
+ j (y))), (x, (T h)(k)(x))
1202
+
1203
+ + 2 inf
1204
+ y∈I dθ
1205
+
1206
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1207
+ ��
1208
+ .
1209
+ That is,
1210
+ (1 −
1211
+ 2αj
1212
+ ak − αj
1213
+ ) inf
1214
+ y∈I dθ
1215
+
1216
+ (x, (T g)(k)(x)), (y, (T h)(k)(y))
1217
+
1218
+
1219
+ αj
1220
+ ak − αj
1221
+
1222
+ inf
1223
+ y∈I dθ
1224
+
1225
+ (L−1
1226
+ j (x), g(k)(L−1
1227
+ j (x))), (y, (T g)(k)(y))
1228
+
1229
+ + inf
1230
+ y∈I dθ
1231
+
1232
+ (L−1
1233
+ j (y), h(k)(L−1
1234
+ j (y))), (x, (T h)(k)(x))
1235
+ ��
1236
+ .
1237
+ By taking supremum over x ∈ I, we have
1238
+ max
1239
+ 0≤k≤m Hθ(G(T g)(k), G(T h)(k)) ≤
1240
+ αj
1241
+ ak − 3αj
1242
+ [ max
1243
+ 0≤k≤m Hθ(Gg(k), G(T g)(k))
1244
+ + max
1245
+ 0≤k≤m Hθ(Gh(k), G(T h)(k))]
1246
+ That is
1247
+ D(T g, T h) ≤ γ′[D(g, T g) + D(h, T h)],
1248
+ where γ′ =
1249
+ αj
1250
+ ak−3αj < 1
1251
+ 2. Hence, T is Kannan contrcation with contractivity factor
1252
+ γ′ =
1253
+ αj
1254
+ ak−3αj < 1
1255
+ 2. By Theorem 2.8 , T has a unique fractal function f ∗
1256
+ ∆ ∈ Cm
1257
+ ∗ (I) and
1258
+ obeys the equation 3.1. We know that any continuous function with the bounded
1259
+ derivative is of bounded variation. This result with [15, Theorem 1.3] yields
1260
+ dimH(Gr(f ∗
1261
+ ∆)) = dimB(Gr(f ∗
1262
+ ∆)) = 1.
1263
+
1264
+ 16
1265
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
1266
+ Hence, the proof is complete.
1267
+
1268
+ Remark 4.2. [5] The relationship between the Heisenberg and Euclidean geometry
1269
+ on H = R3 is rather intricate.
1270
+ The Heisenberg-Hausdorff dimension is always
1271
+ greater than or equal to its Euclidean counterpart. The Hausdorff dimension of
1272
+ (R3, dH) is equal to 4 (in fact, balls in the metric dH have a measure proportional
1273
+ to the fourth power of their radius). This implies, for instance, that the Heisenberg
1274
+ metric dH cannot be locally bi-Lipschitz equivalent with any Riemannian metric,
1275
+ particularly with the Euclidean metric dE.
1276
+ Remark 4.3. From the above remark, we can conclude that if two metrics are
1277
+ topologically equivalent, that does not imply that the dimension of the graph of any
1278
+ function can be equal, but if metrics are metrically equivalent, then the Hausdorff
1279
+ dimension will be equal, but the Hausdorff measure need not be equal; see the
1280
+ following
1281
+ Let δ > 0. Then
1282
+ Hs
1283
+ δ,d2(E) = inf
1284
+ � ∞
1285
+
1286
+ i=1
1287
+ diamd2(Fi)s : {Fi} is a δ − cover of E
1288
+
1289
+ ≤ inf
1290
+ � ∞
1291
+
1292
+ i=1
1293
+ cs
1294
+ 2diamd1(Fi)s : {Fi} is a δ − cover of E
1295
+
1296
+ = cs
1297
+ 2Hs
1298
+ δ,d1(E).
1299
+ Similarly, cs
1300
+ 1Hs
1301
+ δ,d1(E) ≤ Hs
1302
+ δ,d2(E). Therefore,
1303
+ cs
1304
+ 1Hs
1305
+ δ,d1(E) ≤ Hs
1306
+ δ,d2(E) ≤ cs
1307
+ 2Hs
1308
+ δ,d1(E) holds for all δ > 0.
1309
+ As δ → 0+, we have
1310
+ cs
1311
+ 1Hs
1312
+ d1(E) ≤ Hs
1313
+ d2(E) ≤ cs
1314
+ 2Hs
1315
+ d1(E).
1316
+ Now, using the definition of the Hausdorff dimension and the above inequality, we
1317
+ get
1318
+ dimH,d1(E) = inf{s : Hs
1319
+ δ,d1(E) = 0} = inf{s : Hs
1320
+ δ,d2(E) = 0} = dimH,d2(E),
1321
+ completing the reamark.
1322
+ 5. Graph of Kannan fractal functions
1323
+ Here, we have the functional equation
1324
+ Fj(x, y) = T (y) + qj(x), j ∈ J,
1325
+ and the self-referential equation is
1326
+ f(Lj(x)) = T (f(x)) + qj(x), x ∈ Ij, j ∈ J.
1327
+ We choose qj(x) = cjx + dj satisfying the join-up conditions such as
1328
+ T (y1) + cjx1 + dj = yj and T (yN) + cjxN + dj = yj+1, j ∈ J.
1329
+ So, we have
1330
+ cj = (yj − yj+1) − (T (y1) − T (yN))
1331
+ (x1 − xN)
1332
+
1333
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
1334
+ 17
1335
+ 0
1336
+ 0.2
1337
+ 0.4
1338
+ 0.6
1339
+ 0.8
1340
+ 1
1341
+ 0
1342
+ 0.1
1343
+ 0.2
1344
+ 0.3
1345
+ 0.4
1346
+ 0.5
1347
+ 0.6
1348
+ 0.7
1349
+ 0.8
1350
+ 0.9
1351
+ 1
1352
+ Figure 1.
1353
+ 0
1354
+ 0.2
1355
+ 0.4
1356
+ 0.6
1357
+ 0.8
1358
+ 1
1359
+ 0
1360
+ 0.2
1361
+ 0.4
1362
+ 0.6
1363
+ 0.8
1364
+ 1
1365
+ 1.2
1366
+ 1.4
1367
+ 1.6
1368
+ 1.8
1369
+ Figure 2.
1370
+
1371
+ 18
1372
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
1373
+ 0
1374
+ 0.2
1375
+ 0.4
1376
+ 0.6
1377
+ 0.8
1378
+ 1
1379
+ -1
1380
+ -0.5
1381
+ 0
1382
+ 0.5
1383
+ 1
1384
+ 1.5
1385
+ Figure 3.
1386
+ 0
1387
+ 0.2
1388
+ 0.4
1389
+ 0.6
1390
+ 0.8
1391
+ 1
1392
+ -1
1393
+ -0.5
1394
+ 0
1395
+ 0.5
1396
+ 1
1397
+ 1.5
1398
+ Figure 4.
1399
+
1400
+ CONSTRUCTION OF FRACTAL FUNCTIONS USING KANNAN MAPPINGS
1401
+ 19
1402
+ and
1403
+ dj = yj − T (y1) − (yj − yj+1) − (T (y1) − T (yN))
1404
+ (x1 − xN)
1405
+ x1.
1406
+ The initial data is taken as follows for Figure 1 and Figure 2, respectively.
1407
+ {(0, 0.9), (0.1, 0.5), (0.2, 0.75), (0.3, 0.95), (0.4, 1.25), (0.5, 1.5), (0.6, 1.6), (0.7, 1.2),
1408
+ (0.8, 1.8), (0.9, 1.9), (1.0, 2.0)} and {(0, 0.6), (0.1, 1.4), (0.2, 0.9), (0.3, 1.2), (0.4, 1.8),
1409
+ (0.5, 1.3), (0.6, 0.9), (0.7, 1.75), (0.8, 0.85), (0.9, 1.75), (1.0, 2.0)}.
1410
+ For Figure 3 and Figure 4, we consider qj(x) = x2 + cjx + dj satisfying the join-up
1411
+ conditions such as
1412
+ T (y1) + x2
1413
+ 1 + cjx1 + dj = yj and T (yN) + x2
1414
+ n + cjxN + dj = yj+1, j ∈ J.
1415
+ So, we have
1416
+ cj = (yj − yj+1) − (T (y1) − T (yN)) − (x2
1417
+ 1 − x2
1418
+ N)
1419
+ (x1 − xN)
1420
+ and
1421
+ dj = yj − T (y1) − (yj − yj+1) − (T (y1) − T (yN)) − (x2
1422
+ 1 − x2
1423
+ N)
1424
+ (x1 − xN)
1425
+ x1.
1426
+ The initial data is taken as follows for Figure 3 and Figure 4, respectively.
1427
+ {(0, 0.75), (0.1, 1.4), (0.2, 0.65), (0.3, 1.55), (0.4, 1.25), (0.5, 1.0), (0.6, 1.75), (0.7, 1.3),
1428
+ (0.8, 2.0), (0.9, 1.15), (1.0, 0.95)} and {(0, 0.5), (0.1, 1.5), (0.2, 1.75), (0.3, 0.95), (0.4, 1.0),
1429
+ (0.5, 1.8), (0.6, 1.2), (0.7, 1.6), (0.8, 1.4), (0.9, 0.85), (1.0, 1.4)}.
1430
+ Acknowledgements. The first author’s work is financially supported by the CSIR,
1431
+ India, with grant number 09/1058(0012)/2018-EMR-I.
1432
+ References
1433
+ 1. G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff
1434
+ distance, Proc. Amer. Math. Soc. 95 (1985) 653-658.
1435
+ 2. M. F. Barnsley, Fractal functions and interpolation, Constr. Approx. 2 (1986) 303-329.
1436
+ 3. M. F. Barnsley, Fractal Everywhere, Academic Press, Orlando, Florida, 1988. SIAM J. Math.
1437
+ Anal. 20(5) (1989) 1218–1242.
1438
+ 4. M. F. Barnsley and P. R. Massopust, Bilinear fractal interpolation and box dimension, J.
1439
+ Approx. Theory 192 (2015) 362–378.
1440
+ 5. Z. M. Balogh and J. T. Tyson, Hausdorff dimension of self-similar and self-affine fractals the
1441
+ Heisenberg group, Proc. London Math. Soc. (3) 91 (2005) 153-183.
1442
+ 6. D. Cheng, Z. Liand and B. Selmi, Upper metric mean dimensions with potential on subsets.
1443
+ Nonlinearity. 34 (2021) 852–867.
1444
+ 7. S. Chandra and S. Abbas, On fractal dimensions of fractal functions using functions spaces,
1445
+ Bull. Aust. Math. Soc. (2022) 1-11.
1446
+ 8. Van Dung, Nguyen and Adrian Petru¸sel, On iterated function systems consisting of Kannan
1447
+ maps, Reich maps, Chatterjea type maps, and related results, Journal of Fixed Point Theory
1448
+ and Applications 19, no. 4 (2017), 2271-2285.
1449
+ 9. J. E. Hutchinson, Fractals and self-similarity, Indian Univ. Math. J. 30 (1981) 713-747.
1450
+ 10. Janos Ludvik, On Mappings Contractive in the Sense of Kannan, Proceedings of the American
1451
+ Mathematical Society 61, no. 1 (1976): 171-75.
1452
+ 11. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley
1453
+ Sons Inc., New York, 1999.
1454
+ 12. S. Jha and S. Verma, Dimensional analysis of α-fractal functions, Results in Mathematics 76
1455
+ (4) (2021) 1-24.
1456
+ 13. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71-76.
1457
+ 14. R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969) 405-408.
1458
+
1459
+ 20
1460
+ SUBHASH CHANDRA, SAURABH VERMA, AND SYED ABBAS
1461
+ 15. Y. S. Liang, Box dimensions of Riemann-Liouville fractional integrals of continuous functions
1462
+ of bounded variation, Nonlin. Anal. 72(11) (2010) 4304-4306.
1463
+ 16. P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets. 2nd ed., Academic Press,
1464
+ San Diego, 2016.
1465
+ 17. M. A. Navascu´es, Fractal polynomial interpolation, Z. Anal. Anwend. 25(2) (2005) 401-418.
1466
+ 18. M. A. Navascu´es, Fractal approximation, Complex Anal. Oper. Theory 4(4) (2010) 953-974.
1467
+ 19. A. Priyadarshi, Lower bound on the Hausdorf dimension of a set of complex continued frac-
1468
+ tions. J. Math. Anal. Appl. 449(1), (2017) 91–95.
1469
+ 20. S.I. Ri, A new idea to construct the fractal interpolation function, Indag. Math. 29(3) (2018)
1470
+ 962-971.
1471
+ 21. S.I. Ri, Fractal functions on the Sierpinski gasket, Chaos, Solitons Fractals 138 (2020) 110142.
1472
+ 22. H.J. Ruan, W.-Y. Sub and K. Yao, Box dimension and fractional integral of linear fractal
1473
+ interpolation functions, J. Approx. Theory 161 (2009) 187-197.
1474
+ 23. D. R. Sahu, A. Chakraborty and R. P. Dubey, K-Iterated function system, Fractals 18 (2010)
1475
+ 139–144.
1476
+ 24. B. Selmi, Multifractal dimensions for projections of measures. Bol. Soc. Paran. Mat. 40 (2022)
1477
+ 1-15.
1478
+ 25. B. Selmi, On the multifractal dimensions of product measures. Nonlinear Studies, 29(1) (2022).
1479
+ 26. R. D. Nussbaum, A. Priyadarshi and S. V. Lunel, Positive operators and Hausdorff dimension
1480
+ of invariant sets, Trans. Amer. Math. Soc. 364(2) (2012) 1029-1066.
1481
+ 27. H. Y. Wang and J. S. Yu, Fractal interpolation functions with variable parameters and their
1482
+ analytical properties, J. Approx. Theory 175 (2013) 1-18.
1483
+ School of Mathematical and Statistical Sciences, Indian Institute of Technology
1484
+ Mandi, Kamand (H.P.) - 175005, India
1485
+ Email address: sahusubhash77@gmail.com
1486
+ Department of Applied Sciences, IIIT Allahabad, Prayagraj-211015, India
1487
+ Email address: saurabh331146@gmail.com
1488
+ School of Mathematical and Statistical Sciences, Indian Institute of Technology
1489
+ Mandi, Kamand (H.P.)- 175005, India
1490
+ Email address: sabbas.iitk@gmail.com
1491
+
6NE1T4oBgHgl3EQfTQM9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE2T4oBgHgl3EQf7Qi3/content/2301.04208v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29dc35c6593eeb204573f5570cb3d0d2119ead335bcb37a09330a9ae07801c3b
3
+ size 1683591
6tE2T4oBgHgl3EQf7Qi3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6ffbe234da9af4bb6de1cd45cebad106728b7d07baf2b186d7769acd94581ac
3
+ size 104372
89E1T4oBgHgl3EQfUAPq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:691d8c6e8e67a0b23d7648fedd28338293b6b4599cda38bd05d72dbdbaec2d9c
3
+ size 87198
99A0T4oBgHgl3EQfO__U/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d402fd86b0d953efb2e18c0b560be9792cf2de9e3499c19f9bda80a7c96c095
3
+ size 280526
99E0T4oBgHgl3EQfwwHR/content/2301.02638v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b661a59d5af76170bd86cf7cb1fa0d1d7ffe4e1746909cd6d07188d7f78e9c7c
3
+ size 1147221
99E0T4oBgHgl3EQfwwHR/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12d777ac03966851b55ac66e2bd3b8681eba8c8b680340c533d73b67302e9721
3
+ size 7733293
99E0T4oBgHgl3EQfwwHR/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ba7d7b0ec18d35951cfb9f9e360bccb7ae2980cab27630adcf25f07846ac248
3
+ size 312003
9NFLT4oBgHgl3EQfty_-/content/tmp_files/2301.12153v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9NFLT4oBgHgl3EQfty_-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE4T4oBgHgl3EQf4w6U/content/2301.05316v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ff1ff8731882df85ec979ac1a59abd977322026c8354c969295e02163c2d68f
3
+ size 742490
ANE4T4oBgHgl3EQf4w6U/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14ccc38c1b8d82ede940a3455e31a06c7670070a2822fa76a588397b3a38891a
3
+ size 2162733
ANE4T4oBgHgl3EQf4w6U/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2f2dedb859c33fbab51e4a3ce8e8d55a123af2f47b6ba9518324d4742314a5e
3
+ size 80119
BtE0T4oBgHgl3EQfQAAH/content/2301.02185v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c18c696c66da1c392216386e6a4f273c9241c9333314159339a4b27fac8f0448
3
+ size 4790017
BtE0T4oBgHgl3EQfQAAH/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7eda24ed050c634c71b03e000df684072a84adc23d97552d53cdb2feaf7227f
3
+ size 3014701
BtE0T4oBgHgl3EQfQAAH/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5800104e3fc010345389af276a39a5df559cd18a71bf6f6446299001e831a1
3
+ size 117129
ENE0T4oBgHgl3EQfQgDK/content/2301.02195v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d64d32be44a11d5fd48ecdb8989d9ffc8b8845b6682633a45ab852546dd68a0
3
+ size 331712
ENE0T4oBgHgl3EQfQgDK/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:094ab4794dbb183a14cc936f97a6625cc256ab9bd0271e4865d85feb3ac23143
3
+ size 2162733
ENE0T4oBgHgl3EQfQgDK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52dbfcfdc65a76e22254f0b7bc2133517ec92752d7433013b1c78ce1e80fa29e
3
+ size 84358
EtE1T4oBgHgl3EQfqgU3/content/tmp_files/2301.03343v1.pdf.txt ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ High-fidelity imaging of a band insulator in a three-dimensional optical lattice clock
2
+ William R. Milner,1, ∗ Lingfeng Yan,1 Ross B. Hutson,1 Christian Sanner,1 and Jun Ye1, †
3
+ 1JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
4
+ We report on the observation of a high-density, band insulating state in a three-dimensional optical lattice
5
+ clock. Filled with a nuclear-spin polarized degenerate Fermi gas of 87Sr, the 3D lattice has one atom per site in
6
+ the ground motional state, thus guarding against frequency shifts due to contact interactions. At this high density
7
+ where the average distance between atoms is comparable to the probe wavelength, standard imaging techniques
8
+ suffer from large systematic errors. To spatially probe frequency shifts in the clock and measure thermodynamic
9
+ properties of this system, accurate imaging techniques at high optical depths are required. Using a combination
10
+ of highly saturated fluorescence and absorption imaging, we confirm the density distribution in our 3D optical
11
+ lattice in agreement with a single spin band insulating state. Combining our clock platform with this high filling
12
+ fraction opens the door to studying new classes of long-lived, many-body states arising from dipolar interactions.
13
+ Optical
14
+ lattice
15
+ clocks
16
+ integrate
17
+ quantum
18
+ many-body
19
+ physics and precision metrology to achieve state-of-the-art
20
+ measurement precision [1–5]. To advance clock performance,
21
+ one wishes to probe as many atoms as feasible for the longest
22
+ possible coherence time. Improvements in both precision and
23
+ accuracy of optical lattice clocks, with increased atom num-
24
+ bers, have been enabled by the development of high-fidelity,
25
+ microscopic imaging of the atomic cloud to spatially resolve
26
+ clock shifts [6, 7]. The combination of high density and long
27
+ coherence time will allow characterization of novel systematic
28
+ effects such as that arising from dipolar interactions between
29
+ atoms on neighboring lattice sites [8–11]. Lattice thermom-
30
+ etry [12] and studies of novel physics such as SU(N) mag-
31
+ netism [13, 14] will also benefit from accurate imaging at high
32
+ density where these phenomena emerge.
33
+ To optimize atom number while minimizing interaction-
34
+ related dephasing, a clock platform based on a 3D lattice
35
+ geometry and Fermi-degenerate matter has been developed
36
+ [7, 15]. Following nuclear spin polarization [16, 17], the Pauli
37
+ exclusion principle mandates there is at most one atom per lat-
38
+ tice site in the ground motional state. To ensure this ground
39
+ state motional occupation during lattice loading we operate
40
+ with kBT < kBTF < ℏωbg, where T, TF , ℏωbg refers to the
41
+ atomic temperature, Fermi temperature and lattice bandgap
42
+ respectively [18]. At the highest density affordable with one
43
+ fermion per lattice site, this system realizes an insulating state
44
+ of matter where tunnelling is suppressed [15, 19]. Combining
45
+ this high-density system with spin-orbit coupling generated
46
+ from clock addressing will enable exploring cluster state gen-
47
+ eration and tunable spin models [20, 21].
48
+ Differential frequency shifts across the optical lattice en-
49
+ coding potential systematic effects can be spatially resolved
50
+ by combining in situ imaging and narrow-line clock spec-
51
+ troscopy [6]. To extract these frequency shifts, two subse-
52
+ quent images of the ground and excited state density distribu-
53
+ tions are required. Thus for our clock platform, accurate in
54
+ situ imaging at high density is imperative. In our lattice where
55
+ the average distance between atoms (407 nm) is comparable
56
+ to the probe wavelength (461 nm), imaging with a weak, reso-
57
+ nant probe is strongly perturbed. Both collective effects medi-
58
+ ated by dipolar interactions [22] and systematic defects such
59
+ as lensing of the probe beam [23, 24] introduce errors to the
60
+ reconstructed density distribution at high density.
61
+ To mitigate these systematic effects, different techniques
62
+ can be used to reduce the absorption cross section and make
63
+ the cloud ”optically thin”. These techniques can be broadly
64
+ divided into two categories: dispersive imaging at large de-
65
+ tuning from resonance [25–27] and saturated imaging at high
66
+ intensity [28–31]. For dispersive imaging extracting informa-
67
+ tion about the atomic density often requires spatially filtering
68
+ the scattered and unscattered light in the Fourier plane of the
69
+ imaging system, demanding precise fabrication and alignment
70
+ of custom optics. Additionally, careful studies of dispersive
71
+ imaging show that residual systematic effects at finite detun-
72
+ ing are non-negligible and can be addressed using differential
73
+ measurement schemes at opposite detuning [32]. To address
74
+ these imaging errors in this work, we use both highly saturated
75
+ fluorescence and absorption imaging.
76
+ In this Letter, we report on the observation of a band in-
77
+ sulating state in our 3D optical lattice clock. Using highly
78
+ saturated imaging to mitigate imaging errors, with a satura-
79
+ tion parameter far greater than the optical depth, we accu-
80
+ rately confirm the density distribution in our 3D optical lattice
81
+ in good agreement with thermodynamic calculation. We ex-
82
+ tend previous work using high intensity fluorescence imaging
83
+ [28], confirming the accuracy of this imaging technique in a
84
+ new high density regime with a degenerate Fermi gas of 87Sr
85
+ [16, 33]. With atomic densities as high as 6×1014 atoms/cm3,
86
+ we observe systematic agreement with atom counts obtained
87
+ via time-of-flight absorption imaging and identify the range
88
+ where the extracted atomic density distribution is not blurred
89
+ by our imaging pulse.
90
+ Our high intensity imaging scheme is outlined in Fig. 1.
91
+ The combination of atomic level structure and relatively large
92
+ mass of 87Sr is particularly well suited for our imaging tech-
93
+ nique, providing a cycling transition with a large scattering
94
+ rate while avoiding significant motional effects from the imag-
95
+ ing pulse.
96
+ The transition from 1S0 to 1P1 with linewidth
97
+ Γ = 2π × 30.5 MHz provides a large photon scattering rate
98
+ with minimal depumping to dark states during the imaging
99
+ time [34]. During a 1 µs pulse at full saturation about 100
100
+ photons per atom are scattered and the atoms accelerate at
101
+ a =
102
+ ℏkΓ
103
+ 2m where k is the imaging light wavenumber and m
104
+ is the atomic mass. The net momentum transfer amounts to
105
+ arXiv:2301.03343v1 [physics.atom-ph] 9 Jan 2023
106
+
107
+ 2
108
+ FIG. 1. Schematic of our clock platform. Vertical and horizontal
109
+ imaging systems with numerical apertures of 0.2 and 0.1 respectively
110
+ provide measurements of the 2D density distribution ˜n. Accounting
111
+ for the lattice spacing a = 407 nm, ˜na2 is determined from highly
112
+ saturated absorption imaging. To mitigate imaging errors, the atoms
113
+ are highly saturated and each scatters photons with a maximum rate
114
+ of Γ/2. Measurements from our high resolution imaging system in-
115
+ tegrated along gravity are presented in panel (a), where the density
116
+ distribution is extracted for thermodynamic modeling. Images from
117
+ the horizontal imaging system in panel (b) are just used to determine
118
+ our atom cloud aspect ratio for our inverse Abel transform.
119
+ a Doppler shift of kaτ = 2.8 MHz which is much less than
120
+ the transition linewidth Γ/2π.
121
+ Finally, the linear displace-
122
+ ment for a 1 µs pulse at full saturation is just aτ 2
123
+ 2
124
+ = 0.6 µm.
125
+ This linear displacement and corresponding Doppler shift can
126
+ be largely cancelled in fluorescence imaging by retroreflect-
127
+ ing the incident beam. The spread in transverse position due
128
+ to random momentum transfer from spontaneous emission
129
+ is
130
+ ℏk
131
+ 6mt3/2�
132
+ Γ/2 < 0.1 µm over a 1 µs pulse duration and
133
+ small compared to our 1.3 µm imaging resolution [35]. Using
134
+ highly saturated absorption imaging, we measure the column
135
+ density distribution ˜n in our optical lattice in Fig. 1(a). Ac-
136
+ counting for the lattice spacing a = 407 nm corresponding
137
+ to the 87Sr magic wavelength at 813 nm, the scaled column
138
+ density ˜na2 is plotted.
139
+ Saturated absorption and fluorescence imaging are benefi-
140
+ cial in comparison to standard imaging techniques in a num-
141
+ ber of ways. In this highly saturated regime the scattering rate
142
+ is largely immune to beam intensity, frequency, and pointing
143
+ fluctuations. Given the saturation intensity Isat = 40 mW/cm2
144
+ for the imaging transition, a Gaussian probe beam with 20
145
+ mW of optical power and a 100 µm waist corresponds to a
146
+ peak intensity of I ∼ 3000 Isat, within the typical constraints
147
+ of a standard imaging laser system. Given that the probe beam
148
+ is attenuated through the atom cloud, a saturation parameter
149
+ I/Isat much greater than the optical depth is required to fully
150
+ saturate the imaging transition. We note parallels between flu-
151
+ orescence and absorption imaging at high saturation. In both
152
+ cases, the extracted atom number is determined by a single
153
+ variable. For fluorescence imaging, this corresponds to the
154
+ number of collected photons per atom and for saturated ab-
155
+ sorption imaging the number of missing photons per atom in
156
+ the probe beam. Thus, both fluorescence and saturated ab-
157
+ sorption imaging can be calibrated via a single absolute atom
158
+ number measurement. For images in our 3D lattice, we de-
159
+ termine our atom number via clock excitation fraction fluctu-
160
+ ations arising from quantum projection noise (QPN) [36, 37].
161
+ For fluorescence imaging, only a single image of collected
162
+ fluorescence in an arbitrary direction is required, minimizing
163
+ fringing and simplifying image processing substantially. Flu-
164
+ orescence imaging also avoids limited dynamic range issues
165
+ suffered from high intensity absorption imaging. Strategies
166
+ such as multiple measurements at varying intensity to deter-
167
+ mine the atomic density in different regions of the cloud may
168
+ be taken to confront this issue [30, 31]. The primary disad-
169
+ vantage of fluorescence imaging in comparison to absorption
170
+ imaging is that the signal-to-noise is generally worse [37]. To
171
+ optimize signal-to-noise ratio (SNR) in fluorescence imaging,
172
+ the photon collection efficiency and therefore the numerical
173
+ aperture (NA) of the imaging system, must be maximized. In
174
+ our experiment, the vertical and horizontal imaging systems
175
+ have numerical apertures of 0.2 and 0.1, corresponding to col-
176
+ lection efficiencies of approximately 1 and 0.2 percent. Al-
177
+ ternatively, if spatial resolution is not required then the pulse
178
+ duration can be extended enhancing the number of detected
179
+ photons.
180
+ To motivate the development of our high intensity imaging
181
+ technique, systematic errors associated with standard in situ
182
+ imaging techniques at high density are presented in Fig. 2.
183
+ Absorption imaging at I ∼ Isat and high intensity fluorescence
184
+ imaging are presented side-by-side for comparison. To study
185
+ these systematic errors at high density, we prepare a sample
186
+ with optical depth > 200 by producing a degenerate Fermi
187
+ gas with 10 nuclear spin components, ≈ 2 × 105 atoms and a
188
+ T/TF of approximately 0.1 in a crossed dipole trap. The errors
189
+ associated with low intensity absorption imaging can be seen
190
+ twofold. First, the reconstructed optical depth from absorp-
191
+ tion detection in the upper left panel is far too low, two orders
192
+ of magnitude less than the expected value of ∼ 200. This
193
+ erroneously low optical depth is attributed to effects such as
194
+ enhanced forward emission and lensing of probe light [23].
195
+ Secondly, the reconstructed optical depth in the upper right
196
+ panel increases after a 500 µs time-of-flight expansion con-
197
+ clusively demonstrating the density dependence of these ob-
198
+ served systematic errors.
199
+ In comparison, saturated fluorescence imaging yields a far
200
+ larger reconstructed optical depth and diffuses following ex-
201
+ pansion as expected. We compare this reconstructed 2D den-
202
+ sity distribution with the expected distribution corresponding
203
+ to a Fermi gas. Using independently measured experimental
204
+ values, we calculate this distribution with no free parameters
205
+ [38]. The total atom number and reduced temperature T/TF
206
+ are determined from time-of-flight absorption imaging at low
207
+ density with an optical density ∼ 1. The trapping frequencies
208
+ are extracted from parametric confinement modulation. Using
209
+
210
+ 皖A·23
211
+ FIG. 2. A comparison of high intensity fluorescence and standard ab-
212
+ sorption imaging (I ∼ Isat) at optical depths exceeding 200 in our
213
+ highly degenerate Fermi gas is shown. In situ absorption imaging at
214
+ low intensity yields strikingly erroneous measurements at high den-
215
+ sity. The calculated 2D Fermi gas distribution according to our ex-
216
+ perimental parameters is shared for comparison in qualitative agree-
217
+ ment.
218
+ these parameters, we calculate both an in situ and 500 µs time-
219
+ of-flight Fermi gas profile for comparison with our measure-
220
+ ments. We observe qualitative agreement between measure-
221
+ ment and calculation at these extremely high optical depths.
222
+ Intrigued by the measurements presented in Fig. 2, we un-
223
+ dertake a quantitative study on the fidelity of our saturated
224
+ imaging technique. We present a calibration method for flu-
225
+ orescence detection, using the total number of collected fluo-
226
+ rescence photons for comparison with an accurate atom num-
227
+ ber reference. Absorption imaging at low density following
228
+ time-of-flight expansion serves as an appropriate calibration.
229
+ Following expansion for 7 ms, the optical depth is ∼ 1 and
230
+ systematic imaging errors can be safely ignored. To inde-
231
+ pendently calibrate the atom number in our 10 spin Fermi
232
+ gas, we prepare a thermal sample and use measured density
233
+ fluctuations to determine the effective absorption cross sec-
234
+ tion [39–41]. In Fig. 3(a) we ensure this calibration shows
235
+ systematic agreement with atom numbers between approxi-
236
+ mately 1 × 105 and 4 × 105, varied by increasing our final
237
+ evaporation trap depth. For the 3 µs pulse duration used, the
238
+ fitted calibration is in reasonable agreement with calculation
239
+ using the measured quantum efficiency and imaging system
240
+ numerical aperture [37]. To ensure that the imaging transition
241
+ is fully saturated, the laser intensity at 1 µs pulse duration is
242
+ increased until the collected photon number plateaus, as seen
243
+ in the figure inset.
244
+ To perform accurate spatially resolved measurements, we
245
+ must also determine the blurring induced by our imaging
246
+ pulse.
247
+ Just as collective effects introduce errors to the re-
248
+ FIG. 3. (a) Calibration method for in situ fluorescence detection us-
249
+ ing atom counts from time-of-flight absorption imaging. Collected
250
+ photon counts from both the vertical and horizontal imaging systems
251
+ are plotted, with solid and dashed lines representing fits to the hori-
252
+ zontal and vertical measurements respectively. Inset: Collected pho-
253
+ ton count with vertical imaging system as a function of I/Isat at 1
254
+ µs pulse duration. (b) Peak column density as a function of fluo-
255
+ rescence pulse duration. Measurements are normalized by 1.9×1011
256
+ atoms/cm2, the column density at the shortest pulse duration of 500
257
+ ns. Images at 500 ns and 2 µs in inset are plotted for comparison.
258
+ The error bars denote the standard error of the mean.
259
+ constructed density distribution, any systematic changes to ˜n
260
+ introduced by our imaging pulse must be determined. To cal-
261
+ ibrate this blurring in Fig. 3(b), we extend the fluorescence
262
+ pulse duration and examine the peak column density as atoms
263
+ diffuse. The inset shows averaged images from 500 ns and
264
+ 2 µs pulse durations. We note that we observe no atom loss
265
+ or molecular formation over the full 2 µs range, confirmed by
266
+ the detected photon count increasing linearly with pulse dura-
267
+ tion. To minimize blurring, we carefully retroreflect our probe
268
+ beam by optimizing the backcoupled light through the probe
269
+ optical fiber. At pulse durations up to 1 µs, we confirm that
270
+ the peak column density decreases by < 5%. [37].
271
+ Motivated by the calibration reported in Fig. 3, we directly
272
+ determine the 3D density distribution in a deep optical lattice
273
+ via saturated in situ absorption imaging. We form a cubic lat-
274
+ tice with trap depths of approximately 60, 70, and 50 Er in
275
+ three orthogonal directions, where Er is the lattice photon re-
276
+ coil energy ≈ h × 3.5 kHz. Following forced evaporation
277
+ with 10 nuclear spin states we spin polarize using a focused
278
+ beam detuned from the 3P1 intercombination line to form a
279
+ state-dependent potential, removing nearly all but the mF = -
280
+ 9/2 atoms [16, 17]. Clock spectroscopy confirms ≈ 90% spin
281
+ purity. An additional step of spin purification is applied by
282
+
283
+ 4
284
+ FIG. 4. (a) The three-dimensional density distribution and the corre-
285
+ sponding lattice filling fraction are determined from in situ absorp-
286
+ tion image in Fig. 1(a) and the use of an inverse Abel transformation.
287
+ (b) A linecut along z = 0 provides the data points in circle. Errorbars
288
+ are both the statistical uncertainty of the Abel transformation and
289
+ atom number uncertainty added in quadrature. We start with a pre-
290
+ diction based on HTSE calculation, using independently measured
291
+ values for the temperature, atom number, and harmonic confinement.
292
+ The best fit to the data results in a 10% reduction of the measured as-
293
+ pect ratio ωy/ωx and 5% reduction of the measured T/TF . The red
294
+ line captures this fit, with temperature uncertainty in the shaded band.
295
+ The blue dashed line is a fit to Gaussian in qualitative disagreement
296
+ with na3.
297
+ coherently driving the mF = -9/2 atoms into the excited clock
298
+ state and removing any residual spins with a resonant imaging
299
+ pulse. Absorption imaging directly provides us with the col-
300
+ umn density distribution ˜n, integrated through the vertical axis
301
+ along gravity as depicted in Fig. 1(a). Based on our Fig. 3(b)
302
+ analysis, we choose a pulse duration of 1 µs to minimize blur-
303
+ ring and a saturation intensity of 54(4), substantially larger
304
+ than peak optical density of ∼ 15. To spatially probe the band
305
+ insulator plateau we use an imaging magnification of 38.8 to
306
+ achieve an effective pixel size of 412 nm, roughly equal to the
307
+ lattice constant a = 407 nm. We note that our effective pixel
308
+ size is smaller than our optical resolution of 1.3 µm, thus our
309
+ imaging system is optically oversampled. To extract the 3D
310
+ density distribution, we use an inverse Abel transform [42].
311
+ Given our vertical imaging is not along an axis of cylindri-
312
+ cal symmetry, n must be appropriately scaled by the aspect
313
+ ratio of the spatial density distribution [37]. The aspect ra-
314
+ tio is independently calibrated using the absorption imaging
315
+ measurement in Fig. 1(b).
316
+ At this high magnification, the SNR in fluorescence imag-
317
+ ing for a 1 µs pulse duration is limited by a combination of
318
+ read noise and photon shot noise. We found that even after
319
+ extensive averaging the extracted 3D density distribution us-
320
+ ing an inverse Abel transform was sensitive to small fluctua-
321
+ tions in ˜n. Thus, saturated absorption imaging with a superior
322
+ SNR provides a more robust technique to characterize the 3D
323
+ density distribution. This extracted 3D density distribution is
324
+ plotted in Fig. 4(a).
325
+ To judge the fidelity of our measured 3D density distri-
326
+ bution, we compare the line cut at z = 0 with calculation
327
+ in Fig. 4(b). To estimate the density distribution, we use a
328
+ High Temperature Series Expansion (HTSE) calculation in
329
+ the atomic limit [12, 14, 37, 43]. The ingredients of this cal-
330
+ culation include values for the atomic temperature, harmonic
331
+ confinement, and total atom number. Given the density dis-
332
+ tribution only depends on the ratio of the respective harmonic
333
+ confinements, the measured aspect ratios from Fig. 1 are used
334
+ for our HTSE calculation. The total atom number N is de-
335
+ termined from quantum projection noise measurements [37].
336
+ To estimate the temperature including heating during lattice
337
+ loading, we measure the reduced temperature T/TF in time-
338
+ of-flight after a round-trip from the lattice back to the dipole
339
+ trap and determine an entropy-per-particle increase of 0.25(6)
340
+ kB. Inferring an entropy increase of 0.13(3) kB in a single
341
+ lattice loading sequence, we estimate a T/TF of 0.165(7).
342
+ Although we did not perform a cross-dimensional thermaliza-
343
+ tion measurement to directly verify thermal equilibrium, the
344
+ uncertainty in our temperature is included in the shaded band
345
+ of the HTSE calculation in Fig. 4(b) [44, 45]. We note that the
346
+ extended plateau region is larger than our 1.3 µm imaging res-
347
+ olution. To further quantify the imaging fidelity, we compare
348
+ na3 to a Gaussian fit in clear disagreement with data.
349
+ In conclusion, we report on the observation of a spin-
350
+ polarized, band insulating state in our 3D optical lattice clock.
351
+ This has been enabled by characterizing saturated in situ
352
+ imaging techniques to accurately determine our density dis-
353
+ tribution. Broadly, the saturated imaging techniques in this
354
+ work will be applicable for studies of SU(N) magnetism and
355
+ thermodynamics in the Mott-insulating regime [46, 47]. With
356
+ the high filling fraction demonstrated in this work, many-body
357
+ states arising from dipolar interactions can be generated be-
358
+ tween atoms on neighboring lattice sites [8, 9].
359
+ Acknowledgement. We thank D. Kedar for maintain-
360
+ ing the ultrastable clock laser used in this work and A. Aep-
361
+ pli, K. Kim, J. M. Robinson, M. Miklos, and Y. M. Tso for
362
+ useful discussions. We thank K. Kim, N. D. Oppong, and
363
+ L. Sonderhouse for careful reading of the manuscript and for
364
+ providing insightful comments. Funding for this work is pro-
365
+ vided by NSF QLCI OMA-2016244, DOE Center of Quan-
366
+ tum System Accelerator, DARPA, AFOSR, V. Bush Fellow-
367
+ ship, NIST, and NSF Phys-1734006.
368
+
369
+ 5
370
+ ∗ william.milner@colorado.edu
371
+ † ye@jila.colorado.edu
372
+ [1] T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M. Robin-
373
+ son, E. Oelker, A. Staron, and J. Ye, Nature 602, 420 (2022).
374
+ [2] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Sch¨affer, K. Beloy,
375
+ D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo,
376
+ et al., Nature 564, 87 (2018).
377
+ [3] A. Aeppli, A. Chu, T. Bothwell, C. J. Kennedy, D. Kedar, P. He,
378
+ A. M. Rey, and J. Ye, Science Advances 8, 42 (2022).
379
+ [4] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell,
380
+ M. Bishof, X. Zhang, W. Zhang, S. L. Bromley,
381
+ and J. Ye,
382
+ Nature 506, 71 (2014).
383
+ [5] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti,
384
+ B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.
385
+ Safronova, G. F. Strouse, et al., Nat. Comm. 6, 1 (2015).
386
+ [6] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli,
387
+ and J. Ye, Phys. Rev. Lett. 120, 103201 (2018).
388
+ [7] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. D.
389
+ Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson,
390
+ W. Zhang, B. J. Bloom, et al., Science 358, 90 (2017).
391
+ [8] D. E. Chang, J. Ye, and M. D. Lukin, Phys. Rev. A 69, 023810
392
+ (2004).
393
+ [9] A. Cidrim, A. PineiroOrioli, C. Sanner, R. B. Hutson, J. Ye,
394
+ R. Bachelard, and A. M. Rey, Physical Review Letters 127,
395
+ 013401 (2021).
396
+ [10] S. Kr¨amer, L. Ostermann, and H. Ritsch, EPL (Europhysics
397
+ Letters) 114, 14003 (2016).
398
+ [11] R. B. Hutson, et al. Collective dipolar interactions in a near
399
+ unity filled three-dimensional optical lattice clock, in prepara-
400
+ tion (2023).
401
+ [12] C. Hofrichter, L. Riegger, F. Scazza, M. H¨ofer, D. R. Fernandes,
402
+ I. Bloch, and S. F¨olling, Phys. Rev. X 6, 021030 (2016).
403
+ [13] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne,
404
+ J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. Rey, Nat. Phys.
405
+ 6, 289 (2010).
406
+ [14] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, Nature
407
+ Physics 8, 825 (2012).
408
+ [15] R. B. Hutson, A. Goban, G. E. Marti, L. Sonderhouse, C. San-
409
+ ner, and J. Ye, Phys. Rev. Lett. 123, 123401 (2019).
410
+ [16] L. Sonderhouse,
411
+ C. Sanner,
412
+ R. B. Hutson,
413
+ A. Goban,
414
+ T. Bilitewski, L. Yan, W. R. Milner, A. M. Rey,
415
+ and J. Ye,
416
+ Nat. Phys. 16, 1216 (2020).
417
+ [17] S. Stellmer, R. Grimm,
418
+ and F. Schreck, Phys. Rev. A 84,
419
+ 043611 (2011).
420
+ [18] S. Will, PhD Thesis (Springer Science & Business Media,
421
+ 2012).
422
+ [19] U. Schneider, L. Hackermuller, S. Will, T. Best, I. Bloch, T. A.
423
+ Costi, R. Helmes, D. Rasch, and A. Rosch, Science 322, 1520
424
+ (2008).
425
+ [20] M. Mamaev, R. Blatt, J. Ye, and A. M. Rey, Phys. Rev. Lett.
426
+ 122, 160402 (2019).
427
+ [21] M. Mamaev, I. Kimchi, R. M. Nandkishore, and A. M. Rey,
428
+ Phys. Rev. Research 3, 013178 (2021).
429
+ [22] F. Andreoli, M. J. Gullans, A. A. High, A. Browaeys, and D. E.
430
+ Chang, Phys. Rev. X 11, 011026 (2021).
431
+ [23] W. Ketterle, D. S. Durfee, and D. Stamper-Kurn, arXiv (1999).
432
+ [24] S. P. Rath, T. Yefsah, K. J. G¨unter, M. Cheneau, R. Desbuquois,
433
+ M. Holzmann, W. Krauth, and J. Dalibard, Phys. Rev. A 82,
434
+ 013609 (2010).
435
+ [25] S. Kadlecek, J. Sebby, R. Newell, and T. Walker, Opt. Lett. 26,
436
+ 137 (2001).
437
+ [26] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett.
438
+ 78, 985 (1997).
439
+ [27] M. R. Andrews, M. O. Mewes, N. J. Van Druten, D. S. Durfee,
440
+ D. M. Kurn, and W. Ketterle, Science 273, 84 (1996).
441
+ [28] M. T. DePue, S. L. Winoto, D. Han, and D. S. Weiss, Opt.
442
+ Comm. 180, 73 (2000).
443
+ [29] G. Reinaudi, T. Lahaye, Z. Wang, and D. Gu´ery-Odelin, Opt.
444
+ Lett. 32, 3143 (2007).
445
+ [30] T. Yefsah, R. Desbuquois, L. Chomaz, K. J. G¨unter, and J. Dal-
446
+ ibard, Phys. Rev. Lett. 107, 130401 (2011).
447
+ [31] L. Chomaz, L. Corman, T. Yefsah, R. Desbuquois, and J. Dal-
448
+ ibard, New Journal of Physics 14, 055001 (2012).
449
+ [32] Y.-R. Lee, M.-S. Heo, J.-H. Choi, T. T. Wang, C. A. Chris-
450
+ tensen, T. M. Rvachov,
451
+ and W. Ketterle, Phys. Rev. A 85,
452
+ 063615 (2012).
453
+ [33] C. Sanner, L. Sonderhouse, R. B. Hutson, L. Yan, W. R. Milner,
454
+ and J. Ye, Science 374, 979 (2021).
455
+ [34] D. S. Barker, B. J. Reschovsky, N. C. Pisenti, and G. K. Camp-
456
+ bell, Phys. Rev. A 92, 043418 (2015).
457
+ [35] M. A. Joffe, W. Ketterle, A. Martin, and D. E. Pritchard, JOSA
458
+ B 10, 2257 (1993).
459
+ [36] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J.
460
+ Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, Phys.
461
+ Rev. A 47, 3554 (1993).
462
+ [37] Supplemental materials with description of imaging signal-to-
463
+ noise comparison, QPN atom number calibration, density dif-
464
+ fusion, and HTSE calculations.
465
+ [38] W. Ketterle and M. Zwierlein, arXiv (1999).
466
+ [39] C. Sanner, E. J. Su, A. Keshet, R. Gommers, Y.-i. Shin,
467
+ W. Huang,
468
+ and W. Ketterle, Phys. Rev. Lett. 105, 040402
469
+ (2010).
470
+ [40] W. G. Tobias, K. Matsuda, G. Valtolina, L. De Marco, J.-R. Li,
471
+ and J. Ye, Phys. Rev. Lett. 124, 033401 (2020).
472
+ [41] T. M¨uller,
473
+ B. Zimmermann,
474
+ J. Meineke,
475
+ J.-P. Brantut,
476
+ T. Esslinger,
477
+ and H. Moritz, Phys. Rev. Lett. 105, 040401
478
+ (2010).
479
+ [42] V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler,
480
+ Rev. Sci. Inst. 73, 2634 (2002).
481
+ [43] K. R. A. Hazzard, V. Gurarie, M. Hermele, and A. M. Rey,
482
+ Phys. Rev. A 85, 041604(R) (2012).
483
+ [44] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and
484
+ C. E. Wieman, Phys. Rev. Lett. 70, 414 (1993).
485
+ [45] G. Valtolina, K. Matsuda, W. G. Tobias, J.-R. Li, L. De Marco,
486
+ and J. Ye, Nature 588, 239 (2020).
487
+ [46] A. Goban, R. B. Hutson, G. Marti, S. Campbell, M. Perlin,
488
+ P. Julienne, J. D’incao, A. Rey,
489
+ and J. Ye, Nature 563, 369
490
+ (2018).
491
+ [47] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S.
492
+ Safronova, P. Zoller, A. M. Rey, and J. Ye, Science 345, 1467
493
+ (2014).
494
+
495
+ Supplemental material to
496
+ High-fidelity imaging of a band insulator in a three-dimensional optical lattice clock
497
+ Density diffusion
498
+ Here we provide supplemental analysis to the data pre-
499
+ sented in Fig. 3(b). In panel A of Fig. S1, we plot the in-
500
+ tegrated counts along the x axis of each image. We see an
501
+ asymmetry emerge along the direction of the probe beam as
502
+ the pulse duration is extended. This asymmetry suggests that
503
+ the observed density diffusion may arise from inhomogeni-
504
+ ety between the incident and retroreflected beams. While the
505
+ power is certainly mismatched, this could also be due to ei-
506
+ ther imperfect spatial alignment or mode mismatch given the
507
+ divergence of the probe beam.
508
+ We also plot the total counts in each image as a function of
509
+ pulse duration in panel B. The linear character of the counts
510
+ over the full pulse duration range suggests that we do not ob-
511
+ serve appreciable atom loss or pumping to dark states. The
512
+ counts at each pulse duration are normalized to the counts at
513
+ 500 ns. The inset shows the Gaussian RMS width of the cloud
514
+ as a function of pulse duration.
515
+ Signal-to-noise comparison
516
+ In the main text of the paper we refer to both saturated ab-
517
+ sorption and fluorescence imaging. We provide a quantita-
518
+ tive comparison of the signal-to-noise ratio (SNR) between
519
+ the two techniques here. We express our signal-to-noise for a
520
+ detection pixel in terms of the normalized variance V(N)/N,
521
+ where N denotes the number of atoms within the respective
522
+ detection region. For fluorescence imaging the SNR is simply
523
+ determined by the shot noise associated with the number of
524
+ detected photons. To calculate the total atom number, we first
525
+ convert the fluorescence counts detected on our camera to the
526
+ number of collected photons. Then, using the collection effi-
527
+ ciency of our imaging system and scattering rate of our atomic
528
+ transition we determine the conversion of detected photons
529
+ per atom. On our CCD camera, we measure na counts in a
530
+ given pixel. Using the quantum efficiency q of the imaging
531
+ system, and the camera conversion gain g in units of counts
532
+ per photo electron, we infer na
533
+ qg photons. At full saturation,
534
+ the atomic scattering rate is Γ
535
+ 2 and the number of photons scat-
536
+ tered per atom is Psc = Γ
537
+ 2 × τ, where τ is the pulse duration.
538
+ Finally, we denote the collection efficiency as Y , determined
539
+ by the numerical aperture of our imaging system and by ra-
540
+ diation pattern anisotropies. Combining terms, the total atom
541
+ number is N =
542
+ na
543
+ gqY Psc . Using error propagation, we deter-
544
+ mine the variance VF l(N).
545
+ VF l(N) =
546
+ � ∂N
547
+ ∂na
548
+ �2
549
+ V(na) =
550
+
551
+ 1
552
+ gqY Psc
553
+ �2
554
+ gna
555
+ (1)
556
+ FIG. S1. Panel (a) shows the integrated counts from the images in
557
+ Fig. 3(b) of the main text along the x axis as a function of pulse du-
558
+ ration. The total counts at each pulse duration is plotted in panel (b),
559
+ normalized by the counts at 500 ns. Given the detected photon count
560
+ increases linearly with pulse duration, we observe minimal atom loss
561
+ or molecular formation over the full 2 µs range. The inset shows the
562
+ Gaussian RMS width of the cloud as a function of pulse duration.
563
+ Here, we have used the fact that the distribution of gener-
564
+ ated photo electrons ne is binomial. Thus, V(na) = V(g ×
565
+ ne) = g2V(ne) = g2ne = gna. Combining terms:
566
+ VF l(N)/N =
567
+ 1
568
+ qY Psc
569
+ (2)
570
+ The SNR associated with absorption imaging is more com-
571
+ plicated given the formula for the atom number in Eq. 3 has
572
+ both logarithmic and linear terms and involves two images na
573
+ and nb with and without atoms present. Here, A and σ0 refer
574
+ to the effective pixel size accounting for the imaging system
575
+ magnification and effective atomic absorption cross section,
576
+ respectively. Similar to fluorescence imaging, an appropriate
577
+ error propagation of the na and nb terms determines Eq. 4 and
578
+ Eq. 5. We summarize the formulas here and point a reader to
579
+ reference [1] for a full derivation.
580
+ arXiv:2301.03343v1 [physics.atom-ph] 9 Jan 2023
581
+
582
+ 2
583
+ N = A
584
+ σ0
585
+ log( nb
586
+ na
587
+ ) +
588
+ 2
589
+ Γτgq (nb − na)
590
+ (3)
591
+ VAbs(N) = g ˜A2( 1
592
+ na
593
+ + 1
594
+ nb
595
+ ) + g ˜B2(na + nb) + 4g ˜A ˜B (4)
596
+ ˜A = A
597
+ σ0
598
+ , ˜B =
599
+ 2
600
+ qgτΓ
601
+ (5)
602
+ We compare the different techniques in Fig. S2 using the
603
+ experimentally relevant parameters for our imaging system.
604
+ In both cases, a 1 µs resonant pulse is used with a numerical
605
+ aperture of 0.2 and a quantum efficiency of 85%. For the fluo-
606
+ rescence SNR in blue, the transition is assumed to be fully sat-
607
+ urated and scatters photons with a rate of Γ/2. For the I/Isat
608
+ = ∼ 55 we use for our inverse Abel measurements, the SNR
609
+ in absorption imaging is superior to fluorescence imaging in
610
+ regions where the column density is higher than 2 atoms/a2.
611
+ Particularly given our peak density of ˜na2 = ∼ 20 in Fig. 1(a),
612
+ absorption imaging provides a better SNR in the regions of
613
+ high density where we extract our peak filling fraction. At a
614
+ critical OD of 0.17, fluorescence detection under our experi-
615
+ mental parameters provides a superior SNR at all imaging in-
616
+ tensities. We note these calculations neglect technical noise,
617
+ in particular camera readout noise, which can be accounted
618
+ for by offsetting V(na) accordingly. This contribution will
619
+ disproportionately reduce the SNR of fluorescence imaging,
620
+ as the fluorescence counts are substantially lower than the ab-
621
+ sorption counts.
622
+ To probe fine spatial details in our atomic cloud, an imag-
623
+ ing resolution smaller than the length scale of these spatial
624
+ features is required. To achieve this condition, a sufficiently
625
+ large numerical aperture imaging system must be utilized and
626
+ aberrations must be minimized. In this case, the imaging res-
627
+ olution is fundamentally limited by diffraction. We verified
628
+ the diffraction-limited performance of our NA = 0.2 objec-
629
+ tive lens by propagating a point source at 461 nm through
630
+ a test setup (including all imaging path optics and vacuum
631
+ viewports) and measuring the point-spread function.
632
+ While absorption and fluorescence imaging rely on the
633
+ same light scattering process (they only collect different parts
634
+ of the scattered EM field [2]), the signal amplitudes for these
635
+ two methods scale differently with the NA. When collect-
636
+ ing fluorescence, the solid angle coverage of the imaging sys-
637
+ tem proportionally affects the signal down to the lowest spa-
638
+ tial frequencies. This is not the case for absorption imaging,
639
+ where the amplitude of spatial frequency components below
640
+ the NA-dependent bandwidth is constant as the NA is further
641
+ increased (assuming the lens fully covers the probe beam). In
642
+ other words, for fluorescence imaging, most of the signal light
643
+ gets collected in the outer ring fraction of the lens aperture,
644
+ which renders it particularly susceptible to lens imperfections.
645
+ 0
646
+ 20
647
+ 40
648
+ 60
649
+ 80
650
+ 100
651
+ I/Isat
652
+ 0.0
653
+ 0.5
654
+ 1.0
655
+ 1.5
656
+ 2.0
657
+ Var(N)/N
658
+ Absorption beam intensity
659
+ 1 s pulse duration, NA = 0.2
660
+ Saturated fluorescence
661
+ OD = 0.17, 0.28 atoms/a2
662
+ OD = 1.2, 2 atoms/a2
663
+ OD = 3.1, 5 atoms/a2
664
+ OD = 6.1, 10 atoms/a2
665
+ OD = 12.2, 20 atoms/a2
666
+ FIG. S2.
667
+ SNR comparison between absorption and fluorescence
668
+ imaging. The relevant imaging parameters from the main figures of
669
+ the paper are used for this calculation. For absorption imaging the
670
+ atom count variance scales inversely proportional with intensity in
671
+ the non-saturated limit I ≪ Isat, and proportional with intensity in
672
+ the high saturation limit. The variance is for both imaging methods
673
+ proportional to 1/τ. In the fully saturated regime (and assuming no
674
+ technical noise) the normalized variance for fluorescence imaging is
675
+ independent of atomic column density. To avoid imaging defects at
676
+ the high densities used in clock operation, an I/Isat > 50 was used
677
+ in all imaging measurements. The black dashed line indicates the
678
+ intensity used for our inverse Abel measurements.
679
+ HTSE calculation
680
+ To accurately model the density distribution in our 3D lat-
681
+ tice, we use a High Temperature Series Expansion (HTSE)
682
+ calculation in the atomic limit. The general Hamiltonian for
683
+ SU(N) symmetric fermions in a 3D lattice in the atomic limit
684
+ takes the following form:
685
+ HAL = U
686
+ 2
687
+
688
+ i,σ̸=σ′
689
+ ˆni,σˆni,σ′ +
690
+
691
+ i,σ
692
+ Viˆni,σ
693
+ (6)
694
+ On a lattice site i, there are just two competing energy
695
+ scales: an interaction energy U between particles and a po-
696
+ sition dependent energy offset Vi according to the harmonic
697
+ confinement. By using the local density approximation µ =
698
+ V (x, y, z)−µ0, where V (x, y, z) = 1
699
+ 2m(ω2
700
+ xx2+ω2
701
+ yy2+ω2
702
+ zz2)
703
+ and µ0 corresponds to the peak chemical potential in the lat-
704
+ tice. For the spin-polarized system in this work, U = 0 and the
705
+ calculations are substantially simplified.
706
+ Ultimately, we want to express the density distribution
707
+ n(µ, T, r) in terms of the chemical potential, atomic tempera-
708
+ ture, and position in the lattice. On a lattice site i, we express
709
+ the Grand partition function Z and Grand potential Ω :
710
+ Z(µ, T, r) =
711
+ N=1
712
+
713
+ σ=0
714
+ �N
715
+ σ
716
+
717
+ e−βµσ
718
+ (7)
719
+
720
+ 3
721
+ Ω = −kBTln(Z)
722
+ From here, we determine the entropy and occupancy per
723
+ lattice site i:
724
+ s(µ, T, r) = −∂Ω
725
+ ∂T = kB ln(Z) + ∆s
726
+ ∆s = kB
727
+ Z βµe−βµ
728
+ (8)
729
+ n(µ, T, r) = −∂Ω
730
+ ∂µ =
731
+ 1
732
+ Z(µ, T)e−βµ
733
+ (9)
734
+ We accurately determine the total atom number Nlat from
735
+ in situ absorption imaging and total entropy Slat via time-of-
736
+ flight fitting to a non-interacting Fermi-Dirac profile. Simi-
737
+ larly, we express the entropy s and occupation n on a given
738
+ lattice site using Eq. 8 and Eq. 9 expressed in terms of T
739
+ and µ. We then determine global fitting parameters T and µ0
740
+ to ensure the integrated entropy and occupancy over all lat-
741
+ tice sites equals our experimentally measured values. After
742
+ determining µ0 and T to realize the equality in Eq. 9, we cal-
743
+ culate n(µ, T, r). A linecut of n(µ, T, r) at z = 0 is plotted in
744
+ Fig. 4(b).
745
+ Inverse Abel transform
746
+ We outline our reconstruction procedure here using mea-
747
+ surements of the atomic cloud aspect ratios and an inverse
748
+ Abel transform: First, we use saturated absorption images
749
+ along a vertical axis aligned with z and a horizontal axis
750
+ aligned with x corresponding to Fig. 1(a) and Fig. 1(b) to
751
+ determine the aspect ratios ωx/ωy and ωx/ωz respectively.
752
+ Next, we perform an inverse Abel transform on the Fig. 1(a)
753
+ image to reconstruct an initial three-dimensional density dis-
754
+ tribution. Given there is no axis of cylindrical symmetry in
755
+ our system geometry, the reconstructed density from the in-
756
+ verse Abel transform must be appropriately re-scaled.
757
+ Treating our system as an ellipsoid with radii rx, ry, rz
758
+ and N atoms the density is nlat = N/Vlat where Vlat =
759
+ 4
760
+ 3πrxryrz.
761
+ We extract the inverse Abel transform for the
762
+ Fig. 1(a) image along the x axis, given the largest Band in-
763
+ sulator plateau will occur along the axis with the weakest har-
764
+ monic confinement. The density distribution from this pro-
765
+ cedure assumes a volume of VAbel =
766
+ 4
767
+ 3πrxrxry. Thus we
768
+ scale the extracted density by nAbel/nlat = rz
769
+ rx = ωz/ωx us-
770
+ ing the measured aspect ratio from Fig. 1(b). Given excess
771
+ noise around the origin, the x = 0 point is interpolated with
772
+ the neighboring point in Fig. 4(a). This reconstruction proce-
773
+ dure was cross-checked with simulated density distributions
774
+ to ensure its fidelity. The three-point Abel transform method
775
+ was used for this work, which has been independently studied
776
+ to verify its fidelity [3].
777
+ QPN calculation
778
+ To calibrate our atom number, we analyze quantum projec-
779
+ tion fluctuations using the narrow-linewidth clock transition
780
+ between the 1S0 and 3P0 states in 87Sr. Using a clock laser
781
+ stabilized to our 8 mHz linewidth silicon reference cavity, ro-
782
+ tation noise due to laser instability can be neglected in these
783
+ measurements [4]. Additionally, fluctuations in total counts
784
+ are < 2% and not a limiting systematic for determining the
785
+ atom number calibration. Referenced in many texts [5], by
786
+ preparing atoms in a superposition of 1S0 to 3P0 the variance
787
+ V of the measured excitation fraction is related to the mean
788
+ atom number ¯N and mean excitation ¯pe by:
789
+ VQP N = ¯pe(1 − ¯pe)
790
+ ¯N
791
+ (10)
792
+ To determine this variance, we do many subsequent mea-
793
+ surements of pe under identical operating conditions. For a
794
+ measurement i to determine pi
795
+ e, two fluorescence counts ˜Ci
796
+ g
797
+ and ˜Ci
798
+ e are read off a region of interest of our camera includ-
799
+ ing our atoms. These counts are subtracted by two averaged
800
+ dark frames ¯Bg and ¯Be to yield Ci
801
+ g = ˜Ci
802
+ g− ¯Bg, Ci
803
+ e = ˜Ci
804
+ e− ¯Be.
805
+ We would like to determine the coefficient a that satisfies
806
+ N i
807
+ e = aCi
808
+ e/τ, N i
809
+ g = aCi
810
+ g/τ. We can immediately see that
811
+ the excitation fraction has no dependence on this coefficient:
812
+ pi
813
+ e =
814
+ �aCi
815
+ e
816
+ �aCie + �aCig
817
+ (11)
818
+ However, the total atom number N i = a(Ci
819
+ e + Ci
820
+ g)/τ =
821
+ aCi
822
+ t/τ does. Rewriting Eq. 10, we see a measurement of the
823
+ variance VQP N, the mean excitation ¯pe, and the mean total
824
+ counts ¯Ct can determine a.
825
+ VQP N = ¯pe(1 − ¯pe)
826
+ a ¯Ct/τ
827
+ (12)
828
+ The coefficient a can be interpreted as the ”atoms per count
829
+ per pulse duration”. In principle, with knowledge of the quan-
830
+ tum efficiency, gain, scattering rate, numerical aperture, and
831
+ radiation pattern one could calculate this value. Practically,
832
+ assumptions about the radiation pattern based on the quanti-
833
+ zation axis and probe light polarization make this calculation
834
+ more difficult. In practice, it is much more straightforward to
835
+ directly measure a than to individually measure each of these
836
+ values with high accuracy.
837
+ The observed variance of the excitation fraction Vpe has
838
+ contributions from quantum projection noise (QPN), photon
839
+ shot noise (PSN), and camera readout noise (RN):
840
+ Vpe = VQP N + VP SN + VRN
841
+ (13)
842
+ Here g is the detector gain in units of counts per electron.
843
+
844
+ 4
845
+ VP SN = ¯pe(1 − ¯pe)
846
+ ¯Ct
847
+ × g
848
+ (14)
849
+ VRN = R2
850
+ ¯Ct
851
+ 2 (2¯p2
852
+ e − 2¯pe + 1)
853
+ (15)
854
+ VP SN can be understood intuitively considering the ratio
855
+ VQP N/VP SN. The number of signal electrons (equivalently
856
+ the number of collected photons multiplied by the camera
857
+ quantum efficiency) per atom determines the relative scaling
858
+ of VQP N and VP SN.
859
+ VQP N
860
+ VP SN
861
+ =
862
+ 1
863
+ g × a
864
+ (16)
865
+ 105
866
+ 3 × 104
867
+ 4 × 104
868
+ 6 × 104
869
+ Ct (counts)
870
+ 10
871
+ 5
872
+ Var(pe)
873
+ FIG. S3. Readout noise calibration. A π pulse on our optical clock
874
+ transition is used so pe ≈ 1 and Vpe =
875
+ R2
876
+ ¯
877
+ Ct2 + C. We use 4 pulse
878
+ durations between 5 and 20 µs to vary Ct. We fit R = 100.2 ± 24.6
879
+ and C = 2.73 × 10−6 ± 1.02 × 10−6.
880
+ To determine a we need to accurately calibrate VRN and
881
+ VP SN. We see at pe = 1, VP SN, VQP N = 0. Thus, measur-
882
+ ing Vpe at pe = 1 will independently determine VRN.
883
+ We wish to fit R and ensure it is consistent with the cameras
884
+ specified readout noise. To extract this value, we use 4 pulse
885
+ durations between 5 and 20 µs to vary Ct. This is illustrated
886
+ in Fig. S3. In practice, we fit
887
+ Vpe = R2
888
+ ¯Ct
889
+ 2 + C
890
+ (17)
891
+ We fit R = 100.2 ± 24.6 and C = 2.73 × 10−6 ± 1.02 ×
892
+ 10−6. For our circular ROI there are X = 889 pixels in the
893
+ masked radius. For the calibrated gain g = 1.59 counts/e- and
894
+ readout noise r = 2.4 e- respectively , Rcalc = √Xgr =
895
+ 94.7 in agreement with R = 100.2 ± 24.6. We note that the
896
+ gain and readout noise of the camera are close to specifica-
897
+ tion. Dark counts over our 30 ms exposure are < .1 e- and
898
+ considered negligible.
899
+ Next, we wish to determine aQP N. To do so, we perform a
900
+ second measurement at pe = 0.5. The variance of this dataset
901
+ contains contributions from VQP N, VP SN, and VRN. Us-
902
+ ing the measured R value, we subtract the VRN contribution.
903
+ Next, we fit the data in Fig. S4 to:
904
+ Vpe = 0.5(1 − 0.5)
905
+ a ¯Ct/τ
906
+ + 0.5(1 − 0.5)
907
+ ¯Ct
908
+ × g
909
+ (18)
910
+ We fit aQP N = 1.72 ± 0.16. This is in reasonable agree-
911
+ ment with the calculated value of 1.43 assuming Γ/2 scatter-
912
+ ing into 4 π while also accounting for the measured quantum
913
+ efficiency.
914
+ 105
915
+ 4 × 104
916
+ 6 × 104
917
+ Ct (counts)
918
+ 2 × 10
919
+ 5
920
+ 3 × 10
921
+ 5
922
+ 4 × 10
923
+ 5
924
+ Var(pe)
925
+ FIG. S4. aQP N calibration. The atoms in our optical lattice are
926
+ placed in a superposition of the ground and clock states with a π/2
927
+ pulse so pe ≈ 0.5 for these measurements and Vpe is fit to Eq. 18.
928
+ We determine aQP N = 1.72 ± 0.16.
929
+ READOUT NOISE
930
+ Here, we derive the readout noise term used in our variance
931
+ measurements. The expressions used are somewhat different
932
+ than other literature, given that we use averaged dark frames
933
+ ¯Be and ¯Bg. Recall, pe =
934
+ Ce
935
+ Ce+Cg . To determine the readnoise
936
+ contribution to the excitation fraction, we perform standard
937
+ error propagation:
938
+ VRN =
939
+ � ∂pe
940
+ ∂Ce
941
+ �2
942
+ V(Ce) +
943
+ � ∂pe
944
+ ∂Cg
945
+ �2
946
+ V(Cg)
947
+ (19)
948
+ Here,
949
+ ∂pe
950
+ ∂Cg
951
+ =
952
+ Ce
953
+ (Ce + Cg)2 =
954
+ pe
955
+ (Ce + Cg)
956
+ (20)
957
+
958
+ 5
959
+ ∂pe
960
+ ∂Ce
961
+ =
962
+ Cg
963
+ (Ce + Cg)2 =
964
+ 1 − pe
965
+ (Ce + Cg)
966
+ (21)
967
+ To determine V(Ce) consider an X pixel region-of-interest
968
+ for which we extract Cg, Ce in two separate measurements.
969
+ Each pixel contains r read noise in electrons. The single pixel
970
+ read noise in units of counts is thus g × ri. The total noise in
971
+ this region of interest is summed in quadrature pixel-by-pixel
972
+ V(Cg), V(Ce) = �
973
+ X (ri × g)2 = Xr2g2 = R2. Plugging
974
+ terms in Eq. 19:
975
+ VRN = R2
976
+ ¯Ct
977
+ 2 (2¯p2
978
+ e − 2¯pe + 1)
979
+ (22)
980
+ Imaging system parameters for Fig. 3(a)
981
+ In Table 1 is a summary of the imaging parameters for the
982
+ measurements in Fig. 3(a). For Fig. 1 and Fig. 4, a 1 µs pulse
983
+ duration was used. In Fig. 3(b), we vary the pulse length be-
984
+ tween 500 ns and 2 µs. Atom number fluctuations in time-
985
+ of-flight absorption imaging for these measurements have a
986
+ standard deviation less than 2 %.
987
+ Table 1
988
+ Vertical imaging system
989
+ Numerical aperture
990
+ 0.23
991
+ Pulse duration
992
+ 3 µs
993
+ Total photons scattered per atom at full
994
+ saturation
995
+ 287
996
+ Collection efficiency
997
+ 1.3 %
998
+ Camera quantum efficiency
999
+ 0.85
1000
+ Imaging system quantum efficiency
1001
+ 0.65
1002
+ Calculated photon count per atom
1003
+ 2.06
1004
+ Measured photon count per atom
1005
+ 1.91(1)
1006
+ Horizontal imaging system
1007
+ Numerical aperture
1008
+ 0.10
1009
+ Pulse duration
1010
+ 3 µs
1011
+ Total photons scattered per atom at full
1012
+ saturation
1013
+ 287
1014
+ Collection efficiency
1015
+ 0.25 %
1016
+ Camera quantum efficiency
1017
+ 0.78
1018
+ Imaging system quantum efficiency
1019
+ 0.72
1020
+ Calculated photon count per atom
1021
+ 0.402
1022
+ Measured photon count per atom
1023
+ 0.445(3)
1024
+ [1] G. E. Marti, PhD Thesis (University of California, Berkeley,
1025
+ 2014).
1026
+ [2] W. Ketterle, D. S. Durfee, and D. Stamper-Kurn, arXiv (1999).
1027
+ [3] D. D. Hickstein, S. T. Gibson, R. Yurchak, D. D. Das,
1028
+ and
1029
+ M. Ryazanov, Review of Scientific Instruments 90, 065115
1030
+ (2019).
1031
+ [4] D. Matei, T. Legero, S. H¨afner, C. Grebing, R. Weyrich,
1032
+ W. Zhang, L. Sonderhouse, J. Robinson, J. Ye, F. Riehle, et al.,
1033
+ Phys. Rev. Lett. 118, 263202 (2017).
1034
+ [5] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J.
1035
+ Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, Phys.
1036
+ Rev. A 47, 3554 (1993).
1037
+
EtE1T4oBgHgl3EQfqgU3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdAyT4oBgHgl3EQfSvfs/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:378f06e83045775fe1e271169a47227108b8212cc57d27c8138ec4656a9aaa98
3
+ size 3342381
GdE0T4oBgHgl3EQfRQBK/content/tmp_files/2301.02204v1.pdf.txt ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02204v1 [math.CO] 5 Jan 2023
2
+ ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL
3
+ SEMILINEAR GROUPS
4
+ DOM VITO A. BRIONES
5
+ Abstract. Association schemes on triples (ASTs) are 3-dimensional analogues of classical
6
+ association schemes.
7
+ If a group acts two-transitively on a set, the orbits of the action
8
+ induced on the triple Cartesian product of that set yields an AST. By considering the
9
+ actions of semidirect products of the affine special linear group ASL(k, n) with subgroups of
10
+ the Galois group Gal(GF(n)), we obtain the sizes, third valencies, and intersection numbers
11
+ of the ASTs obtained from subgroups of the affine special semilinear group.
12
+ 1. Introduction
13
+ A classical association is an algebraic-combinatorial object with certain symmetry prop-
14
+ erties. These properties suffice to afford classical association with desirable structural char-
15
+ acteristics and are pliant enough to allow classical association schemes to be applicable to
16
+ several areas of mathematics. For example, the adjacency algebra of a classical association
17
+ scheme is semisimple and, when the adjacency matrices define a distance-regular graph, the
18
+ structure constants of this algebra can be expressed in terms of certain families of orthogonal
19
+ polynomials. [4]
20
+ Mesner and Bhattacharya introduced the notion of association schemes on triples (or
21
+ ASTs), a ternary analogue for classical association schemes [5].
22
+ An AST on a set Ω is
23
+ a partition of the triple Cartesian product Ω × Ω × Ω subject to regularity requirements
24
+ paralleling the symmetry conditions for classical association schemes. In ASTs, the resulting
25
+ adjacency hypermatrices produce a ternary algebra under a ternary product that extends
26
+ the usual matrix multiplication.
27
+ However, the structural properties of ASTs remain unclear, partly due to the ternary
28
+ adjacency algebra not being associative nor commutative. As first steps in the investigation
29
+ of ASTs, studies were conducted regarding analogues of identity and inverse elements [6],
30
+ enumerations of ASTs over the smallest number of vertices [1], possible sources of ASTs such
31
+ as those from group actions, two-graphs, designs, and other ASTs [5, 7, 3], as well as the
32
+ intersection numbers of known families of ASTs [5, 2, 3].
33
+ In particular, the actions of two-transitive groups yield ASTs [5]. The orbits of these
34
+ actions are closely related to the parameters of the AST, providing their sizes, third valencies,
35
+ and intersection numbers [5, 2]. In fact, [5] provides the sizes, third valencies, and intersection
36
+ numbers of the ASTs obtained from the affine general linear group AGL(1, n) where n is a
37
+ prime power. This was extended in [2], wherein these parameters were obtained for the ASTs
38
+ (D.V.A. Briones, Corresponding author) Institute of Mathematics, University of the Philippines
39
+ Diliman, 1101 Quezon City, Philippines
40
+ E-mail address: dabriones@up.edu.ph.
41
+ Date: January 6, 2023.
42
+ Key words and phrases. algebraic combinatorics, ternary algebra, association scheme on triples
43
+ MSC Classification: 05E30.
44
+ 1
45
+
46
+ 2
47
+ D.V.A. BRIONES
48
+ obtained from subgroups of the affine semilinear group AΓL(k, n) of the form AGL(k, n)⋊H),
49
+ where k ≥ 1 and H ≤ Gal(GF(q). Further work was done in [3], where these parameters
50
+ were obtained from ASTs obtained from the affine special linear group ASL(2, n).
51
+ We extend this last result by determining the sizes, third valencies, and intersection num-
52
+ bers of ASTs obtained from subgroups of the affine special semilinear group ASL(k, n) ⋊
53
+ Gal(GF(n)) of the form ASL(k, n) ⋊ H, where k ≥ 2, n is a prime power, and H is a
54
+ subgroup of Gal(GF(n)). In particular, we show that the ASTs obtained from ASLH(k, n)
55
+ are the same as the ASTs obtained from AGLH(k, n) = AGL(k, n) ⋊ H for k ≥ 3.
56
+ 2. Preliminaries
57
+ We define association schemes on triples, remark how ASTs arise from two-transitive
58
+ groups, and review the actions of the affine special linear and affine special semilinear groups.
59
+ 2.1. Association schemes on triples. We define association schemes on triples and men-
60
+ tion how the parameters of an AST obtained from a two-transitive group are related to the
61
+ group action.
62
+ Definition 2.1. [5, 7] Let Ω be a finite set with at least 3 elements. An association scheme
63
+ on triples (AST) on Ω is a partition X = {Ri}m
64
+ i=0 of Ω × Ω × Ω with m ≥ 4 such that the
65
+ following hold.
66
+ (1) For each i ∈ {0, . . . , m}, there exists an integer n(3)
67
+ i
68
+ such that for each pair of distinct
69
+ x, y ∈ Ω, the number of z ∈ Ω with (x, y, z) ∈ Ri is n(3)
70
+ i .
71
+ (2) (Principal Regularity Condition.) For any i, j, k, l ∈ {0, . . . , m}, there exists a con-
72
+ stant pl
73
+ ijk such that for any (x, y, z) ∈ Rl, the number of w such that (w, y, z) ∈ Ri,
74
+ (x, w, z) ∈ Rj, and (x, y, w) ∈ Rk is pl
75
+ ijk.
76
+ (3) For any i ∈ {0, . . . , m} and any σ ∈ S3, there exists a j ∈ {0, . . . , m} such that
77
+ Rj = {(xσ(1), xσ(2), xσ(3)) : (x1, x2, x3) ∈ Ri}.
78
+ (4) The first four relations are R0 = {(x, x, x) : x ∈ Ω}, R1 = {(x, y, y) : x, y ∈ Ω, x ̸= y},
79
+ R2 = {(y, x, y) : x, y ∈ Ω, x ̸= y}, and R3 = {(y, y, x) : x, y ∈ Ω, x ̸= y}.
80
+ The integer n(3)
81
+ i
82
+ is the third valency of Ri, and is the analogue of valency from classical
83
+ association schemes. By Conditions 1 and 3 of Definition 2.1 there are for each i the constants
84
+ n(1)
85
+ i
86
+ = |{z ∈ Ω : (z, x, y) ∈ Ri}| and n(2)
87
+ i
88
+ = |{z ∈ Ω : (x, z, y) ∈ Ri}| independent of any pair
89
+ of distinct x, y ∈ Ω. Similarly, n(1)
90
+ i
91
+ is the first valency of Ri and n(2)
92
+ i
93
+ is the second valency of
94
+ Ri. The trivial relations are R0, R1, R2 and R3 while the other relations are the nontrivial
95
+ relations. Further, the numbers pl
96
+ ijk are called the intersection numbers.
97
+ ASTs arise naturally from the actions of two-transitive groups [5], mirroring how Schurian
98
+ classical association schemes are induced by the actions of transitive groups [4]. Indeed,
99
+ when a two-transitive group G acts on a set Ω, the orbits of the induced action on Ω×Ω×Ω
100
+ is an AST [5]. Correspondences between the action and the parameters of the induced AST
101
+ are summarized in the following remark.
102
+ Remark 1 ([5, 2]). Let G be a group acting two-transitively on a set Ω and let X be the AST
103
+ induced by this action. For any pair of distinct elements a, b ∈ Ω, the orbits of the two-point
104
+ stabilizer Ga,b on Ω \ {a, b} are in bijection with the nontrivial relations of the AST. As a
105
+ consequence of this bijection, the sizes of these orbits are also the third valencies.
106
+
107
+ ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL SEMILINEAR GROUPS
108
+ 3
109
+ 2.2. Affine special groups. Given a prime power n and k ≥ 1, the affine special linear
110
+ group ASL(k, n) is the semidirect product GF(n) ⋊ SL(k, n), where SL(k, n) is the group
111
+ of invertible linear transformations on the k-dimensional vector space V over GF(n) of
112
+ determinant 1. Explicitly, the affine special linear group is the following group of maps from
113
+ V to itself.
114
+ ASL(k, n) = {x �→ Ax + b : A ∈ SL(k, n), b ∈ V } .
115
+ Similarly, the affine special semilinear group ASL(k, n) ⋊ Gal(GF(n)) is the semidirect
116
+ product of the affine special linear group ASL(k, n) with the Galois group Gal(GF(n)).
117
+ Explicitly, the affine special semilinear group is the following group of maps from V to itself.
118
+ ASL(k, n) ⋊ Gal(GF(n)) = {x �→ Aφ(x) + b : A ∈ SL(k, n), b ∈ GF(n), φ ∈ Gal(GF(n))} .
119
+ 3. ASTs from subgroups of the affine special semilinear group
120
+ In this section we generalize work done in [3] by obtaining the sizes, third valencies, and
121
+ intersection numbers of ASTs obtained from the actions of subgroups of the affine special
122
+ semilinear group of the form
123
+ ASLH(k, n) = ASL(k, n) ⋊ H,
124
+ where k ≥ 2, n = pα a power of a prime number p, and H a subgroup of Gal(GF(n)).
125
+ We obtain the sizes and third valencies of these ASTs by obtaining a two-point stabilizer of
126
+ ASLH(k, n) and then determining its orbits. Finally, we obtain the intersection numbers of
127
+ these ASTs through explicit orbit computations.
128
+ For ease of discussion, we fix the following notations. Let n = pα be a power of a prime p,
129
+ k ≥ 2, V be the k-dimensional vector space over GF(n), H be a subgroup of Gal(GF(n)),
130
+ and X be the AST obtained from ASLH(k, n). For a ∈ GF(n), let ⃗a = (a, 0, . . . , 0)T ∈ V .
131
+ Further, for (u, v, w) ∈ V × V × V , let [(u, v, w)] ∈ X denote the orbit of (u, v, w) under
132
+ ASLH(k, n).
133
+ We begin with the case where k = 2. To determine the size and third valencies of X, we
134
+ exploit the relationships between these parameters and the orbits of a two-point stabilizer
135
+ of ASLH(k, n).
136
+ Theorem 3.1. Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n))
137
+ and X be the AST obtained from the action of ASLH(2, n) on the 2-dimensional vector space
138
+ V over GF(n). The two-point stabilizer ASLH(2, n)⃗0,⃗1 has the following orbits on V \{⃗0,⃗1}.
139
+ (1) There are −2 + ω
140
+ α
141
+ � α
142
+ ω
143
+ β=1 qgcd ( α
144
+ ω ,β) orbits of the form
145
+ � ⃗
146
+ φ(a) : φ ∈ H
147
+
148
+ , a ̸= 0, 1
149
+ each of size degGF (q)(a).
150
+ (2) There are −1 + ω
151
+ α
152
+ � α
153
+ ω
154
+ β=1 qgcd ( α
155
+ ω ,β) orbits of the form
156
+
157
+ (c, φ(a))T : c ∈ GF(n), φ ∈ H
158
+
159
+ , a ̸= 0
160
+ each of size n degGF (q)(a).
161
+ As a consequence of Theorem 3.1, we obtain the sizes and third valencies of the ASTs
162
+ obtained from ASLH(2, n).
163
+ Theorem 3.2. Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n))
164
+ and X be the AST obtained from the action of ASLH(2, n) on the 2-dimensional vector
165
+
166
+ 4
167
+ D.V.A. BRIONES
168
+ space V over GF(n). Then X has −3 + 2
169
+
170
+ ω
171
+ α
172
+ � α
173
+ ω
174
+ β=1 qgcd ( α
175
+ ω ,β)�
176
+ nontrivial relations. There are
177
+ −2 + ω
178
+ α
179
+ � α
180
+ ω
181
+ β=1 qgcd ( α
182
+ ω ,β) nontrivial relations of the form
183
+ Ra = {[(⃗0,⃗1,⃗a)]}, a ̸= 0, 1,
184
+ with corresponding third valency degGF (q)(a). The remaining −1+ ω
185
+ α
186
+ � α
187
+ ω
188
+ β=1 qgcd ( α
189
+ ω ,β) nontrivial
190
+ relations of X are of the form
191
+ aR = {[(⃗0,⃗1, (0, a)T)]}, a ̸= 0,
192
+ with corresponding third valency n degGF (q)(a).
193
+ Proof. The two-point stabilizer is
194
+ ASLH(2, n)⃗0,⃗1 = {(x, y)T �→
195
+
196
+ 1
197
+ c
198
+ 0
199
+ 1
200
+
201
+ (φ(x), φ(y))T : c ∈ GF(n), φ ∈ H}.
202
+ Direct computation shows that the orbits of ASLH(2, n)⃗0,⃗1 have the following forms.
203
+ (1) The first type of orbit has the form
204
+ {(φ(a), 0)T : φ ∈ H},
205
+ which consists of those vectors whose second coordinate is 0 and whose first coordinate
206
+ is a Galois conjugate of an element a ∈ GF(n) with a ̸= 0, 1.
207
+ (2) The remaining orbits are of the form
208
+ {(x, φ(a))T : x ∈ GF(n), φ ∈ H},
209
+ which consists of those vectors whose second coordinate is a Galois conjugate of an
210
+ element a ∈ GF(n) with a ̸= 0.
211
+ The sizes of these orbits follow directly from the Fundamental Theorem of Galois Theory.
212
+ The number of orbits of each type are then obtained through the Fundamental Theorem of
213
+ Galois Theory and a straightforward application of Burnside’s Orbit Counting Theorem to
214
+ the action of Gal(GF(n)) on GF(n).
215
+
216
+ For notational convenience, let Aa denote the adjacency hypermatrix corresponding to
217
+ the relation Ra whenever a ̸= 0, 1.
218
+ Similarly, let aA denote the adjacency hypermatrix
219
+ corresponding to the relation aR whenever a ̸= 0. Further, let T be a transversal of the
220
+ orbits of H on GF(n) \ {0}. The intersection numbers of the subalgebra generated by the
221
+ adjacency hypermatrices of the nontrivial relations of X are given in the next theorem.
222
+ Theorem 3.3. Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n))
223
+ and X be the AST obtained from the action of ASLH(2, n). The following equations hold
224
+ for any a, b, c ̸= 0, 1 and a, b, c ̸= 0.
225
+ (1) AaAbAc = �
226
+ ℓ∈T\{1} pℓAℓ, where
227
+ pℓ = |{φ(c) : φ ∈ H and (∃ψ, τ ∈ H) [(1 − φ(c))τ(a) + φ(c) = ℓ = φ(c)ψ(b)]}| .
228
+ (2) AaAb cA = Aa cA Ab = cA AaAb = 0.
229
+ (3) aA bA Ac = �
230
+ ℓ∈T pℓ ℓA, where
231
+ pℓ =
232
+ ����
233
+
234
+ φ(c) : φ ∈ H and (∃ψ, τ ∈ H)
235
+
236
+ τ(a)
237
+ 1 − φ(c) = ℓ = ψ(b)
238
+ φ(c)
239
+ ������ .
240
+
241
+ ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL SEMILINEAR GROUPS
242
+ 5
243
+ (4) aA Ac bA = �
244
+ ℓ∈T pℓ ℓA, where
245
+ pℓ = |{ψ(b) : ψ ∈ H and (∃φ, τ ∈ H) [ψ(b)φ(c) = ℓ = τ(a) + ψ(b)]}| .
246
+ (5) Ac aA bA = �
247
+ ℓ∈T pℓ ℓA, where
248
+ pℓ =
249
+ ����
250
+
251
+ ψ(b) : ψ ∈ H and (∃φ, τ ∈ H)
252
+
253
+ ψ(b)(1 − φ(c)) = ℓ = τ(a)(φ(c) − 1)
254
+ φ(c)
255
+ ������ .
256
+ (6) aA bA cA = �
257
+ ℓ∈T\{1} pℓAℓ + �
258
+ ∈T p A, where
259
+ pℓ = q
260
+ ����
261
+
262
+ φ(c) : (∃ψ, τ ∈ H)
263
+ �τ(a) + φ(c)
264
+ φ(c)
265
+ = d = −ψ(b)
266
+ φ(c)
267
+ ������ ,
268
+ p = |{ψ(b) : (∃φ, τ ∈ H) [τ(a) + ψ(b) + φ(c) = ]}| .
269
+ Proof. We prove only the third statement, as the other statements are shown similarly. With
270
+ Ri = aR, Rj = bR, and Rk = Rc, we determine the Rℓ such that the intersection number
271
+ pℓ
272
+ ijk is nonzero. If Rℓ =d R for some d ̸= 0, considering the viable w as in the the Principal
273
+ Regularity Condition from Definition 2.1 necessitates that φ(c)ψ(b) = 0 for some φ, ψ ∈ H,
274
+ which is impossible. If Rℓ = Rd for some d ̸= 0, 1, the Principal Regularity Conditions says
275
+ that the number of viable w, pℓ
276
+ ijk, is the number of vectors of the form (φ(c), 0)T with φ ∈ H
277
+ such that there are ψ and τ in H that satisfy
278
+ τ(a)
279
+ 1 − φ(c) = ℓ = ψ(b)
280
+ φ(c)
281
+
282
+ The succeeding theorem gives the intersection numbers pl
283
+ ijk of the ASTs obtained from
284
+ ASLH(2, q) whenever exactly one of Ri, Rj, and Rk is trivial. Here I1, I2, and I3 denote the
285
+ respective adjacency hypermatrices of the trivial relations R1, R2, and R3 of X. The proof,
286
+ similar to that of the proof of Theorem 3.3, is omitted.
287
+ Theorem 3.4. Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n))
288
+ and X be the AST obtained from the action of ASLH(2, q). The following equations hold for
289
+ any a, b ̸= 0, 1 and a, b ̸= 0.
290
+ (1) I1AaAb = pI1, where
291
+ p1 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a)ψ(b) = 1]}|.
292
+ (2) AaI2Ab = p2I2, where
293
+ p2 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a)ψ(b) = τ(a) + ψ(b)]}|.
294
+ (3) AaAbI3 = p3I3, where
295
+ p3 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a) + ψ(b) = 1]}|.
296
+ (4) I1Aa aA = I1 aA Aa = AaI2 aA = aA I2Aa = Aa aA I3 = aA AaI3 = 0.
297
+ (5) I1 aA bA = p∗I1, aA I2 bA = p∗I2, aA bA I3 = p∗I3, where
298
+ p∗ = q |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a) = −ψ(b)]}| .
299
+ Here we consider the AST obtained from ASLH(k, n) for k ≥ 3, n a prime power, and
300
+ H a subgroup of Gal(GF(n)). The following theorem tells us that the AST obtained from
301
+ ASLH(k, n) is the same as the AST obtained from the subgroup AGLH(k, n) = AGL(k, n)⋊
302
+ H of the affine semilinear group AΓL(k, n) whenever k ≥ 3. In particular, the parameters
303
+ of these ASTs have already been obtained in [3].
304
+
305
+ 6
306
+ D.V.A. BRIONES
307
+ Theorem 3.5. Let n = pα be a power of a prime p, q = pω with ω|α, and H = GalGF (q)(GF(n)).
308
+ Then the AST obtained from the action of ASLH(k, n) is equal to the AST obtained from
309
+ the action of AGLH(k, n).
310
+ Proof. Notice that if a group G and a subgroup K of G both act two-transitively on a set,
311
+ the orbits of G are unions of orbits of K. In particular, if G and K have the same number
312
+ of orbits, then these orbits are exactly the same. Thus, to prove the theorem, it suffices to
313
+ show that the ASTs obtained from AGLH(k, n) and ASLH(k, n) have the same size. By
314
+ Remark 1, it suffices to show that the two-point stabilizer ASLH(k, n)⃗0,⃗1 has the same orbits
315
+ as AGLH(k, n)⃗0,⃗1 on GF(n) \ {⃗0,⃗1}.
316
+ Indeed, the two-point stabilizers above are given by
317
+ ASLH(k, n)⃗0,⃗1 = {v �→ Aφ(v) : A ∈ SL(k, n), φ ∈ H},
318
+ and
319
+ AGLH(k, n)⃗0,⃗1 = {v �→ Aφ(v) : A ∈ GL(k, n), φ ∈ H}.
320
+ Direct computation shows that the orbits of ASLH(k, n)⃗0,⃗1 have the following forms.
321
+ (1) One type of orbit has the form
322
+ {(φ(a), 0, . . . , 0)T : φ ∈ H},
323
+ which consists of those vectors whose first coordinate is a Galois conjugate of an
324
+ element a ∈ GF(n) with a ̸= 0, 1. The other coordinates are 0.
325
+ (2) The remaining orbit is
326
+ (GF(n))k \ Span(⃗1),
327
+ consisting of the vectors linearly independent from ⃗1.
328
+ These are also the orbits of AGLH(k, n)⃗0,⃗1, completing the proof.
329
+
330
+ References
331
+ 1. J.M.P.
332
+ Balmaceda
333
+ and
334
+ D.V.A.
335
+ Briones,
336
+ Association
337
+ schemes
338
+ on
339
+ triples
340
+ over
341
+ few
342
+ vertices,
343
+ Matimyas
344
+ Matematika
345
+ 45
346
+ (2022),
347
+ 13–26,
348
+ http://mathsociety.ph/matimyas/images/vol45/BalmacedaMatimyas.pdf.
349
+ 2.
350
+ , Families of association schemes on triples from two-transitive groups (preprint), arXiv (2022),
351
+ https://arxiv.org/abs/2107.07753.
352
+ 3.
353
+ ,
354
+ A
355
+ survey
356
+ on
357
+ association
358
+ schemes
359
+ on
360
+ triples
361
+ (preprint),
362
+ arXiv
363
+ (2022),
364
+ https://arxiv.org/abs/2206.10500.
365
+ 4. E. Bannai and T. Ito, Algebraic combinatorics I. Association schemes, Mathematics lecture note series,
366
+ no. 58, Benjamin/Cummings Pub. Co, San Francisco, 1984.
367
+ 5. D.M.
368
+ Mesner
369
+ and
370
+ P.
371
+ Bhattacharya,
372
+ Association
373
+ schemes
374
+ on
375
+ triples
376
+ and
377
+ a
378
+ ternary
379
+ algebra,
380
+ Journal
381
+ of
382
+ Combinatorial
383
+ Theory,
384
+ Series
385
+ A
386
+ 55
387
+ (1990),
388
+ no.
389
+ 2,
390
+ 204–234,
391
+ https://www.sciencedirect.com/science/article/pii/0097316590900688.
392
+ 6.
393
+ , A ternary algebra arising from association schemes on triples, Journal of Algebra 164 (1994),
394
+ no. 3, 595–613, https://www.sciencedirect.com/science/article/pii/S0021869384710817.
395
+ 7. C.E. Praeger and P. Bhattacharya, Circulant association schemes on triples, New Zealand Journal of
396
+ Mathematics 52 (2021), 153–165, https://nzjmath.org/index.php/NZJMATH/article/view/106.
397
+
GdE0T4oBgHgl3EQfRQBK/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf,len=222
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
3
+ page_content='02204v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
4
+ page_content='CO] 5 Jan 2023 ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL SEMILINEAR GROUPS DOM VITO A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
5
+ page_content=' BRIONES Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
6
+ page_content=' Association schemes on triples (ASTs) are 3-dimensional analogues of classical association schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
7
+ page_content=' If a group acts two-transitively on a set, the orbits of the action induced on the triple Cartesian product of that set yields an AST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
8
+ page_content=' By considering the actions of semidirect products of the affine special linear group ASL(k, n) with subgroups of the Galois group Gal(GF(n)), we obtain the sizes, third valencies, and intersection numbers of the ASTs obtained from subgroups of the affine special semilinear group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
9
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
10
+ page_content=' Introduction A classical association is an algebraic-combinatorial object with certain symmetry prop- erties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
11
+ page_content=' These properties suffice to afford classical association with desirable structural char- acteristics and are pliant enough to allow classical association schemes to be applicable to several areas of mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
12
+ page_content=' For example, the adjacency algebra of a classical association scheme is semisimple and, when the adjacency matrices define a distance-regular graph, the structure constants of this algebra can be expressed in terms of certain families of orthogonal polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
13
+ page_content=' [4] Mesner and Bhattacharya introduced the notion of association schemes on triples (or ASTs), a ternary analogue for classical association schemes [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
14
+ page_content=' An AST on a set Ω is a partition of the triple Cartesian product Ω × Ω × Ω subject to regularity requirements paralleling the symmetry conditions for classical association schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
15
+ page_content=' In ASTs, the resulting adjacency hypermatrices produce a ternary algebra under a ternary product that extends the usual matrix multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
16
+ page_content=' However, the structural properties of ASTs remain unclear, partly due to the ternary adjacency algebra not being associative nor commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
17
+ page_content=' As first steps in the investigation of ASTs, studies were conducted regarding analogues of identity and inverse elements [6], enumerations of ASTs over the smallest number of vertices [1], possible sources of ASTs such as those from group actions, two-graphs, designs, and other ASTs [5, 7, 3], as well as the intersection numbers of known families of ASTs [5, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
18
+ page_content=' In particular, the actions of two-transitive groups yield ASTs [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
19
+ page_content=' The orbits of these actions are closely related to the parameters of the AST, providing their sizes, third valencies, and intersection numbers [5, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
20
+ page_content=' In fact, [5] provides the sizes, third valencies, and intersection numbers of the ASTs obtained from the affine general linear group AGL(1, n) where n is a prime power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
21
+ page_content=' This was extended in [2], wherein these parameters were obtained for the ASTs (D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
22
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
23
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
24
+ page_content=' Briones, Corresponding author) Institute of Mathematics, University of the Philippines Diliman, 1101 Quezon City, Philippines E-mail address: dabriones@up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
25
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
26
+ page_content='ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
27
+ page_content=' Date: January 6, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
28
+ page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
29
+ page_content=' algebraic combinatorics, ternary algebra, association scheme on triples MSC Classification: 05E30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
30
+ page_content=' 1 2 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
31
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
32
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
33
+ page_content=' BRIONES obtained from subgroups of the affine semilinear group AΓL(k, n) of the form AGL(k, n)⋊H), where k ≥ 1 and H ≤ Gal(GF(q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
34
+ page_content=' Further work was done in [3], where these parameters were obtained from ASTs obtained from the affine special linear group ASL(2, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
35
+ page_content=' We extend this last result by determining the sizes, third valencies, and intersection num- bers of ASTs obtained from subgroups of the affine special semilinear group ASL(k, n) ⋊ Gal(GF(n)) of the form ASL(k, n) ⋊ H, where k ≥ 2, n is a prime power, and H is a subgroup of Gal(GF(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
36
+ page_content=' In particular, we show that the ASTs obtained from ASLH(k, n) are the same as the ASTs obtained from AGLH(k, n) = AGL(k, n) ⋊ H for k ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
37
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
38
+ page_content=' Preliminaries We define association schemes on triples, remark how ASTs arise from two-transitive groups, and review the actions of the affine special linear and affine special semilinear groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
39
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
40
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
41
+ page_content=' Association schemes on triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
42
+ page_content=' We define association schemes on triples and men- tion how the parameters of an AST obtained from a two-transitive group are related to the group action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
43
+ page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
44
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
45
+ page_content=' [5, 7] Let Ω be a finite set with at least 3 elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
46
+ page_content=' An association scheme on triples (AST) on Ω is a partition X = {Ri}m i=0 of Ω × Ω × Ω with m ≥ 4 such that the following hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
47
+ page_content=' (1) For each i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
50
+ page_content=' , m}, there exists an integer n(3) i such that for each pair of distinct x, y ∈ Ω, the number of z ∈ Ω with (x, y, z) ∈ Ri is n(3) i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
51
+ page_content=' (2) (Principal Regularity Condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
52
+ page_content=') For any i, j, k, l ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
54
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
55
+ page_content=' , m}, there exists a con- stant pl ijk such that for any (x, y, z) ∈ Rl, the number of w such that (w, y, z) ∈ Ri, (x, w, z) ∈ Rj, and (x, y, w) ∈ Rk is pl ijk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
56
+ page_content=' (3) For any i ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
57
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
58
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
59
+ page_content=' , m} and any σ ∈ S3, there exists a j ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
60
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
61
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
62
+ page_content=' , m} such that Rj = {(xσ(1), xσ(2), xσ(3)) : (x1, x2, x3) ∈ Ri}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
63
+ page_content=' (4) The first four relations are R0 = {(x, x, x) : x ∈ Ω}, R1 = {(x, y, y) : x, y ∈ Ω, x ̸= y}, R2 = {(y, x, y) : x, y ∈ Ω, x ̸= y}, and R3 = {(y, y, x) : x, y ∈ Ω, x ̸= y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
64
+ page_content=' The integer n(3) i is the third valency of Ri, and is the analogue of valency from classical association schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
65
+ page_content=' By Conditions 1 and 3 of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
66
+ page_content='1 there are for each i the constants n(1) i = |{z ∈ Ω : (z, x, y) ∈ Ri}| and n(2) i = |{z ∈ Ω : (x, z, y) ∈ Ri}| independent of any pair of distinct x, y ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
67
+ page_content=' Similarly, n(1) i is the first valency of Ri and n(2) i is the second valency of Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
68
+ page_content=' The trivial relations are R0, R1, R2 and R3 while the other relations are the nontrivial relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
69
+ page_content=' Further, the numbers pl ijk are called the intersection numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
70
+ page_content=' ASTs arise naturally from the actions of two-transitive groups [5], mirroring how Schurian classical association schemes are induced by the actions of transitive groups [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
71
+ page_content=' Indeed, when a two-transitive group G acts on a set Ω, the orbits of the induced action on Ω×Ω×Ω is an AST [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
72
+ page_content=' Correspondences between the action and the parameters of the induced AST are summarized in the following remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
73
+ page_content=' Remark 1 ([5, 2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
74
+ page_content=' Let G be a group acting two-transitively on a set Ω and let X be the AST induced by this action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
75
+ page_content=' For any pair of distinct elements a, b ∈ Ω, the orbits of the two-point stabilizer Ga,b on Ω \\ {a, b} are in bijection with the nontrivial relations of the AST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
76
+ page_content=' As a consequence of this bijection, the sizes of these orbits are also the third valencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
77
+ page_content=' ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL SEMILINEAR GROUPS 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
78
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
79
+ page_content=' Affine special groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
80
+ page_content=' Given a prime power n and k ≥ 1, the affine special linear group ASL(k, n) is the semidirect product GF(n) ⋊ SL(k, n), where SL(k, n) is the group of invertible linear transformations on the k-dimensional vector space V over GF(n) of determinant 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
81
+ page_content=' Explicitly, the affine special linear group is the following group of maps from V to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
82
+ page_content=' ASL(k, n) = {x �→ Ax + b : A ∈ SL(k, n), b ∈ V } .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
83
+ page_content=' Similarly, the affine special semilinear group ASL(k, n) ⋊ Gal(GF(n)) is the semidirect product of the affine special linear group ASL(k, n) with the Galois group Gal(GF(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
84
+ page_content=' Explicitly, the affine special semilinear group is the following group of maps from V to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
85
+ page_content=' ASL(k, n) ⋊ Gal(GF(n)) = {x �→ Aφ(x) + b : A ∈ SL(k, n), b ∈ GF(n), φ ∈ Gal(GF(n))} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
86
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
87
+ page_content=' ASTs from subgroups of the affine special semilinear group In this section we generalize work done in [3] by obtaining the sizes, third valencies, and intersection numbers of ASTs obtained from the actions of subgroups of the affine special semilinear group of the form ASLH(k, n) = ASL(k, n) ⋊ H, where k ≥ 2, n = pα a power of a prime number p, and H a subgroup of Gal(GF(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
88
+ page_content=' We obtain the sizes and third valencies of these ASTs by obtaining a two-point stabilizer of ASLH(k, n) and then determining its orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
89
+ page_content=' Finally, we obtain the intersection numbers of these ASTs through explicit orbit computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
90
+ page_content=' For ease of discussion, we fix the following notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
91
+ page_content=' Let n = pα be a power of a prime p, k ≥ 2, V be the k-dimensional vector space over GF(n), H be a subgroup of Gal(GF(n)), and X be the AST obtained from ASLH(k, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
92
+ page_content=' For a ∈ GF(n), let ⃗a = (a, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
94
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
95
+ page_content=' , 0)T ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
96
+ page_content=' Further, for (u, v, w) ∈ V × V × V , let [(u, v, w)] ∈ X denote the orbit of (u, v, w) under ASLH(k, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
97
+ page_content=' We begin with the case where k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
98
+ page_content=' To determine the size and third valencies of X, we exploit the relationships between these parameters and the orbits of a two-point stabilizer of ASLH(k, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
99
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
100
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
101
+ page_content=' Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n)) and X be the AST obtained from the action of ASLH(2, n) on the 2-dimensional vector space V over GF(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
102
+ page_content=' The two-point stabilizer ASLH(2, n)⃗0,⃗1 has the following orbits on V \\{⃗0,⃗1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
103
+ page_content=' (1) There are −2 + ω α � α ω β=1 qgcd ( α ω ,β) orbits of the form � ⃗ φ(a) : φ ∈ H � , a ̸= 0, 1 each of size degGF (q)(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
104
+ page_content=' (2) There are −1 + ω α � α ω β=1 qgcd ( α ω ,β) orbits of the form � (c, φ(a))T : c ∈ GF(n), φ ∈ H � , a ̸= 0 each of size n degGF (q)(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
105
+ page_content=' As a consequence of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
106
+ page_content='1, we obtain the sizes and third valencies of the ASTs obtained from ASLH(2, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
107
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
108
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
109
+ page_content=' Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n)) and X be the AST obtained from the action of ASLH(2, n) on the 2-dimensional vector 4 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
110
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
111
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
112
+ page_content=' BRIONES space V over GF(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
113
+ page_content=' Then X has −3 + 2 � ω α � α ω β=1 qgcd ( α ω ,β)� nontrivial relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
114
+ page_content=' There are −2 + ω α � α ω β=1 qgcd ( α ω ,β) nontrivial relations of the form Ra = {[(⃗0,⃗1,⃗a)]}, a ̸= 0, 1, with corresponding third valency degGF (q)(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
115
+ page_content=' The remaining −1+ ω α � α ω β=1 qgcd ( α ω ,β) nontrivial relations of X are of the form aR = {[(⃗0,⃗1, (0, a)T)]}, a ̸= 0, with corresponding third valency n degGF (q)(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
116
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
117
+ page_content=' The two-point stabilizer is ASLH(2, n)⃗0,⃗1 = {(x, y)T �→ � 1 c 0 1 � (φ(x), φ(y))T : c ∈ GF(n), φ ∈ H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
118
+ page_content=' Direct computation shows that the orbits of ASLH(2, n)⃗0,⃗1 have the following forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
119
+ page_content=' (1) The first type of orbit has the form {(φ(a), 0)T : φ ∈ H}, which consists of those vectors whose second coordinate is 0 and whose first coordinate is a Galois conjugate of an element a ∈ GF(n) with a ̸= 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
120
+ page_content=' (2) The remaining orbits are of the form {(x, φ(a))T : x ∈ GF(n), φ ∈ H}, which consists of those vectors whose second coordinate is a Galois conjugate of an element a ∈ GF(n) with a ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
121
+ page_content=' The sizes of these orbits follow directly from the Fundamental Theorem of Galois Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
122
+ page_content=' The number of orbits of each type are then obtained through the Fundamental Theorem of Galois Theory and a straightforward application of Burnside’s Orbit Counting Theorem to the action of Gal(GF(n)) on GF(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
123
+ page_content=' □ For notational convenience, let Aa denote the adjacency hypermatrix corresponding to the relation Ra whenever a ̸= 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
124
+ page_content=' Similarly, let aA denote the adjacency hypermatrix corresponding to the relation aR whenever a ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
125
+ page_content=' Further, let T be a transversal of the orbits of H on GF(n) \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
126
+ page_content=' The intersection numbers of the subalgebra generated by the adjacency hypermatrices of the nontrivial relations of X are given in the next theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
127
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
128
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
129
+ page_content=' Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n)) and X be the AST obtained from the action of ASLH(2, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
130
+ page_content=' The following equations hold for any a, b, c ̸= 0, 1 and a, b, c ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
131
+ page_content=' (1) AaAbAc = � ℓ∈T\\{1} pℓAℓ, where pℓ = |{φ(c) : φ ∈ H and (∃ψ, τ ∈ H) [(1 − φ(c))τ(a) + φ(c) = ℓ = φ(c)ψ(b)]}| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
132
+ page_content=' (2) AaAb cA = Aa cA Ab = cA AaAb = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
133
+ page_content=' (3) aA bA Ac = � ℓ∈T pℓ ℓA, where pℓ = ���� � φ(c) : φ ∈ H and (∃ψ, τ ∈ H) � τ(a) 1 − φ(c) = ℓ = ψ(b) φ(c) ������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
134
+ page_content=' ASSOCIATION SCHEMES ON TRIPLES FROM AFFINE SPECIAL SEMILINEAR GROUPS 5 (4) aA Ac bA = � ℓ∈T pℓ ℓA, where pℓ = |{ψ(b) : ψ ∈ H and (∃φ, τ ∈ H) [ψ(b)φ(c) = ℓ = τ(a) + ψ(b)]}| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
135
+ page_content=' (5) Ac aA bA = � ℓ∈T pℓ ℓA, where pℓ = ���� � ψ(b) : ψ ∈ H and (∃φ, τ ∈ H) � ψ(b)(1 − φ(c)) = ℓ = τ(a)(φ(c) − 1) φ(c) ������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
136
+ page_content=' (6) aA bA cA = � ℓ∈T\\{1} pℓAℓ + � \uf6be∈T p\uf6be \uf6beA, where pℓ = q ���� � φ(c) : (∃ψ, τ ∈ H) �τ(a) + φ(c) φ(c) = d = −ψ(b) φ(c) ������ , p\uf6be = |{ψ(b) : (∃φ, τ ∈ H) [τ(a) + ψ(b) + φ(c) = \uf6be]}| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
137
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
138
+ page_content=' We prove only the third statement, as the other statements are shown similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
139
+ page_content=' With Ri = aR, Rj = bR, and Rk = Rc, we determine the Rℓ such that the intersection number pℓ ijk is nonzero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
140
+ page_content=' If Rℓ =d R for some d ̸= 0, considering the viable w as in the the Principal Regularity Condition from Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
141
+ page_content='1 necessitates that φ(c)ψ(b) = 0 for some φ, ψ ∈ H, which is impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
142
+ page_content=' If Rℓ = Rd for some d ̸= 0, 1, the Principal Regularity Conditions says that the number of viable w, pℓ ijk, is the number of vectors of the form (φ(c), 0)T with φ ∈ H such that there are ψ and τ in H that satisfy τ(a) 1 − φ(c) = ℓ = ψ(b) φ(c) □ The succeeding theorem gives the intersection numbers pl ijk of the ASTs obtained from ASLH(2, q) whenever exactly one of Ri, Rj, and Rk is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
143
+ page_content=' Here I1, I2, and I3 denote the respective adjacency hypermatrices of the trivial relations R1, R2, and R3 of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
144
+ page_content=' The proof, similar to that of the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
145
+ page_content='3, is omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
146
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
147
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
148
+ page_content=' Let n = pα be a power of a prime p, q = pω with ω|α, H = GalGF (q)(GF(n)) and X be the AST obtained from the action of ASLH(2, q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
149
+ page_content=' The following equations hold for any a, b ̸= 0, 1 and a, b ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
150
+ page_content=' (1) I1AaAb = pI1, where p1 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a)ψ(b) = 1]}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
151
+ page_content=' (2) AaI2Ab = p2I2, where p2 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a)ψ(b) = τ(a) + ψ(b)]}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
152
+ page_content=' (3) AaAbI3 = p3I3, where p3 = |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a) + ψ(b) = 1]}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
153
+ page_content=' (4) I1Aa aA = I1 aA Aa = AaI2 aA = aA I2Aa = Aa aA I3 = aA AaI3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
154
+ page_content=' (5) I1 aA bA = p∗I1, aA I2 bA = p∗I2, aA bA I3 = p∗I3, where p∗ = q |{ψ(b) : ψ ∈ H and (∃τ ∈ H)[τ(a) = −ψ(b)]}| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
155
+ page_content=' Here we consider the AST obtained from ASLH(k, n) for k ≥ 3, n a prime power, and H a subgroup of Gal(GF(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
156
+ page_content=' The following theorem tells us that the AST obtained from ASLH(k, n) is the same as the AST obtained from the subgroup AGLH(k, n) = AGL(k, n)⋊ H of the affine semilinear group AΓL(k, n) whenever k ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
157
+ page_content=' In particular, the parameters of these ASTs have already been obtained in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
158
+ page_content=' 6 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
159
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
160
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
161
+ page_content=' BRIONES Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
162
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
163
+ page_content=' Let n = pα be a power of a prime p, q = pω with ω|α, and H = GalGF (q)(GF(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
164
+ page_content=' Then the AST obtained from the action of ASLH(k, n) is equal to the AST obtained from the action of AGLH(k, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
165
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
166
+ page_content=' Notice that if a group G and a subgroup K of G both act two-transitively on a set, the orbits of G are unions of orbits of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
167
+ page_content=' In particular, if G and K have the same number of orbits, then these orbits are exactly the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
168
+ page_content=' Thus, to prove the theorem, it suffices to show that the ASTs obtained from AGLH(k, n) and ASLH(k, n) have the same size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
169
+ page_content=' By Remark 1, it suffices to show that the two-point stabilizer ASLH(k, n)⃗0,⃗1 has the same orbits as AGLH(k, n)⃗0,⃗1 on GF(n) \\ {⃗0,⃗1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
170
+ page_content=' Indeed, the two-point stabilizers above are given by ASLH(k, n)⃗0,⃗1 = {v �→ Aφ(v) : A ∈ SL(k, n), φ ∈ H}, and AGLH(k, n)⃗0,⃗1 = {v �→ Aφ(v) : A ∈ GL(k, n), φ ∈ H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
171
+ page_content=' Direct computation shows that the orbits of ASLH(k, n)⃗0,⃗1 have the following forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
172
+ page_content=' (1) One type of orbit has the form {(φ(a), 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
173
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
174
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
175
+ page_content=' , 0)T : φ ∈ H}, which consists of those vectors whose first coordinate is a Galois conjugate of an element a ∈ GF(n) with a ̸= 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
176
+ page_content=' The other coordinates are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
177
+ page_content=' (2) The remaining orbit is (GF(n))k \\ Span(⃗1), consisting of the vectors linearly independent from ⃗1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
178
+ page_content=' These are also the orbits of AGLH(k, n)⃗0,⃗1, completing the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
179
+ page_content=' □ References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
180
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
181
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
182
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
183
+ page_content=' Balmaceda and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
184
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
185
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
186
+ page_content=' Briones, Association schemes on triples over few vertices, Matimyas Matematika 45 (2022), 13–26, http://mathsociety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
187
+ page_content='ph/matimyas/images/vol45/BalmacedaMatimyas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
188
+ page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
189
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
190
+ page_content=' , Families of association schemes on triples from two-transitive groups (preprint), arXiv (2022), https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
191
+ page_content='org/abs/2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
192
+ page_content='07753.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
193
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
194
+ page_content=' , A survey on association schemes on triples (preprint), arXiv (2022), https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
195
+ page_content='org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
196
+ page_content='10500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
197
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
198
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
199
+ page_content=' Bannai and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
200
+ page_content=' Ito, Algebraic combinatorics I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
201
+ page_content=' Association schemes, Mathematics lecture note series, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
202
+ page_content=' 58, Benjamin/Cummings Pub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
203
+ page_content=' Co, San Francisco, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
204
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
205
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
206
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
207
+ page_content=' Mesner and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
208
+ page_content=' Bhattacharya, Association schemes on triples and a ternary algebra, Journal of Combinatorial Theory, Series A 55 (1990), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
209
+ page_content=' 2, 204–234, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
210
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
211
+ page_content='com/science/article/pii/0097316590900688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
212
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
213
+ page_content=' , A ternary algebra arising from association schemes on triples, Journal of Algebra 164 (1994), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
214
+ page_content=' 3, 595–613, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
215
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
216
+ page_content='com/science/article/pii/S0021869384710817.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
217
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
218
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
219
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
220
+ page_content=' Praeger and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
221
+ page_content=' Bhattacharya, Circulant association schemes on triples, New Zealand Journal of Mathematics 52 (2021), 153–165, https://nzjmath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
222
+ page_content='org/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
223
+ page_content='php/NZJMATH/article/view/106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/GdE0T4oBgHgl3EQfRQBK/content/2301.02204v1.pdf'}
GtAzT4oBgHgl3EQfHftK/content/tmp_files/2301.01045v1.pdf.txt ADDED
@@ -0,0 +1,2577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Risk-Averse MDPs under Reward Ambiguity
2
+ Haolin Ruan
3
+ School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong
4
+ haolin.ruan@my.cityu.edu.hk
5
+ Zhi Chen
6
+ Department of Management Sciences, College of Business, City University of Hong Kong, Kowloon Tong, Hong Kong
7
+ zhi.chen@cityu.edu.hk
8
+ Chin Pang Ho
9
+ School of Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong
10
+ clint.ho@cityu.edu.hk
11
+ We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and
12
+ reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances,
13
+ and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs
14
+ (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies
15
+ in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show
16
+ that that the return-risk model can also account for risk from uncertain transition kernel when one only
17
+ seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be
18
+ reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed
19
+ to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm
20
+ through numerical experiments.
21
+ 1.
22
+ Introduction
23
+ Markov decision processes (MDPs) provide a powerful modeling framework for sequential decision-
24
+ making problems and reinforcement learning in stochastic dynamic environments (Puterman 2014).
25
+ Obtaining the model parameters of MDPs that perfectly reflect the environments, however, has
26
+ always been a challenge in practice, as these parameters are estimated from limited data that are
27
+ potentially contaminated (Mannor et al. 2007). Moreover, these parameters, such as transition
28
+ kernel and reward function, are often time-dependent or even uncertain, but they are approximated
29
+ as fixed values in an overly simplified setting (Mannor et al. 2016). Therefore, the output policies
30
+ of MDPs are often disappointing in practice.
31
+ Robust MDPs address the aforementioned issues of parameter ambiguity, by allowing the
32
+ unknown values of transition kernels and reward functions to lie in a given ambiguity set (Behza-
33
+ dian et al. 2021, Chen et al. 2019, Clement and Kroer 2021a, Delgado et al. 2016). Then, robust
34
+ MDPs seek for policies that maximize the worst-case expected return over all transition kernels
35
+ 1
36
+ arXiv:2301.01045v1 [cs.LG] 3 Jan 2023
37
+
38
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
39
+ 2
40
+ and reward functions in the ambiguity sets. By specifying ambiguity sets that contain the unknown
41
+ transition kernels with high confidence, the optimal policies of robust MDPs are robust to param-
42
+ eter ambiguity (Iyengar 2005).
43
+ In this paper, we focus on the case where the reward function is ambiguous, which sometimes
44
+ is referred to as imprecise-reward MDPs (Alizadeh et al. 2015, Regan and Boutilier 2010, 2011a,b,
45
+ 2012). This particular setting is also closely related to imitation learning, which trains an agent to
46
+ learn a certain behavior of an expert, while only some demonstrated trajectories of her is available
47
+ (Chen et al. 2020, Ho and Ermon 2016, Osa et al. 2018, Rashidinejad et al. 2021). When applying
48
+ inverse reinforcement learning approach to learn the reward function that completely represents
49
+ the expert’s preference (Brown et al. 2020, Choi and Kim 2012, Ng et al. 2000), the yielded policies,
50
+ which suffer from reward ambiguity, may perform poorly in practice.
51
+ To handle reward ambiguity, we utilize techniques from distributionally robust optimization
52
+ (DRO) (Derman and Mannor 2020) and distributionally robust chance-constrained program (Chen
53
+ et al. 2007, Postek et al. 2018), assuming that the true reward distribution resides in an ambiguity
54
+ set. This approach does not require the reward function to be precisely specified. Instead, only
55
+ the descriptions of common distribution information such as support, moments and shape in the
56
+ ambiguity set are needed, which are often much easier to be obtained/estimated (Hanasusanto
57
+ et al. 2015, 2017, Zymler et al. 2013). In this paper, we consider a Wasserstein ambiguity set for our
58
+ distributionally robust models as in Abdullah et al. (2019), Calafiore and Ghaoui (2006), Xie (2021).
59
+ Unlike phi-divergence ambiguity sets which may contain too extreme member distributions, the
60
+ closeness between points in the support set is incorporated in Wasserstein sets, thus their member
61
+ distributions may be more reasonable (Gao and Kleywegt 2022); on the other hand, Wasserstein
62
+ sets are often a better choice than moment-based ambiguity sets when the number of samples is
63
+ too small to obtain a reliable estimation on moments (Yang 2020). We choose Wasserstein sets
64
+ for these reasons, although other types of ambiguity sets such as nested ambiguity sets (Xu and
65
+ Mannor 2010, 2012) and the ambiguity sets based on Prohorov metric (Erdo˘gan and Iyengar 2006)
66
+ are also considered in literature. For our distributionally robust chance-constrained MDPs, we will
67
+ furthermore show its equivalence with the nominal counterparts with an adjusted risk level. To the
68
+ best of our knowledge, this is the first result in MDPs that establishes the mutual transformation
69
+ between distributional ambiguity and risk.
70
+ Our return-risk model (RR) is a risk-averse MDP model that not only takes into account reward
71
+ ambiguity, but also considers both the average and risk of the return. MDPs that minimize the risk
72
+ of the return instead of the expected cost are called risk-aware MDPs (also called risk-sensitive or
73
+ risk-averse MDPs) (Ahmadi et al. 2021, B¨aauerle and Rieder 2017, Carpin et al. 2016, Haskell and
74
+ Jain 2015, Huang and Haskell 2017). In risk-aware optimization, the objective function is taken as
75
+
76
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
77
+ 3
78
+ a risk measure, such as value-at-risk (VaR) (Delage and Mannor 2007, 2010, Gilbert et al. 2017),
79
+ conditional value-at-risk (CVaR) (B¨auerle and Ott 2011, Chow et al. 2017, Huang and Guo 2016)
80
+ and other spectral risk measures (B¨auerle and Glauner 2021), and variants of expected utility
81
+ (Bernard et al. 2022, Jaimungal et al. 2022, Pflug and Wozabal 2007).
82
+ Among these risk measures, VaR and CVaR are arguably the most popular ones and have
83
+ attracted the attention of many researchers (B¨auerle and Ott 2011, Chow et al. 2017, Delage and
84
+ Mannor 2007, 2010, Gilbert et al. 2017, Huang and Guo 2016). By using CVaR, one aims to give a
85
+ precise depiction of the extreme tail of the distribution (of the uncertain rewards), while VaR does
86
+ not reflect the extreme scenerios exceeding VaR. It is well-known that CVaR is a coherent risk
87
+ measure, which can be efficiently optimized by convex optimization tools (Chen and Xie 2021); in
88
+ contrast, VaR is a more challenging risk measure because it is not a coherent one.
89
+ One remarkable advantage of VaR is its stability of estimation (especially under fat-tailed reward
90
+ distribution (Sarykalin et al. 2008)), which is particularly important under data-driven settings
91
+ where the number of samples are limited and decision makers evaluate models based on their
92
+ out-of-sample performances (Bertsimas and Thiele 2006, van de Berg et al. 2022, Zheng et al.
93
+ 2016). To demonstrate, we provide an example where we consider a one-step MDP with only 1
94
+ state s and 2 actions a1 and a2 (Sutton and Barto 2018). In this one-step MDP, the decision
95
+ maker only makes one decision in each episode, and she aims to maximize her VaR/CVaR of
96
+ rewards for these episodes. We consider uncertain rewards ˜rs,a1 ∼ Pt-dist and ˜rs,a2 = ˜rs,a1 + ρ|s|
97
+ where Pt-dist is a Student’s t-distribution and we vary its degree of freedom δ ∈ {2,3,4}. We set
98
+ the shift ratios ρ = {0.05i}i∈[5], and for testing the estimation accuracy w.r.t. VaR (resp., CVaR)
99
+ (where we choose the risk threshold 10%), we set the shift quantity s as Pt-dist-VaR0.1[˜rs,a1] (resp.,
100
+ Pt-dist-CVaR0.1[˜rs,a1]), where both risk measures can be efficiently calculated (see Appendix B for
101
+ more details). We evaluate the decision maker’s accuracy rate as the proportion of testing samples
102
+ where she has chosen the action with a higher VaR/CVaR of rewards (i.e., action a2); for each
103
+ pair of accuracy rate and shift ratio, following Yamai et al. (2002), 1000 random reward samples
104
+ for each state-action pair are available for the decision maker, and we test her accuracy rate based
105
+ on 10000 testing samples.
106
+ As illustrated in Figure 1, the accuracy rate increases with the shift ratio ρ. As δ decreases, F
107
+ becomes more fat-tailed, and the accuracy rate of VaR is remarkably higher than that of CVaR,
108
+ which indicates that the statistical inference on VaR would be more accurate than on CVaR.
109
+ Therefore, VaR may be a more preferable choice when only small sample sets are available.
110
+ Our return-risk model is motivated by the soft-robust criterion/model, which optimizes a convex
111
+ combination of the mean and a robust performance in the optimization literature (Ben-Tal et al.
112
+ 2010). MDPs with soft-robustness are also popular in recent years, where decision makers aim to
113
+
114
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
115
+ 4
116
+ 0.05
117
+ 0.10
118
+ 0.15
119
+ 0.20
120
+ 0.25
121
+ Shift ratio
122
+ 0.6
123
+ 0.7
124
+ 0.8
125
+ 0.9
126
+ 1.0
127
+ Accuracy rate
128
+ VaR
129
+ CVaR
130
+ 0.05
131
+ 0.10
132
+ 0.15
133
+ 0.20
134
+ 0.25
135
+ Shift ratio
136
+ 0.6
137
+ 0.7
138
+ 0.8
139
+ 0.9
140
+ 1.0
141
+ VaR
142
+ CVaR
143
+ 0.05
144
+ 0.10
145
+ 0.15
146
+ 0.20
147
+ 0.25
148
+ Shift ratio
149
+ 0.6
150
+ 0.7
151
+ 0.8
152
+ 0.9
153
+ 1.0
154
+ VaR
155
+ CVaR
156
+ Figure 1
157
+ The accuracy rates of the decision maker choosing the correct action (so that the VaR/CVaR of her
158
+ rewards is maximized): δ = 4 (left), δ = 3 (middle) and δ = 2 (right).
159
+ maximize a weighted average of the mean and percentile performances (Brown et al. 2020, Lobo
160
+ et al. 2020). Unlike these existing soft-robust MDPs, however, the proposed return-risk model is
161
+ fundamentally different in two aspects: first, these existing soft-robust models have no consideration
162
+ for reward ambiguity, while we utilize distributionally robustness to account for reward ambiguity,
163
+ by which we can hedge against the most adversarial realization of the distribution of rewards
164
+ (within the ambiguity set), thus our model is more robust to reward uncertainty (Chen et al. 2019,
165
+ Xu and Mannor 2010); second, we choose VaR as the risk measure which has a direct interpretation
166
+ to percentile performances, and, as illustrated above, tends to be more advantageous in data-driven
167
+ optimization.
168
+ Our work concentrates on model-based setting, where our proposed models are motivated by
169
+ the classical (dual formulation of) nominal MDPs (Puterman 2014) and the chance-constrained
170
+ MDPs (Delage and Mannor 2010). It is worth noting that, beyond model-based setting, there are
171
+ other inspiring and innovative researches on robust reinforcement learning, such as robust TDC
172
+ algorithms and robust Q-learning (Roy et al. 2017, Wang and Zou 2021), robust policy gradient
173
+ (Wang and Zou 2022), least squares policy iteration (Lagoudakis and Parr 2003) and sample
174
+ complexity analysis (Panaganti and Kalathil 2022). Note that, though model-free reinforcement
175
+ learning can be used to learn satisfactory policies for complex environment, the requirement of
176
+ large amounts of interaction (with environment) may render the learning process slow (Kaiser et al.
177
+ 2019), while high sample efficiency is one strong advantage of model-based learning (Sutton and
178
+ Barto 2018). We also note that MDPs with transition kernel ambiguity is another active research
179
+ line where distributionally robustness is widely employed (Clement and Kroer 2021b, Shapiro 2016,
180
+ 2021, Xu and Mannor 2012).
181
+ We may summarize our contributions as follows (and we also compare our contributions to those
182
+ of related works in Table 2 in Appendix I).
183
+
184
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
185
+ 5
186
+ (i) We show that the distributionally robust model of optimizing expected rewards can be
187
+ reformulated as a convex conic program, which is equivalent to the nominal MDP with a convex
188
+ regularization in the objective function.
189
+ (ii) For distributionally robust chance-constrained MDPs (DCC), we show that it can be refor-
190
+ mulated as nominal chance-constrained MDPs at adjusted risk levels. This observation bridges the
191
+ gap between risk and parameter ambiguity.
192
+ (iii) Combining the proposed models in (i) and (ii), we propose the return-risk MDP that
193
+ maximizes the weighted average of the expectation and VaR of reward (both under distributionally
194
+ robustness to reward uncertainty), which is flexible and can perform well under the criteria of mean
195
+ and percentile returns.
196
+ (iv) When only considering deterministic policies, we show that our return-risk model can also
197
+ account for risk from uncertain transition kernel, and we derive its equivalent reformulation as a
198
+ mixed-integer second-order cone program (MISOCP).
199
+ (v) To solve the proposed return-risk model, we design a first-order method that is more scalable
200
+ than the MOSEK solver, thus is faster with large-size problems.
201
+ (vi) In the simulation and empirical experiments, we adopt a data-driven setting, where the
202
+ decision maker aims at maximizing the expectation and VaR of the random reward. We compare
203
+ the performances of distributionally robust MDPs (DRMDPs), DCC, RR, robust MDPs (RMDPs)
204
+ (Delage and Mannor 2010) and BROIL (Brown et al. 2020), and results show that the third
205
+ one performs the best under both expectation and different VaR’s (with risk thresholds 5%, 10%
206
+ and 15%), which showcases its advantages and adjustability to the decision makers’ changeable
207
+ preferences between return and risk.
208
+ The remainder of this paper is organized as follows. We introduce the background in Section 2.
209
+ In Sections 3 and 4, we study DRMDPs as well as the DCC model, respectively, and we derive
210
+ their tractable reformulations. Combining these proposed models, we propose the RR model in
211
+ Section 5. The designed first-order algorithm for the RR model is detailed in Section 6. We compare
212
+ the performances of DRMDP, DCC, RR, RMDP and BROIL, and demonstrate the advantage of
213
+ our proposed algorithm in Section 7. Conclusion is drawn in Section 8.
214
+ 2.
215
+ Background
216
+ We consider an infinite-horizon MDP with a finite state space S = {1,··· ,S} and a finite action
217
+ space A = {1,··· ,A}. Let P ∈ RS×A×S be the transition probability kernel such that ps,a,s′ is
218
+ denoted to be the transition probability of transiting to state s′ ∈ S when action a ∈ A is chosen
219
+ in state s ∈ S; thus, ps,a ∈ ∆S is the transition probability distribution for every (s,a) ∈ S × A.
220
+ Given the state-action pair (s,a), an agent will receive an expected reward rs,a ∈ R. To simplify
221
+ our notation, we denote the reward function as a vector r = {rs,a}(s,a)∈S×A.
222
+
223
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
224
+ 6
225
+ We seek for the optimal stationary randomized policy π = {πs}s∈S with πs ∈ ∆A for all s ∈ S,
226
+ where an action a ∈ A will be taken in state s ∈ S with probability πs,a. A nominal MDP that
227
+ maximizes the expected reward can be formulated (Puterman 2014) as
228
+ ℓN = max
229
+ x∈X r⊤x,
230
+ (1)
231
+ where the feasible set X is given by X =
232
+
233
+ x ∈ RSA
234
+ +
235
+ �� (E − γ · ¯P )x = p0
236
+
237
+ . Here the coefficient
238
+ matrices E = diag(e⊤,··· ,e⊤) ∈ RS×SA with S all-ones vectors e ∈ RA and ¯P = (¯p1,··· , ¯pS)⊤ ∈
239
+ RS×SA with ¯ps = {ps′,a,s}(s′,a)∈S×A for all s ∈ S. For each (s,a) ∈ S × A, we denote the sth sub-
240
+ vector of x as xs = {xi}i∈{(s−1)A+1,··· ,sA}; its ath component xs,a can be interpreted as the total
241
+ discounted probability one occupying state s and choosing action a when applying the policy
242
+ π⋆
243
+ s,a = x⋆
244
+ s,a/(�
245
+ a∈A x⋆
246
+ s,a) ∀(s,a) ∈ S × A (Puterman 2014)1. We have a discount factor γ ∈ (0,1) and
247
+ the initial distribution p0 ∈ RS
248
+ ++ of the initial states. Problem (1) is a linear program that can be
249
+ efficiently solved by simplex method and interior-point method (Nocedal and Wright 2006). One
250
+ can also compute the optimal policy efficiently by applying value iteration or policy iteration to
251
+ solve the associated Bellman equation of this problem (Bertsekas and Tsitsiklis 1995, Puterman
252
+ 2014).
253
+ The nominal MDP (1) does not account for uncertainty in either rewards or transition kernel.
254
+ To account for reward uncertainty, Delage and Mannor (2010) assume that the random reward
255
+ vector ˜r follows a known Gaussian distribution P and propose a chance-constrained MDP model
256
+ as follows:
257
+ ℓCC(ε) =
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+ max y
266
+ s.t. P[˜r⊤x ≥ y] ≥ 1 − ε
267
+ x ∈ X, y ∈ R.
268
+ (2)
269
+ In fact, the above chance-constrained model maximizes the VaR (at the risk level 1 − ε) of the
270
+ reward with respect to the distribution P. Since P is assumed Gaussian, by theorem 10.4.1 in
271
+ Pr´ekopa (2013), one can reformulate problem (2) as a second-order cone program as follows:
272
+ ℓCC(ε) = max
273
+ x∈X EP[˜r⊤x] − ∥F−1(1 − ε)Σ1/2x∥2,
274
+ where F−1(·) is the inverse of the cumulative density function of the Gaussian distribution P
275
+ and Σ is the covariance matrix of P. Second-order cone programs allow efficient solutions by
276
+ state-of-the-art commercial solvers such as CPLEX, Gurobi and MOSEK (see, e.g., Ben-Tal and
277
+ Nemirovski (2001)). Despite its tractability, the chance-constrained MDP (2) requires the precise
278
+ underlying reward distribution as input. Moreover, the above reformulation does not hold for
279
+ generic distribution P.
280
+ 1 By Puterman (2014), any x ∈ X admits such interpretation, thus we can retrieve our policies of all the proposed
281
+ models in this paper in this way.
282
+
283
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
284
+ 7
285
+ 3.
286
+ Distributionally Robust MDPs
287
+ In many real-world situations, the true distribution of the uncertain reward is hard (if not impossi-
288
+ ble) to obtain. Instead, we may have some firm knowledge, such as moments and shape about it. As
289
+ one of the most efficacious treatments for such situations, the DRO approach models uncertainty
290
+ as a random variable governed by an unknown probability distribution residing in an ambiguity
291
+ set. Facing distributional ambiguity, a decision maker seeks for solutions that hedge against the
292
+ most adversarial distribution from within the ambiguity set. To be specific, in our context, we
293
+ assume that the true distribution of the uncertain reward resides in a Wasserstein ball of radius
294
+ θ ≥ 0 around some reference distribution ˆP:
295
+ F(θ) = {P ∈ P(RSA) | dW
296
+
297
+ P, ˆP
298
+
299
+ ≤ θ}.
300
+ (3)
301
+ Here P(RSA) is the set of all probability distributions on RSA, and the Wasserstein distance
302
+ between two distributions P1 and P2, equipped with a general norm ∥ · ∥ in RSA, is given by
303
+ dW (P1,P2) = infP∈Q(P1,P2) EP[∥˜r1 − ˜r2∥], where Q(P1,P2) is the set of all joint distributions with
304
+ marginal distributions P1 and P2 that govern ˜r1 and ˜r2, respectively.
305
+ The random parameter in the nominal MDP (1) is the expectation of reward, which in practice,
306
+ is often estimated by the average of historical samples. However, when the sample size is small,
307
+ such a sample average is not close to the expectation but rather, is known to be optimistically
308
+ biased (see, e.g., Smith and Winkler (2006)). Hence, the nominal MDP (1) based on samples
309
+ may yield an unsatisfactory policy that does not perform well out-of-sample. For this reason, a
310
+ possible alternative is to maximize instead the worst-case expected reward as in the following
311
+ distributionally robust MDP:
312
+ ℓDRMDP(θ) = max
313
+ x∈X
314
+ inf
315
+ P∈F(θ)EP[˜r⊤x].
316
+ (4)
317
+ The following proposition offers an equivalent conic program for (4).
318
+ Proposition 1. The distributionally robust MDP (4) can be reformulated a conic program
319
+ ℓDRMDP(θ) = max
320
+ x∈X EˆP[˜r⊤x] − θ · ∥x∥∗.
321
+ It is not hard to observe that the distributionally robust MDPs can be viewed as a convex reg-
322
+ ularization of the nominal MDP (4) under the reference distribution ˆP. In particular, the convex
323
+ regularizing term in the distributionally robust MDP is θ∥x∥∗, which is sized by the Wasserstein
324
+ radius θ. Interestingly, we have also found that an (distributionally) optimistic MDP can be refor-
325
+ mulated as a reverse conic program with a (concave) regularization term −θ∥x∥∗. We relegate this
326
+ result to Appendix D.
327
+
328
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
329
+ 8
330
+ Figure 2
331
+ Values of ε with respect to different θ’s: ε = 0.05 (left), ε = 0.1 (middle), and ε = 0.15 (right).
332
+ We remark that, problem (4) is indeed a special case of the robust optimization problem consid-
333
+ ered in Jaimungal et al. (2022), where we consider the expected utility framework. Compared to the
334
+ policy gradient methods provided in Jaimungal et al. (2022) where convergence is not established,
335
+ we have derived its equivalent reformulation as a tractable conic program which can be efficiently
336
+ solved by state-of-the-art commercial solvers such as Gurobi, Mosek and CPLEX, and can also
337
+ be seamlessly incorporated in the tractable reformulation of our proposed return-risk model in
338
+ Section 5.
339
+ 4.
340
+ Distributionally Robust Chance-Constrained MDPs
341
+ In this section, we turn from optimizing the expectation of reward to its tailed performance, by
342
+ exploring chance-constrained MDPs. In particular, we still consider Wasserstein ambiguity sets (3)
343
+ to account for distributional ambiguity, meanwhile specifying the reference distribution ˆP and the
344
+ norm ∥ · ∥ in the definition of the Wasserstein distance.
345
+ For the former, we focus on an elliptical reference distribution ˆP = P(µ,Σ,g)
346
+ 2 throughout this
347
+ section, whose probability density distribution is given by f(r) = k · g
348
+ � 1
349
+ 2(r − µ)⊤Σ−1(r − µ)
350
+
351
+ ,
352
+ where k is a positive normalization scalar, µ is a mean vector, Σ is a positive definite matrix and g
353
+ is a generating function. We emphasize that this assumption on ˆP is mild as this is only the center
354
+ of the ambiguity set. In particular, our proposed distributionally robust chance-constrained MDPs
355
+ can account for all types of distributions (as long as they are inside the ambiguity set) and they are
356
+ not restricted to be all elliptical. As we shall see, such specifications lead to tractable reformulation
357
+ of our proposed models. Preliminaries on elliptical distributions are relegated to Appendix C.
358
+ For the latter, we adopt the Mahalanobis norm associated with the positive definite matrix Σ,
359
+ captured by ∥x∥Σ =
360
+
361
+ x⊤Σ−1x. Note that the dual norm of a Mahalanobis norm ∥ · ∥Σ is another
362
+ Mahalanobis norm ∥ · ∥Σ−1 that is defined by the inverse matrix Σ−1.
363
+ 2 Note that results in Section 3 hold for a general reference distribution.
364
+
365
+ 1e-03
366
+ 8e-04
367
+ 6e-04
368
+ 4e-04
369
+ 2e-04
370
+ 0e+00
371
+ 0.040
372
+ 0.045
373
+ 0.0501e-03
374
+ 8e-04
375
+ 6e-04
376
+ 4e-04
377
+ 2e-04
378
+ 0e+00
379
+ 0.085
380
+ 0.090
381
+ 0.095
382
+ 0.1001e-03
383
+ 8e-04
384
+ 6e-04
385
+ 4e-04
386
+ 2e-04
387
+ 0e+00
388
+ 0.130
389
+ 0.135
390
+ 0.140
391
+ 0.145
392
+ 0.150Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
393
+ 9
394
+ In a distributionally robust chance-constrained MDP, we hope that even in the worst-case, with
395
+ a high confidence the reward is no less than a lower bound, and we aim at maximizing such a lower
396
+ bound by solving
397
+ ℓDCC(θ,ε) =
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+
406
+
407
+ max y
408
+ s.t.
409
+ inf
410
+ P∈F(θ)P[˜r⊤x ≥ y] ≥ 1 − ε
411
+ x ∈ X, y ∈ R.
412
+ (5)
413
+ Quite notably, the worst-case chance constraint in the pessimistic chance-constrained MDP (5) is
414
+ equivalent to a nominal chance constraint in (2) with a higher risky level.
415
+ Lemma 1. Suppose in the Wasserstein ambiguity set (3), the reference distribution is an ellip-
416
+ tical distribution ˆP = P(µ,Σ,g) and the Wasserstein distance is equipped with a Mahalanobis norm
417
+ associated with the positive definite matrix Σ. The distributionally robust chance constraint
418
+ ∀ P ∈ F(θ) : P[˜r⊤x ≥ y] ≥ 1 − ε
419
+ (6)
420
+ is satisfiable if and only if P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ε, where ε = 1 − Φ(¯η⋆) ≤ ε with ¯η⋆ that can
421
+ be computed via bisection method which searches for the smallest η ≥ Φ−1(1 − ε) that satisfies
422
+ η(Φ(η) − (1 − ε)) −
423
+ � η2/2
424
+ (Φ−1(1−ε))
425
+ 2/2 kg(z)dz ≥ θ.
426
+ Equipped with Lemma 1, it then turns out that the distributionally robust chance-constrained
427
+ MDP (5) is equivalent to a nominal chance-constrained MDP (2) at a higher risky level. Conse-
428
+ quently, the distributionally robust chance-constrained MDP (5) can be reformulated into a conic
429
+ program, or more precisely, a second-order cone program owing to our choice of the Mahalanobis
430
+ norm.
431
+ Proposition 2. Suppose in the Wasserstein ambiguity set (3), the reference distribution is an
432
+ elliptical distribution ˆP = P(µ,Σ,g) and the Wasserstein distance is equipped with a Mahalanobis
433
+ norm associated with the positive definite matrix Σ. If the risk threshold satisfies ε < 0.5, then the
434
+ distributionally robust chance-constrained MDP (5) is equivalent to the second-order cone program
435
+ ℓDCC(θ,ε) = max
436
+ x∈X µ⊤x − ∥Φ−1(1 − ε)Σ1/2x∥2,
437
+ where ε = 1 − Φ(¯η⋆) ≤ ε with ¯η⋆ being the smallest η ≥ Φ−1(1 − ε) that satisfies η(Φ(η) − (1 − ε)) −
438
+ � η2/2
439
+ (Φ−1(1−ε))
440
+ 2/2 kg(z)dz ≥ θ.
441
+ Similar to the distributionally robust MDPs in Section 3, the distributionally robust chance-
442
+ constrained MDPs also admit an optimistic counterpart, which is equivalent to the nominal chance-
443
+ constrained MDPs with a larger risk threshold. We relegate this result to Appendix E.
444
+ To conclude this section, we present in Figure 2 the relations between ε and ε. Indeed, for any
445
+ fixed ε, there is a one-to-one correspondence between the risk threshold ε and the Wasserstein
446
+ radius θ. Following from this fact, for the chance-constrained model in our numerical experiments
447
+ (Section 7), we only calibrate the risk threshold rather than the Wasserstein radius.
448
+
449
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
450
+ 10
451
+ 5.
452
+ Return-Risk MDP
453
+ For rational decision makers, two types of rewards are their chief concerns: the average and the
454
+ worst-case rewards. However, the risk-averse models often can not achieve decent average return
455
+ on which the model put no emphasis (Carpin et al. 2016, Delage and Mannor 2010, Jiang and
456
+ Powell 2018). To take both concerns into considerations, we leverage the established DRMDPs and
457
+ DCC model in Sections 3 and 4 as ingredients and propose the return-risk MDP that maximizes
458
+ the weighted average of the worst-case expectation and VaR of reward as follows:
459
+ ℓRR(α,θ,ε) = max
460
+ x∈X α inf
461
+ P∈F(θ)EP[˜r⊤x] + (1 − α)
462
+ inf
463
+ P∈F′(θ)P-VaRε[˜r⊤x].
464
+ (7)
465
+ Here the Wasserstein ball F(θ) is assumed equipped with a general reference distribution and an
466
+ L2-norm in the definition of the Wasserstein distance, while an elliptical reference distribution
467
+ ˆP = P(µ,Σ,g) and a Mahalanobis norm associated with the positive definite matrix Σ are assumed for
468
+ F ′(θ). It is not hard to see that the return-risk MDP (7) takes the distributionally robust MDP (4)
469
+ and the distributionally robust chance-constrained MDP (5) in as special cases by varying ε, θ and
470
+ α ∈ {0,1}. Furthermore, by choosing a fractional α, the return-risk model enables one to tailor a
471
+ balance between risk and return. Proposition 3 below provides an equivalent second-order cone
472
+ program for the return-risk MDP (7) under these assumptions.
473
+ Proposition 3. Suppose in (7) the Wasserstein ball F(θ) (resp., F ′(θ)) is equipped with a
474
+ general distribution (resp., an elliptical reference distribution ˆP = P(µ,Σ,g)) and the norms in the
475
+ definitions of the Wasserstein distances of F(θ) and F ′(θ) are an L2-norm and the Mahalanobis
476
+ norm associated with Σ ≻ 0, respectively. Assume that the risk threshold satisfies ε < 0.5, then the
477
+ return-risk MDP (7) is equivalent to a second-order cone program
478
+ ℓRR(α,θ,ε) = max
479
+ x∈X µ⊤x − αθ · ∥x∥2 − (1 − α) · ∥Φ−1(1 − ε)Σ1/2x∥2,
480
+ (8)
481
+ where ε = 1 − Φ(¯η⋆) ≤ ε with ¯η⋆ being the smallest η ≥ Φ−1(1 − ε) that satisfies η(Φ(η) − (1 − ε)) −
482
+ � η2/2
483
+ (Φ−1(1−ε))
484
+ 2/2 kg(z)dz ≥ θ, and it could be computed via bisection method.
485
+ 5.1.
486
+ Risk-Awareness for Uncertain Transition Kernel
487
+ By adopting the static soft-robust framework in Lobo et al. (2020), one can indeed also account
488
+ for the uncertainty in transition kernel in our return-risk model. As in Lobo et al. (2020), suppose
489
+ we have finite samples of transition kernel { ˆP i}i∈[N] with weights w ∈ ∆N := {w ∈ RN
490
+ + | e⊤w = 1}
491
+ that are generated by MCMC (see, e.g., Kruschke (2010)). Our proposed model is then as follows:
492
+ max
493
+ π∈(∆A)S ψ · EˆP[g(π, ˜P )] + (1 − ψ) · ˆP-CVaRι[g(π, ˜P )].
494
+ (9)
495
+
496
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
497
+ 11
498
+ max (1 − ψ)(η −
499
+ 1
500
+ 1 − ι
501
+
502
+ i∈[N]
503
+ yi) + ψ ·
504
+
505
+ i∈[N]
506
+ (µ⊤xi − αθ · ∥xi∥2 − (1 − α)∥Φ−1(1 − ε)Σ1/2xi∥2)
507
+ s.t. yi − wiη ≥ αθ · ∥xi∥2 + (1 − α) · ∥Φ−1(1 − ε)Σ1/2xi∥2 − µ⊤xi
508
+ ∀i ∈ [N]
509
+ (E − γ · ¯P i)xi = wi · p0
510
+ ∀i ∈ [N]
511
+ xi ≤
512
+ wi
513
+ 1−γπ
514
+ ∀i ∈ [N]
515
+ xi
516
+ s,a ≥
517
+ wi
518
+ 1 − γ (πs,a − 1) +
519
+
520
+ a′∈A
521
+ xi
522
+ s,a′
523
+ ∀(i,s,a) ∈ N × S × A
524
+ π ∈ (∆A)S ∩ {0,1}SA,η ∈ R,xi ∈ RSA
525
+ + ,y ∈ RN
526
+ +
527
+ ∀i ∈ [N].
528
+ Figure 3
529
+ Reformulation of (9) as an MISOCP.
530
+ Here the objective function in (9) is again soft-robust against the uncertainty (in transition kernel),
531
+ with the weight ψ ∈ [0,1] as the controller for the robustness and ι ∈ [0,1] is the risk threshold (w.r.t.
532
+ the uncertain transition kernel). The weighted empirical distribution ˆP[ ˜P = ˆP i] = wi ∀i ∈ [N] and
533
+ the function
534
+ g(π,P ) = max µ⊤x − αθ · ∥x∥2 − (1 − α) · ∥Φ−1(1 − ε)Σ1/2x∥2
535
+ s.t. xs,a = πs,a ·
536
+
537
+ a′∈A
538
+ xs,a′
539
+ ∀(s,a) ∈ S × A
540
+ (E − γ · ¯P )x = p0
541
+ x ∈ RSA
542
+ +
543
+ represents the optimal value of the return-risk model with the additional constraint that the optimal
544
+ policy should be the input π ∈ (∆A)S and with ¯P as the coefficient matrix corresponding to the
545
+ input transition kernel P .
546
+ Quite notably, when focusing on deterministic policies, one can reformulate (9) as an MISOCP.
547
+ Proposition 4. If π is restricted to be a deterministic policy (i.e., π ∈ (∆A)S ∩{0,1}SA), prob-
548
+ lem (9) has an equivalent MISOCP reformulation as in Figure 3.
549
+ We remark that, though deterministic policies seem to be restricted compared to the randomized
550
+ ones, they actually are more favored under some situations; for example, they may be a more
551
+ suitable choice in some medical domains where randomized policies are unworkable for practical
552
+ and philosophical reasons (Rosen et al. 2006). Also, randomized policies may be difficult to be
553
+ evaluated after they have been deployed and may have poor reproducibility (Lobo et al. 2020).
554
+ 6.
555
+ First-Order Method
556
+ In this section, we introduce an efficient first-order algorithm to solve the equivalent formulation (8)
557
+ of our return-risk model. Our algorithm is based on an alternating direction linearized proximal
558
+
559
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
560
+ 12
561
+ method of multipliers (AD-LPMM) algorithm (Beck 2017, Shefi and Teboulle 2014), which is a
562
+ variant of the alternating direction method of multiplier (ADMM) algorithm and also has a con-
563
+ vergence rate of O(1/N) (here N is the number of iterations) proved by Beck (2017). The proposed
564
+ splitting allows efficient update of variables in AD-LPMM (where the solutions are analytical or
565
+ can be retrieved by an efficient bisection method).
566
+ For the primal update of the ADMM algorithm, one needs to solve minimization problems with
567
+ a quadratic term involved (in its objective function); in AD-LPMM, this quadratic term can be
568
+ linearized by adding a proximity term to the objective function, which could render the primal
569
+ update much easier. To implement our AD-LPMM algorithm, first we will introduce auxiliary
570
+ variables and rewrite (8) (as a minimization problem) as follows:
571
+ min αθ · ∥x∥2 + (1 − α) · ∥Φ−1(1 − ε)Σ1/2y∥2 − µ⊤z
572
+ s.t. (E − γ · ¯P )x = p0
573
+ x = y
574
+ x = z
575
+ x ∈ RSA,y ∈ RSA,z ∈ RSA
576
+ + ,
577
+ (10)
578
+ where, in the spirit of AD-LPMM, we can split the decision variables into two groups and update
579
+ them separately. The augmented Lagrangian function of (10) is:
580
+ L(x,y,z;λ,ξ,η)
581
+ = αθ · ∥x∥2 + (1 − α)Φ−1(1 − ε) · ∥Σ1/2y∥2 − µ⊤z + λ⊤((E − γ · ¯P )x − p0) + ξ⊤(x − y)
582
+ +η⊤(x − z) + c
583
+ 2 ·
584
+ ��������
585
+ (E − γ · ¯P )x − p0
586
+ x − y
587
+ x − z
588
+ ��������
589
+ 2
590
+ 2
591
+ .
592
+ Based on our splitting method, we will update the two groups of variables (y,z) and x separately.
593
+ For the update of (y,z), we define two primal update operators
594
+ Py(x,ξ;c) = arg min
595
+ y
596
+ (1 − α)Φ−1(1 − ε) · ∥Σ1/2y∥2 − ξ⊤y + c
597
+ 2 · ∥x − y∥2
598
+ 2
599
+ and Pz(x,η;c) = arg min
600
+ z≥0
601
+ −z⊤(µ + η) + c
602
+ 2 · ∥x − z∥2
603
+ 2; while for the update of x (i.e., the second
604
+ group of variables), we define
605
+ Px(y,z,λ,ξ,η;c,ν, ˆx) = arg min
606
+ x
607
+ αθ · ∥x∥2 + x⊤((E − γ · ¯P )⊤λ + ξ + η)
608
+ + c
609
+ 2 ·
610
+ ��������
611
+ (E − γ · ¯P )x − p0
612
+ x − y
613
+ x − z
614
+ ��������
615
+ 2
616
+ 2
617
+ + 1
618
+ 2 · ℓ2
619
+ Q(c,ν)(x − ˆx),
620
+
621
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
622
+ 13
623
+ Algorithm 1: AD-LPMM for Problem (10)
624
+ Input: Frobenius norm ν = ∥(E − γ · ¯P )⊤(E − γ · ¯P ) + 2 · I∥F, initial stepsize c0 > 0,
625
+ stepsize growth rate β > 0, desired precision δ, x0, y0, z0, λ0, ξ0, η0, k ← 0
626
+ while
627
+ ��������
628
+ (E − γ · ¯P )xk − p0
629
+ xk − yk
630
+ xk − zk
631
+ ��������
632
+
633
+ ≥ δ do
634
+ // Primal update
635
+ step 1: yk+1 ← Py(xk,ξk;ck);
636
+ step 2: zk+1 ← Pz(xk,ηk;ck);
637
+ step 3: xk+1 ← Px(yk+1,zk+1,λk,ξk,ηk;ck,ν,xk);
638
+ // Dual update
639
+ step 4: λk+1 ← λk + ck · ((E − γ · ¯P )xk+1 − p0);
640
+ step 5: ξk+1 ← ξk + ck · (xk+1 − yk+1);
641
+ step 6: ηk+1 ← ηk + ck · (xk+1 − zk+1);
642
+ // Increase stepsize
643
+ step 7: ck+1 ← ck + βc0;
644
+ step 8: k ← k + 1;
645
+ end
646
+ Output: Solution xk
647
+ where Q(c,ν) = c · ((ν − 2) · I − (E − γ · ¯P )⊤(E − γ · ¯P )) and ℓQ(·) (equipped with a positive
648
+ semi-definite matrix Q) is a weighted vector norm such that ℓQ(x) =
649
+
650
+ x⊤Qx. As we shall see in
651
+ Section 6.3, the update of x is fast (where an analytical solution is available) with the proximity
652
+ term (1/2)·ℓ2
653
+ Q(c,ν)(x− ˆx) added. Note that when Q(c,ν) ≡ 0, the update in AD-LPMM degenerates
654
+ to an ADMM’s one.
655
+ We now introduce our AD-LPMM in Algorithm 1. Basically, the most time-consuming computa-
656
+ tions lie in the primal update phase, where the updates are carried out by solving a minimization
657
+ problem with other variables fixed at values after their last updates. As shall be detailed soon,
658
+ owing to our variable splitting method, the primal updates are also quite fast, where analytical solu-
659
+ tions or solutions obtained by bisection are available. Here we choose a stepsize that is increasing
660
+ in every iteration (with a growth rate β > 0), which in practice accelerates the convergence.
661
+
662
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
663
+ 14
664
+ 6.1.
665
+ Subproblem in Step 1: Proximal Mapping and Projection
666
+ To solve Py(x,ξ;c), first we would utilize the technique of proximal mapping and establish the
667
+ following equivalences:
668
+ Py(x,ξ;c) = Prox (1−α)Φ−1(1−ε)
669
+ c
670
+ ·���·∥Σ(x + 1
671
+ c · ξ)
672
+ = x + 1
673
+ c · ξ − (1−α)Φ−1(1−ε)
674
+ c
675
+ · ProjBℓΣ−1 (·)
676
+
677
+ 1
678
+ (1−α)Φ−1(1−ε) · (c · x + ξ)
679
+
680
+ ,
681
+ (11)
682
+ where Proxf(·)(x) = arg minv f(v) + 1
683
+ 2 · ∥v − x∥2
684
+ 2 is the proximal mapping operator and
685
+ ProjBℓΣ(·)(x) = arg min
686
+ v:ℓΣ(v)≤1
687
+ 1
688
+ 2 · ∥v − x∥2
689
+ 2
690
+ (12)
691
+ is the operator of projection on the unit ball BℓΣ(·) = {x ∈ RSA | ℓΣ(x) ≤ 1}. Here, the first equality
692
+ in (11) holds by the definition of the proximal mapping operator, and the second equality follows
693
+ from,e.g., example 6.4.7 in Beck (2017). Indeed, problem (12) allows an efficient solution obtained
694
+ by a bisection method to locate its optimal dual solution λ⋆ ≥ 0 (after which the optimal primal
695
+ solution can be retrieved immediately), where the upper bound of the bisection is provided in
696
+ Lemma 2 relegated to Appendix A.4. The time complexity of the solution process (11), as well as
697
+ the pseudocode for the bisection method, are provided in the following proposition.
698
+ Proposition 5. Problem Py(x,ξ;c) can be solved in time O(SAlog(1/δ′)), where δ′ is the
699
+ desired precision of the bisection method.
700
+ 6.2.
701
+ Subproblem is Step 2: Componentwise Update
702
+ Problem Pz(x,η;c) can be decomposed into SA single-variable quadratic programming problems,
703
+ each allowing an analytical solution. We summarize the time complexity and details in the following
704
+ proposition.
705
+ Proposition 6. Problem Pz(x,η;c) can be solved in time O(SA).
706
+ 6.3.
707
+ Subproblem in Step 3: Linearization and Proximal Mapping
708
+ Compared to the update in ADMM, in our AD-LPMM, a proximity term (1/2) · ℓ2
709
+ Q(c,ν)(x − ˆx)
710
+ is added to the objective function of the update in step 3. By choosing Q(·,·) as mentioned in
711
+ Section 6, we can linearize all the quadratic terms in Px(y,z,λ,ξ,η;c,ν, ˆx), thus the solution can
712
+ be obtained analytically by the technique of proximal mapping (meanwhile assuring the positive
713
+ semi-definiteness of Q(ck,ν) in every iteration of Algorithm 1). This solution process, as well as its
714
+ time complexity, is provided in the following proposition.
715
+ Proposition 7. Problem Px(y,z,λ,ξ,η;c,ν, ˆx) can be solved in time O(SA).
716
+
717
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
718
+ 15
719
+ 100
720
+ 200
721
+ 300
722
+ 400
723
+ 500
724
+ Sample size
725
+ 15
726
+ 14
727
+ 13
728
+ VaR ( '=0.15)
729
+
730
+ DRMDP
731
+ CC
732
+ RR
733
+ BROIL
734
+ RMDP
735
+ 100
736
+ 200
737
+ 300
738
+ 400
739
+ 500
740
+ Sample size
741
+ 14
742
+ 12
743
+ 10
744
+ Mean
745
+
746
+ DRMDP
747
+ CC
748
+ RR
749
+ BROIL
750
+ RMDP
751
+ Figure 4
752
+ Empirical study. Models DRMDP (4), CC (2), RR (7), RMDP and BROIL evaluated by VaR (risk
753
+ threshold ε′ = 15%) and mean of reward. The upper and lower edges of the shaded areas are respectively
754
+ the 95% and 5% percentiles of the 100 performances, while the solid lines are the medians.
755
+ 7.
756
+ Numerical Experiments
757
+ In this section, we conduct two numerical experiments to compare the performances of
758
+ DRMDPs (4), CC (2)3, RR (7), RMDPs (Delage and Mannor 2010) and BROIL (Brown et al.
759
+ 2020) (please see Appendices F and G for more details for the last two models). In both experi-
760
+ ments, we train our reward functions with different sample sizes (100,200,300,400,500). For each
761
+ sample size, performance of each model is evaluated for 100 times. The performance of each model
762
+ is evaluated by expectation and VaR with risk thresholds ε′ ∈ {5%,10%,15%}. Cross validations
763
+ are conducted for parameter selection (please see Appendix H.1 for details).
764
+ In Section 7.1, we conduct a simulation study where MDPs are generated randomly as in Regan
765
+ and Boutilier (2012); In Section 7.2, we study a machine replacement problem introduced in
766
+ Delage and Mannor (2010). As implied in our proofs, in this section, the Wasserstein ambiguity
767
+ set of DRMDPs (4) will be equipped with a general reference distribution and an L2-norm for the
768
+ Wasserstein distance; as for RR (7), we use a general reference distribution and an L2-norm in the
769
+ definition of the Wasserstein distance for the Wasserstein ambiguity set F(θ), while for F ′(θ), we
770
+ use an elliptical reference distribution ˆP = P(µ,Σ,g) and the Mahalanobis norm associated with the
771
+ positive definite matrix Σ for the Wasserstein distance. All optimization problems are solved by
772
+ MOSEK on a 2.3GHz processor with 32GB memory.
773
+
774
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
775
+ 16
776
+ 100
777
+ 200
778
+ 300
779
+ 400
780
+ 500
781
+ Sample size
782
+ 1600
783
+ 1650
784
+ 1700
785
+ 1750
786
+ VaR ( '=0.15)
787
+
788
+ DRMDP
789
+ CC
790
+ RR
791
+ BROIL
792
+ RMDP
793
+ 100
794
+ 200
795
+ 300
796
+ 400
797
+ 500
798
+ Sample size
799
+ 1750
800
+ 1800
801
+ 1850
802
+ Mean
803
+
804
+ DRMDP
805
+ CC
806
+ RR
807
+ BROIL
808
+ RMDP
809
+ Figure 5
810
+ Simulation. Models DRMDP (4), CC (2), RR (7), RMDP and BROIL evaluated by VaR (risk threshold
811
+ ε′ = 15%) and mean of reward. The upper and lower edges of the shaded areas are respectively the 95%
812
+ and 5% percentiles of the 100 performances, while the solid lines are the medians.
813
+ 7.1.
814
+ Simulation Study
815
+ In this experiment, we follow the experiment setup in Regan and Boutilier (2012) where the number
816
+ of reachable next-states and the transition kernel are randomly generated (both of which are known
817
+ to decision makers). More details of the experiment setting are relegated to Appendix H.2.
818
+ As illustrated in Figures 5 and 7 (where the latter for VaR with ε′ ∈ {5%,10%} is relegated
819
+ to Appendix H.4), when the decision maker aims to optimize her tailed performances, CC is a
820
+ preferable choice compared to DRMDPs; on the contrary, when pursuing optimizing the average
821
+ return, DRMDPs perform much better than CC. Observe that the RR model, which includes both
822
+ DRMDPs and the DCC model as special cases, remains as the best model under all criteria. In
823
+ particular, one can observe that, RR achieves higher percentile returns than BROIL (that is a
824
+ model without robustness), which demonstrates the benefits of distributionally robustness and the
825
+ advantage of the risk measure VaR for percentile performance optimization. As expected, RMDPs
826
+ end up yielding over-conservative policies; as a result, it performs poorly in most instances under
827
+ all criteria.
828
+ 7.2.
829
+ Machine Replacement Problem
830
+ In this experiment, we follow the experiment setup in Delage and Mannor (2010) and consider
831
+ the case where a factory holds an extensive amount of machines, each of which is subject to the
832
+ same underlying MDP (more details of the experiment setting can be found in Appendix H.2). Our
833
+ setting is similar to Delage and Mannor (2010) except for the follows: we use a data-driven setting
834
+ 3 As we demonstrated in Section 4, a DCC is equivalent to a nominal chance-constrained one with an adjusted risk
835
+ level, thus here we simply choose the latter as the benchmark.
836
+
837
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
838
+ 17
839
+ as described above, and we evaluate our (policies of) models by looking at the various performance
840
+ measures as in Section 7.1.
841
+ We report the overall performances of the five models in Figures 4 and 8 (where the latter for
842
+ VaR with ε′ ∈ {5%,10%} is relegated to Appendix H.5). Similar to the previous experiment, RR
843
+ always performs better than or equal to the best model between CC and DRMDPs, and it provides
844
+ the best performance under all criteria, which again manifest the merit of taking both the expected
845
+ and worst-case performances into consideration and distributionally robustness.
846
+ 7.3.
847
+ Computation Times of Different Algorithms
848
+ Table 1
849
+ The average of the runtimes of the MOSEK solver and the AD-LPMM algorithm in seconds and the
850
+ relative gaps (%) to the optimal values computed by MOSEK.
851
+ S=A
852
+ Runtimes
853
+ Relative gaps
854
+ MOSEK AD-LPMM
855
+ 40
856
+ 0.60
857
+ 2.79
858
+ < 0.1 %
859
+ 70
860
+ 5.58
861
+ 4.81
862
+ < 0.1 %
863
+ 100
864
+ 25.50
865
+ 19.98
866
+ 0.2 %
867
+ 130
868
+ 93.54
869
+ 66.17
870
+ < 0.1 %
871
+ 160
872
+ 444.06
873
+ 168.34
874
+ 0.4 %
875
+ In this section, we compare the computation times of our AD-LPMM algorithm with the state-
876
+ of-the-art solver MOSEK. Table 1 reports the runtimes of the the AD-LPMM and MOSEK when
877
+ solving problem (8) at different problem sizes. Results indicate that, though our AD-LPMM is
878
+ slower than the MOSEK solver when problem size is small, it showcases its strong scalability and
879
+ become much faster than MOSEK with large-size problems (while always maintaining high solution
880
+ quality), where the advantage is more notable when the problem scales up.
881
+ 8.
882
+ Conclusion
883
+ We consider risk-aware MDPs with ambiguous reward functions and propose the return-risk model,
884
+ which is versatile and can optimize any weighted combination of the average and quantile perfor-
885
+ mances of a policy. This model generalizes and combines the advantage of distributionally robust
886
+ MDPs and distributionally robust chance-constrained MDPs, thus is powerful in both average
887
+ and percentile performances optimization. In particular, risk from uncertain transition kernel can
888
+ also be captured by the return-risk model when output policies are deterministic. Tractable refor-
889
+ mulations are provided for all our proposed models, and we design an AD-LPMM algorithm for
890
+
891
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
892
+ 18
893
+ the return-risk model, which is well scalable and faster than the MOSEK solver with large-scale
894
+ problems. Experimental results showcase the versatility of the return-risk model as well as the
895
+ scalability of the algorithm.
896
+ In the future, we believe that it would be important to explore more efficient methods for
897
+ obtaining solution of RR, where function approximation and policy gradient (Sutton and Barto
898
+ 2018) are possible choices to achieve this.
899
+ References
900
+ Abdullah, Mohammed Amin, Hang Ren, Haitham Bou Ammar, Vladimir Milenkovic, Rui Luo, Mingtian
901
+ Zhang, Jun Wang. 2019. Wasserstein robust reinforcement learning. arXiv preprint arXiv:1907.13196
902
+ .
903
+ Ahmadi, Mohamadreza, Ugo Rosolia, Michel Ingham, Richard Murray, Aaron Ames. 2021. Constrained
904
+ risk-averse Markov decision processes. The 35th AAAI Conference on Artificial Intelligence (AAAI-21).
905
+ Alizadeh, Pegah, Yann Chevaleyre, Jean-Daniel Zucker. 2015. Approximate regret based elicitation in Markov
906
+ decision process. The 2015 IEEE RIVF International Conference on Computing & Communication
907
+ Technologies-Research, Innovation, and Vision for Future (RIVF). IEEE, 47–52.
908
+ B¨aauerle, Nicole, Ulrich Rieder. 2017. Partially observable risk-sensitive Markov decision processes. Mathe-
909
+ matics of Operations Research 42(4) 1180–1196.
910
+ B¨auerle, Nicole, Alexander Glauner. 2021. Minimizing spectral risk measures applied to Markov decision
911
+ processes. Mathematical Methods of Operations Research 94(1) 35–69.
912
+ B¨auerle, Nicole, Jonathan Ott. 2011. Markov decision processes with average-value-at-risk criteria. Mathe-
913
+ matical Methods of Operations Research 74(3) 361–379.
914
+ Beck, Amir. 2017. First-order methods in optimization. SIAM.
915
+ Behzadian, Bahram, Reazul Russel, Marek Petrik, Chin Pang Ho. 2021. Optimizing percentile criterion using
916
+ robust MDPs. International Conference on Artificial Intelligence and Statistics 1009–1017.
917
+ Ben-Tal, Aharon, Dimitris Bertsimas, David B Brown. 2010. A soft robust model for optimization under
918
+ ambiguity. Operations research 58(4-part-2) 1220–1234.
919
+ Ben-Tal, Aharon, Arkadi Nemirovski. 2001. Lectures on modern convex optimization: analysis, algorithms,
920
+ and engineering applications. SIAM.
921
+ Bernard, Carole, Silvana M Pesenti, Steven Vanduffel. 2022. Robust distortion risk measures. arXiv preprint
922
+ arXiv:2205.08850 .
923
+ Bertsekas, Dimitri, John Tsitsiklis. 1995. Neuro-dynamic programming: an overview. Proceedings of 1995
924
+ 34th IEEE Conference on Decision and Control, vol. 1. IEEE, 560–564.
925
+ Bertsimas, Dimitris, Aur´elie Thiele. 2006. Robust and data-driven optimization: modern decision making
926
+ under uncertainty. Models, methods, and applications for innovative decision making. INFORMS, 95–
927
+ 122.
928
+
929
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
930
+ 19
931
+ Blanchet, Jose, Karthyek Murthy. 2019. Quantifying distributional model risk via optimal transport. Math-
932
+ ematics of Operations Research 44(2) 565–600.
933
+ Brown, Daniel, Scott Niekum, Marek Petrik. 2020. Bayesian robust optimization for imitation learning.
934
+ Advances in Neural Information Processing Systems 33 2479–2491.
935
+ Calafiore, Carlo, L El Ghaoui. 2006. On distributionally robust chance-constrained linear programs. Journal
936
+ of Optimization Theory and Applications 130(1) 1–22.
937
+ Carpin, Stefano, Yin-Lam Chow, Marco Pavone. 2016. Risk aversion in finite Markov decision processes
938
+ using total cost criteria and average value at risk. 2016 IEEE International Conference on Robotics
939
+ and Automation (ICRA). IEEE, 335–342.
940
+ Chen, Xin, Melvyn Sim, Peng Sun. 2007. A robust optimization perspective on stochastic programming.
941
+ Operations Research 55(6) 1058–1071.
942
+ Chen, Xinyue, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, Keith Ross. 2020.
943
+ Bail: Best-action
944
+ imitation learning for batch deep reinforcement learning. Advances in Neural Information Processing
945
+ Systems 33 18353–18363.
946
+ Chen, Zhi, Daniel Kuhn, Wolfram Wiesemann. 2018. Data-driven chance constrained programs over Wasser-
947
+ stein balls. arXiv preprint arXiv:1809.00210 .
948
+ Chen, Zhi, Melvyn Sim, Huan Xu. 2019. Distributionally robust optimization with infinitely constrained
949
+ ambiguity sets. Operations Research 67(5) 1328–1344.
950
+ Chen, Zhi, Weijun Xie. 2021. Sharing the value-at-risk under distributional ambiguity. Mathematical Finance
951
+ 31(1) 531–559.
952
+ Choi, Jaedeug, Kee-Eung Kim. 2012. Nonparametric Bayesian inverse reinforcement learning for multiple
953
+ reward functions. Advances in Neural Information Processing Systems 25.
954
+ Chow, Yinlam, Mohammad Ghavamzadeh, Lucas Janson, Marco Pavone. 2017. Risk-constrained reinforce-
955
+ ment learning with percentile risk criteria. The Journal of Machine Learning Research 18(1) 6070–6120.
956
+ Clement, Julien, Christian Kroer. 2021a. First-order methods for Wasserstein distributionally robust MDP.
957
+ International Conference on Machine Learning. PMLR, 2010–2019.
958
+ Clement, Julien Grand, Christian Kroer. 2021b. First-order methods for wasserstein distributionally robust
959
+ mdp. International Conference on Machine Learning. PMLR, 2010–2019.
960
+ Delage, Erick, Shie Mannor. 2007.
961
+ Percentile optimization in uncertain Markov decision processes with
962
+ application to efficient exploration.
963
+ Proceedings of the 24th International Conference on Machine
964
+ Learning. PMLR, 225–232.
965
+ Delage, Erick, Shie Mannor. 2010. Percentile optimization for Markov decision processes with parameter
966
+ uncertainty. Operations Research 58(1) 203–213.
967
+ Delgado, Karina, Leliane De Barros, Daniel Dias, Scott Sanner. 2016. Real-time dynamic programming for
968
+ Markov decision processes with imprecise probabilities. Artificial Intelligence 230 192–223.
969
+
970
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
971
+ 20
972
+ Derman, Esther, Shie Mannor. 2020. Distributional robustness and regularization in reinforcement learning.
973
+ arXiv preprint arXiv:2003.02894 .
974
+ Erdo˘gan, Emre, Garud Iyengar. 2006. Ambiguous chance constrained problems and robust optimization.
975
+ Mathematical Programming 107(1) 37–61.
976
+ Gao, Rui, Anton Kleywegt. 2016. Distributionally robust stochastic optimization with Wasserstein distance.
977
+ arXiv preprint arXiv:1604.02199 .
978
+ Gao, Rui, Anton Kleywegt. 2022. Distributionally robust stochastic optimization with Wasserstein distance.
979
+ Mathematics of Operations Research .
980
+ Gilbert, Hugo, Paul Weng, Yan Xu. 2017. Optimizing quantiles in preference-based Markov decision pro-
981
+ cesses. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31.
982
+ Hanasusanto, Grani, Vladimir Roitch, Daniel Kuhn, Wolfram Wiesemann. 2015. A distributionally robust
983
+ perspective on uncertainty quantification and chance constrained programming. Mathematical Pro-
984
+ gramming 151(1) 35–62.
985
+ Hanasusanto, Grani, Vladimir Roitch, Daniel Kuhn, Wolfram Wiesemann. 2017. Ambiguous joint chance
986
+ constraints under mean and dispersion information. Operations Research 65(3) 751–767.
987
+ Haskell, William, Rahul Jain. 2015. A convex analytic approach to risk-aware Markov decision processes.
988
+ SIAM Journal on Control and Optimization 53(3) 1569–1598.
989
+ Ho, Jonathan, Stefano Ermon. 2016. Generative adversarial imitation learning. Advances in neural infor-
990
+ mation processing systems 29.
991
+ Hogg, Robert V, Allen T Craig. 1995. Introduction to mathematical statistics.(5”” edition). Englewood
992
+ Hills, New Jersey .
993
+ Huang, Wenjie, William Haskell. 2017. Risk-aware q-learning for Markov decision processes. 2017 IEEE
994
+ 56th Annual Conference on Decision and Control (CDC). IEEE, 4928–4933.
995
+ Huang, Yonghui, Xianping Guo. 2016. Minimum average value-at-risk for finite horizon semi-Markov decision
996
+ processes in continuous time. SIAM Journal on Optimization 26(1) 1–28.
997
+ Iyengar, Garud. 2005. Robust dynamic programming. Mathematics of Operations Research 30(2) 257–280.
998
+ Jaimungal, Sebastian, Silvana M Pesenti, Ye Sheng Wang, Hariom Tatsat. 2022. Robust risk-aware rein-
999
+ forcement learning. SIAM Journal on Financial Mathematics 13(1) 213–226.
1000
+ Jiang, Daniel R, Warren B Powell. 2018. Risk-averse approximate dynamic programming with quantile-based
1001
+ risk measures. Mathematics of Operations Research 43(2) 554–579.
1002
+ Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski,
1003
+ Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. 2019. Model-based reinforcement
1004
+ learning for atari. arXiv preprint arXiv:1903.00374 .
1005
+
1006
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1007
+ 21
1008
+ Kruschke, John K. 2010. Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science 1(5)
1009
+ 658–676.
1010
+ Lagoudakis, Michail G, Ronald Parr. 2003. Least-squares policy iteration. The Journal of Machine Learning
1011
+ Research 4 1107–1149.
1012
+ Lobo, Elita A, Mohammad Ghavamzadeh, Marek Petrik. 2020. Soft-robust algorithms for batch reinforce-
1013
+ ment learning. arXiv preprint arXiv:2011.14495 .
1014
+ Mannor, Shie, Ofir Mebel, Huan Xu. 2016. Robust MDPs with k-rectangular uncertainty. Mathematics of
1015
+ Operations Research 41(4) 1484–1509.
1016
+ Mannor, Shie, Duncan Simester, Peng Sun, John Tsitsiklis. 2007. Bias and variance approximation in value
1017
+ function estimates. Management Science 53(2) 308–322.
1018
+ Ng, Andrew Y, Stuart J Russell, et al. 2000. Algorithms for inverse reinforcement learning. Icml, vol. 1. 2.
1019
+ Nocedal, Jorge, Stephen Wright. 2006. Numerical optimization. Springer Science & Business Media.
1020
+ Osa, Takayuki, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters. 2018. An
1021
+ algorithmic perspective on imitation learning. arXiv preprint arXiv:1811.06711 .
1022
+ Panaganti, Kishan, Dileep Kalathil. 2022. Sample complexity of robust reinforcement learning with a gen-
1023
+ erative model. International Conference on Artificial Intelligence and Statistics. PMLR, 9582–9602.
1024
+ Petrik, Marek. 2010. Optimization-based approximate dynamic programming. University of Massachusetts
1025
+ Amherst.
1026
+ Petrik, Marek, Ronny Luss. 2016. Interpretable policies for dynamic product recommendations. UAI .
1027
+ Pflug, Georg, David Wozabal. 2007. Ambiguity in portfolio selection. Quantitative Finance 7(4) 435–442.
1028
+ Postek, Krzysztof, Aharon Ben-Tal, Dick Den Hertog, Bertrand Melenberg. 2018. Robust optimization with
1029
+ ambiguous stochastic constraints under mean and dispersion information. Operations Research 66(3)
1030
+ 814–833.
1031
+ Pr´ekopa, Andr´as. 2013. Stochastic programming, vol. 324. Springer Science & Business Media.
1032
+ Puterman, Martin. 2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley
1033
+ & Sons.
1034
+ Rashidinejad, Paria, Banghua Zhu, Cong Ma, Jiantao Jiao, Stuart Russell. 2021. Bridging offline reinforce-
1035
+ ment learning and imitation learning: A tale of pessimism. Advances in Neural Information Processing
1036
+ Systems 34.
1037
+ Regan, Kevin, Craig Boutilier. 2010. Robust policy computation in reward-uncertain MDPs using nondom-
1038
+ inated policies. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 24.
1039
+ Regan, Kevin, Craig Boutilier. 2011a. Eliciting additive reward functions for Markov decision processes.
1040
+ Twenty-Second International Joint Conference on Artificial Intelligence.
1041
+
1042
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1043
+ 22
1044
+ Regan, Kevin, Craig Boutilier. 2011b. Robust online optimization of reward-uncertain MDPs. Twenty-Second
1045
+ International Joint Conference on Artificial Intelligence.
1046
+ Regan, Kevin, Craig Boutilier. 2012. Regret-based reward elicitation for Markov decision processes. arXiv
1047
+ preprint arXiv:1205.2619 .
1048
+ Rosen, Laura, Orly Manor, Dan Engelhard, David Zucker. 2006. In defense of the randomized controlled
1049
+ trial for health promotion research. American journal of public health 96(7) 1181–1186.
1050
+ Roy, Aurko, Huan Xu, Sebastian Pokutta. 2017. Reinforcement learning under model mismatch. Advances
1051
+ in neural information processing systems 30.
1052
+ Sarykalin, Sergey, Gaia Serraino, Stan Uryasev. 2008.
1053
+ Value-at-risk vs. conditional value-at-risk in risk
1054
+ management and optimization. State-of-the-art decision-making tools in the information-intensive age.
1055
+ Informs, 270–294.
1056
+ Shapiro, Alexander. 2016. Rectangular sets of probability measures. Operations Research 64(2) 528–541.
1057
+ Shapiro, Alexander. 2021. Distributionally robust optimal control and mdp modeling. Operations Research
1058
+ Letters 49(5) 809–814.
1059
+ Shefi, Ron, Marc Teboulle. 2014.
1060
+ Rate of convergence analysis of decomposition methods based on the
1061
+ proximal method of multipliers for convex minimization. SIAM Journal on Optimization 24(1) 269–
1062
+ 297.
1063
+ Smith, James, Robert L Winkler. 2006.
1064
+ The optimizer’s curse: skepticism and postdecision surprise in
1065
+ decision analysis. Management Science 52(3) 311–322.
1066
+ Sutton, Richard S, Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
1067
+ van de Berg, Damien, Thomas Savage, Panagiotis Petsagkourakis, Dongda Zhang, Nilay Shah, Ehecatl Anto-
1068
+ nio del Rio-Chanona. 2022. Data-driven optimization for process systems engineering applications.
1069
+ Chemical Engineering Science 248 117135.
1070
+ Wang, Yue, Shaofeng Zou. 2021. Online robust reinforcement learning with model uncertainty. Advances in
1071
+ Neural Information Processing Systems 34 7193–7206.
1072
+ Wang, Yue, Shaofeng Zou. 2022. Policy gradient method for robust reinforcement learning. arXiv preprint
1073
+ arXiv:2205.07344 .
1074
+ Xie, Weijun. 2021.
1075
+ On distributionally robust chance constrained programs with Wasserstein distance.
1076
+ Mathematical Programming 186(1) 115–155.
1077
+ Xu, Huan, Shie Mannor. 2010.
1078
+ Distributionally robust Markov decision processes.
1079
+ Advances in Neural
1080
+ Information Processing Systems 23 2505–2513.
1081
+ Xu, Huan, Shie Mannor. 2012. Distributionally robust markov decision processes. Mathematics of Operations
1082
+ Research 37(2).
1083
+
1084
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1085
+ 23
1086
+ Yamai, Yasuhiro, Toshinao Yoshiba, et al. 2002. Comparative analyses of expected shortfall and value-at-
1087
+ risk: their estimation error, decomposition, and optimization. Monetary and economic studies 20(1)
1088
+ 87–121.
1089
+ Yang, Insoon. 2020. Wasserstein distributionally robust stochastic control: A data-driven approach. IEEE
1090
+ Transactions on Automatic Control 66(8) 3863–3870.
1091
+ Yu, Pengqian, Huan Xu. 2015. Distributionally robust counterpart in markov decision processes. IEEE
1092
+ Transactions on Automatic Control 61(9) 2538–2543.
1093
+ Zheng, Kan, Zhe Yang, Kuan Zhang, Periklis Chatzimisios, Kan Yang, Wei Xiang. 2016. Big data-driven
1094
+ optimization for mobile networks toward 5g. IEEE network 30(1) 44–51.
1095
+ Zymler, Steve, Daniel Kuhn, Ber¸c Rustem. 2013.
1096
+ Distributionally robust joint chance constraints with
1097
+ second-order moment information. Mathematical Programming 137(1) 167–198.
1098
+
1099
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1100
+ 24
1101
+ A.
1102
+ Proof of Results
1103
+ A.1.
1104
+ Proofs of Results in Section 3
1105
+ Proof of Proposition 1.
1106
+ It is sufficient to rewrite the objective of (4) as follows:
1107
+ inf
1108
+ P∈F(θ)EP[˜r⊤x] = − sup
1109
+ P∈F(θ)
1110
+ EP[−˜r⊤x]
1111
+ = −min
1112
+ λ≥0
1113
+
1114
+ λθ −
1115
+
1116
+ RSA inf
1117
+ ξ∈RSA(λ∥ξ − r∥ + ξ⊤x) dˆPr
1118
+
1119
+ = − min
1120
+ λ≥∥x∥∗
1121
+
1122
+ λθ −
1123
+
1124
+ RSA r⊤x dˆPr
1125
+
1126
+ = EˆP[˜r⊤x] − θ∥x∥∗,
1127
+ where the second identity follows from theorem 1 in Gao and Kleywegt (2016) and the third
1128
+ identity follows from strong conic duality
1129
+ inf
1130
+ ξ∈RK(λ∥ξ − r∥ + ξ⊤x) =
1131
+
1132
+
1133
+
1134
+ r⊤x
1135
+ λ ≥ ∥x∥∗
1136
+ −∞
1137
+ λ ∈ [0,∥x∥∗).
1138
+ Substituting the above reexpression then concludes the proof.
1139
+ Q.E.D.
1140
+ A.2.
1141
+ Proofs of Results in Section 4
1142
+ Proof of Lemma 1.
1143
+ Notice that (6) is equivalent to
1144
+ sup
1145
+ P∈F(θ)
1146
+ P
1147
+ �˜r⊤x < y
1148
+
1149
+ ≤ ε ⇐⇒ sup
1150
+ P∈F(θ)
1151
+ P
1152
+ �˜r⊤x ≤ y
1153
+
1154
+ ≤ ε,
1155
+ where it is equivalent if we replace the strict inequality on the left-hand side with a weak one on
1156
+ the right-hand side; see proposition 3 in Gao and Kleywegt (2016). Exploring the definition of VaR,
1157
+ we note that
1158
+ sup
1159
+ P∈F(θ)
1160
+ P
1161
+ �˜r⊤x ≤ y
1162
+
1163
+ ≤ ε ⇐⇒ sup
1164
+ P∈F(θ)
1165
+ P-VaR1−ε
1166
+
1167
+ y − ˜r⊤x
1168
+
1169
+ ≤ 0.
1170
+ By corollary 4.9 in Chen and Xie (2021) and the assumption of Mahalanobis norm, it holds that
1171
+ sup
1172
+ P∈F(θ)
1173
+ P-VaR1−ε
1174
+
1175
+ y − ˜r⊤x
1176
+
1177
+ = P(µ,Σ,g)-VaR1−ε
1178
+
1179
+ y − ˜r⊤x
1180
+
1181
+ .
1182
+ In other words, the worst-case VaR around the elliptical distribution P(µ,Σ,g) with the risk threshold
1183
+ ε is equal to the nominal elliptical VaR with a small risk threshold ε ≤ ε (which, would correspond
1184
+ to a higher risk level). We thus obtain
1185
+ sup
1186
+ P∈F(θ)
1187
+ P-VaR1−ε
1188
+
1189
+ y − ˜r⊤x
1190
+
1191
+ ≤ 0 ⇐⇒ P(µ,Σ,g)-VaR1−ε [y − ˜r⊤x] ≤ 0
1192
+ ⇐⇒ P(µ,Σ,g)
1193
+ �˜r⊤x ≤ y
1194
+
1195
+ ≤ ε
1196
+ ⇐⇒ P(µ,Σ,g)
1197
+ �˜r⊤x ≥ y
1198
+
1199
+ ≥ 1 − ε,
1200
+
1201
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1202
+ 25
1203
+ where the last equivalence follows from P(µ,Σ,g) being a continuous distribution.
1204
+ Q.E.D.
1205
+ Proof of Proposition 2.
1206
+ By Lemma 1, the first constraint in (5) is the same as
1207
+ P(µ,Σ,g)
1208
+ �˜r⊤x ≥ y
1209
+
1210
+ ≥ 1 − ε,
1211
+ where ε = 1 − Φ(¯η⋆) ≤ ε and ¯η⋆ is the smallest η ≥ Φ−1(1 − ε) that satisfies
1212
+ η(Φ(η) − (1 − ε)) −
1213
+ � η2/2
1214
+ (Φ−1(1−ε))
1215
+ 2/2
1216
+ kg(z)dz ≥ θ.
1217
+ The constraint can then be further written as
1218
+ P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ε ⇐⇒ Φ((µ⊤x − y)/
1219
+
1220
+ x⊤Σx) ≥ 1 − ε
1221
+ ⇐⇒ µ⊤x − y ≥ Φ−1(1 − ε)
1222
+
1223
+ x⊤Σx
1224
+ ⇐⇒ µ⊤x − y ≥ ∥Φ−1(1 − ε)Σ1/2x∥2,
1225
+ where the first equivalence holds by the linearity of elliptical distributions, the second one is because
1226
+ that Φ(·) is non-decreasing, and the last one is due to the fact that 1−ε ≥ 0.5 (which follows from
1227
+ ε ≤ ε < 0.5). Observe that the optimum is achieved at y⋆ = µ⊤x − ∥Φ−1(1 − ε)Σ1/2x∥2, plugging
1228
+ this in the objective of problem (5) then concludes our proof.
1229
+ Q.E.D.
1230
+ A.3.
1231
+ Proofs of Results in Section 5
1232
+ Proof of Proposition 3.
1233
+ By Proposition 1 and Proposition 2, we have
1234
+ inf
1235
+ P∈F(θ)EP[˜r⊤x] = −θ∥x∥2 + EˆP[˜r⊤x]
1236
+ and
1237
+ inf
1238
+ P∈F′(θ)P-VaR1−ε[˜r⊤x] = µ⊤x − ∥Φ−1(1 − ε)Σ1/2x∥2
1239
+ with ε as claimed. Substituting the above two equations into (7) and rearranging the terms then
1240
+ concludes our proof.
1241
+ Q.E.D.
1242
+ Proof of Proposition 4.
1243
+ By the definition of ˆT, problem (9) can be rewritten as:
1244
+ max
1245
+ π∈(∆A)S ψ
1246
+
1247
+ i∈[N]
1248
+ wi · g(π, ˆP i) + (1 − ψ)max
1249
+ η∈R
1250
+
1251
+
1252
+ �η −
1253
+ 1
1254
+ 1 − ι
1255
+
1256
+ i∈[N]
1257
+ wi(η − g(π, ˆP i))+
1258
+
1259
+
1260
+ �.
1261
+ By introducing auxiliary decision variables y ∈ RN, it can be further reformulated as:
1262
+ max ψ
1263
+
1264
+ i∈[N]
1265
+ wi · g(π, ˆP i) + (1 − ψ)
1266
+
1267
+ �η −
1268
+ 1
1269
+ 1 − ι
1270
+
1271
+ i∈[N]
1272
+ yi
1273
+
1274
+
1275
+ s.t. yi ≥ wi(η − g(π, ˆP i))
1276
+ ∀i ∈ [N]
1277
+ π ∈ (∆A)S,y ∈ RN
1278
+ +,η ∈ R.
1279
+ (13)
1280
+
1281
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1282
+ 26
1283
+ Here we can express
1284
+ wi · g(π,P ) = max µ⊤x − αθ · ∥x∥2 − (1 − α) · ∥Φ−1(1 − ε)Σ1/2x∥2
1285
+ s.t. xs,a = πs,a ·
1286
+
1287
+ a′∈A
1288
+ xs,a′
1289
+ ∀(s,a) ∈ S × A
1290
+ (E − γ · ¯P )x = wi · p0
1291
+ x ∈ RSA
1292
+ +
1293
+ (14)
1294
+ as in Lobo et al. (2020). We can then, by combining (13) and (14), reformulate problem (9) as:
1295
+ max ψ
1296
+
1297
+ i∈[N]
1298
+ (µ⊤xi − αθ · ∥xi∥2 − (1 − α) · ∥Φ−1(1 − ε)Σ1/2xi∥2) + (1 − ψ)(η −
1299
+ 1
1300
+ 1 − ι
1301
+
1302
+ i∈[N]
1303
+ yi)
1304
+ s.t. yi − wiη ≥ αθ · ∥xi∥2 + (1 − α) · ∥Φ−1(1 − ε)Σ1/2xi∥2 − µ⊤xi
1305
+ ∀i ∈ [N]
1306
+ xi
1307
+ s,a = πs,a ·
1308
+
1309
+ a′∈A
1310
+ xi
1311
+ s,a′
1312
+ ∀i ∈ [N],(s,a) ∈ S × A
1313
+ (E − γ · ¯P i)xi = wi · p0
1314
+ ∀i ∈ [N]
1315
+ π ∈ (∆A)S,η ∈ R,xi ∈ RSA
1316
+ + ,y ∈ RN
1317
+ +
1318
+ ∀i ∈ [N].
1319
+ Now it is sufficient to focus on the second set of constraints
1320
+ xi
1321
+ s,a = πs,a ·
1322
+
1323
+ a′∈A
1324
+ xi
1325
+ s,a′ ∀i ∈ [N],(s,a) ∈ S × A.
1326
+ (15)
1327
+ Since we only consider deterministic policy π ∈ {0,1}SA and �
1328
+ a∈A xi
1329
+ s,a ∈ [0,wi/(1 − γ)] (see, e.g.,
1330
+ lemma C.10 in Petrik (2010)), we have the McCormick relaxation (see, e.g., Petrik and Luss (2016))
1331
+ of (15) as:
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+ xi
1354
+ s,a ≤
1355
+
1356
+ a′∈A
1357
+ xi
1358
+ s,a′
1359
+ xi
1360
+ s,a ≤
1361
+ wi
1362
+ 1 − γ πs,a
1363
+ xi
1364
+ s,a ≥ 0
1365
+ xi
1366
+ s,a ≥
1367
+ wi
1368
+ 1 − γ (πs,a − 1) +
1369
+
1370
+ a′∈A
1371
+ xi
1372
+ s,a′
1373
+ for all i ∈ [N],(s,a) ∈ S × A. Our conclusion then follows from the fact that the McCormick
1374
+ relaxation is precise when π ∈ {0,1} (i.e., the extreme values of the interval [0,1]).
1375
+ Q.E.D.
1376
+ A.4.
1377
+ Proofs of Results in Section 6
1378
+ Proof of Proposition 5.
1379
+ By (11), it is sufficient to focus on solving ProjBℓΣ(·)(x). By eigenvalue
1380
+ decomposition, we have Σ = G⊤DG4 with D = diag(d1,··· ,dSA), thus we have:
1381
+ ProjBℓΣ(·)(x) = arg min 1
1382
+ 2 · ∥v − x∥2
1383
+ 2
1384
+ s.t.
1385
+ v⊤G⊤DGv ≤ 1
1386
+ v ∈ RSA.
1387
+ 4 The eigenvalue decomposition here is not counted in the time complexity of the bisection method (or the AD-LPMM
1388
+ algorithm), since this process is carried out for computing Σ1/2 in (8) (before we solve (8)).
1389
+
1390
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1391
+ 27
1392
+ By change of variable u = Gv and let b = Gx, it is sufficient to focus on the equivalent problem:
1393
+ arg min 1
1394
+ 2 · ∥u − b∥2
1395
+ 2
1396
+ s.t.
1397
+ u⊤Du ≤ 1
1398
+ u ∈ RSA,
1399
+ (16)
1400
+ where we can retrieve v⋆ = G⊤u⋆. The Lagrangian function of(16) (with the introduced dual
1401
+ variable ζ ∈ R+) is
1402
+ L(u;ζ) = 1
1403
+ 2 · ∥u − b∥2
1404
+ 2 + ζ(u⊤Du − 1).
1405
+ Since (16) is a convex optimization problem, the KKT condition is the sufficient condition for the
1406
+ optimality of the primal and dual solutions:
1407
+
1408
+
1409
+
1410
+
1411
+
1412
+
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+
1419
+
1420
+ u⊤Du ≤ 1
1421
+ ζ ≥ 0
1422
+ ζ(u⊤Du − 1) = 0
1423
+ ∇uL(u;ζ) = u − b + 2ζ · Du = 0,
1424
+ where for ζ = 0, we have
1425
+
1426
+
1427
+
1428
+ u⊤Du ≤ 1
1429
+ u − b = 0;
1430
+ while when ζ > 0, we have
1431
+
1432
+
1433
+
1434
+ u⊤Du = 1
1435
+ (I + 2ζ · D)u − b = 0.
1436
+ Therefore, if b⊤Db ≤ 1, we have u⋆ = b; if b⊤Db > 1, it is sufficient to solve the equation g(ζ) = 1
1437
+ where
1438
+ g(ζ) =
1439
+
1440
+ i∈[SA]
1441
+ dib2
1442
+ i
1443
+ (1 + 2ζdi)2 .
1444
+ The function g is monotonically decreasing function on [0,+∞) and limζ→+∞ g(ζ) = 0, thus we can
1445
+ apply the bisection method to search on the interval [0, ¯ζ] (where ¯ζ : g(¯ζ) ≤ 1 is the upper bound
1446
+ for the search which we provide in Lemma 2) to locate ζ⋆ and retrieve u⋆
1447
+ i = bi/(1+2ζ⋆di) ∀i ∈ [SA].
1448
+ The pseudocode is provided in Algorithm 2.
1449
+ The time complexity of solving Py(x,ξ;c) is dominated by the bisection method, which has
1450
+ time complexity O(log(1/δ′)). Our conclusion follows from the fact that the computation in each
1451
+ iteraion of the bisection takes time O(SA).
1452
+ Q.E.D.
1453
+ Lemma 2. The inequality g(ζ) ≤ 1 holds for all ζ ≥ (1/(2di′′))(bi′√SAdi′ − 1), where i′ ∈
1454
+ arg maxi∈[SA] dib2
1455
+ i and i′′ ∈ arg mini∈[SA] di
1456
+
1457
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1458
+ 28
1459
+ Algorithm 2: Bisection for Problem (16)
1460
+ Input: Desired precision δ′, initial lower bound ζ ← 0 and upper bound ζ > 0
1461
+ if g(0) ≤ 1 then
1462
+ u ← b;
1463
+ end
1464
+ else
1465
+ while |ζ − ζ| ≥ δ′ do
1466
+ ζ ← 0.5(ζ + ζ);
1467
+ if
1468
+ g(ζ) >= 1 then
1469
+ ζ ← ζ;
1470
+ end
1471
+ else
1472
+ ζ ← ζ;
1473
+ end
1474
+ end
1475
+ for i = 1,··· ,SA do
1476
+ ui = bi/(1 + 2ζdi);
1477
+ end
1478
+ end
1479
+ Output: Solution u
1480
+ Proof. Observe that,
1481
+ g(ζ) ≤
1482
+
1483
+ i∈[SA]
1484
+ di′b2
1485
+ i′
1486
+ (1 + 2ζdi)2
1487
+
1488
+ SAdi′b2
1489
+ i′
1490
+ (1+2ζdi′′)2 ,
1491
+ from which we have
1492
+ SAdi′b2
1493
+ i′
1494
+ (1 + 2ζdi′′)2 ≤ 1 ⇒ g(ζ) ≤ 1.
1495
+ Our conclusion thus follows by rearranging the terms of the inequality on the left-hand side.
1496
+ Q.E.D.
1497
+ By Lemma 2, one can choose ζ = (1/(2di′′))(bi′√SAdi′ − 1), where i′ ∈ arg maxi∈[SA] dib2
1498
+ i and
1499
+ i′′ ∈ arg mini∈[SA] di for Algorithm 2.
1500
+ Proof of Proposition 6.
1501
+ Notice that, it is sufficient to solve the ith subproblem:
1502
+ arg min
1503
+ z≥0
1504
+ c
1505
+ 2z2 − (cxi + µi + ηi)z = max
1506
+
1507
+ 0, 1
1508
+ c(cxi + µi + ηi)
1509
+
1510
+ for all i ∈ [SA], where our conclusion follows.
1511
+ Q.E.D.
1512
+
1513
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1514
+ 29
1515
+ Proof of Proposition 7.
1516
+ By the definition of Q(·,·), we have
1517
+ Px(y,z,λ,ξ,η;c,ν, ˆx)
1518
+ = arg min
1519
+ x
1520
+ αθ · ∥x∥2 + x⊤((E − γ · ¯P )⊤λ + ξ + η) + c
1521
+ 2 ·
1522
+ ��������
1523
+ (E − γ · ¯P )(x − ˆx) + (E − γ · ¯P )ˆx − p0
1524
+ x − ˆx + ˆx − y
1525
+ x − ˆx + ˆx − z
1526
+ ��������
1527
+ 2
1528
+ 2
1529
+ + 1
1530
+ 2 · ℓ2
1531
+ Q(c,ν)(x − ˆx)
1532
+ = arg min
1533
+ x
1534
+ αθ · ∥x∥2 + x⊤((E − γ · ¯P )⊤λ + ξ + η) + c
1535
+ 2 ·
1536
+ ��������
1537
+ (E − γ · ¯P )(x − ˆx)
1538
+ x − ˆx
1539
+ x − ˆx
1540
+ ��������
1541
+ 2
1542
+ 2
1543
+ +c · x⊤ �
1544
+ (E − γ · ¯P )⊤ �
1545
+ (E − γ · ¯P )ˆx − p0
1546
+
1547
+ + 2 · ˆx − y − z
1548
+
1549
+ + 1
1550
+ 2 · ℓ2
1551
+ Q(c,ν)(x − ˆx)
1552
+ = arg min
1553
+ x
1554
+ αθ
1555
+ cν · ∥x∥2 + x⊤w + 1
1556
+ 2 · ∥x − ˆx∥2
1557
+ 2
1558
+ = arg min
1559
+ x
1560
+ αθ
1561
+ cν · ∥x∥2 + 1
1562
+ 2 · ∥x − (ˆx − w)∥2
1563
+ 2
1564
+ =
1565
+
1566
+ 1 −
1567
+ αθ
1568
+
1569
+ max{∥w∥2, αθ
1570
+ cν }
1571
+
1572
+ · (ˆx − w)
1573
+ where
1574
+ we
1575
+ denote
1576
+ w
1577
+ =
1578
+ 1
1579
+
1580
+ ·
1581
+ ��
1582
+ E − γ · ¯P
1583
+ �⊤ λ + ξ + η
1584
+
1585
+ +
1586
+ 1
1587
+ ν
1588
+ ·
1589
+ ��
1590
+ E − γ · ¯P
1591
+ �⊤ ��
1592
+ E − γ · ¯P
1593
+ � ˆx − p0
1594
+
1595
+ + 2 · ˆx − y − z
1596
+
1597
+ , and the last equality holds by, e.g., exam-
1598
+ ple 6.1.9 in Beck (2017).
1599
+ The computation time is dominated by computing ∥w∥2, which is O(SA).
1600
+ Q.E.D.
1601
+ B.
1602
+ Evaluation of VaR and CVaR of Student’s t-Distribution
1603
+ The VaR of a Student’s t-distribution with threshold ε is in fact the lower-ε percentile of its
1604
+ probability density function (PDF), which can be looked up in table in, e.g., Hogg and Craig (1995)
1605
+ (under some common values of ε < 0.5). We provide the calculation of CVaR as follows (with degree
1606
+ of freedom δ > 1 and v := Pt-dist-VaRε(˜r) assumed known):
1607
+ Pt-dist-CVaRε(˜r) = 1
1608
+ ε ·
1609
+ Γ( δ+1
1610
+ 2
1611
+ )
1612
+ (πδ)
1613
+ 1
1614
+ 2 Γ( δ
1615
+ 2 )
1616
+ � v
1617
+ −∞
1618
+ r
1619
+ (1+ r2
1620
+ δ )
1621
+ δ+1
1622
+ 2 dr
1623
+ = 1
1624
+ ε ·
1625
+ δ
1626
+ 1
1627
+ 2 ·Γ( δ+1
1628
+ 2
1629
+ )
1630
+
1631
+ 1
1632
+ 2 Γ( δ
1633
+ 2 )
1634
+ � 1+ v2
1635
+ δ
1636
+ −∞
1637
+ u− k+1
1638
+ 2 du
1639
+ = −
1640
+ δ
1641
+ 1
1642
+ 2 ·Γ( δ+1
1643
+ 2
1644
+ )
1645
+ επ
1646
+ 1
1647
+ 2 (δ−1)Γ( δ
1648
+ 2 ) ·
1649
+
1650
+ 1 + v2
1651
+ δ
1652
+ �− k−1
1653
+ 2 ,
1654
+ where the first equality follows from the definition of the CVaR and the PDF of the t-distribution
1655
+ herein, the second equality holds by the technique of integration by substitution.
1656
+ C.
1657
+ Preliminaries on Elliptical Distributions
1658
+ The probability density distribution of an elliptical reference distribution P(µ,Σ,g) is given by
1659
+ f(r) = k · g
1660
+ �1
1661
+ 2(r − µ)⊤Σ−1(r − µ)
1662
+
1663
+ ,
1664
+
1665
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1666
+ 30
1667
+ where k is a positive normalization scalar, µ is a mean vector, Σ is a positive definite matrix and g
1668
+ is a generating function. Elliptical distribution is a broad family of distributions that includes for
1669
+ example, the multivariate normal distribution, multivariate t-distribution and multivariate logistic
1670
+ distribution, as special cases. One notable property of the elliptical distribution is the linearity: any
1671
+ linear combination of elliptically distributed random variables still follows an elliptical distribution.
1672
+ That is, for any random vector ˜r ∼ P(µ,Σ,g), it holds that ˜r⊤x ∼ P(µx,σ2x,g) with µx = µ⊤x and
1673
+ σx =
1674
+
1675
+ x⊤Σx. Indeed, we can express the combination as ˜r⊤x = µx + σx˜z, where ˜z ∼ P(0,1,g) is a
1676
+ standard elliptically distributed random variable whose probability density function and cumulative
1677
+ distribution function are φ(z) = k·g (z2/2) and Φ(x) =
1678
+ � x
1679
+ −∞ k·g(z2/2)dz, respectively. For a concrete
1680
+ example we take a closer look at a standard normal distribution, for which the normalization scalar
1681
+ and generating function are k = 1/
1682
+
1683
+ 2π and g(x) = exp(−x), respectively.
1684
+ D.
1685
+ Distributionally Optimistic MDPs
1686
+ In contrast to the robust model, sometimes the decision maker prefers exploration over exploitation
1687
+ if she would like to learn more information about the MDP. As such, we could instead adopt an
1688
+ optimistic counterpart where we focus on the best case, motivating the following distributionally
1689
+ optimistic MDP:
1690
+ ℓO(θ) = max
1691
+ x∈X
1692
+ sup
1693
+ P∈F(θ)
1694
+ EP[˜r⊤x].
1695
+ (17)
1696
+ In contrast to the robust case, here our decision depends instead on the best possible (expected)
1697
+ outcome, which exactly embodies optimism. We summarize the reformulation of (17) as follows.
1698
+ Proposition 8. The distributionally optimistic MDP (17) is equivalent to an optimization prob-
1699
+ lem
1700
+ ℓO(θ) = max
1701
+ x∈X EˆP[˜r⊤x] + θ∥x∥∗.
1702
+ Proof. It is sufficient to rewrite the objective of (17) as follows:
1703
+ sup
1704
+ P∈F(θ)
1705
+ EP[˜r⊤x] = − inf
1706
+ P∈F(θ)EP[−˜r⊤x] = −(EˆP[−˜r⊤x] − θ∥x∥∗) = EˆP[˜r⊤x] + θ∥x∥∗,
1707
+ where the second identity follows similar lines as in the proof of Proposition 1.
1708
+ Q.E.D.
1709
+ The reformulation in Proposition 8 is a reverse conic program that is, in general, non-convex.
1710
+ However, it can be recast as a mixed-integer linear program, provided that ∥ · ∥∗ is the commonly
1711
+ used L1-norm or L∞-norm. Such a mixed-integer linear program can be solved by the state-of-the-
1712
+ art approaches.
1713
+
1714
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1715
+ 31
1716
+ E.
1717
+ Distributionally Optimistic Chance-Constrained Model
1718
+ In a distributionally optimistic chance-constrained MDP model, where we focus on the best case
1719
+ that with high probability, the reward is no smaller than some lower bound that we maximize.
1720
+ Formally, the distributionally optimistic chance-constrained MDP model is formulated as follows:
1721
+ ℓDOCC(θ,ε) =
1722
+
1723
+
1724
+
1725
+
1726
+
1727
+
1728
+
1729
+
1730
+
1731
+ max y
1732
+ s.t.
1733
+ sup
1734
+ P∈F(θ)
1735
+ P[˜r⊤x ≥ y] ≥ 1 − ε
1736
+ x ∈ X, y ∈ R.
1737
+ (18)
1738
+ The optimistic chance-constrained model (18) is also equivalent to a nominal chance-constrained
1739
+ model, however, at a less risky level. Before formally establishing this argument, two lemmas are
1740
+ introduced as follows.
1741
+ Lemma 3. The worst (largest) probability of the random vector ˜r attaining a value in the set R,
1742
+ sup
1743
+ P∈F(θ)
1744
+ P[˜r ∈ R],
1745
+ (19)
1746
+ is equivalent to
1747
+ min
1748
+ λ≥0
1749
+
1750
+ λθ +
1751
+
1752
+ r∈RSA(λ · dist(r,R) − 1)−dˆPr
1753
+
1754
+ .
1755
+ Here, we use dist(r,R) = inf{∥r − ˆr∥ | ˆr ∈ R} to denote the distance from the vector r ∈ RSA to
1756
+ the set R ⊆ RSA.
1757
+ Proof. Using theorem 1 in Gao and Kleywegt (2016) or theorem 1 in Blanchet and Murthy (2019),
1758
+ the uncertainty quantification problem (19) is equal to
1759
+ min
1760
+ λ≥0
1761
+
1762
+ λθ −
1763
+
1764
+ r∈RSA
1765
+ inf
1766
+ w∈RSA{λ∥w − r∥ − I[w ∈ R]}dˆPr
1767
+
1768
+ ,
1769
+ (20)
1770
+ where I is the 0-1 indicator function. Consider the second term in the objective of the above
1771
+ minimization problem, we have
1772
+ inf
1773
+ w∈RSA{λ∥w − r∥ − I[w ∈ R]} = −(λ · dist(r,R) − 1)−.
1774
+ (21)
1775
+ Indeed, if r ∈ R (for which, dist(r,R) = 0), then by choosing w = v, it holds that
1776
+ inf
1777
+ w∈RSA{λ∥w − r∥ − I[w ∈ R]} = −1 = −(λ · dist(r,R) − 1);
1778
+ whereas if r /∈ R, then it holds that
1779
+ inf
1780
+ w∈RSA{λ∥w − r∥ − I[w ∈ R]} = min
1781
+
1782
+ inf
1783
+ w∈R{λ∥w − r∥ − 1}, inf
1784
+ w /∈Rλ∥w − r∥
1785
+
1786
+ = min
1787
+
1788
+ inf
1789
+ w∈R{λ∥w − r∥ − 1},0
1790
+
1791
+ = −(λ · dist(r,R) − 1)−.
1792
+ Plugging expression (21) into problem (20) gives the desired result, which, by proposition 3 in Gao
1793
+ and Kleywegt (2016), holds regardless of whether R is open or closed.
1794
+ Q.E.D.
1795
+
1796
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1797
+ 32
1798
+ Lemma 4. The distributionally optimistic chance constraint
1799
+ inf
1800
+ P∈F(θ)P[˜r ∈ R] ≤ ε
1801
+ (22)
1802
+ with a risk threshold ε ∈ (0,1) is satisfiable if and only if
1803
+ P-CVaRε[−dist(˜r, ¯R)] ≥ −
1804
+ θ
1805
+ 1 − ε,
1806
+ where ¯R = RSA \ R is the complement of the set of undesired events R.
1807
+ Proof. We first re-express (22) as
1808
+ sup
1809
+ P∈F(θ)
1810
+ P[˜r ∈ ¯R] ≥ 1 − ε.
1811
+ Using Lemma 3, the above constraint is equivalent to
1812
+ min
1813
+ λ≥0
1814
+
1815
+ λθ +
1816
+
1817
+ r∈RSA(λ · dist(r, ¯R) − 1)−dˆPr
1818
+
1819
+ ≥ 1 − ε.
1820
+ (23)
1821
+ The left-hand side problem can be presented by
1822
+ min
1823
+
1824
+ min
1825
+ λ>0
1826
+
1827
+ λθ +
1828
+
1829
+ r∈RSA(λ · dist(r, ¯R) − 1)−dˆPr
1830
+
1831
+ ,1
1832
+
1833
+ .
1834
+ Since 1 ≥ 1 − ε, the above re-expression implies that constraint (23) is equivalent to
1835
+ min
1836
+ λ>0
1837
+
1838
+ λθ +
1839
+
1840
+ r∈RSA(λ · dist(r, ¯R) − 1)−dˆPr
1841
+
1842
+ ≥ 1 − ε.
1843
+ Multiplying both sides by (λ(1 − ε))−1 > 0, we arrive at
1844
+ min
1845
+ τ<0
1846
+
1847
+ 1
1848
+ 1 − ε
1849
+
1850
+ r∈RSA(−dist(r, ¯R) − τ)+dˆPr + τ
1851
+
1852
+ ≥ −
1853
+ θ
1854
+ 1 − ε,
1855
+ which, together with the fact
1856
+ min
1857
+ τ≥0
1858
+
1859
+ 1
1860
+ 1 − ε
1861
+
1862
+ r∈RSA(−dist(r, ¯R) − τ)+dˆPr + τ
1863
+
1864
+ ≥ 0 ≥ −
1865
+ θ
1866
+ 1 − ε,
1867
+ is equivalent to
1868
+ min
1869
+ τ∈R
1870
+
1871
+ 1
1872
+ 1 − ε
1873
+
1874
+ r∈RSA(−dist(r, ¯R) − τ)+dˆPr + τ
1875
+
1876
+ ≥ −
1877
+ θ
1878
+ 1 − ε,
1879
+ where the left-hand side is essentially ˆP-CVaRε[−dist(˜r, ¯R)].
1880
+ Q.E.D.
1881
+ Now we are ready to establish the equivalence between the chance-constrained model and its
1882
+ optimistic counterpart (with an adjusted risk threshold).
1883
+ Lemma 5. Suppose in the Wasserstein ambiguity set (3), the reference distribution is an ellip-
1884
+ tical distribution ˆP = P(µ,Σ,g) and the Wasserstein distance is equipped with a Mahalanobis norm
1885
+ associated with the positive definite matrix Σ. The distributionally optimistic robust chance con-
1886
+ straint
1887
+ ∃ P ∈ F(θ) : P[˜r⊤x ≥ y] ≥ 1 − ε
1888
+ is satisfiable if and only if P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ¯ε, where ¯ε = 1 − Φ(η⋆) ≥ ε with η⋆ being the
1889
+ smallest η ≤ Φ−1(1 − ε) that satisfies η(Φ(η) − (1 − ε)) +
1890
+ � (Φ−1(1−ε))
1891
+ 2/2
1892
+ η2/2
1893
+ kg(z)dz ≤ θ.
1894
+
1895
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1896
+ 33
1897
+ Proof. We first look at the individual distributionally optimistic robust chance constraint
1898
+ ∃ P ∈ F(θ) : P[˜r⊤x ≥ y] ≥ 1 − ε
1899
+ for some generic coefficient vector x ∈ RSA. The above chance constraint is equivalent to
1900
+ sup
1901
+ P∈F(θ)
1902
+ P[˜r⊤x ≥ y] ≥ 1 − ε ⇐⇒
1903
+ sup
1904
+ P∈F(θ)
1905
+ P[˜r⊤x > y] ≥ 1 − ε ⇐⇒
1906
+ inf
1907
+ P∈F(θ)P[˜r⊤x ≤ y] ≤ ε,
1908
+ where for the first equivalence, by using proposition 3 in Gao and Kleywegt (2016) , it is indifferent
1909
+ to replace the strict inequality with a weak one. Exploring the definition of VaR, we note that
1910
+ inf
1911
+ P∈F(θ)P[˜r⊤x ≤ y] ≤ ε ⇐⇒ inf
1912
+ P∈F(θ)P-VaR1−ε[y − ˜r⊤x] ≤ 0.
1913
+ Hence, with the translation invariance of VaR, it is sufficient to show that
1914
+ inf
1915
+ P∈F(θ)P-VaR1−ε[−˜r⊤x] ≜ inf
1916
+ v∈R
1917
+
1918
+ v |
1919
+ inf
1920
+ P∈F(θ)P[−˜r⊤x > v] ≤ ε
1921
+
1922
+ .
1923
+ (24)
1924
+ By Lemma 4 and the assumption of Mahalanobis norm, we have
1925
+ inf
1926
+ P∈F(θ)P
1927
+
1928
+ −˜r⊤x > v
1929
+
1930
+ ≤ ε ⇐⇒ P(µ,Σ,g)-CVaRε[−dist(˜r, ¯R)] ≥ −
1931
+ θ
1932
+ 1 − ε
1933
+ ⇐⇒ −P(µ,Σ,g)-CVaRε[−(−˜r⊤x − v)+] ≤ θ∥x∥Σ−1
1934
+ 1 − ε
1935
+ ,
1936
+ where ¯R =
1937
+
1938
+ r | − r⊤x ≤ v
1939
+
1940
+ and we leverage the closed form solution
1941
+ dist(˜r, ¯R) =
1942
+
1943
+ −˜r⊤x − v
1944
+ �+ /∥x∥Σ−1;
1945
+ see, e.g., lemma 2 in Chen et al. (2018).
1946
+ Let PS = P(µ,Σ,g) for simplicity. By the property of elliptical distribution, for ˜r ∼ PS and any real
1947
+ vector x, we have −˜r⊤x ∼ P(µS,σ2
1948
+ S,g) = P(−µ⊤x,x⊤Σx,g). We denote its probability density function
1949
+ as
1950
+ h(z) = k
1951
+ σS
1952
+ · g
1953
+
1954
+ (z − µS)
1955
+ 2
1956
+ 2σ2
1957
+ S
1958
+
1959
+ .
1960
+ The left-hand side of the constraint can be further transformed as
1961
+ −PS-CVaRε[−(−˜r⊤x − v)+]
1962
+ = −EPS[−(−˜r⊤x − v)+ | − (−˜r⊤x − v)+ ≥ PS-VaRε[−(−˜r⊤x − v)+]]
1963
+ = −
1964
+ 1
1965
+ 1 − ε
1966
+ � sup{z|−(z−v)+≥PS-VaRε[−(−˜r⊤x−v)+]}
1967
+ −∞
1968
+ −(z − v)+h(z)dz
1969
+ =
1970
+ 1
1971
+ 1 − ε
1972
+ � sup{z|−(z−v)+≥PS-VaRε[−(−˜r⊤x−v)+]}
1973
+ v
1974
+ (z − v)h(z)dz
1975
+ =
1976
+ 1
1977
+ 1 − ε
1978
+ � PS-VaR1−ε[−˜r⊤x]
1979
+ v
1980
+ (z − v)h(z)dz,
1981
+
1982
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
1983
+ 34
1984
+ in which the last equality holds from
1985
+ sup{z | − (z − v)+ ≥ PS-VaRε[−(−˜r⊤x − v)+]}
1986
+ = sup{z | min{v − z,0} ≥ PS-VaRε[min{v + ˜r⊤x,0}]}
1987
+ = sup{z | min{−z,−v} ≥ PS-VaRε[min{˜r⊤x,−v}]}
1988
+ = sup{z | − z ≥ PS-VaRε[min{˜r⊤x,−v}]}
1989
+ = sup{z | z ≤ PS-VaR1−ε[max{−˜r⊤x,v}]}
1990
+ = sup{z | z ≤ PS-VaR1−ε[−˜r⊤x]}
1991
+ = PS-VaR1−ε[−˜r⊤x].
1992
+ Here, the second equality is due to the translation invariance of VaR, the third one follows from
1993
+ −v ≥ PS-VaRε[min{˜r⊤x,−v}], the fifth one is because that for any ε ∈ (0,1), the distributionally
1994
+ optimistic robust VaR satisfies
1995
+ v = inf
1996
+ P∈F(θ)P-VaR1−ε[−˜r⊤x] ≤ PS-VaR1−ε[−˜r⊤x],
1997
+ (25)
1998
+ thus the 1 − ε quantiles of −˜r⊤x and max{−˜r⊤x,v} coincide.
1999
+ Let us denote q1−ε = PS-VaR1−ε[−˜r⊤x], which, by its definition, satisfies
2000
+ q1−ε − µS
2001
+ σS
2002
+ = PS-VaR1−ε
2003
+ �−˜r⊤x − µS
2004
+ σS
2005
+
2006
+ = P0
2007
+ (0,1,g)-VaR1−ε[˜z] = Φ−1(1 − ε),
2008
+ Here, the first equality holds for the translation invariance and the positive homogeneity of VaR,
2009
+ while the last one follows from the definition of VaR under the standard elliptical distribution
2010
+ P(0,1,g).
2011
+ Following the last reformulation of the constraint, we further have
2012
+ 1
2013
+ 1 − ε
2014
+ � q1−ε
2015
+ v
2016
+ (z−v)h(z)dz =
2017
+ 1
2018
+ 1 − ε
2019
+ � q1−ε
2020
+ v
2021
+ z· k
2022
+ σS
2023
+ ·g
2024
+
2025
+ (z − µS)
2026
+ 2
2027
+ 2σ2
2028
+ S
2029
+
2030
+ dz−
2031
+ v
2032
+ 1 − ε
2033
+ � q1−ε
2034
+ v
2035
+ k
2036
+ σS
2037
+ ·g
2038
+
2039
+ (z − µS)
2040
+ 2
2041
+ 2σ2
2042
+ S
2043
+
2044
+ dz.
2045
+
2046
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2047
+ 35
2048
+ For its first component, we have
2049
+ 1
2050
+ 1 − ε
2051
+ � q1−ε
2052
+ v
2053
+ z · k
2054
+ σS
2055
+ · g
2056
+
2057
+ (z − µS)
2058
+ 2
2059
+ 2σ2
2060
+ S
2061
+
2062
+ dz
2063
+ =
2064
+ 1
2065
+ 1 − ε
2066
+ � q1−ε
2067
+ v
2068
+ z − µS
2069
+ σS
2070
+ · k · g
2071
+
2072
+ (z − µS)
2073
+ 2
2074
+ 2σ2
2075
+ S
2076
+
2077
+ dz +
2078
+ 1
2079
+ 1 − ε
2080
+ � q1−ε
2081
+ v
2082
+ µS
2083
+ σS
2084
+ · k · g
2085
+
2086
+ (z − µS)
2087
+ 2
2088
+ 2σ2
2089
+ S
2090
+
2091
+ dz
2092
+ =
2093
+ σS
2094
+ 1 − ε
2095
+ � q1−ε
2096
+ v
2097
+ z − µS
2098
+ σS
2099
+ · k · g
2100
+
2101
+ (z − µS)
2102
+ 2
2103
+ 2σ2
2104
+ S
2105
+
2106
+ d
2107
+ �z − µS
2108
+ σS
2109
+
2110
+ +
2111
+ µS
2112
+ 1 − ε
2113
+
2114
+ Φ
2115
+ �q1−ε − µS
2116
+ σS
2117
+
2118
+ − Φ
2119
+ �v − µS
2120
+ σS
2121
+ ��
2122
+ =
2123
+ σS
2124
+ 1 − ε
2125
+
2126
+ q1−ε−µS
2127
+ σS
2128
+ v−µS
2129
+ σS
2130
+ t · k · g
2131
+ �t2
2132
+ 2
2133
+
2134
+ d
2135
+ �z − µS
2136
+ σS
2137
+
2138
+ + µS
2139
+ 1 − ε
2140
+
2141
+ Φ
2142
+ �q1−ε − µS
2143
+ σS
2144
+
2145
+ − Φ
2146
+ �v − µS
2147
+ σS
2148
+ ��
2149
+ =
2150
+ σS
2151
+ 1 − ε
2152
+
2153
+ (q1−ε−µS)2
2154
+ 2σ2
2155
+ S
2156
+ (v−µS)2
2157
+ 2σ2
2158
+ S
2159
+ k · g(z)dz + µS
2160
+ 1 − ε
2161
+
2162
+ Φ
2163
+ �q1−ε − µS
2164
+ σS
2165
+
2166
+ − Φ
2167
+ �v − µS
2168
+ σS
2169
+ ��
2170
+ ,
2171
+ while for the second component, it holds that
2172
+ v
2173
+ 1 − ε
2174
+ � q1−ε
2175
+ v
2176
+ k
2177
+ σS
2178
+ · g
2179
+
2180
+ (z − µS)
2181
+ 2
2182
+ 2σ2
2183
+ S
2184
+
2185
+ dz =
2186
+ v
2187
+ 1 − ε
2188
+
2189
+ q1−ε−µS
2190
+ σS
2191
+ v−µS
2192
+ σS
2193
+ k · g
2194
+ �z2
2195
+ 2
2196
+
2197
+ dz
2198
+ =
2199
+ v
2200
+ 1 − ε
2201
+
2202
+ Φ
2203
+ �q1−ε − µS
2204
+ σS
2205
+
2206
+ − Φ
2207
+ �v − µS
2208
+ σS
2209
+ ��
2210
+ .
2211
+ Hence, combine the constraint with (25), we have the following equivalent expression for prob-
2212
+ lem (24):
2213
+ inf v
2214
+ s.t.
2215
+
2216
+ (q1−ε−µS)2
2217
+ 2σ2
2218
+ S
2219
+ (v−µS)2
2220
+ 2σ2
2221
+ S
2222
+ k · g(z)dz + µS − v
2223
+ σS
2224
+
2225
+ Φ
2226
+ �q1−ε − µS
2227
+ σS
2228
+
2229
+ − Φ
2230
+ �v − µS
2231
+ σS
2232
+ ��
2233
+ ≤ θ∥x∥Σ−1
2234
+ σS
2235
+ = θ
2236
+ v ≤ PS-VaR1−ε[−˜r⊤x]
2237
+ v ∈ R,
2238
+ where the equality follows from the definition of the Mahalanobis norm. Let η = (v − µS)/σS, the
2239
+ best-case VaR now becomes
2240
+ inf µS + σSη
2241
+ s.t.
2242
+ � (Φ−1(1−ε))2/2
2243
+ η2/2
2244
+ k · g(z)dz − η · (1 − ε − Φ(η)) ≤ θ
2245
+ η ≤ Φ−1(1 − ε)
2246
+ η ∈ R.
2247
+ (26)
2248
+ The function
2249
+ V (η) ≜
2250
+ � (Φ−1(1−ε))2/2
2251
+ η2/2
2252
+ k · g(z)dz − η · (1 − ε − Φ(η))
2253
+
2254
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2255
+ 36
2256
+ is monotonically decreasing on (−∞,Φ−1(1 − ε)) since for any η < Φ−1(1 − ε), it holds that
2257
+ V ′(η) = −η · k · g
2258
+ �η2
2259
+ 2
2260
+
2261
+ − (1 − ε) + Φ(η) + ηφ(η) = Φ(η) − (1 − ε) < 0.
2262
+ Thus problem (26) can be efficiently solved be a bisection algorithm and the optimal η⋆ as claimed
2263
+ can be obtained. Finally the result can be obtained as follows:
2264
+ ∃ P ∈ F(θ) : P[˜r⊤x ≥ y] ≥ 1 − ε ⇐⇒ −y ≥ σSη⋆ + µS
2265
+ ⇐⇒ −y − µS
2266
+ σS
2267
+ ≥ η⋆
2268
+ ⇐⇒ Φ
2269
+ �−y − µS
2270
+ σS
2271
+
2272
+ ≥ Φ(η⋆)
2273
+ ⇐⇒ P(µ,Σ,g)
2274
+ � ˜r⊤x − µS
2275
+ σS
2276
+ ≥ y − µS
2277
+ σS
2278
+
2279
+ ≥ 1 − ¯ε
2280
+ ⇐⇒ P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ¯ε.
2281
+ Q.E.D.
2282
+ With ¯ε in Lemma 5, we are now ready to derive a second-order cone reformulation of the
2283
+ distributionally optimistic chance-constrained model (18).
2284
+ Proposition 9. Suppose in the Wasserstein ambiguity set (3), the reference distribution is an
2285
+ elliptical distribution ˆP = P(µ,Σ,g) and the Wasserstein distance is equipped with a Mahalanobis
2286
+ norm associated with the positive definite matrix Σ. If the risk threshold satisfies ε ≤ ¯ε < 0.5, then
2287
+ the distributionally optimistic chance-constrained MDP (18) is equivalent to the second-order cone
2288
+ program
2289
+ ℓDOCC(θ,ε) = max
2290
+ x∈X µ⊤x − ∥Φ−1(1 − ¯ε)Σ1/2x∥2,
2291
+ where ¯ε = 1 − Φ(η⋆) ≥ ε with η⋆ being the smallest η ≤ Φ−1(1 − ε) that satisfies
2292
+ η(Φ(η) − (1 − ε)) +
2293
+ � (Φ−1(1−ε))
2294
+ 2/2
2295
+ η2/2
2296
+ kg(z)dz ≤ θ.
2297
+ Proof. By Lemma 5, the first constraint in (18) is equivalent to
2298
+ P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ¯ε,
2299
+ where ¯ε = 1 − Φ(η⋆) ≥ ε with η⋆ being the smallest η ≤ Φ−1(1 − ε) that satisfies
2300
+ η(Φ(η) − (1 − ε)) +
2301
+ � (Φ−1(1−ε))
2302
+ 2/2
2303
+ η2/2
2304
+ kg(z)dz ≤ θ,
2305
+ which can be further transformed as follows:
2306
+ P(µ,Σ,g)[˜r⊤x ≥ y] ≥ 1 − ¯ε ⇐⇒ Φ((µ⊤x − y)/
2307
+
2308
+ x⊤Σx) ≥ 1 − ¯ε
2309
+ ⇐⇒ µ⊤x − y ≥ Φ−1(1 − ¯ε)
2310
+
2311
+ x⊤Σx
2312
+ ⇐⇒ µ⊤x − y ≥ ∥Φ−1(1 − ¯ε)Σ1/2x∥2,
2313
+
2314
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2315
+ 37
2316
+ where the first equivalence holds by the linearity of elliptical distributions, the second one holds
2317
+ because of the non-decreasing cumulative distribution function Φ(·), and the third one holds as
2318
+ ¯ε < 0.5. Since the optimal value is achieved with y = µ⊤x − ∥Φ−1(1 − ¯ε)Σ1/2x∥2, plugging this
2319
+ equation in the objective of (18) then concludes our proof.
2320
+ Q.E.D.
2321
+ F.
2322
+ Additional Details on Robust MDPs
2323
+ As introduced in Delage and Mannor (2010), robust MDPs maximizes the total expected return
2324
+ considering the worst-case realization of the uncertain parameter within a predefined ambiguity
2325
+ set:
2326
+ max
2327
+ π∈Π
2328
+ min
2329
+ r0∈R,r1∈R,···E
2330
+ � ∞
2331
+
2332
+ t=0
2333
+ γtrt(st) | s0 ∝ p0,π
2334
+
2335
+ ,
2336
+ (27)
2337
+ where Π is the set of all the stationary randomized policies, rt and st are the reward and state at
2338
+ time stage t, respectively. As in Delage and Mannor (2010), we set R to be the 99% confidence
2339
+ ellipsoid of the random reward vector as the uncertainty set.
2340
+ G.
2341
+ Additional Details on BROIL
2342
+ Similar to our return-risk model, BROIL (Brown et al. 2020) also seeks a policy that maximizes
2343
+ the weighted average of the mean and percentile performances:
2344
+ max
2345
+ π∈Π λ · E
2346
+ � ∞
2347
+
2348
+ t=0
2349
+ γtrt(st) | s0 ∝ p0,π
2350
+
2351
+ + (1 − λ) · CVaRε
2352
+ � ∞
2353
+
2354
+ t=0
2355
+ γtrt(st) | s0 ∝ p0.π
2356
+
2357
+ ,
2358
+ (28)
2359
+ where λ ∈ [0,1] is the weight. Given R ∈ RSA×n as the matrix of (n) reward samples, BROIL can
2360
+ be expressed as a linear program as follows:
2361
+ max
2362
+ x∈X,y∈Rλ · 1
2363
+ ne⊤R⊤x + (1 − λ) ·
2364
+
2365
+ y − 1
2366
+ ε · 1
2367
+ ne⊤(y · e − R⊤x)
2368
+
2369
+ .
2370
+ Observe that, there are two major differences between BROIL and our return-risk model: first,
2371
+ BROIL use CVaR as its risk measure, while VaR is applied in our return-risk model; second, while
2372
+ distributionally robustness is considered in (both the mean and VaR of return in) our objective
2373
+ function, BROIL only computes the nominal mean and CVaR of the return.
2374
+ H.
2375
+ Additional Details and Results on the Experiments
2376
+ H.1.
2377
+ Additional Details of Parameter Selection
2378
+ We use cross validation for parameter selection in both the simulation and empirical studies.
2379
+ For DRMDPs (4), the candidate set for θ is {0,2,··· ,18}; for CC (2), the candidate set for ε
2380
+ is {iε′/5}i∈[5]; for RR (7), we select θ such that ε varies among {iε′/5}i∈[5], and we select α ∈
2381
+ {0,0.25,0.5,0.75,1}; for BROIL (28), we select λ × ε ∈ {0,0.25,0.5,0.75,1} × {0.05,0.1,0.15}; for
2382
+ RMDPs (27), as in Delage and Mannor (2010), we set R to be the 99% confidence ellipsoid of the
2383
+ random reward vector as the uncertainty set.
2384
+
2385
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2386
+ 38
2387
+ Figure 6
2388
+ A machine replacement problem with fixed Gaussian rewards.
2389
+ H.2.
2390
+ Additional Details of the Simulation Study
2391
+ We consider S = 10 states, A = 10 actions, a uniform initial state distribution, and a discount
2392
+ factor γ = 0.95. For each state s ∈ [S], the number of reachable next-state is ⌈log S⌉. We sample
2393
+ the true reward from a multivariate normal distribution N(µ′,Σ′), where for each k ∈ [SA], µ′
2394
+ k
2395
+ is generated as follows: first we sample a number (0 or 1) from a discrete uniform distribution in
2396
+ {0,1}. If the result is 0, we generate µ′
2397
+ k from the normal distribution N(50,100); otherwise we
2398
+ generate it from N(90,100). Standard deviations of rewards are generated in the same manner
2399
+ with another two normal distributions N(3,9) and N(18,9). Both standard deviations and means
2400
+ are trimmed to be non-negative after the above procedure. The correlation matrix of rewards
2401
+ is generated as follows: we first sample a matrix R ∈ RSA×SA with all its entries independently
2402
+ sampled in [0.25,1] uniformly, and then obtain our correlation matrix diag(d)V diag(d), where
2403
+ V = R⊤R and d = {di}i∈[SA] = {1/√Vii}i∈[SA].
2404
+ H.3.
2405
+ Additional Details of the Empirical Study
2406
+ In this experiment, each machine is subject to the same underlying MDP with a state set S = [S]
2407
+ with S = 50 and an action set with only two actions: repair the machine or not. The transition is
2408
+ deterministic and the discount factor is 0.8. The reward depends on both the current state and
2409
+ action, and all the rewards are independently and normally distributed. Figure 6 illustrates the
2410
+ true underlying distribution that generates the random rewards.
2411
+ H.4.
2412
+ Additional Results of the Simulation Study
2413
+ H.5.
2414
+ Additional Results of the Empirical Study
2415
+
2416
+ 130,1)
2417
+ N(-130,1)
2418
+ -130,1)
2419
+ N(-130,20)
2420
+ 2
2421
+ N(0,10)
2422
+ N(0,10
2423
+ N(0,10-4)
2424
+ V0.10
2425
+ - Repair
2426
+ N(-100,800)
2427
+ . Not RepairRuan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2428
+ 39
2429
+ 100
2430
+ 200
2431
+ 300
2432
+ 400
2433
+ 500
2434
+ Sample size
2435
+ 1500
2436
+ 1600
2437
+ 1700
2438
+ VaR ( '=0.05)
2439
+
2440
+ DRMDP
2441
+ CC
2442
+ RR
2443
+ BROIL
2444
+ RMDP
2445
+ 100
2446
+ 200
2447
+ 300
2448
+ 400
2449
+ 500
2450
+ Sample size
2451
+ 1550
2452
+ 1600
2453
+ 1650
2454
+ 1700
2455
+ 1750
2456
+ VaR ( '=0.1)
2457
+
2458
+ DRMDP
2459
+ CC
2460
+ RR
2461
+ BROIL
2462
+ RMDP
2463
+ Figure 7
2464
+ Simulation. Models DRMDP (4), CC (2), RR (7), RMDP and BROIL evaluated by VaR (risk thresh-
2465
+ old ε′ ∈ {5%,10%}). The upper and lower edges of the shaded areas are respectively the 95% and 5%
2466
+ percentiles of the 100 performances, while the solid lines are the medians.
2467
+ 100
2468
+ 200
2469
+ 300
2470
+ 400
2471
+ 500
2472
+ Sample size
2473
+ 15.5
2474
+ 15.0
2475
+ 14.5
2476
+ 14.0
2477
+ 13.5
2478
+ VaR ( '=0.05)
2479
+
2480
+ DRMDP
2481
+ CC
2482
+ RR
2483
+ BROIL
2484
+ RMDP
2485
+ 100
2486
+ 200
2487
+ 300
2488
+ 400
2489
+ 500
2490
+ Sample size
2491
+ 15.5
2492
+ 15.0
2493
+ 14.5
2494
+ 14.0
2495
+ 13.5
2496
+ VaR ( '=0.1)
2497
+
2498
+ DRMDP
2499
+ CC
2500
+ RR
2501
+ BROIL
2502
+ RMDP
2503
+ Figure 8
2504
+ Empirical. Models DRMDP (4), CC (2), RR (7), RMDP and BROIL evaluated by VaR (risk threshold ε′ ∈
2505
+ {5%,10%}). The upper and lower edges of the shaded areas are respectively the 95% and 5% percentiles
2506
+ of the 100 performances, while the solid lines are the medians.
2507
+ I.
2508
+ Related Works
2509
+ Table 2 summarizes literature that is related to our work. We remark that, compared to its related
2510
+ works in Table 2, our return-risk model is the only one that considers risk ambiguity, and we have
2511
+ also designed a fast first-order algorithm to obtain its solution, which enhance the practicality of
2512
+ our model for large-scale problems.
2513
+
2514
+ Ruan, Chen, Ho: Risk-Averse MDPs under Reward Ambiguity
2515
+ 40
2516
+ Table 2
2517
+ Related works.
2518
+ Paper
2519
+ Uncertainty
2520
+ Robustness
2521
+ Ambiguity set
2522
+ Risk measure Soft-robustness
2523
+ Delage and Mannor (2010)
2524
+ Rewards
2525
+ and
2526
+ transition kernel
2527
+ -
2528
+ -
2529
+ VaR
2530
+ No
2531
+ Xu and Mannor (2010)
2532
+ Rewards
2533
+ and
2534
+ transition kernel
2535
+ DRO
2536
+ Nested
2537
+ -
2538
+ No
2539
+ Yu and Xu (2015)
2540
+ Rewards
2541
+ and
2542
+ transition kernel
2543
+ DRO
2544
+ (General) Nested
2545
+ -
2546
+ No
2547
+ Brown et al. (2020)
2548
+ Rewards
2549
+ -
2550
+ -
2551
+ CVaR
2552
+ Yes
2553
+ Gilbert et al. (2017)
2554
+ Rewards
2555
+ -
2556
+ -
2557
+ VaR
2558
+ No
2559
+ Lobo et al. (2020)
2560
+ Transition kernel
2561
+ -
2562
+ -
2563
+ CVaR
2564
+ Yes
2565
+ Yang (2020)
2566
+ Transition kernel
2567
+ DRO
2568
+ Wasserstein
2569
+ -
2570
+ No
2571
+ This paper
2572
+ Rewards
2573
+ DRO
2574
+ Wasserstein
2575
+ VaR
2576
+ Yes
2577
+
GtAzT4oBgHgl3EQfHftK/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9AzT4oBgHgl3EQfU_x9/content/2301.01276v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2961027b5d983fb8fd9a405c057b38e15e2686f21ebe6902f925f704df755eb7
3
+ size 172712
H9AzT4oBgHgl3EQfU_x9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74a3d7dd9fc2249f1c93f7bb9d187e713d21bbfe772d9a858b0378e6ce02611f
3
+ size 2424877
H9AzT4oBgHgl3EQfU_x9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e44dd90602580b1dcee43bfe3ec1a31616a5f7ceed3ff919604903c028faa04
3
+ size 92004