jackkuo commited on
Commit
e95c00c
·
verified ·
1 Parent(s): edfa98e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +60 -0
  2. 09E5T4oBgHgl3EQfOw41/content/2301.05499v1.pdf +3 -0
  3. 09E5T4oBgHgl3EQfOw41/vector_store/index.faiss +3 -0
  4. 19A0T4oBgHgl3EQfMv_l/content/2301.02138v1.pdf +3 -0
  5. 19A0T4oBgHgl3EQfMv_l/vector_store/index.pkl +3 -0
  6. 2tE1T4oBgHgl3EQf5gWl/content/tmp_files/load_file.txt +0 -0
  7. 2tFRT4oBgHgl3EQfnjcF/vector_store/index.faiss +3 -0
  8. 39AyT4oBgHgl3EQfo_il/content/tmp_files/2301.00518v1.pdf.txt +1942 -0
  9. 39AyT4oBgHgl3EQfo_il/content/tmp_files/load_file.txt +0 -0
  10. 3NAyT4oBgHgl3EQf1vm8/vector_store/index.faiss +3 -0
  11. 3tFST4oBgHgl3EQfZDim/content/2301.13790v1.pdf +3 -0
  12. 3tFST4oBgHgl3EQfZDim/vector_store/index.pkl +3 -0
  13. 49E2T4oBgHgl3EQfOgYr/vector_store/index.faiss +3 -0
  14. 59E3T4oBgHgl3EQfpgot/vector_store/index.pkl +3 -0
  15. 5NE1T4oBgHgl3EQfBAIU/content/2301.02845v1.pdf +3 -0
  16. 5NE1T4oBgHgl3EQfBAIU/vector_store/index.pkl +3 -0
  17. 5NE4T4oBgHgl3EQfbwwx/content/tmp_files/2301.05076v1.pdf.txt +1754 -0
  18. 5NE4T4oBgHgl3EQfbwwx/content/tmp_files/load_file.txt +0 -0
  19. 5dE2T4oBgHgl3EQf6wiO/vector_store/index.faiss +3 -0
  20. 6NAyT4oBgHgl3EQf2fnD/content/tmp_files/2301.00753v1.pdf.txt +1236 -0
  21. 6NAyT4oBgHgl3EQf2fnD/content/tmp_files/load_file.txt +0 -0
  22. 6tAzT4oBgHgl3EQfgPwz/content/tmp_files/2301.01464v1.pdf.txt +1472 -0
  23. 6tAzT4oBgHgl3EQfgPwz/content/tmp_files/load_file.txt +0 -0
  24. 7NAzT4oBgHgl3EQf-f4D/content/tmp_files/2301.01933v1.pdf.txt +1373 -0
  25. 7NAzT4oBgHgl3EQf-f4D/content/tmp_files/load_file.txt +0 -0
  26. 7tAyT4oBgHgl3EQfQvZV/vector_store/index.pkl +3 -0
  27. 9dE4T4oBgHgl3EQf3Q3I/content/2301.05305v1.pdf +3 -0
  28. 9dE4T4oBgHgl3EQf3Q3I/vector_store/index.faiss +3 -0
  29. 9dE4T4oBgHgl3EQf3Q3I/vector_store/index.pkl +3 -0
  30. B9E1T4oBgHgl3EQfVwR_/content/tmp_files/2301.03106v1.pdf.txt +461 -0
  31. B9E1T4oBgHgl3EQfVwR_/content/tmp_files/load_file.txt +157 -0
  32. CNE3T4oBgHgl3EQfUQpw/content/tmp_files/2301.04449v1.pdf.txt +2398 -0
  33. CNE3T4oBgHgl3EQfUQpw/content/tmp_files/load_file.txt +0 -0
  34. CtFJT4oBgHgl3EQfAiym/content/tmp_files/2301.11421v1.pdf.txt +887 -0
  35. CtFJT4oBgHgl3EQfAiym/content/tmp_files/load_file.txt +0 -0
  36. D9E1T4oBgHgl3EQf-QZ6/content/2301.03566v1.pdf +3 -0
  37. D9E4T4oBgHgl3EQffA2Y/content/2301.05104v1.pdf +3 -0
  38. D9E4T4oBgHgl3EQffA2Y/vector_store/index.pkl +3 -0
  39. FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf +3 -0
  40. G9FJT4oBgHgl3EQfty2e/content/tmp_files/2301.11619v1.pdf.txt +1037 -0
  41. G9FJT4oBgHgl3EQfty2e/content/tmp_files/load_file.txt +0 -0
  42. G9FLT4oBgHgl3EQfHS_T/content/tmp_files/2301.11996v1.pdf.txt +2048 -0
  43. G9FLT4oBgHgl3EQfHS_T/content/tmp_files/load_file.txt +0 -0
  44. GtFKT4oBgHgl3EQfcC5D/content/tmp_files/2301.11814v1.pdf.txt +0 -0
  45. GtFKT4oBgHgl3EQfcC5D/content/tmp_files/load_file.txt +0 -0
  46. HdE2T4oBgHgl3EQf_Alo/content/2301.04244v1.pdf +3 -0
  47. HdE2T4oBgHgl3EQf_Alo/vector_store/index.faiss +3 -0
  48. HdE2T4oBgHgl3EQf_Alo/vector_store/index.pkl +3 -0
  49. HdFJT4oBgHgl3EQfuS10/content/2301.11621v1.pdf +3 -0
  50. HdFJT4oBgHgl3EQfuS10/vector_store/index.faiss +3 -0
.gitattributes CHANGED
@@ -4852,3 +4852,63 @@ r9E1T4oBgHgl3EQf3AWg/content/2301.03485v1.pdf filter=lfs diff=lfs merge=lfs -tex
4852
  5dE2T4oBgHgl3EQf6wiO/content/2301.04203v1.pdf filter=lfs diff=lfs merge=lfs -text
4853
  9tE1T4oBgHgl3EQfCQLF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4854
  H9FLT4oBgHgl3EQfIi9F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4852
  5dE2T4oBgHgl3EQf6wiO/content/2301.04203v1.pdf filter=lfs diff=lfs merge=lfs -text
4853
  9tE1T4oBgHgl3EQfCQLF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4854
  H9FLT4oBgHgl3EQfIi9F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4855
+ dNE1T4oBgHgl3EQfLQNc/content/2301.02974v1.pdf filter=lfs diff=lfs merge=lfs -text
4856
+ U9AzT4oBgHgl3EQfX_y1/content/2301.01328v1.pdf filter=lfs diff=lfs merge=lfs -text
4857
+ HdFJT4oBgHgl3EQfuS10/content/2301.11621v1.pdf filter=lfs diff=lfs merge=lfs -text
4858
+ 49E2T4oBgHgl3EQfOgYr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4859
+ kNAzT4oBgHgl3EQfbvwi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4860
+ iNAzT4oBgHgl3EQf4v5M/content/2301.01848v1.pdf filter=lfs diff=lfs merge=lfs -text
4861
+ gtE4T4oBgHgl3EQfrA2b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4862
+ fdAzT4oBgHgl3EQfof0X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4863
+ D9E1T4oBgHgl3EQf-QZ6/content/2301.03566v1.pdf filter=lfs diff=lfs merge=lfs -text
4864
+ LNAzT4oBgHgl3EQfkP3w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4865
+ OtE4T4oBgHgl3EQf9w7z/content/2301.05359v1.pdf filter=lfs diff=lfs merge=lfs -text
4866
+ mNE0T4oBgHgl3EQf8ALY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4867
+ idAzT4oBgHgl3EQf4v6P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4868
+ 3NAyT4oBgHgl3EQf1vm8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4869
+ kdAyT4oBgHgl3EQfyPmS/content/2301.00681v1.pdf filter=lfs diff=lfs merge=lfs -text
4870
+ M9E3T4oBgHgl3EQfBQnj/content/2301.04266v1.pdf filter=lfs diff=lfs merge=lfs -text
4871
+ kNAzT4oBgHgl3EQfbvwi/content/2301.01389v1.pdf filter=lfs diff=lfs merge=lfs -text
4872
+ r9E1T4oBgHgl3EQf3AWg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4873
+ HdE2T4oBgHgl3EQf_Alo/content/2301.04244v1.pdf filter=lfs diff=lfs merge=lfs -text
4874
+ b9E1T4oBgHgl3EQfxQXl/content/2301.03421v1.pdf filter=lfs diff=lfs merge=lfs -text
4875
+ M9E3T4oBgHgl3EQfBQnj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4876
+ N9AzT4oBgHgl3EQfzP7F/content/2301.01767v1.pdf filter=lfs diff=lfs merge=lfs -text
4877
+ vNE0T4oBgHgl3EQfbwA4/content/2301.02352v1.pdf filter=lfs diff=lfs merge=lfs -text
4878
+ iNAzT4oBgHgl3EQf4v5M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4879
+ otE2T4oBgHgl3EQf0Ahg/content/2301.04136v1.pdf filter=lfs diff=lfs merge=lfs -text
4880
+ HdFJT4oBgHgl3EQfuS10/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4881
+ HdE2T4oBgHgl3EQf_Alo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4882
+ XdAzT4oBgHgl3EQf1v7O/content/2301.01805v1.pdf filter=lfs diff=lfs merge=lfs -text
4883
+ qdE3T4oBgHgl3EQfMAmP/content/2301.04369v1.pdf filter=lfs diff=lfs merge=lfs -text
4884
+ S9FAT4oBgHgl3EQf2B5J/content/2301.08712v1.pdf filter=lfs diff=lfs merge=lfs -text
4885
+ utAyT4oBgHgl3EQfm_iM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4886
+ ZtE1T4oBgHgl3EQfcgT-/content/2301.03186v1.pdf filter=lfs diff=lfs merge=lfs -text
4887
+ stAzT4oBgHgl3EQfcvyC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4888
+ 19A0T4oBgHgl3EQfMv_l/content/2301.02138v1.pdf filter=lfs diff=lfs merge=lfs -text
4889
+ otE2T4oBgHgl3EQf0Ahg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4890
+ RtE3T4oBgHgl3EQfDQmV/content/2301.04285v1.pdf filter=lfs diff=lfs merge=lfs -text
4891
+ JdFQT4oBgHgl3EQfSDYI/content/2301.13288v1.pdf filter=lfs diff=lfs merge=lfs -text
4892
+ ONAzT4oBgHgl3EQfk_3j/content/2301.01542v1.pdf filter=lfs diff=lfs merge=lfs -text
4893
+ FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf filter=lfs diff=lfs merge=lfs -text
4894
+ vNE0T4oBgHgl3EQfbwA4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4895
+ wtE2T4oBgHgl3EQfgwev/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4896
+ LtE4T4oBgHgl3EQfJwyq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4897
+ 9dE4T4oBgHgl3EQf3Q3I/content/2301.05305v1.pdf filter=lfs diff=lfs merge=lfs -text
4898
+ 09E5T4oBgHgl3EQfOw41/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4899
+ 9dE4T4oBgHgl3EQf3Q3I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4900
+ 5NE1T4oBgHgl3EQfBAIU/content/2301.02845v1.pdf filter=lfs diff=lfs merge=lfs -text
4901
+ t9E3T4oBgHgl3EQf9wvz/content/2301.04820v1.pdf filter=lfs diff=lfs merge=lfs -text
4902
+ dNE1T4oBgHgl3EQfLQNc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4903
+ qdE3T4oBgHgl3EQfMAmP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4904
+ jNFKT4oBgHgl3EQfwS40/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4905
+ mNFST4oBgHgl3EQfKDg1/content/2301.13735v1.pdf filter=lfs diff=lfs merge=lfs -text
4906
+ JdFQT4oBgHgl3EQfSDYI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4907
+ 3tFST4oBgHgl3EQfZDim/content/2301.13790v1.pdf filter=lfs diff=lfs merge=lfs -text
4908
+ LtE4T4oBgHgl3EQfJwyq/content/2301.04924v1.pdf filter=lfs diff=lfs merge=lfs -text
4909
+ 09E5T4oBgHgl3EQfOw41/content/2301.05499v1.pdf filter=lfs diff=lfs merge=lfs -text
4910
+ RtE3T4oBgHgl3EQfDQmV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4911
+ StAzT4oBgHgl3EQfJPvm/content/2301.01078v1.pdf filter=lfs diff=lfs merge=lfs -text
4912
+ 2tFRT4oBgHgl3EQfnjcF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4913
+ 5dE2T4oBgHgl3EQf6wiO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4914
+ D9E4T4oBgHgl3EQffA2Y/content/2301.05104v1.pdf filter=lfs diff=lfs merge=lfs -text
09E5T4oBgHgl3EQfOw41/content/2301.05499v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2774888e9fcab2d9f4b23d463d95566f0c3caad843e64275a15e7c8fcf43ccaf
3
+ size 30046118
09E5T4oBgHgl3EQfOw41/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a067dcb17c8eb627eba209ebd555d2836a825cf9d8fb53ea542d66d6d7ef59d
3
+ size 2883629
19A0T4oBgHgl3EQfMv_l/content/2301.02138v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bbd32777afa376613f47656b5ade4df51f8e1a89fe5bdad4b9a09f8d5c75278
3
+ size 349035
19A0T4oBgHgl3EQfMv_l/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c33a65c90e681efd4866bf53d4a79a678a0dcb5fd9fc5d58b50d1d5a6a5681a
3
+ size 186362
2tE1T4oBgHgl3EQf5gWl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tFRT4oBgHgl3EQfnjcF/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3bac697e4210985764e27720c47d7c4222d0a7746a2e7e976907f9c6d00451
3
+ size 5898285
39AyT4oBgHgl3EQfo_il/content/tmp_files/2301.00518v1.pdf.txt ADDED
@@ -0,0 +1,1942 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00518v1 [math.NT] 2 Jan 2023
2
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER
3
+ GLOBAL FUNCTION FIELDS
4
+ KI-SENG TAN
5
+ Abstract. For an elliptic curve A defined over a global function field K of char-
6
+ acteristic p > 0, the p-Selmer group of the Frobenius twist A(p) of A tends to have
7
+ larger order than that of A. The aim of this note is to discuss this phenomenon.
8
+ 1. Introduction
9
+ For an elliptic curve A defined over a global function field K of characteristic
10
+ p > 0, the p-Selmer group of the Frobenius twist of A tends to have larger order
11
+ than that of A. The aim of this note is to discuss this phenomenon.
12
+ The Frobenius twist A(p) is the base change A ×K K of A over the absolute
13
+ Frobenius Frobp : K −→ K, x �→ xp.
14
+ 1.1. The main results. We assume that A/K is ordinary, having semi-stable re-
15
+ duction everywhere. Let ∆A/K denote the divisor of the global minimal discriminant
16
+ of A/K. Comparing the defining equation for both curves yields
17
+ ∆A(p)/K = p · ∆A/K.
18
+ (1)
19
+ Let Apν be the the kernel of the multiplication by pν on A and let
20
+ Selpν(A/K) ⊂ H1(K, Apν)
21
+ denote the pν-Selmer group of A/K. If p = 2, let ð′ be the set of places of K at
22
+ which A has non-split multiplicative reduction and has the group of components of
23
+ even order; otherwise, put ð′ = ∅. Let Sb denote the set of bad reduction places of
24
+ A/K. Write
25
+ Sb = ð′ ⊔ ð.
26
+ Let k = K(A(p)
27
+ p ( ¯Ks)) and let ð0 ⊂ ð be the subset of places splitting completely
28
+ over k. Let ℏ denote the p-rank of the subgroup of Hom(Gal(¯ks/k), Z/pZ) consisting
29
+ of homomorphisms unramified everywhere and locally trivial at every places of k
30
+ sitting over ð. Our main results are as follow. Let q denote the order of the constant
31
+ field of K.
32
+ Proposition 1. There exists an integer ǫ1, 2ℏ + 1 + |ð0| ≥ ǫ1 ≥ −|ð0|, such that
33
+ logp | Selp(A(p)/K)| = (p − 1) deg ∆A/K
34
+ 12
35
+ · logp q + ǫ1.
36
+ Acknowledgement: This research was supported in part by Ministry of Science and Technol-
37
+ ogy of Taiwan, MOST 109-2115-M-002-008-MY2. The author thanks F. Trihan for many valuable
38
+ suggestions especially for helping him with the proof of Lemma 3.1.1.
39
+ 1
40
+
41
+ 2
42
+ KI-SENG TAN
43
+ Proposition 2. There exists an integer ǫ2, 2ℏ + 1 + |ð0| ≥ ǫ2 ≥ −2ℏ − 3|ð0|, such
44
+ that for each positive integer ν,
45
+ logp | Selpν+1(A(p)/K)| = (p − 1) deg ∆A/K
46
+ 12
47
+ · logp q + logp | Selpν(A/K)| + ǫ2.
48
+ Note that
49
+ deg ∆A/K
50
+ 12
51
+ is a non-negative integer (see [LLTT16, §2.2.1]), it is zero, if
52
+ and only if A/K is isotrivial. Let Xp∞(A/K) denote the p-primary part of the
53
+ Tate-Shafarevich group of A/K, let Xdiv(A/K) be its p-divisible subgroup, and
54
+ denote the p-cotorsion
55
+ X(A/K) := Xp∞(A/K)/Xdiv(A/K) = Selp∞(A/K)/ Seldiv(A/K),
56
+ where Seldiv(A/K) is the p-divisible subgroup of Selp∞(A/K).
57
+ Let r denote the
58
+ Zp-co-rank of Seldiv(A/K).
59
+ If ν is greater than the exponents of X(A/K) and
60
+ X(A(p)/K), then
61
+ | Selpν(A/K)| = |X(A/K)| · prν and | Selpν+1(A(p)/K)| = |X(A(p)/K)| · pr(ν+1).
62
+ It follows from Proposition 2 that
63
+ logp |X(A(p)/K)| + r = (p − 1) deg ∆A/K
64
+ 12
65
+ · logp q + logp |X(A/K)| + ǫ2.
66
+ Such kind of formulae is suggested by the conjectured Birch and Swinnerton-Dyer
67
+ formulae (see [Ta66, Tan95]) for both A(p)/K and A/K.
68
+ Next, let L/K be a Zd
69
+ p-extension ramified only at a finite number of ordinary
70
+ places of A/K.
71
+ Write Γ := Gal(L/K) and ΛΓ := Zp[[Γ]].
72
+ Let Z be a finitely
73
+ generated torsion ΛΓ-module, so that there is an exact sequence
74
+ 0
75
+ � �m
76
+ i=1 ΛΓ/(pαi) ⊕ �n
77
+ j=1 ΛΓ/(η
78
+ βj
79
+ j )
80
+ � Z
81
+ � N
82
+ � 0,
83
+ (2)
84
+ where α1, ..., αm, β1, ..., βn are positive integers, η1, ..., ηn ∈ ΛΓ are irreducible, rela-
85
+ tively prime to p, and N is pseudo-null. Although the exact sequence is not canon-
86
+ ical, the modules �m
87
+ i=1 ΛΓ/(pαi) and �n
88
+ j=1 ΛΓ/(η
89
+ βj
90
+ j ) are uniquely determined by Z,
91
+ we call them the p part and the non-p part of Z, call pα1, ..., pαm the elementary
92
+ µ-invariants and m the µ-rank of Z. If Z is non-torsion, define the µ-rank to be ∞.
93
+ Consider the Pontryagin dual X, X(p) of Selp∞(A/L), Selp∞(A(p)/L). They are
94
+ finitely generated over ΛΓ (see [Tan14]). Put
95
+ ð1 := {v ∈ ð | v splits completely over kL}.
96
+ Proposition 3. The µ-rank of X(p) is at least
97
+ (p−1) deg ∆A/K
98
+ 12
99
+ · logp q − |ð1|.
100
+ If L contains K(∞)
101
+ p
102
+ , the constant Zp-extension over K, then X and X(p) are torsion
103
+ [OT09, Tan14], in this case |ð1| = 0.
104
+ Proposition 4. If L contains K(∞)
105
+ p
106
+ , then the µ-rank m of X(p) equals
107
+ (p−1) deg ∆A/K
108
+ 12
109
+ ·
110
+ logp q. Moreover, if pα1, ..., pαm, α1 ≥ · · · ≥ αm, are the elementary µ-invariants
111
+ of X(p), then those of X are pα1−1, ..., pαm′−1, where m′ is the greatest i such that
112
+ αi > 1.
113
+
114
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
115
+ 3
116
+ For a finite extension F/K, let wF denote the p-completion of the divisor class
117
+ group of of kF and for a Ze
118
+ p sub-extension M/K of L/K, put wM := lim
119
+ ←−K⊂F ⊂M wF,
120
+ which is finitely generated torsion over ΛGal(kM/k). Actually, by [Crw87], the char-
121
+ acteristic ideal of wM has a generator ΘM := lim
122
+ ←−F ΘF, where basically for each
123
+ F, ΘF ∈ Zp[Gal(kF/k)] is the Stickelberger element defined in [Ta84, §V.1.1], in
124
+ particular, we have
125
+ pL/M(ΘL) = ΘM · ∗,
126
+ (3)
127
+ where pL/M : ΛGal(Lk/k) −→ ΛGal(Mk/k) is the continuous Zp-algebra homomorphism
128
+ extending the quotient map Gal(Lk/k) −→ Gal(Mk/k) and ∗ ∈ ΛGal(Mk/k) is a
129
+ fudge factor not divisible by p.
130
+ For simplicity, we shall identify ΛGal(Mk/k) with ΛGal(M/K), and view ΘL, wL as
131
+ objects over ΛΓ. In the special case where L = K(∞)
132
+ p
133
+ , the module wL has trivial
134
+ µ-rank, hence ΘL is not divisible by p. To see this, let Y be the complete smooth
135
+ curve defined over the constant field of k, having k as its function field. For every
136
+ finite sub-extensions F/K of L/K, we have the exact sequence
137
+ 0
138
+ � w0
139
+ F
140
+ � wF
141
+ deg � Zp
142
+ � 0
143
+ and w0
144
+ F[p] is contained in the subgroup of p-division points of the Jacobian variety
145
+ of Y. Therefore, the order of w0
146
+ F[p] is bounded, and hence wL[p] = 0. In general,
147
+ (3) says that if L contains K(∞)
148
+ p
149
+ , then ΘL is not divisible by p. Also, in this case,
150
+ ð1 = ∅. Hence Proposition 4 is a special case of the following proposition.
151
+ Proposition 5. If ΘL is not divisible by p and ð1 = ∅, then the µ-rank m of
152
+ X(p) equals
153
+ (p−1) deg ∆A/K
154
+ 12
155
+ · logp q. Moreover, if pα1, ..., pαm, α1 ≥ · · · ≥ αm, are the
156
+ elementary µ-invariants of X(p), then those of X are pα1−1, ..., pαm′−1, where m′ is
157
+ the greatest i such that αi > 1.
158
+ Since the Frobenius and Verschiebung induce pseudo isomorphisms between the
159
+ non-p parts of X and X(p), the proposition implies the characteristic ideal of X(p)
160
+ is the q
161
+ (p−1) deg ∆A/K
162
+ 12
163
+ multiple of that of X. If L = K(∞)
164
+ p
165
+ , this is also a consequence of
166
+ the main theorem of [LLTT16].
167
+ 1.2. Notation. For a field F, let ¯F and ¯F s denote its algebraic closure and separable
168
+ closure, and denote GF = Gal( ¯F s/F). For a place v, let Ov, πv and Fv denote the
169
+ ring of integers, an uniformizer and the residue field. Write qv for |Fv|.
170
+ Let Sss denote the set of place v of K at which A has supersingular reduction.
171
+ For a set S of places of K and an algebraic extension F, let S(F) denote the set of
172
+ places of F sitting over S. For an endomorphism ϕ of an abelian group H, let H[ϕ]
173
+ denote the kernel. Use ∨ for Pontryagin dual, ∼ for pseudo isomorphism.
174
+ In this note we use flat or Galois cohomology. Let
175
+ F : A −→ A(p) and V : A(p) −→ A
176
+ be the Frobenius and the Verschiebung homomorphisms. We have the exact se-
177
+ quences
178
+
179
+ 4
180
+ KI-SENG TAN
181
+ 0
182
+ � Cp
183
+ � Ap
184
+ F
185
+ � E(p)
186
+ p
187
+ � 0,
188
+ (4)
189
+ as well as
190
+ 0
191
+ � E(p)
192
+ p
193
+ � A(p)
194
+ p
195
+ V
196
+ � Cp
197
+ � 0,
198
+ (5)
199
+ where Cp = ker F is connected and E(p)
200
+ p
201
+ = ker V, ´etale (see [LSc10]). For a field F
202
+ containing K, we have A(p)
203
+ p (F) = E(p)
204
+ p (F). In particular, k = K(E(p)
205
+ p ( ¯Ks)). Note
206
+ that for p = 2, k = K, because the non-trivial point of E(p)
207
+ p ( ¯Ks) is the only Galois
208
+ conjugate of itself.
209
+ 1.3. The proofs. The key ingredient in the proof of Proposition 1 is local, concern-
210
+ ing the kernel of the natural map H1(Kv, E(p)
211
+ p ) −→ H1(Kv, A(p)), especially when v
212
+ is a place of supersingular reduction. Lemma 2.2.1, Lemma 2.2.2 and Lemma 2.3.3
213
+ treat different types of reduction and provide us criteria, in terms of the the con-
214
+ ductor of the corresponding cyclic extension over kv, for determining if an element
215
+ of H1(Kv, E(p)
216
+ p ) is in such kernel.
217
+ With the local criteria available and with the help of global class field, in Propo-
218
+ sition 3.2.5, we determine the order of Sel(E(p)
219
+ p /K), the E(p)
220
+ p -part of Selp(A(p)/K).
221
+ In doing so, we find an interesting phenomena that the discrepancy between the
222
+ two discriminants as described in (1) is solely contributed by supersingular places
223
+ (see (27)). Next, in Proposition 3.2.6 we determine the order of Sel(Cp/K), the
224
+ Cp-part of Selp(A/K), by using the Poitou-Tate duality [Ces15]. Then Proposition
225
+ 1 is proved at the end of §3.2, as a consequence of the above two propositions.
226
+ Proposition 2 is proved in §3.3 by applying Cassels-Tate duality.
227
+ In §3.4, using a theorem of Monsky [Mon81], we establish a method of reducing
228
+ the proofs of Proposition 3, 5 to the d = 1 case. Since the method can be applied
229
+ to more general situations, we loosen the condition in that subsection by allowing
230
+ A to be an ordinary abelian variety defined over a global field K. The main result
231
+ is summarized in Lemma 3.4.4. As a consequence of this lemma and Proposition 1,
232
+ 2, the proofs of Proposition 3, 5 are given in the final subsection §3.5.
233
+ 2. Local fields
234
+ At each place v of K, we have the long exact sequence
235
+ · · ·
236
+ � A(p)(Kv)
237
+ V∗ � A(Kv)
238
+
239
+ � H1(Kv, E(p)
240
+ p )
241
+ jv
242
+ � H1(Kv, A(p))
243
+ � · · ·
244
+ (6)
245
+ derived from 0
246
+ � E(p)
247
+ p
248
+ j
249
+ � A(p)
250
+ V
251
+ � A
252
+ � 0 . The aim of this section is to
253
+ determine ker(jv) = coker(V∗). For a place w of k sitting over v, the abelian group
254
+ H1(kw, E(p)
255
+ p ) = Hom(Gkw, Z/pZ) = Hom(k∗
256
+ w/(k∗
257
+ w)p, Z/pZ),
258
+ (7)
259
+ so each ξ ∈ H1(kw, E(p)
260
+ p ) determines a degree p cyclic extension kw,ξ/kw.
261
+ Let ordv denote the valuation on ¯Kv having ordv(πv) = 1.
262
+
263
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
264
+ 5
265
+ 2.1. Frobenius and Verschiebung. Let F (resp. F (p)) denote the formal group
266
+ law associated to A (resp. A(p)) over Kv. Since A has semi-stable reduction, F is
267
+ stable under local field extensions. Let ¯A denote the reduction of A at v. For a
268
+ place w of an algebraic extension F of K, sitting over v, the pre-image Ao(Fw) of
269
+ 0 ∈ ¯A(Fw) under the reduction map A(Fw) −→ ¯A(Fw) is identified with F(mw) via
270
+ a bijection ι. Let ι(p) be the corresponding bijection associated to A(p)
271
+ o (Fw).
272
+ Let P ∈ Ov[[t]] be the unique power series fitting into the commutative diagram
273
+ F(mw)
274
+ Frobp �
275
+ ι
276
+
277
+ F (p)(mw)
278
+ P
279
+
280
+ ι(p)
281
+
282
+ F(mw)
283
+ ι
284
+
285
+ Ao(Fw)
286
+ F
287
+ � A(p)
288
+ o (Fw)
289
+ V
290
+ � Ao(Fw).
291
+ (8)
292
+ An element ξ ∈ mw satisfies P(ξ) = 0 if and only if ι(p)(ξ) ∈ E(p)
293
+ p (Fw) ∩ A(p)
294
+ o (Fw).
295
+ Suppose the formal group law of F (resp. F (p)) is given by the Ov-coefficient
296
+ power series f(X, Y ) (resp. f (p)(X, Y )).
297
+ If ti is a solution to P(t) = 0, then P(f (p)(t, ti)) = P(t), furthermore, since
298
+ A/Kv is ordinary, by [Sil86, §IV.7.2], P′(0) ̸= 0, and hence P′(ti) ̸= 0, too.
299
+ Lemma 2.1.1. We have P(t) = u(t) · P(t), where u(t) is a unit in Ov[[t]] and
300
+ P(t) is the associated distinguished polynomial. The polynomial P(t) is separable
301
+ with P(0) = 0. If v is a supersingular place, then deg P = p; if v is ordinary, then
302
+ P(t) = t.
303
+ Proof. The first assertion follows from the claim that πv does not divides P(t). For
304
+ ordinary v, because E(p)
305
+ p ( ¯Kv) ∩ A(p)
306
+ o ( ¯Kv) = {0}, we know that 0 is the only root of
307
+ P(t) in ¯Kv. This implies that the distinguished polynomial P(t) = t. For supersin-
308
+ gular v, the group E(p)
309
+ p ( ¯Kv) ∩ A(p)
310
+ o ( ¯Kv) ≃ Z/pZ, so deg P(t) = p, furthermore, since
311
+ P(ti) = 0 and P′(ti) ̸= 0, we have P(ti) = 0 and P ′(ti) ̸= 0.
312
+ To prove the claim, we first consider the case where v is a place of good reduction.
313
+ The formal group law associated to ¯A is given by ¯f(X, Y ) := f(X, Y ) (mod (πv)),
314
+ which has height 1 or 2, so
315
+ ¯
316
+ P := P (mod (πv)) is non-zero. This proves the claim.
317
+ For a multiplicative place v, we prove the claim by showing that the Verschiebung
318
+ gives rise to an isomorphism F (p)(mv) −→ F(mv). If v is a split-multiplicative place
319
+ and ˜Q is the local Tate period of A, then ˜Qp is the local Tate period of A(p) and
320
+ the Verschiebung is given by K∗
321
+ v/ ˜QpZ −→ K∗
322
+ v/ ˜QZ, induced from the identity map
323
+ on K∗
324
+ v. This implies F (p)(mv) −→ F(mv) is an isomorphism, and hence the claim
325
+ follows.
326
+ If v is non-split multiplicative, then A/Kv is the twist of a split multiplicative
327
+ elliptic curve B/Kv by the unramified quadratic extension Lw/Kv. Write Zv for the
328
+ kernel of the norm map NLw/Kv : O∗
329
+ w −→ O∗
330
+ v. Then F (p)(mv) −→ F(mv) is given
331
+ by the identity map Zv −→ Zv, so it is an isomorphism.
332
+
333
+
334
+ 6
335
+ KI-SENG TAN
336
+ 2.2. Ordinary places. The proof of Lemma 2.1.1 shows that if v is a split multi-
337
+ plicative place, then V∗ is given by K∗
338
+ v/ ˜QpZ −→ K∗
339
+ v/ ˜QZ, and hence surjective, so by
340
+ (6), ker(jv) = 0.
341
+ Lemma 2.2.1. Let v be a multiplicative place. Then ker(jv) = 0, unless v ∈ ð′, in
342
+ which case ker(jv) is of order 2 = p, consisting of ξ ∈ H1(Kv, E(p)
343
+ p ) with Kv,ξ/Kv
344
+ unramified.
345
+ Note that if p = 2, then k = K, so Kv,ξ is defined.
346
+ Proof. Suppose v is non-split multiplicative and let B/Kv and Lw/Kv be as in the
347
+ proof of Lemma 2.1.1. Because A/Lw is split-multiplicative, we have the injection
348
+ H1(Lw, E(p)
349
+ p ) −→ H1(Lw, A(p)), and hence
350
+ ker(jv) = ker(H1(Lw/Kv, E(p)
351
+ p (Lw)) −→ H1(Lw/Kv, A(p)(Lw))).
352
+ For p ̸= 2, we have H1(Lw/Kv, E(p)
353
+ p (Lw)) = 0, so ker(jv) = 0.
354
+ Denoting G =
355
+ Gal(Lw/Kv), we have the commutative diagram
356
+ H1(Lw/Kv, E(p)
357
+ p (Lw))
358
+
359
+
360
+
361
+ H1(Lw/Kv, A(p)(Lw))
362
+
363
+
364
+ Hom(G, Z/2Z)
365
+ � B(p)(Kv)/ NLw/Kv(B(p)(Lw)).
366
+ The non-trivial element of Hom(G, Z/2Z), sending the generator of G to the point of
367
+ B(p)(Kv) obtained by the Tate local period Qv of B/Kv, corresponds to an element
368
+ of ker(jv) if and only if Qv ∈ NLw/Kv(L∗
369
+ w), or equivalently ordv Qv is even.
370
+
371
+ Lemma 2.2.2. Suppose v is a good ordinary place and w is a place of k sitting over
372
+ v. Then ker(jw) is of order p, consisting of ξ ∈ H1(kw, E(p)
373
+ p ) with kw,ξ/kw unramified.
374
+ If Kv ̸= kw, then ker(jv) is trivial.
375
+ Proof. In view of the diagram (8), Lemma 2.1.1 says A(p)
376
+ o (kw)
377
+
378
+ V
379
+ � Ao(kw) . We
380
+ have to determine the cokernel of the induced ¯V : ¯A(p)(Fw) −→ ¯A(Fw). The Frobe-
381
+ nius ¯F identifies ¯A(p)(Fw) with ¯A(Fw) and under this, ¯V is identified with the mul-
382
+ tiplication by p. The cokernel in question is isomorphic to
383
+ ¯A(Fw)/p ¯A(Fw) ≃ ¯Ap(Fw) = ¯E(p)
384
+ p (Fw).
385
+ The snake lemma applied to the diagram
386
+ 0
387
+ � A(p)
388
+ o (kw)
389
+
390
+ V
391
+
392
+
393
+ A(p)(kw)
394
+
395
+ V
396
+
397
+ ¯A(p)(Fw)
398
+
399
+ ¯V
400
+
401
+ 0
402
+ 0
403
+ � Ao(kw)
404
+ � A(kw)
405
+ � ¯A(Fw)
406
+ � 0
407
+ implies that the reduction map E(p)
408
+ p (kw) −→ ¯E(p)
409
+ p (Fw) is an isomorphism, so ker(jw)
410
+ is of order p, and by [Mil06, §I.3.8], it is formed by all unramified ξ. If Kv ̸= kw,
411
+ then ¯E(p)
412
+ p (Fv) = E(p)
413
+ p (Kv) = 0, and a similar argument shows ker(jv) is trivial.
414
+
415
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
416
+ 7
417
+
418
+ 2.3. Supersingular places. Suppose v is supersingular. Choose a nonzero t1 ∈ mw
419
+ (in some Fw) with ι(p)(t1) ∈ E(p)
420
+ p (Fw). Let [u] denote the multiplication by u on A(p).
421
+ Because tu := ι(p)−1◦[u]◦ι(p)(t1) = ut1+higher terms, if p ∤ u, then ordv tu = ordv t1.
422
+ Denote
423
+ nv :=
424
+
425
+ i∈F∗p
426
+ ordv ti = (p − 1) ordv(tu), for (u, p) = 1.
427
+ (9)
428
+ Write
429
+ P(t) = tp + zp−1tp−1 + · + z1t,
430
+ with
431
+ ordv z1 = nv.
432
+ (10)
433
+ For s, t ∈ m write s ⊞ t for F (p)(s, t). Then ι(p)(s ⊞ t) = ι(p)(s) + ι(p)(t). Diagram
434
+ (8) shows that for a given b ∈ mv, if a0 ∈ mw is a root of P(t) − b = 0, then all
435
+ other roots equal au := a0 ⊞ tu = F (p)(a0, tu), u = 1, ..., p − 1. Let Q(t) be the
436
+ distinguished polynomial associated to P(t) − b, whose roots are also a0, ..., ap−1.
437
+ Since Q(0) = −b · ξ, for some ξ ∈ O∗
438
+ v,
439
+ p−1
440
+
441
+ u=0
442
+ ordv au = ordv b.
443
+ (11)
444
+ Since F (p)(X, 0) = F (p)(0, X) = X, we can write F (p)(X, Y ) = X + Y + XY ·
445
+ g(X, Y ). It follows that au = a0 + tu + higher terms. Hence
446
+ ordv(au − au′) =
447
+ nv
448
+ p − 1.
449
+ (12)
450
+ Lemma 2.3.1. For every b ∈ mv with ordv b > pnv
451
+ p−1, there exists an element a ∈ mv,
452
+ with ordv a >
453
+ nv
454
+ p−1, such that P(a) = b. Conversely, for a ∈ mv, with ordv a >
455
+ nv
456
+ p−1,
457
+ the element b = P(a) ∈ mv has ordv b = ordv a + nv > pnv
458
+ p−1.
459
+ Proof. If b ∈ mv and a0 is a solution to P(t) = b, with ordv(a0) >
460
+ nv
461
+ p−1, then by (12),
462
+ other solutions au have ordv au =
463
+ nv
464
+ p−1. Therefore, if a ∈ mv, with ordv a >
465
+ nv
466
+ p−1, and
467
+ b = P(a), then by (11), ordv b = ordv a + nv. Conversely, if b ∈ mv, ordv b > pnv
468
+ p−1,
469
+ by (11), there is a solution a to P(t) = b, such that ordv a >
470
+ nv
471
+ p−1. Comparing the
472
+ valuations, we deduce that a is the only Galois conjugate of itself, whence a ∈ mv.
473
+
474
+ Lemma 2.3.2. If v is a supersingular place of A/K, then the cokernel of
475
+ A(p)(Kv)
476
+ V∗ � A(Kv)
477
+ is of order pǫv · qnv
478
+ v , where if kv = Kv, ǫv = 1; otherwise, ǫ = 0.
479
+ Proof. Since ¯A(Fv) has order prime to p, by Diagram (8) we need to show the
480
+ cokernel of F (p)(mv)
481
+ P
482
+ � F(mv) has the desired order.
483
+
484
+ 8
485
+ KI-SENG TAN
486
+ Let β = [
487
+ 1
488
+ p−1nv]+1. Lemma 2.3.1 implies that P sends F (p)(mβ) onto F(mβ+nv).
489
+ Therefore, it is sufficient to check the co-kernel of the induced homomorphism
490
+ ¯
491
+ P : F (p)(m)/F (p)(mβ) −→ F(m)/F(mβ+nv).
492
+ Since the kernel of
493
+ ¯
494
+ P is of order pǫv, the proof is completed by counting.
495
+
496
+ Lemma 2.3.2 says
497
+ | ker(jv)| = pǫv · qnv
498
+ v .
499
+ (13)
500
+ Lemma 2.3.3. Let v be a place of K and w a place of k sitting over v. The group
501
+ ker(jw) consists of all ξ with kw,ξ/kw having conductor at most pnw
502
+ p−1.
503
+ Proof. An element ξ ∈ ker(jw) can be written as ∂x for some x ∈ A(kw). Since
504
+ ¯A(Fw) has order prime to p, we may choose x = ι(b) ∈ Ao(kw), for some b ∈ mw.
505
+ Let a0, ..., ap−1 be solutions to P(t) = b. Then all au are integral over Ow and
506
+ kw,ξ = kw(a0). It follows from (12) that if Disc is the discriminant of kw,ξ/kw, then
507
+ ordw(Disc) ≤ p · nw.
508
+ This implies the conductor of kw,ξ/kw is at most pnw
509
+ p−1. Classes ξ ∈ H1(kw, E(p)
510
+ p ) with
511
+ kw,ξ/kw unramified are in ker(jw) (see [Mil06, I.3.8]). They form a subgroup of order
512
+ p. By the local class field theory, ramified cyclic extensions of kw of degree p and
513
+ conductor at most m are characterized by the group Dm/Dp
514
+ m, Dm := O∗
515
+ w/1 + πm
516
+ w Ow.
517
+ In our case m = pnw
518
+ p−1 is an integer divisible by p (by (9), because each tu ∈ kw). Since
519
+ Ow = Fw[[πw]], the map
520
+ D m
521
+ p −→ Dp
522
+ m, x �→ xp,
523
+ is an bijection. Hence |Dm/Dp
524
+ m| = qm−1
525
+ w
526
+ · (qw − 1)/q
527
+ m
528
+ p −1
529
+ w
530
+ · (qw − 1) = qnw
531
+ w . In view of
532
+ (13), the proof is completed by counting.
533
+
534
+ The lemma actually says that by (7),
535
+ ker(jw) = Hom(k∗
536
+ w/(1 + π
537
+ pnw
538
+ p−1
539
+ w
540
+ Ow) · (k∗
541
+ w)p, Z/pZ).
542
+ (14)
543
+ 3. Global fields
544
+ Let X /Fq be the complete smooth curve having K as its function field. Let Xg,
545
+ Xgo denote the open sets consisting of places where A has good reduction, good
546
+ ordinary reduction respectively.
547
+ 3.1. Poitou-Tate duality. We first recall the following.
548
+ Lemma 3.1.1. Let f : B/K −→ B′/K be a given isogeny of elliptic curves having
549
+ good reductions at all v ∈ Xg and let f : B −→ B′ be the homomorphism extending f
550
+ to N´eron models over Xg. Then N := ker [f] is a finite flat group scheme over Xg.
551
+ Furthermore, if ˆ
552
+ N denotes the kernel of the homomorphism ˆf : B′ −→ B extending
553
+ the dual isogeny ˆf : B′ −→ B, then N and ˆ
554
+ N are Cartier dual to each other.
555
+ Note that the existence and the uniqueness of f and ˆf are due to the N´eron
556
+ mapping property, see [BLR90, §1.2].
557
+
558
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
559
+ 9
560
+ Proof. Since B/Xg is an abelian scheme, the morphism f is proper. It follows that
561
+ N /Xg is proper and quasi-finite, whence finite [EGA IV, part 4, 8.12.4] and flat
562
+ [Mil06, III.C.8]. The exact sequence
563
+ 0
564
+ � N
565
+ � B
566
+ f
567
+ � B′
568
+ � 0
569
+ together with the isomorphism (see [SGA 7I, VIII.7.1], [BBM82] or [Mil06, III.C.14])
570
+ B/Xg ≃ Ext 1
571
+ Xg(B, Gm)
572
+ induce the exact sequence
573
+ · · ·
574
+ � HomXg(B, Gm)
575
+ � HomXg(N , Gm)
576
+ � B′
577
+ ˆf
578
+ � B
579
+ � · · ·.
580
+ Here we apply the commutative diagram
581
+ Ext 1
582
+ Xg(B′, Gm)
583
+ f ∗
584
+ � Ext 1
585
+ Xg(B, Gm)
586
+ B′
587
+ ˆf
588
+ � B
589
+ that extends the already known diagram on the generic fibre. Then we check the
590
+ equality HomXg(B, Gm) = 0 fibre-wise by using the fact that over a field every
591
+ homomorphism from an abelian variety to Gm is trivial.
592
+
593
+ Let notation be as in Lemma 3.1.1 and let N denote the generic fibre of N . For
594
+ v ∈ Xg, we have (see [Mil06, §III.7])
595
+ H1(Ov, N )� �
596
+ � H1(Kv, N) .
597
+ (15)
598
+ Lemma 3.1.2. Let notation be as above. For v ∈ Xg, we have
599
+ H1(Ov, N ) = ker(H1(Kv, N) −→ H1(Kv, B)).
600
+ Proof. The lemma follows from the fact that H1(Ov, B) = 0 (see [Mil06, §III.2.1])
601
+ and the commutative diagram of exact sequences
602
+ B(Ov)
603
+ � B′(Ov)
604
+ � H1(Ov, N )
605
+
606
+ � �
607
+
608
+ H1(Ov, B)
609
+
610
+ B(Kv)
611
+ � B′(Kv)
612
+ � H1(Kv, N)
613
+ � H1(Kv, B).
614
+
615
+ Let U ⊂ X be an open subscheme. Define
616
+ S(N/U) := ker(H1(K, N) −→
617
+
618
+ v∈U
619
+ H1(Kv, B)).
620
+ Denote Sel(N/K) := S(N/X ), it is the kernel of
621
+ S(N/U)
622
+ � �
623
+ v̸∈U H1(Kv, B) .
624
+
625
+ 10
626
+ KI-SENG TAN
627
+ Let Q(N/U) denote the cokernel of the localization map
628
+ S(N/U)
629
+ LN/K
630
+ � �
631
+ v̸∈U H1(Kv, N) .
632
+ Lemma 3.1.3. If U ⊂ Xg, then H1(U, N ) = S(N/U).
633
+ Proof. Let V ⊂ U be an open affine subscheme. By the localization sequence [Mil06,
634
+ III.0.3(c)] and the computation at the beginning of [Mil06, III.7], we have the exact
635
+ sequence
636
+ 0
637
+ � H1(U, N )
638
+ � H1(V, N )
639
+ � �
640
+ v∈U\V H1(Kv, N)/ H1(Ov, N ).
641
+ [Gon09, Lemma 4.2] says the natural map H1(V, N ) −→ H1(K, N) is injective. The
642
+ exact sequence implies H1(U, N ) ⊂ S(N/U). By [Gon09, Lemma 2.3], an element
643
+ in S(N/U) can be obtained from H1(V, N ) for some V ⊂ U, and the exact sequence
644
+ implies it is in H1(U, N ).
645
+
646
+ For U ̸= X , apply the local duality [Mil06, §III.6.10] and consider the composition
647
+ S(Cp/U)� �
648
+ LCp/U
649
+ � �
650
+ v̸∈U H1(Kv, Cp)
651
+
652
+ � �
653
+ v̸∈U H1(Kv, E(p)
654
+ p )∨,
655
+ (16)
656
+ where the injectivity of LCp/U is due to [GoT12, Main Theorem].
657
+ Lemma 3.1.4. If U ⊂ Xg and U ̸= X , then under (16), the group S(Cp/U) is the
658
+ Pontryagin dual of Q(E(p)
659
+ p /U).
660
+ Proof. Extend F and V to F : A −→ A(p) and V : A(p) −→ A over Xg. Denote
661
+ Cp = ker(F) and E(p)
662
+ p
663
+ = ker(V).
664
+ They are Cartier dual to each other. By Lemma 3.1.3, we identify H1(U, Cp) with
665
+ S(Cp/U). Then the lemma follows from Poitou-Tate duality [Ces15, (5.1.2)].
666
+
667
+ In view of Lemma 3.1.2, the following lemme generalizes the fact that for any place
668
+ v ∈ Xg, the local duality identifies H1(Ov, Cp) ⊂ H1(Kv, Cp) with the annihilator of
669
+ H1(Ow, E(p)
670
+ p ) ⊂ H1(Kv, E(p)
671
+ p ) [Mil06, §III, Theorem 7.1].
672
+ Lemma 3.1.5. At each place v of K, under the duality H1(Kv, Cp) = H1(Kv, E(p)
673
+ p )∨
674
+ [Mil06, §III. Theorem 6.10], the kernel of j′
675
+ v : H1(Kv, Cp) −→ H1(Kv, A), as a
676
+ subgroup of H1(Kv, Cp), is exactly the annihilator of ker(jv) ⊂ H1(Kv, E(p)
677
+ p ).
678
+ We abbreviate the above as
679
+ ker(j′
680
+ v) = ker(jv)⊥.
681
+ (17)
682
+ Proof. Let ∂ denote the connecting homomorphism in the long exact sequence
683
+ · · ·
684
+ � A(Kv)
685
+ F
686
+ � A(p)(Kv)
687
+
688
+ � H1(Kv, Cp)
689
+ j′
690
+ v
691
+ � H1(Kv, A)
692
+ � · · · ,
693
+ (18)
694
+
695
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
696
+ 11
697
+ that, since p = F ◦ V, gives rise to the homomorphism ¯∂ in the diagram
698
+ A(p)(Kv)/p · A(p)(Kv)
699
+ ¯∂
700
+
701
+ � �
702
+ i
703
+
704
+ H1(Kv, Cp)
705
+ H1(Kv, A(p)
706
+ p )
707
+ V∗
708
+ � H1(Kv, Cp),
709
+ (19)
710
+ where the bottom left-arrow is due to (5) and the left down-arrow i is induced from
711
+ the long exact sequence
712
+ A(p)
713
+ p (Kv)
714
+ � A(p)(Kv)
715
+ [p] � A(p)(Kv)
716
+ � H1(Kv, A(p)
717
+ p )
718
+ � · · · .
719
+ We claim that the diagram (19) is commutative, so that the commutative diagram
720
+ H1(Kv, A(p)
721
+ p ) × H1(Kv, A(p)
722
+ p )
723
+ V∗
724
+
725
+ (−,−)v
726
+ � Q/Z
727
+ H1(Kv, Cp) × H1(Kv, E(p)
728
+ p )
729
+ jv
730
+
731
+ (−,−)v
732
+ � Q/Z,
733
+ where the left-arrows are local pairings, yields the commutative diagram (see [Mil06,
734
+ §III, Theorem 7.8])
735
+ A(p)(Kv) × H1(Kv, A(p))
736
+
737
+
738
+ (−,−)A(p)/Kv
739
+ � Q/Z
740
+ H1(Kv, Cp) × H1(Kv, E(p)
741
+ p )
742
+ jv
743
+
744
+ (−,−)v
745
+ � Q/Z.
746
+ This shows that ker(jv)⊥ = Im(∂v) = ker(j′
747
+ v). To prove the claim, we use ˇCech
748
+ cocycles (see [Mil80, §III.2.10]).
749
+ Let x ∈ A(p)(Kv) and denote ¯x its image in
750
+ A(p)(Kv)/p · A(p)(Kv). Let y ∈ A(p)(K′
751
+ w) = Hom(Spec(K′
752
+ w), A(p)) be a p-division
753
+ point of x over a finite extension K′
754
+ w. Let prl, l = 1, 2, be the projection
755
+ Spec(K′
756
+ w) ×Spec(Kv) Spec(K′
757
+ w) −→ Spec(K′
758
+ w)
759
+ to the l’th factor. Then ξ := y ◦ pr1 − y ◦ pr2 is a 1-cocycle representing the class
760
+ i(¯x). Let z = V(y) ∈ Hom(Spec(K′
761
+ w), A) so that F(z) = x. Then V ◦ ξ is a 1-cocycle
762
+ representing both ¯∂(¯x) and V∗(i(¯x)).
763
+
764
+ 3.2. The conductor. Recall that k = K(E(p)
765
+ p ( ¯Ks)) so that E(p)
766
+ p ( ¯Ks) = E(p)
767
+ p (k),
768
+ on which the action of the Galois group Φ := Gal(k/K) is given by an injective
769
+ character
770
+ c : Φ −→ F∗
771
+ p
772
+ such that x
773
+ g
774
+ = c(g) · x, for g ∈ Φ, x ∈ E(p)
775
+ p (k). Since the order of Φ is prime to p,
776
+ the Hochschild-Serre spectral sequence (see [Mil80, §II.2.21(a)]) yields
777
+ H1(K, E(p)
778
+ p )
779
+
780
+ � H1(k, E(p)
781
+ p )Φ
782
+ Hom(Gk, E(p)
783
+ p (k))Φ .
784
+ (20)
785
+
786
+ 12
787
+ KI-SENG TAN
788
+ For w ∈ Sss(k), let ι(p)(t1) be a non-zero element of E(p)
789
+ p (kw) as in §2.3. Put
790
+ Mw :=
791
+
792
+
793
+
794
+
795
+
796
+ (1 + tp
797
+ 1Ow) · (O∗
798
+ w)p,
799
+ if w ∈ Sss(k);
800
+ k∗
801
+ w,
802
+ if w ∈ ð(k);
803
+ O∗
804
+ w,
805
+ otherwise.
806
+ Let A∗
807
+ k denote the group of ideles of k and W the p-completion of k∗\A∗
808
+ k/ �
809
+ w Mw.
810
+ Lemma 3.2.1. We have Sel(E(p)
811
+ p /k) = Hom(W , E(p)
812
+ p (k)).
813
+ Proof. By the global class field theory, Hom(W , E(p)
814
+ p (k)) ⊂ Hom(Gk, E(p)
815
+ p (k)) con-
816
+ sists of elements which are locally trivial at w ∈ ð(k), having conductors not greater
817
+ than ordw(tp
818
+ 1) at supersingular places w, unramified at others. The lemma follows
819
+ from Lemma 2.2.1, 2.2.2 and 2.3.3.
820
+
821
+ Every pro-p Φ-module Y can be decomposed as Y = �
822
+ χ∈ˆΦ Y χ, where for each χ,
823
+ Y χ denote the χ-eigenspace {y ∈ Y |
824
+ y
825
+ g
826
+ = χ(g) · y} . By (20) and Lemma 3.2.1,
827
+ Sel(E(p)
828
+ p /K) = Hom(W , E(p)
829
+ p (k))Φ = Hom(W c, Z/pZ).
830
+ (21)
831
+ For v ∈ Sss, put Wv := �
832
+ w|v k∗
833
+ w/((k∗
834
+ w)p · Mw), and Uv := �
835
+ w|v O∗
836
+ w/Mw regarded
837
+ as a subgroup of Wv.
838
+ Lemma 3.2.2. If v ∈ Sss, then |Uc
839
+ v| = qnv
840
+ v .
841
+ Proof. Again, by the Hochschild-Serre spectral sequence
842
+ H1(Kv, E(p)
843
+ p )
844
+
845
+ � (�
846
+ w|v H1(kw, E(p)
847
+ p ))Φ
848
+ (�
849
+ w|v Hom(Gkw, E(p)
850
+ p (k)))Φ.
851
+ (22)
852
+ Therefore, Lemma 2.3.3 implies ker(jv) ≃ Hom(W c
853
+ v, Z/pZ). Then the lemma follows
854
+ from (13), because if kw ̸= Kv, then W c
855
+ v = Uc
856
+ v; if kw = Kv, then we have the splitting
857
+ exact sequence
858
+ 0 −→ Uc
859
+ v −→ W c
860
+ v −→ Z/pZ −→ 0.
861
+
862
+ 3.2.1. An idelic computation. In this subsection only, we consider a general situation
863
+ in which for w ∈ Sss(k), the Mw in the previous subsection is replaced by
864
+ Mw := (1 + πav
865
+ w Ow) · (O∗
866
+ w)p,
867
+ where v is a place of K sitting below w and av is a chosen integer depending only on
868
+ v, and we keep Mw unchanged for other w. Denote a := (av)v∈Sss. Then let Wa be
869
+ the p-completion of k∗\A∗
870
+ k/ �
871
+ w Mw so that W = Wo, where o := (p · ordw tv)v∈Sss.
872
+ Put Ua := �
873
+ w∈Sss O∗
874
+ w/Mw, Wa := �
875
+ w∈Sss k∗
876
+ w/((k∗
877
+ w)p · Mw). Assume that
878
+ |Uc
879
+ a| =
880
+
881
+ v∈Sss
882
+ qρv
883
+ v .
884
+ (23)
885
+ Let ¯Uc
886
+ a denote the image of the natural map
887
+ ςc
888
+ a : Uc
889
+ a −→ W c
890
+ a .
891
+
892
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
893
+ 13
894
+ Let V be the group of ð(k)-units of k. Then ker(ςc) equals the image of
895
+ ̺c
896
+ a : (V/pV )c −→ Uc
897
+ a
898
+ induced by the localization map V −→ �
899
+ w∈Sss(k) O∗
900
+ w. The torsion part of V is finite
901
+ of order prime to p. The map V −→ �
902
+ v∈ð Rv, where Rv := �
903
+ w|v k∗
904
+ w/O∗
905
+ w, is injective
906
+ on the free part of V . The module Rv is fixed by the decomposition subgroup Φv
907
+ and is the regular representation of Φ/Φv. If k = K, the Zp-rank of (Zp ⊗Z V )c is
908
+ max{|ð0| − 1, 0}; otherwise it is |ð0|, so
909
+ | ker(ςc
910
+ a)| = | Im ̺c
911
+ a| ≤ p|ð0|.
912
+ (24)
913
+ If ð = ∅, letג denote the p-completion of the divisor class group of k; otherwise, let
914
+ ג be the ð(k)-class group. Then ℏ is the p-rank ofג. The exact sequence
915
+ 0
916
+ � ¯Uc
917
+ a
918
+ � W c
919
+ a
920
+ �גc
921
+ � 0
922
+ yields
923
+ 0
924
+ � ¯Uc
925
+ a
926
+ � W c
927
+ a [p]
928
+ κc �גc[p]
929
+ (25)
930
+ Put
931
+ τ :=
932
+
933
+ logp | Im(κc)| + 1,
934
+ if ð = ∅ and k = K;
935
+ logp | Im(κc)|,
936
+ otherwise.
937
+ (26)
938
+ Via (20), we identify H1(K, E(p)
939
+ p ) with Hom(Gk, E(p)
940
+ p (k))Φ, so that the conductor
941
+ of its element at each place v is defined. Let Xo ⊂ X be the complement of Sss.
942
+ Definition 3.2.3. Define Sela(E(p)
943
+ p /K) to be the subgroup of S(E(p)
944
+ p /Xo) consisting
945
+ of elements having conductors not greater than av at each v ∈ Sss.
946
+ Lemma 3.2.4. Assuming (23), we have
947
+ logp | Sela(E(p)
948
+ p /K)| =
949
+
950
+ v∈Sss
951
+ ρv · deg v + ˜ε1 − ˜ε2,
952
+ where ˜ε1 = τ ≤ ℏ + 1, ˜ε2 = logp | ker(ςc
953
+ a)| ≤ |ð0| ≤ |Sb|.
954
+ Proof. Similar to (21), Sela(E(p)
955
+ p /K) = Hom(W c
956
+ a , Z/pZ). We shall write Wa addi-
957
+ tively. If ð ̸= ∅ or k ̸= K, then W c
958
+ a is finite with |W c
959
+ a /pW c
960
+ a | = |W c
961
+ a [p]|; otherwise, W c
962
+ a
963
+ is finitely generated over Zp of rank 1, hence |W c
964
+ a /pW c
965
+ a | = p · |W c
966
+ a [p]|. The lemma
967
+ follows from (23), (24), (25) and (26).
968
+
969
+ Proposition 3.2.5. We have
970
+ logp | Sel(E(p)
971
+ p /K)| = (p − 1) deg ∆A/K
972
+ 12
973
+ · logp q + ˜ε1 − ˜ε2,
974
+ where ˜ε1 = τ ≤ ℏ + 1, ˜ε2 = logp | ker(ςc
975
+ o)| ≤ |ð0| ≤ |Sb|.
976
+ Proof. In view of (21), Lemma 3.2.2, and Lemma 3.2.4, we need to show that
977
+
978
+ v∈Sss
979
+ nv · deg v = (p − 1) deg ∆A/K
980
+ 12
981
+ .
982
+ (27)
983
+
984
+ 14
985
+ KI-SENG TAN
986
+ Let ω be an invariant differential of A/K and for each place v let ω0,v and ω(p)
987
+ 0,v be
988
+ respectively local N��eron differentials of A and A(p). By [Sil86, §IV. Corollary 4.3],
989
+ ordv(V∗ω0,v/ω(p)
990
+ 0,v) = ordv
991
+ dP(t)
992
+ dt
993
+ |t=0,
994
+ which together with Lemma 2.1.1 and (10) yield
995
+
996
+ v∈Sss
997
+ nv · deg v =
998
+
999
+ all v
1000
+ ordv(V∗ω0,v/ω(p)
1001
+ 0,v) · deg v.
1002
+ (28)
1003
+ Now the formula (8) in [Tan95] implies
1004
+ deg ∆A/K
1005
+ 12
1006
+ =
1007
+
1008
+ all v
1009
+ ordv( ω
1010
+ ω0,v
1011
+ ) · deg v =
1012
+
1013
+ all v
1014
+ ordv(V ∗( ω
1015
+ ω0,v
1016
+ )) · deg v,
1017
+ and
1018
+ p · deg ∆A/K
1019
+ 12
1020
+ = deg ∆A(p)/K
1021
+ 12
1022
+ =
1023
+
1024
+ all v
1025
+ ordv(V ∗ω
1026
+ ω(p)
1027
+ 0,v
1028
+ ) · deg v.
1029
+ These and (28) lead to the desired equality.
1030
+
1031
+ 3.2.2. Computing S(Cp/U). Next, we investigate S(Cp/U) for U = Xgo, Xg, or X .
1032
+ Let Sngo be the complement of Xgo in X , S′
1033
+ ngo := U ∩ Sngo, S′
1034
+ ss := U ∩ Sss, and † the
1035
+ complement of U in X . Write ‡ for † ∪ ð. We first treat the case in which Xgo ̸= X ,
1036
+ or equivalently, A/K is not isotrivial1. Put
1037
+ ¯W :=
1038
+
1039
+ w∈Sngo(k)
1040
+ k∗
1041
+ w/(k∗
1042
+ w)p
1043
+ and
1044
+ ¯
1045
+ W := k∗\A∗
1046
+ k/(
1047
+
1048
+ w∈Xgo(k)
1049
+ O∗
1050
+ w ×
1051
+
1052
+ w∈Sngo(k)
1053
+ (k∗)p).
1054
+ If ℓc and ℓc−1 denote the c and c−1 eigenspaces of the regular representation of Φ on
1055
+ Fp[Φ], then E(p)
1056
+ p (k) = ℓc. Hence
1057
+
1058
+ w∈Sngo(k)
1059
+ H1(kw, E(p)
1060
+ p ) = Hom( ¯W, ℓc) = Hom( ¯W ⊗Fp ℓc−1, Z/pZ) = ( ¯W ⊗Fp ℓc−1)∨,
1061
+ and
1062
+ S(E(p)
1063
+ p /Xgo × Spec k) = Hom( ¯
1064
+ W , ℓc) = (( ¯
1065
+ W c/p ¯
1066
+ W ) ⊗Fp ℓc−1)∨.
1067
+ In view of (16) and Lemma 3.1.4,
1068
+ S(Cp/Xgo × Spec k) = ker( ¯W −→
1069
+ ¯
1070
+ W /p ¯
1071
+ W ).
1072
+ Therefore, by the Hochschild-Serre spectral sequence again,
1073
+ S(Cp/Xgo) = S(Cp/Xgo × Spec k)Φ = ker( ¯W c −→
1074
+ ¯
1075
+ W c/p ¯
1076
+ W c).
1077
+ For each w, put
1078
+ Mw := Mw/Mw ∩ (k∗
1079
+ w)p = Mw · (k∗
1080
+ w)p/(k∗
1081
+ w)p.
1082
+ 1Recall that A/K is assumed to be ordinary, having semi-stable reduction everywhere.
1083
+
1084
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1085
+ 15
1086
+ Lemma 3.1.5 gives rise to the left block of the following commutative diagram
1087
+ H1(kw, Cp)
1088
+
1089
+ � H1(kw, E(p)
1090
+ p )∨
1091
+
1092
+ � Hom(k∗
1093
+ w/(k∗
1094
+ w)p, Z/pZ)∨
1095
+
1096
+ � k∗
1097
+ w/(k∗
1098
+ w)p
1099
+ ker(j′
1100
+ w)
1101
+
1102
+
1103
+ ��
1104
+
1105
+ ker(jw)⊥
1106
+
1107
+
1108
+ ��
1109
+
1110
+ Hom(k∗
1111
+ w/Mw · (k∗
1112
+ w)p, Z/pZ)⊥
1113
+
1114
+
1115
+ ��
1116
+
1117
+ M w.
1118
+ ��
1119
+
1120
+ The middle block is obtained by taking the dual of the commutative diagram
1121
+ H1(kw, E(p)
1122
+ p )
1123
+
1124
+ � Hom(k∗
1125
+ w/(k∗
1126
+ w)p, Zp/pZp)
1127
+ ker(jw)
1128
+ ��
1129
+
1130
+
1131
+ � Hom(k∗
1132
+ w/(k∗
1133
+ w)p · Mw, Zp/pZp),
1134
+ ��
1135
+
1136
+ (29)
1137
+ which is due to Lemma 2.3.3 together with the local class field theory (see (7) and
1138
+ (14)) while the right block is a direct consequence of duality.
1139
+ shows that if
1140
+ ¯
1141
+ M = �
1142
+ w∈†(k) k∗
1143
+ w/(k∗
1144
+ w)p × �
1145
+ w∈S′ngo(k) M w, then
1146
+ S(Cp/U) = ker(
1147
+ ¯
1148
+ M c −→
1149
+ ¯
1150
+ W c/p ¯
1151
+ W c).
1152
+ (30)
1153
+ To proceed further, we introduce
1154
+ ˜
1155
+ M =
1156
+
1157
+ w∈†(k)
1158
+ k∗
1159
+ w/(O∗
1160
+ p)p ×
1161
+
1162
+ w∈S′ngo(k)
1163
+ Mw · (O∗
1164
+ p)p/(O∗
1165
+ p)p
1166
+ and
1167
+ ˜
1168
+ W ; = k∗\A∗
1169
+ k/(
1170
+
1171
+ w∈Xgo(k)
1172
+ O∗
1173
+ w ×
1174
+
1175
+ w∈Sngo(k)
1176
+ (O∗
1177
+ w)p).
1178
+ Then
1179
+ ¯
1180
+ M =
1181
+ ˜
1182
+ M /p
1183
+ ˜
1184
+ M , and since the kernel of
1185
+ ˜
1186
+ W
1187
+ � �
1188
+ ¯
1189
+ W
1190
+ is inside p ˜
1191
+ W , we also have
1192
+ ¯
1193
+ W /p ¯
1194
+ W =
1195
+ ˜
1196
+ W /p ˜
1197
+ W . Hence (30) implies
1198
+ S(Cp/U) = ker(
1199
+ ˜
1200
+ M c/p
1201
+ ˜
1202
+ M c −→
1203
+ ˜
1204
+ W c/p ˜
1205
+ W c).
1206
+ (31)
1207
+ Let V and M denote the kernel and image of the natural map ˜ς :
1208
+ ˜
1209
+ M −→
1210
+ ˜
1211
+ W .
1212
+ Let ˜ξ ∈ V and let ξ be a lift of ˜ξ to �
1213
+ w∈†(k) k∗
1214
+ w × �
1215
+ w∈S′ngo(k) Mw · (O∗
1216
+ p)p. Then there
1217
+ are α ∈ k∗ and θ ∈ �
1218
+ w∈Xgo(k) O∗
1219
+ w × �
1220
+ w∈Sngo(k)(O∗
1221
+ w)p such that
1222
+ ξ = α · θ.
1223
+ (32)
1224
+ Let V‡ denote the group of ‡(k)-units of k. The equality (32) implies that α is in
1225
+ the subgroup V ′
1226
+ ‡ ⊂ V‡ consisting of those elements which are inside Mw · (O∗
1227
+ w)p, for
1228
+ all w ∈ S′
1229
+ ss(k). Suppose there is another expression ξ = α′ · θ′. Then α′α−1 actually
1230
+ belongs to the group F∗
1231
+ k of global units. Since Sngo = † ⊔ S′
1232
+ ngo, the correspondence
1233
+ ˜ξ ↔ α (mod F∗
1234
+ k) gives rise to an isomorphism
1235
+ V ≃ V ′
1236
+ ‡/F∗
1237
+ k.
1238
+ The exact sequence 0
1239
+ � V
1240
+
1241
+ ˜
1242
+ M
1243
+ � M
1244
+ � 0 induces the exact sequence
1245
+ ˜
1246
+ M [p]
1247
+ � M [p]
1248
+
1249
+ � V /pV
1250
+
1251
+ ˜
1252
+ M /p
1253
+ ˜
1254
+ M
1255
+ � M /pM
1256
+ � 0 .
1257
+
1258
+ 16
1259
+ KI-SENG TAN
1260
+ For an h ∈ M [p], let ˜η be one of its preimage in
1261
+ ˜
1262
+ M and let η be a lift of ˜η to
1263
+
1264
+ w∈†(k) k∗
1265
+ w × �
1266
+ w∈S′ngo(k) Mw · (O∗
1267
+ p)p. Put ξ = ηp, so that (32) holds for some α and
1268
+ θ, and ∂(h) is represented by α. In this case, since ξ is a p’th power, α ∈ (k∗
1269
+ w)p at
1270
+ all w ∈ Sngo(k), which is non-empty, so by the local Leopoldt’s conjecture [Kis93],
1271
+ α = βp, for some β ∈ V‡. Since pV‡ ⊂ V ′
1272
+ ‡, we conclude that
1273
+ ker(
1274
+ ˜
1275
+ M c/p
1276
+ ˜
1277
+ M c −→ M c/pM c) = (V ′
1278
+ ‡/pV‡)c.
1279
+ (33)
1280
+ Denote
1281
+ ℶ :=
1282
+ ˜
1283
+ W /M = k∗\A∗
1284
+ k/(
1285
+
1286
+ w∈Xgo(k)
1287
+ O∗
1288
+ w ×
1289
+
1290
+ w∈†(k)
1291
+ k∗
1292
+ w ×
1293
+
1294
+ w∈S′ngo(k)
1295
+ Mw · (O∗
1296
+ p)p.
1297
+ Then we have the exact sequence
1298
+ ˜
1299
+ W [p]
1300
+ � ℶ[p]
1301
+ � M /pM
1302
+
1303
+ ˜
1304
+ W /p ˜
1305
+ W .
1306
+ (34)
1307
+ If y ∈
1308
+ ˜
1309
+ W [p] is represented by an idele ζ = (ζw)w, then there are α ∈ k∗ and
1310
+ θ ∈ �
1311
+ w∈Xgo(k) O∗
1312
+ w · �
1313
+ w∈Sngo(k)(O∗
1314
+ w)p such that
1315
+ ζp = α · θ.
1316
+ Then at w ∈ Sngo(k), α ∈ (k∗
1317
+ w)p, so by the local Leopoldt’s conjecture again, α = βp,
1318
+ β ∈ k∗. Since y is also represented by ζ · β−1, we have the isomorphism
1319
+
1320
+ w∈Sngo(k) O∗
1321
+ w/(O∗
1322
+ w)p
1323
+
1324
+
1325
+ ˜
1326
+ W [p].
1327
+ Since theג equals the cokernel of �
1328
+ w∈Sngo(k) O∗
1329
+ w/(O∗
1330
+ w)p −→ ℶ, the above isomor-
1331
+ phism and (34) together imply
1332
+ ker(M c/pM c −→
1333
+ ˜
1334
+ W c/p ˜
1335
+ W c) = Im(ℶ[p]c −→ג[p]c) ⊂ג]p]c
1336
+ (35)
1337
+ We have ℏ =ג[p] and
1338
+ logp |(V ′
1339
+ ‡/p · V‡)c| ≤ logp |Zp ⊗Z V c
1340
+ ‡ /p · Zp ⊗Z V c
1341
+ ‡ | =
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+ 0,
1348
+ if ‡ = ∅;
1349
+ |‡0 − 1|,
1350
+ if ‡ ̸= ∅ and k = K;
1351
+ |‡0|,
1352
+ otherwise,
1353
+ so by (33) and (35),
1354
+ logp |S(Cp/U)| ≤ logp |(V ′
1355
+ ‡/p · V‡)c| + logp |גc[p]| ≤ |‡0| + ℏ.
1356
+ (36)
1357
+ Suppose A/K is isotrivial. Then Sb = Sss = ∅. If k ̸= K, choose a place v not
1358
+ spitting completely over k/K; otherwise, choose any v. Set ♮ := {v}. Let U be the
1359
+ complement of ♮. Put
1360
+ ¯W :=
1361
+
1362
+ w∈♮(k)
1363
+ k∗
1364
+ w/(k∗)p
1365
+ and denote
1366
+ ¯
1367
+ W := k∗\A∗
1368
+ k/(
1369
+
1370
+ w∈U(k)
1371
+ O∗
1372
+ w ·
1373
+
1374
+ w∈♮(k)
1375
+ (k∗)p),
1376
+
1377
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1378
+ 17
1379
+ so that H1(Kv, E(p)
1380
+ p ) = Hom( ¯W c, Z/pZ) and S(E(p)
1381
+ p /U) = Hom( ¯
1382
+ W c/p ¯
1383
+ W c, Z/pZ).
1384
+ Thus, in view of (16) and Lemma 3.1.4, if
1385
+ ¯
1386
+ M := �
1387
+ w∈♮(k) O∗
1388
+ w/(O∗
1389
+ w)p, then
1390
+ S(Cp/X ) = ker(
1391
+ ¯
1392
+ M c −→
1393
+ ¯
1394
+ W c/p ¯
1395
+ W c).
1396
+ The kernel of
1397
+ ¯
1398
+ M −→
1399
+ ¯
1400
+ W is in the image of V♮, the ♮(k)-units of k. Because of our
1401
+ choice, (Zp ⊗Z V♮)c = 0, and hence
1402
+ ¯
1403
+ M c −→
1404
+ ¯
1405
+ W c is injective.
1406
+ Similar to the previous case, the local Leopoldt’s conjecture at w ∈ ♮(k) implies
1407
+
1408
+ w∈♮(k) k∗
1409
+ w/(k∗
1410
+ w)p
1411
+ � �
1412
+ ¯
1413
+ W [p].
1414
+ Since (�
1415
+ w∈♮(k) k∗
1416
+ w/(k∗
1417
+ w)p)c = 0, we have
1418
+ ¯
1419
+ W [p] = 0. Now, ( ¯
1420
+ W /
1421
+ ¯
1422
+ M )[p] =ג[p], whereג
1423
+ is the divisor class group of k. It follows from the exact sequence
1424
+ ¯
1425
+ W c[p]
1426
+ �גc[p]
1427
+
1428
+ ¯
1429
+ M c
1430
+
1431
+ ¯
1432
+ W c/p ¯
1433
+ W c
1434
+ that
1435
+ |S(Cp/X )| = |גc[p]|.
1436
+ Thus, the following proposition is proved.
1437
+ Proposition 3.2.6. For U = Xgo, Xg, or X ,
1438
+ logp |S(Cp/U)| ≤ |‡0| + ℏ.
1439
+ In particular,
1440
+ logp | Sel(Cp/K)| ≤ |ð0| + ℏ.
1441
+ Proof of Proposition 1. The proposition is a consequence of Proposition 3.2.5 and
1442
+ Proposition 3.2.6, because we have the commutative diagram of exact sequences
1443
+ 0
1444
+ � Sel(E(p)
1445
+ p /K)
1446
+
1447
+ � �
1448
+
1449
+ Selp(A(p)/K)
1450
+
1451
+ � �
1452
+
1453
+ Sel(Cp/K)
1454
+ � �
1455
+
1456
+ Cp(K)
1457
+ � H1(K, E(p)
1458
+ p )
1459
+
1460
+
1461
+ H1(K, A(p)
1462
+ p )
1463
+ V∗
1464
+
1465
+
1466
+ H1(K, Cp)
1467
+
1468
+
1469
+ v H1(Kv, A(p))
1470
+
1471
+ v H1(Kv, A(p))
1472
+ V∗ � �
1473
+ v H1(Kv, A),
1474
+ where the middle long exact sequence is induced from (5).
1475
+
1476
+ 3.3. The Cassels-Tate duality. The Cassels-Tate pairing induces the perfect pair-
1477
+ ing (see [Mil06, III.9.5])
1478
+ ⟨−, −⟩A/K : X(A/K) × X(A/K) −→ Qp/Zp.
1479
+ If ϕ : A −→ B is an isogeny with dual isogeny ϕt, then the commutative diagram
1480
+ X(A/K) × X(A/K)
1481
+ ϕ♮
1482
+
1483
+ ⟨−,−⟩A/K
1484
+ � Qp/Zp
1485
+ X(B/K) × X(B/K)
1486
+ ϕt
1487
+
1488
+
1489
+ ⟨−,−⟩B/K
1490
+ � Qp/Zp
1491
+
1492
+ 18
1493
+ KI-SENG TAN
1494
+ yields the duality between X(A/K)/ ker(ϕ♮) and X(B/K)/ ker(ϕt
1495
+ ♮). In particular
1496
+ |(X(A/K)/ ker(ϕ♮))[pν]| = |(X(B/K)/ ker(ϕt
1497
+ ♮))[pν]|,
1498
+ (37)
1499
+ since |G/pνG| = |G[pν]| for a finite abelian group G.
1500
+ Proof of Proposition 2. Consider the exact sequence
1501
+ 0
1502
+ � ker(F♮)
1503
+ � X(A/K)[pν]
1504
+ � (X(A/K)/ ker(F♮))[pν]
1505
+ ·pν
1506
+ �✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
1507
+ ker(F♮) ∩ pνX(A/K)
1508
+ � 0,
1509
+ where the morphism ·pν is induced from the multiplication by pν. This implies
1510
+ logp |X(A/K)[pν]| = logp |(X(A/K)/ ker(F♮))[pν]| + δ1,
1511
+ (38)
1512
+ with logp | Sel(Cp/K)| ≥ logp | ker(F♮)| ≥ δ1 ≥ 0. Also, consider the exact sequence
1513
+ 0
1514
+ � ker(V♮)
1515
+ � (X(A(p)/K)/ ker(V♮))[pν]
1516
+ �❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
1517
+ (X(A(p)/K)/X(A(p)/K)[p])[pν]
1518
+ ·pν
1519
+ � T
1520
+ � 0,
1521
+ where T = (X(A(p)/K)[p]/ ker(V♮)) ∩ pν(X(A(p)/K)/ ker(V♮)). This together with
1522
+ (37) and (38) lead to
1523
+ logp |X(A/K)[pν]| = logp |(X(A(p)/K)/X(A(p)/K)[p])[pν]| + δ1 + δ2,
1524
+ (39)
1525
+ with
1526
+ logp | Sel(Cp/K)| ≥ logp | ker(F♮)| ≥ logp |V♮(X(A(p)/K)[p])| ≥ δ2 ≥ 0.
1527
+ Now
1528
+ (X(A(p)/K)/X(A(p)/K)[p])[pν] = X(A(p)/K)[pν+1]/X(A(p)/K)[p].
1529
+ Recall that r denote the co-rank of Seldiv(A/K) ≃ Seldiv(A(p)/K), so
1530
+ logp |X(A/K)[pν]| = logp | Selpν(A/K)| − rν,
1531
+ and a similar formula for A(p). Therefore,
1532
+ logp | Selpν(A/K)| = logp | Selpν+1(A(p)/K)| − logp | Selp(A(p)/K)| + δ1 + δ2.
1533
+ Then we apply Proposition 1 and Proposition 3.2.6.
1534
+
1535
+
1536
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1537
+ 19
1538
+ 3.4. The method of specialization. In this section only, we assume that A/K
1539
+ an ordinary abelian variety defined over a global field. As before, let L/K be a Zd
1540
+ p-
1541
+ extension unramified outside a finite set of places of K. Let Γ be the Galois group,
1542
+ ΛΓ the Iwasawa algebra.
1543
+ Endow lµ.. p∞ with the discrete topology and write ˆΓ for the group of all continuous
1544
+ characters Γ −→ lµ.
1545
+ . p∞. Let O be the ring of integers of Qp(lµ.
1546
+ . p∞). Every character
1547
+ χ ∈ ˆΓ extends to a unique continuous Zp-algebra homomorphism χ : ΛΓ −→ O.
1548
+ For g ∈ ΛΓ, not divisible by p, by Monsky [Mon81, Theorem 2.3], the set
1549
+ ∇g := {χ ∈ ˆΓ | χ(g) ∈ p · O}
1550
+ is either ∅ or is contained in T1∪· · ·∪Tn, where for each i, there are ζi,1, ..., ζi,νi ∈ lµ.
1551
+ . p∞,
1552
+ νi > 0, and σi,1, ..., σi,νi ∈ Γ, extendable to a Zp-basis of Γ, such that
1553
+ Ti := {χ ∈ ˆΓ | χ(σi,j) = ζi,j, for j = 1, ..., νi}.
1554
+ For an element ψ ∈ Γ, extendable to a Zp-basis of Γ, set
1555
+ Tψ := {χ ∈ ˆΓ | χ(ψ) = 1}.
1556
+ Then Tψ ⊂ Ti can not hold, unless νi = 1, ζi,1 = 1, and σi,1, ψ topologically generate
1557
+ the same closed subgroup of Γ, in such case, we actually have Tψ = Ti. Therefore,
1558
+ there are finitely many rank one Zp-submodules of Γ such that if ψ is chosen away
1559
+ from them, then
1560
+ Tψ ⊊ ∇g.
1561
+ (40)
1562
+ For a Ze
1563
+ p-subextension L′/K of L/K. Denote Γ′ = Gal(L′/K). The quotient map
1564
+ Γ −→ Γ′ extends uniquely to a continuous Zp-algebra homomorphism
1565
+ pL/L′ : ΛΓ −→ ΛΓ′.
1566
+ Write Ψ := Gal(L/L′) so that Γ′ = Γ/Ψ. Put IΨ := ker(pL/L′).
1567
+ Let b be a finite set of places of K. For a subextension M of L/K, let bM ⊂ b
1568
+ denote the subset consisting of places splitting completely over M.
1569
+ Lemma 3.4.1. Suppose d ≥ 2. Let Zℓ, ℓ = 1, .., s, be finitely generated torsion
1570
+ ΛΓ-modules, θ an element in ΛΓ, not divisible by p, and b a finite set of places of K.
1571
+ There is an element ψ ∈ Γ extendable to a Zp-basis such that if L′ is the fixed field of
1572
+ ψ, then bL′ = bL, pL/L′(θ) is not divisible by p, and each ΛΓ′-module Z′
1573
+ ℓ := Zℓ/IΨZℓ
1574
+ is torsion, having the same elementary µ-invariants as those of Zℓ over ΛΓ.
1575
+ Proof. For each v ∈ b with non-trivial decomposition subgroup Γv, if ψ ̸∈ Γv or Γv
1576
+ is of Zp-rank greater than one, then v does not split completely over L′. To have
1577
+ bL′ = bL, we only need to choose ψ away from all rank one Γv, v ∈ b.
1578
+ Similar to (2), we have
1579
+ 0
1580
+ � �mℓ
1581
+ i=1 ΛΓ/(pαℓ,i) ⊕ �nℓ
1582
+ j=1 ΛΓ/(η
1583
+ βℓ,j
1584
+ ℓ,j )
1585
+ � Zℓ
1586
+ � Nℓ
1587
+ � 0,
1588
+ (41)
1589
+
1590
+ 20
1591
+ KI-SENG TAN
1592
+ where Nℓ is pseudo-null and every ηℓ,j is not divisible by p. Choose for each ℓ, an
1593
+ annihilator hℓ ∈ ΛΓ of Nℓ, not divisible by p, and put
1594
+ g := θ ·
1595
+ s�
1596
+ ℓ=1
1597
+ hℓ · ηℓ,1 · · · · · ηℓ,nℓ.
1598
+ We also choose ψ satisfying (40). Since ˆΓ′ = Tψ, there exists χ ∈ ˆΓ′ such that
1599
+ χ(pL/L′(g)) ̸∈ p · O, so pL/L′(g) ̸∈ p · ΛΓ′. Because pα · gβ · Zℓ = 0, for some α, β ∈ Z,
1600
+ we have pα · pL/L′(gβ) · Z′
1601
+ ℓ = 0. Hence Z′
1602
+ ℓ is torsion over ΛΓ′.
1603
+ To compare the elementary µ-invariants of Zℓ and Z′
1604
+ ℓ, we apply the maps of
1605
+ multiplication by ψ−1 to (41) and use the snake lemma to obtain the exact sequence
1606
+ Nℓ[ψ − 1] −→
1607
+ mℓ
1608
+
1609
+ i=1
1610
+ ΛΓ′/(pαℓ,i) ⊕
1611
+ nℓ
1612
+
1613
+ j=1
1614
+ ΛΓ′/(pL/L′(ηℓ,j)βℓ,j) −→ Z′
1615
+ ℓ −→ Nℓ/IΨNℓ. (42)
1616
+ Because Nℓ[ψ − 1] is annihilated by pL/L′(g) which is relatively prime to p, the
1617
+ second arrow in the exact sequence is injective on �mℓ
1618
+ i=1 ΛΓ′/(pαℓ,i). We complete
1619
+ the proof by comparing the pth power factors of the characteristic ideals of items in
1620
+ the sequence.
1621
+
1622
+ In Lemma 3.4.1, the field L′ is a Zd−1
1623
+ p
1624
+ -extension of K. By repeatedly applying
1625
+ the lemma, we obtain sequences
1626
+ L ⊃ L′ ⊃ · · · ⊃ L(d−1),
1627
+ (43)
1628
+ and, for each ℓ,
1629
+ Zℓ −→ Z′
1630
+ ℓ −→ · · · −→ Z(d−1)
1631
+
1632
+ .
1633
+ (44)
1634
+ Put Ψ0 = Ψ, Ψi = Gal(L/L(i+1)), and Γ(i+1) = Gal(L(i+1)/K) = Γ/Ψi. Then L(d−1)
1635
+ is a Zp-extension of K with bL(d−1) = bL, pL/L(d−1)(θ) not divisible by p, and for each
1636
+ ℓ, the ΛΓ(d−1)-module Z(d−1)
1637
+
1638
+ = Zℓ/IΨd−2Zℓ has the same elementary µ-invariants as
1639
+ those of Zℓ over ΛΓ. These elementary µ-invariants pαℓ,1, ..., pαℓ,mℓ can be recovered
1640
+ by using the counting formula below. For each ν, define
1641
+ αℓ,i,ν = min{ν, αℓ,i}.
1642
+ Let σ ∈ Γ(d−1) be a topological generator and put x = σ − 1. Let Jν,n denote the
1643
+ ideal of ΛΓ(d−1) generated by pν and (x + 1)pn − 1.
1644
+ Lemma 3.4.2. Let the notation be as above. Then
1645
+ logp |Z(d−1)
1646
+
1647
+ /Jν,nZ(d−1)
1648
+
1649
+ | = pn ·
1650
+ mℓ
1651
+
1652
+ i=1
1653
+ αℓ,i,ν + O(1).
1654
+ Proof. Taking Z = Z(d−1)
1655
+
1656
+ /pνZ(d−1)
1657
+
1658
+ in (2), we deduce the following exact sequence,
1659
+ 0
1660
+ � �mℓ
1661
+ i=1 ΛΓ(d−1)/(pαℓ,i,ν)
1662
+ � Z(d−1)
1663
+
1664
+ /pνZ(d−1)
1665
+
1666
+ � Nℓ,ν
1667
+ � 0,
1668
+ (45)
1669
+
1670
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1671
+ 21
1672
+ where Nℓ,ν is finite, since the other two items are pseudo isomorphic. Write Rα for
1673
+ Zp/pαZp. The lemma is a consequence of the exact sequence induced from (45):
1674
+ N0[σpn − 1]
1675
+ � �mℓ
1676
+ i=1 Rαℓ,i,ν[x]/((x + 1)pn − 1)
1677
+ � Z(d−1)
1678
+
1679
+ /Jν,nZ(d−1)
1680
+
1681
+ �❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
1682
+ N0/(σpn − 1)N0.
1683
+
1684
+ To apply the above to dual Selmer groups, we need the following simplified control
1685
+ lemma. For K ⊂ F ⊂ L, consider the restriction maps
1686
+ res(ν)
1687
+ L/F : Selpν(A/F) −→ Selpν(A/L)Gal(L/F ).
1688
+ Let K(n) denote the nth layer of the Zp-extension L(d−1)/K. Let r denote the
1689
+ ramification locus of L/K, which is assumed to be finite.
1690
+ Lemma 3.4.3. Let L(d−1)/K be an intermediate Zp-extension of L/K. Suppose r
1691
+ contains only places where A has good ordinary reduction or multiplicative reduction,
1692
+ bL(d−1) = bL and b contains r as well as all places where A has bad reduction. For a
1693
+ given ν, the orders of ker(res(ν)
1694
+ L/K(n)) and coker(res(ν)
1695
+ L/K(n)) are bounded, as n varies.
1696
+ Proof. Let M = Apν(L) = Apν(K′) for some finite sub-extension K′/K of L/K.
1697
+ Write K′(n) for K(n)K′. [Tan10, Lemma 3.2.1] says that for i = 0, 1, 2,
1698
+ | Hi(L/K′(n), M)| ≤ |M|di.
1699
+ Since [K′(n) : K(n)] ≤ [K′ : K], by counting the number of co-chains, we deduce
1700
+ | Hi(K′(n)/K(n), M)| ≤ |M|[K′:K]i.
1701
+ This bounds | ker(res(ν)
1702
+ L/K(n))|. To bound | coker(res(ν)
1703
+ L/K(n))|, by the Hochschild-Serre
1704
+ spectral sequence, we need to bound (see the proof of [Tan10, Theorem 4])
1705
+ |
1706
+
1707
+ all v
1708
+
1709
+ w|v
1710
+ H1(Lw/K(n)
1711
+ w , A(Lw))[pν]|.
1712
+ Write H (ν)
1713
+ w
1714
+ for H1(Lw/K(n)
1715
+ w , A(Lw))[pν]. If v ̸∈ b, then H (ν)
1716
+ w
1717
+ = 0 [Mil06, I.3.8],
1718
+ for all w | v. Also, H (ν)
1719
+ w
1720
+ = 0, for all w sitting over bL, because K(n)
1721
+ w = Lw.
1722
+ Suppose v ∈ b but v ̸∈ bL = bL(d−1). The number of places of K(n) sitting over v
1723
+ is bounded as n varies. We need to bound the order of H (ν)
1724
+ w , for all w | v. If A has
1725
+ good ordinary reduction at v, by [Tan10, (3) and Theorem 2], the order of H (ν)
1726
+ w
1727
+ is
1728
+ bounded by p2ν(d+1) dim A. It is well-known (for instance, see the last two paragraphs
1729
+ of [Tan10]) that if A has split multiplicative reduction at v, the order of H (ν)
1730
+ w
1731
+ is
1732
+ bounded by pνd dim A. In general, if A has multiplicative reduction at v, then over
1733
+ some unramified extension K′
1734
+ v/Kv, the reduction of A becomes split multiplicative.
1735
+
1736
+ 22
1737
+ KI-SENG TAN
1738
+ Since H (ν)
1739
+ w
1740
+ ⊂ H1(LwK′
1741
+ v/Kv, A(LwK′
1742
+ v)), writing K′
1743
+ v, L′
1744
+ w for KvK′
1745
+ v, LwK′
1746
+ v, we end the
1747
+ proof by using the exact sequence
1748
+ H1(K′
1749
+ v/Kv, A(K′
1750
+ v))� �
1751
+ � H1(L′
1752
+ w/Kv, A(L′
1753
+ w))
1754
+ � H1(L′
1755
+ w/K′
1756
+ v, A(L′
1757
+ w))
1758
+ and the fact that the component group of A/K′
1759
+ v has p-rank bounded by dim A
1760
+ (see [BX96, Proposition 5.2]) so that by [Mil06, Proposition I.3.8] the order of
1761
+ H1(K′
1762
+ v/Kv, A(K′
1763
+ v)) is bounded.
1764
+
1765
+ Lemma 3.4.4. Let θ ∈ ΛΓ be an element not divisible by p. Let Aℓ, ℓ = 1, ..., s,
1766
+ be ordinary abelian varieties defined over K such that all Zℓ := Selp∞(Aℓ/L)∨ are
1767
+ torsion over ΛΓ and the ramification locus r contains only places where each Aℓ has
1768
+ either good ordinary reduction or multiplicative reduction. Let b be a finite set of
1769
+ places of K containing r and all places where some Aℓ has bad reduction. Assume
1770
+ that pαℓ,1, ..., pαℓ,mℓ are elementary µ-invariants of Zℓ. There exists an intermediate
1771
+ Zp-extension L(d−1)/K of L/K such that the following holds:
1772
+ (a) pL/L(d−1)(θ) ̸∈ pΛΓ(d−1), where Γ(d−1) = Gal(L(d−1)/K).
1773
+ (b) bL(d−1) = bL.
1774
+ (c) For each ℓ, the elementary µ-invariants of Selp∞(Aℓ/L(d−1))∨ over ΛΓ(d−1) are
1775
+ the same as those of Zℓ over ΛΓ.
1776
+ (d) In particular, if L/K is a Zp-extension and K(n) denote the nth layer, then
1777
+ logp | Selpν(Aℓ/K(n))| = pn ·
1778
+ mℓ
1779
+
1780
+ i=1
1781
+ αℓ,i,ν + O(1).
1782
+ (46)
1783
+ Proof. (a) and (b) are from Lemma 3.4.1. Observe that Z(d−1)
1784
+
1785
+ /Jν,nZ(d−1) is nothing
1786
+ but the Pontryagin dual of Selpν(Aℓ/L)Gal(L/K(n)), so by Lemma 3.4.2, 3.4.3, we have
1787
+ logp | Selpν(Aℓ/K(n))| = pn ·
1788
+ mℓ
1789
+
1790
+ i=1
1791
+ αℓ,i,ν + O(1).
1792
+ (47)
1793
+ In the situation of (d), L = L(d−1), and hence, (46) holds. To show (c), we assume
1794
+ that the elementary µ-invariants of Selp∞(Aℓ/L(d−1))∨ over ΛΓ(d−1) are pα′
1795
+ ℓ,1, ..., pα′
1796
+ ℓ,wℓ.
1797
+ Apply (d) to L(d−1)/K and obtain
1798
+ logp | Selpν(Aℓ/K(n))| = pn ·
1799
+ wℓ
1800
+
1801
+ i=1
1802
+ α′
1803
+ ℓ,i,ν + O(1),
1804
+ where, as before, α′
1805
+ ℓ,i,ν := min{α′
1806
+ ℓ,i, ν}. This and (47) leads to
1807
+ wℓ
1808
+
1809
+ i=1
1810
+ α′
1811
+ ℓ,i,ν =
1812
+ mℓ
1813
+
1814
+ i=1
1815
+ αℓ,i,ν,
1816
+ for all ν. We conclude that wℓ = mℓ and pα′
1817
+ ℓ,1, ..., pα′
1818
+ ℓ,wℓ are the same as pαℓ,1, ..., pαℓ,mℓ.
1819
+
1820
+
1821
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1822
+ 23
1823
+ 3.5. The elementary µ-invariants. In this section, we complete the proof of
1824
+ Proposition 3 and Proposition 5. For each Zp-subextension F/K of L/K, write
1825
+ Sb(F) = ð′
1826
+ F ⊔ ðF,
1827
+ where if p = 2, ð′
1828
+ F is the set of places at which A/K has non-split multiplicative
1829
+ reduction such that the group of components is of even order; if p ̸= 2, ð′
1830
+ F = ∅. For
1831
+ w ∈ Sb(F) sitting on v ∈ Sb, if w ∈ ð′
1832
+ F and v ∈ ð, or w ∈ ðF and v ∈ ð′, then
1833
+ Fw ̸= Kv, and hence there is only finitely many places of F sitting over v.
1834
+ Proof of Proposition 3. We apply Lemma 3.4.4, taking s = 1, Z1 = X(p), b = r ∪Sb.
1835
+ Let K(n) be the nth layer of L(d−1)/K. Since the degrees of k/K and K(n)/K are
1836
+ relatively prime, one see that a place v of K splits completely in k, if and only if
1837
+ all places of K(n) sitting over v split completely in kK(n), because both assertions
1838
+ are equivalent to that the decomposition subgroup Gal(kK(n)/K)v contains no non-
1839
+ trivial element in Gal(kK(n)/K(n)), and hence contained in Gal(kK(n)/k). Put
1840
+ ð0,n := {w ∈ ðK(n) | w splits completely over kK(n)}.
1841
+ Then, by the discussion at the beginning of this section,
1842
+ |ð0,n| = |ð0(K(n))| + O(1) = pn · |ð1| + O(1).
1843
+ If Fq(n) denote the constant field of K(n), then
1844
+ deg ∆A/K(n) · logp q(n) = pn · deg ∆A/K · logp q.
1845
+ Therefore, Lemma 3.4.4(d) and Proposition 1 say if m is the µ-rank of A(p)/L, then
1846
+ pn · m = logp | Selp(A(p)/K(n))| + O(1) ≥ pn · ((p − 1) deg ∆A/K
1847
+ 12
1848
+ · logp q − |ð1|) + O(1).
1849
+ This proves the proposition.
1850
+
1851
+ Proof of Proposition 5. Take s = 2, Z1 = X(p), Z2 = X, b = Sb ∪ r, θ = ΘL, , so
1852
+ that m = m1, and αi = α1,i, for i = 1, ..., m. By Lemma 3.4.4, bL(d−1) = bL = ∅ and
1853
+ ΘL(d−1) is not divisible by p. Thus, we may assume that d = 1.
1854
+ Let K(n) denote the nth layer of L/K.
1855
+ If L = K(∞)
1856
+ p
1857
+ , we have shown in §1.1
1858
+ that |wK(n)[p]| = O(1); otherwise, for n sufficiently large, L/K(n) is totally ramified
1859
+ at certain place, so that Hom(Gal(L/K(n)), Qp/Zp) ∩ Hom(wK(n), Qp/Zp) = {0}.
1860
+ Hence, Hom(wK(n), Qp/Zp) −→ Hom(wL, Qp/Zp) is injective, or equivalently, the
1861
+ map wL −→ wK(n) is surjective, for sufficiently large n. Since p ∤ ΘL, wL has trivial
1862
+ p-part, the order of wK(n)[p] must be bounded. The assumption says
1863
+ |Sb(K(n))| = O(1).
1864
+ Therefore, by Lemma 3.4.4(d) and Proposition 1, we obtain
1865
+ pn · m
1866
+ =
1867
+ pn · �m
1868
+ i=1 α1,i,1
1869
+ =
1870
+ logp | Selp(A(p)/K(n))| + O(1)
1871
+ =
1872
+ pn ·
1873
+ (p−1) deg ∆A/K
1874
+ 12
1875
+ · logp q + O(1),
1876
+
1877
+ 24
1878
+ KI-SENG TAN
1879
+ that proves the first assertion. Then Lemma 3.4.4(d) and Proposition 2 lead to
1880
+ pn · �m2
1881
+ i=1 α2,i,ν
1882
+ =
1883
+ logp | Selpν(A/K(n))| + O(1)
1884
+ =
1885
+ pn · (logp | Selpν+1(A(p)/K(n))| −
1886
+ (p−1) deg ∆A/K
1887
+ 12
1888
+ · logp q) + O(1)
1889
+ =
1890
+ pn · �m
1891
+ i=1(α1,i,ν+1 − 1) + O(1),
1892
+ which holds for every ν, so the proposition is proved.
1893
+
1894
+ References
1895
+ [BBM82] P. Berthelot, L. Breen, and W. Messing, Th´eorie de Dieudonn´e cristalline. II, Lecture
1896
+ Notes in Mathematics 930. Springer-Verlag, 1982.
1897
+ [BLR90] S. Bosch, W. L¨utkebohmert, and M. Raynaud, N´eron Models, Springer-Verlag Berlin
1898
+ Heidelberg, 1990.
1899
+ [BX96] S. Bosch, X. Xarles, Component group of N´eron Models via rigid uniformization, Math.
1900
+ Ann. 306 (1996), 459-486.
1901
+ [Ces15] K. ˇCesnaviˇcius, Poitou-Tate without the restriction on the order, Math. Res. Lett. 22
1902
+ (2015), no. 6, 1621-1666.
1903
+ [Crw87] R. Crew, L-functions of p-adic characters and geometric Iwasawa theory, Invent. Math.
1904
+ 88 (1987), 395-403.
1905
+ [Gon09] C.D. Gonz´alez-Avil´es, Arithmetic duality theorems for 1-motives over function fields. J.
1906
+ Reine Angew. Math. 632 (2009), 203-231.
1907
+ [GoT12] C.D. Gonz´alez-Avil´es, K.-S. Tan, On the Hasse Principle for finite group schemes over
1908
+ global function fields, Math. Res. Lett. 19 (2012), no. 02, 453-460.
1909
+ [EGA IV, part 4] A. Grothendieck and J. Dieudonn´e, El´ements de G´eom´etrie Alg´ebrique IV, Pul.
1910
+ Math. IHES 32 (1967).
1911
+ [SGA 7I] A. Grothendieck, Groupes de monodromie en G´eom´etrie Alg´ebrique. I. S´eminaire de
1912
+ G´eom´etrie Alg´ebrique du Bois-Marie 1967-1969 (SGA 7 I). Lecture Notes in Math. 288.
1913
+ Springer, Heidelberg 1972.
1914
+ [Kis93] H. Kisilevsky, Multiplicative independence in function fields, J. Number Theory 44 (1993)
1915
+ 352–355.
1916
+ [LLTT16] K.F. Lai, I. Longhi, K.-S. Tan and F. Trihan, On the Iwasawa main conjecture for
1917
+ semistable abelian varieties over function fields, Mathematische Zeitschrift 282 (2016), issue
1918
+ 1, 485-510.
1919
+ [LSc10] C. Liedtke, S. Schr¨oer, The N´eron model over the Igusa curves, J. Number Theory 130
1920
+ (2010), 2157-2197.
1921
+ [Mil80] J.S. Milne, ´Etale Cohomology, Princeton University Press, Princeton, 1980.
1922
+ [Mil06] J.S. Milne, Arithmetic duality theorems, Second Ed. (electronic version), 2006.
1923
+ [Mon81] P. Monsky, On p-adic power series. Math. Ann. 255 (1981), no. 2, 217–227.
1924
+ [OT09] T. Ochiai and F. Trihan, On the Iwasawa main conjecture of abelian varieties over function
1925
+ fields of characteristic p > 0, Math. Proc. Camb. Philos. Soc. 146 (2009), 23-43.
1926
+ [Sil86] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag, Berlin, 1986.
1927
+ [Tan95] K.-S. Tan, Refined theorems of the Birch and Swinnerton-Dyer type, Ann. Inst. Fourier,
1928
+ Grenoble 45 (1995), 317-374.
1929
+ [Tan10] K.-S. Tan, A generalized Mazur’s theorem and its applications, Trans. Amer. Math. Soc.
1930
+ 362 (2010), no. 8, 4433–4450.
1931
+ [Tan14] K.-S. Tan, Selmer groups over Zd
1932
+ p-extensions, Math. Ann. 359 (2014), 1025-1075.
1933
+ [Ta66] J. Tate, On the conjecture of Birch and swinnerton-Dyer and a geometric analogue,
1934
+ S´eminare Bourbaki no. 9 (1966), 415-440.
1935
+ [Ta84] J. Tate, Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0, (Birkhauser, Boston,
1936
+ 1984).
1937
+
1938
+ THE FROBENIUS TWISTS OF ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1939
+ 25
1940
+ Department of Mathematics, National Taiwan University, Taipei 10764, Taiwan
1941
+ Email address: tan@math.ntu.edu.tw
1942
+
39AyT4oBgHgl3EQfo_il/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NAyT4oBgHgl3EQf1vm8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c687f2840afe53b397142e5bdbe621328735f3dd06eba68e689dddbda35d7675
3
+ size 2228269
3tFST4oBgHgl3EQfZDim/content/2301.13790v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:005903ca37519106cb85ca1a42ee1069b9fc21946a089a59d7670d6cffaa2db6
3
+ size 549539
3tFST4oBgHgl3EQfZDim/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ecc0f6981d0aabc8846ef74d65cf6669eef1e577f4dc4708dc0105ca773c35
3
+ size 272635
49E2T4oBgHgl3EQfOgYr/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00df97f80cfa2e2d007817418475f9d201bba902cab9cd80c65c9e814c88bcdb
3
+ size 2293805
59E3T4oBgHgl3EQfpgot/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:570699580f0f9db815ecb546d22966d041a4660840644a10ab595eac790c6440
3
+ size 81587
5NE1T4oBgHgl3EQfBAIU/content/2301.02845v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43101deadad20ac2250f59e2d932a22c871cb168fc0e74bdbad92d687f3c5c47
3
+ size 1152034
5NE1T4oBgHgl3EQfBAIU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea78a5975cf2893107e18887ac4ab376c5629589f661b5680e0c88e56ba6614d
3
+ size 174676
5NE4T4oBgHgl3EQfbwwx/content/tmp_files/2301.05076v1.pdf.txt ADDED
@@ -0,0 +1,1754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05076v1 [math.SP] 12 Jan 2023
2
+ ROBUSTNESS OF FLAT BANDS ON THE PERTURBED KAGOME
3
+ AND THE PERTURBED SUPER-KAGOME LATTICE
4
+ JOACHIM KERNER, MATTHIAS T¨AUFER, AND JENS WINTERMAYR
5
+ Abstract. We study spectral properties of perturbed discrete Laplacians on two-dimen-
6
+ sional Archimedean tilings. The perturbation manifests itself in the introduction of non-
7
+ trivial edge weights. We focus on the two lattices on which the unperturbed Laplacian
8
+ exhibits flat bands, namely the (3.6)2 Kagome lattice and the (3.12)2 “Super-Kagome”
9
+ lattice. We characterize all possible choices for edge weights which lead to flat bands.
10
+ Furthermore, we discuss spectral consequences such as the emergence of new band gaps.
11
+ Among our main findings is that flat bands are robust under physically reasonable as-
12
+ sumptions on the perturbation and we completely describe the perturbation-spectrum
13
+ phase diagram. The two flat bands in the Super-Kagome lattice are shown to even ex-
14
+ hibit an “all-or-nothing” phenomenon in the sense that there is no perturbation which
15
+ can destroy only one flat band while preserving the other.
16
+ 1. Introduction
17
+ This paper is about discrete Schr¨odinger operators on Archimedean tilings, a class of
18
+ periodic two-dimensional lattices that were already investigated by Johannes Kepler in
19
+ 1619 [Kep19]. They are natural candidates for the geometry of two-dimensional nanoma-
20
+ terials and due to advances in this field, most prominently represented by graphene, they
21
+ have become increasingly a focus of attention.
22
+ Much work has been devoted to understanding physical properties of such (new) materi-
23
+ als [SYY22, TFGK22, dLFM19]. Most importantly, it can be expected that the underlying
24
+ geometry, that is the particular lattice, is a key feature determining physical properties
25
+ of the system. In fact, in particular in the mathematical physics literature, investiga-
26
+ tions of the connection between the geometry (or topology) of a system and the spectral
27
+ properties of the associated Hamiltonian have become ubiquitous. Classical examples in
28
+ this context are so-called quantum waveguides [EK15, Exn20, Exn22] as well as quantum
29
+ graphs [BK13, BE22]; see also [KP07] for a relatively recent reference relevant in our
30
+ context.
31
+ A closely related research direction is superconductivity: the existence of a boundary
32
+ leads to boundary states in a superconductor with a higher critical temperature than the
33
+ one of the bulk [SB20, SB21, HRS]. In this spirit, it seems very promising to also study
34
+ the interplay of geometry and many-particle phenomena on Archimedean tilings. Yet
35
+ another related investigation can be found in [JBT21, SYY22] where another important
36
+ quantum phenomenon, namely Bose-Einstein condensation, is examined. It turns out
37
+ that so-called flat bands, that are infinitely degenerate eigenvalues of the Hamiltonian,
38
+ play an important role in understanding such many-particle effects, and for other physical
39
+ phenomena [KFSH19]. One of the central motivations for this paper is to study robustness
40
+ of flat bands under certain natural perturbations.
41
+ Two Archimedean tilings, the (3.6)2 Kagome lattice and the (3.122) tiling 1, which
42
+ we shall dub Super-Kagome lattice for reasons that will become clear over the course
43
+ Date: January 13, 2023.
44
+ 1We explain the notation for the lattices in Section 2.
45
+ 1
46
+
47
+ 2
48
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
49
+ of the article, stand out: they are the only Archimedean lattices on which the discrete,
50
+ unweighted Laplacian has flat bands. In particular the Kagome lattice is a prominent
51
+ model in physics that has recently enjoyed increasing interest [BM18, MDY22, Dia21].
52
+ From a mathematical point of view, our paper is motivated by [PT21] where flat bands
53
+ for the discrete, unweighted Laplacian on Archimedean tilings have been studied in great
54
+ detail, in combination with an explicit calculation of the integrated density of states.
55
+ A priory, the flat-band phenomena on the Kagome and Super-Kagome lattice seem
56
+ very sensitive to perturbations: if one replaces the adjacency matrix or the Laplacian by
57
+ a variant with periodically chosen edge weights, one will generically destroy flat bands.
58
+ However, the results of this paper suggest that, if one looks at proper, meaningful variants
59
+ of the discrete Laplacian which respect certain, natural symmetries of the tiling (we
60
+ call them monomeric Laplacians in Definition 3), then flat bands will persist.
61
+ Since
62
+ monomericity is a physically justifiable assumption, this makes a strong case that flat
63
+ bands are a robust phenomenon, caused by the geometry of the lattice alone and specific
64
+ to these two lattices, see Theorems 6, and 10.
65
+ Other questions of interest on periodic graphs concern existence, persistence and esti-
66
+ mates on the width of spectral bands and the gaps between them [KS19, KS19, MW89].
67
+ We will completely identify the spectra as a function of the perturbation in these cases,
68
+ see Theorems 8, and 11 as well as Figures 3, and 5. This provides an exhaustive descrip-
69
+ tion of all nanomaterials based on Archimedean tilings on which discrete Laplacians can
70
+ exhibit flat bands.
71
+ Our paper is organized as follows: Sections 2, and 3 are of introductory nature, intro-
72
+ ducing the notion of and arguing for the relevance of Archimedean tilings, and defining
73
+ a proper notion of a discrete Laplace operator with non-uniform edge weights. Section 3
74
+ also introduces the notion of flat bands and argues why it suffices to restrict our attention
75
+ to the (3.6)2 Kagome and the (3.122) Super-Kagome lattice. Sections 4, and 5 contain our
76
+ main results on the Kagome and Super Kagome lattice, respectively. The contributions
77
+ of this paper are:
78
+ (i) We identify the Kagome and Super-Kagome lattice as the only Archimedean lat-
79
+ tices on which a natural class of periodic, weighted Laplacians can have flat bands
80
+ (Proposition 5).
81
+ (ii) We describe all periodic edge weights which lead to the maximal possible number of
82
+ bands on the Kagome and Super-Kagome lattice, and prove that this is equivalent
83
+ to so-called monomericity of the edge weights (Theorems 6 and 10).
84
+ (iii) We completely describe the spectrum in the monomeric Kagome and Super-Kagome
85
+ lattice (Theorems 8 and 11). In particular, the monomeric Super-Kagome lattice
86
+ has a surprisingly rich spectrum-perturbation phase diagram (Figure 5) which might
87
+ bear relevance for various applications.
88
+ (iv) In the Super-Kagome lattice, under a weaker condition than monomericity, namely
89
+ constant vertex weight, we explicitely describe all remaining “spurious” edge
90
+ weights which have only one flat band. We describe the topology of this set within the
91
+ parameter space and show in particular that it is disconnected from the monomeric
92
+ two-band set (Theorem 12).
93
+ 2. Archimedean tilings
94
+ Archimedean, Keplerian or regular tilings are edge-to-edge tesselations of the Euclidean
95
+ plane by regular convex polygons such that every vertex is surrounded by the same pattern
96
+ of adjacent polygons. We will adopt the notation of [GS89] and use the (counterclockwise)
97
+ order of polygons arranged around a vertex as a symbol for a tiling (this is unique up to
98
+
99
+ ROBUSTNESS OF FLAT BANDS
100
+ 3
101
+ cyclic permutations), see Figure 1 for the (3.6)2 Kagome lattice and the (3.122) Super-
102
+ Kagome lattice which will be investigated in this paper.
103
+ (3.6)2 Kagome lattice
104
+ (3.122) Super-Kagome lattice
105
+ Figure 1. The two Archimedean tilings primarily investigated in this article.
106
+ The first systematic investigation from 1619 is due to Kepler who identified all 11 such
107
+ tilings [Kep19]2. Most importantly, Archimedean tilings provide natural candidates for
108
+ geometries of two-dimensional nanomaterials since they form natural, symmetric arrange-
109
+ ments of a single buiding block, positioned at every vertex. And indeed, these lattices
110
+ can be observed in many naturally occurring materials [FK58, FK59, KHZ+20].
111
+ From a physical point of view, two-dimensional materials such as graphene are inter-
112
+ esting since they feature so-called Dirac points which are related to a specific behaviour
113
+ of the electronic band structure of the material [FW12, LWL13, HC15].
114
+ Also note that there are deep connections between Laplacians on these lattices, perco-
115
+ lation, and self-avoiding walks which have also been studied extensively [SE64, Kes80,
116
+ Nie82, SZ99, Ves04, Par07, Jac14, JSG16].
117
+ An important quantity in this context is
118
+ the so-called connective constant, which is known only in few cases, for example on the
119
+ hexagonal lattice [DCS12].
120
+ 3. Defining a suitable Hamiltonian
121
+ Every Archimedean tiling can be regarded as an infinite discrete graph G = (V, E) with
122
+ (countable) vertex set V and (countable) edge set E. We write v ∼ w if the vertices v
123
+ and w are joined by an edge and denote by
124
+ |v| := #{w ∈ V : v ∼ w}
125
+ the vertex degree of v (which in the case of Archimedean lattice graphs is v-independent).
126
+ Archimedean lattices are Z2-periodic, and there exists a cofinite Z2-action
127
+ Z2 ∋ β �→ Tβ : V → V ,
128
+ that is a group of graph isomorphisms (intuitively understood as a group of shifts) iso-
129
+ morphic to the group Z2. Let Q ⊂ V be a minimal (in particular finite) fundamental
130
+ domain of this action, i.e. the quotient of V under the equivalence relation generated by
131
+ the group of isomorphisms (Tβ)β∈Z2.
132
+ 2All 11 Archimedean tilings are: the (44) rectangular tiling, the (36) triangular tiling, the (63) hexa-
133
+ gonal tiling, the (3.62) Kagome lattice, the (3.122) Super-Kagome lattice, the (33.42) tiling, the (4.82)
134
+ tiling, the (32.4.3.4) tiling, the (3.4.6.4) tiling, the (4.6.12) tiling, and the (34.6) tiling.
135
+
136
+ 4
137
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
138
+ In the unweighted case, a natural, normalized choice for the Hamiltonian is the discrete
139
+ Laplacian
140
+ (∆f)(v) := 1
141
+ |v|
142
+
143
+ w∼v
144
+ (f(v) − f(w)) = f(v) − 1
145
+ |v|
146
+
147
+ w∼v
148
+ f(w) ,
149
+ (1)
150
+ as used for instance in [PT21].
151
+ It can be written as ∆f = Id − 1
152
+ |v|Π where Π is the
153
+ adjacency matrix, that is Π(v, w) = 1 if v ∼ w and 0 else. The following is standard:
154
+ Lemma 1. The unweighted, normalized Laplacian (1) with a uniformly bounded vertex
155
+ degree boasts the following properties:
156
+ (i) All restrictions of ∆ to finitely many vertices are real-symmetric M-matrices, that
157
+ is, their off-diagonal elements are non-positive¸ and all their eigenvalues are non-
158
+ negative.
159
+ (ii) The infimum of the spectrum of ∆ is 0.
160
+ (iii) All rows and columns of ∆ sum to zero.
161
+ Furthermore, the spectrum is always contained in the interval [0, 2].
162
+ Introducing non-trivial edge weights, we would like to keep a form of the Laplacian that
163
+ preserves properties (i) to (iii). A natural candidate, similar to formula (2.11) in [KS], is
164
+ (∆γf)(v) :=
165
+ 1
166
+
167
+ µ(v)
168
+
169
+ w∼v
170
+ γvw
171
+
172
+ f(v)
173
+
174
+ µ(v)
175
+
176
+ f(w)
177
+
178
+ µ(w)
179
+
180
+ (2)
181
+ where the edge weights γvw = γwv > 0 and vertex weights µ(v) satisfy the relation
182
+
183
+ w∼v
184
+ γvw = µv
185
+ for every v ∈ V .
186
+ (3)
187
+ As long as the vertex weights µ(v) (and thus also the γvw) are uniformly bounded, this
188
+ will lead to an operator with properties (i) to (iii) and spectrum contained in [0, 2].
189
+ Remark 2. In the literature, one often finds the definition
190
+ (∆γf)(v) =
191
+ 1
192
+ µ(v)
193
+
194
+ w∼v
195
+ γvw (f(v) − f(w))
196
+ as a normalized, discrete Laplacian. Note that, whenever µ(v) ̸= µ(w) for some v ∼ w,
197
+ then this will not lead to a self-adjoint operator, but it can be made self-adjoint on a
198
+ suitably weighted ℓ2(V )-space, cf. [KLW21]. If all µ(v) are the same, then this definition
199
+ coincides with (2), and can be simplified to
200
+ (∆γf)(v) = f(v) − 1
201
+ µ
202
+
203
+ w∼v
204
+ γwvf(w) .
205
+ (4)
206
+ Now, one can prescribe various degrees of the symmetry of the underlying Archimedean
207
+ lattice to be respected by the Laplacian:
208
+ Definition 3. Consider an Archimedean tiling (V, E) with periodic edge weights γvw =
209
+ γwv > 0, that is γvw = γTβvTβw for all v, w ∈ V and β ∈ Z2, and corresponding vertex
210
+ weights µ(v) = �
211
+ w∼v γvw. Define the Laplacian ∆γ as in (2). Then, we say that the
212
+ Archimedean tiling with Laplacian ∆γ
213
+ (1) has constant vertex weight, if there is µ > 0 such that µ(v) = µ for all v ∈ V .
214
+ (2) is monomeric if for all vertices v ∈ V the list of edge weights, arranged cyclically
215
+ around v, coincides (up to cyclic permutations).
216
+
217
+ ROBUSTNESS OF FLAT BANDS
218
+ 5
219
+ Clearly, (2) is stronger than (1). However, in either case, the Laplacian reduces to (4).
220
+ The term “monomeric” is inspired by the fact that the associated operators can be
221
+ interpreted as describing properties of nanomaterials formed from one type of monomeric
222
+ building block, positioned at every vertex of an Archimedean tiling. Clearly, monomeric
223
+ Laplacians on Archimedean lattices have constant vertex weights, but the converse is not
224
+ true in general. However, we will see in Theorems 6 and 10 that on the Kagome and
225
+ Super-Kagome lattice, the validity of the converse implication is equivalent to existence
226
+ (or persistence) of all flat bands. Also, monomericity seems a physically reasonable as-
227
+ sumption for nanomaterials, which suggests that the emergence of flat bands, while a
228
+ priori very sensitive to perturbations of coefficients in the operator, might nevertheless be
229
+ robust within the class of physically relevant operators.
230
+ Next, let T2 = R2/Z2 be the flat torus and define for every θ ∈ T2 the |Q|-dimensional
231
+ Hilbert space
232
+ ℓ2(V )θ := {f : V → C | f(Tβv) = ei⟨θ,β⟩f(v)}
233
+ with inner product
234
+ ⟨f, g⟩θ :=
235
+
236
+ v∈Q
237
+ f(v)g(v) .
238
+ Given the Laplacian (4) on ℓ2(V ) with properties described in Definition 3, we define on
239
+ ℓ2(V )θ the operator
240
+ (∆θ
241
+ γf)(v) := f(v) − 1
242
+ µ
243
+
244
+ w∼v
245
+ γwvf(w) .
246
+ (5)
247
+ Clearly, (5) can be represented as a |Q|-dimensional Hermitian matrix. Due to Floquet
248
+ theory, we have
249
+ σ(∆γ) =
250
+
251
+ θ∈T2
252
+ σ(∆θ
253
+ γ) ,
254
+ and the following statement holds.
255
+ Proposition 4 (See [PT21] and references therein). Let E ∈ R. Then, the following are
256
+ equivalent:
257
+ (i) E ∈ σ(∆θ
258
+ γ) for all θ ∈ T2.
259
+ (ii) E ∈ σ(∆θ
260
+ γ) for a positive measure subset of θ ∈ T2.
261
+ (iii) There is an infinite orthonormal family eigenfunctions of ∆γ to the eigenvalue E.
262
+ Each of them can be chosen to be supported on a finite number of vertices.
263
+ If any of (i) to (iii) is satisfied, we say that ∆γ has a flat band (at energy E).
264
+ Note that, in the ℓ∞(V ) setting instead of the ℓ2(V ) setting, such infinitely degenerate
265
+ eigenvalues are also referred to as “black hole eigenvalues” in [BL09]. Also, the existence of
266
+ flat bands can be interpreted as a breakdown of the unique continuation principle [PTV17].
267
+ In the Hilbert space ℓ2(V ) setting, is known that for constant edge weights, the discrete
268
+ Laplacian has flat bands only on two of the 11 Archimedean lattices, namely the (3.6)2
269
+ Kagome lattice and the (3.122) Super-Kagome lattice [PT21]. Before turning to perturbed
270
+ versions of those two lattices, one should verify that there won’t be any surprises on the
271
+ other lattices:
272
+ Proposition 5. On the Archimedean lattices (44), (36), (63), (33.42), (4.82), (32.4.3.4),
273
+ (3.4.6.4), (4.6.12), (34.6), there is no choice of periodic (with respect to the fundamental
274
+ cell on the lattice) edge weights γvw = γwv > 0 which will make the weighted adjacency
275
+
276
+ 6
277
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
278
+ matrix
279
+ Πγ(v, w) =
280
+
281
+ γvw
282
+ if v ∼ w,
283
+ 0
284
+ else
285
+ have a flat band.
286
+ Consequently, also the Laplacian with constant or monomeric edge
287
+ weights has no flat bands on these lattices.
288
+ Proposition 5 is proved by a series of straightforward but somewhat lengthy calculations
289
+ in which one calculates the associated characteristic polynomials, and shows that there
290
+ are no θ-independent roots, employing Proposition 4 (this should be compared to the
291
+ proofs of Theorems 6 and 10 below). We omit them here for the sake of conciseness. In
292
+ any case, Proposition 5 justifies to restrict our attention to the (perturbed) Kagome and
293
+ Super-Kagome lattices from now on.
294
+ 4. The perturbed Kagome lattice
295
+ In this section we discuss the Kagome lattice with non-uniform (periodic) edge weights.
296
+ The elementary cell of the Kagome lattice contains three vertices and six edges (one can
297
+ think of the edges as arranged around a hexagon). A priori, periodicity allows for six
298
+ γ1
299
+ γ2
300
+ γ3
301
+ γ4
302
+ γ5
303
+ γ6
304
+ γ4
305
+ γ5
306
+ γ6
307
+ γ5
308
+ γ1
309
+ γ6
310
+ v1
311
+ v2
312
+ v3
313
+ v2 + ω1
314
+ v3 + ω1
315
+ v3 + ω2
316
+ v1 − ω2
317
+ v1 − ω1
318
+ v2 − ω2
319
+ Figure 2. Fundamental domain of the Kagome lattice with edge weights.
320
+ In the monomeric case, all edge weights around downwards pointing tri-
321
+ angles are γ2 = γ4 = γ6 =: α and all edge weights on upwards pointing
322
+ triangles are γ1 = γ3 = γ5 =: β, where 2α + 2β = µ.
323
+ edge weights γ1, ..., γ6 > 0, and the Floquet Laplacian ∆θ
324
+ γ can be written as the Hermitian
325
+ matrix
326
+ ∆θ
327
+ γ = Id −1
328
+ µ
329
+
330
+
331
+ 0
332
+ γ3 + wγ6
333
+ wγ4 + zγ1
334
+ γ3 + wγ6
335
+ 0
336
+ γ2 + zγ5
337
+ wγ4 + zγ1
338
+ γ2 + zγ5
339
+ 0
340
+
341
+  ,
342
+ (6)
343
+ where w := eiθ1 and z := eiθ2. We denote the three real eigenvalues of ∆θ
344
+ γ by λ1(θ, γ) ≤
345
+ λ2(θ, γ) ≤ λ3(θ, γ).
346
+ Note that the six degrees of freedom are to be further reduced, depending on the
347
+ following symmetry conditions:
348
+ • If we merely assume a constant vertex weight µ > 0, then identity (3) will impose
349
+ the three additional linearly independent conditions
350
+ γ1 + γ4 = γ2 + γ5 ,
351
+ γ3 + γ6 = γ2 + γ5 ,
352
+ γ1 + γ3 + γ4 + γ6 = µ ,
353
+ (7)
354
+
355
+ ROBUSTNESS OF FLAT BANDS
356
+ 7
357
+ and we end up with three degrees of freedom.
358
+ • If we also assume monomericity, then it is easy to see that the only choice is
359
+ the breathing Kagome lattice, cf. [HKdP+22], with an edge weight α > 0 on all
360
+ edges belonging to upwards pointing triangles and edge weight β > 0 on all edges
361
+ belonging to downwards pointing triangles, where 2(α + β) = µ. After fixing the
362
+ vertex weight µ, this amounts to only one degree of freedom.
363
+ 4.1. Flat bands in the perturbed Kagome lattice.
364
+ Theorem 6. Consider the perturbed Kagome lattice with Laplacian (4), fixed vertex
365
+ weight µ > 0 and periodic edge weights γ1, ..., γ6 > 0, satisfying the condition (3) on
366
+ vertex and edge weights. Then, the following are equivalent:
367
+ (i) There exists a flat band.
368
+ (ii) The vertex weights are monomeric. More explicitly, there are α, β > 0 with 2(α +
369
+ β) = µ such that
370
+ γ2 = γ4 = γ6 := α,
371
+ γ1 = γ3 = γ5 := β.
372
+ The rest of this subsection is devoted to the proof of Theorem 6. We start with identi-
373
+ fying flat bands using the weighted adjacency matrix
374
+ Πθ
375
+ γ :=
376
+
377
+
378
+ 0
379
+ γ3 + wγ6
380
+ wγ4 + zγ1
381
+ γ3 + wγ6
382
+ 0
383
+ γ2 + zγ5
384
+ wγ4 + zγ1
385
+ γ2 + zγ5
386
+ 0
387
+
388
+
389
+ (8)
390
+ which is spectrally equivalent to ∆θ
391
+ γ up to scaling and shifting via the relation
392
+ ∆θ
393
+ γ = Id −1
394
+ µΠθ
395
+ γ.
396
+ In order to find flat bands, we will identify conditions for θ-independent eigenvalues of Πθ
397
+ γ
398
+ and therefore calculate
399
+ det(λ Id −Πθ
400
+ γ) = −λ3 + λ(|A|2 + |B|2 + |C|2) + 2ℜ(ABC)
401
+ where A := γ3 + wγ6, B := wγ4 + zγ1 and C := γ2 + zγ5. Rearranging the terms yields
402
+ det(λ Id −Πθ
403
+ γ) =(w + w)(λγ6γ3 + γ3γ2γ4 + γ6γ5γ1)
404
+ +(z + z)(λγ5γ2 + γ6γ5γ4 + γ1γ3γ2)
405
+ +(wz + zw)(λγ1γ4 + γ3γ5γ4 + γ6γ2γ1)
406
+ +(−λ3 + λ(γ2
407
+ 1 + ... + γ2
408
+ 6) + 2(γ4γ6γ2 + γ3γ5γ1)) .
409
+ The prefactors
410
+ w + w = 2 cos θ1 ,
411
+ z + z = 2 cos θ2 ,
412
+ and
413
+ wz + zw = 2 cos(θ1 − θ2) ,
414
+ are linearly independent as measurable functions of θ on T2. Consequently, since all γi
415
+ are positive, θ-independent eigenvalues exist if and only if the w and z-independent terms
416
+ in every line are zero. This is only possible for negative λ, which (possibly after scaling
417
+ the γi and µ for the moment) can be assumed to equal −1. Therefore, we obtain the
418
+ conditions
419
+ γ3γ6 = γ2γ3γ4 + γ1γ5γ6 ,
420
+ γ2γ5 = γ4γ5γ6 + γ1γ2γ3 ,
421
+ γ1γ4 = γ3γ4γ5 + γ1γ2γ6 ,
422
+ (9)
423
+
424
+ 8
425
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
426
+ and
427
+ 1 − (γ2
428
+ 1 + · · · + γ2
429
+ 6) + 2 (γ2γ4γ6 + γ1γ3γ5) = 0 .
430
+ (10)
431
+ Lemma 7. The only positive solutions (meaning all γi are non-zero) of (7), (9), (10) are
432
+ γ2 = γ4 = γ6 = x
433
+ γ1 = γ3 = γ5 = y
434
+ (11)
435
+ with x, y ∈ (0, 1) and x + y = 1.
436
+ Proof. By a direct calculation (11) solves (7), (9), (10).
437
+ Conversely, assume that there are positive solutions γ1, ..., γ6 > 0. From (9) we obtain
438
+ γ3 =
439
+ γ1γ5γ6
440
+ γ6 − γ2γ4
441
+ ,
442
+ γ1 =
443
+ γ3γ4γ5
444
+ γ4 − γ2γ6
445
+ ,
446
+ and this implies γ6 > γ2γ4 and γ4 > γ2γ6.
447
+ Hence, combining both equations yields
448
+ γ2
449
+ 2γ6 < γ6 which shows that γ2 < 1. In the same way one proves γi < 1 for every other i.
450
+ Next, let γ2 + γ5 := Λ. By (7) one immediately concludes γ1 + γ4 = γ3 + γ6 = Λ. Now,
451
+ we add (9) and (10) and rearrange the equations to obtain
452
+ 1
453
+ 2
454
+
455
+ γ2
456
+ 1 + · · · + γ2
457
+ 6 − 1
458
+
459
+ + γ3γ6 + γ2γ5 + γ1γ4 =γ2γ4γ6 + γ1γ3γ5
460
+ + γ2γ3γ4 + γ1γ5γ6 + γ4γ5γ6
461
+ + γ1γ2γ3 + γ3γ4γ5 + γ1γ2γ6 .
462
+ By repeated factorization, the right hand side simplifies to
463
+ γ1γ3(γ2 + γ5) + γ3γ4(γ2 + γ5) + γ1γ6(γ2 + γ5) + γ4γ6(γ2 + γ5) = Λ3,
464
+ (12)
465
+ and since for the left hand side one has
466
+ 1
467
+ 2
468
+
469
+ γ2
470
+ 1 + · · · + γ2
471
+ 6 − 1
472
+
473
+ + γ3γ6 + γ2γ5 + γ1γ4 = 3Λ2 − 1
474
+ 2
475
+ ,
476
+ we arrive at the polynomial Λ3 − 3Λ2
477
+ 2 + 1
478
+ 2 = 0 the only positive solution of which is Λ = 1.
479
+ Finally, adding the first the two equations of (9) yields
480
+ γ3γ6 + γ2γ5 = (γ6γ5 + γ2γ3)(γ1 + γ4) = γ6γ5 + γ2γ3
481
+ and this implies γ5 = γ3. Furthermore, adding the last two equations gives
482
+ γ2γ5 + γ1γ4 = (γ4γ5 + γ1γ2)(γ3 + γ6) = γ4γ5 + γ1γ2
483
+ giving γ4 = γ2.
484
+ Conditions (7) hence give γ1 = γ5 and γ6 = γ2.
485
+ This proves the
486
+ statement.
487
+
488
+ We are now in the position to prove Theorem 6.
489
+ Proof of Theorem 6. Comparing Πθ
490
+ γ with ∆θ
491
+ γ we conclude that ∆θ
492
+ γ has a flat band with
493
+ edge weights γ1, ..., γ6 if and only if there exists δ > 0 such that Πθ
494
+ γ has a flat band for edge
495
+ weights δγ1, ..., δγ6. From this observation the statement follows directly taking Lemma 7
496
+ into account.
497
+
498
+
499
+ ROBUSTNESS OF FLAT BANDS
500
+ 9
501
+ 4.2. The spectrum and band gaps in the monomeric Kagome lattice. In the case
502
+ where the perturbed Kagome lattice has a flat band, we further study the structure of the
503
+ rest of the spectrum. We reiterate that, due to Theorem 6, the existence of a flat band is
504
+ equivalent to the weights being monomeric.
505
+ As shown for instance in [PT21], in the case where all edge weights are equal, the two
506
+ other spectral bands, generated by the two other θ-dependent eigenvalues of ∆θ
507
+ γ, touch
508
+ at E = 3/4, and the derivative of the integrated density of states at E = 3/4 vanishes
509
+ – an indication that the spectral density at 3/4 is sufficiently thin for a gap to form
510
+ under perturbation. And indeed, this is the statement of the next theorem, which also
511
+ characterises the width of the gap.
512
+ Theorem 8 (Band gaps in the perturbed Kagome lattice). Consider the perturbed Kago-
513
+ me lattice with fixed vertex weight µ > 0, and monomeric edge weights α, β > 0, satisfying
514
+ 2(α + β) = µ as characterized in Theorem 6. Then, the spectrum is given by
515
+ I1 ∪ I2 :=
516
+
517
+ 0, 3
518
+ 4 −
519
+ ����
520
+
521
+ µ − 3
522
+ 4
523
+ ����
524
+ � � �3
525
+ 4 +
526
+ ����
527
+
528
+ µ − 3
529
+ 4
530
+ ���� , 3
531
+ 2
532
+
533
+ .
534
+ Furthermore, there is always a flat band at 3
535
+ 2.
536
+ Remark 9. Theorem 8 states that, as soon as α ̸= β, or alternatively, α ̸= µ
537
+ 4, a spectral
538
+ gap of width
539
+ ����
540
+
541
+ µ − 3
542
+ 2
543
+ ���� = 3
544
+ µ|α − β|
545
+ will form around 3
546
+ 4, see also Figure 3. The flat band at 3
547
+ 2 will always be connected to the
548
+ energy band below it which means that the “touching” of the flat band at 3
549
+ 2 is protected in
550
+ the class of monomeric perturbations.
551
+ I1
552
+ I2
553
+ α = µ
554
+ 2
555
+ α = 0
556
+ α = µ
557
+ 4
558
+ 3
559
+ 2
560
+ 3
561
+ 4
562
+ Flat band
563
+ σ(∆γ)
564
+ Figure 3. Spectrum of the monomeric (32.62) Kagome lattice with vertex
565
+ weight µ > 0 as a function of the parameter α ∈ (0, µ
566
+ 2), describing the edge
567
+ weights on edges adjacent to downwards pointing triangles.
568
+ Proof. A calculation shows that the eigenvalues of ∆θ
569
+ γ with the choice 2(α + β) = µ as in
570
+ Theorem 6 are given by
571
+ λ1,2(θ, γ) = 3
572
+ 4 ± 1
573
+ 4
574
+
575
+ 1 + 8
576
+
577
+ 1 + (F(θ) − 3)
578
+ �2α
579
+ µ − 4α2
580
+ µ2
581
+ ��
582
+ and
583
+ λ3(θ, γ) = 3
584
+ 2
585
+
586
+ 10
587
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
588
+ where F(θ) := cos(θ1) + cos(θ2) + cos(θ1 − θ2). The function T2 ∋ θ �→ F(θ) takes all
589
+ values in [−3/2, 3], see Lemma 3.1 in [PT21], whence λ1(θ, γ) and λ2(θ, γ) take all values
590
+ in the intervals
591
+
592
+ 0, 3
593
+ 4 −
594
+ ����
595
+
596
+ µ − 3
597
+ 4
598
+ ����
599
+
600
+ ,
601
+ and
602
+ �3
603
+ 4 +
604
+ ����
605
+
606
+ µ − 3
607
+ 4
608
+ ���� , 3
609
+ 2
610
+
611
+ ,
612
+ respectively.
613
+
614
+ 5. The perturbed Super-Kagome lattice
615
+ In this section, we investigate the Archimedean tiling (3.122) which we call Super-
616
+ Kagome lattice. Its minimal elementary cell contains six vertices and nine edges: three
617
+ edges on upwards pointing triangles, three edges on downwards pointing triangles, and
618
+ three edges bordering two dodecagons, see Figure 4.
619
+ v4
620
+ v3
621
+ v5
622
+ v6
623
+ v2
624
+ v1
625
+ v1 − ω2
626
+ v2 − ω1
627
+ v6 + ω1
628
+ v5 + ω2
629
+ γ7
630
+ γ3
631
+ γ2
632
+ γ1
633
+ γ5
634
+ γ6
635
+ γ4
636
+ γ9
637
+ γ8
638
+ γ8
639
+ γ9
640
+ Figure 4. Fundamental domain of the (3.122) tiling with edge weights. In
641
+ the monomeric case, all edge weights around triangles triangles are γ1 =
642
+ · · · = γ6 =: α and the remaining weights are γ7 = γ8 = γ9 =: β.
643
+ Given a constant vertex weight µ > 0, the Floquet Laplacian (5) is a 6×6-matrix given
644
+ by
645
+ ∆θ
646
+ γ = Id −1
647
+ µ
648
+
649
+
650
+
651
+
652
+
653
+
654
+
655
+ 0
656
+ γ4
657
+ γ6
658
+ 0
659
+ zγ9
660
+ 0
661
+ γ4
662
+ 0
663
+ γ5
664
+ 0
665
+ 0
666
+ wγ8
667
+ γ6
668
+ γ5
669
+ 0
670
+ γ7
671
+ 0
672
+ 0
673
+ 0
674
+ 0
675
+ γ7
676
+ 0
677
+ γ3
678
+ γ2
679
+ zγ9
680
+ 0
681
+ 0
682
+ γ3
683
+ 0
684
+ γ1
685
+ 0
686
+ wγ8
687
+ 0
688
+ γ2
689
+ γ1
690
+ 0
691
+
692
+
693
+
694
+
695
+
696
+
697
+
698
+ ,
699
+ (13)
700
+ where w := eiθ1, z := eiθ2.
701
+ • If we fix a constant vertex weight µ > 0, the condition �
702
+ w∼v γvw = µ for all v ∈ V
703
+ leads to
704
+ µ = γ2 + γ3 + γ7 = γ5 + γ6 + γ7 = γ1 + γ2 + γ8 = γ4 + γ5 + γ8
705
+ = γ1 + γ3 + γ9 = γ4 + γ6 + γ9.
706
+ (14)
707
+ This can be seen to be a linear system of 6 linearly independent equations with 9
708
+ unknowns, so the solution space is 3-dimensional. More precisely, by appropriate
709
+ additions, we infer the three identities
710
+ 2γ1 + γ8 + γ9 = 2γ7 + γ2 + γ3,
711
+ 2γ4 + γ8 + γ8 = 2γ7 + γ5 + dγ6,
712
+ γ2 + γ3 = γ5 + γ6
713
+ (15)
714
+
715
+ ROBUSTNESS OF FLAT BANDS
716
+ 11
717
+ which imply γ1 = γ4. The identities γ2 = γ5, and γ3 = γ6 follow by completely
718
+ analogous calculations. This leaves us with 6 independent variables γ1, γ2, γ3, and
719
+ γ7, γ8, γ9 which are however still subject to the three conditions
720
+ γ2 + γ3 + γ7 = γ1 + γ2 + γ8 = γ1 + γ3 + γ9 = µ
721
+ from (14). Therefore, we are left with three degrees of freedom.
722
+ • If we additionally prescribe monomericity, it is easy to see that there is only one
723
+ degree of freedom: All edges around triangles carry the weight α > 0, and all
724
+ remaining edges (separating two dodecagons) carry the weight β > 0 under the
725
+ condition 2α + β = µ.
726
+ 5.1. Flat bands in the perturbed Super-Kagome lattice.
727
+ Theorem 10. Consider the perturbed Super-Kagome lattice with Laplacian (4), fixed
728
+ vertex weight µ > 0, and periodic edge weights γ1, . . . , γ9 > 0 satisfying the condition (3)
729
+ on vertex and edge weights. Then, the following are equivalent:
730
+ (i) There exist exactly two flat bands.
731
+ (ii) The Super-Kagome lattice is monomeric. More explicitly, there are α, β > 0 such
732
+ that 2α + β = µ together with
733
+ γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = α ,
734
+ γ7 = γ8 = γ9 = β .
735
+ Proof. Recall that in the constant vertex weight case, we have
736
+ γ1 = γ4 ,
737
+ γ2 = γ5 ,
738
+ and
739
+ γ3 = γ6 ,
740
+ and consider the weighted adjacency matrix
741
+ Πθ
742
+ γ :=
743
+
744
+
745
+
746
+
747
+
748
+
749
+
750
+ 0
751
+ γ4
752
+ γ6
753
+ 0
754
+ zγ9
755
+ 0
756
+ γ4
757
+ 0
758
+ γ5
759
+ 0
760
+ 0
761
+ wγ8
762
+ γ6
763
+ γ5
764
+ 0
765
+ γ7
766
+ 0
767
+ 0
768
+ 0
769
+ 0
770
+ γ7
771
+ 0
772
+ γ3
773
+ γ2
774
+ zγ9
775
+ 0
776
+ 0
777
+ γ3
778
+ 0
779
+ γ1
780
+ 0
781
+ wγ8
782
+ 0
783
+ γ2
784
+ γ1
785
+ 0
786
+
787
+
788
+
789
+
790
+
791
+
792
+
793
+ =
794
+
795
+
796
+
797
+
798
+
799
+
800
+
801
+ 0
802
+ γ1
803
+ γ3
804
+ 0
805
+ zγ9
806
+ 0
807
+ γ1
808
+ 0
809
+ γ2
810
+ 0
811
+ 0
812
+ wγ8
813
+ γ3
814
+ γ2
815
+ 0
816
+ γ7
817
+ 0
818
+ 0
819
+ 0
820
+ 0
821
+ γ7
822
+ 0
823
+ γ3
824
+ γ2
825
+ zγ9
826
+ 0
827
+ 0
828
+ γ3
829
+ 0
830
+ γ1
831
+ 0
832
+ wγ8
833
+ 0
834
+ γ2
835
+ γ1
836
+ 0
837
+
838
+
839
+
840
+
841
+
842
+
843
+
844
+ (16)
845
+ which is a shifted and scaled version of ∆θ
846
+ γ. We calculate
847
+ det(λ Id −Πθ
848
+ γ) = λ6 − λ4 �
849
+ 2γ2
850
+ 1 + 2γ2
851
+ 2 + 2γ2
852
+ 3 + γ2
853
+ 7 + γ2
854
+ 8 + γ2
855
+ 9
856
+
857
+ − 4λ3γ1γ2γ3
858
+ + λ2�
859
+ γ4
860
+ 1 + γ4
861
+ 2 + γ4
862
+ 3 + 2γ2
863
+ 1γ2
864
+ 2 + 2γ2
865
+ 2γ2
866
+ 3 + 2γ2
867
+ 3γ2
868
+ 1 + 2γ2
869
+ 1γ2
870
+ 7 + 2γ2
871
+ 2γ2
872
+ 9 + 2γ2
873
+ 3γ2
874
+ 8+
875
+ + γ2
876
+ 7γ2
877
+ 8 + γ2
878
+ 8γ2
879
+ 9 + γ2
880
+ 9γ2
881
+ 7
882
+
883
+ + 4λγ1γ2γ3
884
+
885
+ γ2
886
+ 1 + γ2
887
+ 2 + γ2
888
+ 3
889
+
890
+ − γ4
891
+ 1γ2
892
+ 7 − γ4
893
+ 2γ2
894
+ 9 − γ4
895
+ 3γ2
896
+ 8 − γ2
897
+ 7γ2
898
+ 8γ2
899
+ 9 + 4γ2
900
+ 1γ2
901
+ 2γ2
902
+ 3
903
+ − (w + w)
904
+
905
+ λ2γ2
906
+ 2γ7γ8 + 2λγ1γ2γ3γ7γ8 + γ2
907
+ 1γ2
908
+ 3γ7γ8 − γ2
909
+ 2γ7γ8γ2
910
+ 9
911
+
912
+ − (z + z)
913
+
914
+ λ2γ2
915
+ 3γ7γ9 + 2λγ1γ2γ3γ7γ9 + γ2
916
+ 1γ2
917
+ 2γ7γ9 − γ2
918
+ 3γ7γ2
919
+ 8γ9
920
+
921
+ − (wz + wz)
922
+
923
+ λ2γ2
924
+ 1γ8γ9 + 2λγ1γ2γ3γ8γ9 + γ2
925
+ 2γ2
926
+ 3γ8γ9 − γ2
927
+ 1γ2
928
+ 7γ8γ9
929
+
930
+ .
931
+ Since w + w = 2 cos(θ1), z + z = 2 cos(θ2), and wz + wz = 2 cos(θ1 − θ2) are linearly on
932
+ T2, λ is a θ-independent eigenvalue if and only if the conditions
933
+
934
+ 12
935
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
936
+ λ2γ2
937
+ 2 + 2λγ1γ2γ3 + γ2
938
+ 1γ2
939
+ 3 − γ2
940
+ 2γ2
941
+ 9 = 0,
942
+ λ2γ2
943
+ 3 + 2λγ1γ2γ3 + γ2
944
+ 1γ2
945
+ 2 − γ2
946
+ 3γ2
947
+ 8 = 0,
948
+ λ2γ2
949
+ 1 + 2λγ1γ2γ3 + γ2
950
+ 2γ2
951
+ 3 − γ2
952
+ 1γ2
953
+ 7 = 0,
954
+ (17)
955
+ as well as
956
+ λ6 − λ4 �
957
+ 2γ2
958
+ 1 + 2γ2
959
+ 2 + 2γ2
960
+ 3 + γ2
961
+ 7 + γ2
962
+ 8 + γ2
963
+ 9
964
+
965
+ − 4λ3γ1γ2γ3
966
+ + λ2�
967
+ γ4
968
+ 1 + γ4
969
+ 2 + γ4
970
+ 3 + 2γ2
971
+ 1γ2
972
+ 2 + 2γ2
973
+ 2γ2
974
+ 3 + 2γ2
975
+ 3γ2
976
+ 1 + 2γ2
977
+ 1γ2
978
+ 7 + 2γ2
979
+ 2γ2
980
+ 9 + 2γ2
981
+ 3γ2
982
+ 8+
983
+ + γ2
984
+ 7γ2
985
+ 8 + γ2
986
+ 8γ2
987
+ 9 + γ2
988
+ 9γ2
989
+ 7
990
+
991
+ +4λγ1γ2γ3
992
+
993
+ γ2
994
+ 1 + γ2
995
+ 2 + γ2
996
+ 3
997
+
998
+ −γ4
999
+ 1γ2
1000
+ 7 − γ4
1001
+ 2γ2
1002
+ 9 − γ4
1003
+ 3γ2
1004
+ 8 − γ2
1005
+ 7γ2
1006
+ 8γ2
1007
+ 9 + 4γ2
1008
+ 1γ2
1009
+ 2γ2
1010
+ 3 = 0
1011
+ (18)
1012
+ hold.3 Conditions (17) imply that any θ-independent eigenvalue of the matrix Πθ
1013
+ γ must
1014
+ satisfy
1015
+ λ = −γ1γ3
1016
+ γ2
1017
+ ± γ9,
1018
+ λ = −γ1γ2
1019
+ γ3
1020
+ ± γ8,
1021
+ and
1022
+ λ = −γ2γ3
1023
+ γ1
1024
+ ± γ7.
1025
+ Since all γi are positive, the only way for these three equations to have the same set of
1026
+ solutions, that is for two flat bands to exist, is therefore
1027
+ − γ1γ3
1028
+ γ2
1029
+ + γ9 = −γ1γ2
1030
+ γ3
1031
+ + γ8 = −γ2γ3
1032
+ γ1
1033
+ + γ7
1034
+ (19)
1035
+ together with
1036
+ − γ1γ3
1037
+ γ2
1038
+ − γ9 = −γ1γ2
1039
+ γ3
1040
+ − γ8 = −γ2γ3
1041
+ γ1
1042
+ − γ7.
1043
+ (20)
1044
+ This implies that the matrix Πθ
1045
+ γ can only have two θ-independent eigenvalues if there are
1046
+ α, β > 0 with
1047
+ α = γ7 = γ8 = γ9
1048
+ and
1049
+ β = γ1 = γ2 = γ3,
1050
+ that is the monomeric case, and the only candidates for these eigenvalues are −β ±
1051
+ α. To see that they are indeed eigenvalues, one verifies by an explicit calculation that
1052
+ condition (18) is also fulfilled. This shows the stated equivalence.
1053
+
1054
+ Next, we further describe the spectrum of the monomeric Super-Kagome lattice.
1055
+ Theorem 11 (Band gaps in the perturbed Super-Kagome lattice). Consider the perturbed
1056
+ Super-Kagome lattice with Laplacian (4) with fixed vertex weight µ > 0 and monomeric
1057
+ edge weights α, β > 0, satisfying 2α + β = µ as characterized in Theorem 10. Then, the
1058
+ spectrum is given by
1059
+ I1 ∪ I2 :=
1060
+
1061
+ 0,
1062
+
1063
+ 1 − α
1064
+
1065
+
1066
+ − |3α − 2β|
1067
+
1068
+ � � ��
1069
+ 1 − α
1070
+
1071
+
1072
+ + |3α − 2β|
1073
+
1074
+ , 2 − α
1075
+ µ
1076
+
1077
+ with flat bands at 3α
1078
+ µ and 2 − α
1079
+ µ.
1080
+ The spectrum and the position of the flat bands have been plotted in Figure 5. The
1081
+ spectrum generically consists of two distinct intervals (bands) except for the case 3α = 2β,
1082
+ that is α = 2µ
1083
+ 7 , in which the two bands touch and the spectrum consists of one interval
1084
+ with an embedded flat band in the middle as well as a flat band at its maximum. This
1085
+ case α = 2µ
1086
+ 7 connects two regimes with different spectral pictures:
1087
+ 3As we will see later, despite its complexity, (18) will not impose further restrictions and hold in all
1088
+ relevant cases. This appears to be a consequence of symmetries of the lattice and the operator.
1089
+
1090
+ ROBUSTNESS OF FLAT BANDS
1091
+ 13
1092
+ • If α > 2µ
1093
+ 7 the spectrum consists of two intervals the upper one of which has two
1094
+ flat bands at its endpoints. In the special case of uniform edge weights (that is
1095
+ α = µ
1096
+ 3, this has already been observed, for instance in [PT21].
1097
+ • If α < 2µ
1098
+ 7 , the spectrum will again consist of two intervals each of which will have
1099
+ a flat band at its maximum. Somewhat surprisingly, the lower flat band has now
1100
+ attach itself to the lower interval I2 upon passing the critical parameter α = 2µ
1101
+ 7 .
1102
+ Another noteworthy observation is that no gap opens within the intervals I1 and I2,
1103
+ despite them being generated by two distinct Floquet eigenvalues and the density of
1104
+ states measure vanishing at a point in the interior of the bands, see again [PT21] for plots
1105
+ of the integrated density of states in the case of constant edge weights. In particular, this
1106
+ distinguishes the monomeric Super-Kagome lattice from the monomeric Kagome lattice
1107
+ where such a gap indeed opens within the spectrum at points of zero spectral density.
1108
+ I1
1109
+ I2
1110
+ α = µ
1111
+ 2
1112
+ µ
1113
+ 3 2µ
1114
+ 7
1115
+ α = 0
1116
+ 2
1117
+ Flat bands
1118
+ σ(∆γ)
1119
+ Constant edge weights
1120
+ Figure 5. Spectrum of the monomeric (3.122) “Super-Kagome” lattice
1121
+ with vertex weight µ > 0 as a function of the parameter α ∈ (0, µ
1122
+ 2), describ-
1123
+ ing the edge weights on edges adjacent to triangles.
1124
+ Proof of Theorem 11. In the monomeric case, the characteristic polynomial det(λ Id −Πθ
1125
+ γ)
1126
+ of the matrix Πθ
1127
+ γ simplifies to
1128
+ ((α + λ)2 − β2)·
1129
+ (λ4 − 2αλ3 − (3α2 + 2β2)λ2 + (4α3 + 2αβ2)λ + 4α4 + α2β2 + β4 − 2α2β2F(θ1, θ2)) ,
1130
+ where F(θ1, θ2) = cos(θ1) + cos(θ2) + cos(θ1 + θ2). Its six roots are
1131
+
1132
+ −α ± β, 1
1133
+ 2
1134
+
1135
+ α ±
1136
+
1137
+ 9α2 + 4β2 ± 4αβ
1138
+
1139
+ 3 + 2F(θ1, θ2)
1140
+ ��
1141
+ ,
1142
+ whence the eigenvalues of ∆θ
1143
+ γ are given by
1144
+ λ1(θ, γ) = 1 − 1
1145
+
1146
+
1147
+ α +
1148
+
1149
+ 9α2 + 4β2 + 4αβ
1150
+
1151
+ 3 + 2F(θ1, θ2)
1152
+
1153
+ ,
1154
+ λ2(θ, γ) = 1 − 1
1155
+
1156
+
1157
+ α +
1158
+
1159
+ 9α2 + 4β2 − 4αβ
1160
+
1161
+ 3 + 2F(θ1, θ2)
1162
+
1163
+ ,
1164
+ λ3(θ, γ) = 1 + α − β
1165
+ µ
1166
+ = 3α
1167
+ µ =
1168
+
1169
+ 1 − α−|3α−2β|
1170
+
1171
+ if 3α ≥ 2β ,
1172
+ 1 − α−|3α−2β|
1173
+
1174
+ if 3α < 2β ,
1175
+
1176
+ 14
1177
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
1178
+ λ4(θ, γ) = 1 − 1
1179
+
1180
+
1181
+ α −
1182
+
1183
+ 9α2 + 4β2 − 4αβ
1184
+
1185
+ 3 + 2F(θ1, θ2)
1186
+
1187
+ ,
1188
+ λ5(θ, γ) = 1 − 1
1189
+
1190
+
1191
+ β −
1192
+
1193
+ 9α2 + 4β2 + 4αβ
1194
+
1195
+ 3 + 2F(θ1, θ2)
1196
+
1197
+ ,
1198
+ λ6(θ, γ) = 1 + α + β
1199
+ µ
1200
+ = 2 − α
1201
+ µ .
1202
+ Using that the map T2 ∋ (θ1, θ2) �→ F(θ1, θ2) takes all values in the interval (−3/2, 3), we
1203
+ conclude that the bands, generated by λ1(θ, γ) and λ2(θ, γ), as well as the bands generated
1204
+ by λ4(θ, γ) and λ5(θ, γ) always touch, and the spectrum consists of the two intervals
1205
+
1206
+ min
1207
+ θ∈T2 λ1(θ, γ), max
1208
+ θ∈T2 λ2(θ, γ)
1209
+ � � �
1210
+ min
1211
+ θ∈T2 λ4(θ, γ), max
1212
+ θ∈T2 λ5(θ, γ)
1213
+
1214
+ =
1215
+
1216
+ 0, 1 − α + |3α − 2β|
1217
+
1218
+ � � �
1219
+ 1 − α − |3α − 2β|
1220
+
1221
+ , 2 − α
1222
+
1223
+
1224
+ =
1225
+
1226
+ 0,
1227
+
1228
+ 1 − α
1229
+
1230
+
1231
+ − |3α − 2β|
1232
+
1233
+ � � ��
1234
+ 1 − α
1235
+
1236
+
1237
+ + |3α − 2β|
1238
+
1239
+ , 2 − α
1240
+ µ
1241
+
1242
+ .
1243
+
1244
+ One might now wonder under which conditions only one flat band exists. The next
1245
+ theorem completely identifies all parameters for which one flat band exists:
1246
+ Theorem 12. Consider the perturbed Super-Kagome lattice with Laplacian (4), fixed
1247
+ vertex weight µ > 0, and periodic edge weights γ1, . . . , γ9 > 0 satisfying the condition
1248
+ (3) on vertex and edge weights. The set of (γi) such that exactly one flat band exists
1249
+ consists of six connected components which have no mutual intersections and have
1250
+ no intersection with the two-flat-band parameter set, identified in Theorem 10.
1251
+ The solution space is invariant under those permutations of the γi which correspond
1252
+ to rotations of the lattice by 2π
1253
+ 3 , and 4π
1254
+ 3 . Modulo these permutations, the two connected
1255
+ components can be described as follows
1256
+ • A one-dimensional submanifold, isomorphic to an interval, and explicitely descibed
1257
+ in equation (26),
1258
+ • Two one-dimensional submanifolds each isomorphic to an interval, explicitely de-
1259
+ scribed in (28), and (30), which intersect in a single point.
1260
+ Proof of Theorem 12. Recall that due to the reductions made at the beginning of the
1261
+ section, after fixing the constant vertex weight µ > 0, the space of edge weights is a
1262
+ 3-dimensional manifold in the 6-dimensional parameter space {γ1, γ2, γ3, γ7, γ8, γ9 > 0},
1263
+ subject to the conditions
1264
+ γ1 + γ3 + γ9 = γ1 + γ2 + γ8 = γ2 + γ3 + γ7 = µ.
1265
+ (21)
1266
+ Furthermore, from the proof of Theorem 10 we infer that ∆γ has a flat band at λ if and
1267
+ only if the weighted adjacency matrix Πθ
1268
+ γ has the θ-independent eigenvalue ˜λ := µ(1−λ).
1269
+ This requires in particular that
1270
+ ˜λ = −γ1γ3
1271
+ γ2
1272
+ ± γ9 = −γ1γ2
1273
+ γ3
1274
+ ± γ8 = −γ2γ3
1275
+ γ1
1276
+ ± γ7
1277
+ (22)
1278
+ holds with a certain combination of plus and minus signs. Now, if equality in (22) holds
1279
+ with all three signs positive or all three signs negative, respectively, then the argument
1280
+ in the proof of Theorem 10 shows that this already implies that the edge weights are
1281
+ monomeric, the identities also hold with the opposite sign, the additional condition (18) is
1282
+ fulfilled, and there are two flat bands. As a consequence, the only chance for the existence
1283
+
1284
+ ROBUSTNESS OF FLAT BANDS
1285
+ 15
1286
+ of exactly one flat band is (22) to hold with different signs in front of γ7, γ8, γ9. Also, it
1287
+ is immediately clear that (22) with different signs does not allow for a monomeric and
1288
+ non-zero solution and hence the solution space consists of at most six mutually disjoint
1289
+ components which have no intersection with the two-flat-band manifold, identified in
1290
+ Theorem 10.
1291
+ By symmetry, it suffices to investigate two out of these six cases:
1292
+ Case(- + +):
1293
+ − γ1γ3
1294
+ γ2
1295
+ − γ9 = −γ1γ2
1296
+ γ3
1297
+ + γ8 = −γ2γ3
1298
+ γ1
1299
+ + γ7 = ˜λ ,
1300
+ (23)
1301
+ and
1302
+ Case(+ - -):
1303
+ − γ1γ3
1304
+ γ2
1305
+ + γ9 = −γ1γ2
1306
+ γ3
1307
+ − γ8 = −γ2γ3
1308
+ γ1
1309
+ − γ7 = ˜λ .
1310
+ (24)
1311
+ To solve Case(- + +), combine the second identities in in (21) and (23), to deduce
1312
+ γ3 − γ1 =
1313
+ γ2
1314
+ γ1γ3
1315
+ (γ2
1316
+ 1 − γ2
1317
+ 3)
1318
+ which, recalling γi > 0, is only possible if γ1 = γ3. But then, by (23), γ7 = γ8. Calling
1319
+ α′ := γ2, and β′ := γ9, we can use (21), to further express
1320
+ γ1 = γ3 = µ − β′
1321
+ 2
1322
+ ,
1323
+ and
1324
+ γ7 = γ8 = µ + β′
1325
+ 2
1326
+ − α′.
1327
+ (25)
1328
+ Next, we eliminate β′ by resolving the yet unused first identity in (23), which yields
1329
+ − (µ − β′)2
1330
+ 4α′
1331
+ − β′ = −α′ + µ + β′
1332
+ 2
1333
+ − α′
1334
+
1335
+ β′ = µ − 3α′ ±
1336
+
1337
+ 17α′2 − 8α′µ.
1338
+ This only has real solutions if α′ >
1339
+ 8
1340
+ 17µ > 1
1341
+ 3µ, thus only
1342
+ β′ = µ − 3α′ +
1343
+
1344
+ 17α′2 − 8α′µ.
1345
+ can be a positive solution. Furthermore, we need β′ ∈ (0, µ), which is the case if and only
1346
+ if
1347
+ γ2 = α′ ∈
1348
+ �µ
1349
+ 2 , µ
1350
+
1351
+ .
1352
+ We therefore find the one-parameter solution set
1353
+ Case (- + +)
1354
+
1355
+
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+ γ1 = γ3
1364
+ = µ−β′
1365
+ 2 ,
1366
+ γ2 = α′
1367
+
1368
+ � µ
1369
+ 2, µ
1370
+
1371
+ ,
1372
+ γ7 = γ8
1373
+ = µ+β′
1374
+ 2
1375
+ − α′,
1376
+ γ9 = β′
1377
+ := µ − 3α′ +
1378
+
1379
+ 17α′2 − 8αµ
1380
+ (26)
1381
+ with energy
1382
+ ˜λ = −γ2 + γ7 = −2α′ + µ + β′
1383
+ 2
1384
+ = −2α′ + 2µ − 3α′ +
1385
+
1386
+ 17α′2 − 8α′µ
1387
+ 2
1388
+ .
1389
+ Finally, an explicit calculation shows that with these parameters, (18) is indeed fulfilled.
1390
+ As for Case(+ - -), we combine the second identity in (21) with the second identity
1391
+ in (24) to deduce
1392
+ γ3 − γ1 =
1393
+ γ2
1394
+ γ1γ3
1395
+ (γ2
1396
+ 3 − γ2
1397
+ 1) .
1398
+ (27)
1399
+ Identity (27) has two types of solutions:
1400
+ Case(+ - -)(a): γ1 = γ3.
1401
+
1402
+ 16
1403
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
1404
+ As before we find γ7 = γ8. Let α′ := γ2, β′ := γ9, and combine the remaining first identity
1405
+ in (24) with (25) to solve for β′, finding
1406
+ − (µ − β′)2
1407
+ 4α′
1408
+ + β′ = −µ + β′
1409
+ 2
1410
+
1411
+ β′ = µ + 3α′ ±
1412
+
1413
+ 9α′2 + 8α′µ.
1414
+ Only the solution
1415
+ β′ = µ + 3α′ −
1416
+
1417
+ 9α′2 + 8α′µ
1418
+ has a chance to be in (0, µ), and, indeed, this is the case if and only if
1419
+ γ2 = α′ ∈
1420
+
1421
+ 0, µ
1422
+ 2
1423
+
1424
+ .
1425
+ We obtain the one-parameter solution set
1426
+ Case(+ - -)(a)
1427
+
1428
+
1429
+
1430
+
1431
+
1432
+
1433
+
1434
+
1435
+
1436
+ γ1 = γ3
1437
+ = µ−β′
1438
+ 2 ,
1439
+ γ2 = α′
1440
+
1441
+
1442
+ 0, µ
1443
+ 2
1444
+
1445
+ ,
1446
+ γ7 = γ8
1447
+ = µ+β′
1448
+ 2
1449
+ − α′,
1450
+ γ9 = β′
1451
+ := µ + 3α′ −
1452
+
1453
+ 9α′2 + 8α′µ
1454
+ (28)
1455
+ with energy
1456
+ ˜λ = −γ2 − γ7 = −µ + β′
1457
+ 2
1458
+ = −2µ + 3α′ −
1459
+
1460
+ 9α′2 + 8α′µ
1461
+ 2
1462
+ .
1463
+ Again, an explicit calculation shows that (18) is fullfilled.
1464
+ Case(+ - -)(b): The other solution of (27) is
1465
+ γ1γ3 = γ2(γ1 + γ3).
1466
+ We set α′′ := γ1, β′′ := γ3, whence
1467
+ γ2 =
1468
+ α′′β′′
1469
+ α′′ + β′′,
1470
+ and use (21) to infer
1471
+ γ7 = µ − 2α′′β′′ + β′′2
1472
+ α′′ + β′′
1473
+ ,
1474
+ γ8 = µ − α′′2 + 2α′′β′′
1475
+ α′′ + β′′
1476
+ ,
1477
+ γ9 = µ − α′′ − β′′.
1478
+ (29)
1479
+ Plugging (29) into the yet unused first identity in (24), we arrive at
1480
+ − (α′′ + β′′) + µ − α′′ − β′′ = −
1481
+ α′′2
1482
+ α′′ + β′′ − µ + α′′2 + 2α′′β′′
1483
+ α′′ + β′′
1484
+
1485
+ β′′ = µ − 3α′′ ±
1486
+
1487
+ (µ − 3α′′)2 + 4α′′(µ − α′′)
1488
+ 2
1489
+ = µ − 3α′′ ±
1490
+
1491
+ µ2 − 2α′′µ + 5α′′2
1492
+ 2
1493
+ We observe that only the solution with a plus has a chance to be positive and it is easy to
1494
+ see that this solution takes values in (0, µ) for all α′′ ∈ (0, µ). We obtain the one-parameter
1495
+ solution set
1496
+ Case (+ - -) (b)
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+ γ1 = α′′
1519
+ ∈ (0, µ) ,
1520
+ γ2
1521
+ =
1522
+ α′′β′′
1523
+ α′′+β′′,
1524
+ γ3 = β′′
1525
+ :=
1526
+ µ−3α′′+√
1527
+ µ2−2α′′µ+5α′′2
1528
+ 2
1529
+ ,
1530
+ γ7
1531
+ = µ − 2α′′β′′+β′′2
1532
+ α′′+β′′
1533
+ ,
1534
+ γ8
1535
+ = µ − α′′2+2α′′β′′
1536
+ α′′+β′′
1537
+ ,
1538
+ γ9
1539
+ = µ − α′′ − β′′
1540
+ (30)
1541
+
1542
+ ROBUSTNESS OF FLAT BANDS
1543
+ 17
1544
+ at energy
1545
+ ˜λ = −γ1γ3
1546
+ γ2
1547
+ + γ9 = µ − 2α′′ − 2β′′ = α −
1548
+
1549
+ µ2 − 2α′′µ + 5α′′2.
1550
+ Again, an explicit calculation verifies that with these choices, (18) is fullfilled.
1551
+ Finally, to conclude the claimed topological properties of the manifolds, we need to
1552
+ verify that the solution space (28) in Case(+ - -)(a) intersects the solution space (30)
1553
+ in Case(+ - -)(b) if and only if
1554
+ γ1 = γ3 = γ7 = γ8 = 2µ
1555
+ 5 ,
1556
+ γ2 = γ9 = µ
1557
+ 5.
1558
+
1559
+ X2
1560
+ X1
1561
+ One flat band, Case(- + +)
1562
+ One flat band, Case(+ - -) (a)
1563
+ One flat band, Case(+ - -) (b)
1564
+ Monomeric edge weights,
1565
+ two flat bands
1566
+ Extremal cases, not belonging
1567
+ to the parameter space
1568
+ Figure 6. Schematic overview of the topology of the six “spurious” one-
1569
+ flat-band solution sets, and the monomeric two-flat-band manifold within
1570
+ the constant-vertex weight parameter space.
1571
+ Case(- + +) solutions
1572
+ asymptotically meet the limit points of the two-flat-band manifold at one
1573
+ end of the parameter range, whereas Case(+ - -) (a) solutions asymptot-
1574
+ ically meet it at both ends of the parameter range.
1575
+ Remark 13. Theorems 10 and 12 imply that the six one-flat-band components and the
1576
+ two-flat-band component are mutually disjoint. However, a closer analysis of the extremal
1577
+ cases in Formulas (26), (28), and (30), as well as of the monomeric case, implies that
1578
+ when sending the parameters to their extremal values, the three one-dimensional manifolds
1579
+ corresponding to Case(+ - -) (a), and the two-flat-band-manifold of solutions converge
1580
+ to the two points
1581
+ X1 :=
1582
+
1583
+ 0, 0, 0, µ
1584
+ 2, µ
1585
+ 2 , µ
1586
+ 2
1587
+
1588
+ and
1589
+ X2 :=
1590
+ �µ
1591
+ 2, µ
1592
+ 2 , µ
1593
+ 2 , 0, 0, 0
1594
+
1595
+ ,
1596
+ which themselves do no longer belong to the space of admissible parameters. Likewise, the
1597
+ limit of solutions of Case(+ - -) in (26) corresponding to α′ = µ
1598
+ 2 corresponds to the the
1599
+ point X2, see also Figure 6.
1600
+ Acknowledgement. JK would like to thank the Bergische Universit¨at Wuppertal where
1601
+ parts of this project were done while being on leave from the FernUniversit¨at in Hagen.
1602
+ JK and MT also acknowledge support by the Cost action CA18232 through the summer
1603
+ school “Heat Kernels and Geometry: From Manifolds to Graphs” held in Bregenz. MT
1604
+ would like to thank the Mittag-Leffler Institute where parts of this work were initiated
1605
+ during the trimester Program “Spectral Methods in Mathematical Physics”.
1606
+
1607
+ 18
1608
+ J. KERNER, M. T¨AUFER, AND J. WINTERMAYR
1609
+ References
1610
+ [BE22]
1611
+ M. Baradaran and P. Exner, Kagome network with vertex coupling of a preferred orientation,
1612
+ J. Math. Phys 63 (2022), no. 8, 083502.
1613
+ [BK13]
1614
+ G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, American Mathematical
1615
+ Society, 2013.
1616
+ [BL09]
1617
+ J. von Below and J. A. Lubary, Isospectral infinite graphs and networks and infinite eigen-
1618
+ value multiplicities, Netw. Heterog. Media 4 (2009), no. 3, 453–468.
1619
+ [BM18]
1620
+ T. Bilitewski and R. Moessner, Disordered flat bands on the Kagome lattice, Phys. Rev. B
1621
+ 98 (2018), 235109.
1622
+ [DCS12]
1623
+ H. Duminil-Copin and S. Smirnov, The connective constant of the Honeycomb lattice equals
1624
+
1625
+ 2 +
1626
+
1627
+ 2, Ann. Math. 175 (2012), 1653–1665.
1628
+ [Dia21]
1629
+ D. P. Dias, Topological properties of flat bands in generalized Kagome lattice materials, dis-
1630
+ sertation at KTH, School of Engineering Sciences (SCI), 2021.
1631
+ [dLFM19]
1632
+ F. C. de Lima, G. J. Ferreira, and R. H. Miwa, Topological flat band, Dirac fermions and
1633
+ quantum spin Hall phase in 2d Archimedean lattices, Phys. Chem. Chem. Phys. 21 (2019),
1634
+ no. 40, 22344–22350.
1635
+ [EK15]
1636
+ P. Exner and H. Kovaˇr´ık, Quantum waveguides, Springer International Publishing, 2015.
1637
+ [Exn20]
1638
+ P. Exner, Spectral properties of soft quantum waveguides, J. Phys. A 53 (2020), no. 35,
1639
+ 355302.
1640
+ [Exn22]
1641
+ , Soft quantum waveguides in three dimensions, J. Math. Phys. 63 (2022), no. 4,
1642
+ 042103.
1643
+ [FK58]
1644
+ F. C. Frank and J. S. Kasper, Complex alloy structures regarded as sphere packings. I.
1645
+ Definitions and basic principles, Acta. Cryst. 11 (1958), 184–190.
1646
+ [FK59]
1647
+ , Complex alloy structures regarded as sphere packings. II. Analysis and classification
1648
+ of representative structures, Acta. Cryst. 12 (1959), 483–499.
1649
+ [FW12]
1650
+ C. L. Fefferman and M. I. Weinstein, Honeycomb lattice potentials and dirac points, J. Am.
1651
+ Math. Soc. 25 (2012), no. 4, 1169–1220.
1652
+ [GS89]
1653
+ B. Gr¨unbaum and G. C. Shephard, Tilings and patterns, A Series of Books in the Mathe-
1654
+ matical Sciences, W. H. Freeman and Company, New York, 1989.
1655
+ [HC15]
1656
+ J-M. Hou and W. Chen, Hidden symmetry and protection of Dirac points on the honeycomb
1657
+ lattice, Scientific Reports 5 (2015), 17571.
1658
+ [HKdP+22] M. A. J. Herrera, S. N. Kempkes, M. Blanco de Paz, A. Garc´ıa-Etxarri, I. Swart, C. Morais
1659
+ Smith, and D. Bercioux, Corner modes of the breathing Kagome lattice: origin and robust-
1660
+ ness, arXiv:2201.07576 [cond-mat.mes-hall], 2022.
1661
+ [HRS]
1662
+ C. Hainzl, B. Roos, and R. Seiringer, Boundary superconductivity in the BCS model,
1663
+ arXiv:2201.08090 [math-ph], 2022.
1664
+ [Jac14]
1665
+ J. L. Jacobsen, High-precision percolation thresholds and Potts-model critical manifolds from
1666
+ graph polynomials, J. Phys. A: Math. Theor. 47 (2014), 135001.
1667
+ [JBT21]
1668
+ A. Julku, G. M. Bruun, and P. T¨orm¨a, Quantum geometry and flat band Bose-Einstein
1669
+ condensation, Phys. Rev. Lett. 127 (2021), no. 17.
1670
+ [JSG16]
1671
+ J. L. Jacobsen, C. R. Scullard, and A. J. Guttmann, On the growth constant for square-lattice
1672
+ self-avoiding walks, J. Phys. A Math. Theor. 49 (2016), no. 49, 494004.
1673
+ [Kep19]
1674
+ J. Kepler, Harmonices mundi, Johann Plack, 1619.
1675
+ [Kes80]
1676
+ H. Kesten, The critical probability of bond percolation on the square lattice equals 1
1677
+ 2, Comm.
1678
+ Math. Phys. 74 (1980), no. 1, 41–59. MR 575895
1679
+ [KFSH19]
1680
+ A. J. Koll´ar, M. Fitzpatrick, P. Sarnak, and A. A. Houck, Line-graph lattices: Euclidean and
1681
+ non-Euclidean flat bands, and implementations in circuit quantum electrodynamics, Comm.
1682
+ Math. Phys. 376 (2019), no. 3, 1909–1956.
1683
+ [KHZ+20]
1684
+ A. A. Kulkarni, E. Hanson, R. Zhang, K. Thornton, and P. V. Braun, Archimedean lattices
1685
+ emerge in template-directed eutectic solidification, Nature 577 (2020), no. 7790, 355–358.
1686
+ [KLW21]
1687
+ M. Keller, D. Lenz, and R. K. Wojciechowski, Graphs and Discrete Dirichlet Spaces, Springer
1688
+ Nature Switzerland AG, 2021.
1689
+ [KP07]
1690
+ P. Kuchment and O. Post, On the spectra of carbon nano-structures, Comm. Math. Phys.
1691
+ 275 (2007), no. 3, 805–826.
1692
+ [KS]
1693
+ E. Korotyaev and N. Saburova, Two-sided estimates of total bandwidth for Schr¨odinger op-
1694
+ erators on periodic graphs, arXiv:2106.08661 [math.SP], 2021.
1695
+
1696
+ ROBUSTNESS OF FLAT BANDS
1697
+ 19
1698
+ [KS19]
1699
+ E. Korotyaev and N. Saburova, Spectral estimates for Schr¨odinger operators on periodic
1700
+ discrete graphs, St. Petersbg. Math. J. 30 (2019), no. 4, 667–698.
1701
+ [LWL13]
1702
+ Z. Liu, J. Wang, and J. Li, Dirac cones in two-dimensional systems: from hexagonal to
1703
+ square lattices, Phys. Chem. Chem. Phys. 15 (2013), 18855–18862.
1704
+ [MDY22]
1705
+ C. Mielke, D. Das, and JX. et al. Yin, Time-reversal symmetry-breaking charge order in a
1706
+ Kagome superconductor, Nature 602 (2022), 245–250.
1707
+ [MW89]
1708
+ B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc.
1709
+ 21 (1989), no. 3, 209–234.
1710
+ [Nie82]
1711
+ B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions,
1712
+ Phys. Rev. Lett. 49 (1982), 1062–1065.
1713
+ [Par07]
1714
+ R. Parviainen, Estimation of bond percolation thresholds on the Archimedean lattices, J.
1715
+ Phys. A: Math. Theor. 40 (2007), 9253–9258.
1716
+ [PT21]
1717
+ N. Peyerimhoff and M. T¨aufer, Eigenfunctions and the integrated density of states on
1718
+ Archimedean tilings, J. Spectr. Theory 11 (2021), 461–488.
1719
+ [PTV17]
1720
+ N. Peyerimhoff, M. T¨aufer, and I. Veseli´c, Unique continuation principles and their absence
1721
+ for schr¨odinger eigenfunctions on combinatorial and quantum graphs and in continuum space,
1722
+ Nanosystems: Physics, Chemistry, Mathematics (2017), 216–230.
1723
+ [SB20]
1724
+ A. Samoilenka and E. Babaev, Boundary states with elevated critical temperatures in
1725
+ Bardeen-Cooper-Schrieffer superconductors, Phys. Rev. B 101 (2020), no. 13.
1726
+ [SB21]
1727
+ A. Samoilenka and E. Babaev, Microscopic derivation of superconductor-insulator boundary
1728
+ conditions for Ginzburg-Landau theory revisited: Enhanced superconductivity at boundaries
1729
+ with and without magnetic field, Phys. Rev. B 103 (2021), 224516.
1730
+ [SE64]
1731
+ M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond
1732
+ problems in two dimensions, J. Math. Phys. 5 (1964), 1117–1127.
1733
+ [SYY22]
1734
+ M. Shi, F. Yu, Y. Yang et al., A new class of bilayer Kagome lattice compounds with Dirac
1735
+ nodal lines and pressure-induced superconductivity., Nat. Commun. 2773 (2022).
1736
+ [SZ99]
1737
+ P. N. Suding and R. M. Ziff, Site percolation thresholds for Archimedean lattices, Phys. Rev.
1738
+ E 60 (1999), no. 1, 275–283.
1739
+ [TFGK22]
1740
+ T. Tarnai, P. W. Fowler, S. D. Guest, and F. Kov´acs, Equiauxetic hinged Archimedean tilings,
1741
+ Symmetry 14 (2022), 232.
1742
+ [Ves04]
1743
+ I. Veseli´c, Spectral analysis of percolation Hamiltonians, Math. Ann. 331 (2004), no. 4, 841–
1744
+ 865.
1745
+ Joachim Kerner, Lehrgebiet Analysis, Fakult¨at Mathematik und Informatik, Fern-
1746
+ Universit¨at in Hagen, D-58084 Hagen, Germany
1747
+ Email address: joachim.kerner@fernuni-hagen.de
1748
+ Matthias T¨aufer, Lehrgebiet Analysis, Fakult¨at Mathematik und Informatik, Fern-
1749
+ Universit¨at in Hagen, D-58084 Hagen, Germany
1750
+ Email address: matthias.taeufer@fernuni-hagen.de
1751
+ Jens Wintermayr, Bergische Universit¨at Wuppertal, Fakult¨at f¨ur Mathematik und
1752
+ Naturwissenschaften, 42119 Wuppertal, Germany
1753
+ Email address: wintermayr@uni-wuppertal.de
1754
+
5NE4T4oBgHgl3EQfbwwx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE2T4oBgHgl3EQf6wiO/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7c5ac07019534c0a15ea03a394858ca6ca1ee17325344182e69f1cbfafdd3df
3
+ size 4194349
6NAyT4oBgHgl3EQf2fnD/content/tmp_files/2301.00753v1.pdf.txt ADDED
@@ -0,0 +1,1236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00753v1 [cs.IT] 2 Jan 2023
2
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND
3
+ NEW QUANTUM CODES
4
+ REZA DASTBASTEH AND KHALIL SHIVJI
5
+ Abstract. We give a polynomial representation for additive cyclic codes over Fp2. This repre-
6
+ sentation will be applied to uniquely present each additive cyclic code by at most two generator
7
+ polynomials. We determine the generator polynomials of all different additive cyclic codes. A
8
+ minimum distance lower bound for additive cyclic codes will also be provided using linear cyclic
9
+ codes over Fp. We classify all the symplectic self-dual, self-orthogonal, and nearly self-orthogonal
10
+ additive cyclic codes over Fp2. Finally, we present ten record-breaking binary quantum codes
11
+ after applying a quantum construction to self-orthogonal and nearly self-orthogonal additive
12
+ cyclic codes over F4.
13
+ Keywords: additive cyclic codes, quantum code, self-orthogonal codes, self-dual codes
14
+ 1. Introduction
15
+ Quantum error-correcting codes, or simply quantum codes, are used in quantum computation
16
+ to protect quantum information from corruption by noise (decoherence). A general framework
17
+ of quantum codes is provided in [9, 13]. Throughout this paper, Fp2 is the finite field of p2
18
+ elements, where p is a prime number. The parameters of a quantum code over Fp that encodes
19
+ k logical qubits to n physical qubits and has minimum distance d is denoted by [[n, k, d]]p. An
20
+ important family of quantum codes with many similar properties as classical block codes is
21
+ the family of quantum stabilizer codes. In particular, quantum stabilizer codes are constructed
22
+ using additive codes which are self-orthogonal with respect to a certain symplectic inner product.
23
+ Several constructions of quantum stabilizer codes from various classical codes are given in [18].
24
+ An interesting modification of the original definition of quantum stabilizer codes is by relaxing
25
+ its self-orthogonality constraint [5, 19]. This method enables us to construct good quantum
26
+ codes using not necessarily self-orthogonal additive codes over F4. Previously, this modification
27
+ was applied for the construction of new quantum codes from different families of linear codes
28
+ [6, 10, 20].
29
+ Additive cyclic codes are of interest due to their rich algebraic properties and application
30
+ in the construction of quantum codes. There have been several works in the literature toward
31
+ the classification of additive cyclic codes for different applications [1, 4, 7, 16, 17, 21], and also
32
+ due to their connection to other families of block codes such as quasi-cyclic codes [15].
33
+ In
34
+ [16], a canonical decomposition of additive cyclic code over F4 was introduced using certain
35
+ finite field extensions of F4. This decomposition was applied to determine self-orthogonal and
36
+ self-dual additive cyclic codes over F4 with respect to the trace inner product. In [3], it was
37
+ shown that each additive cyclic code over F4 of length n can be generated by F2-span of at
38
+ most two polynomials in F4[x]/⟨xn − 1⟩ and their cyclic shifts. Moreover, a criterion for the
39
+ self-orthogonality of such codes with respect to the trace inner product was provided. Another
40
+ interesting construction for a subclass of additive cyclic code, namely twisted codes, was provided
41
+ in [1]. This construction is analogous to the way linear cyclic codes are constructed. In spite of
42
+ many useful properties of twisted codes, all additive cyclic codes cannot be described using the
43
+ theory of additive twisted codes.
44
+ 1
45
+
46
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
47
+ 2
48
+ In this work, we first give a canonical representation of all Fp-additive cyclic codes over Fp2
49
+ using at most two generator polynomials. Our representation is more computationally friendly
50
+ than the canonical representation of [16].
51
+ This representation allows us to give a minimum
52
+ distance lower bound for additive cyclic codes over Fp2 using the minimum distance of linear
53
+ cyclic codes over Fp.
54
+ Moreover, we provide a unique set of generator polynomials for each
55
+ additive cyclic code over Fp2.
56
+ This representation of generator polynomials will be used to
57
+ characterize all self-orthogonal and self-dual additive cyclic codes with respect to the symplectic
58
+ inner product. We also determine the generator polynomials of the symplectic dual of a given
59
+ additive cyclic code over Fp2, and compute nearly the self-orthogonality of each additive cyclic
60
+ code using only its generator polynomials. This allows us to apply the nearly self-orthogonal
61
+ construction of quantum codes developed in [5, 19]. In particular, we provide a list of eleven
62
+ record-breaking binary quantum codes after applying the mentioned quantum construction to
63
+ nearly self-orthogonal additive cyclic codes. Furthermore, applying secondary constructions to
64
+ our new quantum codes produce many more record-breaking binary codes. Note that such new
65
+ quantum codes cannot be constructed using self-orthogonal additive cyclic codes of the same
66
+ length.
67
+ This paper is organized as follows. Section 2 briefly recalls the essential terminologies used in
68
+ this work. Section 3 gives a canonical representation of additive cyclic codes over Fp2. In fact,
69
+ we follow a module theory approach to decompose each additive cyclic code using its polynomial
70
+ representation in Fp2[x]/⟨xn −1⟩. In Section 4, we compute the symplectic dual of each additive
71
+ cyclic code. We provide the necessary and sufficient conditions for an additive cyclic code to
72
+ be self-orthogonal, self-dual, or nearly self-orthogonality with respect to the symplectic inner
73
+ product. Finally, in Section 5, we present the parameters of our record-breaking quantum codes.
74
+ 2. Preliminaries
75
+ Let ω be a primitive element of Fp2. Then the set {1, ω} forms a basis for Fp2 over Fp. Let
76
+ a + bω and a′ + b′ω ∈ Fn
77
+ p2, where a, a′, b, b′ ∈ Fn
78
+ p. The symplectic inner product of a + bω and
79
+ a′ + b′ω is defined by
80
+ ⟨a + bω, a′ + b′ω⟩s = a′ · b − a · b′.
81
+ (2.1)
82
+ An Fp-linear subspace C ⊆ Fn
83
+ p2 is called a length n additive code over Fp2.
84
+ We denote the
85
+ Fp-dimension of an additive code C over Fp2 with dimFp(C). Let C ⊆ Fn
86
+ p2 be an additive code
87
+ over Fp2 such that dimFp(C) = k. Then we call C an (n, pk) code. The set
88
+ C⊥s = {x ∈ Fn
89
+ p2 : ⟨x, y⟩s = 0 for all y ∈ C}.
90
+ is called the symplectic dual of C. One can easily see that C⊥s is an (n, p2n−k) additive code
91
+ over Fp2. The code C is called self-orthogonal (respectively self-dual) if C ⊆ C⊥s (respectively
92
+ if C = C⊥s). For each x ∈ Fn
93
+ p2, we denote the number of non-zero coordinates of x by wt(x).
94
+ Moreover, the minimum weight among non-zero vectors of an additive code C is denoted by
95
+ d(C). The connection between quantum stabilizer codes and classical additive codes was initially
96
+ formulated by the independent works of Calderbank, Rains, Shor, and Sloane [3] and Gottesman
97
+ [11]. A non-binary version of this connection is provided below.
98
+ Theorem 2.1. [18, Corollary 16] Let C be an (n, pn−k) additive code over Fp2. Then there exists
99
+ an [[n, k, d]]p quantum stabilizer code if C is symplectic self-orthogonal, where d = min{wt(x) :
100
+ x ∈ C⊥
101
+ s \ C} if k > 0 and d = min{wt(x) : x ∈ C} if k = 0.
102
+ The quantum code of Theorem 2.1 is called pure if d = d(C⊥s). There are several secondary
103
+ constructions of quantum code. A short list of such constructions is provided below.
104
+
105
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
106
+ 3
107
+ Theorem 2.2. [18, Section XV] Let C be an [[n, k, d]]p quantum code.
108
+ (1) If k > 0, then an [[n + 1, k, d]]p quantum code exists.
109
+ (2) If C is pure and n, d ≥ 2, then an [[n − 1, k + 1, d − 1]]p pure quantum code exists.
110
+ (3) If k > 1, then there exists an [[n, k − 1, d]]p quantum code.
111
+ 3. Additive cyclic codes over Fp2
112
+ Throughout this section, we assume that n is a positive integer such that (n, p) = 1 and
113
+ Fp2 = {α + βω : α, β ∈ Fp}, where ω is a root of a degree two irreducible polynomial over
114
+ Fp. In this section, we provide a canonical representation of additive cyclic codes over the field
115
+ Fp2. In particular, we give a unique representation of each additive cyclic code over Fp2 using
116
+ at most two generator polynomials. Moreover, we determine the generator polynomials of all
117
+ different additive cyclic codes over Fp2. In particular, each additive cyclic code over F2
118
+ p is a linear
119
+ combination of cyclic shifts of its generator polynomials. Such representation is also suitable
120
+ for practical computations of additive cyclic codes, especially using Magma computer algebra
121
+ system [2]. More particularly, there exists a built-in function in Magma which forms additive
122
+ cyclic codes generated by two given generator polynomials. At the end of this section, we give
123
+ a minimum distance lower bound for the minimum distance of additive cyclic codes over Fp2
124
+ using the minimum distance of linear cyclic codes over Fp.
125
+ Definition 3.1. An Fp-subspace C ⊆ Fn
126
+ p2 is called an additive cyclic code of length n over Fp2,
127
+ if for every (a0, a1, . . . , an−1) ∈ C, the vector (an−1, a0, . . . , an−2) is also a codeword of C.
128
+ We will use the following concepts of module theory frequently in this section, and for more
129
+ details one, for example, can see [8, Chapter 12]. Let R be a principal ideal domain and M be an
130
+ R-module. The annihilator of M is an ideal of R defined by {r ∈ R : rm = 0 for any m ∈ M}.
131
+ An element m ∈ M is called a torsion element, if there exists 0 ̸= r ∈ R such that rm = 0.
132
+ The module M is called a torsion module if all of its elements are torsion.
133
+ The following
134
+ theorem, known as the primary decomposition theorem of modules, plays an important role in
135
+ our representation of additive cyclic codes.
136
+ Theorem 3.2. [8, Chapter 12, Theorem 7] Let R be a principal ideal domain and M be a torsion
137
+ R-module with the annihilator ⟨a⟩ ̸= 0. Let a = u
138
+ n
139
+
140
+ i=1
141
+ pai
142
+ i , where u is a unit and pi is a prime
143
+ element for each 1 ≤ i ≤ n. Then we can decompose M as a direct sum of its submodules in the
144
+ form
145
+ M =
146
+ n
147
+
148
+ i=1
149
+ Ni,
150
+ (3.1)
151
+ where Ni = {x ∈ M : xpai
152
+ i = 0} for each 1 ≤ i ≤ n.
153
+ Each element (a0, a1, . . . , an−1) ∈ Fn
154
+ p2 can be represented uniquely as a polynomial in Fp2[x]/⟨xn−
155
+ 1⟩ in the form
156
+ n−1
157
+
158
+ i=0
159
+ aixi. One can easily verify that, under this correspondence, a length n additive
160
+ cyclic codes over Fp2 is an Fp[x]-submodule of Fp2[x]/⟨xn − 1⟩.
161
+ Notation 3.3. Let f and g ∈ Fp2[x]/⟨xn −1⟩. We fix the following notations for the rest of this
162
+ paper.
163
+ (1) The ideal generated by f in Fp2[x]/⟨xn − 1⟩ is denoted by ⟨f⟩Fp2[x]. Equivalently it is
164
+ the Fp2[x]-submodule of Fp2[x]/⟨xn − 1⟩ generated by the polynomial f.
165
+
166
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
167
+ 4
168
+ (2) The Fp[x]-submodule of Fp2[x]/⟨xn − 1⟩ generated by the polynomial g is denoted by
169
+ ⟨g⟩Fp[x].
170
+ A straightforward computation shows that the annihilator of Fp2[x]/⟨xn − 1⟩ as an Fp[x]-
171
+ module is the ideal ⟨xn−1⟩. Moreover, we can decompose xn−1 over Fp[x] as xn−1 =
172
+ s
173
+
174
+ i=1
175
+ fi(x),
176
+ where each fi(x) is an irreducible polynomial corresponding to a p-cyclotomic coset modulo n.
177
+ Next, we apply Theorem 3.2 to Fp2[x]/⟨xn − 1⟩. It is straightforward to see that
178
+ Fp2[x]/⟨xn − 1⟩ =
179
+ s
180
+
181
+ i=1
182
+ Ni,
183
+ (3.2)
184
+ where Ni = ⟨(xn − 1)/fi(x)⟩Fp2[x] for each 1 ≤ i ≤ s. We call a non-zero length n additive cyclic
185
+ code C over Fp2 irreducible if for any additive cyclic code D ⊆ C, then D = {0} or D = C. The
186
+ next lemma shows that each Ni can be decomposed as a direct sum of two irreducible additive
187
+ cyclic codes. We determine the generator polynomial of all irreducible additive cyclic codes
188
+ inside Ni and provide other useful information about additive cyclic codes inside each Ni.
189
+ Lemma 3.4. Let f(x) be an irreducible divisor of xn − 1 over Fp[x] with deg(f) = k and
190
+ N = ⟨(xn − 1)/f(x)⟩Fp2[x].
191
+ (1) Let 0 ̸= r(x) ∈ N, then the set L = {r(x), xr(x), . . . , xk−1r(x)} forms a basis for
192
+ ⟨r(x)⟩Fp[x] as an Fp vector space.
193
+ (2) Let 0 ̸= C ⊊ N be an additive cyclic code. The code C has Fp-dimension k and C =
194
+ ⟨r(x)⟩Fp[x] for any 0 ̸= r(x) ∈ C.
195
+ (3) The additive cyclic code N can be decomposed as
196
+ N = ⟨(xn − 1)/f(x)⟩Fp[x] ⊕ ⟨ω((xn − 1)/f(x))⟩Fp[x].
197
+ Moreover, dimFp(N) = 2k and N is linear over Fp2.
198
+ (4) The number of irreducible additive cyclic codes inside N is 2k + 1. In particular, the
199
+ following set gives all the different generator polynomials of such additive cyclic codes.
200
+ A = {
201
+
202
+ (xn − 1)/f(x)
203
+ ��
204
+ ω + g(x)
205
+
206
+ : g(x) ∈ Fp[x], deg(g(x)) < k} ∪ {(xn − 1)/f(x)}.
207
+ (3.3)
208
+ Proof. (1) Obviously L ⊆ ⟨r(x)⟩Fp[x]. Suppose, on the contrary, that L is linearly dependent
209
+ over Fp. Hence we can find a polynomial 0 ̸= s(x) ∈ Fp[x] of degree less than k such that
210
+ r(x)s(x) ≡ 0 (mod xn − 1). Since (xn − 1)/f(x) | r(x) and f(x) is irreducible, we conclude that
211
+ f(x) | s(x). However, it is a contradiction with the fact that deg(s(x)) < k. This shows that L
212
+ is linearly independent over Fp. Note that the set L ∪ {xkr(x)} is linearly dependent over Fp
213
+ as this new set generates f(x)r(x) ≡ 0 (mod xn − 1). In a similar fashion, one can show that
214
+ {xir(x)} for k < i < n − 1 can be written as a linear combination of elements of L over Fp.
215
+ Therefore, L forms a basis for ⟨r(x)⟩Fp[x].
216
+ (2) Let 0 ̸= r(x) ∈ C.
217
+ Suppose in contrary that ⟨r(x)⟩Fp[x] ⊊ C.
218
+ Then there exists a
219
+ polynomial s(x) ∈ C such that s(x) ̸∈ ⟨r(x)⟩Fp[x]. Note that ⟨r(x)⟩Fp[x] ∩ ⟨s(x)⟩Fp[x] = {0} as
220
+ otherwise, by part (1), for any polynomial a(x) in the intersection, we have
221
+ ⟨r(x)⟩Fp[x] = ⟨a(x)⟩Fp[x] = ⟨s(x)⟩Fp[x],
222
+ which is a contradiction. Thus C = ⟨r(x)⟩Fp[x] and has dimension k over Fp.
223
+ (3) It is easy to see that ⟨(xn − 1)/f(x)⟩Fp[x] ∩ ⟨ω((xn − 1)/f(x)⟩Fp[x] = {0} and
224
+ N = ⟨(xn − 1)/f(x)⟩Fp[x] ⊕ ⟨ω((xn − 1)/f(x))⟩Fp[x].
225
+
226
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
227
+ 5
228
+ Hence N has dimension 2k over Fp. The linearity part follows immediately from the structure
229
+ of its generator polynomials.
230
+ (4) In order to find an additive cyclic code with Fp-dimension k, we need to choose a nonzero
231
+ polynomial r(x) ∈ N to be its generator. Also, any non-zero elements of ⟨r(x)⟩Fp[x] generates
232
+ the same code. Hence the number of additive cyclic codes with one non-zero generator inside
233
+ N is 22k−1
234
+ 2k−1 = 2k + 1.
235
+ Let C1 and C2 be two k-dimensional additive cyclic codes inside N. If C1 ∩ C2 ̸= {0}, then
236
+ C1 = C2 by part (1). Equivalently, if C1 + C2 = N, then C1 ∩ C2 = {0}. Now we show that
237
+ different elements of the set A generate different codes. Let g(x) ∈ Fp[x] such that deg(g(x)) < k.
238
+ Clearly the additive cyclic code C1 = ⟨(xn − 1)/f(x), ((xn − 1)/f(x))(g(x) + ω)⟩Fp[x] contains
239
+ (xn − 1)/f(x) and ω(xn − 1)/f(x). Therefore C1 = N. So ⟨(xn − 1)/f(x)⟩Fp[x] and ⟨((xn −
240
+ 1)/f(x))(g(x) + ω)⟩Fp[x] are different additive cyclic codes.
241
+ Let g1(x) and g2(x) ∈ Fp[x] be two different polynomials of degree less than k. The code
242
+ C = ⟨((xn − 1)/f(x))(ω + g1(x)), ((xn − 1)/f(x))(ω + g2(x))⟩Fp[x] contains (xn − 1)/f(x) and
243
+ ω(xn − 1)/f(x). It is mainly because
244
+
245
+
246
+ (xn − 1)/f(x)
247
+
248
+ (g1(x) − g2(x))⟩Fp[x] = ⟨(xn − 1)/f(x)⟩Fp[x].
249
+ Thus C = N. This implies that the additive cyclic codes ⟨((xn − 1)/f(x))(ω + g1(x))⟩Fp[x] and
250
+ ⟨((xn−1)/f(x))(ω+g2(x))⟩Fp[x] are different. This proves that the set A contains all the different
251
+ generators of irreducible additive cyclic codes inside N.
252
+
253
+ As we mentioned in part (1) of Lemma 3.4, each additive cyclic code inside ⟨(xn−1)/f(x)⟩Fp2[x]
254
+ can have many different generator polynomials. Through the next remark, we fix a canonical
255
+ representation for each additive cyclic code inside N.
256
+ Remark 3.5. For each additive code 0 ̸= C ⊊ ⟨(xn −1)/f(x)⟩Fp2[x], we fix its generator polyno-
257
+ mial inside the set A, introduced in (3.3), to be “the” generator polynomial of C. Similarly, the
258
+ additive cyclic code C′ = ⟨(xn−1)/f(x)⟩Fp2[x] can be generated by the polynomials (xn−1)/f(x)
259
+ and ω((xn − 1)/f(x)). We call them “the” generator polynomials of C′.
260
+ This representation helps to uniquely identify each additive cyclic code inside N and avoid
261
+ considering the same code more than once. Next, we use the result of Lemma 3.4 and characterize
262
+ all the additive cyclic codes of length n over Fp2. Recall that xn − 1 =
263
+ s
264
+
265
+ i=1
266
+ fi(x), where fi(x) is
267
+ an irreducible polynomial over Fp[x] for each 1 ≤ i ≤ s and Ni = ⟨(xn − 1)/fi(x)⟩Fp2[x].
268
+ Theorem 3.6. Let C be a length n additive cyclic code over Fp2. Then
269
+ (i) we can decompose the code C as C =
270
+ s
271
+
272
+ i=1
273
+ Ci, where each Ci is an additive cyclic code
274
+ inside Ni.
275
+ (ii) we have C = ⟨g(x) + ωk(x), ωh(x)⟩Fp[x], where
276
+ (a) g(x) + ωk(x) =
277
+ s
278
+
279
+ i=1
280
+ gi(x) + ωki(x),
281
+ (b) h(x) =
282
+ s
283
+
284
+ i=1
285
+ hi(x),
286
+ (c) and Ci has the generator polynomial(s) gi(x) + ωki(x) and ωhi(x) selected as dis-
287
+ cussed in Remark 3.5.
288
+
289
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
290
+ 6
291
+ (iii) dimFp(C) =
292
+ s
293
+
294
+ i=1
295
+ (deg(fi) × # of non-zero generators of Ci).
296
+ Proof. (i) As we mentioned in (3.2), the following decomposition holds
297
+ Fp2[x]/⟨xn − 1⟩ =
298
+ s
299
+
300
+ i=1
301
+ Ni.
302
+ So we can express C as C = �s
303
+ i=1 Ci, where each Ci is an additive cyclic codes inside Ni.
304
+ (ii) We show that the additive cyclic codes C =
305
+ s
306
+
307
+ i=1
308
+ Ci and ⟨g(x) + ωk(x), ωh(x)⟩Fp[x] are the
309
+ same. First note that g(x) + ωk(x), ωh(x) ∈ C and thus ⟨g(x) + ωk(x), ωh(x)⟩Fp[x] ⊆ C. Let
310
+ 1 ≤ i ≤ s be a fixed integer. Since
311
+
312
+ (xn − 1)/fi(x)
313
+
314
+ | gi(x), ki(x), hi(x) and
315
+
316
+ (xn − 1)/fi(x)
317
+
318
+ gj(x) ≡
319
+
320
+ (xn − 1)/fi(x)
321
+
322
+ kj(x) ≡
323
+
324
+ (xn − 1)/fi(x)
325
+
326
+ hj(x) ≡ 0
327
+ (mod xn − 1)
328
+ for any j ̸= i, we have
329
+
330
+ (xn − 1)/fi(x)
331
+ ��
332
+ g(x) + ωk(x)
333
+
334
+
335
+
336
+ (xn − 1)/fi(x)
337
+ ��
338
+ gi(x) + ωki(x)
339
+
340
+ (mod xn − 1)
341
+ and
342
+
343
+ (xn − 1)/fi(x)
344
+
345
+ ωh(x) ≡
346
+
347
+ (xn − 1)/fi(x)
348
+
349
+ ωhi(x)
350
+ (mod xn − 1).
351
+ Moreover, we have
352
+ Ci = ⟨gi(x)+ωki(x), ωhi(x)⟩Fp[x] = ⟨
353
+
354
+ (xn −1)/fi(x)
355
+ ��
356
+ g(x)+ωk(x)
357
+
358
+ ,
359
+
360
+ (xn −1)/fi(x)
361
+
362
+ ωh(x)⟩Fp[x].
363
+ Thus
364
+ Ci ⊆ ⟨g(x) + ωk(x), ωh(x)⟩Fp[x].
365
+ This show that
366
+ s
367
+
368
+ i=1
369
+ Ci ⊆ ⟨g(x) + ωk(x), ωh(x)⟩Fp[x] and completes the proof.
370
+ (iii) Note that dimFp(C) =
371
+ s
372
+
373
+ i=1
374
+ dimFp(Ci). Moreover, by Lemmas 3.4, dimFp(Ci) = 0, ki, or
375
+ 2ki if Ci = 0, Ci is generated by one generator polynomial, or Ci has two generator polynomials,
376
+ respectively. Combining these facts with the result of part (i) completes this proof.
377
+
378
+ Through the next corollary, we characterize all the length n irreducible additive cyclic codes
379
+ over Fp2.
380
+ Proposition 3.7. Let C be an additive cyclic code of length n over Fp2. Then C is irreducible
381
+ if and only if C = ⟨r(x)⟩Fp[x] for some 0 ̸= r(x) ∈ Ni and 1 ≤ i ≤ s. Moreover, there are
382
+ s
383
+
384
+ i=1
385
+ (2deg(fi) + 1) many different irreducible additive cyclic codes.
386
+ Proof. Let C = ⟨r(x)⟩Fp[x] for some 0 ̸= r(x) ∈ Ni and 1 ≤ i ≤ s. The result of part (1) in
387
+ Lemma 3.4 shows that C is irreducible. Conversely, let C be an irreducible additive cyclic code.
388
+ Then by part (i) of Theorem 3.6 we have C =
389
+ s
390
+
391
+ i=1
392
+ Ci. Since C is irreducible, we have C = Cj
393
+ for some 1 ≤ j ≤ s. Moreover, since Nj is not irreducible by Lemma 3.4 part (3), we conclude
394
+ that C = ⟨r(x)⟩Fp[x] for some 0 ̸= r(x) ∈ Nj.
395
+
396
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
397
+ 7
398
+ Inside each Ni, there are 2deg(fi)+1 many different one generator additive cyclic codes. Hence
399
+ the total number of irreducible codes is
400
+ s
401
+
402
+ i=1
403
+ (2deg(fi) + 1).
404
+
405
+ Remark 3.8. Henceforth, we always represent each additive cyclic code with its generator
406
+ polynomials g(x) + ωk(x) and ωh(x) introduced in part (ii) of Theorem 3.6. Moreover, the way
407
+ we generate these polynomials is unique, and therefore each additive cyclic code has a unique
408
+ set of generators.
409
+ From now on, we call Fp2-linear cyclic codes simply linear cyclic codes. Let C = ⟨g(x) +
410
+ ωk(x), ωh(x)⟩Fp[x] be a length n additive cyclic code over Fp2. Note that Theorem 3.6 and part
411
+ (3) of Lemma 3.4 imply that C is linear if and only if g(x) = h(x) and k(x) = 0. Hence linear
412
+ cyclic codes can be easily distinguished from non-linear cyclic codes.
413
+ Next, we provide a minimum distance bound for additive cyclic codes using linear cyclic
414
+ codes over Fp. In general, the minimum distance computation for linear codes is faster than the
415
+ additive codes. Hence the following result can speed up the minimum distance computation for
416
+ additive cyclic codes. We denote the minimum distance of a code C with d(C).
417
+ Theorem 3.9. Let C = ⟨g(x) + ωk(x), ωh(x)⟩Fp[x] be a length n additive cyclic code over Fp2.
418
+ Let G(x) =
419
+ xn−1
420
+ gcd(xn−1,g(x)), and let S(x) be the generator polynomial of the intersection of the
421
+ length n linear cyclic code generated by k(x) and the linear cyclic code generated by h(x) over
422
+ Fp. Suppose that D1, D2, D3, and D3 are the length n linear cyclic codes over Fp generated by
423
+ g(x), gcd(k(x), h(x)), gcd(G(x)k(x), h(x)), and
424
+ g(x)S(x)
425
+ gcd(xn−1,k(x)), respectively. Then
426
+ min{d(D3), d(D4), max{d(D1), d(D2)}} ≤ d(C).
427
+ (3.4)
428
+ Proof. Only the following three types of codewords may appear in the code C.
429
+ T1 = {a(x) ∈ C : 0 ̸= a(x) ∈ Fp[x]},
430
+ T2 = {ωb(x) ∈ C : 0 ̸= b(x) ∈ Fp[x]},
431
+ T3 = {a(x) + ωb(x) ∈ C : 0 ̸= a(x), 0 ̸= b(x) ∈ Fp[x]}.
432
+ We bound the minimum distance of C by considering the minimum distance in each of these
433
+ sets. Let f(x) ∈ T1. Then we can write it as f(x) = a1(x)(g(x) + ωk(x)) + b1(x)ωh(x) for some
434
+ a1(x), b1(x) ∈ Fp[x]. Hence f(x) = a1(x)g(x) and a1(x)k(x) + b1(x)h(x) ≡ 0 (mod xn − 1).
435
+ This implies that a1(x)k(x) is an element of the length n linear cyclic code over Fp generated
436
+ by S(x). Hence
437
+ S(x)
438
+ gcd(xn−1,k(x)) | a1(x). In other words, f(x) = a(x)g(x) ∈ D4.
439
+ Next, let ωf1(x) ∈ T2. Then ωf1(x) = a1(x)(g(x)+ωk(x))+b1(x)ωh(x) for some a1(x), b1(x) ∈
440
+ Fp[x].
441
+ Then a1(x)g(x) ≡ 0 (mod xn − 1) or equivalently G(x) | a1(x).
442
+ This implies that
443
+ f1(x) = a1(x)k(x) + b1(x)h(x). Therefore, f1(x) ∈ D3.
444
+ Finally, let a(x) + ωb(x) ∈ T3. Then a(x) + ωb(x) = l(x)(g(x) + ωk(x)) + m(x)ωh(x) for some
445
+ l(x), m(x) ∈ Fp[x]. Hence a(x) ∈ D1 and b(x) ∈ D2. This implies that wt(a(x) + ωb(x)) ≥
446
+ max{d(D1), d(D2)}.
447
+
448
+ Note that if Di = 0 for any value 1 ≤ i ≤ 4, then we simply discard this code in the minimum
449
+ distance lower bound of (3.4). For instance if D1 = 0, then the minimum distance lower bound
450
+ of (3.4) becomes
451
+ min{d(D3), d(D4), d(D2)} ≤ d(C).
452
+ The following corollary gives a modification of this result to additive cyclic codes, which are
453
+ generated by only one generator. In this result, the cyclic codes Ci are obtained from Di after
454
+
455
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
456
+ 8
457
+ substituting h(x) with 0 in Theorem 3.9 for 1 ≤ i ≤ 3.
458
+ However, the code C4 is obtained
459
+ differently by considering a more direct observation.
460
+ Corollary 3.10. Let C = ⟨g(x) + ωk(x)⟩Fp[x] be a length n additive cyclic code over Fp2. Let
461
+ C1, C2, C3, and C4 be the length n linear cyclic codes over Fp generated by polynomials g(x),
462
+ k(x),
463
+ xn−1
464
+ gcd(xn−1,g(x))k(x), and
465
+ xn−1
466
+ gcd(xn−1,k(x))g(x), respectively. Then
467
+ min{d(C3), d(C4), max{d(C1), d(C2)}} ≤ d(C).
468
+ (3.5)
469
+ Proof. As we mentioned above, the code Ci all are obtained after applying the condition h(x) = 0
470
+ in the structure of the codes Di for 1 ≤ i ≤ 3 in Theorem 3.9. Since the code D4 in Theorem
471
+ 3.9 is applied to bound the minimum weight of the set
472
+ T1 = {a(x) ∈ C : 0 ̸= a(x) ∈ Fp[x]},
473
+ we compute the minimum weight of T1 directly in this proof. Let f(x) ∈ T1. Then we can write
474
+ it as f(x) = a(x)(g(x)+ωk(x)) for some a(x) ∈ Fp[x]. Hence f(x) = a(x)g(x) and a(x)k(x) ≡ 0
475
+ (mod xn − 1). This implies that
476
+ xn−1
477
+ gcd(xn−1,k(x)) | a(x). Hence
478
+ xn−1
479
+ gcd(xn−1,k(x))g(x) | a(x) and we
480
+ have f(x) ∈ C4.
481
+
482
+ Next, we consider the restriction of the mentioned minimum distance bound to linear cyclic
483
+ codes with the generator polynomials g(x) + ωk(x) and h(x), where k(x) = 0.
484
+ Corollary 3.11. Let C = ⟨g(x), ωh(x)⟩Fp[x] be a length n additive cyclic code over Fp2. Let
485
+ E1 and E2 be the length n linear cyclic codes over Fp generated by polynomials g(x) and h(x),
486
+ respectively. Then
487
+ min{d(E1), d(E2)} ≤ d(C).
488
+ (3.6)
489
+ Proof. Applying the condition k(x) = 0 to Theorem 3.9 implies that D1 = D4 = E1 and
490
+ D2 = D3 = E2. Now the result follows from the minimum distance bound of Theorem 3.9.
491
+
492
+ 4. Symplectic inner product and dual of additive cyclic codes
493
+ In this section, we determine generator polynomials of the symplectic dual of a given additive
494
+ cyclic code over Fp2. Moreover, we give the generator polynomials of all self-orthogonal and self-
495
+ dual codes. We also measure how close is a given additive cyclic code from being symplectic self-
496
+ orthogonal. Recall that p is a prime number and n is a positive integer coprime to p. Moreover,
497
+ elements of Fp2 are represented by Fp2 = {α + βω : α, β ∈ Fp}, where ω is a root of a degree 2
498
+ irreducible polynomial over Fp. Recall that in (2.1) we defined the symplectic inner product of
499
+ two elements in Fn
500
+ p2. We define the symplectic inner product of two polynomials analogously. In
501
+ particular, for c(x) =
502
+ n−1
503
+
504
+ i=0
505
+ (ai + ωbi)xi and c′(x) =
506
+ n−1
507
+
508
+ i=0
509
+ (a′
510
+ i + ωb′
511
+ i)xi ∈ Fp2[x]/⟨xn − 1⟩, we define
512
+ c(x) ∗ c′(x) =
513
+ n−1
514
+
515
+ i=0
516
+ (aib′
517
+ i − a′
518
+ ibi).
519
+ Here we use a different notation for the symplectic inner product to differentiate between the
520
+ vectors and polynomials as different objects.
521
+ Remark 4.1. Let c(x) = g1(x) + ωg2(x) and c′(x) = g′
522
+ 1(x) + ωg′
523
+ 2(x) be two polynomials
524
+ of Fp2[x]/⟨xn − 1⟩, where g1(x), g2(x), g′
525
+ 1(x), g′
526
+ 2(x) ∈ Fp[x]/⟨xn − 1⟩. Then c(x) ∗ c′(x) is the
527
+ constant term of g1(x)g′
528
+ 2(x−1) − g2(x)g′
529
+ 1(x−1) (mod xn − 1). A similar argument shows that
530
+ c(x) ∗ xic′(x) is the coefficient of xi in g1(x)g′
531
+ 2(x−1) − g2(x)g′
532
+ 1(x−1) (mod xn − 1).
533
+ Thus if
534
+
535
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
536
+ 9
537
+ g1(x)g′
538
+ 2(x−1) − g2(x)g′
539
+ 1(x−1) ≡ 0 (mod xn − 1), then the code generated by c′(x) lies in the
540
+ symplectic dual of the code generated by c(x). We use this property very frequently through
541
+ this section.
542
+ One can easily verify that the symplectic dual of an additive cyclic code C over Fp2 is also
543
+ an additive cyclic code over Fp2. Recall that by Theorem 3.6 part (ii), each additive cyclic
544
+ code of length n over Fp2 can be represented uniquely as C = ⟨g1(x) + ωg2(x), h(x)⟩Fp[x], where
545
+ g1(x), g2(x), h(x) ∈ Fp[x]/⟨xn − 1⟩. Our next theorem gives a criterion for the self-orthogonality
546
+ of additive cyclic codes. The proof is very similar to that of [3, Theorem 14 part c].
547
+ Theorem 4.2. Let C = ⟨g1(x) + ωg2(x), h(x)⟩Fp[x] be a length n additive cyclic code over Fp2.
548
+ The code C is self-orthogonal if and only if the following conditions are satisfied:
549
+ (1) g2(x)h(x−1) ≡ 0 (mod xn − 1),
550
+ (2) g1(x)g2(x−1) ≡ g2(x)g1(x−1) (mod xn − 1).
551
+ Proof. ⇒: Suppose that C is self-orthogonal. For each 0 ≤ i ≤ n − 1, the inner product of
552
+ g1(x) + ωg2(x) and xih(x) is the coefficient of xi in −g2(x)h(x−1) (mod xn − 1). Since C is self-
553
+ orthogonal, we have g2(x)h(x−1) ≡ 0 (mod xn − 1). Moreover,
554
+
555
+ xi(g1(x) + ωg2(x))
556
+
557
+
558
+
559
+ g1(x) +
560
+ ωg2(x)
561
+
562
+ is the coefficient of xi in g1(x)g2(x−1) − g2(x)g1(x−1) (mod xn − 1). Hence, for each
563
+ 0 ≤ i ≤ n − 1, the coefficient of xi in g1(x)g2(x−1) − g2(x)g1(x−1) (mod xn − 1) is zero. Thus
564
+ g1(x)g2(x−1) ≡ g2(x)g1(x−1) (mod xn − 1).
565
+ ⇐: Conversely, the fact that g1(x)g2(x−1) ≡ g2(x)g1(x−1) (mod xn − 1) implies that all
566
+ the vectors inside ⟨g1(x) + ωg2(x)⟩Fp[x] are self-orthogonal. Moreover, since g2(x)h(x−1) ≡ 0
567
+ (mod xn − 1), we conclude that h(x) is orthogonal to all the cyclic shifts of g1(x) + ωg2(x).
568
+ Finally h(x) ∗ xih(x) = 0 for each 0 ≤ i ≤ n − 1. So ⟨g1(x) + ωg2(x), h(x)⟩Fp[x] is a symplectic
569
+ self-orthogonal code.
570
+
571
+ Recall that xn − 1 =
572
+ s
573
+
574
+ i=1
575
+ fi(x), where each fi(x) is an irreducible polynomial in Fp[x].
576
+ Moreover, as we mentioned earlier in (3.2), we have Fp2[x]/⟨xn − 1⟩ =
577
+ s
578
+
579
+ i=1
580
+ Ni, where Ni =
581
+ ⟨(xn − 1)/fi(x)⟩Fp2[x].
582
+ Let α be a primitive n-th root of unity in a finite filed extension of
583
+ Fp. We denote the p-cyclotomic cosets modulo n by Zi for each 1 ≤ i ≤ s in the way that
584
+ fi(x) =
585
+
586
+ a∈Zi
587
+ (x − αi). This gives a one-to-one correspondence between the sets Ni and all the
588
+ p-cyclotomic cosets modulo n. Our first goal in this section is to find the symplectic dual of a
589
+ given additive cyclic code. In order to achieve this goal, we need a few preliminary results. In
590
+ the next lemma, we find the symplectic dual of each Ni.
591
+ Lemma 4.3. Let 1 ≤ i ≤ s and C = Ni. Then C⊥s =
592
+ s
593
+
594
+ k=1
595
+ k̸=j
596
+ Nk, where Zj = −Zi.
597
+ Proof. First note that by Lemma 3.4 part (3) we have C = ⟨(xn−1)/fi(x), ω((xn−1)/fi(x))⟩Fp[x].
598
+ If Zk ̸= −Zi, then fi(x) | (xn − 1)/fk(x−1) and fk(x) | (xn − 1)/fi(x−1). So we have
599
+
600
+
601
+ (xn − 1)/fi(x)
602
+ ��
603
+ (xn − 1)/fk(x−1)
604
+
605
+ ≡ 0 (mod xn − 1) and
606
+
607
+
608
+ (xn − 1)/fk(x)
609
+ ��
610
+ (xn − 1)/fi(x−1)
611
+
612
+ ≡ 0 (mod xn − 1).
613
+
614
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
615
+ 10
616
+ Hence the symplectic inner product of each element of Ni and each element of Nk is zero by
617
+ definition. This proves that
618
+ s
619
+
620
+ k=1
621
+ k̸=j
622
+ Nk ⊆ C⊥s. Note that both of Ni and Nj have Fp-dimension
623
+ 2 deg(fi). Now, the facts that dimFp(C) + dimFp(C⊥s) = 2n and dimFp(C) = 2 deg(fi) implies
624
+ the other inclusion.
625
+
626
+ Next, we find the symplectic dual of each irreducible additive cyclic code inside Ni for 1 ≤
627
+ i ≤ s.
628
+ Lemma 4.4. Let C ⊊ Ni be a non-zero additive cyclic code for some 1 ≤ i ≤ s. Then
629
+ C⊥s = (
630
+ s
631
+
632
+ k=1
633
+ k̸=j
634
+ Nk)
635
+
636
+ ⟨g1(x) + ωg2(x)⟩Fp[x],
637
+ (4.1)
638
+ where Zj = −Zi and
639
+ g1(x) + ωg2(x) =
640
+
641
+ ((xn − 1)/fj(x))(s(x−1) + ω)
642
+ if C = ⟨
643
+
644
+ (xn − 1)/fi(x)
645
+ ��
646
+ ω + s(x)
647
+
648
+ ⟩Fp[x]
649
+ (xn − 1)/fj(x)
650
+ if C = ⟨(xn − 1)/fi(x)⟩Fp[x]
651
+ .
652
+ Proof. By Lemma 4.3, one can see that
653
+ s
654
+
655
+ k=1
656
+ k̸=j
657
+ Nk ⊆ C⊥s. Note that dimFp(⟨g1(x)+ωg2(x)⟩Fp[x]) =
658
+ dimFp(C). So it is sufficient to show that C is orthogonal to g1(x) + ωg2(x) and all its cyclic
659
+ shifts. We prove the latter statement in two steps. First suppose that C = ⟨
660
+
661
+ (xn−1)/fi(x)
662
+ ��
663
+ ω+
664
+ s(x)
665
+
666
+ ⟩Fp[x] for some s(x) ∈ Fp[x].
667
+ To show that the codes C and ⟨g1(x) + ωg2(x)⟩Fp[x] are
668
+ orthogonal, we apply Remark 4.1. In particular,
669
+
670
+ (xn − 1)/fi(x)
671
+
672
+ s(x)g2(x−1) −
673
+
674
+ (xn − 1)/fi(x)
675
+
676
+ g1(x−1) ≡
677
+
678
+ (xn − 1)/fi(x)
679
+
680
+ s(x)
681
+
682
+ (xn − 1)/fi(x)
683
+
684
+
685
+
686
+ (xn − 1)/fi(x)
687
+ ��
688
+ (xn − 1)/fi(x)
689
+
690
+ s(x) ≡ 0
691
+ (mod xn − 1).
692
+ Next, suppose that C = ⟨(xn − 1)/fi(x)⟩Fp[x]. Then
693
+
694
+ (xn − 1)/fi(x)
695
+
696
+ g2(x−1) −
697
+
698
+ (xn − 1)/fi(x)
699
+
700
+ g1(x−1) ≡
701
+
702
+ (xn − 1)/fi(x)
703
+
704
+ 0 − 0
705
+
706
+ (xn − 1)/fj(x)
707
+
708
+ s(x)
709
+ ≡ 0
710
+ (mod xn − 1).
711
+ This shows that the code C is orthogonal to the additive cyclic code generated by g1(x)+ωg2(x)
712
+ and completes the proof.
713
+
714
+ Note that as we showed in Lemma 4.4, when C = ⟨
715
+
716
+ (xn − 1)/fi(x)
717
+ ��
718
+ ω + s(x)
719
+
720
+ ⟩Fp[x], its
721
+ symplectic inner product contains the code C′ = ⟨(xn − 1)/fj(x))(s(x−1) + ω)⟩Fp[x]. The code
722
+ C′ is not in one of the forms given in Lemma 3.4 part (4). In order to express the code C′
723
+ using the standard notation introduced in 3.4 part (4), we choose its generator to be g(x) =
724
+ (xn − 1)/fj(x))(t(x) + ω), where t(x) ≡ s(x−1) (mod fj(x)). Now it is easy to see that g(x)
725
+ belongs to the set A introduced in Lemma 3.4 part (4) and C′ = ⟨(xn −1)/fj(x))(t(x)+ω)⟩Fp[x].
726
+ Next, we combine the results of the previous two lemmas and the result of Theorem 3.6 to
727
+ determine generator polynomials of the symplectic dual for any additive cyclic code.
728
+
729
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
730
+ 11
731
+ Theorem 4.5. Let C be a length n additive cyclic code over Fp2 such that C =
732
+ s
733
+
734
+ i=1
735
+ Ci, where
736
+ Ci is an additive cyclic codes inside Ni for each 1 ≤ i ≤ s.
737
+ Then C⊥s = ⟨
738
+ s
739
+
740
+ i=1
741
+ gi(x) +
742
+ ωki(x),
743
+ s
744
+
745
+ i=1
746
+ ωhi(x)⟩Fp[x], where for each 1 ≤ i ≤ s we have Zj = −Zi and
747
+ • gi(x) = ki(x) = hi(x) = 0 if Cj = Nj,
748
+ • gi(x) = hi(x) = (xn − 1)/fi(x) and ki(x) = 0 if Cj = 0,
749
+ • gi(x)+ωki(x) =
750
+
751
+ (xn −1)/fi(x)
752
+ ��
753
+ ω +ti(x)
754
+
755
+ and hi(x) = 0 if Cj = ⟨
756
+
757
+ (xn −1)/fj(x)
758
+ ��
759
+ ω +
760
+ sj(x)
761
+
762
+ ⟩Fp[x] and ti(x) ≡ sj(x−1) (mod fj(x)),
763
+ • gi(x) = (xn − 1)/fi(x) and ki(x) = hi(x) = 0 if Cj = ⟨(xn − 1)/fj(x)⟩Fp[x].
764
+ Proof. We apply Lemmas 4.3 and 4.4 to prove the statement. If Cj = Nj, then C⊥s ∩ Ni = {0}
765
+ by Lemma 4.3. Moreover, by the same lemma, if Cj = 0, then Ni ⊆ C⊥s. This proves the first
766
+ two bullets. Finally, Lemma 4.4 implies that
767
+ • ⟨
768
+
769
+ (xn − 1)/fi(x)
770
+ ��
771
+ ω + ti(x)
772
+
773
+ ⟩Fp[x] ⊆ C⊥s if Cj = ⟨
774
+
775
+ (xn − 1)/fj(x)
776
+ ��
777
+ ω + sj(x)
778
+
779
+ ⟩Fp[x], and
780
+ • ⟨(xn − 1)/fi(x)⟩Fp[x] ⊆ C⊥s if Cj = ⟨(xn − 1)/fi(x)⟩Fp[x].
781
+ This proves the statements of the last two bullets.
782
+
783
+ To determine self-orthogonal and self-dual additive cyclic codes over Fp2, we need more infor-
784
+ mation about irreducible factors of xn − 1 over Fp. Let Z1, Z2, . . . , Zr and Z′
785
+ 1, −Z′
786
+ 1, . . . , Z′
787
+ t, −Z′
788
+ t
789
+ be all the p-cyclotomic cosets modulo n, where Zi = −Zi and r + 2t = s.
790
+ Each Zi is in
791
+ correspondence to an irreducible polynomial fi(x) and (Z′
792
+ j, −Z′
793
+ j) are in correspondence with an
794
+ irreducible pair of polynomials (fj1(x), fj2(x)) over Fp. Therefore, we can rewrite the irreducible
795
+ decomposition of xn − 1 as
796
+ xn − 1 =
797
+ r
798
+
799
+ i=1
800
+ fi(x)
801
+ t�
802
+ j=1
803
+ fj1(x)fj2(x).
804
+ We use the above representation of cyclotomic cosets in the upcoming results. Next, we classify
805
+ self-orthogonal and self-dual additive codes over Fp2.
806
+ Theorem 4.6. Let C be a length n additive cyclic code over Fp2 such that C =
807
+ s
808
+
809
+ i=1
810
+ Ci, where
811
+ Ci is an additive cyclic codes inside Ni for each 1 ≤ i ≤ s. Then C is symplectic self-orthogonal
812
+ if and only if
813
+ (1) for all 1 ≤ k ≤ r only one of the following holds.
814
+ (a) Ck = 0.
815
+ (b) Ck = ⟨((xn − 1)/fk(x))(s(x) + ω)⟩Fp[x], where fk | s(x−1) − s(x).
816
+ (c) Ck = ⟨(xn − 1)/fk(x)⟩Fp[x].
817
+ (2) for all 1 ≤ j ≤ t only one of the following holds.
818
+ (a) Cj1 = 0 or Cj2 = 0.
819
+ (b) Cj1 = ⟨((xn − 1)/fj1(x))(s(x) + ω)⟩Fp[x] and Cj2 = ⟨((xn − 1)/fj2(x))(s(x−1) +
820
+ ω)⟩Fp[x].
821
+ (c) Cj1 = ⟨(xn − 1)/fj1(x)⟩Fp[x] and Cj2 = ⟨(xn − 1)/fj2(x)⟩Fp[x].
822
+
823
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
824
+ 12
825
+ Proof. First, let 1 ≤ k ≤ r. By Lemma 4.3, if Ck = Nk, then C⊥s ∩ Nk = {0}. So Ck cannot
826
+ have two generator polynomials. Moreover, by Lemma 4.4, if 0 ̸= Ck = ⟨((xn −1)/fk(x))(s(x)+
827
+ ω)⟩Fp[x], then ⟨((xn − 1)/fk(x))(s(x−1) + ω)⟩Fp[x] ⊆ C⊥s. Thus Ck is self-orthogonal if and only
828
+ if
829
+ Ck = ⟨((xn − 1)/fk(x))(s(x) + ω)⟩Fp[x] = ⟨((xn − 1)/fk(x))(s(x−1) + ω)⟩Fp[x].
830
+ Note that the above equality holds if and only if fk | s(x−1) − s(x). Thus Ck is self-orthogonal
831
+ if and only if one of the conditions of Part (1) follows.
832
+ Next, let 1 ≤ j ≤ t. By Lemma 4.3, if Cj1 = Nj1, then C⊥s ∩ Nj2 = {0}. So if one of Cj1 or
833
+ Cj2 has two generator polynomials, the other code should be zero. Moreover, the same lemma
834
+ shows that if Cj1 = 0 or Cj2 = 0, then Cj1 + Cj2 is self-orthogonal. So we concentrate only
835
+ on the case when both Cj1 and Cj2 have exactly one non-zero generator. By Lemma 4.4, if
836
+ Cj1 = ⟨((xn − 1)/fj1(x))(s(x) + ω)⟩Fp[x], then
837
+ C⊥s ∩ Nj2 = ⟨((xn − 1)/fj2(x))(s(x−1) + ω)⟩Fp[x].
838
+ In this case, the code Cj1 ⊕ Cj2 is self-orthogonal if and only if condition (2)(b) is satisfied.
839
+ Condition (2)(c) follows similarly by applying Lemma 4.4.
840
+
841
+ Next, we use the above conditions to characterize all the symplectic self-dual additive cyclic
842
+ codes over Fp2.
843
+ Corollary 4.7. Let C be a length n additive cyclic code over Fp2 such that C =
844
+ s
845
+
846
+ i=1
847
+ Ci, where
848
+ Ci is an additive cyclic codes inside Ni for each 1 ≤ i ≤ s. Then C is symplectic self-dual if and
849
+ only if
850
+ (1) for all 1 ≤ k ≤ r only one of the following holds.
851
+ (a) Ck = ⟨((xn − 1)/fk(x))(s(x) + ω)⟩Fp[x] where fk | s(x−1) − s(x).
852
+ (b) Ck = ⟨(xn − 1)/fk(x)⟩Fp[x].
853
+ (2) for all 1 ≤ j ≤ t only one of the following holds.
854
+ (a) Cj1 = 0 and Cj2 = Nj2.
855
+ (b) Cj2 = 0 and Cj1 = Nj1.
856
+ (c) Cj1 = ⟨((xn − 1)/fj1(x))(s(x) + ω)⟩Fp[x] and Cj2 = ⟨((xn − 1)/fj2(x))(s(x−1) +
857
+ ω)⟩Fp[x].
858
+ (d) Cj1 = ⟨(xn − 1)/fj1(x)⟩Fp[x] and Cj2 = ⟨(xn − 1)/fj2(x)⟩Fp[x].
859
+ Proof. Note that all the self-dual additive cyclic codes over Fp2 satisfy the conditions of Theorem
860
+ 4.6 and have maximal dimension.
861
+ Thus the result easily follows by implying the maximal
862
+ property into the conditions of theorem 4.6.
863
+
864
+ Our next goal is to compute the parameter e = dimFp(C) − dimFp(C ∩ C⊥s) for all additive
865
+ cyclic codes. The parameter e determines how close an additive cyclic code C is from being
866
+ self-orthogonal. This parameter plays an important role in the quantum construction that we
867
+ are applying in the next section.
868
+ Theorem 4.8. Let C be a length n additive cyclic code over Fp2 such that C =
869
+ s
870
+
871
+ i=1
872
+ Ci, where
873
+ Ci is an additive cyclic codes inside Ni for each 1 ≤ i ≤ s. Let
874
+ (1) B1 = {α1, α2, . . . , αt1} ⊆ {1, 2, . . . , r} such that Cαl = Nαl for all 1 ≤ l ≤ t1,
875
+ (2) B2 = {β1, β2, . . . , βt2} ⊆ {1, 2, . . . , r} such that Cβl = ⟨((xn − 1)/fβl(x))(sβl(x) + ω)⟩Fp[x]
876
+ and fβl ∤ sβl(x−1) − sβl(x) for all 1 ≤ l ≤ t2,
877
+
878
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
879
+ 13
880
+ (3) B3 = {γ1, γ2, . . . , γt3} ⊆ {1, 2, . . . , t} such that one of Cγl1 and Cγl2 is generated by two
881
+ polynomials and the other one has only one generator polynomial for all 1 ≤ l ≤ t3,
882
+ (4) B4 = {κ1, κ2, . . . , κt4} ⊆ {1, 2, . . . , t} such that both of Cκl1 and Cκl2 are generated by
883
+ two polynomials for all 1 ≤ l ≤ t4,
884
+ (5) B5 = {σ1, σ2, . . . , σt5} ⊆ {1, 2, . . . , t} such that both of Cσl1 and Cσl2 are generated by
885
+ one polynomial for all 1 ≤ l ≤ t5 and
886
+ (a) if Cσl1 = ⟨((xn−1)/fσl1(x))(sσl(x)+ω)⟩Fp[x], then Cσl2 ̸= ⟨((xn−1)/fσl2(x))(sσl(x−1)+
887
+ ω)⟩Fp[x].
888
+ (b) if Cσl1 = ⟨(xn − 1)/fσl1(x)⟩Fp[x], then Cσl2 ̸= ⟨(xn − 1)/fσl2(x))⟩Fp[x].
889
+ Then
890
+ e = dimFp(C)−dimFp(C∩C⊥s) =
891
+ t1
892
+
893
+ l=1
894
+ 2|Zαl|+
895
+ t2
896
+
897
+ l=1
898
+ |Zβl|+
899
+ t3
900
+
901
+ l=1
902
+ 2|Zγl|+
903
+ t4
904
+
905
+ l=1
906
+ 4|Zκl|+
907
+ t5
908
+
909
+ l=1
910
+ 2|Zσl|. (4.2)
911
+ Proof. By Theorem 4.6, an additive cyclic code is not symplectic self-orthogonal if and only if at
912
+ least one of the sets B1 −B5 is non-empty. Next, we consider all scenarios (1)-(5) independently.
913
+ (1) Let j ∈ B1. In this case, C⊥s ∩ Cj = {0} which implies that dimFp(Cj) − dimFp(Cj ∩
914
+ C⊥s) = 2|Zj|.
915
+ (2) Let j ∈ B2. In this case, C⊥s ∩ Cj = {0} which implies that dimFp(Cj) − dimFp(Cj ∩
916
+ C⊥s) = |Zj|.
917
+ (3) Let j ∈ B3.
918
+ Without loss of generality we assume that Cj1 = Nj1 and Cj2 is an
919
+ irreducible subcode of Nj2. In this case, the intersection C⊥s∩(Cj1⊕Cj2) is an irreducible
920
+ subcode of Nj1 which implies that dimFp(Cj)−dimFp((Cj1⊕Cj2)∩C⊥s) = 3|Zj|−|Zj| =
921
+ 2|Zj|.
922
+ (4) Let j ∈ B4. In this case, C⊥s ∩ (Cj1 ⊕ Cj2) = {0} which implies that dimFp(Cj) −
923
+ dimFp((Cj1 ⊕ Cj2) ∩ C⊥s) = 4|Zj|.
924
+ (5) Let j ∈ B5. In both parts (a) and (b), C⊥s ∩ (Cj1 ⊕ Cj2) = {0} which implies that
925
+ dimFp(Cj) − dimFp((Cj1 ⊕ Cj2) ∩ C⊥s) = 2|Zj|.
926
+ Now, the result follows by combining the above observations.
927
+
928
+ Note that the case (2) of Theorem 4.8 never happens for Ci with deg(fi(x)) = 1. Moreover,
929
+ for each 1 ≤ i ≤ r, the cyclotomic coset Zi either is a singleton or it has an even size. This is
930
+ mainly because for each 0 ̸= a ∈ Zi, if a ≡ −a (mod n), then n | 2a, which implies that n is
931
+ even. Hence in this case p ̸= 2 (we assumed that gcd(n, p) = 1) and Zi = {a}. Therefore, if
932
+ Zi satisfies the case (2) of Theorem 4.8 and |Zi| > 1, then for any a ∈ Zi, we have −a ∈ Zi
933
+ and −a ̸≡ a (mod n). This implies that |Zi| is an even integer. This fact and the formula in
934
+ (4.2) imply that the nearly self-orthogonality parameter e of an additive cyclic code is always
935
+ an even integer. Next, we classify additive cyclic codes with small values of e. First, we need
936
+ the following preliminary result.
937
+ Lemma 4.9. Let p be a prime number and gcd(n, p) = 1 for some positive number n.
938
+ (i) If gcd(n, p − 1) = d, then there are d singleton p-cyclotomic cosets modulo n and all of
939
+ their coset leaders are {k n
940
+ d : 0 ≤ k ≤ d − 1}.
941
+ (ii) If gcd(n, p − 1) = d and gcd(n, p2 − 1) = d′. Then there are d′−d
942
+ 2
943
+ p-cyclotomic cosets
944
+ modulo n of size two.
945
+
946
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
947
+ 14
948
+ Proof. (i) The proof easily follows from the fact that {a} is a singleton coset if and only if a ≡ pa
949
+ (mod n) or equivalently if and only if a(p − 1) ≡ 0 (mod n). By elementary number theory, if
950
+ gcd(n, p − 1) = d, then the latter equation has d solutions in the forms {k n
951
+ d : 0 ≤ k ≤ d − 1}.
952
+ (ii) A p-cyclotomic coset modulo n containing a has size two if and only if a ≡ p2a (mod n)
953
+ and a ̸≡ pa (mod n). So we get d′ candidate for the size two cosets by solving a ≡ p2a (mod n).
954
+ Moreover, each singleton cyclotomic coset is formed by a solution of the latter equation. Note
955
+ also that the p-cyclotomic coset of size two containing a and pa is counted twice in our previous
956
+ observation. Hence there are d′−d
957
+ 2
958
+ many different cosets.
959
+
960
+ For example, for an odd n, the only singleton p-cyclotomic coset modulo n is {0} when p = 2
961
+ or p = 3. If n is even, then {n
962
+ 2 } and {0} are the only singleton cyclotomic cosets for p = 3.
963
+ The next theorem classifies all the additive cyclic codes with e = 2. Note that the case e = 0
964
+ happens if an additive cyclic code is symplectic self-orthogonal, and this case was characterized
965
+ in Theorem 4.6.
966
+ Theorem 4.10. Let C =
967
+ s
968
+
969
+ i=1
970
+ Ci be an additive cyclic code of length n over Fp2. Then
971
+ e = dimFp(C) − dimFp(C ∩ C⊥s) = 2
972
+ if and only if all Ci satisfy the conditions of Theorem 4.6 except one which is in correspondence
973
+ to
974
+ (1) a singleton coset and satisfies condition (1) of Theorem 4.8,
975
+ (2) a size two coset and satisfies condition (2) of Theorem 4.8.
976
+ Proof. The result follows from considering the formula (4.2) and considering all conditions of
977
+ Theorem 4.8.
978
+
979
+ Many of our record-breaking quantum codes provided in the next section have e = 2. In
980
+ general, the total number of all additive cyclic codes can be a very large number.
981
+ So the
982
+ classification of e values significantly helps to prune the search algorithm for quantum codes
983
+ with good parameters.
984
+ 5. New binary quantum codes
985
+ In this section, we first recall a construction of binary quantum codes from additive codes,
986
+ which does not require the symplectic self-orthogonality condition of Theorem 2.1. Then we
987
+ apply this construction to several nearly self-orthogonal additive cyclic codes over F4 and con-
988
+ struct new binary quantum codes. In the rest of this section, we show the quaternary filed by
989
+ F4 = {0, 1, ω, ω + 1}, where ω2 = ω + 1.
990
+ Theorem 5.1. [5, Corollary 3.3.7],[19] Let C be an (n, 2k) additive code over F4 and
991
+ r = 2n − k − dimFp(C ∩ C⊥s)
992
+ 2
993
+ Then there exists a binary quantum code with parameters [[n + r, k − n + r, d]]2, where
994
+ d ≥ min{d(C), d(C + C⊥s) + 1}.
995
+ Note that we take advantage of the result of Theorem 4.8 in the computation of Theorem 5.1.
996
+ In particular, the value of r in Theorem 5.1 is
997
+ dimFp(C⊥s)−dimFp(C∩C⊥s)
998
+ 2
999
+ , where the numerator
1000
+ measures the nearly self-orthogonality of the code C⊥s. Next, we briefly describe two of our new
1001
+ binary quantum codes. The rest of our new binary quantum codes presented in Table 1 can be
1002
+ constructed in a similar way.
1003
+
1004
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
1005
+ 15
1006
+ Example 5.2. Let n = 21 and C = ⟨g(x)+ωk(x)⟩F2[x] be an additive cyclic code over F4, where
1007
+ g(x) = x20 + x17 + x15 + x13 + x11 + x8 + x7 + x6 + x5 + x4 + x3 + 1
1008
+ and
1009
+ k(x) = x19 + x18 + x17 + x16 + x14 + x10 + x5 + x4 + x3 + x2 + x + 1.
1010
+ The code C is a (21, 220) additive code. Moreover, our computation using the result of Theorem
1011
+ 4.8 shows that C has nearly self-orthogonality parameter e = 2. Moreover,
1012
+ 7 = min{d(C⊥s), d(C + C⊥s) + 1}.
1013
+ So, applying the construction of Theorem 5.1 to the code C⊥s gives a new quantum code with
1014
+ parameters [[22, 2, 7]]2. It has a better minimum distance than the previous best-known quantum
1015
+ code with the same length and dimension, which had minimum distance 6.
1016
+ Example 5.3. Let n = 35 and C = ⟨g(x)+ωk(x)⟩F2[x] be an additive cyclic code over F4, where
1017
+ g(x) = x33 + x29 + x28 + x24 + x19 + x18 + x15 + x13 + x12 + x11 + x6 + x4 + x + 1
1018
+ and
1019
+ k(x) = x34 +x33 +x31 +x30 +x29 +x27 +x25 +x23 +x22 +x20 +x19 +x18 +x15 +x12 +x8 +x3 +x.
1020
+ The code C has parameters (35, 220) as an additive cyclic code over F4. Also, the result of
1021
+ Theorem 4.8 shows that C has nearly self-orthogonality parameter e = 4. Moreover,
1022
+ 6 = min{d(C⊥s), d(C + C⊥s) + 1}.
1023
+ So, applying the construction of Theorem 5.1 to the code C⊥s gives a record-breaking quantum
1024
+ code with parameters [[37, 17, 6]]2. The previous best-known binary quantum code with the same
1025
+ parameters had minimum distance 5.
1026
+ In general, in order to apply the quantum construction given in Theorem 5.1, we target
1027
+ additive cyclic codes with the nearly self-orthogonality e ≤ 4.
1028
+ Because it is more likely to
1029
+ get a new quantum code when e value is small. In Table 1, we present the parameters of our
1030
+ new binary quantum codes. In the table, we start with an additive cyclic code C over F4 and
1031
+ compute its nearly self-orthogonality. Then we apply the quantum construction of Theorem 5.1
1032
+ to the code C⊥s. The parameters of the corresponding quantum code are given in the fourth
1033
+ column. Moreover, the minimum distance of the previous quantum code with the same length
1034
+ and dimension is provided in the last column of the table. The previous minimum distance is
1035
+ taken from Grassl’s code table [12]. We record the generator polynomials of the additive cyclic
1036
+ codes of Table 1 in Table 2.
1037
+ Note also that applying the secondary constructions presented in Theorem 2.2 to the new
1038
+ codes of Table 1 produces many more record-breaking quantum codes. In particular, the new
1039
+ [[52, 24, 8]]2 quantum codes alone produces the following new quantum codes:
1040
+ [[52, 21, 8]]2, [[52, 22, 8]]2, [[52, 23, 8]]2, [[53, 21, 8]]2, [[53, 22, 8]]2, [[53, 23, 8]]2, [[53, 24, 8]]2.
1041
+ Around the same time as us, authors of [14] independently found several new binary quantum
1042
+ codes by applying the connection between quasi-cyclic codes and additive cyclic codes.
1043
+ In
1044
+ particular, three of our new quantum codes, namely [[45, 6, 10]], [[45, 45, 10, 9]], and [[51, 8, 11]],
1045
+ are also among the new quantum codes of [14].
1046
+ Acknowledgement
1047
+ The authors would like to thank Petr Lisonˇek and Markus Grassl for many interesting dis-
1048
+ cussions and comments.
1049
+
1050
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
1051
+ 16
1052
+ No
1053
+ Length
1054
+ e value
1055
+ Parameters
1056
+ Previous distance
1057
+ 1
1058
+ n = 21
1059
+ 2
1060
+ [[22, 2, 7]]2
1061
+ 6
1062
+ 2
1063
+ n = 35
1064
+ 4
1065
+ [[37, 17, 6]]2
1066
+ 5
1067
+ 3
1068
+ n = 45
1069
+ 0
1070
+ [[45, 6, 10]]2
1071
+ 9
1072
+ 4
1073
+ n = 45
1074
+ 0
1075
+ [[45, 10, 9]]2
1076
+ 8
1077
+ 5
1078
+ n = 51
1079
+ 0
1080
+ [[51, 8, 11]]2
1081
+ 10
1082
+ 6
1083
+ n = 51
1084
+ 2
1085
+ [[52, 16, 10]]2
1086
+ 9
1087
+ 7
1088
+ n = 51
1089
+ 2
1090
+ [[52, 24, 8]]2
1091
+ 7
1092
+ 8
1093
+ n = 63
1094
+ 2
1095
+ [[64, 33, 8]]2
1096
+ 7
1097
+ 9
1098
+ n = 63
1099
+ 2
1100
+ [[64, 34, 8]]2
1101
+ 7
1102
+ 10
1103
+ n = 63
1104
+ 2
1105
+ [[64, 35, 8]]2
1106
+ 7
1107
+ Table 1. Parameters of new binary quantum codes.
1108
+ References
1109
+ [1] J. Bierbrauer and Y. Edel. Quantum twisted codes. Journal of Combinatorial Designs, 8(3):174–188, 2000.
1110
+ [2] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language. Journal of Symbolic
1111
+ Computation, 24(3-4):235–265, 1997.
1112
+ [3] A. R. Calderbank, E. M. Rains, P. Shor, and N. J. Sloane. Quantum error correction via codes over GF(4).
1113
+ IEEE Transactions on Information Theory, 44(4):1369–1387, 1998.
1114
+ [4] Y. Cao and Y. Gao. Repeated root cyclic Fq-linear codes over Fql. Finite Fields Appl., 31:202–227, 2015.
1115
+ [5] R. Dastbasteh. Quantum stabilizer codes. Master’s thesis, Sabancı University, 2017.
1116
+ [6] R. Dastbasteh and P. Lisonek. New quantum codes from self-dual codes over F4. arXiv preprint
1117
+ arXiv:2211.00891, 2022.
1118
+ [7] B. K. Dey and B. S. Rajan. F q-linear cyclic codes over : Dft approach. Designs, Codes and Cryptography,
1119
+ 34(1):89–116, 2005.
1120
+ [8] D. S. Dummit and R. M. Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.
1121
+ [9] M. F. Ezerman. Quantum error-control codes. In W. C. Huffman, J.-L. Kim, and P. Sol´e, editors, Concise
1122
+ encyclopedia of coding theory, chapter 2. Chapman and Hall/CRC, 2021.
1123
+ [10] M. F. Ezerman, S. Ling, B. ¨Ozkaya, and P. Sol´e. Good stabilizer codes from quasi-cyclic codes over F4 and
1124
+ F9. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 2898–2902. IEEE, 2019.
1125
+ [11] D. Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. Physical
1126
+ Review A, 54(3):1862, 1996.
1127
+ [12] M. Grassl. Code Tables: Bounds on the parameters of various types of codes. http://www.codetables.de/.
1128
+ [13] M. Grassl. Algebraic quantum codes: Linking quantum mechanics and discrete mathematics. Int. J. Comput.
1129
+ Math. Comput. Syst. Theory, 6(4):243–259, 2021.
1130
+ [14] C. Guan, R. Li, and Z. Ma. Symplectic self-orthogonal quasi-cyclic codes. arXiv preprint arXiv:2212.14225,
1131
+ 2022.
1132
+ [15] C. G¨uneri, F. ¨Ozdemir, and P. Sole. On the additive cyclic structure of quasi-cyclic codes. Discrete Mathe-
1133
+ matics, 341(10):2735–2741, 2018.
1134
+ [16] W. C. Huffman. Additive cyclic codes over F4. Adv. Math. Commun., 1(4):427–459, 2007.
1135
+ [17] W. C. Huffman. Additive cyclic codes over F4. Adv. Math. Commun., 2(3):309–343, 2008.
1136
+ [18] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli. Nonbinary stabilizer codes over finite fields.
1137
+ IEEE transactions on information theory, 52(11):4892–4914, 2006.
1138
+ [19] P.
1139
+ Lisonˇek
1140
+ and
1141
+ R.
1142
+ Dastbasteh.
1143
+ Constructions
1144
+ of
1145
+ quantum
1146
+ codes.
1147
+ Presented
1148
+ at
1149
+ The
1150
+ 3rd
1151
+ International
1152
+ Workshop
1153
+ on
1154
+ Boolean
1155
+ Functions
1156
+ and
1157
+ their
1158
+ Applications,
1159
+ loen,
1160
+ norway.
1161
+ https://people.uib.no/chunlei.li/workshops/BFA2018/Slides/Lisonek.pdf, 2018.
1162
+ [20] P. Lisonˇek and V. Singh. Quantum codes from nearly self-orthogonal quaternary linear codes. Designs, Codes
1163
+ and Cryptography, 73(2):417–424, 2014.
1164
+ [21] K. Samei and S. Mahmoudi. Cyclic R-additive codes. Discrete Mathematics, 340(7):1657–1668, 2017.
1165
+ Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
1166
+ Email address:
1167
+ rdastbas@sfu.ca, kh411@protonmail.com
1168
+
1169
+ POLYNOMIAL REPRESENTATION OF ADDITIVE CYCLIC CODES AND NEW QUANTUM CODES
1170
+ 17
1171
+ No
1172
+ Generator polynomials as in Theorem 3.6 part (II)
1173
+ 1
1174
+ g(x) = x20 + x17 + x15 + x13 + x11 + x8 + x7 + x6 + x5 + x4 + x3 + 1
1175
+ k(x) = x19 + x18 + x17 + x16 + x14 + x10 + x5 + x4 + x3 + x2 + x + 1
1176
+ h(x) = 0
1177
+ 2
1178
+ g(x) = x33 + x29 + x28 + x24 + x19 + x18 + x15 + x13 + x12 + x11 + x6 + x4 + x + 1
1179
+ k(x) = x34+x33+x31+x30+x29+x27+x25+x23+x22+x20+x19+x18+x15+x12+x8+x3+x
1180
+ h(x)=0
1181
+ 3
1182
+ g(x) = x44 + x43 + x41 + x40 + x39 + x38 + x34 + x33 + x30 + x26 + x24 + x20 + x19 + x18 +
1183
+ x17 + x16 + x15 + x14 + x11 + x9 + x5 + x3 + 1
1184
+ k(x) = x43 + x42 + x41 + x40 + x36 + x33 + x32 + x31 + x30 + x28 + x26 + x25 + x17 + x16 +
1185
+ x15 + x13 + x11 + x10 + x2 + x
1186
+ h(x) = 0
1187
+ 4
1188
+ g(x) = x44 + x43 + x40 + x38 + x37 + x34 + x31 + x27 + x22 + x21 + x20 + x19 + x18 + x17 +
1189
+ x14 + x12 + x7 + x6 + x5 + x3 + x + 1
1190
+ k(x) = x44 + x41 + x40 + x37 + x36 + x35 + x33 + x30 + x29 + x27 + x26 + x25 + x22 + x20 +
1191
+ x15 + x14 + x12 + x11 + x10 + x7 + x5
1192
+ h(x) = 0
1193
+ 5
1194
+ g(x) = x50 + x49 + x48 + x46 + x45 + x43 + x42 + x41 + x40 + x37 + x36 + x35 + x30 + x29 +
1195
+ x28 + x26 + x23 + x19 + x18 + x17 + x16 + x15 + x14 + x13 + x9 + x7 + x6 + x
1196
+ k(x) = x50 + x47 + x44 + x43 + x42 + x41 + x40 + x38 + x36 + x35 + x33 + x32 + x28 + x26 +
1197
+ x24 + x21 + x20 + x16 + x14 + x12 + x9 + x8 + x7 + x + 1
1198
+ h(x)=0
1199
+ 6
1200
+ g(x) = x48 + x40 + x37 + x36 + x33 + x31 + x30 + x24 + x23 + x21 + x19 + x15 + x11 + x10 +
1201
+ x9 + x8 + x7 + x4 + x3 + x + 1
1202
+ k(x) = x41 + x40 + x36 + x35 + x34 + x33 + x30 + x29 + x27 + x23 + x22 + x21 + x19 + x18 +
1203
+ x16 + x13 + x12 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x
1204
+ h(x) = x50 + x49 + x48 + x47 + x46 + x45 + x44 + x41 + x40 + x39 + x33 + x31 + x30 + x28 +
1205
+ x25 + x22 + x20 + x19 + x18 + x17 + x16 + x14 + x13 + x11 + x9 + x5 + x4
1206
+ 7
1207
+ g(x) = x49 + x48 + x46 + x44 + x43 + x41 + x38 + x37 + x36 + x33 + x32 + x31 + x30 + x29 +
1208
+ x27 + x25 + x21 + x20 + x18 + x17 + x15 + x11 + x10 + x7 + x2
1209
+ k(x) = x43 + x42 + x41 + x40 + x38 + x37 + x33 + x32 + x30 + x26 + x24 + x22 + x19 + x18 +
1210
+ x16 + x15 + x13 + x9 + x5 + x4 + x2 + 1
1211
+ h(x) = x50 +x49 +x48 +x47 +x46 +x45 +x44 +x43 +x42 +x41 +x40 +x39 +x38 +x37 +x36 +
1212
+ x35 +x34 +x33 +x32 +x31 +x30 +x29 +x28 +x27 +x26 +x25 +x24 +x23 +x22 +x21 +x20 +x19 +
1213
+ x18 +x17 +x16 +x15 +x14 +x13 +x12 +x11 +x10 +x9 +x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+1
1214
+ 8
1215
+ g(x) = x61+x60+x59+x57+x56+x53+x52+x51+x42+x41+x38+x36+x34+x32+x31+x28+
1216
+ x27 +x26 +x24+x20 +x19+x16 +x14+x13 +x12+x11 +x9+x8+x7+x6+x5 +x4+x3+x2+x
1217
+ k(x) = x61 + x59 + x57 + x56 + x55 + x54 + x52 + x51 + x50 + x49 + x47 + x44 + x37 + x36 +
1218
+ x35 + x33 + x32 + x31 + x29 + x28 + x27 + x26 + x24 + x22 + x21 + x16 + x8 + x5 + x3 + x2
1219
+ h(x) = x62 + x61 + x60 + x59 + x58 + x51 + x49 + x47 + x44 + x43 + x40 + x36 + x33 + x31 +
1220
+ x30 + x28 + x27 + x23 + x22 + x21 + x19 + x14 + x13 + x11 + x9 + x8 + x7 + x4 + x3 + x2 + x
1221
+ 9
1222
+ g(x) = x60 + x59 + x58 + x55 + x54 + x53 + x52 + x51 + x48 + x47 + x45 + x44 + x40 + x38 +
1223
+ x37 + x36 + x35 + x34 + x33 + x32 + x31 + x30 + x29 + x28 + x27 + x24 + x23 + x22 + x21 + x15 +
1224
+ x13 + x10 + x9 + x7 + x6 + x3 + x + 1
1225
+ k(x) = x62 + x59 + x56 + x55 + x54 + x53 + x49 + x47 + x46 + x42 + x41 + x40 + x37 + x35 +
1226
+ x33 + x31 + x29 + x28 + x27 + x24 + x20 + x19 + x16 + x15 + x14 + x7 + x4 + x2 + x
1227
+ h(x) = 0
1228
+ 10
1229
+ g(x) = x61+x60+x59+x58+x57+x53+x52+x49+x44+x41+x38+x37+x36+x35+x34+x32+
1230
+ x31 +x30+x27+x26+x24+x23+x21+x20 +x19+x13+x12+x11+x8+x6+x5+x4+x3+x+1
1231
+ k(x) = x60+x58+x57+x56+x52+x48+x47+x46+x44+x42+x40+x39+x38+x36+x35+x34+
1232
+ x32+x31+x30+x26+x25+x24+x22+x19+x18+x17+x13+x12+x9+x7+x6+x5+x4+x3+x2+1
1233
+ h(x) = x62 + x61 + x60 + x59 + x58 + x51 + x49 + x47 + x44 + x43 + x40 + x36 + x33 + x31 +
1234
+ x30 + x28 + x27 + x23 + x22 + x21 + x19 + x14 + x13 + x11 + x9 + x8 + x7 + x4 + x3 + x2 + x
1235
+ Table 2. Generator polynomials of additive cyclic codes of Table 1
1236
+
6NAyT4oBgHgl3EQf2fnD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tAzT4oBgHgl3EQfgPwz/content/tmp_files/2301.01464v1.pdf.txt ADDED
@@ -0,0 +1,1472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Low-frequency shear Alfv´en waves at DIII-D: theoretical
2
+ interpretation of experimental observations
3
+ Ruirui Ma,1, 2, ∗ W.W. Heidbrink,3 Liu Chen,4, 3, 2 Fulvio Zonca,2, 4 and Zhiyong Qiu4, 2
4
+ 1Southwestern Institute of Physics, P.O. Box 432, Chengdu, 610041, China
5
+ 2Center for Nonlinear Plasma Science and C.R.
6
+ ENEA Frascati, C.P. 65, 00044 Frascati, Italy
7
+ 3Department of Physics and Astronomy,
8
+ University of California, Irvine, CA 92697-4574, USA
9
+ 4Institute for Fusion Theory and Simulation and Department of Physics,
10
+ Zhejiang University, Hangzhou, 310027, People’s Republic of China
11
+ (Dated: January 5, 2023)
12
+ Abstract
13
+ The linear properties of the low-frequency shear Alfv´en waves such as those associated with
14
+ the beta-induced Alfv´en eigenmodes (BAEs) and the low-frequency modes observed in reversed-
15
+ magnetic-shear DIII-D discharges (W. Heidbrink, et al 2021 Nucl. Fusion 61 066031) are theoret-
16
+ ically investigated and delineated based on the theoretical framework of the general fishbone-like
17
+ dispersion relation (GFLDR). By adopting representative experimental equilibrium profiles, it is
18
+ found that the low-frequency modes and BAEs are, respectively, the reactive-type and dissipative-
19
+ type unstable modes with dominant Alfv´enic polarization, thus the former being more precisely
20
+ called low-frequency Alfv´en modes (LFAMs). More specifically, due to different instability mech-
21
+ anisms, the maximal drive of BAEs occurs, in comparison to LFAMs, when the minimum of the
22
+ safety factor (qmin) deviates from a rational number. Meanwhile, the BAE eigenfunction peaks
23
+ at the radial position of the maximum energetic particle pressure gradient, resulting in a large
24
+ deviation from the qmin surface.
25
+ Moreover, the ascending frequency spectrum patterns of the
26
+ experimentally observed BAEs and LFAMs can be theoretically reproduced by varying qmin and
27
+ also be well interpreted based on the GFLDR. The present analysis illustrates the solid predictive
28
+ capability of the GFLDR and its practical usefulness in enhancing the interpretative capability of
29
+ both experimental and numerical simulation results.
30
+ ∗ corresponding author. Email address: rrma@swip.ac.cn
31
+ 1
32
+ arXiv:2301.01464v1 [physics.plasm-ph] 4 Jan 2023
33
+
34
+ I.
35
+ INTRODUCTION AND MOTIVATION
36
+ The low-frequency Alfv´en wave spectrum in the kinetic thermal-ion (KTI) gap frequency
37
+ range [1] has been of research interest since the first observations of beta-induced Alfv´en
38
+ eigenmodes (BAEs) [2, 3]. These modes are characterized with frequencies comparable to
39
+ thermal ion transit and/or bounce frequencies, and can interact with both thermal and
40
+ fast particles [4–9], with possible (positive/negative) impact on the corresponding transport
41
+ processes resulting from finite fluctuation and zonal field structures levels [1, 9, 10]. The
42
+ effects of energetic particles (EPs) on low-frequency shear Alfv´en waves (SAWs) ranging
43
+ from kinetic ballooning mode (KBM) [11–13] to BAE are one of areas widely studied in
44
+ the magnetic fusion literature. Recent papers on this topic cover the interpretation and
45
+ modeling of experimental measurements by currently developed innovative diagnostics [14–
46
+ 18], as well as latest progress in comparing numerical investigation and/or simulation results
47
+ with observed phenomena [19–24].
48
+ A series of dedicated experiments have been recently conducted on DIII-D to investigate
49
+ the stability of the low-frequency SAWs [16–18]. The experiments show that the observed
50
+ low-frequency mode1, which was previously misidentified as ‘beta-induced Alfv´en acoustic
51
+ eigenmode (BAAE)’ [25, 26], is actually a lower-frequency reactive unstable KBM which
52
+ favors high thermal electron temperature but almost has no coupling with energetic ions
53
+ [16]; while the BAE is resonantly excited by energetic ions with its stability depending
54
+ sensitively on the beam power and injection geometry [17], consistent with earlier theoretical
55
+ predictions [27] based on the GFLDR theoretical framework [28, 29]. These instabilities are
56
+ also found to occur when the minimum of the safety factor (qmin) approaches rational values
57
+ and the modes in ascending pattern of higher frequency BAEs and LFAMs are separated by
58
+ approximately the toroidal rotation frequency (frot). However, the subtle differences between
59
+ them are that, for LFAMs, the maximum frequency appears at rational values of qmin and
60
+ the detected modes are radially localized near qmin, while BAEs occur at times near rational
61
+ qmin values but the timing of unstable modes is less precise than that for LFAMs. In addition,
62
+ compared with the LFAMs, the BAE eigenfunction shows more deviation from the radial
63
+ position of qmin spatially. Although dedicated numerical simulations of the linear properties
64
+ 1We will refer from now on only to the low frequency Alfv´en mode (LFAM) which belongs to low-frequency
65
+ SAWs predominantly Alfv´enic polarization, keeping in mind that this terminology is the same as the low-
66
+ frequency mode observed in recent DIII-D experiments [16].
67
+ 2
68
+
69
+ of the BAEs and LFAMs [24, 30] have been carried out, the above experimental phenomena
70
+ have not been fully explained.
71
+ Motivated by this, the present work aims to provide an
72
+ in-depth theoretical understanding of the linear properties of low-frequency SAWs, with
73
+ particular attention to the effects of energetic ions on their stability. The analysis is carried
74
+ out based on the theoretical framework of the generalized fishbone-like dispersion relation
75
+ (GFLDR) [28, 29, 31–35], and provides qualitative and quantitative interpretation of the
76
+ main instability mechanisms underlying the numerical simulation results and experimental
77
+ observations.
78
+ As a result, our analysis provides yet another evidence of the predictive
79
+ strength of the GFLDR theoretical framework and of its enhanced “interpretative capability
80
+ for both experimental and numerical simulation results” [28, 29].
81
+ In this work, unlike the previous paper not considering effects due to energetic particles
82
+ (EPs) [36], we focus on the BAE excitation via transit resonance with passing fast ions
83
+ created by NBI heating [17]. In this case, the dynamics of various species enter the dispersion
84
+ relation of low-frequency SAW, and affect its behavior linearly at different pressure gradient
85
+ scale lengths. For DIII-D discharge #178631, Fig. 1 shows the radial dependence of different
86
+ scale lengths of thermal and energetic particle pressure (LPth and LPE), as well as the
87
+ estimated radial mode width (∆m) for weak and/or vanishing magnetic shear range, i.e.,
88
+ |s| = |(r/q)(dq/dr)| ≲ 0.05. More specifically, the EP pressure profiles are given by the
89
+ following two limits.
90
+ One is the relaxed EP profile provided with EFIT reconstruction
91
+ [37], where the fast-ion pressure is the difference between the equilibrium pressure and the
92
+ thermal pressure. The other is the “classical” EP profile obtained by TRANSP/NUBEAM
93
+ [38] in the absence of fast-ion transport by instabilities. The pressure scale lengths of EPs
94
+ are denoted by LPE;rel and LPE;cl for these two cases (respectively). The true EP profile when
95
+ the modes are destabilized likely lies between these two limits. The actual pressure is closest
96
+ to the EFIT-based one but this is measured after the unstable modes have (presumably)
97
+ caused the gradients to flatten. Meanwhile, for the weak and/or vanishing magnetic shear
98
+ region and given toroidal and poloidal mode numbers (n, m), the normalized parallel wave
99
+ vector is ΩA,m = k∥n0qminR0 = nqmin − m, and the radial width of the mode can then
100
+ be estimated by ∆m ≃ 1/|nq′′|1/2 [39, 40]. Here, k∥n0 represents the parallel wave-vector
101
+ at r0, where q has a minimum given by qmin, q′′ denotes the second derivative of q in the
102
+ radial direction, and R0 is the torus major radius. It can be found that in this region,
103
+ LPth ≫ ∆m, which yields the usual local limit of the mode dispersion relation. This is the
104
+ 3
105
+
106
+ case for the reactive unstable LFAM in the absence of EPs already studied in Ref. [36].
107
+ However, for the energetic ion-driven BAEs, there are two distinct cases: the moderate
108
+ EP pressure gradient case with LPE;rel > ∆m, which also approximately yields the usual
109
+ local GFLDR [4, 28, 29, 32, 33, 35, 39, 40]; and the strong EP pressure gradient case with
110
+ LPE;rel ≃ ∆m, for which the global dispersion relation of low-frequency SAWs is needed
111
+ and will be discussed in Sec. II. Performing detailed numerical investigations of the two
112
+ FIG. 1.
113
+ The radial dependences of the typical scale lengths of thermal and energetic particle
114
+ pressure (LPth and LPE), as well as the estimated radial mode width (∆m).
115
+ cases, it is found that the LFAMs and BAEs can both be driven unstable, however, due to
116
+ different instability mechanisms, these modes yield different experimental observations. All
117
+ these features can be, quantitatively and qualitatively, interpreted theoretically based on the
118
+ GFLDR. Moreover, it is also confirmed that the stability of BAAE is not affected by EPs,
119
+ even though it becomes weakly damped after coupling with KBM, consistent with theoretical
120
+ predictions by Chen and Zonca [27] as well as numerical simulation results reported in Refs.
121
+ [20, 23, 24].
122
+ The paper is structured as follows. Local and global dispersion relations for the low-
123
+ frequency SAWs near weak and/or vanishing magnetic shear are introduced and discussed
124
+ in Sec. II in different parameter regimes, depending on the relative magnitude of LPE and
125
+ ∆m. Detailed numerical investigations and theoretical analysis of the low-frequency SAWs
126
+ in the presence of EPs are discussed in Sec. III, where comparisons between theory and
127
+ experiments are also made. Finally, conclusions and further discussions are given in Sec.
128
+ IV.
129
+ 4
130
+
131
+ 1.5
132
+ th
133
+ E;cl
134
+ length (m)
135
+ E;rel
136
+ m
137
+ 0.5
138
+ 0
139
+ 0.2
140
+ 0.24
141
+ 0.28
142
+ 0.32
143
+ r/aII.
144
+ THE GENERAL FISHBONE-LIKE DISPERSION RELATION FOR LOW-
145
+ FREQUENCY SAWS
146
+ In this Section, we will present analytical dispersion relations for low-frequency SAW
147
+ excitation in weakly reversed-shear DIII-D discharges. As stated in the previous Section,
148
+ two cases determined by the relative magnitude of LPE and ∆m will be used to investigate the
149
+ low-frequency SAW stability: case I, the local GFLDR model corresponding to LPE > ∆m;
150
+ and case II, the global GFLDR corresponding to LPE ≃ ∆m.
151
+ Consider case I first. For LPE;rel > ∆m, the scales of LPE and ∆m can be separated,
152
+ and the vorticity equation [4, 9, 28, 29, 32, 33] which governs shear Alfv´en waves (SAWs)
153
+ can yield the low-frequency electromagnetic fluctuation dispersion relation in the usual local
154
+ limit, as derived and discussed in great details in Refs. [9, 28, 29, 32, 33, 35]. We just note
155
+ that, for DIII-D case of interest, the reversed magnetic shear configuration and thermal
156
+ plasma compression effects should be accounted for properly [36]. Thus, for s = 0 at r0 but
157
+ with finite S ≡ (r/q)[q
158
+ ′′]1/2, the local GFLDR for low-frequency SAWs can be written as
159
+ [27–29, 35, 40]
160
+ iS(Λ2
161
+ n − k2
162
+ ∥n0q2
163
+ minR2
164
+ 0)1/2(1/n)1/2�
165
+ k∥n0qminR0 − i(Λ2
166
+ n − k2
167
+ ∥n0q2
168
+ minR2
169
+ 0)1/2�1/2 = δ ˆWnf + δ ˆWnk(ω),
170
+ (1)
171
+ where the generalized inertia term Λn(ω) here, including both diamagnetic effects as well as
172
+ kinetic effects of circulating and trapped particle dynamics, has been derived explicitly in
173
+ Ref. [7] and the main results are summarized in Appendix A. The right hand side of Eq.
174
+ (1) contains both “fluid” (δ ˆWnf) and “kinetic” (δ ˆWnk) contributions to the potential energy
175
+ in the “regular” ideal region. In the low-frequency limits (|Λ2
176
+ n| ≪ 1), δ ˆWnf is independent
177
+ of the frequency and the explicit expression, specialized to the (s, α) model equilibrium [41]
178
+ with circular flux surfaces, reads,
179
+ δ ˆWnf ≃ π
180
+ 4
181
+ �S2k∥0qminR0
182
+ n
183
+ − 3
184
+ 2α2S
185
+ ��k∥0qminR0
186
+ n
187
+ ��1/2 + 9
188
+ 32α4
189
+
190
+ (2)
191
+ where α = αc + αE, αc = −R0q2
192
+ mindβ/dr and αE = − 1
193
+ 2R0q2
194
+ mind(βE∥ + βE⊥)/dr. Note that
195
+ Eq. (2) includes the contribution of the energetic particle adiabatic and convective responses
196
+ as well [31].
197
+ The term δ ˆWnk is always a function of the mode frequency ω, as it reflects resonant
198
+ as well as non-resonant wave-particle interactions. For simplicity but still relevant to the
199
+ 5
200
+
201
+ DIII-D case, we take F0E to be a single pitch angle (λ = µ/ε) slowing-down beam ion
202
+ equilibrium distribution function; i.e., F0E =
203
+ B0βE(r)
204
+ 25√
205
+ 2π2mEεb
206
+
207
+ (1 − λ0B0)ε−3/2δ(λ − λ0). Here,
208
+ βE(r) ≡ 8πPE(r)/B2
209
+ 0 is the ratio of EP kinetic and magnetic pressures and B0 the on-
210
+ axis equilibrium magnetic field, δ(x) is the Dirac function, µ is the magnetic moment and
211
+ ε = υ2/2 ≤ εb with εb being the EP birth energy per unit mass. Then the explicit expression
212
+ of non-adiabatic contribution δ ˆWnku for the passing energetic ions is given by [32, 33]
213
+ δ ˆWnku ≃ παE
214
+ 25/2 (1 − λ0B0/2)¯ω
215
+
216
+ 2 − ¯ω ln
217
+ � ¯ω + 1
218
+ ¯ω − 1
219
+ ��
220
+ ,
221
+ (3)
222
+ where ¯ω = ω/ωtEm and ωtEm ≡ √2εb/qR0 is the EP transit frequency at the maximum
223
+ particle energy.
224
+ It is worthwhile emphasizing that the finite k∥n0qminR0 in Eq. (1) plays an important
225
+ stabilizing role since it represents the finite line bending effect at r = r0 [28, 29, 35]. Further-
226
+ more, the expression of Λn depends on the mode polarization via Sf ≡ (iδE∥/k∥)a.c.
227
+
228
+ δφd.c.,
229
+ where a.c. and d.c. refer to the sinusoidal and nearly constant (flute-like) components of the
230
+ parallel electric field, wave vector, and scalar potential fluctuation [21, 27]. The detailed
231
+ expression of Sf, again, is given in the Appendix A. Here, we just note that |Sf| is much
232
+ smaller than unity for shear Alfv´en wave and order of unity for ion acoustic wave [7, 21, 27].
233
+ We remark here that, in the moderate pressure gradient case, the local GFLDR for
234
+ the low-frequency SAWs is enough to delineate the underlying physics of the experimental
235
+ and simulation results. However, the local GFLDR for the low-frequency SAWs, given by
236
+ Eq. (1), will fail in the presence of strong EP pressure gradient, i.e., case II. In this case,
237
+ two typical scale lengths LPE,cl and ∆m can not be separated anymore and, thus, a global
238
+ dispersion relation is needed which can be derived from the vorticity equation, i.e., Eq. (1)
239
+ of Ref. [40]. Noting that the mode structure is dominated by single toroidal and poloidal
240
+ mode numbers, (n, m), the governing equation reads
241
+ (eθ − erξ) ·
242
+
243
+ Λ2 − Ω2
244
+ A,m
245
+
246
+ 1 +
247
+ x2
248
+ ΩA,m
249
+ +
250
+ x4
251
+ 4Ω2
252
+ A,m
253
+ ��
254
+ (eθ − erξ)δφm − (F + K)δφm = 0,
255
+ (4)
256
+ where k⊥/kθ = −(eθ − erξ) with er and eθ being, respectively, the radial and poloidal unit
257
+ vectors, x2 = nq′′
258
+ min(r − r0)2, ξ ≡ (i/n1/2)S(∂/∂x), and δφm is the mth poloidal harmonic
259
+ of the scalar field perturbation. It is worth noting that, toroidal coupling among different
260
+ poloidal harmonics is typically not important for modes in the reversed magnetic shear
261
+ region, consistent with the mode being dominated by single m and n. The terms F and K
262
+ 6
263
+
264
+ in Eq. (4) represent, respectively, the fluid-like particle and energetic ion contributions with
265
+ their explicit form reading
266
+ F ≃ D2
267
+ S − 4α2DS + 2αD2
268
+ S − (α + 1)α + 2α3,
269
+ K ≃ 2πq2
270
+ Eq2R2
271
+
272
+ mEc2
273
+ �Ω2
274
+ dEQF0E
275
+ ω2
276
+ tE − ω2
277
+
278
+ υ
279
+ = 2
280
+ πδ ˆWnku,
281
+ (5)
282
+ where DS = S
283
+
284
+ ΩA,m/n, qE and mE are the electric charge and mass of energetic ions, ΩdE =
285
+ (υ2
286
+ E⊥/2+υ2
287
+ E∥)/ωcER0, ωtE = υE∥/qR0, QF0E = (ω∂ε+ˆω∗E)F0E, ˆω∗EF0E = ω−1
288
+ cE (k×b)·∇F0E,
289
+ ωcE = qEB/mEc, ⟨(...)⟩υ =
290
+
291
+ d3υ(...), and the subscripts ∥ and ⊥ represent the parallel and
292
+ perpendicular components with respect to the equilibrium magnetic field b.
293
+ Equation (4) is an ordinary differential equation and, generally, requires a numerical
294
+ approach to be solved. However, for DIII-D case, the radial dependence of the normalized
295
+ pressure gradient of energetic ions with the classical profile, as is shown by black curve in Fig.
296
+ 2, can be well fitted by the analytic formula αE(ρ) = c1 (1 − (ρ − c2)2/c2
297
+ 3), with c1 = 0.7099,
298
+ c2 = 0.3018 and c3 = 0.2944. This allows us to obtain simple analytical dispersion relations
299
+ for low-frequency SAWs excitation. We just note that the maximum drive of energetic ions
300
+ is located around ρ = c2 = 0.3018, which deviates from the radial position of qmin. Then
301
+ αE(r) in Eq. (3) can be rewritten as
302
+ αE(r) = δaαE0
303
+
304
+ 1 − (r − r0 + δb)2
305
+ δ2
306
+ cL2
307
+ PE;cl
308
+
309
+ ,
310
+ (6)
311
+ where δa = c1/αE0, δb = r0 − c2a and δc = c3a/LPE;cl, a is the minor radius, αE0 and LPE;cl
312
+ are evaluated at r = r0. Introducing the notation x = r − r0 = σz − δb, Eq. (4) is readily
313
+ cast into the form
314
+ ∂2
315
+ ∂z2δφm − nσ2
316
+ S2
317
+
318
+ 1 − F + 2δa
319
+ π δ ˆWnku0
320
+ ϵA0
321
+
322
+ δφm − 1
323
+ 4z2δφm = 0,
324
+ 2nσ4δaδ ˆWnku0
325
+ ϵA0πS2δ2
326
+ cL2
327
+ PE;cl
328
+ = 1
329
+ 4,
330
+ (7)
331
+ where ϵA0 = Λ2 − Ω2
332
+ A,m, δ ˆWnku0 = παE0
333
+ 4
334
+
335
+ 2
336
+
337
+ 2 − ¯ω ln
338
+ � ¯ω+1
339
+ ¯ω−1
340
+ ��
341
+ . Then, Eq. (7) yields the following
342
+ global dispersion relation for low-frequency SAWs,
343
+ −n1/2π1/2δcLPE;clϵ1/2
344
+ A0
345
+ 2
346
+
347
+ 2Sδ1/2
348
+ a δ ˆW 1/2
349
+ nku0
350
+
351
+ 1 − F + 2δa
352
+ π δ ˆWnku0
353
+ ϵA0
354
+
355
+ = 2L + 1,
356
+ L = 0, 1, 2, 3 ...
357
+ (8)
358
+ 7
359
+
360
+ FIG. 2. The radial dependence of the normalized pressure gradient of EPs with the classical profile.
361
+ Here, the normalized radial position of qmin is ρ0 ≡ r0/a = 0.28.
362
+ Here, the integer L is the radial eigenmode number. The corresponding eigenfunction reads
363
+ δφm(r) = HL(z)e−z2 ∝ exp
364
+
365
+ −(r − r0 + δb)2
366
+ 4σ2
367
+
368
+ ,
369
+ (9)
370
+ where HL(z) represents Lth order Hermite polynomials and the causality constraints upon
371
+ the discrete bound modes requiring Re(σ2) > 0, where σ2 is solved for from the second of
372
+ Eqs. (7) consistently with the dispersion relation, Eq. (8). The typical radial width, w, of
373
+ δφm(r) is determined by w2 = 4σ2.
374
+ Equations (1) and (8) constitute the results of the present section, i.e., the local and
375
+ global GFLDR for the low-frequency SAWs excited by energetic ions. With their explicit
376
+ form, we can compute the individual terms involved in equations and investigate the linear
377
+ properties of the experimentally observed low-frequency SAWs.
378
+ III.
379
+ THE LOW-FREQUENCY SAW INSTABILITIES NUMERICAL RESULTS
380
+ AND ANALYSIS
381
+ In this Section, we separately present numerical results for the local and global low-
382
+ frequency SAW stability properties in the presence of energetic ions, for which the dispersion
383
+ relation is given by Eqs. (1) and (8). The numerical investigations use experimental equilib-
384
+ rium and profiles as shown in Fig. 3 for the DIII-D shot #178631 at the time t = 1200 ms
385
+ [16], where the q-profile has a reversed shear configuration with qmin = 1.37 at r0/a = 0.28
386
+ 8
387
+
388
+ 0.72
389
+ 0.7
390
+ 0.68
391
+ a
392
+ 0.66
393
+ αE;cl;exp.
394
+ vs. p
395
+ 0.64
396
+ fit
397
+ -Prediction bounds -99%
398
+ 0.62
399
+ 0.2
400
+ 0.25
401
+ 0.3
402
+ 0.35
403
+ p=r/aFIG. 3. Radial profiles of (a) temperature and q and (b) density and toroidal rotation frequency
404
+ frot of DIII-D shot #178631 used for numerical studies.
405
+ and qmin decreases from 1.49 to 1.18 in the time window 1050 ms < t < 1350 ms, as shown
406
+ in Fig. 6 (b) in Ref. 16.
407
+ A.
408
+ The local low-frequency SAW stability properties
409
+ We first consider the linear properties of the low-frequency SAW with relaxed energetic ion
410
+ profile, i.e., case I. The local equilibrium parameters used in the numerical studies evaluated
411
+ at r0/a = 0.28 are S = 0.5895, τ = Te/Ti =3.86 keV/2.37 keV=1.62, ne = 3.80 × 1019
412
+ m−3, ni = 3.19 × 1019 m−3, ϵr = r0/R = 0.10, βi ≃ 0.01, ϵni = Lni/R0 = 0.414, ηi =
413
+ Lni/LTi = 0.8324, ω∗ni/ωti = 0.1919, (m, n) = (8, 6), kθρLi = 0.2555 and kθρLe = 0.0054.
414
+ Other fixed equilibrium parameters are a = 0.64 m, R0 = 1.74 m, B0 = 1.8 T. Here, kθ
415
+ is the poloidal wavenumber, ρLi and ρLe are the Larmor radii of thermal ions and thermal
416
+ electrons, respectively.
417
+ Dependencies of the (a) mode frequencies, (b) growth rates and (c) mode polarization
418
+ predicted by Eq.
419
+ (1) are shown in Fig.
420
+ 4 as a function of the normalized thermal ion
421
+ diamagnetic frequency Ω∗pi ≡ ω∗pi/ωti for the cases without and with the consideration of
422
+ EP effects. According to the scaling of mode frequencies with physical parameters and the
423
+ value of the |Sf| [21], three branches in Fig. 4 can be classified as: (i) the KBM (red curves
424
+ marked with circles), with a frequency scaling with ω ∼ ω∗pi; (ii) the BAE (blue curves),
425
+ with the frequency being close to the well-known estimate ω/ωti = qmin
426
+
427
+ 7/4 + τ ≃ 2.51;
428
+ 9
429
+
430
+ (a)
431
+ T。 (keV)
432
+ 6
433
+ .T. (keV)
434
+ q
435
+ TE:cl (keV/10)
436
+ 4
437
+ 2
438
+ 0
439
+ 0
440
+ 0.2
441
+ 0.4
442
+ 0.6
443
+ 0.8
444
+ 1
445
+ r/a(b)
446
+ 5
447
+ n(1019m-3)
448
+ - -n, (1019m3)
449
+ 4
450
+ 4 × nE:cl (1019m=3)
451
+ -4 × nE:rel (1019m-3)
452
+ 3
453
+ -.0.5× frot (kHz)
454
+ 2
455
+ 1
456
+ 0
457
+ 0
458
+ 0.2
459
+ 0.4
460
+ 0.6
461
+ 0.8
462
+ 1
463
+ r/aFIG. 4. Dependence of the (a) real frequencies, (b) growth rates and (c) polarization of the low-
464
+ frequency SAWs on Ω∗pi ≡ ω∗pi/ωti for the cases without (w/o) and with (w/) EP effects. Here, a
465
+ dashed vertical line represents the experimental value of Ω∗pi;exp of about 0.35.
466
+ and (iii) the BAAE (green curves marked with diamonds), with a frequency of about half
467
+ of the BAE and experiencing strong damping. The EP effects on the low-frequency SAW
468
+ stabilities are apparent in the region highlighted by the purple curve of Fig. 4 (b), where the
469
+ KBM is the only unstable mode in the absence of EPs, while both the KBM and BAE are
470
+ unstable in the low-frequency region in the presence of EPs. In particular, the diamagnetic
471
+ ion frequency calculated on the basis of experimental parameters is Ω∗pi;exp = 0.3517, as
472
+ shown by the dashed vertical line. In this case, both KBM and BAE are unstable with the
473
+ frequencies in the plasma frame being 5.6 kHz and 63.7 kHz, respectively, which are in good
474
+ agreement with the experimental observations. Meanwhile, the polarization plot of Fig. 4
475
+ (c) shows that KBM and BAE have small values for |Sf| ≲ 0.1, which indicates that the
476
+ KBM and BAE are essentially of Alfv´enic polarization. Moreover, in order to exclude the
477
+ 10
478
+
479
+ (a)
480
+ KBMw/oEP
481
+ BAAE w/o EP
482
+ BAE w/o EP
483
+ 4
484
+ KBM w/ EP
485
+ Re(wlwti
486
+ BAAE w/ EP
487
+ BAE w/ EP
488
+ 0
489
+ 2
490
+ 4
491
+ 6
492
+ 2
493
+ *
494
+ pi:(b)
495
+ m(w/wti
496
+ KBM w/o EP
497
+ BAAE w/o EP
498
+ BAEw/o EP
499
+ KBMw/EP
500
+ BAAE w/ EP
501
+ BAEw/EP
502
+ 0
503
+ *pi;exp
504
+ 2
505
+ 4
506
+ 6
507
+ U
508
+ pi
509
+ *100
510
+ (c)
511
+ KBM w/o EP
512
+ BAAE w/o EP
513
+ BAEw/oEP
514
+ S
515
+ KBM w/ EP
516
+ BAAE w/ EP
517
+ BAEw/EP
518
+ 0
519
+ 2
520
+ 4
521
+ 6
522
+ * pispurious nonzero solutions produced by singularities of the transcendental function of the
523
+ local GFLDR (D), the Nyquist diagram in the complex D plane presented in Fig. 5 shows
524
+ that in the presence of EPs, the path encircles the origin twice (see Fig. 5 (b)) but only once
525
+ without EPs (see Fig. 5 (a)), thus confirming there are two unstable modes with EPs. It
526
+ FIG. 5. The Nyquist diagram in the complex D(ω) plane for the cases (a) without and (b) with
527
+ EP effects.
528
+ should be noted that, compared with the frequency insensitive to the EP effects, the growth
529
+ rate of the KBMs changes significantly in the cases with and without EP effects.
530
+ This
531
+ occurs because in our theoretical model the adiabatic and convective contribution of EPs
532
+ modifies the value of δ ˆWf via α, as is shown in Eq. (2). At this point, in order to obtain more
533
+ convincing comparison of theoretical prediction and experimental observation, it is necessary
534
+ to provide a more precise theoretical model and also a more comprehensive experimental
535
+ analysis. We also note here that, in this case, the stability/property of the BAAE is not
536
+ affected by energetic ions — as is shown by the green dashed lines with symbols (without
537
+ EP effects) and solid lines with symbols (with EP effects) which are apparently overlaying
538
+ in all three graphs — even though it becomes weakly damped by coupling with the KBM
539
+ due to diamagnetic and trapped particle effects for sufficiently strong Ω∗pi. The numerical
540
+ results are consistent with the numerical simulation results reported in Refs. [20, 23, 24]
541
+ and the theoretical prediction in Ref. [27], that is, “EPs preferentially excite the BAE over
542
+ the BAAE branch due to the stronger wave-EP interaction”.
543
+ We now investigate the underlying instability mechanisms of the ascending spectrum of
544
+ the higher frequency BAEs and LFAMs observed in DIII-D (see Fig. 8 of Ref. [17]) by using
545
+ 11
546
+
547
+ ×10-3
548
+ (a)
549
+ 10
550
+ 5
551
+ 0
552
+ -5
553
+ -5
554
+ 0
555
+ 5
556
+ Re(D)
557
+ ×10-3X10-3
558
+ 10
559
+ (b)
560
+ 5
561
+ Im(D)
562
+ 0
563
+ .5
564
+ -5
565
+ 0
566
+ 5
567
+ Re(D)
568
+ ×10-3qmin as the scanning parameter. Figure 6 shows the dependence of the mode frequencies
569
+ (solid curves with markers) and growth rates (dashed curves with markers) on qmin of the
570
+ KBMs (red curves) and the BAEs (blue, green, purple and orange curves) for different
571
+ poloidal and toroidal mode numbers (m, n). It is shown that the modes in ascending pattern
572
+ FIG. 6. Dependence of mode frequencies (solid curves with markers) and growth rates (dashed
573
+ curves with markers) on qmin of the KBMs (red curves) and the BAEs (blue, green, purple and
574
+ orange curves) for different (m, n). The experimentally observed frequencies are also shown. For
575
+ the BAE, since the modes span a range of frequencies, the lines indicate the upper and lower limits
576
+ of the unstable bands; for the LFAM, the experimental frequency variation is < 0.5 kHz. In the
577
+ abscissa, the experimentally measured qmin(t) fit shown in Fig. 8 of [17] is used to convert time to
578
+ qmin, with an associated uncertainty of ∆qmin ≃ 0.01. In the ordinate, the theoretical lab-frame
579
+ frequency incorporates a Doppler shift to the calculated plasma-frame frequency of nfrot, with an
580
+ associated uncertainty of ∼ 0.5 × n kHz.
581
+ of higher frequency BAEs and lower frequency KBMs are both separated by approximately
582
+ 12
583
+
584
+ 200
585
+ +7,5
586
+ f: in the lab-frame
587
+ (10,8)
588
+ KBM
589
+ f8,6
590
+ KBM
591
+ 9,7
592
+ f9,7
593
+ KBM
594
+ 8.6
595
+ f10,8
596
+ 150
597
+ KBM
598
+ (7,5)
599
+ KBM
600
+ KBM
601
+ KBM
602
+ ZH)
603
+ .10,8
604
+ 100
605
+ /2元
606
+ “KBM
607
+ Expi..data
608
+ 7,5
609
+ BAE
610
+ (range)
611
+ 8,6
612
+ (lines with ★)
613
+ (9,7)
614
+ (10,8)
615
+ (8,6)
616
+ BAE
617
+ (7,5)
618
+ 9,7
619
+ BAE
620
+ 10,8
621
+ 50
622
+ BAE
623
+ /27
624
+ BAE
625
+ “BAE
626
+ BAE
627
+ 10,8
628
+ BAE
629
+ 1.45
630
+ 1.4
631
+ 1.35
632
+ 1.3
633
+ 1.25
634
+ 1.2
635
+ minfrot of about 7.5 kHz. More specifically, for KBMs, the instabilities peak exactly at the
636
+ rational values of qmin; while the BAEs occur at times near rational values of qmin but the
637
+ timing of unstable modes is less precise than for KBMs. In addition, the low-n BAEs deviate
638
+ more from rational qmin crossings than higher n modes. The comparison of the theoretically
639
+ predicted frequencies with the experimentally measured values can also be seen clearly from
640
+ Fig. 6. As discussed in more detail in the next section, these numerical results are in good
641
+ agreement with the experimental observations.
642
+ In order to gain insight into the different excitation mechanisms of the instabilities pre-
643
+ sented in Fig. 6, let us further analyze the GFLDR in the high-frequency (|ω| ≫ ωti) and
644
+ low-frequency |ω| ≪ ωbi limits.
645
+ For |ω| ≫ |ωti|, the corresponding inertia term of the BAE can be reduced to the simplified
646
+ expression with Λ2 ≃
647
+ ω2−ω2
648
+ BAE
649
+ ω2
650
+ A
651
+ [4, 35, 42]. Here, ω2
652
+ BAE = (7/4 + τ)υ2
653
+ i /R2
654
+ 0 is the fluid limit
655
+ expression of the BAE frequency. Taking ω = ωr + iγ and δ ˆWku = Reδ ˆWku + iImδ ˆWku, and
656
+ assuming |γ/ωr|, we have |Imδ ˆWku/Reδ ˆWku| ≪ 1. Then, for the gap mode, the existence
657
+ condition is δ ˆWnf + Re(δ ˆWnk(ωr)) < 0 and the real mode frequency is given by
658
+ ω2
659
+ r = ω2
660
+ BAE
661
+
662
+ ��1 +
663
+ ω2
664
+ A
665
+ ω2
666
+ BAE
667
+
668
+
669
+ �k2
670
+ ∥n0q2
671
+ minR2
672
+ 0 −
673
+ n
674
+ ��k∥n0qminR0
675
+ ��
676
+
677
+ δ ˆWnf + Re(δ ˆWnk(ωr))
678
+ �2
679
+ S2
680
+
681
+
682
+
683
+
684
+ �� ,
685
+ (10)
686
+ while the growth rate is obtained from
687
+ γ = −Im(δ ˆWnk(ωr))ω2
688
+ A
689
+ ωr
690
+ n
691
+
692
+ δ ˆWnf + Re(δ ˆWnk(ωr))
693
+
694
+ ��k∥n0qminR0
695
+ �� S2
696
+ ,
697
+ (11)
698
+ It can be readily obtained from Eq. (10) that the BAE frequency is positively correlated with
699
+ ��k∥n0qminR0
700
+ ��. Therefore, the more deviation from the rational qmin surface is, the larger the
701
+ BAE frequency is, as is shown in Fig. 6. Note also that the BAE has a positive frequency.
702
+ Equation (11) imposes Im(δ ˆWnk(ωr)) > 0 for BAE excitation by EPs via resonant wave-
703
+ particle interaction. It can be concluded that the duration of BAEs is influenced by the
704
+ associated resonances with the EPs, as well as by the value of qmin [17].
705
+ Similarly, for KBM with |ω| ≪ |ωbi|, we have Λ2 ≃ c0
706
+ q2
707
+ min
708
+ √ϵ
709
+ (ω−¯ωdi)(ω−ω∗pi)
710
+ ω2
711
+ A
712
+ [7, 16, 21, 35, 43].
713
+ Here, ¯ωdi is the average thermal-ion precession frequency, c0 ≃ 1.6 due to trapped and barely
714
+ 13
715
+
716
+ circulating particles [44, 45]. Thus, the real mode frequency is given by
717
+ ω = 1
718
+ 2(¯ωdi+ω∗pi)±1
719
+ 2
720
+
721
+ ��(ω∗pi − ¯ωdi)2 − 4ω2
722
+ A
723
+ √ϵ
724
+ q2
725
+ minc0
726
+
727
+
728
+
729
+ n
730
+
731
+ δ ˆWnf + Re(δ ˆWnk(ωr))
732
+ �2
733
+ ��k∥n0qminR0
734
+ �� S2
735
+ − k2
736
+ ∥n0q2
737
+ minR2
738
+ 0
739
+
740
+
741
+
742
+
743
+ ��
744
+ 1/2
745
+ ,
746
+ (12)
747
+ and the system is reactively unstable if
748
+ |ω∗pi − ¯ωdi|2
749
+ ω2
750
+ A
751
+ <
752
+ 4√ϵ
753
+ q2
754
+ minc0
755
+
756
+
757
+
758
+ n
759
+
760
+ δ ˆWnf + Re(δ ˆWnk(ωr))
761
+ �2
762
+ ��k∥n0qminR0
763
+ �� S2
764
+ − k2
765
+ ∥n0q2
766
+ minR2
767
+ 0
768
+
769
+
770
+ � .
771
+ (13)
772
+ Note that δ ˆWf + Reδ ˆWku < 0, due to, again, the causality constraint. Therefore, for the
773
+ reactive-type instability, the maximum drive sets in when k∥n0qminR0 → 0, which corre-
774
+ sponds to the unstable KBM exactly peaking at the rational values of qmin.
775
+ The above numerical results and theoretical analyses have explained the experimental
776
+ observations that the BAEs deviate more from the rational qmin values temporally, com-
777
+ pared with the KBM. To further delineate this deviation and its impact on the radial mode
778
+ structure, numerical investigation of the global model for low-frequency SAWs is needed.
779
+ B.
780
+ The global low-frequency SAW stability properties
781
+ In this part, we consider the case II and apply Eq. (8) to investigate the global low-
782
+ frequency SAW stability properties with the classical energetic ion profile.
783
+ Figure 7 shows (a) the dependence of the real frequencies (blue markers) and growth rates
784
+ (red markers) of the KBM (triangle markers) and BAE (line with markers) on the radial
785
+ mode number L; and (b) the radial mode structure δφm(r) for the L = 0 BAE. It can be
786
+ found that (i) the ground eigenstate with L = 0 is most unstable for the BAE and KBM;
787
+ (ii) for BAE, the frequency and growth rate in the plasma frame is (80.7 + 15.2i) kHz with
788
+ the ratio of the growth rate to real frequency γ/ω ≃ 0.19, which is the typical feature of the
789
+ marginally unstable gap mode excited by EPs; and (iii) for KBM, the frequency and growth
790
+ rate in the plasma frame is (−3.2 + 5.7i) kHz with γ/ω ≃ 1.8, which is the typical feature
791
+ of the reactive-type instability, consistent with the results reported in Ref. [24].
792
+ Correspondingly, the radial eigenfunction plot of the BAE for L = 0, as shown in Fig.
793
+ 7 (b), presents that δφm has a Gaussian form with a shape similar to the experimentally
794
+ 14
795
+
796
+ FIG. 7. (a) Dependence of the real frequencies (blue markers) and growth rates (red markers) of
797
+ the KBM (triangle markers) and BAE (line with markers) on the radial mode number L; (b) the
798
+ radial mode structure δφm(r) for the L = 0 BAE. The approximate experimental measurement of
799
+ the mode structure of BAE is also shown.
800
+ measured radial mode structure. In this case, the radial width of δφm by theory is w =
801
+ 0.2107, is comparable to the scale length of energetic-ion pressure, i.e., LPE;cl = 0.1773;
802
+ consistent with the analysis of Fig. 1. Note that determined by the EP distribution, the
803
+ BAE eigenfunction peaks at the radial position of the maximum energetic particle pressure
804
+ gradient, resulting in a large deviation from the qmin surface. It can also be expected that
805
+ the KBM eigenfunction should peak at the rational values of qmin where the instability drive
806
+ is maximum.
807
+ Finally, the continuous spectra plots for low-frequency shear Alfv´en and acoustic waves
808
+ given by Λ2
809
+ n(ω) = k2
810
+ ∥nq2R2
811
+ 0 = (nq−m)2 [4, 6, 28, 29, 42, 46, 47] are shown in Fig. 8. Here, the
812
+ inertia term includes the diamagnetic effects and thermal ion compressibility as well as drift
813
+ Alfv´en wave and drift wave sideband coupling via the wave-thermal-passing-ion interaction
814
+ and diamagnetic effect [6]. The figure shows that based on the GFLDR, the nature of various
815
+ branches can be clearly classified via their frequencies (a), growth rates (b) and polarizations
816
+ (c). Here, the short notation “e-KBM” represents the branch of the KBM propagating in
817
+ the thermal-electron diamagnetic drift direction. The unstable continuum spectrum of the
818
+ e-KBM is due to the inclusion of the kinetic dynamics of thermal particles in inertia term. In
819
+ addition, the frequencies of the (m, n) = (8, 6) BAE and the (m, n) = (8, 6) KBM calculated
820
+ by the local and global cases are, respectively, in the gaps of the BAE and KBM continua,
821
+ 15
822
+
823
+ 4
824
+ (a)
825
+ 3
826
+ △ Re(wlwt) of KBM
827
+ A
828
+ Im(w/wti) of KBM
829
+ 2
830
+ -Re(wlwt:) of BAE
831
+ -- Im(w/wti) of BAE
832
+ 0
833
+ 2
834
+ 3(m,n)=(8,6)
835
+ 0.75
836
+ analytic
837
+ -ECE-measured
838
+ m,n
839
+ 0.5
840
+ 0.25
841
+ 0
842
+ 0
843
+ 0.25
844
+ 0.5
845
+ 0.75
846
+ 1
847
+ p=r/awhich is consistent with the numerical simulation results reported in Refs. [16, 24].
848
+ FIG. 8. The continuous spectra of low-frequency shear Alfv´en and acoustic branches for n=6,
849
+ m=8-15. The equilibrium profiles of DIII-D #178631 at 1200 ms are adopted.
850
+ IV.
851
+ SUMMARY AND DISCUSSIONS
852
+ The present work has addressed linear properties of the low-frequency shear Alfv´en waves
853
+ (SAWs) with the consideration of energetic ions in DIII-D reversed magnetic shear tokamak
854
+ experiments. By analyzing the experimental equilibrium profiles, the local and global models
855
+ for low-frequency SAWs for weak and/or vanishing magnetic shear are discussed based on the
856
+ unified theoretical framework of the generalize fishbone-like dispersion relation (GFLDR).
857
+ Resorting to numerical and theoretical analyses, the dependences of mode frequency, growth
858
+ rate and polarization on the minimum of the safety factor (qmin), as well as the instability
859
+ mechanisms are delineated.
860
+ 16
861
+
862
+ 200
863
+ (a)
864
+ n=6;
865
+ BAE
866
+ pi;exp
867
+ BAAE
868
+
869
+ KBM; rel
870
+ 150
871
+ m=8~15
872
+ KBM
873
+ BAE; rel
874
+ KBM1
875
+
876
+ KBM; cl
877
+ LFM
878
+ BAE; cl
879
+ (ZH>)
880
+ e-KBM
881
+ 100
882
+ p
883
+ 50
884
+ 0
885
+
886
+
887
+ 0.2
888
+ 0.4
889
+ 0.6
890
+ 0.8
891
+ r/a10
892
+ (b)
893
+ 0
894
+ (kHz)
895
+ -10
896
+ -20
897
+ 2元
898
+ BAE
899
+ -30
900
+ BAAE
901
+ KBM
902
+ n=6;
903
+ KBM1
904
+ -40
905
+ m=8~15
906
+ LFM
907
+ e-KBM
908
+ 0.2
909
+ 0.4
910
+ 0.6
911
+ 0.8
912
+ r/a102
913
+ (c)
914
+ BAE
915
+ KBM1
916
+ BAAE
917
+ LFM
918
+ KBM
919
+ e-KBM
920
+ Sf100
921
+ 0.2
922
+ 0.4
923
+ 0.6
924
+ 0.8
925
+ r/aThe main results of this work are that the LFAMs and BAEs observed in DIII-D ex-
926
+ periments are, respectively, the reactive-type and dissipative-type unstable modes with pre-
927
+ dominantly Alfv´enic polarization. Due to the different instability mechanisms, BAE peak
928
+ occurs further away from the rational qmin than LFAM peak does. The BAE eigenfunction
929
+ is localized at the radial position with the strongest energetic-ion-drive spatially, which leads
930
+ to deviation from the radial position of qmin.
931
+ The theoretical analysis explains many experimental observations.
932
+ 1. The theory successfully explains the temporal pattern of two bands of instability, the
933
+ BAE band and the LFAM band, that both appear near rational values of qmin but
934
+ with distinctly different stability properties.
935
+ 2. The predicted values of KBM frequency are in excellent agreement with the experi-
936
+ mental LFAM frequencies. The KBM can be unstable even in the absence of energetic
937
+ particles (EPs).
938
+ 3. The predicted values of BAE frequency span the same range as the experimentally
939
+ observed values.
940
+ 4. The theory also successfully explains the absence of a third branch of instability at
941
+ BAAE frequencies, as that branch is predicted to be stable.
942
+ 5. Experimentally, an individual unstable BAE spans a much larger range of frequencies
943
+ than an unstable LFAM, another feature successfully reproduced by theory.
944
+ 6. Experimentally, unstable LFAMs only persist for a few milliseconds. The short du-
945
+ ration of the LFAM is consistent with the very strong qmin dependence of the KBM
946
+ growth rate.
947
+ 7. In experiment, unstable BAEs persist longer than LFAMs, which is consistent with
948
+ the weaker dependence of the BAE growth rate on qmin in theory.
949
+ 8. Temporally, in experiment, LFAMs occur at rational values of qmin; BAEs also occur
950
+ near rational values but less precisely. This feature is also reproduced by the theoretical
951
+ stability predictions: the KBM growth rate peaks sharply at rational qmin values but
952
+ the peak of the BAE growth rate deviates slightly.
953
+ 17
954
+
955
+ 9. In experiment, for both the LFAM and the BAE, unstable modes with higher values of
956
+ toroidal mode number n are of shorter duration than lower values of n. The narrower
957
+ growth rate curves as n increases successfully explains this feature.
958
+ 10. Experimentally, the BAE radial eigenfunction has an approximately gaussian shape,
959
+ consistent with the theoretical prediction that the L = 0 radial harmonic is most
960
+ unstable.
961
+ 11. Experimentally, the LFAM is more unstable in plasmas with hydrogen than in pure
962
+ deuterium plasmas [18], a feature explained by the higher value of ωA in hydrogen
963
+ plasmas. As Eq. (13) shows, a larger value of ωA lowers the instability threshold.
964
+ On the other hand, there are three discrepancies between theory and experiment.
965
+ 1. Although the predicted KBM growth rate correctly peaks sharply for rational values
966
+ of qmin, it remains positive for a much longer duration than the LFAMs are observed
967
+ experimentally. Evidently, an additional damping mechanism is missing in the theory.
968
+ 2. Although the predicted KBM growth rate has changed significantly for the cases with
969
+ and without EPs, there is no apparent dependence of LFAM stability on EPs ex-
970
+ perimentally. Therefore, a more precise theoretical model and more comprehensive
971
+ experimental analysis are needed for meaningful comparison.
972
+ 3. Although the predicted BAE frequency spans the observed values, the predicted fre-
973
+ quency has a parabolic shape with time, while the experimental frequency has a less
974
+ regular shape. A likely explanation for this discrepancy is imprecise modeling of the
975
+ fast-ion distribution function.
976
+ Finally, there is one theoretical prediction that is inconclusive experimentally: the mode
977
+ polarization. Theory predicts predominately Alfv´enic polarization for both the KBM and
978
+ the BAE. In experiment, low toroidal mode number (n ≤ 3) BAEs are usually observed on
979
+ external magnetic coils; LFAMs are never detected, but the inferred toroidal mode numbers
980
+ typically span a larger range than those normally detected for RSAEs or BAEs. DIII-D is
981
+ equipped with one diagnostic that can detect internal magnetic fields, a radial interferometer-
982
+ polarimeter (RIP) [48] that measures the line integral of the density and radial magnetic
983
+ field,
984
+
985
+ neBrdl. This diagnostic clearly detects RSAEs and BAEs, which is consistent with
986
+ 18
987
+
988
+ their expected shear-wave polarization. Fluctuations are observed by RIP for some LFAMs,
989
+ indicating that there is at least some magnetic component, but the signal is weaker than
990
+ for RSAEs and BAEs. It is not presently known if this difference is due to a line-integral
991
+ effect associated with the mode structure or if the LFAM polarization is less Alfv´enic than
992
+ the other modes.
993
+ ACKNOWLEDGMENTS
994
+ One of authors (R.R. Ma) would like to acknowledge Dr. Lei Yang and Dr. Yunpeng Zou
995
+ for their useful discussions and the DIII-D team for providing the experimental data. The
996
+ authors thank Dr. Xiaodi Du for helpful comments concerning the mode polarization. R.R
997
+ Ma is also grateful to the Center for Nonlinear Plasma Science (CNPS) for its enlightening
998
+ academic discussion, which provides a valuable sources of scientific stimuli.
999
+ This work has been supported in part by the National key R&D Program of China under
1000
+ Grant Nos. 2022YFE03040002 and 2018YFE0304103, by the National Science Foundation
1001
+ of China under Grant Nos. 12261131622 and 12175053 and Natural Science Foundation of
1002
+ Sichuan under Grant No. 2022NSFSC1814 and Sichuan Science and Technology Program
1003
+ under Grant No. 2022ZYD0019. This work has also been carried out within the framework
1004
+ of the EUROfusion Consortium, funded by the European Union via the Euratom Research
1005
+ and Training Programme (Grant Agreement No. 101052200 – EUROfusion). Views and
1006
+ opinions expressed are however those of the author(s) only and do not necessarily reflect
1007
+ those of the European Union or the European Commission. Neither the European Union
1008
+ nor the European Commission can be held responsible for them. This material is based
1009
+ upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion
1010
+ Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user
1011
+ facility, under Awards DE-FC02-04ER54698 and DE-SC0020337.
1012
+ This report was prepared as an account of work sponsored by an agency of the United States
1013
+ Government.
1014
+ Neither the United States Government nor any agency thereof, nor any of their
1015
+ employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
1016
+ for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
1017
+ disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
1018
+ any specific commercial product, process, or service by trade name, trademark, manufacturer, or
1019
+ 19
1020
+
1021
+ otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
1022
+ by the United States Government or any agency thereof.
1023
+ The views and opinions of authors
1024
+ expressed herein do not necessarily state or reflect those of the United States Government or any
1025
+ agency thereof.
1026
+ Appendix A: Detailed Expressions of Λ2
1027
+ n and Sf
1028
+ Detailed derivations of the generalized inertia, Λ2
1029
+ n and wave polarization, Sf, can be found
1030
+ in Ref. 7. Here, we only present the results. In low-β (β = 8πP/B2
1031
+ 0 ≈ ϵ2) axisymmetric
1032
+ tokamak plasmas,
1033
+ Λ2
1034
+ n = Iφ
1035
+ � ω2
1036
+ ω2
1037
+ A
1038
+
1039
+ 1 − ω∗pi
1040
+ ω
1041
+
1042
+ + Λ2
1043
+ cir + Λ2
1044
+ tra
1045
+
1046
+ ,
1047
+ (A1)
1048
+ where Λ2
1049
+ cir and Λ2
1050
+ tra represent, respectively, the modified circulating and trapped ion re-
1051
+ sponses, and Iφ describes the non-vanishing ‘flute-like’ component of the parallel elec-
1052
+ tric field (δE∥) due to the effect of trapped thermal particle precession resonance [7, 21].
1053
+ Meanwhile, ωA = υA/qR0 is the Alfv´en frequency with υA being the Alfv´en velocity, and
1054
+ ω∗ps = (Tsc/esB)(k×b)·(∇ns/ns+∇Ts/Ts) ≡ ω∗ns+ω∗Ts is the thermal particle diamagnetic
1055
+ drift frequency due to density and temperature gradients.
1056
+ For Λ2
1057
+ n, the various terms involved in Eq. (A1) are given by [7]
1058
+ Λ2
1059
+ cir = q2ωωti
1060
+ ω2
1061
+ A
1062
+ ��
1063
+ 1 − ω∗ni
1064
+ ω
1065
+ ��
1066
+ F
1067
+ � ω
1068
+ ωti
1069
+
1070
+ + ∆F
1071
+ � ω
1072
+ ωti
1073
+ ��
1074
+ − ω∗Ti
1075
+ ω
1076
+
1077
+ G
1078
+ � ω
1079
+ ωti
1080
+
1081
+ + ∆G
1082
+ � ω
1083
+ ωti
1084
+ ��
1085
+ + ωωti
1086
+ 4¯ω2
1087
+ Di
1088
+
1089
+ N1
1090
+ � ω
1091
+ ωti
1092
+
1093
+ + ∆N1
1094
+ � ω
1095
+ ωti
1096
+ ��
1097
+ Sf(ω, ¯ωDi, ωbi, ωti)
1098
+
1099
+ ,
1100
+ (A2)
1101
+ Λ2
1102
+ tra = ω2ω2
1103
+ bi
1104
+ ω2
1105
+ A¯ω2
1106
+ Di
1107
+ q2
1108
+
1109
+
1110
+
1111
+ P3 + (P2 − P3)Sf(ω, ¯ωDi, ωbi, ωti)
1112
+
1113
+ ,
1114
+ (A3)
1115
+ Iφ = 1 +
1116
+
1117
+ 2ϵ(L(ω/¯ωDi) + τ −1L(ω/¯ωDe))
1118
+ 1 + τω∗ni/ω +
1119
+
1120
+ 2ϵτ[1 − ω∗ni/ω − M(ω/¯ωDi) − τ −1M(ω/¯ωDe)],
1121
+ (A4)
1122
+ and, as to Sf ≡ (iδE∥/k∥)a.c.
1123
+
1124
+ δφd.c., it is given by [7]
1125
+ Sf = −
1126
+ N1
1127
+
1128
+ ω
1129
+ ωti
1130
+
1131
+ + ∆N1
1132
+
1133
+ ω
1134
+ ωti
1135
+
1136
+ +
1137
+
1138
+ 2ϵP2
1139
+ 1 + 1
1140
+ τ + D1
1141
+
1142
+ ω
1143
+ ωti
1144
+
1145
+ + ∆D1
1146
+
1147
+ ω
1148
+ ωti
1149
+
1150
+ +
1151
+
1152
+ 2ϵ (P1 − P2)
1153
+ (A5)
1154
+ where the functions F(x), ∆F(x), G(x), ∆G(x), N1(x), ∆N1(x), D1(x), ∆D1(x), P1, P2, P3,
1155
+ L(ω/¯ωDs) and M(ω/¯ωDs) with x = ω/ωti, and using the plasma dispersion function Z(x),
1156
+ 20
1157
+
1158
+ are defined as
1159
+ Z(x) = π−1/2
1160
+ � ∞
1161
+ −∞
1162
+ e−y2
1163
+ y − xdy,
1164
+ F(x) = x(x2 + 3/2) + (x4 + x2 + 1/2)Z(x),
1165
+ ∆F(x) =
1166
+ 1
1167
+ π1/2
1168
+ � ∞
1169
+ 0
1170
+ e−y ln
1171
+ �x + √2ϵy
1172
+ x − √2ϵy
1173
+ �y2
1174
+ 4 dy,
1175
+ G(x) = x(x4 + x2 + 2) + (x6 + x4/2 + x2 + 3/4)Z(x),
1176
+ ∆G(x) =
1177
+ 1
1178
+ π1/2
1179
+ � ∞
1180
+ 0
1181
+ e−y ln
1182
+ �x + √2ϵy
1183
+ x − √2ϵy
1184
+ �y2
1185
+ 4
1186
+
1187
+ y − 3
1188
+ 2
1189
+
1190
+ dy,
1191
+ N1(x) = 2 ¯ωDi
1192
+ ωti
1193
+ ��
1194
+ 1 − ω∗ni
1195
+ ω
1196
+
1197
+ [x + (1/2 + x2)Z(x)] − ω∗Ti
1198
+ ω [x(1/2 + x2) + (1/4 + x4)Z(x)]
1199
+
1200
+ ,
1201
+ ∆N1(x) = ¯ωDi/ωti
1202
+ π1/2
1203
+ � ∞
1204
+ 0
1205
+ ye−y ln
1206
+ �x + √2ϵy
1207
+ x − √2ϵy
1208
+ � �
1209
+ 1 − ω∗ni
1210
+ ω
1211
+ − ω∗Ti
1212
+ ω
1213
+
1214
+ y − 3
1215
+ 2
1216
+ ��
1217
+ dy,
1218
+ D1(x) = x
1219
+
1220
+ 1 − ω∗ni
1221
+ ω
1222
+
1223
+ Z(x) − ω∗Ti
1224
+ ω [x + (x2 − 1/2)Z(x)],
1225
+ ∆D1(x) = ¯ωDi/ωti
1226
+ π1/2
1227
+ � ∞
1228
+ 0
1229
+ e−y ln
1230
+ �x + √2ϵy
1231
+ x − √2ϵy
1232
+ � �
1233
+ 1 − ω∗ni
1234
+ ω
1235
+ − ω∗Ti
1236
+ ω
1237
+
1238
+ y − 3
1239
+ 2
1240
+ ��
1241
+ dy,
1242
+ P1 = −2 ω2
1243
+ ¯ω2
1244
+ Di
1245
+ ��
1246
+ 1 − ω∗ni
1247
+ ω
1248
+ + 3
1249
+ 2
1250
+ ω∗Ti
1251
+ ω
1252
+
1253
+ G2 − ω∗Ti
1254
+ ω G4
1255
+
1256
+ ,
1257
+ P2 = −2 ω
1258
+ ¯ωDi
1259
+ ��
1260
+ 1 − ω∗ni
1261
+ ω
1262
+ + 3
1263
+ 2
1264
+ ω∗Ti
1265
+ ω
1266
+
1267
+ G4 − ω∗Ti
1268
+ ω G6
1269
+
1270
+ ,
1271
+ P3 = −2
1272
+ ��
1273
+ 1 − ω∗ni
1274
+ ω
1275
+ + 3
1276
+ 2
1277
+ ω∗Ti
1278
+ ω
1279
+
1280
+ G6 − ω∗Ti
1281
+ ω G8
1282
+
1283
+ ,
1284
+ Gn =
1285
+ 1
1286
+ π1/2
1287
+ � ∞
1288
+ −∞
1289
+ e−x2xn
1290
+ (ω/¯ωDi − x2)2 − (ωbi/¯ωDi)2x2dx,
1291
+ M
1292
+ � ω
1293
+ ¯ωDs
1294
+
1295
+ = −2 ω
1296
+ ¯ωDs
1297
+ � �
1298
+ 1 − ω∗ni
1299
+ ω
1300
+ + 3
1301
+ 2
1302
+ ω∗Ti
1303
+ ω
1304
+ � �
1305
+ 1 +
1306
+ � ω
1307
+ ¯ωDs
1308
+ Z
1309
+ �� ω
1310
+ ¯ωDs
1311
+ ��
1312
+ − ω∗Ti
1313
+ ω
1314
+
1315
+ 1
1316
+ 2 + ω
1317
+ ¯ωDs
1318
+ +
1319
+ � ω
1320
+ ¯ωDs
1321
+ �3/2
1322
+ Z
1323
+ �� ω
1324
+ ¯ωDs
1325
+ �� �
1326
+ ,
1327
+ L
1328
+ � ω
1329
+ ¯ωDs
1330
+
1331
+ = −2
1332
+ � �
1333
+ 1 − ω∗ni
1334
+ ω
1335
+ + 3
1336
+ 2
1337
+ ω∗Ti
1338
+ ω
1339
+ � �
1340
+ 1
1341
+ 2 + ω
1342
+ ¯ωDs
1343
+ +
1344
+ � ω
1345
+ ¯ωDs
1346
+ �3/2
1347
+ Z
1348
+ �� ω
1349
+ ¯ωDs
1350
+ ��
1351
+ − ω∗Ti
1352
+ ω
1353
+
1354
+ 3
1355
+ 4 + 1
1356
+ 2
1357
+ ω
1358
+ ¯ωDs
1359
+ +
1360
+ � ω
1361
+ ¯ωDs
1362
+ �2
1363
+ +
1364
+ � ω
1365
+ ¯ωDs
1366
+ �5/2
1367
+ Z
1368
+ �� ω
1369
+ ¯ωDs
1370
+ �� �
1371
+ .
1372
+ (A6)
1373
+ Here the magnetic drift orbit precession frequency ¯ωds = ¯ωDsmsυ2/2Ts for deeply
1374
+ trapped particles (s = i, e) with ¯ωDs = (nq/r)Ts/msR0ωcs and ωcs = esB/msc; the
1375
+ bounce frequency of deeply trapped ions ωbi ≡ (r/R0)1/2(Ti/mi)1/2/(qR0) ≈ ϵ1/2ωti with
1376
+ 21
1377
+
1378
+ ωti = (2Ti/mi)1/2/qR0; and τ ≡ Te/Ti.
1379
+ REFERENCES
1380
+ [1] L. Chen and F. Zonca, Nucl. Fusion 47, S727 (2007).
1381
+ [2] W. W. Heidbrink, E. J. Strait, M. S. Chu,
1382
+ and A. D. Turnbull, Phys. Rev. Lett. 71, 855
1383
+ (1993).
1384
+ [3] A. D. Turnbull, E. J. Strait, W. W. Heidbrink, M. S. Chu, H. H. Duong, J. W. Greene, L. L.
1385
+ Lao, T. S. Taylor, and S. J. Thompson, Phys. Fluids B 5, 2546 (1993).
1386
+ [4] F. Zonca, L. Chen, and R. A. Santoro, Plasma Phys. Control. Fusion 38, 2011 (1996).
1387
+ [5] F. Zonca, L. Chen, J. Q. Dong, and R. A. Santoro, Phys. Plasmas 6, 1917 (1999).
1388
+ [6] F. Zonca, A. Biancalani, I. Chavdarovski, L. Chen, C. D. Troia,
1389
+ and X. Wang, Journal of
1390
+ Physics: Conference Series 260, 012022 (2010).
1391
+ [7] I. Chavdarovski and F. Zonca, Plasma Phys. Control. Fusion 51, 115001 (2009).
1392
+ [8] P. Lauber, M. Brudgam, D. Curran, V. Igochine, K. Sassenberg, S. Gunter, M. Maraschek,
1393
+ M. Garcia-Munoz, N. Hicks, and the ASDEX Upgrade Team, Plasma Phys. Control. Fusion
1394
+ 51, 124009 (2009).
1395
+ [9] L. Chen and F. Zonca, Rev. Mod. Phys. 88, 015008 (2016).
1396
+ [10] F. Zonca, L. Chen, M. V. Falessi, and Z. Qiu, Journal of Physics: Conference Series 1785,
1397
+ 012005 (2021).
1398
+ [11] C. Cheng, Phys. Fluids 25, 1020 (1982).
1399
+ [12] W. Tang, J. Connor, and R. Hastie, Nucl. Fusion 20(11), 1439 (1980).
1400
+ [13] H. Biglari and L. Chen, Phys. Rev. Lett. 67, 3681 (1991).
1401
+ [14] S. Sharapov, B. Alper, H. Berk, D. Borba, B. Breizman, C. Challis, I. Classen, E. Edlund,
1402
+ J. Eriksson, A. Fasoli, E. Fredrickson, G. Fu, M. Garcia-Munoz, T. Gassner, K. Ghantous,
1403
+ V. Goloborodko, N. Gorelenkov, M. Gryaznevich, S. Hacquin, W. Heidbrink, C. Hellesen,
1404
+ V. Kiptily, G. Kramer, P. Lauber, M. Lilley, M. Lisak, F. Nabais, R. Nazikian, R. Nyqvist,
1405
+ M. Osakabe, C. P. von Thun, S. Pinches, M. Podesta, M. Porkolab, K. Shinohara, K. Schoepf,
1406
+ Y. Todo, K. Toi, M. V. Zeeland, I. Voitsekhovich, R. White, V. Yavorskij, I. E. TG, and J.-E.
1407
+ 22
1408
+
1409
+ Contributorsa, Nucl. Fusion 53, 104022 (2013).
1410
+ [15] N. Gorelenkov, S. Pinches, and K. Toi, Nucl. Fusion 54, 125001 (2014).
1411
+ [16] W. Heidbrink, M. V. Zeeland, M. Austin, A. Bierwage, L. Chen, G. Choi, P. Lauber, Z. Lin,
1412
+ G. McKee, and D. Spong, Nucl. Fusion 61, 016029 (2021).
1413
+ [17] W. Heidbrink, M. V. Zeeland, M. Austin, N. Crocker, X. Du, G. McKee, and D. Spong, Nucl.
1414
+ Fusion 61, 066031 (2021).
1415
+ [18] W. Heidbrink, G. Choi, M. V. Zeeland, M. Austin, G. Degrandchamp, D. Spong, A. Bierwage,
1416
+ N. Crocker, X. Du, P. Lauber, Z. Lin, and G. McKee, Nucl. Fusion 61, 106021 (2021).
1417
+ [19] D. Curran, P. Lauber, P. J. M. Carthy, S. da Graca, V. Igochine,
1418
+ and the ASDEX Up-
1419
+ grade Team, Plasma Phys. Control. Fusion 54, 055001 (2012).
1420
+ [20] P. Lauber, Physics Reports 533, 33 (2013).
1421
+ [21] I. Chavdarovski and F. Zonca, Phys. Plasmas 21, 052506 (2014).
1422
+ [22] A. Fasoli, S. Brunner, W. Cooper, J. Graves, P.Ricci, O. Sauter,
1423
+ and L. Villard, Nature
1424
+ Physics 12, 411 (2016).
1425
+ [23] A. Bierwage and P. Lauber, Nucl. Fusion 57, 116063 (2017).
1426
+ [24] G. Choi, P. Liu, X. Wei, J. Nicolau, G. Dong, W. Zhang, Z. Lin, W. Heidbrink, and T. Hahm,
1427
+ Nucl. Fusion 61, 066007 (2021).
1428
+ [25] N. Gorelenkov, H. Berk, E. Fredrickson, S. Sharapov, and J. E. Contributors, Phys. Lett. A
1429
+ 370, 70 (2007).
1430
+ [26] N. N. Gorelenkov, M. A. V. Zeeland, H. L. Berk, N. A. Crocker, D. Darrow, E. Fredrickson,
1431
+ G.-Y. Fu, W. W. Heidbrink, J. Menard, and R. Nazikian, Phys. Plasmas 16, 056107 (2009).
1432
+ [27] L. Chen and F. Zonca, Phys. Plasmas 24, 072511 (2017).
1433
+ [28] F. Zonca and L. Chen, Phys. Plasmas 21, 072120 (2014).
1434
+ [29] F. Zonca and L. Chen, Phys. Plasmas 21, 072121 (2014).
1435
+ [30] J. Varela, D. Spong, L. Garcia, J. Huang, M. Murakami, A. Garofalo, J. Qian, C. Holcomb,
1436
+ A. Hyatt, J. Ferron, C. Collins, Q. Ren, J. McClenaghan,
1437
+ and W. Guo, Nucl. Fusion 58,
1438
+ 076017 (2018).
1439
+ [31] L. Chen, R. B. White, and M. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984).
1440
+ [32] L. Chen, Phys. Plasmas 1, 1519 (1994).
1441
+ [33] S. Tsai and L. Chen, Phys. Fluids B 5, 3284 (1993).
1442
+ [34] F. Zonca and L. Chen, Plasma Phys. Control. Fusion 48, 537 (2006).
1443
+ 23
1444
+
1445
+ [35] F. Zonca, P. Buratti, A. Cardinali, L. Chen, J.-Q. Dong, Y.-X. Long, A. Milovanov, F. Ro-
1446
+ manelli, P. Smeulders, L. Wang, Z.-T. Wang, C. Castaldo, R. Cesario, E. Giovannozzi, M. Mar-
1447
+ inucci, and V. P. Ridolfini, Nucl. Fusion 47, 1588 (2007).
1448
+ [36] R. Ma, L. Chen, F. Zonca, Y. Li,
1449
+ and Z. Qiu, Plasma Phys. Control. Fusion 64, 035019
1450
+ (2022).
1451
+ [37] L. L. Lao, H. S. John, and R. D. Stambaugh, Nucl. Fusion 25, 1611 (1985).
1452
+ [38] A. Pankin, D. McCune, R. Andre, G. Bateman, and A. Kritz, Comput. Phys. Commun. 159,
1453
+ 157 (2004).
1454
+ [39] F. Zonca and L. Chen, Phys. Plasmas 7, 4600 (2000).
1455
+ [40] F. Zonca, S. Briguglio, L. Chen, S. Dettrick, G. Fogaccia, D. Testa,
1456
+ and G. Vlad, Phys.
1457
+ Plasmas 9(12), 4939 (2002).
1458
+ [41] J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396 (1978).
1459
+ [42] F. Zonca, L. Chen, A. Botrugno, P. Buratti, A. Cardinali, R. Cesario, V. P. Ridolfini, and
1460
+ the JET-EFDA contributors, Nucl. Fusion 49, 085009 (2009).
1461
+ [43] L. Chen, private notes (2020).
1462
+ [44] M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998).
1463
+ [45] J. P. Graves, R. J. Hastie, and K. I. Hopcraft, Plasma Phys. Control. Fusion 42, 1049 (2000).
1464
+ [46] M. V. Falessi, N. Carlevaro, V. Fusco, G. Vlad,
1465
+ and F. Zonca, Phys. Plasmas 26, 082502
1466
+ (2019).
1467
+ [47] M. V. Falessi, N. Carlevaro, V. Fusco, E. Giovannozzi, P. Lauber, G. Vlad, and F. Zonca, J.
1468
+ Plasma Phys. 86, 845860501 (2020).
1469
+ [48] J. Chen, W. X. Ding, D. L. Brower, D. Finkenthal, C. Muscatello, D. Taussig, and R. Boivin,
1470
+ Review of Scientific Instruments 87, 11E108 (2016).
1471
+ 24
1472
+
6tAzT4oBgHgl3EQfgPwz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7NAzT4oBgHgl3EQf-f4D/content/tmp_files/2301.01933v1.pdf.txt ADDED
@@ -0,0 +1,1373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ Abstract—Surface electromyogram (SEMG) decomposition
4
+ provides a promising tool for decoding and understanding neural
5
+ drive information non-invasively. In contrast to previous SEMG
6
+ decomposition methods mainly developed in offline conditions,
7
+ there are few studies on online SEMG decomposition. A novel
8
+ method for online decomposition of SEMG data is presented using
9
+ the progressive FastICA peel-off (PFP) algorithm. The online
10
+ method consists of an offline prework stage and an online
11
+ decomposition stage. More specifically, a series of separation
12
+ vectors are first initialized by the originally offline version of the
13
+ PFP algorithm from SEMG data recorded in advance. Then they
14
+ are applied to online SEMG data to extract motor unit spike trains
15
+ precisely. The performance of the proposed online SEMG
16
+ decomposition method was evaluated by both simulation and
17
+ experimental approaches. It achieved an online decomposition
18
+ accuracy of 98.53% when processing simulated SEMG data. For
19
+ decomposing experimental SEMG data, the proposed online
20
+ method was able to extract an average of 12.00 ± 3.46 MUs per
21
+ trial, with a matching rate of 90.38% compared with results from
22
+ the expert-guided offline decomposition. Our study provides a
23
+ valuable way of online decomposition of SEMG data with
24
+ advanced applications in movement control and health.
25
+
26
+ Index Terms—Surface electromyography, motor unit, online
27
+ decomposition, progressive FastICA peel-off
28
+
29
+ I. INTRODUCTION
30
+ lectromyogram (EMG) is an electrophysiological signal
31
+ generated by muscular activation, reflecting motor control
32
+ commands of the neuromuscular system [1]. It can be used to
33
+ analyze movement behaviors, intentions and health [2]-[4].
34
+ Surface EMG (SEMG) refers to the EMG signals recorded by
35
+ electrodes placed on the skin surface. Due to its noninvasive
36
+ manner, SEMG has been widely applied in human-machine
37
+ interfaces [5]-[7], sports medicine [8]-[9] and rehabilitation
38
+ [10]-[12]. Ideally, an EMG signal is composed of multiple
39
+ action potentials generated by activated motor units (MUs),
40
+ transmitted and superimposed temporally and spatially at a
41
+ recording electrode [13]. Specifically, each MU consists of the
42
+ cell body and dendrites of an alpha motor neuron, the multiple
43
+
44
+ This work was supported by the National Natural Science Foundation of
45
+ China under Grant No. 61771444.
46
+ H. Zhao and X. Zhang are with the School of Information Science and
47
+ Technology at University of Science and Technology of China, Hefei, Anhui,
48
+ 230026, China (email: xuzhang90@ustc.edu.cn).
49
+ branches of its axon, and the muscle fibers that are innervated
50
+ [14]. The MU is regarded as the basic component of the
51
+ peripheral neuromuscular system to describe the neural control
52
+ of muscular contraction and movement formation [15].
53
+ Compared with the global features such as SEMG amplitude,
54
+ the MU activities can reflect the information of neural drives to
55
+ the muscle at a microscopic level. Therefore, it is valuable to
56
+ examine the MU activities and properties. EMG decomposition
57
+ enables resolving the composite EMG signal into its constituent
58
+ MU spike trains (MUSTs) and MU action potential (MUAP)
59
+ waveforms. The availability of these individual MU activities
60
+ can provide a promising way of decoding motor neural
61
+ commands of a neurophysiological nature [16]-[22].
62
+ Many efforts have been made toward EMG decomposition,
63
+ mainly relying on blind source separation (BSS) algorithms
64
+ which are aimed to solve the difficult math problem of
65
+ separating sources from observed signals without prior
66
+ knowledge of the source signals [23]. Besides, it brings huge
67
+ challenges to the SEMG decomposition due to its special
68
+ characteristics such as low signal-to-noise ratio, high similarity
69
+ and severe superposition of the MUAP waveforms, caused by
70
+ the low-pass filtering effect of the subcutaneous skin and fat
71
+ tissues. With the recent development of electronic and sensing
72
+ technologies, the use of high-density SEMG (HD-SEMG) by 2-
73
+ dimensional flexible electrode arrays provides abundant spatial
74
+ information simultaneously recorded from dozens or even
75
+ hundreds of SEMG channels, facilitating implementing the
76
+ BSS algorithms in general, and the SEMG decomposition in
77
+ particular [24]. Convolution kernel compensation (CKC) [25]
78
+ and progressive FastICA peel-off (PFP) [26] are both
79
+ representative HD-SEMG decomposition methods, inspired by
80
+ the advanced BSS techniques [23], [27]. The CKC estimates
81
+ and updates cross-correlation vectors between the observed
82
+ SEMG signals and MUSTs in an iterative way [23]. The PFP
83
+ applies a classic FastICA algorithm [27] to the SEMG signals
84
+ to calculate the separation vectors and introduces a “peel-off”
85
+ procedure to progressively remove the separated MUAP
86
+ waveforms from the original SEMG signals. Such a procedure
87
+ mitigates the effect of the already identified MUs on the
88
+ M. Chen and P. Zhou are with Faculty of Biomedical and Rehabilitation
89
+ Engineering, University of Health and Rehabilitation Sciences, Qingdao,
90
+ Shandong, 266024, China (email: dr.ping.zhou@outlook.com).
91
+
92
+ Online Decomposition of Surface
93
+ Electromyogram into Individual Motor Unit
94
+ Activities Using Progressive FastICA Peel-off
95
+ Haowen Zhao, Xu Zhang, Maoqi Chen and Ping Zhou
96
+ E
97
+
98
+
99
+ FastICA convergence and effectively increase the number of
100
+ obtained MUs. The performance of both CKC and PFP has been
101
+ extensively validated [28]-[32]. Variations of both methods
102
+ have been developed to extract a relatively large number of
103
+ MUs at high muscle contraction levels, with successful
104
+ applications mainly in offline conditions [33]-[37].
105
+ Considering the application prospects of SEMG in many
106
+ fields, there are substantial demands for robust online SEMG
107
+ decomposition. Glaser et al. [38] conducted a pilot study on the
108
+ real-time SEMG decomposition based on the CKC algorithm
109
+ and demonstrated its feasibility. Afterwards, more relevant
110
+ studies were reported [39]-[44]. The development of these
111
+ online decomposition algorithms mainly relies on a basic
112
+ assumption that SEMG signals are quasi-stationary, and the
113
+ MU behaviors do not change in pattern over a short period of
114
+ time. This assumption has served as a primary basis of
115
+ conventional offline SEMG decomposition [25], [26]. On this
116
+ basis, these online decomposition algorithms were always
117
+ designed to use results from an offline decomposition as prior
118
+ knowledge, thus saving computational resources and allowing
119
+ the feasibility of online signal processing. Specifically, most
120
+ previous studies conducted online SEMG decomposition using
121
+ modified versions of the CKC method, whereas the online
122
+ version of the PFP method has not been investigated yet.
123
+ Considering the advantages of the PFP method in extracting a
124
+ great many MUs with high precision, it is necessary and
125
+ promising to develop its online version.
126
+ Accordingly, this paper presents an online SEMG
127
+ decomposition method based on the PFP algorithm, evolving
128
+ the key techniques of the PFP algorithm to meet the
129
+ requirements for its real-time usability. To avoid the time-
130
+ consuming complexity from the offline decomposition methods,
131
+ the proposed method utilized a two-stage approach consisting
132
+ of an offline prework stage and an online decomposition stage.
133
+ Furthermore, an adaptive threshold selection algorithm was
134
+ developed to make it more suitable for precisely determining
135
+ each MUST while processing in real time. The performance of
136
+ the proposed online decomposition method was validated on
137
+ both simulated and experimental SEMG datasets.
138
+ II. RELATED WORK
139
+ A. SEMG Observation
140
+ Each MU has a unique and stable MUAP waveform
141
+ distribution pattern in different channels of a 2-dimensional
142
+ array, which can be used to distinguish and identify the MU.
143
+ The SEMG signal can be observed by a convolutional mixing
144
+ model expressed as [45]:
145
+ ��(�) = � � ���(�)��(� − �) + ��(�)
146
+ ���
147
+ ���
148
+
149
+ ���
150
+
151
+
152
+ (1)
153
+
154
+ where � = 1,2,3 … … � and � = 1,2, … … � , ��(�) is the � th
155
+ SEMG channel and ��(�) represents the additive noise in the
156
+ �th channel. ���(�) denotes the waveform vector of length L,
157
+ which represents the waveform of the �th MU in the �th channel.
158
+ ��(�) = ∑ �(� − ��(�))
159
+
160
+ is the MUST expressed as a 0-1
161
+ impulse sequence indicating every spike firing timing at ��(�)
162
+ for the �th firing of the �th MU, whereas � is Dirac Delta
163
+ function. For each �, ��(� + 1) − ��(�) > � can be assumed.
164
+ Define the expansion vector of EMG signals and MUSTs as
165
+ ��(�) = [��(�), ��(� − 1), … , ��(�), … , ��(� − � + 1)]
166
+ and
167
+ ��(�) = [��(�), ��(� − 1), … , ��(�), … , ��(� − � + 1)].
168
+ Thus, the equation can be rewritten in matrix form:
169
+ ��(�) = ����(�) + ��(�)
170
+ (2)
171
+ where ��(�) represents noise. �� is a matrix containing all
172
+ waveform vectors ���. For the mixing model analyzed above,
173
+ the task of EMG decomposition is to find a suitable separation
174
+ matrix �
175
+ ��� that consists of many separation vectors to extract the
176
+ MU firing events. As a result, the source signals of all MUs can
177
+ be estimated by ��(�) = �
178
+ �����(�).
179
+
180
+ B. Automatic PFP (APFP)
181
+ The PFP algorithm has been automated, but it is suitable just
182
+ for offline data processing. More details of the algorithm and
183
+ the corresponding parameters can be found in [33] and the
184
+ APFP method was used in this study with the same settings as
185
+ reported in [33]. Below is a brief introduction to the APFP
186
+ method.
187
+ If a whitened observed signal � has been obtained and we
188
+ need to find an independent component � = ��� from it using
189
+ the ICA algorithm [23], [27], the following maximum negative
190
+ entropy problem needs to be optimized:
191
+ max ��(�) = [�{�(���)} − �{�(�)}]�
192
+ �. �. ���(�) = �{��} − 1 = �|�|�
193
+ � − 1 = 0
194
+
195
+ (3)
196
+
197
+ where � is a non-polynomial function, and � is a random
198
+ variable with standard normal distribution.
199
+ The problem above can be solved using the procedure of the
200
+ fix-point algorithm [46] to obtain a series of MU source signals
201
+ and their corresponding separation vectors. The spike trains can
202
+ be precisely extracted from these source signals using the initial
203
+ threshold determined by the Otsu algorithm [47]. However, the
204
+ spikes from one source signal often do not just belong to one
205
+ MU due to heavy MUAP superimposition or high MU
206
+ synchronization levels. Thus, a valley-seeking clustering
207
+ approach [48] is used to distinguish the spikes from the same
208
+ source signal based on their morphological features. On this
209
+ basis, the spikes belonging to each cluster are most likely from
210
+ the same MU [33]. After the valley-seeking clustering approach,
211
+ the constrained FastICA algorithm [49] is performed using the
212
+ extracted and clustered spike trains as constraints to converge.
213
+ Therefore, the MU source signals can be effectively updated
214
+ and meanwhile the possible firing errors are corrected. To
215
+ assess the reliability of the constrained FastICA outputs and
216
+ their corresponding MUSTs representing true MU activities,
217
+ some metrics are employed from the perspective of the
218
+ significance of correlation constrain [49], including the
219
+ consistency of spike amplitudes and inter-spike intervals [50],
220
+ and the physiologically reasonable firing rate [51]. In the APFP
221
+ method, the correlation coefficient between the output of
222
+ constrained FastICA and the testing spike trains (denoted as ξ),
223
+ the coefficient of variation of spike amplitudes and inter-spike
224
+ intervals (denoted as ������ and ������ ), and the firing rate
225
+
226
+
227
+ (denoted as FR) are employed. Moreover, a two-step criterion
228
+ describing a reasonable range of the above four metrics is
229
+ employed to judge the MU reliability comprehensively [33].
230
+ A “peel-off” procedure is performed later to subtract the
231
+ obtained MUAP waveforms from the original signals. The
232
+ MUAP waveforms of the identified MUs were estimated by a
233
+ straightforward approach following a least squares problem
234
+ [26], [52] instead of the conventional high-resolution alignment
235
+ algorithm [53]. More MUs can emerge when processing the
236
+ residual signals again with the FastICA algorithm. The
237
+ framework of the offline APFP method is summarized as
238
+ follows:
239
+ (1) Initialize the residual signal to the original EMG signal,
240
+ and make the MUST set γ empty.
241
+ (2) Apply the FastICA algorithm to the expanded residual
242
+ signal and obtain a series of source signals.
243
+ (3) Extract non-repetitive spike trains by Otsu algorithm and
244
+ use valley-seeking clustering to distinguish these spikes to
245
+ separate spike trains from different MUs.
246
+ (4) Use MUSTs obtained in step (2) as a reference signal, and
247
+ apply the constrained FastICA algorithm on the expanded
248
+ original EMG signal to detect the reliability of the MUSTs
249
+ and to correct possible erroneous or missing discharges.
250
+ (5) Judge whether the MUs obtained are reliable through
251
+ metrics calculation. Put reliable results in set γ.
252
+ (6) Estimate the waveforms of the reliable MUs, subtract the
253
+ estimated MUAP waveforms from the original signal and
254
+ update the residual signal.
255
+ (7) If no new reliable MU is found in the above steps, or the
256
+ APFP method reaches the preset termination condition,
257
+ the algorithm ends. Otherwise, go back to step (2).
258
+
259
+ III. METHODOLOGY
260
+ A. Experimental SEMG Data Collection and Preprocessing
261
+ 1) Subjects and Experiments
262
+ Eight subjects (26.13±4.29 years) without any known history
263
+ of muscular or neural disorder participated in this study. The
264
+ study was approved by the Ethics Review Board of the
265
+ University of Science and Technology of China (Hefei, China).
266
+ All subjects signed consent prior to any procedure of the
267
+ experiments.
268
+ In this work, the HD-SEMG data were recorded from
269
+ abductor pollicis brevis (APB) muscle due to its wide
270
+ explorations and applications in SEMG studies [19]-[21]. Here,
271
+ a home-made, multi-channel signal acquisition system with a
272
+ force sensor and a set of 3D-printed apparatuses was used to
273
+ collect data, as shown in Fig. 1a. The subject’s hand was placed
274
+ on the fixed 3D-printed apparatus to prevent muscular
275
+ movement interferences from the wrist and other fingers, and
276
+ the muscle force was recorded by a load cell (LDST-V-HY,
277
+ Luckly Inc., Beijing, China) connected to a ring around the
278
+ thumb. Multiple electrodes were arranged in the form of 8 rows
279
+ × 8 columns to form a 2-dimensional electrode array. Each
280
+ electrode probe had a diameter of 2 mm, and the inter-electrode
281
+ distance between consecutive electrodes was 4 mm. Each
282
+ electrode was designed in a monopolar manner relative to a
283
+ round common reference electrode placed on the back of the
284
+ tested hand.
285
+ During the experiments, subjects were asked to sit and place
286
+ the tested hand in a relaxed and comfortable way. Before data
287
+ collection, the maximum voluntary contraction (MVC) of the
288
+ thumb abduction muscle was tested and recorded. Then, in each
289
+ trial of the task performance, subjects were instructed to
290
+ perform isometric muscle contractions with the muscle force
291
+ gradually increasing from 0 to a targeted force level (quantified
292
+ by MVC percentage) in 2s and then maintained at the targeted
293
+ level for around 3s, as shown in Fig. 1b. According to this force
294
+ generation pattern, the designed force curve was shown on the
295
+ screen to facilitate the subject’s task performance in each trial.
296
+ The targeted force level in this experiment was set to 30% MVC
297
+ and the trial was repeated at least nine times to acquire a
298
+ sufficient amount of data. The force and SEMG data were
299
+ digitized via a 16-bit A/D converter (ADS1198, Texas
300
+ Instruments, TX) at a sample rate of 2 kHz, and the data were
301
+ stored into the hard disk of a computer and imported into the
302
+ MATLAB software (version R2020a, MathWorks, Natick, MA,
303
+ USA) for further analyses.
304
+
305
+ 2) Data Preprocessing
306
+ All channels of the recorded HD-SEMG signals were
307
+ inspected, and a few channels (3.75 ± 1.28 channels across all
308
+ subjects in this study) with low quality were discarded (due to
309
+ their excessive noise contamination resulting from motion
310
+ artifacts, occasional electrode drop, or environmental
311
+ interferences from surrounding electronic devices). The
312
+ channel deletion remained consistent within the EMG signals
313
+ of the same subject. The HD-SEMG signals within the
314
+ remaining channels were filtered through a 10-order
315
+ Butterworth band-pass filter to reduce possible low-frequency
316
+ or high-frequency interference. The bandwidth of the filter was
317
+ 20-500Hz. Finally, the power line interference was removed
318
+ through a 50Hz second-order notch filter. The deleted channels
319
+ were not considered in the subsequent process of SEMG
320
+
321
+ Fig. 1. The experimental setup and protocol. (a) Apparatuses for
322
+ simultaneously recording thumb abduction force by a load cell and HD-
323
+ SEMG data by a piece of 2-dimensional electrode array arranged in an 8×8
324
+ formation. (b) The illustration of the force generation pattern with both the
325
+ designed force curve (blue line) and an actual recorded force curve (red
326
+ line) in one trial of task performance.
327
+
328
+ Force:C8
329
+ 30%MVC
330
+ C1C57
331
+ C642
332
+ 5Time(s)(b)
333
+ (a)
334
+ decomposition, but they were filled in by interpolation from
335
+ neighboring channels and considered during the estimation of
336
+ MUAP waveforms. In order to facilitate the data analysis, all of
337
+ the SEMG data were divided into a series of non-overlapping
338
+ data segments corresponding to the force generation task
339
+ repetitions over time. Therefore, the length of every SEMG data
340
+ segment was around 5 seconds.
341
+
342
+ B. SEMG Data Simulation
343
+ A data simulation approach was conducted to generate HD-
344
+ SEMG data with known MU activities, which were used as the
345
+ ground-truth for validating the performance of the developed
346
+ online SEMG decomposition method. In the current study, this
347
+ approach was based on simulation models well described by
348
+ previous studies, including the motoneuron pool model [54],
349
+ the model describing the MUAP waveforms of different MUs,
350
+ and a tripole model [55] considering the generation and
351
+ extinction of the action potentials at the fiber end-plate and
352
+ tendon.
353
+ Here a cylindrical muscle with a radius of 8 mm was
354
+ simulated and the fat and skin layers of the muscle were set to
355
+ 2.5 mm thickness. 120 MUs were set and distributed in parallel
356
+ in the muscle fibers. Most of the MUs had low recruitment
357
+ thresholds and a few had high thresholds. When the excitation
358
+ exceeded the threshold, every MU discharged at 8 Hz and its
359
+ firing rate increased as the excitation increased. All the relevant
360
+ parameters are listed in Table I.
361
+ The simulated SEMG signals were also set to be recorded by
362
+ a 64-channel surface electrode array arranged in an 8×8 grid
363
+ form. The inter-electrode distance was set at 4 mm for both
364
+ horizontal and vertical directions. The electrode array was
365
+ placed parallel to the muscle fiber direction and its center
366
+ electrodes were set to approximately over the innervation zones.
367
+ To be consistent with the force generation pattern of the
368
+ actual experiments, the excitation was set to increase from 0 to
369
+ a specific excitation level in the first 2 seconds, and maintained
370
+ for another 3 seconds with several repetitions. The maximum
371
+ excitation level was set to be 3%, corresponding to 33 active
372
+ MUs. In addition, zero-mean Gaussian noises were added to the
373
+ simulated EMG signals, generating three levels of SNR (signal-
374
+ to-noise ratio) at 10 dB, 20 dB and 30 dB, respectively. Thus,
375
+ we considered four noise levels, three SNR levels and the level
376
+ without any additional noise. For each noise level, 21
377
+ repetitions were simulated to ensure data diversity, as shown in
378
+ Fig. 2. Therefore, 84 data segments (4 noise levels × 21
379
+ repetitions) were simulated in total.
380
+ C. Online Decomposition
381
+ The overall whole block diagram summarizing the proposed
382
+ online decomposition method is described in Fig. 3.
383
+ TABLE I
384
+ PARAMETERS FOR SEMG SIMULATION
385
+
386
+ Distribution
387
+ Mean
388
+ SD
389
+ Range
390
+ Fiber number
391
+ Uniform
392
+ 70000
393
+
394
+ ±0.5 mean
395
+ MU fiber endplate
396
+ center position
397
+ Uniform
398
+ 0
399
+
400
+ ±8 mm
401
+ Fiber endplate
402
+ position variation
403
+ Uniform
404
+ 0
405
+
406
+ ±2 mm
407
+ Half fiber length
408
+ Gaussian
409
+ 40mm
410
+ 4mm
411
+ ±2 SD
412
+ Mean fiber
413
+ diameter for a MU
414
+ Gaussian
415
+ 55μm
416
+ 10μm
417
+ ±2 SD
418
+ Fiber diameter
419
+ variation within a
420
+ MU
421
+ Gaussian
422
+ 0
423
+ 1μm
424
+ ±2 SD
425
+ ISI variation
426
+ Gaussian
427
+ 0
428
+ 0.2*instant
429
+ mean ISI
430
+ ±2 SD
431
+
432
+
433
+ Fig. 2. (a). The contraction condition of simulated signals. (b). Multi-
434
+ channel simulated SEMG signals.
435
+
436
+
437
+ Fig. 3. Block diagram of the proposed method for online SEMG decomposition
438
+
439
+
440
+ Online
441
+ Divided
442
+ extraction
443
+ extraction
444
+ data input
445
+ Separation
446
+ 1vectors
447
+ 4
448
+ Whitening
449
+ calculation
450
+ Vector set
451
+ 1
452
+ and
453
+ Offlin
454
+ MUST
455
+ MUST(a)
456
+ Maximum
457
+ excitationExtending
458
+ Offline PFP
459
+ Φ=
460
+ W1, W2 -.. Wn?
461
+ data
462
+ connection
463
+ indno
464
+ decomposition
465
+ -0 2
466
+ 5
467
+ 5s
468
+ 100s(b)
469
+ ChannelMUST
470
+ --
471
+ Preprocessing
472
+ Offline prework
473
+ Online Decomposition
474
+ extraction#1#64
475
+ Data
476
+ #1
477
+ #2
478
+ #3
479
+ #20
480
+ #21
481
+ SegmentTime window
482
+ Peak
483
+ With full consideration of the real-time usability of the
484
+ proposed online method, a two-stage approach was designed to
485
+ avoid considerable computational complexity caused by the
486
+ repeated operation of the FastICA algorithm and the iterations
487
+ of the constrained FastICA algorithm. More specifically, the
488
+ reliable separation vectors were initialized in the offline
489
+ prework stage and saved to accelerate the subsequent online
490
+ data processing. In the online decomposition stage, the data
491
+ stream of the input EMG signals was divided into a series of
492
+ temporally overlapping windows with window length and
493
+ increment set at 1 s and 0.2 s, respectively. Both settings helped
494
+ to facilitate online processing.
495
+ During the offline prework stage, several 5-s segments of
496
+ EMG signals were separately decomposed offline using the
497
+ APFP method and all of the resultant separation vectors were
498
+ put into the set �. The quality of these vectors was evaluated by
499
+ both criteria employed in the offline APFP method [33]: if the
500
+ coefficient of variation of spike amplitudes ������ was higher
501
+ than 0.3, and the coefficient of variation of inter-spike intervals
502
+ ������ was higher than 0.4, the corresponding separation vector
503
+ was considered to be low-quality and it was removed from the
504
+ set � . Furthermore, any duplicated separation vector
505
+ corresponding to the same MU was removed as well.
506
+ In the online decomposition stage, every 0.2 s of data input
507
+ was combined with 0.8 s of historical data to form a 1-s window
508
+ for decomposition. The decomposed results from consecutive
509
+ windows were connected, while their overlapping portion was
510
+ used to align the obtained MUSTs. This ensured continuity of
511
+
512
+ Fig. 4. Illustration of the online SEMG decomposition process using the proposed method.
513
+
514
+
515
+ #14#15
516
+ 0
517
+ 5
518
+ 10
519
+ 15
520
+ 20Channel
521
+ Channel
522
+ #1
523
+ #1Time(s)#64
524
+ #64Spike extraction & ConnectionWindow sliding
525
+ vectors
526
+ X
527
+ 山 = {W1.W? ... WNMUST
528
+ Experimental Muscle Force
529
+ MU
530
+ DAWDecompose sEMG signals
531
+ window by window#1
532
+ 30%Window
533
+ Source signal of MU1
534
+ Source signal of MU2开2DecomposeOffline Prework
535
+ Online Decomposition
536
+ 0.2s
537
+ the decomposition results along with the original SEMG data
538
+ stream. The SEMG data in each window were first whitened
539
+ and extended. Then, the multiplication procedure was directly
540
+ applied to the extended EMG signals with separation vectors in
541
+ set � to estimate different MU source signals, from which
542
+ individual MUSTs were consequently identified.
543
+ For extracting MUSTs from the MU source signals, the
544
+ original offline APFP method employs repeated iterations of
545
+ the constrained FastICA algorithm, involving complex
546
+ computations as described above. This process was unsuitable
547
+ for online processing and therefore it was removed to avoid
548
+ heavy computational burden. To maintain high-precision
549
+ MUST extraction, the simple amplitude-thresholding process
550
+ by the Otsu algorithm had to be updated. A new algorithm was
551
+ designed for our online PFP method. First, this algorithm needs
552
+ to determine an initial threshold that is applied to each source
553
+ signal, using the Otsu algorithm in the same way as conducted
554
+ in the offline APFP method. Then, a group of spikes beyond
555
+ this threshold is detected and the corresponding amplitudes can
556
+ be ranked from small to large. Next, a series of successively
557
+ increasing thresholds that are a little higher than these
558
+ amplitudes are adopted to estimate a series of different spike
559
+ trains. Each resultant spike train can be further evaluated by
560
+ both ������ and ������ metrics, and the spike train with the
561
+ minimal summation of both metrics is finally considered the
562
+ most appropriate MUST. This algorithm for adaptive threshold
563
+ selection was termed the successive multi-threshold Otsu
564
+ algorithm.
565
+ A k-means clustering algorithm was usually used in some
566
+ offline decomposition methods [36]-[37] for extracting MUSTs
567
+ from the source signals. It was also implemented in this study
568
+ as an alternative threshold selection algorithm, in comparison
569
+ to the successive multi-threshold Otsu algorithm used in our
570
+ method. By applying the k-means clustering algorithm, all
571
+ sample amplitudes of the source signal time series can be
572
+ classified into 2-4 groups (2 in this work), so that the group with
573
+ the largest amplitudes of samples is selected as the extracted
574
+ MUST.
575
+ After the spike trains of all MUs were appropriately detected,
576
+ they were connected over windows to form the resultant MUST
577
+ for each MU, and its MUAP waveforms that spanned over all
578
+ channels were correspondingly estimated. Fig. 4 illustrates an
579
+ example of the online decomposition results. The pseudocode
580
+ of the proposed online decomposition method is shown in
581
+ Algorithm 1.
582
+
583
+ D. Performance Evaluation
584
+ For processing the experimental SEMG data, the proposed
585
+ online decomposition method was conducted in a user-specific
586
+ manner. Four segments were used in the offline prework stage
587
+ and the remaining 4 segments were processed in the online
588
+ decomposition stage. For processing the simulated SEMG data,
589
+ the first segment was used in the offline prework stage and the
590
+ remaining 20 segments were processed in the online
591
+ decomposition stage. All SEMG segments tested in the online
592
+ decomposition stage were sequentially arranged in the form of
593
+ a data stream to be processed continuously using our proposed
594
+ method. For comparison purposes, all of the SEMG segments
595
+ to be processed online was also decomposed by the offline
596
+ APFP method as well.
597
+ To evaluate the performance of online decomposition and
598
+ assess the decomposition results more comprehensively, we
599
+ Algorithm 1 The proposed online decomposition
600
+ method
601
+ 1:
602
+ Decompose the SEMG signals offline. Extract
603
+ the MUSTs and calculate the corresponding
604
+ separation vectors.
605
+ 2:
606
+ Remove the duplicated separation vectors and
607
+ vectors that are not well-decomposed.
608
+ 3:
609
+ Save all the separation vectors ��, ��, ��…��
610
+ for the online decomposition stage.
611
+ 4:
612
+ while Acquiring SEMG signals do
613
+ 5:
614
+ Load and extend the EMG signals (��).
615
+ 6:
616
+ for j = 1; j < N + 1; j ++ do
617
+ 7:
618
+ Calculate the source signal, �� = ��
619
+ ���.
620
+ 8:
621
+ Estimate the initial threshold through the
622
+ Otsu algorithm and extract the spike train.
623
+ 9:
624
+ Successively increase the threshold and
625
+ extract a series of spike trains ����, ����, ����…
626
+ 10:
627
+ Find the spike train with the lowest
628
+ ������ and ������ as the �th MUST ���.
629
+ 11:
630
+ end for
631
+ 12:
632
+ Connect the MUSTs over the sliding
633
+ windows.
634
+ 13:
635
+ end while
636
+
637
+ Fig. 5. The results for decomposing simulated SEMG data in terms of MR(a), FDR(b) and FNR(c) averaged over all data segments using the offline APFP
638
+ method, the proposed online PFP method and the online PFP method with k-means clustering at four noise levels, respectively. The error bar represents
639
+ standard deviations. N in the horizontal axis denotes the condition without any additional noise.
640
+
641
+ 0.10.05
642
+ 1N
643
+ 30
644
+ 20
645
+ 10
646
+ N
647
+ 30
648
+ 20
649
+ 10
650
+ N
651
+ 30
652
+ 20
653
+ 10
654
+ SNR (dB)
655
+ SNR (dB)
656
+ SNR (dB) The offline APFP method
657
+ The online PFP method with k-means clustering
658
+ The proposed online PFP method(a)
659
+ (0)
660
+ ()
661
+ MR(%)
662
+ FDR
663
+ FNR
664
+ 001
665
+ 0.250.3
666
+ 80
667
+ 0.2
668
+ used a series of metrics: matching rate (MR) can be calculated
669
+ as [33]:
670
+ �� =
671
+ 2 ∙ �������
672
+ ������� + ����������
673
+
674
+ (4)
675
+ where ������� denotes the number of firing events of the online
676
+ decomposition results, and ���������� denotes the number of
677
+ the reference spike trains. In the simulated data, the reference
678
+ spike train indicates the ground-truth firing events. However,
679
+ the actual MUSTs are not known a priori in the experimental
680
+ data. Therefore, the decomposition results of the experimental
681
+ data processed by the offline APFP method were used to define
682
+ ���������� . ������� indicates the number of common
683
+ discharges appearing in both the online decomposition result
684
+ and the reference. The MR measures the matching degree and
685
+ it is able to quantify the precision of an online decomposition
686
+ method.
687
+
688
+ Fig. 6. A representative example of validating the decomposition results from the online PFP method in terms of all decomposed MUSTs (in blue) with
689
+ respect to the reference (in red) derived from summarized offline decomposition results, using a data segment from one subject. The position of the black
690
+ dot indicates the missing or fault discharges and MR values are computed and shown on the right side of these spike trains.
691
+
692
+ Fig. 7. Two MUAPs of matched MUs with time-varying waveform shapes. Here we illustrate 64 electrode channels arranged in an 8×8 grid form. Blue and
693
+ red lines indicate the MUAP shapes from online PFP and the reference of offline decomposition, respectively.
694
+
695
+
696
+ Fig. 8. The relationship between the matching rate and the composite
697
+ decomposability index.
698
+
699
+
700
+ T Online PFP
701
+ 10
702
+ MR (%)111194.87111 Online PFP
703
+ 600μv
704
+ The reference (Offline decomposition
705
+ 30msnumb
706
+ 10098.95MU1
707
+ MU2
708
+ 1
709
+ 2
710
+ 3
711
+ 4
712
+ 5
713
+ 6
714
+ 7
715
+ 8
716
+ 1
717
+ 2
718
+ 3
719
+ 4
720
+ 5
721
+ 6
722
+ 7
723
+ 81002
724
+ 23
725
+ 3
726
+ 4
727
+ 45
728
+ 5
729
+ 67
730
+ 8
731
+ 80.95
732
+ Matching Rate
733
+ 0.9
734
+ 0.85
735
+ 0.8
736
+ 0
737
+ 10
738
+ 20
739
+ 30
740
+ 40
741
+ 50
742
+ Composite Decomposability Index0
743
+ 1
744
+ 2
745
+ 4
746
+ 5Time(s)
747
+ Besides MR, both false negative rate (FNR) and false
748
+ discovery rate (FDR) were used to reveal the cause of the error
749
+ discharges. They are defined as
750
+ ��� = ���������� − �������
751
+ ����������
752
+
753
+
754
+ (5)
755
+ ��� = ������� − �������
756
+ �������
757
+
758
+
759
+
760
+ They count the proportion of the number of unmatched
761
+ discharges to the total number of their respective discharges.
762
+ Specifically, the FNR measures the rate of “missing” discharges
763
+ with respect to the reference, and the FDR quantifies the rate of
764
+ “faulty” discharges appearing in the online decomposition
765
+ results. Generally speaking, the MR of a reliable MUST is close
766
+ to 1 but the FNR and FDR are close to 0.
767
+ For a more comprehensive view of the decomposition results,
768
+ we also calculated the mean discharge rate (MDR) and the
769
+ coefficient of variation (CoV) of the online identified MUSTs
770
+ with respect to the reference spike trains. It should be noted that
771
+ the CoV refers to the coefficient of variation of the inter-spike
772
+ intervals ������ to better understand the MU firing behaviors.
773
+ In addition, we calculated the decomposability index (DI) for
774
+ each common MU of experimental EMG data to precisely
775
+ quantify the proposed method’s performance [56]:
776
+ �� = min {‖���‖, ‖��� − ��∗�‖}
777
+ ��
778
+ ���
779
+
780
+
781
+ (6)
782
+
783
+ where ��� is the MUAP of the �th MU in the �th channel and
784
+ ��∗� is the MUAP most similar to ��� among the other
785
+ MUAPs in the � th channel. ��
786
+ ��� is the root mean square
787
+ amplitude (RMS) of the � th channel and the operator ‖∙‖
788
+ denotes the Euclidean norm. The DI measures the separation
789
+ between ��� and the template of MUAP nearest to it (or the
790
+ baseline), normalized by the standard deviation of the noise
791
+ component (interference plus baseline noise) projected along
792
+ their vector difference. The overall decomposability of the �th
793
+ MU was measured by the composite DI (CDI), defined as the
794
+ norm of the individual DIs [56].
795
+ For developing a real-time decomposition method, it is
796
+ necessary to evaluate the processing time delay which is
797
+ expected to be as short as possible. The time delay for
798
+ processing one single time window was recorded, and all these
799
+ time delay values were averaged across all windows and all
800
+ subjects to indicate the computational complexity. All of the
801
+ algorithms were implemented on a desktop computer with an
802
+ Intel Core i5-10400 processor (2.90 GHz) and 16 GB of
803
+ memory.
804
+ IV. RESULTS
805
+ A. Results of Simulated Data
806
+ As an offline decomposition method for validation, 21 MUs
807
+ were identified using offline APFP and the number was 22
808
+ using online PFP when no additional noise was added. Further,
809
+ the number of MUs correctly decomposed using online PFP
810
+ decreased to 11, 7, and 6 when noise was added at 30 dB, 20 dB
811
+ and 10 dB SNR, respectively.
812
+ The results for decomposing simulated SEMG data are
813
+ reported in Fig. 5. As compared with the offline APFP method,
814
+ the proposed online PFP method achieved comparable
815
+ performance in terms of a high MR over 90%, and a low FNR
816
+ below 0.05. The proposed online PFP method had a fluctuated
817
+ and relatively higher FDR than the offline APFP method under
818
+ three SNR levels. Specifically, a decreasing trend of the MR
819
+ was found from 99.29% to 94.13% for the offline APFP method
820
+ and from 98.53% to 92.79% for the online PFP method,
821
+ respectively, when the noise was successively added to generate
822
+ four noise levels. The ANOVAs revealed no significant
823
+ difference in either MR, FDR or FNR, between the offline
824
+ APFP method and the proposed online PFP method (p > 0.05).
825
+ When both threshold selection algorithms were compared, it
826
+ was evidently found that the successive multi-threshold Otsu
827
+ algorithm in the proposed online PFP method significantly
828
+ outperformed the K-means clustering algorithm in terms of
829
+ higher MR (p = 0.025) and lower FNR (p =0.022). Both
830
+ algorithms did not exhibit a significant difference in the FDR
831
+ metrics (p = 0.273).
832
+ Table II reports both MDR and CoV values calculated for all
833
+ common MUs between the decomposition results achieved by
834
+ the proposed online method and the ground truth. The ANOVA
835
+ revealed no difference in MDR (p = 0.217) or CoV (p = 0.105)
836
+ at no presence of noise. However, the MDR and CoV of online
837
+ decomposition results became significantly different from those
838
+ of the ground-truth (p < 0.05) when the noises were added.
839
+ B. Results of Experimental Data
840
+ When implementing online decomposition of experimental
841
+ data, the offline decomposition method was applied to establish
842
+ the reference for validation, and 10.31±1.79 MUs were
843
+ obtained, averaged across all subjects.
844
+ Fig. 6 is an example of an online decomposition result using
845
+ the proposed method, showing the decomposed MUSTs with
846
+ respect to the reference. It can be observed that almost all the
847
+ MU discharges derived from the online PFP method are well
848
+ matched with those in the reference, with sporadic missing or
849
+ erroneous ones. Fig. 7 illustrates the MUAP waveforms of two
850
+ matched MUs derived from both the online PFP method and the
851
+ reference, which demonstrate a very consistent waveform shape
852
+ in each channel and almost the same distribution pattern across
853
+ the electrode array. Fig. 8 plots the relationship between the
854
+ matching rate and composite decomposability index (CDI),
855
+ which displays the overall trend of the matching rates varying
856
+ TABLE II
857
+ COMPARISON OF MDR AND COV OF THE SIMULATED EMG SIGNALS
858
+
859
+ SNR 10dB
860
+ Online PFP/
861
+ Ground-truth
862
+ SNR 10dB
863
+ Online PFP/
864
+ Ground-truth
865
+ SNR 30dB
866
+ Online PFP/
867
+ Ground-truth
868
+ No adding noise
869
+ Online PFP/
870
+ Ground-truth
871
+ MDR
872
+ 9.86±1.99
873
+ 8.77±0.18
874
+ 9.55±1.54
875
+ 8.75±0.23
876
+ 10.47±1.81
877
+ 8.74±0.22
878
+ 8.77±0.51
879
+ 8.70±0.18
880
+ CoV
881
+ 0.245±0.053
882
+ 0.199±0.003
883
+ 0.257±0.032
884
+ 0.202±0.005
885
+ 0.231±0.044
886
+ 0.201±0.005
887
+ 0.211±0.024
888
+ 0.199±0.007
889
+
890
+
891
+
892
+ with the CDIs. It contains the common MUs of all of the
893
+ collected SEMG segments.
894
+ Table III reports both the number of MUs decomposed by the
895
+ online PFP method and the number of common MUs matched
896
+ those in the reference (offline decomposition) for 8 subjects,
897
+ respectively. An average of 12.00±3.46 MUs were successfully
898
+ identified by the online PFP method, with an average of
899
+ 6.69±1.84 MUs correctly matched. Besides, three metrics are
900
+ also computed from those common MUs and reported in Table
901
+ III. Averaged over all data segments to be decomposed and all
902
+ subjects, the MR was (90.38±2.80) %, the FDR was
903
+ 0.091±0.022, and the FNR was 0.089±0.041. The estimated
904
+ MDR (p = 0.872) and CoV (p = 0.503) of online decomposition
905
+ results were not significantly different from the offline
906
+ decomposition reference.
907
+
908
+ C. Time Delay
909
+ The time delay for decomposing a 1-s window of SEMG data
910
+ using the proposed method in the online decomposition stage
911
+ was 0.084±0.028 s, averaged over all data segments and all
912
+ subjects; it was less than a 0.2-s time increment. For
913
+ comparison purposes, the offline APFP method costs 60.07 ±
914
+ 9.82 s to decompose SEMG data in a single time window, much
915
+ longer than that of the proposed online decomposition method.
916
+ V. DISCUSSION
917
+ As a promising SEMG decomposition method, the PFP
918
+ algorithm has been reported recently and, therefore, it is
919
+ necessary and promising to develop an online version. This
920
+ study sought to propose an online SEMG decomposition
921
+ method based on the PFP algorithm. The results of both
922
+ simulated and experimental SEMG data analyses demonstrated
923
+ the feasibility of the proposed online PFP method in
924
+ decomposing a large number of MUs with high precision in the
925
+ context of isometric muscle contractions. Our study offers a
926
+ valuable tool for online SEMG decomposition with great
927
+ applications in biomechanics and rehabilitation.
928
+ In the results of processing simulated data, the proposed
929
+ online PFP method decomposed a similar number of MUs as
930
+ the offline APFP method, illustrating comparable performance.
931
+ Due to the use of initial separation vectors provided by the
932
+ APFP method in the offline prework stage, the proposed online
933
+ PFP method is expected to inherit a good capability of
934
+ decomposing a great number of MUs from its original offline
935
+ version. In terms of MR, the proposed online PFP method got a
936
+ slightly lower value compared with the offline APFP method.
937
+ This can be explained by the fact that the source signals were
938
+ calculated by directly multiplying previously initialized
939
+ separation vectors with the SEMG signals for the purpose of
940
+ real-time processing. In addition, the MUSTs were estimated
941
+ without the examination of iterative constrained FastICA, thus
942
+ increasing the negative influence of noise. The result
943
+ demonstrates that online decomposition was speeded up at the
944
+ cost of a little bit of decrease in precision. This is the main and
945
+ common difficulty in generalizing an offline decomposition
946
+ method to its online version [38]-[43]. However, it has been
947
+ found that the MDR and CoV of online decomposition were
948
+ significantly different from those of the ground-truth when the
949
+ noise was added. This can be partly explained by the limitations
950
+ of
951
+ the
952
+ online
953
+ decomposition
954
+ method
955
+ such
956
+ as
957
+ MU
958
+ synchronization [26] and firing events drift [33] that previous
959
+ studies have faced.
960
+ When some noises were successively added to EMG signals
961
+ to be decomposed, both the number of correctly identified MUs
962
+ and the precision of determining their firing timings were
963
+ reported to decrease substantially. This could partly explain that
964
+ the decrease of SNR resulted in more serious noise interference
965
+ to some small MUs and thus caused a negative influence on the
966
+ calculation of separation vectors as well as the performance of
967
+ the online decomposition method. On the other hand, it became
968
+ much harder to precisely extract MUSTs from source signals in
969
+ the online decomposition stage at a low SNR level, reflecting
970
+ the decline of the MR. As a consequence, it can be inferred that
971
+ the quality of SEMG signals significantly influenced the
972
+ performance of the decomposition method, as reported in [33],
973
+ [40].
974
+ It is worth mentioning that the proposed online PFP method
975
+ introduced a progressive multi-thresholding process for
976
+ extracting MUSTs. The successive multi-threshold Otsu
977
+ TABLE III
978
+ SUMMARY OF DECOMPOSITION RESULTS FOR EXPERIMENTAL EMG SIGNALS.
979
+ Subject
980
+ Number of motor units
981
+
982
+ MDR (Hz)
983
+
984
+ CoV (%)
985
+ MR (%)
986
+ FDR
987
+ FNR
988
+ The
989
+ reference
990
+ Online PFP
991
+
992
+ The
993
+ reference
994
+ Online
995
+ PFP
996
+
997
+ The
998
+ reference
999
+ Online
1000
+ PFP
1001
+ All
1002
+ Matched
1003
+ 1
1004
+ 12.75±1.50
1005
+ 19
1006
+ 9.00±1.41
1007
+ 19.76±5.08 19.71±4.43
1008
+ 22.92±7.71
1009
+ 24.31±8.53
1010
+ 92.06±5.91
1011
+ 0.084±0.082
1012
+ 0.051±0.057
1013
+ 2
1014
+ 9.50±1.29
1015
+ 8
1016
+ 4.50±0.58
1017
+ 22.00±4.76 20.63±4.00
1018
+ 27.44±6.59
1019
+ 22.46±5.95
1020
+ 89.92±7.21
1021
+ 0.093±0.075
1022
+ 0.106±0.086
1023
+ 3
1024
+ 9.00±0.82
1025
+ 14
1026
+ 6.00±0.81
1027
+ 15.79±3.22 14.65±3.30
1028
+ 23.44±3.78
1029
+ 25.44±4.59
1030
+ 93.20±6.02
1031
+ 0.065±0.068
1032
+ 0.067±0.074
1033
+ 4
1034
+ 11.00±1.41
1035
+ 13
1036
+ 8.75±1.71
1037
+ 20.15±3.93 21.28±3.84
1038
+ 24.08±6.98
1039
+ 24.67±6.25
1040
+ 91.17±3.35
1041
+ 0.076±0.033
1042
+ 0.056±0.029
1043
+ 5
1044
+ 8.50±0.57
1045
+ 9
1046
+ 5.50±0.58
1047
+ 20.29±3.99 20.62±3.00
1048
+ 26.09±4.19
1049
+ 28.48±4.70
1050
+ 85.18±4.04
1051
+ 0.116±0.051
1052
+ 0.175±0.068
1053
+ 6
1054
+ 9.50±1.29
1055
+ 10
1056
+ 6.25±1.71
1057
+ 20.35±4.25 19.67±4.30
1058
+ 23.87±3.05
1059
+ 24.18±3.73
1060
+ 91.51±6.45
1061
+ 0.084±0.071
1062
+ 0.082±0.076
1063
+ 7
1064
+ 11.75±1.71
1065
+ 11
1066
+ 7.00±0.82
1067
+ 23.03±3.60 24.66±3.94
1068
+ 24.46±3.54
1069
+ 24.82±2.78
1070
+ 87.26±5.47
1071
+ 0.131±0.073
1072
+ 0.108±0.028
1073
+ 8
1074
+ 10.50±1.29
1075
+ 12
1076
+ 6.50±1.73
1077
+ 18.57±2.72 18.73±1.86
1078
+ 18.74±2.96
1079
+ 19.41±1.66
1080
+ 92.70±4.26
1081
+ 0.080±0.058
1082
+ 0.064±0.040
1083
+ Average 10.31±1.79 12.00±3.46
1084
+ 6.69±1.84
1085
+ 19.99±2.18 19.99±2.79
1086
+ 23.88±2.55
1087
+ 24.22±2.56
1088
+ 90.38±2.80
1089
+ 0.091±0.022
1090
+ 0.089±0.041
1091
+
1092
+
1093
+
1094
+ algorithm outperformed the conventional k-means clustering
1095
+ algorithm especially in the condition of noise interference,
1096
+ proving the potential to extract more precise discharges at low
1097
+ SNR levels. The successive multi-threshold algorithm based on
1098
+ the Otsu algorithm was inspired from the common Otsu
1099
+ algorithm [48] used in the offline APFP method [33]. It was
1100
+ able to successively increase multiple thresholds to overcome
1101
+ the effect of noise interferences and find the most appropriate
1102
+ one to extract MUSTs that followed the physiological
1103
+ properties of MUs. The successive multi-threshold Otsu
1104
+ algorithm takes consideration into the interval and waveform
1105
+ information to ensure the result to be much more reliable,
1106
+ depending on ������ and ������ . By contrast, the k-means
1107
+ clustering algorithm only focuses on the amplitude information
1108
+ of EMG source signals. As a result, it makes it much more
1109
+ difficult to remove the noise interferences and leads to
1110
+ decomposition performance degradation. The proposed online
1111
+ PFP method replaced the complex iterative calculation of
1112
+ constrained FastICA with the successive multi-threshold Otsu
1113
+ algorithm
1114
+ to
1115
+ extract
1116
+ MUSTs,
1117
+ showing
1118
+ a
1119
+ significant
1120
+ improvement in reducing the calculation complexity while
1121
+ maintaining its high precision.
1122
+ To evaluate the real-time performance, this study recorded
1123
+ the processing time of online decomposition. The time delay
1124
+ was effectively reduced from 60 seconds for the offline APFP
1125
+ method to less than 0.08 seconds for the online decomposition.
1126
+ The acceleration of data processing is attributed to reasons in
1127
+ two respects. The first is that the repeated iteration of FastICA
1128
+ was put in the offline prework stage, which initialized the
1129
+ separation vectors for online decomposition. On the other hand,
1130
+ some complex calculation procedures were adaptively
1131
+ simplified. For example, the constrained FastICA algorithm in
1132
+ the APFP method was replaced with the successive multi-
1133
+ threshold algorithm, as discussed above.
1134
+ In the experimental SEMG data, a large number of MUs
1135
+ decomposed by offline PFP can be correctly identified with
1136
+ high precision in the online decomposition process,
1137
+ demonstrating that the separation vectors used in the online
1138
+ decomposition process were comprehensive and precise. In
1139
+ addition, the MDR and CoV of online decomposition showed
1140
+ no significant difference with the offline reference. These
1141
+ findings indicate that the performance of the online
1142
+ decomposition method is very close to that of the original
1143
+ offline method, proving the feasibility and effectiveness of the
1144
+ proposed online PFP method. In addition, it illustrates that the
1145
+ advantages of the offline APFP method were still maintained in
1146
+ the proposed online decomposition method.
1147
+ There are still some limitations in this work. First, the online
1148
+ decomposition process relied too much on the separation
1149
+ vectors provided by the offline prework, proving the feasibility
1150
+ that the separation vectors obtained from offline decomposition
1151
+ can be used for online decomposition. However, the conditions
1152
+ of muscle contraction change over time and the initialization
1153
+ process needs to update the separation vectors, which has not
1154
+ been validated in this work. In other words, the online process
1155
+ was verifying whether the MUs corresponding to the separate
1156
+ vectors were activated and the newly recruited MUs couldn’t be
1157
+ captured. Moreover, the initial MU information and spike drift
1158
+ needs to be corrected over time. Second, the experimental EMG
1159
+ data were collected only from isometric contraction and most
1160
+ muscle contractions in daily life are non-isometric and dynamic.
1161
+ More contraction patterns will be added to the experimental
1162
+ data for analysis. Third, the peel-off procedure needs to be
1163
+ adopted in a real-time way to find more MUs and fully take
1164
+ advantage of the offline PFP method. Further research will be
1165
+ devoted to overcoming the limitations above.
1166
+ VI. CONCLUSION
1167
+ A new online SEMG decomposition method based on the
1168
+ Progressive FastICA Peel-off procedure was proposed in this
1169
+ paper, including offline prework and online decomposition
1170
+ process. The proposed decomposition method took advantage
1171
+ of offline PFP algorithms and demonstrated high precision with
1172
+ the most identified MUs both on simulated and experimental
1173
+ EMG signals. These results offer a new tool for precisely
1174
+ identifying individual MU activities in a real-time way with the
1175
+ potential applications of high-density EMG as a neural interface
1176
+ in the fields of biomechanics, sports and rehabilitation.
1177
+ REFERENCES
1178
+ [1]
1179
+ C. J. De Luca, “Electromyography,” Encyclopedia of Medical Devices
1180
+ and Instrumentation, 2006.
1181
+ [2]
1182
+ T. Pistohl, C. Cipriani, A. Jackson, and K. Nazarpour, “Abstract and
1183
+ proportional myoelectric control for multi-fingered hand prostheses,”
1184
+ Ann. Biomed. Eng., vol. 41, no. 12, pp. 2687-2698, 2013.
1185
+ [3]
1186
+ K. Kiguchi and Y. Hayashi, “An EMG-based control for an upper-limb
1187
+ power-assist exoskeleton robot,” IEEE Trans. Syst. Man, Cybern. Part B
1188
+ Cybern., vol. 42, no. 4, pp. 1064-1071, 2012.
1189
+ [4]
1190
+ R. C. Dutton, W. D. Smith, H. L. Bennett, S. Archer, and N. T. Smith,
1191
+ “Craniofacial electromyogram activation response: Another indicator of
1192
+ anesthetic depth,” J. Clin. Monit. Comput., vol. 14, no. 1, pp. 5-17,1998.
1193
+ [5]
1194
+ D. Farina, et al., “Man/machine interface based on the discharge timings
1195
+ of spinal motor neurons after targeted muscle reinnervation,” Nature
1196
+ Biomedical Engineering, vol. 1, no. 2, pp. 1-12, 2017.
1197
+ [6]
1198
+ C. Castellini and P. Van Der Smagt, “Surface EMG in advanced hand
1199
+ prosthetics,” Biol. Cybern., vol. 100, pp. 35-47, no. 1, 2009.
1200
+ [7]
1201
+ M. Mulas, M. Folgheraiter, and G. Gini, “An EMG-controlled
1202
+ exoskeleton for hand rehabilitation,” in Proceedings of the 2005 IEEE
1203
+ 9th International Conference on Rehabilitation Robotics, 2005, pp. 371-
1204
+ 374.
1205
+ [8]
1206
+ D. A. Gabriel, G. Kamen, and G. Frost, “Neural Adaptations to Resistive
1207
+ Exercise,” Sport. Med., vol. 36, no. 2, pp. 133-149, 2006.
1208
+ [9]
1209
+ P. A. Karthick, D. M. Ghosh, and S. Ramakrishnan, “Surface
1210
+ electromyography based muscle fatigue detection using high-resolution
1211
+ time-frequency methods and machine learning algorithms,” Comput.
1212
+ Methods Programs Biomed, vol. 154, pp. 45-56, 2018.
1213
+ [10] M. Atzori, M. Cognolato, and H. Müller, “Deep learning with
1214
+ convolutional neural networks applied to electromyography data: A
1215
+ resource for the classification of movements for prosthetic hands,” Front.
1216
+ Neurorobot., vol. 10, SEP 7, 2016.
1217
+ [11] A. D. Vigotsky, I. Halperin, G. J. Lehman, G. S. Trajano, and T. M.
1218
+ Vieira, “Interpreting signal amplitudes in surface electromyography
1219
+ studies in sport and rehabilitation sciences,” Frontiers in Physiology, vol.
1220
+ 8, JAN 4, 2018.
1221
+ [12] F. Zhang, P. Li, ZG Hou, Z. Lu, Y. Chen, Q. Li, and M. Tan, “SEMG-
1222
+ based continuous estimation of joint angles of human legs by using BP
1223
+ neural network,” Neurocomputing, vol. 78, no. 1, pp. 139-148, 2012.
1224
+ [13] D. Stashuk, “EMG signal decomposition: How can it be accomplished
1225
+ and used?,” J. Electromyogr. Kinesiol., vol. 11, no. 3, pp. 151-173, 2001.
1226
+ [14] P. Konrad, “The ABC of EMG A Practical Introduction to Kinesiological
1227
+ Electromyography,” Noraxon INC. USA. A, no. April, 2005.
1228
+ [15] M. Weinberger and J. O. Dostrovsky, “Motor Unit,” Oxford: Academic
1229
+ Press, pp. 204–206, 2010.
1230
+ [16] X. Zhang, G. Zhu, M. Chen, X. Chen, X. Chen, and P. Zhou, “Muscle
1231
+
1232
+
1233
+ Force Estimation Based on Neural Drive Information from Individual
1234
+ Motor Units,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12,
1235
+ pp. 3148-3157, 2020.
1236
+ [17] C. Dai, Y. Zheng, and X. Hu, “Estimation of muscle force based on neural
1237
+ drive in a hemispheric stroke survivor,” Front. Neurol., vol. 9, MAR 23,
1238
+ 2018.
1239
+ [18] D. Farina et al., “The extraction of neural information from the surface
1240
+ EMG for the control of upper-limb prostheses: Emerging avenues and
1241
+ challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp.
1242
+ 797-809, 2014.
1243
+ [19] X. Li, X. Zhang, X. Tang, M. Chen, X. Chen, X. Chen, and A. Liu,
1244
+ “Decoding muscle force from individual motor unit activities using a
1245
+ twitch force model and hybrid neural networks,” Biomed. Signal Process.
1246
+ Control, vol. 72, p. 103297, 2022.
1247
+ [20] X. Tang, X. Zhang, M. Chen, X. Chen and X. Chen, “Decoding Muscle
1248
+ Force From Motor Unit Firings,” IEEE Trans. Neural Syst. Rehabil. Eng.,
1249
+ vol. 29, pp. 2484-2495, 2021.
1250
+ [21] F. Xu, Y. Zheng, and X. Hu, “Estimation of joint kinematics and fingertip
1251
+ forces using motoneuron firing activities: A preliminary report,” in
1252
+ International IEEE/EMBS Conference on Neural Engineering, NER,
1253
+ 2021, pp. 1035-1038.
1254
+ [22] M. Chen, X. Zhang, and P. Zhou, “Automatic Multichannel
1255
+ Intramuscular Electromyogram Decomposition: Progressive FastICA
1256
+ Peel-Off and Performance Validation,” IEEE Trans. Neural Syst. Rehabil.
1257
+ Eng., vol. 27, no. 1, pp. 76-84, 2019.
1258
+ [23] P. Comon, C. Jutten, “Handbook of Blind Source Separation:
1259
+ Independent component analysis and applications,” Academic press,
1260
+ 2010.
1261
+ [24] B. G. Lapatki, J. P. Van Dijk, I. E. Jonas, M. J. Zwarts, and D. F.
1262
+ Stegeman, “A thin, flexible multielectrode grid for high-density surface
1263
+ EMG,” J. Appl. Physiol., vol. 96, no. 1, pp. 327-336, 2004.
1264
+ [25] A. Holobar and D. Zazula, “Multichannel blind source separation using
1265
+ convolution Kernel compensation,” IEEE Trans. Signal Process., vol. 55,
1266
+ no. 9, pp. 4487-4496, 2007.
1267
+ [26] M. Chen and P. Zhou, “A novel framework based on FastICA for high
1268
+ density surface EMG decomposition,” IEEE Trans. Neural Syst. Rehabil.
1269
+ Eng., vol. 24, no. 1, pp. 117-127, 2016.
1270
+ [27] A. Hyvärinen and E. Oja, “Independent component analysis: Algorithms
1271
+ and applications,” Neural Networks, vol. 13, no. 4–5, pp. 411-430, 2000.
1272
+ [28] A. Holobar, M. A. Minetto, A. Botter, F. Negro, and D. Farina,
1273
+ “Experimental analysis of accuracy in the identification of motor unit
1274
+ spike trains from high-density surface EMG,” IEEE Trans. Neural Syst.
1275
+ Rehabil. Eng., vol. 18, no. 3, pp. 221-229, 2010.
1276
+ [29] H. R. Marateb, K. C. McGill, A. Holobar, Z. C. Lateva, M. Mansourian,
1277
+ and R. Merletti, “Accuracy assessment of CKC high-density surface
1278
+ EMG decomposition in biceps femoris muscle,” J. Neural Eng., vol. 8,
1279
+ no. 6, p. 066002, 2011.
1280
+ [30] M. Chen, X. Zhang, Z. Lu, X. Li, and P. Zhou, “Two-Source Validation
1281
+ of Progressive FastICA Peel-Off for Automatic Surface EMG
1282
+ Decomposition in Human First Dorsal Interosseous Muscle,” Int. J.
1283
+ Neural Syst., vol. 28, no. 9, p. 1850019, 2018.
1284
+ [31] M. Chen, X. Zhang, and P. Zhou, “A novel validation approach for high-
1285
+ density surface EMG decomposition in motor neuron disease,” IEEE
1286
+ Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 6, pp. 1161-1168, 2018.
1287
+ [32] M. Chen, A. Holobar, X. Zhang, and P. Zhou, “Progressive FastICA Peel-
1288
+ Off and Convolution Kernel Compensation Demonstrate High
1289
+ Agreement for High Density Surface EMG Decomposition,” Neural
1290
+ Plast., vol. 2016, p. 3489540, 2016.
1291
+ [33] M. Chen, X. Zhang, X. Chen, and P. Zhou, “Automatic Implementation
1292
+ of Progressive FastICA Peel-Off for High Density Surface EMG
1293
+ Decomposition,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 1,
1294
+ pp. 144-152, 2018.
1295
+ [34] V. Glaser, A. Holobar, and D. Zazula, “Decomposition of Synthetic
1296
+ Surface Electromyograms Using Sequential Convolution Kernel
1297
+ Compensation,” WSEAS - Trans. Biol. Biomed., vol. 7, no. 7, pp. 143-
1298
+ 152, 2008.
1299
+ [35] A. Holobar and D. Zazula, “Gradient convolution kernel compensation
1300
+ applied to surface electromyograms,” in Lecture Notes in Computer
1301
+ Science (including subseries Lecture Notes in Artificial Intelligence and
1302
+ Lecture Notes in Bioinformatics), vol. 4666, pp. 617-624, 2007.
1303
+ [36] F. Negro, S. Muceli, A. M. Castronovo, A. Holobar, and D. Farina,
1304
+ “Multi-channel intramuscular and surface EMG decomposition by
1305
+ convolutive blind source separation,” J. Neural Eng., vol. 13, no. 2, p.
1306
+ 026027, 2016.
1307
+ [37] Y. Ning, X. Zhu, S. Zhu, and Y. Zhang, “Surface EMG decomposition
1308
+ based on K-means clustering and convolution kernel compensation,”
1309
+ IEEE J. Biomed. Heal. Informatics, vol. 19, no. 2, pp. 471-477, 2015.
1310
+ [38] V. Glaser, A. Holobar, and D. Zazula, “Real-time motor unit
1311
+ identification from high-density surface EMG,” IEEE Trans. Neural Syst.
1312
+ Rehabil. Eng., vol. 21, no. 6, pp. 949-958, 2013.
1313
+ [39] C. Chen, Y. Yu, X. Sheng, and X. Zhu, “Analysis of motor unit activities
1314
+ during multiple motor tasks by real-time EMG decomposition:
1315
+ Perspective for myoelectric control,” in Proceedings of the Annual
1316
+ International Conference of the IEEE Engineering in Medicine and
1317
+ Biology Society, EMBS, 2020, pp. 4791-4794.
1318
+ [40] C. Chen, S. Ma, X. Sheng, D. Farina, and X. Zhu, “Adaptive Real-Time
1319
+ Identification of Motor Unit Discharges from Non-Stationary High-
1320
+ Density Surface Electromyographic Signals,” IEEE Trans. Biomed. Eng.,
1321
+ vol. 67, no. 12, pp. 3501-3509, 2020.
1322
+ [41] Y. Zheng and X. Hu, “Real-time isometric finger extension force
1323
+ estimation based on motor unit discharge information,” J. Neural Eng.,
1324
+ vol. 16, no. 6, p. 066006, 2019.
1325
+ [42] D. Y. Barsakcioglu and D. Farina, “A real-time surface EMG
1326
+ decomposition system for non-invasive human-machine interfaces,” in
1327
+ IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland,
1328
+ OH, USA, 2018, pp. 459-462.
1329
+ [43] Y. Zheng and X. Hu, “Adaptive Real-time Decomposition of
1330
+ Electromyogram During Sustained Muscle Activation: A Simulation
1331
+ Study,” IEEE Trans. Biomed. Eng., vol. 69, no. 2, pp. 645-653, 2022.
1332
+ [44] C. Chen, Y. Yu, X. Sheng, D. Farina, and X. Zhu, “Simultaneous and
1333
+ proportional control of wrist and hand movements by decoding motor
1334
+ unit discharges in real time,” J. Neural Eng., vol. 18, no. 5, p. 056010,
1335
+ 2021.
1336
+ [45] F. J. Theis and G. A. García, “On the use of sparse signal decomposition
1337
+ in the analysis of multi-channel surface electromyograms,” Signal
1338
+ Processing, vol. 86, no. 3, pp. 603-623, 2006.
1339
+ [46] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent
1340
+ component analysis,” IEEE Trans. Neural Networks, vol. 10, no. 3, pp.
1341
+ 626-634, 1999.
1342
+ [47] N. Otsu, “A threshold selection method from gray-level histograms,”
1343
+ IEEE Trans Syst Man Cybern, vol. SMC-9, no. 1, pp. 62-66, 1979.
1344
+ [48] Simao M, C. Zhang, X. Zhang, M. Q. Zhang, and Y. Li, “Neighbor
1345
+ number, valley seeking and clustering,” Pattern Recognit. Lett., vol. 28,
1346
+ no. 2, pp. 173–180, 2007.
1347
+ [49] C. J. James and O. J. Gibson, “Temporally constrained ICA: An
1348
+ application to artifact rejection in electromagnetic brain signal analysis,”
1349
+ IEEE Trans. Biomed. Eng., vol. 50, no. 9, pp. 1108-1116, 2003.
1350
+ [50] E. Martinez-Valdes, C. M. Laine, D. Falla, F. Mayer, and D. Farina,
1351
+ “High-density surface electromyography provides reliable estimates of
1352
+ motor unit behavior,” Clin. Neurophysiol., vol. 127, no. 6, pp. 2534-2541,
1353
+ 2016.
1354
+ [51] A. Fuglsang-Frederiksen and J. Rønager, “The motor unit firing rate and
1355
+ the power spectrum of EMG in humans,” Electroencephalogr. Clin.
1356
+ Neurophysiol., vol. 70, no. 1, pp. 68-72, 1988.
1357
+ [52] J. W. Pillow, J. Shlens, E. J. Chichilnisky, and E. P. Simoncelli, “A model-
1358
+ based spike sorting algorithm for removing correlation artifacts in multi-
1359
+ neuron recordings,” PLoS One, vol. 8, no. 5, p. e62123, 2013.
1360
+ [53] K. C. McGill and L. J. Dorfman, “High-Resolution Alignment of
1361
+ Sampled Waveforms,” IEEE Trans. Biomed. Eng., vol. BME-31, no.6,
1362
+ pp. 462-468, 1984.
1363
+ [54] A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment
1364
+ and rate coding organization in motor-unit pools,” J Neurophysiol, vol.
1365
+ 70, no. 6, pp. 2470-88, Dec, 1993.
1366
+ [55] R. Merletti, L. Lo Conte, E. Avignone, and P. Guglielminotti, “Modeling
1367
+ of surface myoelectric signals. I. model implementation”, IEEE
1368
+ Transactions on Biomedical Engineering, vol. 46, no. 7, pp. 810–820,
1369
+ 1999.
1370
+ [56] J. R. Florestal, P. A. Mathieu, and K. C. McGill, “Automatic
1371
+ decomposition of multichannel intramuscular EMG signals,” J.
1372
+ Electromyogr. Kinesiol., vol. 19, no. 1, pp. 1-9, 2009.
1373
+
7NAzT4oBgHgl3EQf-f4D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tAyT4oBgHgl3EQfQvZV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d1d03fe9c9153ed53f6b8319eb207373d8c4a23ad2c2be4c6c5c5befbe0f12f
3
+ size 213821
9dE4T4oBgHgl3EQf3Q3I/content/2301.05305v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dcba63e2972347dec55e3059d21d641b64a28982f9139830efa32b8338e43f0
3
+ size 934752
9dE4T4oBgHgl3EQf3Q3I/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eae006944bb23bb3da6cce5f83c9416949f3532056da73b14290b2a7b5e1972f
3
+ size 1703981
9dE4T4oBgHgl3EQf3Q3I/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faaea2db17cc78dddebc92311d86eaf4ae78e205dc615a4eda6d0e0c7c6628ff
3
+ size 70713
B9E1T4oBgHgl3EQfVwR_/content/tmp_files/2301.03106v1.pdf.txt ADDED
@@ -0,0 +1,461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ (1+1) dimensional scalar field theory on q-deformed
2
+ space
3
+ Poula Tadros
4
+ Department of Applied Physics, Aalto University School of Science, FI-00076
5
+ Aalto, Finland.
6
+ email:poulatadros9@gmail.com
7
+ Abstract
8
+ We study scalar field theory in one space and one time dimensions on
9
+ a q-deformed space with static background. We write the Lagrangian and
10
+ the equation of motion and solve it to the first order in q − 1 where q is
11
+ the deformation parameter of the space.
12
+ 1
13
+ Introduction
14
+ Non-commutative geometry was first introduced in string theory in ref-
15
+ erence [1], where it was shown that the coordinates of the endpoints of
16
+ strings on D-branes in the presence of a Neveu-Schwartz field are non-
17
+ commutative. Non-commutative field theories have also been defined, as
18
+ they can be derived from string theories and have interesting features, as
19
+ described in references [2] and [3].
20
+ The introduction of non-commutative spacetime in field theory is mo-
21
+ tivated by the Heisenberg uncertainty principle in quantum mechanics,
22
+ which states that at small distance scales, there is a large uncertainty in
23
+ momentum measurement. This means that energy can reach very high
24
+ values in a small spatial distance, approaching the Planck scale. However,
25
+ according to the general theory of relativity, high energy in a small spatial
26
+ distance creates a black hole, which prevents the position from being fully
27
+ certain. To reconcile these two phenomena, it is necessary to introduce
28
+ non-commutativity in spacetime, which implies non locality in the theory.
29
+ This is explained in references [4] and [5].
30
+ In this paper we study (1+1) dimensional classical scalar field theory
31
+ with static spacetime on a q-deformed space, we present both analytical
32
+ and numerical analysis of the resulting theory. In section 2, we review
33
+ the some types of non-commutativity on space times and motivate the
34
+ choice of q-deformation non-commutativity as the subject of the study .
35
+ In section 3. we study the scalar field theory on q-deformed space time, we
36
+ write the Lagrangian and deduce the equation of motion, we also truncate
37
+ the equation of motion to the linear order in q −1 and solved the resulting
38
+ equation. In section 4, we study the numerical solutions of the truncated
39
+ equation of motion showing that the solutions grow exponentially with x
40
+ and t meaning that the equation is stiff and there are instabilities in the
41
+ theory. In section 5, we conclude the study and suggest topics for further
42
+ research.
43
+ 1
44
+ arXiv:2301.03106v1 [hep-th] 8 Jan 2023
45
+
46
+ 2
47
+ Types of non-commutativity
48
+ Here, we briefly review three of the most popular types of non-commutativity
49
+ relations and justify our motivation to use the q-deformation type
50
+ 1. Canonical non-commutativity It is the simplest type which used in
51
+ physics literature, it was introduced in [6], it is defined by imposing
52
+ the following commutation relations
53
+ [xµ, xν] = iθµν,
54
+ where xµ are the spacetime coordinates and θµν is a constant, anti-
55
+ symmetric matrix.
56
+ The idea of canonical non-commutativity involves smearing the struc-
57
+ ture of space-time in a particular way, regardless of the specific
58
+ mathematical details of the space.
59
+ In order to incorporate non-
60
+ commutative geometry capturing the mathematical structures on
61
+ the manifold, it is necessary to consider more complex forms of non-
62
+ commutativity beyond just this basic version.
63
+ 2. Lie-type non commutativity
64
+ In this case the coordinates has a Lie algebra structure i.e.
65
+ the
66
+ commutation relations can capture a Lie algebra structures [7]. The
67
+ commutation relations are given by
68
+ [xµ, xν] = if µν
69
+ ρ xρ,
70
+ where f µν
71
+ ρ
72
+ are the structure constants of the defined Lie algebra.
73
+ However, this type is not useful because Lie structures are rigid i.e.
74
+ any small deformation of a Lie algebra is isomorphic to the original
75
+ Lie algebra.
76
+ 3. q-deformations
77
+ A solution to the rigidity problem for Lie algebras is to replace Lie
78
+ group with a flexible structure called quantum groups [8-10]. The
79
+ term quantum group used in this context refers to the deformations
80
+ of the universal enveloping algebra of a given group, these objects
81
+ have Hopf algebra structures which are flexible structures unlike Lie
82
+ groups and algebras.
83
+ The commutation relations are given by
84
+ xµxν = 1
85
+ q Rµν
86
+ στxσxτ,
87
+ where q is a parameter and Rµν
88
+ στ is the R-matrix of the quantum
89
+ group defined on the space.
90
+ In this space a Lie algebra is replaced by a non-commutative Hopf
91
+ algebra with deformation parameter q. The resulting space is de-
92
+ formed according to the Lie group on the space and on the parame-
93
+ ter q, this is the simplest way to deform a space time while capturing
94
+ the full algebraic structure of the space.
95
+ 2
96
+
97
+ 3
98
+ Lagrangian and the equation of motion
99
+ We begin with the Lagrangian of the scalar field on the commutative man-
100
+ ifold then introduce non-commutativity by replacing the derivatives by
101
+ Jackson derivatives, since the symmetry group is U(1), the deformations
102
+ of its universal enveloping algebra gives a commutative algebra. Thus, we
103
+ do not have to worry about defining a product of functions on the new
104
+ space. The Lagrangian is then
105
+ L = 1
106
+ 2∂µφ∂µφ − 1
107
+ 2m2φ2 → Lq = DµqφDµ
108
+ q φ − m2φ2,
109
+ where µ = 0, 1 with x0 = t and x1 = x.
110
+ Assuming the field is defined everywhere and is infinitely differentiable
111
+ and the deformations are small i.e. q ≈ 1, we can relate the theory on
112
+ the non commutative topological space to the theory on the commuta-
113
+ tive manifold (i.e. transforming the non-commutative theory back to the
114
+ commutative manifold) using the formulae
115
+ Dxq(f(x)) = ∂xf +
116
+
117
+
118
+ k=1
119
+ (q − 1)k
120
+ (k + 1)! xkf (k+1)(x),
121
+ where f (k) is the k-th ordinary derivative of f with respect to x.
122
+ Dtq(f(x)) = ∂tf +
123
+
124
+
125
+ k=1
126
+ (q − 1)k
127
+ (k + 1)! xkf (k+1)(x),
128
+ where f [k] is the k-th ordinary derivative of f with respect to t.
129
+ The resulting Lagrangian on the commutative manifold is
130
+ Lq = 1
131
+ 2∂φ∂φ − 1
132
+ 2m2φ2 + 2∂φ
133
+
134
+
135
+ k=1
136
+ (q − 1)k
137
+ (k + 1)! xkφ(k+1)
138
+ +
139
+
140
+
141
+ l,m=1
142
+ (q − 1)(l+m)
143
+ (m + 1)!(l + 1)!xk+lφ(l+1)φ(m+1) + (x → t).
144
+ where (x → t) means the same terms but with x replaced by t includ-
145
+ ing in the derivatives.
146
+ The Lagrangian has an infinite series of derivatives, in this case the
147
+ Euler-Lagrange equation will be
148
+ ∂Lq
149
+ ∂φ +
150
+
151
+
152
+ k=1
153
+ (−1)k dk
154
+ dxk ( ∂Lq
155
+ ∂φ(k) ) +
156
+
157
+
158
+ k=1
159
+ (−1)k dk
160
+ dtk ( ∂Lq
161
+ ∂φ[k] ) = 0,
162
+ (1)
163
+ where k = 2, 3, ....
164
+ The Lagrangian is clearly non local as expected from a non-commutative
165
+ theory.
166
+ The derivatives of the Lagrangian are given by
167
+ ∂Lq
168
+ ∂φ = −mφ,
169
+ 3
170
+
171
+ ∂Lq
172
+ ∂(∂φ) = ∂xφ + 2
173
+
174
+
175
+ n=1
176
+ (q − 1)n
177
+ (n + 1)! xnφ(n+1)
178
+ (2)
179
+ → d
180
+ dx( ∂Lq
181
+ ∂(∂xφ))
182
+ = ∂x∂xφ + 2
183
+
184
+
185
+ n=1
186
+ (n(q − 1)n
187
+ (n + 1)! xn−1φ(n+1)) + 2
188
+
189
+
190
+ n=1
191
+ ((q − 1)n
192
+ (n + 1)! xnφ(n+2)), (3)
193
+ ∂Lq
194
+ ∂(φ(k)) = 2(q − 1)k−1xk−1
195
+ k!
196
+
197
+
198
+ n=0
199
+ (q − 1)n
200
+ (n + 1)! xnφ(n+1)
201
+ → d
202
+ dx(
203
+ ∂Lq
204
+ ∂(φ(k)))
205
+ = 2(q − 1)k−1x2k−1
206
+ k!
207
+
208
+
209
+ m,n=0
210
+
211
+ k
212
+ m
213
+
214
+ (q − 1)n
215
+ (n + 1)!
216
+ (n + k + 1)!
217
+ (n + 2k − m − 1)!xn−mφ(n+k+1),
218
+ (4)
219
+ with similar formulae for derivatives with respect to t.
220
+ Putting all together from (2), (3), (4) in (1) we get
221
+ −∂µ∂µφ − m2φ − 2
222
+
223
+
224
+ n=1
225
+ n(q − 1)n
226
+ (n + 1)! xn−1φ(n+1) − 2
227
+
228
+
229
+ n=1
230
+ (q − 1)n
231
+ (n + 1)! xnφ(n+2)
232
+ +
233
+
234
+
235
+ k=2
236
+ (−1)k 2(q − 1)k−1x2k−1
237
+ k!
238
+
239
+
240
+ n=0
241
+ k
242
+
243
+ m=0
244
+
245
+ k
246
+ m
247
+
248
+ (q − 1)n(n + k − 1)!
249
+ (n + 1)!(n + 2k − m − 1)!xn−mφ(n+k+1)
250
+ + (x → t) = 0.
251
+ (5)
252
+ This is a partial differential equation of infinite order with variable
253
+ coefficients.
254
+ If we consider only small deformations i.e. q ≈ 1, then we can only
255
+ keep terms up to the linear order in q − 1, the first order equation will be
256
+ −∂µ∂µφ−m2φ−(q−1)[φ(2)+xφ(3)− x3
257
+ 6 φ(3)−x2φ(3)−xφ3+(x → t)] = 0.
258
+ This equation is a stiff equation i.e. it is numerically unstable, this
259
+ may indicate an instability in the theory due to the linear approximation
260
+ used, but as seen from the full equation of motion the full theory is stable.
261
+ The solution is φ = F(t)G(x) where
262
+ F(t) = c1eiAt/√q+c2e−iAt/√q+(q−1)eiAt/√q
263
+ 2iA√q [ iA
264
+ 24q t4+(iA3
265
+ 3 −
266
+ 1
267
+ 12√q − i
268
+ 8A)t3
269
+ +(A + q
270
+ 2q
271
+ − A√q
272
+ 2
273
+
274
+ i
275
+ 8A)t2 + (i(A + q)
276
+ 2A√q
277
+ − iqA
278
+ 4
279
+ +
280
+ √q
281
+ 8A2 )t
282
+ 4
283
+
284
+ +(A + q
285
+ 4A2
286
+ + q
287
+
288
+ A
289
+ 4
290
+ +
291
+ iq
292
+ 16A3 )] + O((q − 1)2),
293
+ G(x) = c3eikx/√q+c4e−ikx/√q+(q−1)eikx/√q
294
+ 2ik√q [ ik
295
+ 24q x4+(ik3
296
+ 3 −
297
+ 1
298
+ 12√q − i
299
+ 8A)x3
300
+ +(k + q
301
+ 2q
302
+ − k√q
303
+ 2
304
+ − i
305
+ 8k )x2 + (i(k + q)
306
+ 2k√q
307
+ − iqk
308
+ 4
309
+ +
310
+ √q
311
+ 8k2 )x
312
+ +(k + q
313
+ 4k2
314
+ + q
315
+
316
+ k
317
+ 4
318
+ +
319
+ iq
320
+ 16k3 )] + O((q − 1)2),
321
+ where c1, c2, c3, c4, A are normalisation constants and k = ±
322
+
323
+ A2 + m2.
324
+ When q = 1, it reduces to the solution to the Klein Gordon equation as
325
+ expected.
326
+ 4
327
+ Numerical results
328
+ Here, we present numerical solutions to the equation of motion to the
329
+ first order in q − 1, we focus on G(x) only since the remaining part is
330
+ similar. The solutions are exponentially growing in time establishing that
331
+ the equation of motion was stiff.
332
+ We set c3 = c4 = k = 1, A2 = 1
333
+ 2 and we plot the solution for different
334
+ values of the parameter q.
335
+ Figure 1: At q − 1 = 0.1 the solution grows exponentially with |x|. This is a
336
+ feature of a stiff equation with unstable numerical solution. In the vicinity of
337
+ x = 0 it is close to the usual Klein-Gordon solution but as we go further it
338
+ becomes more and more distant
339
+ 5
340
+
341
+ 200000
342
+ 100000
343
+ 0
344
+ 100000
345
+ -200000
346
+ 100
347
+ 75
348
+ 50
349
+ 25
350
+ 25
351
+ 50
352
+ 75
353
+ 100Figure 2: At q − 1 = 0.001 the solution still grows exponentially but slower.
354
+ Figure 3: At q − 1 = 10−6 the solution resembles the Klein-Gordon solution up
355
+ to |x| = 50 then decays for a bit but eventually blows up.
356
+ Figure 4: At q − 1 = 10−9 the solution has the same behaviour as the previous
357
+ graph but the decay happens at larger |x|, all smaller q − 1 values follow this
358
+ pattern.
359
+ 6
360
+
361
+ 2000
362
+ 1500
363
+ 1000 -
364
+ 500
365
+ 0
366
+ 500
367
+ 1000
368
+ 1500
369
+ 2000
370
+ 100
371
+ 7550
372
+ -25
373
+ 0
374
+ 25
375
+ 50
376
+ 75
377
+ 10030
378
+ 20
379
+ 10
380
+ 0
381
+ 10
382
+ 20
383
+ 30
384
+ -200
385
+ 150
386
+ 100
387
+ 50
388
+ 0
389
+ 50
390
+ 100
391
+ 150
392
+ 200E
393
+ 2
394
+ 1
395
+ 0
396
+ -1
397
+ -2
398
+ -3
399
+ 600
400
+ 400
401
+ 200
402
+ 0
403
+ 200
404
+ 400
405
+ 600The above results shows an instability in the theory leading to di-
406
+ vergent solutions to the equations of motion as x → ∞. To remove the
407
+ instability we must add infinite terms corresponding to an infinite series
408
+ of higher derivatives i.e. we have to consider the full theory. However,
409
+ this approximation gives us an intuition on how the q-deformation affects
410
+ the space, small q-deformations beside leading to non local effects appear
411
+ to affect the space irregularly with only small effects locally.
412
+ 5
413
+ Conclusion and outlook
414
+ In conclusion, we showed that defining a field theory on a q-deformed
415
+ space leads to an infinite series of higher derivatives in the Lagrangian
416
+ even with static background. In the case presented the algebra was com-
417
+ mutative so no new product of functions is needed. We also demonstrated
418
+ that any approximation or truncation to the theory will lead to stiff equa-
419
+ tions of motion resulting from instabilities in the theory.
420
+ While we made a progress in the field, much more is to be studied, fu-
421
+ ture research in this direction should focus on defining more complicated
422
+ theories on q-deformed spaces with non-commutative function algebras
423
+ and with dynamical spacetimes, also to define higher spin fields on such
424
+ space and study the new symmetries of the theories as well as the types
425
+ of instabilities arise if the Lagrangian is truncated.
426
+ Acknowledgments
427
+ We would like to thank Dr.Ivan Kolar for the useful discussions on the
428
+ topic
429
+ References
430
+ [1] Seiberg, N. and Witten, E. (1999) “String theory and noncommu-
431
+ tative geometry,” Journal of High Energy Physics, 1999(09), pp.
432
+ 032–032.
433
+ [2] Szabo, R. (2003) “Quantum field theory on noncommutative spaces,”
434
+ Physics Reports, 378(4), pp. 207–299.
435
+ [3] Sheikh-Jabbari, M.M. (1999) “Super Yang-Mills theory on noncom-
436
+ mutative torus from open strings interactions,” Physics Letters B,
437
+ 450(1-3), pp. 119–125.
438
+ [4] Doplicher, S., Fredenhagen, K. and Roberts, J.E. (1995) “The quan-
439
+ tum structure of spacetime at the Planck scale and Quantum Fields,”
440
+ Communications in Mathematical Physics, 172(1), pp. 187–220.
441
+ [5] Ahluwalia, D.V. (1994) “Quantum measurement, gravitation, and
442
+ locality,” Physics Letters B, 339(4), pp. 301–303.
443
+ [6] C. S. Chu and P. M. Ho, Noncommutative open string and D-brane,
444
+ Nucl. Phys. B 550, 151 (1999) [hep-th/9812219].
445
+ 7
446
+
447
+ [7] B. Jurco, S. Schraml, P. Schupp and J. Wess, Enveloping alge-
448
+ bra valued gauge transformations for non-Abelian gauge groups on
449
+ non-commutative spaces, Eur.
450
+ Phys.
451
+ J. C17, 521 (2000) [hep-
452
+ th/0006246].
453
+ [8] Chaichian, M. and Demichev, A.P. Introduction to quantum groups.
454
+ Singapore: World Scientific (1996).
455
+ [9] Bonneau, P. et al. (2004) “Quantum groups and deformation quanti-
456
+ zation: Explicit approaches and implicit aspects,” Journal of Math-
457
+ ematical Physics, 45(10), pp. 3703–3741.
458
+ [10] A. Klimyk and K. Schmudgen, Quantum Groups and Their Repre-
459
+ sentations, Springer (1997).
460
+ 8
461
+
B9E1T4oBgHgl3EQfVwR_/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf,len=156
2
+ page_content='(1+1) dimensional scalar field theory on q-deformed space Poula Tadros Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
3
+ page_content=' email:poulatadros9@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
4
+ page_content='com Abstract We study scalar field theory in one space and one time dimensions on a q-deformed space with static background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
5
+ page_content=' We write the Lagrangian and the equation of motion and solve it to the first order in q − 1 where q is the deformation parameter of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
6
+ page_content=' 1 Introduction Non-commutative geometry was first introduced in string theory in ref- erence [1], where it was shown that the coordinates of the endpoints of strings on D-branes in the presence of a Neveu-Schwartz field are non- commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
7
+ page_content=' Non-commutative field theories have also been defined, as they can be derived from string theories and have interesting features, as described in references [2] and [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
8
+ page_content=' The introduction of non-commutative spacetime in field theory is mo- tivated by the Heisenberg uncertainty principle in quantum mechanics, which states that at small distance scales, there is a large uncertainty in momentum measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
9
+ page_content=' This means that energy can reach very high values in a small spatial distance, approaching the Planck scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
10
+ page_content=' However, according to the general theory of relativity, high energy in a small spatial distance creates a black hole, which prevents the position from being fully certain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
11
+ page_content=' To reconcile these two phenomena, it is necessary to introduce non-commutativity in spacetime, which implies non locality in the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
12
+ page_content=' This is explained in references [4] and [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
13
+ page_content=' In this paper we study (1+1) dimensional classical scalar field theory with static spacetime on a q-deformed space, we present both analytical and numerical analysis of the resulting theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
14
+ page_content=' In section 2, we review the some types of non-commutativity on space times and motivate the choice of q-deformation non-commutativity as the subject of the study .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
15
+ page_content=' In section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
16
+ page_content=' we study the scalar field theory on q-deformed space time, we write the Lagrangian and deduce the equation of motion, we also truncate the equation of motion to the linear order in q −1 and solved the resulting equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
17
+ page_content=' In section 4, we study the numerical solutions of the truncated equation of motion showing that the solutions grow exponentially with x and t meaning that the equation is stiff and there are instabilities in the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
18
+ page_content=' In section 5, we conclude the study and suggest topics for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
19
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
20
+ page_content='03106v1 [hep-th] 8 Jan 2023 2 Types of non-commutativity Here, we briefly review three of the most popular types of non-commutativity relations and justify our motivation to use the q-deformation type 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
21
+ page_content=' Canonical non-commutativity It is the simplest type which used in physics literature, it was introduced in [6], it is defined by imposing the following commutation relations [xµ, xν] = iθµν, where xµ are the spacetime coordinates and θµν is a constant, anti- symmetric matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
22
+ page_content=' The idea of canonical non-commutativity involves smearing the struc- ture of space-time in a particular way, regardless of the specific mathematical details of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
23
+ page_content=' In order to incorporate non- commutative geometry capturing the mathematical structures on the manifold, it is necessary to consider more complex forms of non- commutativity beyond just this basic version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
24
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
25
+ page_content=' Lie-type non commutativity In this case the coordinates has a Lie algebra structure i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
26
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
27
+ page_content=' the commutation relations can capture a Lie algebra structures [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
28
+ page_content=' The commutation relations are given by [xµ, xν] = if µν ρ xρ, where f µν ρ are the structure constants of the defined Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
29
+ page_content=' However, this type is not useful because Lie structures are rigid i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
30
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
31
+ page_content=' any small deformation of a Lie algebra is isomorphic to the original Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
32
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
33
+ page_content=' q-deformations A solution to the rigidity problem for Lie algebras is to replace Lie group with a flexible structure called quantum groups [8-10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
34
+ page_content=' The term quantum group used in this context refers to the deformations of the universal enveloping algebra of a given group, these objects have Hopf algebra structures which are flexible structures unlike Lie groups and algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
35
+ page_content=' The commutation relations are given by xµxν = 1 q Rµν στxσxτ, where q is a parameter and Rµν στ is the R-matrix of the quantum group defined on the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
36
+ page_content=' In this space a Lie algebra is replaced by a non-commutative Hopf algebra with deformation parameter q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
37
+ page_content=' The resulting space is de- formed according to the Lie group on the space and on the parame- ter q, this is the simplest way to deform a space time while capturing the full algebraic structure of the space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
38
+ page_content=' 2 3 Lagrangian and the equation of motion We begin with the Lagrangian of the scalar field on the commutative man- ifold then introduce non-commutativity by replacing the derivatives by Jackson derivatives, since the symmetry group is U(1), the deformations of its universal enveloping algebra gives a commutative algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
39
+ page_content=' Thus, we do not have to worry about defining a product of functions on the new space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
40
+ page_content=' The Lagrangian is then L = 1 2∂µφ∂µφ − 1 2m2φ2 → Lq = DµqφDµ q φ − m2φ2, where µ = 0, 1 with x0 = t and x1 = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
41
+ page_content=' Assuming the field is defined everywhere and is infinitely differentiable and the deformations are small i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
42
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
43
+ page_content=' q ≈ 1, we can relate the theory on the non commutative topological space to the theory on the commuta- tive manifold (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
44
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
45
+ page_content=' transforming the non-commutative theory back to the commutative manifold) using the formulae Dxq(f(x)) = ∂xf + ∞ � k=1 (q − 1)k (k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
46
+ page_content=' xkf (k+1)(x), where f (k) is the k-th ordinary derivative of f with respect to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
47
+ page_content=' Dtq(f(x)) = ∂tf + ∞ � k=1 (q − 1)k (k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
48
+ page_content=' xkf (k+1)(x), where f [k] is the k-th ordinary derivative of f with respect to t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
49
+ page_content=' The resulting Lagrangian on the commutative manifold is Lq = 1 2∂φ∂φ − 1 2m2φ2 + 2∂φ ∞ � k=1 (q − 1)k (k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
50
+ page_content=' xkφ(k+1) + ∞ � l,m=1 (q − 1)(l+m) (m + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
51
+ page_content=' (l + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
52
+ page_content='xk+lφ(l+1)φ(m+1) + (x → t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
53
+ page_content=' where (x → t) means the same terms but with x replaced by t includ- ing in the derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
54
+ page_content=' The Lagrangian has an infinite series of derivatives, in this case the Euler-Lagrange equation will be ∂Lq ∂φ + ∞ � k=1 (−1)k dk dxk ( ∂Lq ∂φ(k) ) + ∞ � k=1 (−1)k dk dtk ( ∂Lq ∂φ[k] ) = 0, (1) where k = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
55
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
56
+ page_content='. The Lagrangian is clearly non local as expected from a non-commutative theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
57
+ page_content=' The derivatives of the Lagrangian are given by ∂Lq ∂φ = −mφ, 3 ∂Lq ∂(∂φ) = ∂xφ + 2 ∞ � n=1 (q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
58
+ page_content=' xnφ(n+1) (2) → d dx( ∂Lq ∂(∂xφ)) = ∂x∂xφ + 2 ∞ � n=1 (n(q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
59
+ page_content=' xn−1φ(n+1)) + 2 ∞ � n=1 ((q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
60
+ page_content=' xnφ(n+2)), (3) ∂Lq ∂(φ(k)) = 2(q − 1)k−1xk−1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
61
+ page_content=' ∞ � n=0 (q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
62
+ page_content=' xnφ(n+1) → d dx( ∂Lq ∂(φ(k))) = 2(q − 1)k−1x2k−1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
63
+ page_content=' ∞ � m,n=0 � k m � (q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
64
+ page_content=' (n + k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
65
+ page_content=' (n + 2k − m − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
66
+ page_content='xn−mφ(n+k+1), (4) with similar formulae for derivatives with respect to t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
67
+ page_content=' Putting all together from (2), (3), (4) in (1) we get −∂µ∂µφ − m2φ − 2 ∞ � n=1 n(q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
68
+ page_content=' xn−1φ(n+1) − 2 ∞ � n=1 (q − 1)n (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
69
+ page_content=' xnφ(n+2) + ∞ � k=2 (−1)k 2(q − 1)k−1x2k−1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
70
+ page_content=' ∞ � n=0 k � m=0 � k m � (q − 1)n(n + k − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
71
+ page_content=' (n + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
72
+ page_content=' (n + 2k − m − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
73
+ page_content='xn−mφ(n+k+1) + (x → t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
74
+ page_content=' (5) This is a partial differential equation of infinite order with variable coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
75
+ page_content=' If we consider only small deformations i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
76
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
77
+ page_content=' q ≈ 1, then we can only keep terms up to the linear order in q − 1, the first order equation will be −∂µ∂µφ−m2φ−(q−1)[φ(2)+xφ(3)− x3 6 φ(3)−x2φ(3)−xφ3+(x → t)] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
78
+ page_content=' This equation is a stiff equation i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
79
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
80
+ page_content=' it is numerically unstable, this may indicate an instability in the theory due to the linear approximation used, but as seen from the full equation of motion the full theory is stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
81
+ page_content=' The solution is φ = F(t)G(x) where F(t) = c1eiAt/√q+c2e−iAt/√q+(q−1)eiAt/√q 2iA√q [ iA 24q t4+(iA3 3 − 1 12√q − i 8A)t3 +(A + q 2q − A√q 2 − i 8A)t2 + (i(A + q) 2A√q − iqA 4 + √q 8A2 )t 4 +(A + q 4A2 + q √ A 4 + iq 16A3 )] + O((q − 1)2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
82
+ page_content=' G(x) = c3eikx/√q+c4e−ikx/√q+(q−1)eikx/√q 2ik√q [ ik 24q x4+(ik3 3 − 1 12√q − i 8A)x3 +(k + q 2q − k√q 2 − i 8k )x2 + (i(k + q) 2k√q − iqk 4 + √q 8k2 )x +(k + q 4k2 + q √ k 4 + iq 16k3 )] + O((q − 1)2),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
83
+ page_content=' where c1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
84
+ page_content=' c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
85
+ page_content=' c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
86
+ page_content=' c4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
87
+ page_content=' A are normalisation constants and k = ± √ A2 + m2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
88
+ page_content=' When q = 1, it reduces to the solution to the Klein Gordon equation as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
89
+ page_content=' 4 Numerical results Here, we present numerical solutions to the equation of motion to the first order in q − 1, we focus on G(x) only since the remaining part is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
90
+ page_content=' The solutions are exponentially growing in time establishing that the equation of motion was stiff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
91
+ page_content=' We set c3 = c4 = k = 1, A2 = 1 2 and we plot the solution for different values of the parameter q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
92
+ page_content=' Figure 1: At q − 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
93
+ page_content='1 the solution grows exponentially with |x|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
94
+ page_content=' This is a feature of a stiff equation with unstable numerical solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
95
+ page_content=' In the vicinity of x = 0 it is close to the usual Klein-Gordon solution but as we go further it becomes more and more distant 5 200000 100000 0 100000 200000 100 75 50 25 25 50 75 100Figure 2: At q − 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
96
+ page_content='001 the solution still grows exponentially but slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
97
+ page_content=' Figure 3: At q − 1 = 10−6 the solution resembles the Klein-Gordon solution up to |x| = 50 then decays for a bit but eventually blows up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
98
+ page_content=' Figure 4: At q − 1 = 10−9 the solution has the same behaviour as the previous graph but the decay happens at larger |x|, all smaller q − 1 values follow this pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
99
+ page_content=' 6 2000 1500 1000 - 500 0 500 1000 1500 2000 100 7550 25 0 25 50 75 10030 20 10 0 10 20 30 200 150 100 50 0 50 100 150 200E 2 1 0 1 2 3 600 400 200 0 200 400 600The above results shows an instability in the theory leading to di- vergent solutions to the equations of motion as x → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
100
+ page_content=' To remove the instability we must add infinite terms corresponding to an infinite series of higher derivatives i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
101
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
102
+ page_content=' we have to consider the full theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
103
+ page_content=' However, this approximation gives us an intuition on how the q-deformation affects the space, small q-deformations beside leading to non local effects appear to affect the space irregularly with only small effects locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
104
+ page_content=' 5 Conclusion and outlook In conclusion, we showed that defining a field theory on a q-deformed space leads to an infinite series of higher derivatives in the Lagrangian even with static background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
105
+ page_content=' In the case presented the algebra was com- mutative so no new product of functions is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
106
+ page_content=' We also demonstrated that any approximation or truncation to the theory will lead to stiff equa- tions of motion resulting from instabilities in the theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
107
+ page_content=' While we made a progress in the field, much more is to be studied, fu- ture research in this direction should focus on defining more complicated theories on q-deformed spaces with non-commutative function algebras and with dynamical spacetimes, also to define higher spin fields on such space and study the new symmetries of the theories as well as the types of instabilities arise if the Lagrangian is truncated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
108
+ page_content=' Acknowledgments We would like to thank Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
109
+ page_content='Ivan Kolar for the useful discussions on the topic References [1] Seiberg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
110
+ page_content=' and Witten, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
111
+ page_content=' (1999) “String theory and noncommu- tative geometry,” Journal of High Energy Physics, 1999(09), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
112
+ page_content=' 032–032.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
113
+ page_content=' [2] Szabo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
114
+ page_content=' (2003) “Quantum field theory on noncommutative spaces,” Physics Reports, 378(4), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
115
+ page_content=' 207–299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
116
+ page_content=' [3] Sheikh-Jabbari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
117
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
118
+ page_content=' (1999) “Super Yang-Mills theory on noncom- mutative torus from open strings interactions,” Physics Letters B, 450(1-3), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
119
+ page_content=' 119–125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
120
+ page_content=' [4] Doplicher, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
121
+ page_content=', Fredenhagen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
122
+ page_content=' and Roberts, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
123
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
124
+ page_content=' (1995) “The quan- tum structure of spacetime at the Planck scale and Quantum Fields,” Communications in Mathematical Physics, 172(1), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
125
+ page_content=' 187–220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
126
+ page_content=' [5] Ahluwalia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
127
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
128
+ page_content=' (1994) “Quantum measurement, gravitation, and locality,” Physics Letters B, 339(4), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
129
+ page_content=' 301–303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
130
+ page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
131
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
132
+ page_content=' Chu and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
133
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
134
+ page_content=' Ho, Noncommutative open string and D-brane, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
135
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
136
+ page_content=' B 550, 151 (1999) [hep-th/9812219].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
137
+ page_content=' 7 [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
138
+ page_content=' Jurco, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
139
+ page_content=' Schraml, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
140
+ page_content=' Schupp and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
141
+ page_content=' Wess, Enveloping alge- bra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
142
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
143
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
144
+ page_content=' C17, 521 (2000) [hep- th/0006246].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
145
+ page_content=' [8] Chaichian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
146
+ page_content=' and Demichev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
147
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
148
+ page_content=' Introduction to quantum groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
149
+ page_content=' Singapore: World Scientific (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
150
+ page_content=' [9] Bonneau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
151
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
152
+ page_content=' (2004) “Quantum groups and deformation quanti- zation: Explicit approaches and implicit aspects,” Journal of Math- ematical Physics, 45(10), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
153
+ page_content=' 3703–3741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
154
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
155
+ page_content=' Klimyk and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
156
+ page_content=' Schmudgen, Quantum Groups and Their Repre- sentations, Springer (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
157
+ page_content=' 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/B9E1T4oBgHgl3EQfVwR_/content/2301.03106v1.pdf'}
CNE3T4oBgHgl3EQfUQpw/content/tmp_files/2301.04449v1.pdf.txt ADDED
@@ -0,0 +1,2398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Diving Deep into Modes of Fact Hallucinations in Dialogue Systems
2
+ Souvik Das Sougata Saha Rohini K. Srihari
3
+ {souvikda, sougatas, rohini}@buffalo.edu
4
+ Department of Computer Science and Engineering, University at Buffalo, NY.
5
+ Abstract
6
+ Knowledge Graph(KG) grounded conversa-
7
+ tions often use large pre-trained models and
8
+ usually suffer from fact hallucination.
9
+ Fre-
10
+ quently entities with no references in knowl-
11
+ edge sources and conversation history are in-
12
+ troduced into responses, thus hindering the
13
+ flow of the conversation—existing work at-
14
+ tempt to overcome this issue by tweaking the
15
+ training procedure or using a multi-step refin-
16
+ ing method. However, minimal effort is put
17
+ into constructing an entity-level hallucination
18
+ detection system, which would provide fine-
19
+ grained signals that control fallacious content
20
+ while generating responses.
21
+ As a first step
22
+ to address this issue, we dive deep to iden-
23
+ tify various modes of hallucination in KG-
24
+ grounded chatbots through human feedback
25
+ analysis.
26
+ Secondly, we propose a series of
27
+ perturbation strategies to create a synthetic
28
+ dataset named FADE (FActual Dialogue Hal-
29
+ lucination DEtection Dataset)1.
30
+ Finally, we
31
+ conduct comprehensive data analyses and cre-
32
+ ate multiple baseline models for hallucination
33
+ detection to compare against human-verified
34
+ data and already established benchmarks.
35
+ 1
36
+ Introduction
37
+ Knowledge-grounded conversational models often
38
+ use large pre-trained models (Radford et al., 2019;
39
+ Brown et al., 2020). These models are notorious for
40
+ producing responses that do not comply with the
41
+ provided knowledge; this phenomenon is known
42
+ as hallucination (Dziri et al., 2022b; Rashkin et al.,
43
+ 2021b). Faithfulness to the supplementary knowl-
44
+ edge is one of the prime designing factors in these
45
+ knowledge-grounded chatbots. If a response is
46
+ unfaithful to some given knowledge, it becomes
47
+ uninformative and risks jeopardizing the flow of
48
+ the conversation. Despite retaining strong linguis-
49
+ tics abilities, these large language models(LM) in-
50
+ adequately comprehend and present facts during
51
+ 1https://github.com/souvikdgp16/FADE
52
+ conversations. LMs are trained to emulate distribu-
53
+ tional properties of data that intensify its hallucina-
54
+ tory attributes during test time.
55
+ Figure 1: Hallucination manifested by generated responses
56
+ using GPT2(Radford et al., 2019) trained on KG triples can
57
+ be more nuanced.
58
+ On the one hand, many prior works (Wiseman
59
+ et al., 2017; Parikh et al., 2020; Tuan et al., 2019)
60
+ have suggested training these models on external
61
+ data to ensure faithfulness may lead to a source-
62
+ reference divergence problem, where the reference
63
+ contains additional factual information.
64
+ To ad-
65
+ dress this problem holistically, Dziri et al. has
66
+ proposed a two-step generate-then-refine approach
67
+ by augmenting conventional dialogue generation
68
+ with a different refinement stage enabling the di-
69
+ alogue system to correct potential hallucinations
70
+ by querying the KG. Also, this work employs a
71
+ token-level hallucination classifier trained on a syn-
72
+ thetic dataset constructed using two perturbation
73
+ strategies 2. Though this method has clear benefits,
74
+ the hallucination perturbation strategies proposed
75
+ in this work might fail to capture some of the sub-
76
+ tle attributions of a factual generative model. As
77
+ illustrated in Figure 1, neural models can inject hal-
78
+ lucinated entities into responses that are present in
79
+ the k-hop KG and are deceptively similar to what
80
+ is expected. Also, if we cannot detect these elusive
81
+ hallucinations beforehand, it will cause a cascad-
82
+ ing effect and amplify hallucinations in subsequent
83
+ turns (See and Manning, 2021).
84
+ 2(1) Extrinsic perturbation: Dziri et al. have swapped an
85
+ entity with a different entity of the same type and not present in
86
+ 1-hop subgraph. (2) Intrinsic perturbation: they have swapped
87
+ an entity with its object or vice versa, taken from the golden
88
+ 1-hop subgraph.
89
+ arXiv:2301.04449v1 [cs.CL] 11 Jan 2023
90
+
91
+ Path(s): T, :['Outlander', 'written_by','Diana Gabaldon'] [Gold]
92
+ T, :['Outlander','publication_date','1st June'] [Retrieved from
93
+ 1-hop KG]
94
+ T, :['Outlander', 'published_by','Dell Publishing'l [Retrieved from
95
+ 1-hop KG]
96
+ History: ['Do you like the book Outlander ?']
97
+ GPT2 Response: “I've never read it, but I know it was written by Dell
98
+ PublishingOn the other hand, relying on human annotations
99
+ is challenging due to error-prone collection proto-
100
+ cols and human ignorance to complete the tasks
101
+ with care (Smith et al., 2022). Prior research (Dziri
102
+ et al., 2022c) shows that knowledge-grounded con-
103
+ versational benchmarks contain hallucinations pro-
104
+ moted by a design framework that encourages infor-
105
+ mativeness over faithfulness. As studied by Dziri
106
+ et al., when the annotators are asked to identify
107
+ hallucination in a response, there is a high chance
108
+ of error due to lack of incentive, personal bias, or
109
+ poor attention to the provided knowledge.
110
+ See and Manning have studied different short-
111
+ comings in a real-time neural model. In this work,
112
+ based on some of the findings of See and Manning,
113
+ like repetitive and unclear utterances promoting
114
+ hallucination, we extend the already defined modes
115
+ of hallucinations (Maynez et al., 2020; Dziri et al.,
116
+ 2021a). Our contributions to this work are three-
117
+ fold:
118
+ • We extend fact hallucination in KG-grounded
119
+ dialogue systems into eight categories. To
120
+ understand the degree to which our defined
121
+ classes exist in real-life data, we conduct a sys-
122
+ tematic human evaluation of data generated
123
+ by a state-of-the-art neural generator.
124
+ • Since human annotation is expensive and of-
125
+ ten inaccurate, we design a series of novel
126
+ perturbation strategies to simulate the de-
127
+ fined ways of fact hallucinations and build
128
+ a set of synthetic datasets collectively named
129
+ as FADE (FActual Dialogue Hallucination
130
+ DEtection Dataset).
131
+ • We create multiple pre-trained model-based
132
+ baselines and compare the performances on
133
+ several constituent and mixed datasets. To
134
+ assess our dataset’s generalization capability,
135
+ we perform zero-shot inference on BEGIN
136
+ (Dziri et al., 2021b), and FaithDial (Dziri et al.,
137
+ 2022a) datasets, which encompasses all cate-
138
+ gories of hallucinated responses.
139
+ 2
140
+ Different Modes of Hallucination in
141
+ KG-grounded Dialogue Systems
142
+ 2.1
143
+ Background
144
+ We focus on the task of detecting halluci-
145
+ nated spans in dialogues that are factually
146
+ grounded on factoids derived from multi-relational
147
+ graphs G = (V, E, R), termed as Knowledge-
148
+ Graphs(KG). Each KG consists of an directed edge
149
+ triples t = ⟨[SBJ], [PRE], [OBJ]⟩, where
150
+ [SBJ], [OBJ] ∈ V are nodes denoting subject
151
+ and object entities and [PRE] ∈ R is a predicate
152
+ which can be understood as a relation type. Primar-
153
+ ily, a neural dialogue system is guilty of generating
154
+ hallucinated text when a valid path in the k-hop
155
+ sub-graph Gk
156
+ c ∈ G of the original KG anchored
157
+ around a context entity c does not support it.
158
+ Our study extends the work of (Dziri et al.,
159
+ 2021a) where they specifically explore two broad
160
+ circumstances – extrinsic and intrinsic to the pro-
161
+ vided KG, under which LMs are likely to exhibit
162
+ unfaithful behavior. Though this categorization is
163
+ beneficial for detecting hallucinations, these cate-
164
+ gories can be further subdivided into subcategories,
165
+ which are described in §2.3.
166
+ 2.2
167
+ Base Dataset
168
+ We use OpenDialKG (Moon et al., 2019), a
169
+ crowded-sourced English dialogue dataset where
170
+ two workers are paired to chat about a particular
171
+ topic(mainly movie, music, sport, and book). We
172
+ use this dataset for training a GPT2-based model
173
+ for generating data for human feedback analysis
174
+ and creating the perturbed datasets. More details
175
+ about the dataset can be found in §C
176
+ 2.3
177
+ Definitions
178
+ We define below several categories of fact halluci-
179
+ nation, comprehensive illustrations of each types
180
+ are provided in Figure 2. In addition we have in-
181
+ cluded detailed descriptions of each definitions in
182
+ §A
183
+ (a) (Extrinsic-Soft). An extrinsic-soft hallucina-
184
+ tion corresponds to an utterance that brings a new
185
+ span of text which is similar to the expected span
186
+ but does not correspond to a valid triple in Gk
187
+ c .
188
+ (b) (Extrinsic-Hard). An extrinsic-hard halluci-
189
+ nation corresponds to an utterance that brings a
190
+ new span of text which is different from the expected
191
+ span and does not correspond to a valid triple in
192
+ Gk
193
+ c .
194
+ (c) (Extrinsic-Grouped). An extrinsic-grouped
195
+ hallucination corresponds to an utterance that
196
+ brings a new span of text which is different from the
197
+ expected span but is of a specific predefined type
198
+ and does not correspond to a valid triple in Gk
199
+ c .
200
+ (d) (Intrinsic-Soft). An intrinsic-soft hallucina-
201
+ tion corresponds to an utterance that misuses any
202
+ triple in Gk
203
+ c such that there is no direct path be-
204
+ tween the entities but they are similar to each other.
205
+ (e) (Intrinsic-Hard). An intrinsic-hard hallucina-
206
+ tion corresponds to an utterance that misuses any
207
+
208
+ Figure 2: Illustration of our defined categories of fact hallucinations in KG-grounded dialogue systems
209
+ triple in Gk
210
+ c such that there is no direct path be-
211
+ tween the entities and they are not related in any
212
+ form.
213
+ (f) (Intrinsic-Repetitive). An intrinsic-repetitive
214
+ hallucination corresponds to an utterance that ei-
215
+ ther misuses [SBJ] or [OBJ] in Gk
216
+ c such that
217
+ there is no direct path between the entities but the
218
+ entity has previously occurred in conversational
219
+ history..
220
+ (g) (History Corrupted- Intrinsic/ Extrinsic). A
221
+ history corrupted(intrinsic/extrinsic) hallucination
222
+ corresponds to an utterance that is subjected to
223
+ intrinsic or extrinsic hallucination which is influ-
224
+ enced by hallucinated entities in conversational
225
+ history.
226
+ 2.4
227
+ Human Feedback Analysis
228
+ To study the extent to which the previously de-
229
+ scribed modes of hallucination exist in a real-world
230
+ system, we did human feedback analysis on re-
231
+ sponses generated using a GPT2-based generative
232
+ model fine-tuned on OpenDialKG as described
233
+ by Dziri et al.. We sampled 200 responses each
234
+ from four different decoding strategies, Greedy,
235
+ Beam Search, and Nucleus Sampling, with a prob-
236
+ ability of 0.9 and 0.5.
237
+ For each dialogue in-
238
+ stance, we crowd-source human judgment by solic-
239
+ iting evaluations from 2 different annotators(with
240
+ a high approval rating) from Amazon Mechanical
241
+ Turk(AMT)(Details in §B). One computer science
242
+ graduate student additionally verified the Human
243
+ Intelligence Task (HITS). For examples where hal-
244
+ lucination was present, we asked the workers to
245
+ identify the type of hallucination(examples of dif-
246
+ ferent types of hallucinations were shown in the
247
+ GPT2-KG
248
+ Greedy
249
+ Beam Search
250
+ Nucleus 0.9
251
+ Nucleus 0.5
252
+ Extrinsic-Soft
253
+ 10.91
254
+ 8.8
255
+ 15.5
256
+ 14.77
257
+ Extrinsic-Hard
258
+ 3.45
259
+ 4.22
260
+ 8.3
261
+ 9.8
262
+ Extrinsic-Grouped
263
+ 1.12
264
+ 1
265
+ 0.44
266
+ 1.6
267
+ History Corrupted-Extrinsic
268
+ 3.3
269
+ 3.1
270
+ 2.33
271
+ 1.1
272
+ Intrinsic-Soft
273
+ 1.2
274
+ 1.38
275
+ 0.8
276
+ 0.3
277
+ Intrinsic-Hard
278
+ 0.2
279
+ 0.8
280
+ 1.1
281
+ 2
282
+ Intrinsic-Repetitive
283
+ 0.2
284
+ 0.8
285
+ 1.8
286
+ 4
287
+ History Corrupted-Intrinsic
288
+ 0.7
289
+ 0.5
290
+ 1.33
291
+ 3.3
292
+ Extrinsic Total
293
+ 18.78
294
+ 17.12
295
+ 26.57
296
+ 27.27
297
+ Intrinsic Total
298
+ 2.3
299
+ 3.48
300
+ 5.03
301
+ 9.6
302
+ Total
303
+ 21.08
304
+ 20.6
305
+ 31.6
306
+ 36.87
307
+ Table 1: Fine-grain human feedback analysis
308
+ instruction). The result of the human feedback is
309
+ exhibited in Table 1. We rejected 21% of the HITS
310
+ because of poor quality; we reported the average
311
+ Krippendorf alpha coefficient to be 0.74 on the
312
+ remaining annotations, indicating a moderate to
313
+ a high agreement. Using Table 1 we made these
314
+ observations:
315
+ • Extrinsic-soft hallucination is the dominant
316
+ form of hallucination. Also, this bolsters our
317
+ prior observation that LMs generate entities
318
+ similar to the golden entity.
319
+ • Comparatively less amount of hallucinations
320
+ was seen in responses generated using beam
321
+ search decoding scheme, though the percent-
322
+ age of extrinsic-hard hallucination was higher
323
+ than greedy decoding.
324
+ • Intrinsic-hard hallucination appears to be the
325
+ least among all types. This suggests LM will
326
+ always try to learn something from the given
327
+ KG triples; generating something dissimilar
328
+ will have a very low probability.
329
+ 3
330
+ Dataset Creation
331
+ FADE is a collection of datasets consisting of com-
332
+ ponent datasets created using several perturbations
333
+
334
+ Anchor Entity(c)
335
+ HISTORY
336
+ GOLDEN RESPONSE.
337
+ HISTORY (CORRUPTED)
338
+ 1-Hop KG
339
+ A: Could you recommend movies
340
+ B: Christopher Nolan was the director .
341
+ A: Could you recommend movies similar to
342
+ similar to The Dark Knight ?
343
+ He also directed Insomnia and
344
+ The Dark Knight ?
345
+ Inception.
346
+ B: The sequel to [The Dark Knight -→ The
347
+ B: The sequel to Batman Begins is The
348
+ GOLD TRIPLE(S)
349
+ Dark Knight Rises(Int.)] [The Dark Knight -
350
+ Dark Knight .
351
+ Spider-Man(Ext.)] is Batman Begins .
352
+ ['The Dark Knight', 'directed_by',
353
+ A: Okay . Who is the director of The
354
+ Christopher Nolan']
355
+ A: Okay . Who is the director of The Dark
356
+ Dark Knight and any other movies from
357
+ DarkKnight
358
+ ['Christopher Nolan', 'is-a', 'Film
359
+ Knight and any other movies from him not
360
+ him not related to Batman ?
361
+ director'l
362
+ related to Batman ?
363
+ Perturbed Entity
364
+ PERTURBED RESPONSE(Soft)
365
+ PERTURBED RESPONSE(Soft)
366
+ PERTURBED RESPONSE(Intrinsic)
367
+ B:Steven Spielberg was the director
368
+ B: The Dark Knight RisesWas the
369
+ B: The Dark Knight Rises was the
370
+ He also directed insomnia and
371
+ director . He also directed insomnia
372
+ director . He also directed insomnia
373
+ inception
374
+ and inception
375
+ and inception.
376
+ PERTURBED RESPONSE(Hard)
377
+ PERTURBED RESPONSE(Hard)
378
+ PERTURBED RESPONSE(Extrinsic)
379
+ B: Joe Biden was the director . He also
380
+ B: United States of America was the
381
+ B: Steven Spielberg was the director .
382
+ directedinsomnia and inception
383
+ director . He also directed insomnia
384
+ He also directed insomnia and
385
+ and inception
386
+ inception :
387
+ PERTURBED RESPONSE(Grouped)
388
+ PERTURBEDRESPONSE(Repetitive)
389
+ B: Warner Bros. was the director . He
390
+ B: Batman Begins was the director . He
391
+ also directed insomnia and inception
392
+ also directed insomnia and inception
393
+ (a) Extrinsic Hallucination Types
394
+ (b) Intrinsic Hallucination Types
395
+ (c) History Corrupt Hallucination TypesHallucination Type
396
+ Index Type
397
+ Selection Criteria
398
+ Soft
399
+ Same as original entity
400
+ ei with max document score
401
+ Hard
402
+ Same as original entity
403
+ ei with min document score
404
+ Grouped
405
+ Same as one predefined type, selected randomly
406
+ same as soft
407
+ Table 2: Extrinsic hallucination perturbed entity selection
408
+ criteria
409
+ and a set of mixed datasets constructed using the
410
+ component datasets.
411
+ 3.1
412
+ Perturbation Strategies
413
+ Extrinsic Hallucination All the entities present in
414
+ OpenDialKG undergo a indexing process. At first,
415
+ using Spacy we determine the named entity type 3
416
+ for each entity, and create BM25 indexes4 for each
417
+ entity type. Each KG triple corresponding to an en-
418
+ tity is represented in this format – "[SBJ] [PRE]
419
+ [OBJ]" and denoted as ti. Now, for an entity(ei)
420
+ we create a document di = concat(t1, t2, ..tn), n
421
+ is the number of KG-triples for that entity. Af-
422
+ ter this, we index di and ei in the index corre-
423
+ sponding to the entity type. During the perturba-
424
+ tion process, we retrieve all the KG-triples for the
425
+ entity we want to perturb and form 3 queries for
426
+ each triple by permuting ([SBJ],[PRE],[OBJ]).
427
+ Then based on the type of extrinsic halluci-
428
+ nation, we query the indices to get the docu-
429
+ ment scores in the following way:
430
+ scores =
431
+ average({BM25(qi, dj)}i∈(s,r,o),j∈(0,n)), the se-
432
+ lection criteria of the perturbed entities are pro-
433
+ vided in table 2.
434
+ The groups for extrinsic-grouped hallucination
435
+ are mentioned in Table 10. During the selection
436
+ process, we iteratively check whether the perturbed
437
+ entity exists in the conversation history, matches
438
+ with the actual entity, and has appeared in the 1-hop
439
+ sub-graph of the original entity. If an occurrence is
440
+ found, we proceed to the following best entity.
441
+ Intrinsic Hallucination Here, we dynamically
442
+ create a BM25 index and index all the KG triples
443
+ in the 1-hop sub-graph of the original entity. Again,
444
+ a KG triple is represented in the same fashion as in
445
+ extrinsic hallucination – "[SBJ] [PRE] [OBJ]".
446
+ The goal here is to select entities that are similar
447
+ or dissimilar to the original entities and present in
448
+ the 1-hop graph. To achieve that, we follow a hy-
449
+ brid triple retrieval approach to score each triple
450
+ associated with the original entity. First, we use the
451
+ final hidden layer of a pre-trained GPT2 to obtain
452
+ initial embeddings for each node in Gk
453
+ c (for details,
454
+ check §D.3). A query is formed by using Equa-
455
+ 3https://spacy.io/api/entityrecognizer
456
+ 4https://solr.apache.org/
457
+ Hallucination Type
458
+ Selection Criteria
459
+ Soft
460
+ [SUB] or [OBJ] with max triple score
461
+ Hard
462
+ [SUB] or [OBJ] with min triple score
463
+ Repetitive
464
+ same as soft, should be occurring in the conversation history
465
+ Table 3: Intrinsic hallucination perturbed entity selection cri-
466
+ teria
467
+ tion 1 each triple in Gk
468
+ c is scored using a similarity
469
+ scoring system as described in Equation 3.
470
+ q =
471
+
472
+ i∈{s,r,o}
473
+ ε
474
+ p(qi) + ε vqi
475
+ (1)
476
+ Here ε is a free term parameter (§D.2), p(qi) is
477
+ unigram probability of the query term and vqi is the
478
+ embedding for each query term(here query terms
479
+ are [SBJ], [PRE] ,[OBJ] of the original entity).
480
+ ni =
481
+ ε
482
+ p(s) + ε vs +
483
+ ε
484
+ q(r) + ε vr +
485
+ ε
486
+ p(o) + ε vo
487
+ (2)
488
+ ni in Equation 2 represents a triple embedding
489
+ in Gk
490
+ c , when q(r) represents the rarity of the rela-
491
+ tionship term in the subgraph, high occurrence is
492
+ penalized, rest terms are analogous to Equation 1.
493
+ EntitySimilarity(Q, t) = cos(q, ni)
494
+ (3)
495
+ Now, we query the BM25 index that we have
496
+ created before with a simple query using the orig-
497
+ inal triple: "[SBJ] [PRE] [OBJ]" and get the
498
+ score for each of the triple(t). Finally, we get the
499
+ final scores using Equation 4.
500
+ Score(Q, t) = βEntitySimilarity(Q, t)
501
+ +(1 − β)BM25(Q, t)
502
+ (4)
503
+ Here 0 < β < 1.
504
+ We select the perturbed entities based on the
505
+ scores and selection criteria as defined in Table 3.
506
+ Like extrinsic hallucinations, we iteratively filter
507
+ the best-scored entity until it does not match the
508
+ original entity or appears in history.
509
+ History Corrupted Hallucination Conversa-
510
+ tional history is corrupted using intrinsic or extrin-
511
+ sic corruption strategy. We select the last k turns of
512
+ the conversation and randomly perturb the entities.
513
+ We also ensure that at least 50% of the previous k
514
+ turns are corrupted.
515
+ 3.2
516
+ Dataset Analysis
517
+ Below we provide data statistics and character-
518
+ ize the composition and properties of the datasets
519
+ that are generated using our proposed perturbation
520
+ strategies.
521
+
522
+ Type
523
+ Perturbed
524
+ Non-perturbed
525
+ Turn with
526
+ perturbation>2
527
+ soft
528
+ 12752
529
+ 64634
530
+ 558
531
+ hard
532
+ 8540
533
+ 68872
534
+ 8254
535
+ grouped
536
+ 22858
537
+ 54542
538
+ 11296
539
+ history-corrupt
540
+ 8534
541
+ 68878
542
+ 8247
543
+ Table 4: Extrinsic hallucination data statistics
544
+ Type
545
+ Perturbed
546
+ Non-perturbed
547
+ Turn with
548
+ perturbation>2
549
+ soft
550
+ 18560
551
+ 58558
552
+ 5
553
+ hard
554
+ 18605
555
+ 58534
556
+ 6
557
+ repetitive
558
+ 9712
559
+ 67560
560
+ 0
561
+ history-corrupt
562
+ 18597
563
+ 58542
564
+ 6
565
+ Table 5: Intrinsic hallucination data statistics
566
+ 3.2.1
567
+ Data Statistics
568
+ Table 4 and 5 shows the statistics of datasets created
569
+ using different perturbation strategies. The base
570
+ dataset contains 77,430 data points. However, the
571
+ perturbed turns in each of these datasets are quite
572
+ low in comparison. This low number is because
573
+ not every entity in an utterance has a valid KG path.
574
+ For extrinsic hallucination, ∼12,000 to ∼23,000
575
+ utterances were perturbed, and ∼550 to ∼11,300
576
+ utterances have multiple perturbations. The num-
577
+ ber of perturbed data points for intrinsic hallucina-
578
+ tion is less than extrinsic(∼9,000 to ∼18,000). The
579
+ number of utterances with multiple perturbations
580
+ is negligible due to the many checks the perturbed
581
+ entities go through(for example, whether the KG
582
+ path is present, has already occurred or not, etc.)
583
+ To train and evaluate models, we vary the size of
584
+ the train split in this range of 10% to 30%5 with a
585
+ step of 2.5%, keeping in mind to avoid overfitting.
586
+ The remaining data is split into equal halves for
587
+ validation and testing.
588
+ 3.2.2
589
+ Parsing Features
590
+ In Figure 3 we show the top 10 Named Entity
591
+ Recognition(NER) tags as identified by the Spacy
592
+ library in extrinsic hallucinations. For extrinsic-
593
+ soft hallucination, most NER tags are of type PER-
594
+ SON. This corresponds to the fact that the original
595
+ entities in the base dataset are primarily related to
596
+ movies, books, and music. In extrinsic-soft halluci-
597
+ nation, the associated PERSON name is changed
598
+ to a closely affiliated person, or a movie name is
599
+ changed to its director’s name. In contrast, the dis-
600
+ tribution of NER tags is uniform for extrinsic-hard
601
+ hallucination. Figure 4 and 5 shows the top-10 rela-
602
+ tions of the perturbed entity with the original entity
603
+ in both intrinsic-soft and hard hallucinations and
604
+ the corresponding value in their counterparts. In
605
+ intrinsic-soft hallucination, more relevant relations
606
+ are selected like "release year", "starred actors",
607
+ "written by", etc. On the other hand, in intrin-
608
+ 5sequential split
609
+ Figure 3: NER distribution in Extrinsic-soft and hard halluci-
610
+ nation
611
+ sic hard hallucination, more unusual relations like
612
+ "Country of Origin", and "Country of Nationality"
613
+ were among the top relations.
614
+ Figure 4: Top 10 relation in perturbed KG triples in intrinsic-
615
+ soft hallucination
616
+ Figure 5: Top 10 relation in perturbed KG triples in intrinsic-
617
+ hard hallucination
618
+ 3.3
619
+ Mixing Datasets
620
+ Since in actual data, all kinds of hallucinations are
621
+ expected to occur. We mix the previously con-
622
+ structed datasets in specific proportions to create a
623
+ more challenging dataset. Table 11 shows the dif-
624
+ ferent mixing ratios for four types of datasets is as
625
+ follows: Observed: We try to mimic the observed
626
+ data, which is shown in §2.4, we take an average of
627
+ percentages in for all the decoding strategies. Bal-
628
+ anced: Goal here is to create a balanced dataset
629
+ between hallucinated and non-hallucinated turns,
630
+ each type of hallucination is also balanced. Extin-
631
+ sic+: In this scenario, we increase the percentages
632
+
633
+ PERSON
634
+ 1%1%
635
+ 4%
636
+ 5%
637
+ Extrinsic Soft
638
+ ■ORG
639
+ 2%1%4%
640
+ 2% R
641
+ 2%
642
+ 6%
643
+ DATE
644
+ 7%
645
+ Extrinsic Hard
646
+ GPE
647
+ 39%
648
+ 11%
649
+ ■CARDINAL
650
+ ■WORK OF
651
+ 18%
652
+ ART
653
+ ■NORP
654
+ 12%
655
+ 65%
656
+ EVENT
657
+ ORDINAL
658
+ 23%
659
+ ■LOCrelease_year
660
+ 3%
661
+ 2%2%
662
+ 3%
663
+ Intrinsic Soft
664
+ 21%
665
+ starred actors
666
+ 4%
667
+ 12%
668
+ 8%
669
+ written_by
670
+ Intrinsic Hard
671
+ 5%
672
+ 13%
673
+ 21%
674
+ has_genre
675
+ 11%
676
+ is-a
677
+ AdaptedFrom
678
+ 4%
679
+ 18%
680
+ Gender
681
+ 15%
682
+ 16%
683
+ in_language
684
+ 23%
685
+ Subject
686
+ 18%
687
+ ProducedbyCountry of origin
688
+ Ihas_genre
689
+ Intrinsic Soft
690
+ 21%
691
+ 5%
692
+ starred actors
693
+ 26%
694
+ 7%
695
+ 17%
696
+ Intrinsic Hard
697
+ Country of
698
+ 7%
699
+ nationality
700
+ Iwritten_by
701
+ 8%
702
+ 15%
703
+ - Produced by
704
+ 3%
705
+ 8%
706
+ Original language
707
+ 3%
708
+ 23%
709
+ 13%
710
+ 10%
711
+ AwardWon
712
+ 10%
713
+ in_language
714
+ 22%
715
+ 2%
716
+ ■release_yearof extrinsic-soft, hard, and grouped by a factor of
717
+ 2, 1.5, and 1.5, respectively. Intrinsic+: here we
718
+ increase the percentages of intrinsic-soft, hard and
719
+ repetitive by a factor of 1.5. More details in §D.4.
720
+ 3.4
721
+ Human Verification
722
+ To verify whether our proposed perturbation strate-
723
+ gies inject hallucinations in the original data, we
724
+ randomly sample 150 examples from each of the
725
+ mixed dataset’s test splits. Subsequently, these sam-
726
+ ples were randomly ordered to form a consolidated
727
+ sample of 600 data points annotated by at least
728
+ three AMT workers, with the same setting as de-
729
+ scribed in §2.4. Additionally, the graduate student
730
+ verified where the hallucinations adhere to the per-
731
+ turbation norms. Krippendorff’s alpha were 0.88
732
+ and 0.76 among workers, and workers with per-
733
+ turbed data(average), indicating a very high agree-
734
+ ment. Since our perturbation strategies are purely
735
+ deterministic, we kept a large-scale human verifi-
736
+ cation of the automatically annotated data outside
737
+ the scope of this work. We create a human-verified
738
+ dataset of 500 samples, 300 taken from this set and
739
+ 200 from the human feedback study 2.4.
740
+ 4
741
+ Task
742
+ To identify utterances that contain hallucinations
743
+ and to locate the entities of concern. We create two
744
+ tasks:
745
+ 1. Utterance classification: Given the dialog
746
+ history D, knowledge triples Kn and the cur-
747
+ rent utterance xn+1 we classify xn+1 is hallu-
748
+ cinated or not.
749
+ 2. Token classification: Given D, Kn and xn+1,
750
+ we need to perform sequence labelling on
751
+ xn+1 and identify the hallucinated spans.
752
+ 5
753
+ Baseline Models
754
+ As an initial effort toward tackling the suggested
755
+ hallucination detection task, we create several
756
+ baseline detection models based on pre-trained
757
+ transformer models, including BERT, XLNet, and
758
+ RoBERTa. These transformer-based models repre-
759
+ sent the state-of-the-art and can potentially better
760
+ leverage context or embedded world knowledge
761
+ to detect self-contradictory or anti-commonsense
762
+ content.
763
+ For training the utterance classifier, given D, Kn
764
+ and xn+1, we fine tune a pre-trained model M to
765
+ predict binary hallucinated label y for xn+1 . Here,
766
+ D and Kn are considered as sequence A with token
767
+ type ids as 0 and xn+1 is considered as sequence B
768
+ with token type ids as 1. During inference, from the
769
+ last hidden states H ∈ Rl×h (h, l are hidden size
770
+ and sequence length, respectively), then we obtain
771
+ the representation w ∈ Rh by max pooling(i.e.,
772
+ w = max_pool(H)). We then pass w through
773
+ a MLP layer with a tanh activation to get the bi-
774
+ nary label y ∈ {0, 1}. During training time, we
775
+ fine-tune the model using cross entropy objective
776
+ between the predicted labels and the actual labels.
777
+ Similarly, for training the sequence classifier, we
778
+ fine-tune a pre-trained model Ms. At first, we
779
+ encode D, Kn and xn+1 using Ms to get the last
780
+ hidden states H ∈ Rl×h, (h, l are hidden size and
781
+ sequence length, respectively). Instead of doing
782
+ a binary classification of each token, we adopt a
783
+ BILOU encoding scheme. The hidden states are
784
+ passed through an MLP layer with a tanh activa-
785
+ tion to get the 5-way label y ∈ {B, I, L, O, U}.
786
+ During training time, we fine-tune the model us-
787
+ ing a cross-entropy objective between the predicted
788
+ and actual labels.
789
+ 6
790
+ Experimental Setup
791
+ Baseline configurations we experiment with
792
+ a
793
+ variety
794
+ of
795
+ pre-trained
796
+ models
797
+ via
798
+ Hug-
799
+ ging Face Transformers, including BERT-base-
800
+ uncased(110M), RoBERTa-base(125M) and XL-
801
+ Net-base-cased(110M). Though using large or
802
+ medium versions of these models will produce bet-
803
+ ter results, we refrain from using those models as
804
+ scaling large models in production is costly. More
805
+ details about training parameters can be found in
806
+ §E
807
+ We also experimented with model architecture as
808
+ follows: (i) Varied the length of the history (ii) Ex-
809
+ perimented with max/ mean pooling. (iii) Whether
810
+ to concatenate the hidden states corresponding to
811
+ Kn with the hidden states corresponding to xn+1
812
+ before passing them through the MLP layer. (iv)
813
+ Using a CRF layer instead of MLP for predicting
814
+ labels in the sequence tagger. The best configu-
815
+ ration uses 4 turns of conversational history, max
816
+ pooling, it does not concatenate hidden states of
817
+ Kn with hidden states of xn+1 and uses a 2-layer
818
+ MLP.
819
+ Evaluation metrics We evaluate the baselines
820
+ with formal classification metrics, including preci-
821
+ sion, recall, and F1 for the hallucination sequence
822
+ tagger. For the utterance-level hallucination classi-
823
+ fier, we report accuracy, precision, recall, F1, and
824
+
825
+ Dataset
826
+ Best Model
827
+ Token Level
828
+ Utterance Level
829
+ F1
830
+ P
831
+ R
832
+ F1
833
+ P
834
+ R
835
+ G-Mean(↑)
836
+ BSS(↓)
837
+ AUC
838
+ extrinsic-grouped
839
+ BERT(base-uncased)
840
+ 80.69
841
+ 80.56
842
+ 80.82
843
+ 91.30
844
+ 91.80
845
+ 90.81
846
+ 93.58
847
+ 5.29
848
+ 93.62
849
+ extrinsic-hard
850
+ XLNet(base-cased)
851
+ 72.12
852
+ 71.98
853
+ 72.25
854
+ 87.36
855
+ 87.13
856
+ 87.60
857
+ 92.80
858
+ 2.93
859
+ 92.96
860
+ extrinsic-history-corrupt
861
+ XLNet(base-cased)
862
+ 72.38
863
+ 72.35
864
+ 72.40
865
+ 88.10
866
+ 87.86
867
+ 88.34
868
+ 93.24
869
+ 2.75
870
+ 93.38
871
+ extrinsic-soft
872
+ BERT(base-uncased)
873
+ 64.09
874
+ 69.22
875
+ 59.67
876
+ 74.80
877
+ 81.96
878
+ 68.80
879
+ 81.62
880
+ 8.03
881
+ 82.81
882
+ intrinsic-hard
883
+ XLNet(base-cased)
884
+ 84.44
885
+ 85.08
886
+ 83.81
887
+ 90.88
888
+ 92.88
889
+ 88.97
890
+ 93.24
891
+ 4.48
892
+ 93.34
893
+ intrinsic-history-corrupt
894
+ XLNet(base-cased)
895
+ 83.67
896
+ 82.27
897
+ 85.11
898
+ 91.30
899
+ 91.86
900
+ 90.74
901
+ 93.97
902
+ 4.34
903
+ 94.02
904
+ intrinsic-repetitive
905
+ RoBERTa(base)
906
+ 82.70
907
+ 82.76
908
+ 82.64
909
+ 88.01
910
+ 89.51
911
+ 86.55
912
+ 92.31
913
+ 3.15
914
+ 92.50
915
+ intrinsic-soft
916
+ RoBERTa(base)
917
+ 78.80
918
+ 80.19
919
+ 77.45
920
+ 87.10
921
+ 90.54
922
+ 83.92
923
+ 90.26
924
+ 6.22
925
+ 90.50
926
+ Table 6: Test benchmark (numbers in percentages (%)) for component datasets, models trained on 25% of the total dataset.
927
+ Dataset
928
+ Best Model
929
+ Token Level
930
+ Utterance Level
931
+ F1
932
+ P
933
+ R
934
+ F1
935
+ P
936
+ R
937
+ G-Mean(↑)
938
+ BSS(↓)
939
+ AUC
940
+ balanced
941
+ RoBERTa-base
942
+ 73.41
943
+ 68.75
944
+ 78.74
945
+ 88.24
946
+ 83.85
947
+ 93.12
948
+ 86.21
949
+ 13.14
950
+ 86.47
951
+ observed
952
+ XLNet(base-cased)
953
+ 63.44
954
+ 57.98
955
+ 70.03
956
+ 77.71
957
+ 71.05
958
+ 85.73
959
+ 85.40
960
+ 14.73
961
+ 85.40
962
+ intrinsic+
963
+ RoBERTa-base
964
+ 75.05
965
+ 71.11
966
+ 79.44
967
+ 90.16
968
+ 86.52
969
+ 94.12
970
+ 84.51
971
+ 12.78
972
+ 85.00
973
+ extrinsic+
974
+ XLNet(base-cased)
975
+ 75.59
976
+ 70.79
977
+ 81.10
978
+ 90.75
979
+ 86.77
980
+ 95.11
981
+ 83.21
982
+ 12.65
983
+ 83.95
984
+ Table 7: Test benchmark (numbers in percentages (%)) for mixed datasets, models trained on 25% of the total dataset.
985
+ AUC (Area Under Curve) for ROC. We also use
986
+ the G-Mean metric (Espíndola and Ebecken, 2005),
987
+ which measures the geographic mean of sensitiv-
988
+ ity and specificity. We also employ the Brier Skill
989
+ Score (BSS) metric (Center, 2005), which com-
990
+ putes the mean squared error between the reference
991
+ distribution and the hypothesis probabilities.
992
+ 7
993
+ Results and Discussion
994
+ Baseline performance Table 6 and Table 7 show
995
+ the baseline performance for the component
996
+ datasets and mixed datasets. In both the settings,
997
+ the utterance level hallucination classifier performs
998
+ better than the token tagger in terms of F1. It can be
999
+ inferred from Table 6 that, on average, it is compar-
1000
+ atively easier to detect intrinsic hallucinations than
1001
+ extrinsic hallucinations; due to grounding on exter-
1002
+ nal knowledge, which indicates the validity of our
1003
+ perturbation techniques. However, comparing the
1004
+ occurrence statistics from Table 1, it is noticed that
1005
+ extrinsic-soft hallucination, which has the least F1
1006
+ score among all types, has the highest occurrences.
1007
+ In extrinsic-grouped and extrinsic-soft hallucina-
1008
+ tions, it is interesting that BERT performs better
1009
+ than the other pre-trained models. Now for mixed
1010
+ datasets, we ran inference on the test set of ob-
1011
+ served dataset, as expected F1 scores(for utterance
1012
+ classifier and token level tagger) of the observed
1013
+ dataset are low as compared to other datasets due
1014
+ to high percentage of extrinsic-soft hallucination.
1015
+ Among other mixed datasets, the XLNet model
1016
+ fine-tuned on extrinsic+ dataset performs best in
1017
+ terms of F1 scores.
1018
+ Performance on human-verified data We test
1019
+ the best performing models fine-tuned on our
1020
+ mixed datasets on human-veri���ed data as de-
1021
+ Fine-tuned on
1022
+ Pretrain Model
1023
+ F1
1024
+ (Utterance-level)
1025
+ F1
1026
+ (Token-level)
1027
+ MNLI
1028
+ RoBERTa-large
1029
+ 12.5
1030
+ -
1031
+ BEGIN
1032
+ RoBERTa-large
1033
+ 15.4
1034
+ -
1035
+ FaithDial
1036
+ RoBERTa-large
1037
+ 22.1
1038
+ -
1039
+ Intrin-Extrin(Dziri et al., 2021a)
1040
+ RoBERTa-large
1041
+ 83.81
1042
+ 68.2
1043
+ balanced
1044
+ RoBERTa-base
1045
+ 92.27
1046
+ 78.61
1047
+ observed
1048
+ XLNet(base-cased)
1049
+ 90.15
1050
+ 70.27
1051
+ extrinsic+
1052
+ XLNet(base-cased)
1053
+ 93.97*
1054
+ 85.7*
1055
+ intrinsic+
1056
+ RoBERTa-base
1057
+ 93.01
1058
+ 84.33
1059
+ Table 8: Performance of several benchmark models and mod-
1060
+ els trained on FADE on the 500 human-verified data( *p-value
1061
+ < 0.001))
1062
+ Fine-tuned on
1063
+ Model
1064
+ BEGIN
1065
+ FaithDial
1066
+ MNLI(3-way)(Dziri et al., 2021b)
1067
+ T5
1068
+ 49.5
1069
+ -
1070
+ MNLI(Dziri et al., 2022a)
1071
+ RoBERTa-large
1072
+ 61.1
1073
+ 81.6
1074
+ intrinsic_hard
1075
+ RoBERTa-base
1076
+ 37.12
1077
+ 51.34
1078
+ intrinsic_history_corrupt
1079
+ RoBERTa-base
1080
+ 43.23
1081
+ 63.11
1082
+ intrinsic_hard
1083
+ RoBERTa-large
1084
+ 44.42
1085
+ 64.1
1086
+ intrinsic_history_corrupt
1087
+ RoBERTa-large
1088
+ 55.11
1089
+ 71.43
1090
+ Table 9: Zero-sort inference F1 scores on BEGIN and Faith-
1091
+ Dial benchmarks using utterance classification models trained
1092
+ on FADE
1093
+ scribed in §3.4. Using the existing benchmark and
1094
+ baseline models, we also perform a zero-shot in-
1095
+ ference on the human-verified data. From Table
1096
+ 8, it is clear that the models fine-tuned on existing
1097
+ benchmark data cannot understand fact hallucina-
1098
+ tion, especially when entities are misplaced. On the
1099
+ other hand, models trained on our datasets have F1
1100
+ scores over 90% and outperform the current base-
1101
+ line by 10.16% and 17.5% in the two tasks using
1102
+ a pre-trained model with fewer parameters. This
1103
+ suggests that identifying abrupt fact hallucination
1104
+ is more challenging than other types of halluci-
1105
+ nation(like presenting more data than expected),
1106
+ which are more commonly exhibited in the bench-
1107
+ mark datasets.
1108
+ Generalisability We make zero-shot inference
1109
+ on BEGIN and FaithDial datasets’ test splits. To
1110
+ make a fair comparison with the benchmark mod-
1111
+ els, we further fine-tune roberta-large model
1112
+ on our datasets. Table 9 shows that F1 scores ob-
1113
+ tained from our best models underperform the best
1114
+
1115
+ Figure 6: Positive and negative model predictions
1116
+ Figure 7: Generalisation capability of RoBERTa-large model
1117
+ fine-tuned using multiple splits of intrinsic-history-corrupt
1118
+ dataset
1119
+ performing baseline by 6% in BEGIN dataset and
1120
+ 10.17% in the FaithDial dataset. Even though the
1121
+ performance is low, we have to understand that
1122
+ the benchmark datasets contain hallucinations that
1123
+ are fundamentally very different from fact hallu-
1124
+ cinations. Also, we notice that models trained on
1125
+ intrinsic hallucination perform the best because the
1126
+ hallucinatory responses in the benchmark dataset
1127
+ do not deviate much from the evidence. To estimate
1128
+ how much training data is optimum for generalis-
1129
+ ability, we ran inference on benchmark datasets
1130
+ using models fine-tuned to 10% to 30% (with a
1131
+ step of 2.5%) data in train split. As shown in Fig-
1132
+ ure 7 approximately 25% is found to be optimum.
1133
+ Model Predictions We visualized the predic-
1134
+ tions on different datasets in Figure 6. Our models
1135
+ were able to easily identify the hallucinated entities
1136
+ as shown in Figure 6a here "The Departed" is a
1137
+ movie in which "Mark Wahlberg" has acted but is
1138
+ not related to the movie discussed in the context,
1139
+ i.e., "The Italian Job". Similarly, predictions made
1140
+ on the FaithDial dataset(Figure 6c) show that our
1141
+ models could produce accurate predictions when
1142
+ the response is generating something that is not
1143
+ expected, but the hallucination has similarities with
1144
+ the evidence. Our model sometimes fails to under-
1145
+ stand when the history is convoluted(Figure 6b)).
1146
+ 8
1147
+ Related Work
1148
+ Hallucination in Dialogue Systems Hallucination
1149
+ in knowledge-grounded dialogue generation sys-
1150
+ tem is an emerging area of research (Roller et al.,
1151
+ 2021; Mielke et al., 2020; Shuster et al., 2021;
1152
+ Rashkin et al., 2021b; Dziri et al., 2021a). Prior
1153
+ work addressed this issue by conditioning genera-
1154
+ tion on control tokens (Rashkin et al., 2021b), by
1155
+ training a token level hallucination critic to identify
1156
+ troublesome entities and rectify them (Dziri et al.,
1157
+ 2021a) or by augmenting a generative model with
1158
+ a knowledge retrieval mechanism (Shuster et al.,
1159
+ 2021). Though beneficial, these models are trained
1160
+ on noisy training data (Dziri et al., 2022b) which
1161
+ can amplify the hallucinations further. Closest to
1162
+ our work (Dziri et al., 2021a) has created a hallu-
1163
+ cination critic using extrinsic-intrinsic corruption
1164
+ strategies. In contrast, we create more fine-grained
1165
+ corruption strategies so that hallucinated data mim-
1166
+ ics the attributions of a neural chat module.
1167
+ Hallucination Evaluation Recently several
1168
+ benchmarks have been introduced, such as BE-
1169
+ GIN(Dziri et al., 2021b), DialFact(Gupta et al.,
1170
+ 2022), FaithDial(Dziri et al., 2022a) and At-
1171
+ tributable to Identified Sources (AIS) (Rashkin
1172
+ et al., 2021a) framework. Though these methods
1173
+ can serve as a decent benchmarking system, their
1174
+ performance in detecting entity-level hallucination
1175
+ is unknown. In this work, we further contribute to
1176
+ this problem by proposing an entity-level halluci-
1177
+ nation detector trained on data created by various
1178
+ fine-grained perturbation strategies.
1179
+ 9
1180
+ Conclusion
1181
+ In this work, we have analyzed the modes of entity-
1182
+ level fact hallucination, which is an open problem
1183
+ in KG-grounded dialogue systems. Through a hu-
1184
+ man feedback analysis, we demonstrate that these
1185
+ KG-grounded neural generators manifest more nu-
1186
+ anced hallucinations than straightforward studied
1187
+ approaches. We have proposed fine-grained per-
1188
+ turbation strategies to create a dataset that mimics
1189
+ the real-world observations and create a series of
1190
+ datasets collectively known as FADE. Our entity-
1191
+ level hallucination detection model can predict hal-
1192
+
1193
+ Knowledge Triples: ['Mike Zimmer', 'Sport coached', 'American
1194
+ football'j]
1195
+ Evidence: Dylan's Candy Bar is a chain of boutique candy
1196
+ History: ['Can you tell me some information about the Minnesota
1197
+ shops and candy supplier currently located in New York City
1198
+ Knowledge Triples: ['The Italian Job', 'starred_actors',
1199
+ 'Mark Wahlberg'J]
1200
+ Vikings?','TheMinnesota Vikingsarecoached byMikeZimmerand
1201
+ East Hampton, New York; Los Angeles, Chicago and Miami
1202
+ apart of theNational Football League.Not a bigfan though.,'Me
1203
+ Beach, as well as in wholesale venues around the globe.
1204
+ either . Which team do you like ?', 'My most favorite American
1205
+ History: ['Do you knows who stars in The Italian Job ?']
1206
+ Football team is the Seattle Seahawks , I meant I was not a big fan of
1207
+ History: ["I love candy, what's a good brand?"]
1208
+ the Mlnnesota Vikings . Do you like American Football ?'l
1209
+ Response: Certainly! it stars Seth Green and The
1210
+ Departed. are you familiar with either?
1211
+ Response:Ido like Mike Zimmer.i like the washington redskins
1212
+ Response: I don't know how good they are, but Dylan's
1213
+ vikings have our old qb , kurt cousins .
1214
+ Candy Bar has a chain of candy shops in various cities.
1215
+ Tagged Response(RoBERTa.)
1216
+ ): Certainly! it stars
1217
+ trinsic_sofi
1218
+ Seth Green and The Departed. Are you familiar with either?
1219
+ Tagged Response(RoBERTa.,
1220
+ ve): I do like Mike Zimmer . i
1221
+ ):Hallucination
1222
+ like the washington redskins . vikings' have our old qb , kurt cousins .
1223
+ a)Intrinsic-soft:Correct
1224
+ (c) FaithDial: CorrectFaithDial
1225
+ BEGIN
1226
+ 60
1227
+ score
1228
+ 40
1229
+ 20
1230
+ 0
1231
+ 10
1232
+ 15
1233
+ 20
1234
+ 25
1235
+ 30
1236
+ Training Data Size (%)lucinated entities with an F1 score of 75.59% and
1237
+ classify whether an utterance is hallucinated or not
1238
+ with an F1 score of 90.75%. Our models can gener-
1239
+ alize well when zero-shot predictions are made on
1240
+ benchmarks like BEGIN and FaithDial, indicating
1241
+ our perturbation strategies’ robustness. This work
1242
+ can be extended by devising more sophisticated per-
1243
+ turbation mechanisms, which can simulate other
1244
+ types of hallucinations.
1245
+ Limitations
1246
+ The major limitations of this work are as follows:
1247
+ • The token-level hallucination classifier and
1248
+ utterance-level hallucination classifier can
1249
+ have contradictory results; however, this hap-
1250
+ pens in a small percentage of data.
1251
+ • Models trained on extrinsic datasets do not
1252
+ generalize well on the benchmark datasets, as
1253
+ the benchmark dataset contains hallucination
1254
+ mostly related to the evidence provided.
1255
+ Acknowledgements
1256
+ We thank the anonymous reviewers for provid-
1257
+ ing valuable feedback on our manuscript. This
1258
+ work is partly supported by NSF grant number IIS-
1259
+ 2214070. The content in this paper is solely the
1260
+ responsibility of the authors and does not neces-
1261
+ sarily represent the official views of the funding
1262
+ entity.
1263
+ References
1264
+ Hannah Bast, Florian Bäurle, Björn Buchhold, and El-
1265
+ mar Haußmann. 2014. Easy access to the freebase
1266
+ dataset.
1267
+ In Proceedings of the 23rd International
1268
+ Conference on World Wide Web, WWW ’14 Com-
1269
+ panion, page 95–98, New York, NY, USA. Associa-
1270
+ tion for Computing Machinery.
1271
+ Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
1272
+ Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
1273
+ Neelakantan, Pranav Shyam, Girish Sastry, Amanda
1274
+ Askell,
1275
+ Sandhini Agarwal,
1276
+ Ariel Herbert-Voss,
1277
+ Gretchen Krueger, Tom Henighan, Rewon Child,
1278
+ Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
1279
+ Clemens Winter, Christopher Hesse, Mark Chen,
1280
+ Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
1281
+ Chess, Jack Clark, Christopher Berner, Sam Mc-
1282
+ Candlish, Alec Radford, Ilya Sutskever, and Dario
1283
+ Amodei. 2020. Language models are few-shot learn-
1284
+ ers.
1285
+ NOAA-CIRES Climate Diagnostics Center. 2005.
1286
+ Brier skill scores, rocs, and economic value dia-
1287
+ grams can report false skill.
1288
+ Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Os-
1289
+ mar Zaiane, Mo Yu, Edoardo M. Ponti, and Siva
1290
+ Reddy. 2022a. Faithdial: A faithful benchmark for
1291
+ information-seeking dialogue.
1292
+ Nouha Dziri, Andrea Madotto, Osmar Zaïane, and
1293
+ Avishek Joey Bose. 2021a. Neural path hunter: Re-
1294
+ ducing hallucination in dialogue systems via path
1295
+ grounding. In Proceedings of the 2021 Conference
1296
+ on Empirical Methods in Natural Language Process-
1297
+ ing, pages 2197–2214, Online and Punta Cana, Do-
1298
+ minican Republic. Association for Computational
1299
+ Linguistics.
1300
+ Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, and
1301
+ Siva Reddy. 2022b. On the origin of hallucinations
1302
+ in conversational models: Is it the datasets or the
1303
+ models?
1304
+ Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, and
1305
+ Siva Reddy. 2022c. On the origin of hallucinations
1306
+ in conversational models: Is it the datasets or the
1307
+ models?
1308
+ Nouha Dziri, Hannah Rashkin, Tal Linzen, and David
1309
+ Reitter. 2021b.
1310
+ Evaluating groundedness in dia-
1311
+ logue systems: The begin benchmark.
1312
+ Rogério P Espíndola and Nelson FF Ebecken. 2005.
1313
+ On extending f-measure and g-mean metrics to
1314
+ multi-class problems.
1315
+ WIT Transactions on Infor-
1316
+ mation and Communication Technologies, 35.
1317
+ Prakhar Gupta, Chien-Sheng Wu, Wenhao Liu, and
1318
+ Caiming Xiong. 2022. DialFact: A benchmark for
1319
+ fact-checking in dialogue.
1320
+ In Proceedings of the
1321
+ 60th Annual Meeting of the Association for Compu-
1322
+ tational Linguistics (Volume 1: Long Papers), pages
1323
+ 3785–3801, Dublin, Ireland. Association for Com-
1324
+ putational Linguistics.
1325
+ Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
1326
+ Ryan McDonald. 2020. On faithfulness and factu-
1327
+ ality in abstractive summarization. In Proceedings
1328
+ of the 58th Annual Meeting of the Association for
1329
+ Computational Linguistics, pages 1906–1919, On-
1330
+ line. Association for Computational Linguistics.
1331
+ Sabrina J. Mielke, Arthur Szlam, Y-Lan Boureau, and
1332
+ Emily Dinan. 2020. Linguistic calibration through
1333
+ metacognition: aligning dialogue agent responses
1334
+ with expected correctness.
1335
+ Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
1336
+ jen Subba. 2019. OpenDialKG: Explainable conver-
1337
+ sational reasoning with attention-based walks over
1338
+ knowledge graphs. In Proceedings of the 57th An-
1339
+ nual Meeting of the Association for Computational
1340
+ Linguistics, pages 845–854, Florence, Italy. Associ-
1341
+ ation for Computational Linguistics.
1342
+ Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
1343
+ Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
1344
+ Dipanjan Das. 2020. ToTTo: A controlled table-to-
1345
+ text generation dataset. In Proceedings of the 2020
1346
+
1347
+ Conference on Empirical Methods in Natural Lan-
1348
+ guage Processing (EMNLP), pages 1173–1186, On-
1349
+ line. Association for Computational Linguistics.
1350
+ Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
1351
+ Dario Amodei, Ilya Sutskever, et al. 2019.
1352
+ Lan-
1353
+ guage models are unsupervised multitask learners.
1354
+ OpenAI blog, 1(8):9.
1355
+ Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
1356
+ Michael Collins, Dipanjan Das, Slav Petrov, Gau-
1357
+ rav Singh Tomar, Iulia Turc, and David Reitter.
1358
+ 2021a.
1359
+ Measuring attribution in natural language
1360
+ generation models.
1361
+ Hannah Rashkin, David Reitter, Gaurav Singh Tomar,
1362
+ and Dipanjan Das. 2021b. Increasing faithfulness
1363
+ in knowledge-grounded dialogue with controllable
1364
+ features. In Proceedings of the 59th Annual Meet-
1365
+ ing of the Association for Computational Linguistics
1366
+ and the 11th International Joint Conference on Nat-
1367
+ ural Language Processing (Volume 1: Long Papers),
1368
+ pages 704–718, Online. Association for Computa-
1369
+ tional Linguistics.
1370
+ Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
1371
+ Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
1372
+ Eric Michael Smith, Y-Lan Boureau, and Jason We-
1373
+ ston. 2021.
1374
+ Recipes for building an open-domain
1375
+ chatbot. In Proceedings of the 16th Conference of
1376
+ the European Chapter of the Association for Compu-
1377
+ tational Linguistics: Main Volume, pages 300–325,
1378
+ Online. Association for Computational Linguistics.
1379
+ Abigail See and Christopher Manning. 2021. Under-
1380
+ standing and predicting user dissatisfaction in a neu-
1381
+ ral generative chatbot. In Proceedings of the 22nd
1382
+ Annual Meeting of the Special Interest Group on Dis-
1383
+ course and Dialogue, pages 1–12, Singapore and
1384
+ Online. Association for Computational Linguistics.
1385
+ Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
1386
+ and Jason Weston. 2021.
1387
+ Retrieval augmentation
1388
+ reduces hallucination in conversation. In Findings
1389
+ of the Association for Computational Linguistics:
1390
+ EMNLP 2021, pages 3784–3803, Punta Cana, Do-
1391
+ minican Republic. Association for Computational
1392
+ Linguistics.
1393
+ Eric Smith, Orion Hsu, Rebecca Qian, Stephen Roller,
1394
+ Y-Lan Boureau, and Jason Weston. 2022.
1395
+ Hu-
1396
+ man evaluation of conversations is an open prob-
1397
+ lem: comparing the sensitivity of various methods
1398
+ for evaluating dialogue agents. In Proceedings of
1399
+ the 4th Workshop on NLP for Conversational AI,
1400
+ pages 77–97, Dublin, Ireland. Association for Com-
1401
+ putational Linguistics.
1402
+ Yi-Lin Tuan, Yun-Nung Chen, and Hung-yi Lee.
1403
+ 2019. DyKgChat: Benchmarking dialogue genera-
1404
+ tion grounding on dynamic knowledge graphs. In
1405
+ Proceedings of the 2019 Conference on Empirical
1406
+ Methods in Natural Language Processing and the
1407
+ 9th International Joint Conference on Natural Lan-
1408
+ guage Processing (EMNLP-IJCNLP), pages 1855–
1409
+ 1865, Hong Kong, China. Association for Computa-
1410
+ tional Linguistics.
1411
+ Sam Wiseman, Stuart Shieber, and Alexander Rush.
1412
+ 2017.
1413
+ Challenges in data-to-document generation.
1414
+ In Proceedings of the 2017 Conference on Empiri-
1415
+ cal Methods in Natural Language Processing, pages
1416
+ 2253–2263, Copenhagen, Denmark. Association for
1417
+ Computational Linguistics.
1418
+ Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
1419
+ Chaumond, Clement Delangue, Anthony Moi, Pier-
1420
+ ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
1421
+ icz, Joe Davison, Sam Shleifer, Patrick von Platen,
1422
+ Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
1423
+ Teven Le Scao, Sylvain Gugger, Mariama Drame,
1424
+ Quentin Lhoest, and Alexander Rush. 2020. Trans-
1425
+ formers: State-of-the-art natural language process-
1426
+ ing. In Proceedings of the 2020 Conference on Em-
1427
+ pirical Methods in Natural Language Processing:
1428
+ System Demonstrations, pages 38–45, Online. Asso-
1429
+ ciation for Computational Linguistics.
1430
+ A
1431
+ Definition Details
1432
+ Figure 8: Extrinsic Hallucination
1433
+ (a) (Extrinsic-Soft). An extrinsic-soft hallucina-
1434
+ tion corresponds to an utterance that brings a new
1435
+ span of text which is similar to the expected span
1436
+ but does not correspond to a valid triple in Gk
1437
+ c .
1438
+ A hallucination is considered extrinsic when
1439
+ knowledge is injected which is not authentically
1440
+ captured by Gk
1441
+ c . However, the injected knowledge
1442
+
1443
+ HISTORY
1444
+ A: Could you recommend movies similar to
1445
+ the The Dark Knight ?
1446
+ B: The sequel to Batman Begins is The Dark
1447
+ Knight.
1448
+ A: Okay . Who is the director of The Dark
1449
+ Knight and any other movies from him not
1450
+ related to Batman ?
1451
+ GOLD TRIPLE(S)
1452
+ ['The Dark Knight', 'directed_by', 'Christopher
1453
+ Nolan'
1454
+ ['Christopher Nolan', 'is-a', 'Film director']
1455
+ GOLDENRESPONSE
1456
+ A:Christopher Nolanwas the director.He
1457
+ also directed Insomnia and Inception .
1458
+ CORRUPTEDRESPONSE(Soft)
1459
+ A:Steven Spielbergwas the director .He also
1460
+ directed insomnia and inception.
1461
+ CORRUPTED RESPONSE(Hard)
1462
+ A:Joe Bidenwas the director .He also
1463
+ directed insomniaand inception.
1464
+ CORRUPTEDRESPONSE(Grouped)
1465
+ A:Warner Bros.was the director . He also
1466
+ directed insomnia and inception .Group
1467
+ Definition
1468
+ Groups
1469
+ 1
1470
+ A person, organization, political party, or part
1471
+ of a religious group can be related to each other.
1472
+ "PERSON", "ORG", "NORP
1473
+ 2
1474
+ Location, building, airports, infrastructure
1475
+ elements, countries, cities, and states can be interrelated
1476
+ "LOC", "GPE", "FAC"
1477
+ 3
1478
+ A product, work of art, or law can be interrelated.
1479
+ "PRODUCT", "WORK_OF_ART", "LAW"
1480
+ Table 10: Defined groups for extrinsic-grouped hallucination
1481
+ is similar to the expected entity. Identifying this
1482
+ type of hallucination can be challenging due to
1483
+ the high similarity between the injected and gold
1484
+ knowledge. For example, in Figure 8 the dialogue
1485
+ sample contains an extrinsic-soft hallucination as
1486
+ the entity in response – "Steven Spielberg" is simi-
1487
+ lar to "Christopher Nolan", and it is not supported
1488
+ within 1-hop sub-graph.
1489
+ (b) (Extrinsic-Hard). An extrinsic-hard hallucina-
1490
+ tion corresponds to an utterance that brings a new
1491
+ span of text which is different from the expected
1492
+ span and does not correspond to a valid triple in
1493
+ Gk
1494
+ c .
1495
+ An extrinsic-hard hallucination occurs when in-
1496
+ jected knowledge is dissimilar to the expected en-
1497
+ tity and is not supported within the 1-hop sub-graph.
1498
+ It is easier to detect extrinsic-hard than extrinsic-
1499
+ soft as the entities are fundamentally different from
1500
+ the entities present in the 1-hop sub-graph. How-
1501
+ ever, the entity type is retained, like an entity with a
1502
+ type "person" will be replaced by the same type of
1503
+ entity. Figure 8 shows an example of extrinsic-hard
1504
+ hallucination, where the golden entity "Christopher
1505
+ Nolan" is replaced by a different category of entity,
1506
+ "Joe Biden", but the type of entity is retained.
1507
+ (c) (Extrinsic-Grouped). An extrinsic-grouped hal-
1508
+ lucination corresponds to an utterance that brings
1509
+ a new span of text which is different from the ex-
1510
+ pected span but is of a specific predefined type and
1511
+ does not correspond to a valid triple in Gk
1512
+ c .
1513
+ Like an extrinsic-hard hallucination, extrinsic-
1514
+ grouped hallucination introduces an entity that is
1515
+ functionally different from the original entity and
1516
+ not supported by the 1-hop sub-graph. The only
1517
+ difference is that the corrupted entity is not of the
1518
+ same type; instead, it is replaced by an entity of
1519
+ a similar type, defined in Table 10. For example,
1520
+ Figure 8 shows "Christopher Nolan" which is of
1521
+ type "person" is replaced by "Warner Bros." of
1522
+ type "organization". Here, the types "person" and
1523
+ "organization" are placed in the same group.
1524
+ (d) (Intrinsic-Soft). An intrinsic-soft hallucination
1525
+ corresponds to an utterance that misuses any triple
1526
+ Figure 9: Intrinsic Hallucination
1527
+ in Gk
1528
+ c such that there is no direct path between the
1529
+ entities, but they are similar to each other.
1530
+ Intrinsic hallucinations occur when the KG
1531
+ triples are misused, especially in intrinsic-soft hal-
1532
+ lucination an entity is selected from Gk
1533
+ c which is
1534
+ very similar or closely related to the original entity.
1535
+ For example, in Figure 9, "Christopher Nolan" is
1536
+ replaced with "The Dark Knight Rises" which is
1537
+ retrieved from the 1-hop sub-graph and has close re-
1538
+ lation with the original entity "Christopher Nolan".
1539
+ (e) (Intrinsic-Hard). An intrinsic-hard hallucina-
1540
+ tion corresponds to an utterance that misuses any
1541
+ triple in Gk
1542
+ c such that there is no direct path be-
1543
+ tween the entities, and they are not related in any
1544
+ form.
1545
+ Similar to intrinsic-soft hallucination, it also mis-
1546
+ uses the information in KG triples. However, the
1547
+ similarity of the corrupted entity with the original
1548
+ entity is relatively tiny. For example, in Figure
1549
+ 9, "Christopher Nolan" is replaced with "United
1550
+ States of America". Although the corrupted en-
1551
+ tity is drawn from Gk
1552
+ c , it is very different from the
1553
+ original entity.
1554
+ (f) (Intrinsic-Repetitive). An intrinsic-repetitive
1555
+ hallucination corresponds to an utterance that ei-
1556
+ ther misuse [SBJ] or [OBJ] in Gk
1557
+ c such that there
1558
+ is no direct path between the entities but the entity
1559
+
1560
+ HISTORY
1561
+ A: Could you recommend movies similar to
1562
+ the The Dark Knight ?
1563
+ B:The sequel toBatman Beginsis The Dark
1564
+ Knight .
1565
+ A: Okay . Who is the director of The Dark
1566
+ Knight and any other movies from him not
1567
+ related to Batman ?
1568
+ GOLD TRIPLE(S)
1569
+ ['The Dark Knight', 'directed_by','Christophel
1570
+ Nolan']
1571
+ ['Christopher Nolan', "is-a','Film director'
1572
+ GOLDEN RESPONSE
1573
+ A: Christopher Nolan was the director . He
1574
+ also directed Insomnia and Inception .
1575
+ CORRUPTEDRESPONSE(Soft)
1576
+ A: The Dark Knight Riseswas the director
1577
+ He also directed insomnia and inception .
1578
+ CORRUPTED RESPONSE(Hard)
1579
+ A: United States of America was the director .
1580
+ He also directed insomnia and inception .
1581
+ CORRUPTEDRESPONSE(Repetitive)
1582
+ A:Batman Beginswas the director . He also
1583
+ directed insomnia and inception .has previously occurred in conversational history..
1584
+ An entity from the conversational history is of-
1585
+ ten repeated in the current utterances, which corre-
1586
+ sponds to intrinsic-repetitive hallucination. Here,
1587
+ an entity from the history which also occurs in Gk
1588
+ c
1589
+ and of high relatedness, is swapped with the origi-
1590
+ nal entity. Figure 9 shows "Batman Begins" which
1591
+ is supported by Gk
1592
+ c is replaced with "Christopher
1593
+ Nolan".
1594
+ Figure 10: History Corrupted Hallucination
1595
+ (g) (History Corrupted- Intrinsic/ Extrinsic). A
1596
+ history corrupted(intrinsic/extrinsic) hallucination
1597
+ corresponds to an utterance subjected to intrin-
1598
+ sic or extrinsic hallucination influenced by halluci-
1599
+ nated entities in conversational history.
1600
+ Sometimes conversational agents are driven into
1601
+ a perplexed state, and we can witness hallucina-
1602
+ tions in most turns. So, this hallucinated history
1603
+ can trigger hallucination in the current utterance.
1604
+ This phenomenon can be seen both in extrinsic and
1605
+ intrinsic forms of hallucination. Figure 10 depicts
1606
+ extrinsic/intrinsic hallucination occurring in his-
1607
+ tory – "The Dark Knight" is changed to "The Dark
1608
+ Knight Rises" for intrinsic hallucination; similarly,
1609
+ "The Dark Knight" is changed to "Spider-Man"
1610
+ for extrinsic hallucination. Hallucinations in the
1611
+ current utterance happen as described in previous
1612
+ sections.
1613
+ B
1614
+ AMT Instructions
1615
+ We present the screenshot of the annotation inter-
1616
+ face in Figure 12, 12 and 13. Workers were paid an
1617
+ average of $7-8 per hour across all tasks. We agree
1618
+ that this annotation process has a high learning
1619
+ curve. Even workers with high approval rates made
1620
+ errors in the initial rounds of annotation. A grad-
1621
+ uate computer science student manually verified
1622
+ randomly selected samples and provided feedback
1623
+ to the workers. Feedback was given to the workers,
1624
+ especially when they selected the same answers
1625
+ for ten consecutive HITS. After sending feedback
1626
+ three times, all spammed HITS were discarded.
1627
+ C
1628
+ OpenDialKG
1629
+ We use OpenDialKG (Moon et al., 2019), a
1630
+ crowded-sourced English dialogue dataset where
1631
+ two workers are paired together to chat about a par-
1632
+ ticular topic. The first speaker is requested to start
1633
+ the conversation about a given entity. The second
1634
+ speaker is assigned to write an accurate response
1635
+ based on facts extracted from an existing KG, Free-
1636
+ base (Bast et al., 2014). The facts represent paths
1637
+ from the KG that are either 1-hop or 2-hop from the
1638
+ initial entity. Once the second speaker responds,
1639
+ the first speaker continues discussing the topic en-
1640
+ gagingly, and new multi-hop facts from the KG are
1641
+ shown to the second speaker. The dialogue can
1642
+ be considered as traversing multiple paths in the
1643
+ KG. However, not all utterances within the same
1644
+ conversation are grounded on facts from the KG.
1645
+ The second speaker can decide not to select a path
1646
+ from the KG to form an answer and instead forms
1647
+ a "chit-chat" response. Overall, the dataset consists
1648
+ of four domains: movie, music, sport, and book,
1649
+ where each second speaker’s utterance is annotated
1650
+ with paths from the KG. The KG corresponds to an
1651
+ extensive subgraph extracted from Freebase with
1652
+ ∼ 1.2M triples (subject, predicate, object), ∼ 101k
1653
+ distinct entities, and 1357 distinct relations. We use
1654
+ 77,430 data points in the dataset for constructing
1655
+ FADE.
1656
+ D
1657
+ Perturbation Hyper-parameters
1658
+ D.1
1659
+ Search Index Details
1660
+ We use Solr in case of extrinsic hallucination.
1661
+ We use the BM25 index, defined by the class
1662
+ solr.BM25SimilarityFactory. We man-
1663
+ ually labeled 50 data points(for the entity type
1664
+ PERSON) for tuning the indexes through grid
1665
+
1666
+ HISTORY (CORRUPTED)
1667
+ A:Couldyou recommendmovies similarto
1668
+ the The Dark Knight ?
1669
+ B: The sequel to [The Dark Knight →The Dark
1670
+ Knight Rises(Int.)] [The Dark Knight →
1671
+ Spider-Man(Ext.)] is Batman Begins .
1672
+ A: Okay . Who is the director of The Dark
1673
+ Knight and any other movies from him not
1674
+ related to Batman ?
1675
+ GOLD TRIPLE(S)
1676
+ ['The Dark Knight','directed_by','Christopher
1677
+ Nolan']
1678
+ ['Christopher Nolan', "is-a', 'Film director']
1679
+ GOLDENRESPONSE
1680
+ A:Christopher Nolanwas the director.He
1681
+ also directed Insomnia and Inception
1682
+ CORRUPTED RESPONSE(Intrinsic)
1683
+ A:United States of Americawas the director.
1684
+ He also directed insomnia and inception .
1685
+ CORRUPTED RESPONSE(Extrinsic)
1686
+ A:Joe Bidenwasthedirector.He also
1687
+ directed insomnia and inception .Figure 11: Annotation interface for human feedback analysis(Instructions, part 1)
1688
+ Figure 12: Annotation interface for human feedback analysis(Instructions, part 2)
1689
+
1690
+ Please state if the response contains irrelevant phrase(s) or not. If yes,
1691
+ then, please select its type and note down the phrase
1692
+ We have provided you with some knowledge paths and conversational history. In the given response,
1693
+ phrase. Examples of each type of error are provided below:
1694
+ Conversation history:
1695
+ Speaker A: Could you recommend movies similar to The Dark Knight?
1696
+ Speaker B: The sequel to Batman Begins is The Dark Knight.
1697
+ Speaker A: Okay . Who is the director of The Dark Knight and any other movies from him not related to Batman?
1698
+ Knowledge paths:
1699
+ Path 1: ['The Dark Knight', 'directed_by', 'Christopher Nolan']
1700
+ Path 2: ['Christopher Nolan', 'is-a', 'Film director']
1701
+ Golden Response(this is for reference, it does not appear in the real data):
1702
+ Speaker B: Christopher Nolan was the director. He also directed Insomnia and Inception.
1703
+ Extrinsic Hallucinations:
1704
+ Extrinsic soft: When an irrelevant phrase is introduced which is similar to the expected phrase but the
1705
+ phrase does not appear in the knowledge paths. For example,
1706
+ Speaker B: Steven Spielberg was the director. He also directed Insomnia and Inception
1707
+ Extrinsic hard: When an irrelevant phrase is introduced which is not similar to the expected phrase and the
1708
+ phrase does not appear in the knowledge paths. For example,
1709
+ Speaker B: Joe Biden was the director. He also directed Insomnia and Inception.
1710
+ Extrinsic grouped: When an irrelevant phrase is introduced which is related to the expected phrase but the
1711
+ phrasedoesnotappearintheknowledgepaths.Forexample,
1712
+ SpeakerB:WarnerBros_wasthedirector.HealsodirectedInsomniaandInception
1713
+ Valid relations:
1714
+ ·
1715
+ Aperson,organization,political party,or part of a religiousgroup can be related to each other
1716
+ Location, building, airports, infrastructure elements, countries, cities, and states can be interrelated.
1717
+ Aproduct,workofart,orlaw canbeinterrelated.Intrinsic Hallucinations:
1718
+ Intrinsic soft: When an irrelevant phrase is introduced which is similar to the expected phrase and the
1719
+ Speaker B: The Dark Knight was the director. He also directed Insomnia and Inception.
1720
+ Intrinsic hard: When an irrelevant phrase is introduced which is not similar to the expected phrase and the
1721
+ phrase does appear/ or is related to the knowledge paths. For example,
1722
+ Speaker B: United States of America was the director. He also directed Insomnia and Inception.
1723
+ (Christopher Nolan is a citizen of the United States of America)
1724
+ Intrinsic repetitive: When an irrelevant phrase is introduced which is related to the expected phrase,
1725
+ appears in conversational history, and the phrase does appear/ or is related to the knowledge paths. For
1726
+ example,
1727
+ SpeakerB:BatmanBegins_wasthedirector.Healsodirected InsomniaandInception
1728
+ History Corrupted Hallucinations:
1729
+ Corrupted Conversation history:
1730
+ Speaker A: Could you recommend movies similar to The Dark Knight?
1731
+ Speaker B: The sequel to The Dark Knight Rises is Spider-Man.
1732
+ Speaker A: Okay . Who is the director of The Dark Knight and any other movies from him not related to Batman?
1733
+ Now consider this conversation history, if you look closely, the second turn is corrupted with irrelevant
1734
+ entities.
1735
+ History corrupt intrinsic: When an irrelevant phrase is introduced which is of any type of intrinsic
1736
+ hallucination AND the conversation history is corrupted. For example,
1737
+ Speaker B: The Dark Knight was the director. He also directed Insomnia and Inception.
1738
+ History corrupt extrinsic: When an irrelevant phrase is introduced which is of any type of intrinsic
1739
+ hallucination AND the conversation history is corrupted. For example,
1740
+ SpeakerB:WarnerBroswasthedirector.He also directed Insomnia and Inception.Figure 13: Annotation interface for human feedback analysis(example annotation, workers were ask to find up to 3 spans if
1741
+ hallucinations are found in the data)
1742
+ search. Grid-search conditions were as follows:
1743
+ b was varied from 0.3 to 0.9 with a step of
1744
+ 0.1 and k1 was varied from 0.8 to 2.0 with a
1745
+ step of 0.2. Following grid search, an optimum
1746
+ MAP score of 0.789 was found, with b = 0.9
1747
+ and k1= 1.6. For the dynamic indexes that were
1748
+ created in the case of intrinsic hallucination, we
1749
+ use the python library https://github.com/
1750
+ dorianbrown/rank_bm25 with default con-
1751
+ figurations.
1752
+ D.2
1753
+ Free parameter & β optimization
1754
+ We use a free term weight parameter(ε) in in-
1755
+ trinsic hallucination to represent the queries and
1756
+ nodes. Similar to extrinsic hallucination we man-
1757
+ ually annotated 50 data-points and ran grid search
1758
+ for ε ∈ {10−i, 2 × 10−i; i ∈ {1, 5}}, and found
1759
+ ε = 2×10−4 to be the optimum value. We used the
1760
+ same technique for optimizing β, and the search
1761
+ space ranged from 0.1 to 0.7 with a step of 0.05.
1762
+ D.3
1763
+ KG embeddings
1764
+ We follow the same approach (Dziri et al., 2021a)
1765
+ for generating the KG embeddings. OpenDialKG
1766
+ Dataset Type
1767
+ Ext-Soft(%)
1768
+ Ext-Hard(%)
1769
+ Ext-Grp(%)
1770
+ Int-Soft(%)
1771
+ Int-Hard(%)
1772
+ Int-Rep(%)
1773
+ HC-Ext(%)
1774
+ HC-Int(%)
1775
+ N-Halluc(%)
1776
+ Observed
1777
+ 12.495
1778
+ 6.4425
1779
+ 1.04
1780
+ 0.92
1781
+ 1.025
1782
+ 1.7
1783
+ 2.4575
1784
+ 1.4575
1785
+ 72.4625
1786
+ Balanced
1787
+ 6.25
1788
+ 6.25
1789
+ 6.25
1790
+ 6.25
1791
+ 6.25
1792
+ 6.25
1793
+ 6.25
1794
+ 6.25
1795
+ 50
1796
+ Extrinsic+
1797
+ 12.5
1798
+ 9.375
1799
+ 9.375
1800
+ 6.25
1801
+ 6.25
1802
+ 6.25
1803
+ 6.25
1804
+ 6.25
1805
+ 37.5
1806
+ Intrinsic+
1807
+ 6.25
1808
+ 6.25
1809
+ 6.25
1810
+ 9.375
1811
+ 9.375
1812
+ 9.375
1813
+ 6.25
1814
+ 6.25
1815
+ 40.625
1816
+ Table 11: Mixing ratios for different datasets
1817
+ triples are also represented using a textual term
1818
+ called "render". For the triples containing this term,
1819
+ we pass it through to GPT2 and then extract hidden
1820
+ state representations for each entity’s word piece
1821
+ and finally obtain a final representation by applying
1822
+ a MaxPool over the hidden representations. For
1823
+ entity mentions not described in “render”, we get
1824
+ their representations directly from the last hidden
1825
+ states in GPT2.
1826
+ D.4
1827
+ Mixing Ratios
1828
+ Mixing ratios for creating the mixed datasets are
1829
+ defined in Table 11. Perturbed and non-perturbed
1830
+ samples are drawn randomly from component
1831
+ datasets.
1832
+ E
1833
+ Implementation Details
1834
+ The utterance and token level classifier are imple-
1835
+ mented using the Pytorch Huggingface Transform-
1836
+ ers library (Wolf et al., 2020). The following con-
1837
+
1838
+ Now complete the following task:
1839
+ Knowledge paths:
1840
+ Path 1: ['Gautam Gambhir', 'is-a', 'Athlete']
1841
+ Path 2: ['Athlete', '~is-a', 'Venus Williams']]
1842
+ Conversation history:
1843
+ Speaker A: What do you think about Gautam Gambhir Indian cricketer ?
1844
+ Response:
1845
+ Speaker B: to be honest, I don't really know anything about him. I'm more of a tennis fan . one of my favorite players is Gautam
1846
+ Gambhir
1847
+ Does the response contain irrelevant phrase(s)?
1848
+ O Yes
1849
+ O No
1850
+ If yes, then write down the irrelevant phrases(s) and select their type(up to 3):
1851
+ irrelavant phrase(s)
1852
+ Type:
1853
+ O extrinsic_soft
1854
+ Oextrinsic_hard
1855
+ Oextrinsic_grouped
1856
+ O intrinsic_soft
1857
+ O intrinsic_hard
1858
+ Oextrinsic_history_corrupt
1859
+ O intrinsic_history_corrupt
1860
+ irrelavant phrase(s)
1861
+ Type:
1862
+ O extrinsic_soft
1863
+ O extrinsic_hard
1864
+ Oextrinsic_grouped
1865
+ O intrinsic_soft
1866
+ O intrinsic_hard
1867
+ Oextrinsic_history_corrupt
1868
+ O intrinsic_history_corrupt
1869
+ irrelavant phrase(s)
1870
+ Type:
1871
+ O extrinsic_soft
1872
+ O extrinsic_hard
1873
+ O extrinsic_grouped
1874
+ O intrinsic_soft
1875
+ O intrinsic_hard
1876
+ Oextrinsic_history_corrupt
1877
+ O intrinsic_history_corrupt
1878
+ SubmitHyperparameter
1879
+ Value
1880
+ train_batch_size
1881
+ 12
1882
+ gradient_accumulation_steps
1883
+ 2
1884
+ num_train_epochs
1885
+ 4(Token)/10(Utt)
1886
+ weight_decay
1887
+ 0.01
1888
+ warmup_proportion
1889
+ 0.1
1890
+ learning_rate
1891
+ 1e-5
1892
+ adam_epsilon
1893
+ 1e-8
1894
+ max_grad_norm
1895
+ 1
1896
+ eval_batch_size
1897
+ 18
1898
+ Table 12: RoBERTa-base hyper parameters
1899
+ Hyperparameter
1900
+ Value
1901
+ train_batch_size
1902
+ 12
1903
+ gradient_accumulation_steps
1904
+ 2
1905
+ num_train_epochs
1906
+ 4(Token)/10(Utt)
1907
+ weight_decay
1908
+ 0.01
1909
+ warmup_proportion
1910
+ 0.1
1911
+ learning_rate
1912
+ 2e-5
1913
+ adam_epsilon
1914
+ 1.5e-8
1915
+ max_grad_norm
1916
+ 1
1917
+ eval_batch_size
1918
+ 18
1919
+ Table 13: RoBERTa-large hyper parameters
1920
+ figuration were found to be best performing for
1921
+ each models, as shown in Table 12, 13, 14 and
1922
+ 15. The models were trained in a single NVIDIA
1923
+ A5000 GPU, the average running time for the base
1924
+ models were 2.5 hours, and for the large model was
1925
+ ∼ 5 hours.
1926
+ F
1927
+ Supplementary results
1928
+ We report metrics for all the models trained using
1929
+ 25% of the dataset, for component datasets in Table
1930
+ 16 and mixed datasets in Table 17.
1931
+ Hyperparameter
1932
+ Value
1933
+ train_batch_size
1934
+ 12
1935
+ gradient_accumulation_steps
1936
+ 2
1937
+ num_train_epochs
1938
+ 4(Token)/10(Utt)
1939
+ weight_decay
1940
+ 0.01
1941
+ warmup_proportion
1942
+ 0.1
1943
+ learning_rate
1944
+ 5e-5
1945
+ adam_epsilon
1946
+ 1e-8
1947
+ max_grad_norm
1948
+ 1
1949
+ eval_batch_size
1950
+ 18
1951
+ Table 14: BERT-base-uncased hyper parameters
1952
+ Hyperparameter
1953
+ Value
1954
+ train_batch_size
1955
+ 12
1956
+ gradient_accumulation_steps
1957
+ 2
1958
+ num_train_epochs
1959
+ 4(Token)/10(Utt)
1960
+ weight_decay
1961
+ 0.01
1962
+ warmup_proportion
1963
+ 0.1
1964
+ learning_rate
1965
+ 5e-5
1966
+ adam_epsilon
1967
+ 1e-8
1968
+ max_grad_norm
1969
+ 1
1970
+ eval_batch_size
1971
+ 18
1972
+ Table 15: XLNet-base hyper parameters
1973
+
1974
+ Dataset
1975
+ Best Model
1976
+ Token Level
1977
+ Utterance Level
1978
+ F1
1979
+ P
1980
+ R
1981
+ F1
1982
+ P
1983
+ R
1984
+ G-Mean
1985
+ BSS
1986
+ AUC
1987
+ extrinsic_hard
1988
+ roberta-base
1989
+ 0.70613382
1990
+ 0.68956357
1991
+ 0.72352004
1992
+ 0.86181139
1993
+ 0.83985441
1994
+ 0.88494727
1995
+ 0.93029609
1996
+ 0.03277357
1997
+ 0.93145803
1998
+ extrinsic_grouped
1999
+ roberta-base
2000
+ 0.7986706
2001
+ 0.77534593
2002
+ 0.82344214
2003
+ 0.90499405
2004
+ 0.89090483
2005
+ 0.91953606
2006
+ 0.93487266
2007
+ 0.0589842
2008
+ 0.93500056
2009
+ intrinsic_hard
2010
+ roberta-base
2011
+ 0.84409519
2012
+ 0.84717262
2013
+ 0.84104004
2014
+ 0.90789771
2015
+ 0.92741563
2016
+ 0.8891844
2017
+ 0.93192336
2018
+ 0.04522725
2019
+ 0.9329505
2020
+ intrinsic_soft
2021
+ roberta-base
2022
+ 0.78797921
2023
+ 0.80193163
2024
+ 0.774504
2025
+ 0.87102229
2026
+ 0.90540109
2027
+ 0.83915877
2028
+ 0.90255779
2029
+ 0.06217348
2030
+ 0.90495271
2031
+ intrinsic_repetitive
2032
+ roberta-base
2033
+ 0.82702178
2034
+ 0.82759578
2035
+ 0.82644857
2036
+ 0.88005638
2037
+ 0.89506881
2038
+ 0.86553923
2039
+ 0.92305012
2040
+ 0.03146957
2041
+ 0.92496078
2042
+ intrinsic_history_corrupt
2043
+ roberta-base
2044
+ 0.83406626
2045
+ 0.82763636
2046
+ 0.84059684
2047
+ 0.90857229
2048
+ 0.92340555
2049
+ 0.89420804
2050
+ 0.93381877
2051
+ 0.04511612
2052
+ 0.93469609
2053
+ extrinsic_history_corrupt
2054
+ roberta-base
2055
+ 0.72010547
2056
+ 0.71212516
2057
+ 0.72826667
2058
+ 0.87400219
2059
+ 0.85486834
2060
+ 0.89401217
2061
+ 0.93612638
2062
+ 0.02971357
2063
+ 0.93711831
2064
+ extrinsic_soft
2065
+ roberta-base
2066
+ 0.60045426
2067
+ 0.60811376
2068
+ 0.59298532
2069
+ 0.72017689
2070
+ 0.74873563
2071
+ 0.69371672
2072
+ 0.81231271
2073
+ 0.09344656
2074
+ 0.82245014
2075
+ extrinsic_hard
2076
+ bert-base-uncased
2077
+ 0.71146832
2078
+ 0.72259569
2079
+ 0.70067846
2080
+ 0.88285121
2081
+ 0.88299233
2082
+ 0.88271013
2083
+ 0.93232489
2084
+ 0.02705296
2085
+ 0.93371925
2086
+ extrinsic_grouped
2087
+ bert-base-uncased
2088
+ 0.80688364
2089
+ 0.8056026
2090
+ 0.80816875
2091
+ 0.91302235
2092
+ 0.9180408
2093
+ 0.90805848
2094
+ 0.93577473
2095
+ 0.05285693
2096
+ 0.93619772
2097
+ intrinsic_hard
2098
+ bert-base-uncased
2099
+ 0.83328471
2100
+ 0.82308025
2101
+ 0.84374538
2102
+ 0.91416629
2103
+ 0.92395896
2104
+ 0.90457903
2105
+ 0.93917074
2106
+ 0.04259417
2107
+ 0.93983215
2108
+ intrinsic_soft
2109
+ bert-base-uncased
2110
+ 0.75277325
2111
+ 0.79087205
2112
+ 0.71817644
2113
+ 0.85483616
2114
+ 0.91836735
2115
+ 0.79952621
2116
+ 0.88349437
2117
+ 0.06794858
2118
+ 0.88790364
2119
+ intrinsic_repetitive
2120
+ bert-base-uncased
2121
+ 0.7481198
2122
+ 0.71392596
2123
+ 0.78575388
2124
+ 0.84134941
2125
+ 0.82295256
2126
+ 0.86058758
2127
+ 0.91436157
2128
+ 0.04330141
2129
+ 0.9160416
2130
+ intrinsic_history_corrupt
2131
+ bert-base-uncased
2132
+ 0.82318199
2133
+ 0.8229997
2134
+ 0.82336435
2135
+ 0.90891209
2136
+ 0.9316067
2137
+ 0.8872969
2138
+ 0.93164021
2139
+ 0.04459424
2140
+ 0.93274826
2141
+ extrinsic_history_corrupt
2142
+ bert-base-uncased
2143
+ 0.67029785
2144
+ 0.69294369
2145
+ 0.64908533
2146
+ 0.87358552
2147
+ 0.88214169
2148
+ 0.86519372
2149
+ 0.92312672
2150
+ 0.02886461
2151
+ 0.9250663
2152
+ extrinsic_soft
2153
+ bert-base-uncased
2154
+ 0.64089366
2155
+ 0.6922167
2156
+ 0.59665579
2157
+ 0.7480315
2158
+ 0.81958894
2159
+ 0.68796592
2160
+ 0.81616138
2161
+ 0.08033967
2162
+ 0.82810534
2163
+ extrinsic_hard
2164
+ xlnet-base-cased
2165
+ 0.72115512
2166
+ 0.71982018
2167
+ 0.72249502
2168
+ 0.8736255
2169
+ 0.8712651
2170
+ 0.87599872
2171
+ 0.92800607
2172
+ 0.02926739
2173
+ 0.92954989
2174
+ extrinsic_grouped
2175
+ xlnet-base-cased
2176
+ 0.78452923
2177
+ 0.77288925
2178
+ 0.79652518
2179
+ 0.89920345
2180
+ 0.8915677
2181
+ 0.90697112
2182
+ 0.92895654
2183
+ 0.06212166
2184
+ 0.92922301
2185
+ intrinsic_hard
2186
+ xlnet-base-cased
2187
+ 0.84443122
2188
+ 0.85082459
2189
+ 0.83813322
2190
+ 0.90878914
2191
+ 0.92875867
2192
+ 0.88966027
2193
+ 0.93238499
2194
+ 0.04477944
2195
+ 0.93341088
2196
+ intrinsic_soft
2197
+ xlnet-base-cased
2198
+ 0.76722735
2199
+ 0.80484632
2200
+ 0.73296801
2201
+ 0.85379657
2202
+ 0.90941058
2203
+ 0.80459259
2204
+ 0.88491991
2205
+ 0.06892207
2206
+ 0.88892969
2207
+ intrinsic_repetitive
2208
+ xlnet-base-cased
2209
+ 0.7941989
2210
+ 0.79135701
2211
+ 0.79706127
2212
+ 0.86978508
2213
+ 0.88154897
2214
+ 0.85833102
2215
+ 0.91820183
2216
+ 0.03428001
2217
+ 0.9202899
2218
+ intrinsic_history_corrupt
2219
+ xlnet-base-cased
2220
+ 0.83667247
2221
+ 0.82269807
2222
+ 0.85112982
2223
+ 0.91298209
2224
+ 0.91864812
2225
+ 0.90738552
2226
+ 0.9396723
2227
+ 0.04337198
2228
+ 0.94024672
2229
+ extrinsic_history_corrupt
2230
+ xlnet-base-cased
2231
+ 0.72378159
2232
+ 0.72354039
2233
+ 0.72402294
2234
+ 0.88100942
2235
+ 0.87862377
2236
+ 0.88340807
2237
+ 0.93239789
2238
+ 0.02749991
2239
+ 0.93375627
2240
+ extrinsic_soft
2241
+ xlnet-base-cased
2242
+ 0.60896216
2243
+ 0.63207547
2244
+ 0.58747961
2245
+ 0.73844753
2246
+ 0.79296016
2247
+ 0.69094782
2248
+ 0.81535862
2249
+ 0.08484401
2250
+ 0.82655921
2251
+ Table 16: All models benchmark (numbers in fractions) for component datasets, models trained on 25% of the total dataset.
2252
+ Dataset
2253
+ Best Model
2254
+ Token Level
2255
+ Utterance Level
2256
+ F1
2257
+ P
2258
+ R
2259
+ F1
2260
+ P
2261
+ R
2262
+ G-Mean
2263
+ BSS
2264
+ AUC
2265
+ balanced
2266
+ roberta-base
2267
+ 0.73405875
2268
+ 0.68751809
2269
+ 0.78735795
2270
+ 0.882424
2271
+ 0.83853553
2272
+ 0.93116042
2273
+ 0.86213807
2274
+ 0.131385
2275
+ 0.86469621
2276
+ observed
2277
+ roberta-base
2278
+ 0.62554537
2279
+ 0.59004757
2280
+ 0.66558773
2281
+ 0.77904114
2282
+ 0.73266454
2283
+ 0.83168565
2284
+ 0.85077041
2285
+ 0.14126728
2286
+ 0.85098938
2287
+ extrinsic_plus
2288
+ roberta-base
2289
+ 0.74849152
2290
+ 0.71339648
2291
+ 0.78721816
2292
+ 0.90921175
2293
+ 0.87804878
2294
+ 0.94266814
2295
+ 0.84332203
2296
+ 0.12278872
2297
+ 0.84855698
2298
+ intrinsic_plus
2299
+ roberta-base
2300
+ 0.75045075
2301
+ 0.71112613
2302
+ 0.79437919
2303
+ 0.90157054
2304
+ 0.86518353
2305
+ 0.94115257
2306
+ 0.84511316
2307
+ 0.12778319
2308
+ 0.85001331
2309
+ balanced
2310
+ bert-base-uncased
2311
+ 0.6570643
2312
+ 0.57930535
2313
+ 0.7589345
2314
+ 0.85119497
2315
+ 0.78285516
2316
+ 0.9326075
2317
+ 0.81309735
2318
+ 0.17265032
2319
+ 0.82075474
2320
+ observed
2321
+ bert-base-uncased
2322
+ 0.59965325
2323
+ 0.52847854
2324
+ 0.6929832
2325
+ 0.76124302
2326
+ 0.67629046
2327
+ 0.87060443
2328
+ 0.84589508
2329
+ 0.16352531
2330
+ 0.84624573
2331
+ extrinsic_plus
2332
+ bert-base-uncased
2333
+ 0.72993044
2334
+ 0.663004
2335
+ 0.81188563
2336
+ 0.90179749
2337
+ 0.84940317
2338
+ 0.96108049
2339
+ 0.8086632
2340
+ 0.1365238
2341
+ 0.82074909
2342
+ intrinsic_plus
2343
+ bert-base-uncased
2344
+ 0.71653573
2345
+ 0.65640721
2346
+ 0.78879093
2347
+ 0.89301716
2348
+ 0.84373548
2349
+ 0.94841293
2350
+ 0.82126564
2351
+ 0.14130552
2352
+ 0.82978853
2353
+ balanced
2354
+ xlnet-base-cased
2355
+ 0.71863497
2356
+ 0.66214437
2357
+ 0.78566356
2358
+ 0.87222741
2359
+ 0.81850039
2360
+ 0.93350331
2361
+ 0.84619893
2362
+ 0.14481173
2363
+ 0.85028143
2364
+ observed
2365
+ xlnet-base-cased
2366
+ 0.63436089
2367
+ 0.57976023
2368
+ 0.70031519
2369
+ 0.77706573
2370
+ 0.71053723
2371
+ 0.85733951
2372
+ 0.8540217
2373
+ 0.14730018
2374
+ 0.85402812
2375
+ extrinsic_plus
2376
+ xlnet-base-cased
2377
+ 0.75593757
2378
+ 0.7079124
2379
+ 0.81095307
2380
+ 0.90747949
2381
+ 0.86768256
2382
+ 0.95110254
2383
+ 0.83209459
2384
+ 0.12649216
2385
+ 0.8395401
2386
+ intrinsic_plus
2387
+ xlnet-base-cased
2388
+ 0.74488988
2389
+ 0.68995602
2390
+ 0.80932808
2391
+ 0.90141776
2392
+ 0.85748704
2393
+ 0.95009285
2394
+ 0.83869733
2395
+ 0.129222
2396
+ 0.84522772
2397
+ Table 17: All model benchmark (numbers in fractiom) for mixed datasets, models trained on 25% of the total dataset.
2398
+
CNE3T4oBgHgl3EQfUQpw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CtFJT4oBgHgl3EQfAiym/content/tmp_files/2301.11421v1.pdf.txt ADDED
@@ -0,0 +1,887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Non-invasive and noise-robust light focusing using confocal wavefront
2
+ shaping
3
+ Dror Aizik, Anat Levin
4
+ Department of Electrical and Computer Engineering, Technion, Haifa, Israel
5
+ Abstract
6
+ One of the hardest barriers to our ability to see inside
7
+ biological tissue is the fact that light is highly aberrated
8
+ when scattering by the tissue sub-components. One of
9
+ the promising approaches for overcoming such aberrations
10
+ is wavefront-shaping, where one modulates the incoming
11
+ and/or the outgoing wavefront in a way that will allow
12
+ it to focus into one spot despite scattering in the tissue.
13
+ Wavefront modulations are specific to the tissue sample
14
+ being imaged and need to be estimated based on a non-
15
+ invasive feedback from a camera collecting back-scattered
16
+ light. Such modulations have been successively estimated
17
+ using feedback from strong fluorescent beads which have
18
+ been manually added to a sample.
19
+ However, in a real
20
+ biomedical application, such feedback should be provided
21
+ by the fluorescent components of the tissue itself, whose
22
+ emission is orders of magnitude lower than the one pro-
23
+ vided by beads.
24
+ When such a low number of photons
25
+ is spread over multiple sensor pixels, the image is highly
26
+ susceptible to noise, and the feedback signal required for
27
+ previous algorithms cannot be detected.
28
+ In this work we suggest a wavefront shaping approach
29
+ that works with a confocal modulation of both illumina-
30
+ tion and imaging arms. The advantage of this approach is
31
+ that as part of the optimization, aberrations are corrected
32
+ in the optics, before the detector. Hence the low photon
33
+ budget can be directed into a single sensor spot and de-
34
+ tected with high SNR. We derive the optimization prob-
35
+ lem from mathematical principles and show why it favors
36
+ modulations that actually correct the aberrations and fo-
37
+ cus all light into one spot. We successfully demonstrate
38
+ wavefront-shaping correction on EGFP neurons sliced out
39
+ of a mouse brain, despite scattering through thick tissue.
40
+ 1
41
+ Introduction
42
+ One of the hardest barriers to light-based approaches to
43
+ tissue imaging is the fact that light is heavily scattered
44
+ due to variations in the refractive index of tissue struc-
45
+ tures. A promising approach for overcoming the scatter-
46
+ ing challenge is a wavefront-shaping based correction. By
47
+ using a spatial light modulator (SLM) device, one can
48
+ reshape the coherent wavefront illuminating the sample,
49
+ such that its aberration is conjugate to the aberration
50
+ that will happen inside the tissue. When such a wavefront
51
+ propagates through the sample, all incoming light can be
52
+ brought (focused) into a small spot. In the same way, by
53
+ using a wavefront modulation element between the tissue
54
+ and the sensor, we can correct the outgoing wavefront,
55
+ so that light photons emerging from a single target point
56
+ are brought into a single sensor point, despite the tissue
57
+ aberration. The main advantage of this approach results
58
+ from the fact that unlike ballistic-filtering approaches, all
59
+ light photons are used.
60
+ Earlier wavefront shaping approaches, formally known
61
+ as adaptive optics [5, 12, 15], were first used to correct
62
+ modest aberrations, for example due to imperfect optics
63
+ or refractive index variations in the tissue [6,16,31]. More
64
+ recently, wavefront shaping techniques [11, 13, 37] have
65
+ shown that it is possible to focus light through thick,
66
+ highly-scattering layers [28–30,35].
67
+ Despite the large potential of the idea, finding the de-
68
+ sired shape of the modulation correction is rather chal-
69
+ lenging. The desired modulation varies between different
70
+ tissue samples and even varies spatially between different
71
+ positions of the same tissue. For thick tissue, the modu-
72
+ lation is a complex pattern containing a large number of
73
+ free modes.
74
+ Earlier proof-of-concept demonstrations have used a
75
+ validation camera behind the tissue to provide feed-
76
+ back to the algorithm [7, 8, 24, 29, 30, 35], and other
77
+ approaches have relied on the existence of a guiding-
78
+ star [10, 13, 14, 18–20, 27, 28, 32–34].
79
+ In the absence of
80
+ such a guiding star, and when only non-invasive feed-
81
+ back is available, determining whatever a wavefront has
82
+ focused inside the tissue is not straightforward. The dif-
83
+ ficulty results from the fact that even if we can find an
84
+ illumination wavefront that actually focuses into a small
85
+ spot inside the tissue, the light back-scattering from this
86
+ 1
87
+ arXiv:2301.11421v1 [physics.optics] 26 Jan 2023
88
+
89
+ spot is aberrated again on its way to the camera, forming
90
+ yet another scattered pattern.
91
+ The simplest way to evaluate whatever a wavefront
92
+ modulation has focused is to use multi-photon fluores-
93
+ cence feedback. In this way, the light emitted from a flu-
94
+ orescence spot is a non-linear function of the excitation
95
+ intensity arriving it, so when all light is focused into a sin-
96
+ gle spot the total emission energy is maximized [15, 18].
97
+ However, obtaining feedback using single-photon fluores-
98
+ cence is highly desired as the process is significantly sim-
99
+ pler and cheaper than the multi-photon one. The single-
100
+ photon case cannot be evaluated using the simple score
101
+ function applied in the multi-photon case, since the emis-
102
+ sion energy is a linear function of the excitation energy
103
+ and thus the amount of emission energy does not increase
104
+ when all excitation is focused into a spot.
105
+ Recently, progress has been made on non-invasive wave-
106
+ front shaping using single-photon feedback [1, 3]. First,
107
+ Boniface et al. [3] have suggested that one can evalu-
108
+ ate whatever an incoming wavefront modulation has fo-
109
+ cused by computing the variance of the emitted speckle
110
+ pattern. More recently, Aizik et al. [1] has suggested a
111
+ rapid approach that can find a wavefront shaping mod-
112
+ ulation using a small number of iterative phase conjuga-
113
+ tion iterations. Both approaches were only demonstrated
114
+ when the fluorescent feedback was provided by synthetic
115
+ fluorescent beads, which emit a relatively strong signal.
116
+ However, the ultimate goal is to apply wavefront shap-
117
+ ing modulation using feedback from biological samples,
118
+ such as neurons. The signal emitted from such samples
119
+ is orders of magnitude weaker than the one provided by
120
+ fluorescent beads, and bleaching is reached much earlier.
121
+ Both algorithms [1,3] inherently assume that the speckle
122
+ pattern emitted from a single fluorescent spot can be mea-
123
+ sured. However, the number of fluorescent photons emit-
124
+ ted from a neuron spot is so low that when these photons
125
+ are aberrated and spread over multiple sensor pixels, no
126
+ speckle pattern can be observed and one can mostly mea-
127
+ sure noise, see visualization in Fig. 2. With such a low
128
+ photon count no speckle variance can be estimated as is
129
+ required by [3], and no phase retrieval process can be ro-
130
+ bustly carried as in [1].
131
+ This work proposes a wavefront shaping framework
132
+ that can apply in low-light scenarios and use feedback
133
+ from realistic biological data. To this end, we propose to
134
+ use a simultaneous wavefront shaping modulation both
135
+ on the incoming excitation wavefront and on the outgo-
136
+ ing emitted light. The advantage is that since scattered
137
+ photons are corrected in the optical path and we attempt
138
+ to bring all photons emitted from a single spot into a sin-
139
+ gle detector, we can measure them with a much higher
140
+ signal-to-noise (SNR) ratio.
141
+ To quantify the quality of a candidate modulation cor-
142
+ rection, we do not attempt to maximize the total energy
143
+ emitted from the target. Rather, we seek to maximize the
144
+ energy of the corrected wavefront in a single pixel. We
145
+ show that despite the fact that we use linear single-photon
146
+ fluorescence, due to the double correction on both illumi-
147
+ nation and imaging arms, our score function scales non-
148
+ linearly with the intensity arriving at the fluorescence tar-
149
+ get. Thus, the returning energy at a single pixel is max-
150
+ imized by a focusing modulation that manages to bring
151
+ all light into a single spot. We show that effectively, this
152
+ score function is equivalent to the one used by previous
153
+ two-photon fluorescence wavefront-shaping work [18].
154
+ 2
155
+ Problem formulation
156
+ Imaging setup:
157
+ In Fig. 1 we visualize a wavefront-
158
+ shaping imaging setup. A laser beam illuminates a tis-
159
+ sue sample via a microscope objective. A phase SLM in
160
+ the illumination arm modulates the illumination pattern.
161
+ We wish to image a fluorescent target at the back of the
162
+ tissue layer. The light returning from the target is col-
163
+ lected via the same objective, and reflected at a dichroic
164
+ beam-splitter. A second phase SLM at the imaging arm
165
+ modulates the emitted light. Lastly, the modulated light
166
+ is measured by the front main camera. In our setup the
167
+ SLMs (holoeye-pluto) are placed in the Fourier plane of
168
+ the system.
169
+ The setup includes a second validation camera behind
170
+ the tissue sample to assess focusing quality and image an
171
+ undistorted reference of the target. While earlier research
172
+ demonstrations of wavefront-shaping use this camera to
173
+ provide feedback to the algorithm, we emphasize that our
174
+ goal in this research is to develop non-invasive techniques
175
+ that can only use feedback by the main (front) camera.
176
+ The validation camera cannot provide any input to the
177
+ algorithm.
178
+ We note that some research on wavefront shaping and
179
+ adaptive optics modulates only the illumination or imag-
180
+ ing arms. For generality, our problem formulation below
181
+ will consider modulations at both arms.
182
+ Image formation model: Consider a set of K fluores-
183
+ cent particles inside a sample, and denote their positions
184
+ by o1, . . . , oK. We assume the SLM in the illumination
185
+ arm is illuminated with a spatially uniform plane wave
186
+ and use the SLM to display a complex 2D electric field
187
+ that we denote by u. Although u is a 2D field, we reshape
188
+ it as a 1D vector. We also use ν to denote a K ×1 vector
189
+ of the field propagating through the sample at each of the
190
+ K fluorescent sources.
191
+ The relation between u and ν is linear and can be
192
+ described as a multiplication by a (very large) matrix
193
+ ν = T iu. T i is the incoming transmission matrix de-
194
+ scribing coherent light propagation in the tissue. We note
195
+ that T i is specific to the tissue sample being tested, and
196
+ 2
197
+
198
+ Fig. 1: Our wavefront correction fluorescent microscope setup: A laser beam is exciting fluorescent beads at the back of a
199
+ tissue layer, and fluorescent emission is scattered again through the tissue, reflects at a dichroic beam-splitter and is collected
200
+ by a main (front) camera. We place two SLMs in the Fourier planes of both illumination and imaging arms to allow reshaping
201
+ these wavefronts. A validation camera views the beads at the back of the tissue directly. This camera is not actually used
202
+ by the algorithm, and is only assessing its success.
203
+ LP=linear polarizer, BS=beam-splitter, DBS=dichroic beam-splitter,
204
+ BPF=bandpass filter, L1 . . . L7=lenses, Obj=Objective.
205
+ different tissue samples are described by very different
206
+ transmission matrices.
207
+ For thick tissue T i can be an
208
+ arbitrarily complex matrix incorporating multiple scat-
209
+ tering events in the tissue. Likewise, the light returning
210
+ from the particles to the SLM of the imaging arm can
211
+ be described as T oν, where T o is the back-propagation
212
+ transmission matrix.
213
+ The propagation of light from the illumination SLM
214
+ plane to the particles and back to the SLM of the imag-
215
+ ing arm is then modeled using the combined transmission
216
+ matrix
217
+ T a ≡ T o · T i.
218
+ (1)
219
+ We denote by ζ the wavefront placed on the SLM of
220
+ the imaging arm, and by D(ζ) a diagonal matrix with ζ
221
+ on its diagonal. We denote by F the Fourier transform of
222
+ the wavefront from the SLM plane to the camera sensor
223
+ plane.
224
+ In the fluorescent case, the emissions from different
225
+ points are incoherent. The recorded intensity can be ex-
226
+ pressed as
227
+ I =
228
+
229
+ k
230
+ |FD(ζ)T o
231
+ ↓,k|2|νk|2α,
232
+ (2)
233
+ where |νk|2 is the energy of the excitation light arriving
234
+ at particle ok, and T o
235
+ ↓,k is the k-th column of T o, so that
236
+ FD(ζ)T o
237
+ ↓,k is the wavefront arriving to the sensor from
238
+ ok.
239
+ Since light emitted from different fluorescent par-
240
+ ticles changes phase incoherently, effectively the sensor
241
+ sums the intensity of the wavefronts emitted by differ-
242
+ ent particles, and their phases do not interfere. In (2) α
243
+ denotes the type of fluorescent excitation. The simplest
244
+ case α = 1 is known as single-photon fluorescence where
245
+ the emission is linear in the excitation energy |νk|2. In
246
+ two-photon fluorescence, α = 2, namely the emission is
247
+ proportional to the squared excitation.
248
+ Linear fluores-
249
+ cence is significantly simpler and cheaper to achieve, but
250
+ as we explain below, a non-linear (two-photon) fluores-
251
+ cence feedback simplifies modulation estimation.
252
+ Phase conjugation:
253
+ For coherent imaging, the
254
+ Helmholtz reciprocity principle leads to wave conjuga-
255
+ tion, namely if we record the wavefront emitted from a
256
+ source point inside the tissue and play it back in the re-
257
+ verse direction, the wavefront will focus at the same point.
258
+ This implies that the returning transmission matrix is the
259
+ transpose of the incoming one [25]:
260
+ T o = T i⊤.
261
+ (3)
262
+ Note that this is just a transpose and not the Hermi-
263
+ tian (conjugate) transpose. In the fluorescent case, we
264
+ should note that T i, T o describe propagation at a dif-
265
+ ferent wavelength hence they cannot be completely the
266
+ same. However, for linear single-photon fluorescence the
267
+ excitation and emission wavelengths are relatively similar
268
+ and we still assume T o ≈ T i⊤.
269
+ Normalization: we assume for simplicity that our trans-
270
+ mission matrices are normalized such that every column
271
+ or row has a unit energy, that is for every k
272
+
273
+ x
274
+ |T o
275
+ x,k|2 = 1,
276
+
277
+ x
278
+ |T i
279
+ k,x|2 = 1.
280
+ (4)
281
+ 3
282
+
283
+ Illumination
284
+ SLM
285
+ Validation Arm
286
+ Imaging Arm
287
+ Laser
288
+ Illumination ArmThis means that the total amount of energy that can ar-
289
+ rive to particle ok or emerge from it is fixed. As the laser
290
+ energy is fixed, we also assume w.l.o.g. that all illumina-
291
+ tion vectors have a unit norm ∥u∥ = 1. As propagation
292
+ through the tissue does not generate new energy, every
293
+ incoming vector u should satisfy ∥T iu∥ ≤ 1 and thus the
294
+ energy at the target is also bounded
295
+
296
+ k
297
+ |νk|2 ≤ 1.
298
+ (5)
299
+ 3
300
+ Scoring wavefront shaping mod-
301
+ ulations
302
+ The first challenge when coming to design a wavefront
303
+ shaping modulation is coming up with a score function
304
+ that can actually evaluate the focusing quality facilitated
305
+ by a candidate modulation mask, using a noninvasive
306
+ feedback alone. We start by reviewing scores that were
307
+ previously introduced in the literature and then propose
308
+ our new, noise-robust confocal score.
309
+ Image quality scores: Modulation evaluation is a sim-
310
+ pler task when the same modulation can correct a suffi-
311
+ ciently large isoplanatic image region. This assumption
312
+ was made by adaptive optics research [2, 4, 5, 12, 15] and
313
+ also by wavefront shaping approaches [9,26,36]. When the
314
+ same modulation can correct a large image region, one of-
315
+ ten evaluates the quality of the resulting image, either in
316
+ terms of contrast [15], sharpness, or variance [36]. How-
317
+ ever, for thick tissue, wavefront shaping correction can
318
+ vary quickly between nearby pixels, and a modulation
319
+ may only explain a very local region. This case makes
320
+ the above image quality scores less applicable, as inher-
321
+ ently they evaluate the quality of an image region rather
322
+ then a pixel. For spatially varying modulations, ideally,
323
+ we would like to be able to evaluate the success of the
324
+ modulation based on a per-pixel criteria.
325
+ The total intensity score: Consider a configuration
326
+ where we only try to correct the illumination arm, and
327
+ the SLM in the imaging arm of Fig. 1 is not used (equiv-
328
+ alently, D(ζ) in (2) is the identity matrix). The easiest
329
+ score that was considered in the literature [15,18] is just
330
+ the total intensity measured over the entire sensor plane.
331
+ Using (2) and (4) it is easy to show that this total inten-
332
+ sity score reduces to
333
+ MTI(u) ≡
334
+
335
+ x
336
+ I(x) =
337
+
338
+ k
339
+ |νk|2α.
340
+ (6)
341
+ Since the energy at the target is bounded (see (5)), for the
342
+ case α > 1 this score is maximized when ν is a one-hot
343
+ vector, which equals 1 at a single entry and zero at all
344
+ the others. Therefore, in two-photon fluorescence finding
345
+ a good modulation is easy. If we manage to modulate the
346
+ illumination such that it focuses all the excitation energy
347
+ in a single spot, the emitted power is maximized.
348
+ Two-photon fluorescence is however more expensive
349
+ and harder to implement, and solutions that can use
350
+ a single-photon excitation feedback are highly desired.
351
+ However, in the single-photon case where α = 1, (6) re-
352
+ duces to the total power in ν, MTI(u) = �
353
+ k |νk|2, and
354
+ since this power is fixed, the same amount of energy re-
355
+ turns whether we spread the excitation power over mul-
356
+ tiple fluorescence sources or bring all of it into one spot.
357
+ Therefore, wavefront shaping using single-photon fluores-
358
+ cence has remained an open challenge in the literature
359
+ until recently.
360
+ The variance maximization score: Following on a
361
+ setup that modulates only the illumination and not the
362
+ imaging arm, Boniface et al. [3] have recently suggested
363
+ that to evaluate focusing with linear single-photon feed-
364
+ back, one should maximize the variance of the intensity
365
+ measured by the sensor. The idea is that if we manage to
366
+ focus all the excitation light at a single spot, the emitted
367
+ light scattered through the tissue will generate a highly
368
+ varying speckle pattern on the sensor plane. If the excita-
369
+ tion is not focused, multiple sources emit simultaneously.
370
+ The light emitted by these sources sums incoherently, and
371
+ hence the variance of the speckle pattern on the sensor
372
+ decays. A short calculation shows
373
+ MVar(u) ≡ Var[I] ≡
374
+ ≡ 1
375
+ n
376
+
377
+ x
378
+ |I(x)|2 −
379
+
380
+ 1
381
+ n
382
+
383
+ x
384
+ I(x)
385
+ �2
386
+ =
387
+
388
+ k
389
+ |νk|4,
390
+ (7)
391
+ where n is the number of image pixels. Hence, as before,
392
+ the score is a non-linear function of the power at differ-
393
+ ent fluorescent particles and is maximized by a one-hot
394
+ vector.
395
+ This score was an important advance of the state-of-
396
+ the-art, but it may be hard to evaluate it with suffi-
397
+ cient noise robustness using weak biological sources. To
398
+ demonstrate this, Fig. 2 visualizes two types of fluores-
399
+ cent emissions, when excitation light is correctly focused
400
+ into a single spot. Fig. 2(a) demonstrates an invitrogen
401
+ bead (ThermoFisher Fluo-Spheres dark red) that was at-
402
+ tached to a chicken breast tissue layer. This is a strong
403
+ source, and a clear speckle pattern is imaged. The au-
404
+ thors of [3] have demonstrated their approach on similar
405
+ beads. However, biological samples are often significantly
406
+ weaker than such beads. For example, in Fig. 2(c) we
407
+ image EGFP neurons sliced out of a mouse brain. The
408
+ fluorescent emission here is orders of magnitudes weaker,
409
+ and the amount of laser power we can apply before the
410
+ neuron bleaches is also limited. One can see that rather
411
+ than a real speckle pattern, we mostly image noise. The
412
+ variance of this image is dominated by the noise variance
413
+ rather than the actual speckle variance.
414
+ 4
415
+
416
+ (a) scattering, bead
417
+ (b) focusing, bead
418
+ (c) scattering, neuron
419
+ (d) focusing, neuron
420
+ Fig. 2:
421
+ Types of fluorescent data:
422
+ (a,b) emission from invitrogen fluorescent microspheres (excitation/emission at
423
+ 640/680nm).
424
+ A single bead is excited and the emitted light scatters through the tissue to generate a wide speckle pat-
425
+ tern in (a). In (b) we use an aberration correction in the imaging arm so that the sensor measures a sharp spot. With such
426
+ synthetic sources we can image a speckle pattern at high SNR, but this is not always the case with real biological samples.
427
+ For example, (c,d) demonstrate fluorescent emission from EGFP neurons (excitation/emission at 490/510nm), which is orders
428
+ of magnitude weaker. When the aberrated wavefront propagates to the sensor a limited number of photons are spread over
429
+ multiple pixels and noise is dominant.
430
+ In (d) we have applied aberration correction in the optics and as all photons are
431
+ collected by a single pixel, SNR is drastically improved. Note that images (c,d) are taken under equal exposure and equal
432
+ excitation power.
433
+ Confocal energy score: In this research we suggest a
434
+ new score for evaluating a wavefront shaping modulation.
435
+ While the previous score corrected only the illumination
436
+ arm, we suggest to put the same correction at both illu-
437
+ mination and imaging arms.
438
+ The idea is that if we find a modulation focusing all ex-
439
+ citation light into one spot, due to reciprocity, the same
440
+ modulation also corrects the emitted light, bringing all of
441
+ it into a single sensor pixel (assuming the excitation and
442
+ emission wavelengths are sufficiently similar). To score
443
+ the focusing quality of each modulation we will use the
444
+ intensity at the central pixel, rather than the total inten-
445
+ sity throughout the sensor.
446
+ Assuming the central pixel is measuring the DC compo-
447
+ nent of the Fourier transformation from the SLM plane to
448
+ the image plane, the central row of Psens is just a simple
449
+ averaging. Thus we can express its value as the product
450
+ of the SLM modulation (at the imaging arm) with the
451
+ outgoing transmission matrix:
452
+ F0,→D(ζ)T o
453
+ ↓,k = ζT T o
454
+ ↓,k.
455
+ (8)
456
+ When the same modulation u is used in both illumination
457
+ and imaging arm, we can express the energy of the central
458
+ pixel as:
459
+ MConf(u) ≡ I(0) =
460
+ =
461
+
462
+ k
463
+ |uT T o
464
+ ↓,k|2|T i
465
+ k,→u|2 =
466
+
467
+ k
468
+ |νk|4.
469
+ (9)
470
+ As before, this score favors one-hot ν vectors and the
471
+ score is maximized when all light is focused at a single
472
+ spot.
473
+ While this score is equivalent to the variance maxi-
474
+ mization score above, it is significantly less susceptible to
475
+ noise. This is due to the fact that the small number of
476
+ photons we have at hand are collected by one detector,
477
+ rather than being spread over multiple pixels. Fig. 2(c-
478
+ d) shows the images emitted from a single neural spot
479
+ with and without modulation in the imaging arm, and
480
+ the significant noise reduction.
481
+ In this work we have explicitly optimized the confo-
482
+ cal score ((9)) using standard Hadamard basis optimiza-
483
+ tion [23], detailed in the supplement. This optimization
484
+ is significantly slower than [1]. As emission is very weak,
485
+ the fact that the SLM correction is applied before imaging
486
+ helps collect all photons at one sensor pixel and improve
487
+ SNR.
488
+ Iterative phase conjugation: Recently [1] has pro-
489
+ posed an incoherent iterative phase conjugation algorithm
490
+ that can rapidly estimate a wavefront shaping modula-
491
+ tion. This algorithm is not explicitly maximizing a cost
492
+ function. It uses fast power iteration to seek an excitation
493
+ wavefront which is an eigenvector of the transmission ma-
494
+ trix of the tissue, although the definition of transmission
495
+ matrices with incoherent light is a bit challenging. In-
496
+ tuitively the confocal cost of (9) is maximized when the
497
+ wavefront T o
498
+ ↓,k emerging from the system is correlated
499
+ with the illuminating wavefront u. This means that the
500
+ optimum can also be thought of as an eigenvector. The
501
+ algorithm of [1] was successfully applied on fluorescent
502
+ beads, which are both strong and sparse. In this research
503
+ we aim to apply the confocal score of (9) to real bio-
504
+ logical data such as EGFP neurons. This data is signif-
505
+ icantly weaker, and also the fluorescent target exhibits
506
+ a continuous area rather than sparse isolated dots. The
507
+ algorithm of [1] heavily relies on the existence of some
508
+ speckle variation in the input image due to the need to
509
+ retrieve the phase of the wavefront arriving the sensor
510
+ from the measured intensity. Thus, it does not directly
511
+ apply to continuous fluorescent sources, where not much
512
+ speckle variation can be measured.
513
+ 5
514
+
515
+ 10μm0.644
516
+ 0.53
517
+ 0.416
518
+ 0.302
519
+ 0.188
520
+ 0.07410 μm8.264
521
+ 6.649
522
+ 5.034
523
+ 3.419
524
+ 1.804
525
+ 0.18910gem0.207
526
+ 0.171
527
+ 0.135
528
+ 0.099
529
+ 0.063
530
+ 0.02710 gem1.23
531
+ 0.992
532
+ 0.753
533
+ 0.515
534
+ 0.276
535
+ 0.0384
536
+ Results
537
+ We image slices of mice brain with EGFP neurons, ex-
538
+ cited at 488nm and imaged at 510nm. The mouse brain
539
+ slices are 50nm thick, so neurons exhibit some 3D varia-
540
+ tion and modest scattering. For more challenging scatter-
541
+ ing we place these slices behind a layer of chicken breast
542
+ tissue (200−300µm thick) or parafilm. We image fluores-
543
+ cent emission with a sensitive sCMOS sensor prime BSI
544
+ express.
545
+ In Fig. 3 we visualize some results of our algorithm.
546
+ Before starting the optimization we focus the objective
547
+ such that the excitation light observed by the validation
548
+ camera illuminates the smallest possible area. Fig. 3(a)
549
+ shows an image of this excitation pattern from the val-
550
+ idation camera behind the tissue. As can be observed,
551
+ the tissue exhibits significant scattering. We made our
552
+ best attempts to reduce the diameter of this pattern by
553
+ adjusting the distance of the objective and the sample,
554
+ but even at the best focus position, the light scatters to
555
+ cover a wide sample area. In Fig. 3(b) we visualize the
556
+ excitation light after optimizing the wavefront shaping
557
+ modulation, which is nicely focused into a sharp spot. In
558
+ Fig. 3(c-d) we have placed a band-pass filter on the val-
559
+ idation camera to show the emission light. Before opti-
560
+ mization a wide area is excited and we can see the neuron
561
+ shape. At the end of the optimization a single point is
562
+ excited. In Fig. 3(e-f) we visualize the views of the front
563
+ main camera, providing the sole input our algorithm can
564
+ access. Before optimization the emitted light is scattered
565
+ over a wide sensor area. As a low number of photons is
566
+ spread over multiple sensor pixels, the captured imaged
567
+ is very noisy. Despite this low SNR, at the end of the
568
+ optimization the aberration is corrected and all the pho-
569
+ tons are brought into a single sensor pixel, leading to a
570
+ high quality image where noise is much less visible, see
571
+ Fig. 3(f). In Fig. 3(g) we demonstrate the actual point
572
+ spread function of the tissue aberration. For that we have
573
+ used the correction only at the illumination arm and fo-
574
+ cused the illumination to excite a single spot. We used a
575
+ blank SLM at the imaging arm so the emitted light is not
576
+ corrected. One can see that the aberration of a single flu-
577
+ orescent target is not negligible. We emphasize that each
578
+ of the images in Fig. 3 is normalized so that its maximum
579
+ is 1, but clearly the spot at the focused images received a
580
+ much higher number of photons than the wide scattering
581
+ images of unfocused light, despite the fact that all images
582
+ were captured under equal exposure and equal excitation
583
+ power.
584
+ In Fig. 4 we use the recovered wavefront shaping mod-
585
+ ulation to image a wide area rather than a single spot.
586
+ For that we excite a wide area and use a correction only
587
+ at the imaging arm. Due to the memory effect [17, 22],
588
+ the same modulation can allow us to image a small lo-
589
+ cal patch rather than a single spot. With the correction,
590
+ the neuron is observed with a much higher contrast and
591
+ even the axons (thin lines around the neuron) emerging
592
+ from it, whose emission is much weaker, can be partially
593
+ observed. As our SLMs are placed in the Fourier plane
594
+ of the system and not at a plane conjugate to the sam-
595
+ ple itself as suggested by [21], we tilt-shift the modulated
596
+ pattern to image a somewhat wider area, as explained
597
+ in [1].
598
+ 5
599
+ Discussion
600
+ In this research we have analyzed score functions for wave-
601
+ front shaping correction using non-invasive feedback at
602
+ the absence of a guiding star. Obtaining such feedback is
603
+ challenging, because even if excitation light is corrected
604
+ and focused at a single object spot, the light returning to
605
+ the sensor is undergoing another aberration process while
606
+ propagating through the tissue, leading to yet another
607
+ scattered pattern. Moreover, real biological fluorescent
608
+ sources are weak emitting a limited number of photons.
609
+ When these photons are spread over multiple sensor pix-
610
+ els the detectable signal is highly contaminated by noise.
611
+ To assess focusing quality, we need a score function that
612
+ can measure a non-linear function of the light emitted by
613
+ different sources. This is naturally achieved when using
614
+ two-photon fluorescent feedback, but is harder to achieve
615
+ with linear fluorescence. We show that by using a confo-
616
+ cal correction at both illumination and imaging arms we
617
+ can measure such a non-linear feedback, which is maxi-
618
+ mized when all excitation light is brought into one spot.
619
+ Moreover, the fact that our system uses a correction of
620
+ the emitted light as part of the optical path allows us to
621
+ bring the limited number of emitted photons into a single
622
+ sensor spot, facilitating a high SNR measurement.
623
+ The drawback of our current approach is that it uses
624
+ a slow Hadamard basis optimization [23].
625
+ In our cur-
626
+ rent implementation it takes about 30 min to optimize
627
+ for one modulation pattern. Some of this can be largely
628
+ optimized by better hardware such as a faster SLM. How-
629
+ ever, due to the large number of iterations required by the
630
+ simple coordinate descent optimization, this approach is
631
+ inherently slower than the power iterations of [1]. We are
632
+ exploring ways to accelerate our current optimization by
633
+ extending the phase retrieval framework of [1] to model
634
+ the full image formation model of the incoherent case.
635
+ References
636
+ [1] Aizik, D., Gkioulekas, I., and Levin, A. Fluo-
637
+ rescent wavefront shaping using incoherent iterative
638
+ phase conjugation. Optica 9, 7 (Jul 2022), 746–754.
639
+ 6
640
+
641
+ (a) Valid. laser
642
+ (b) Valid. laser
643
+ (c) Valid. fluor.
644
+ (d) Valid. fluor.
645
+ (e) Main fluor.
646
+ (f) Main fluor.
647
+ (g) Main fluor.
648
+ No modulation
649
+ With modulation
650
+ No modulation
651
+ With modulation
652
+ No modulation
653
+ With modulation
654
+ Point aberration
655
+ Fig. 3: Wavefront shaping results: we visualize views from the validation and main cameras, at the beginning of the algorithm
656
+ where no correction is applied, compared to the modulated image at the end of the optimization. (a-b) The excitation light as
657
+ viewed by the validation camera at the back of the tissue. Due to significant scattering, at the beginning a wide speckle pattern
658
+ is generated, but after optimization, the modulated wavefront is brought into a single spot. (c-d) By placing a band-pass filter
659
+ on the validation camera we visualize the emitted light with and without correction. (e-f) Views of the emitted light at the
660
+ main front camera with and without correction. Note that this is the only input used by our algorithm. Without correction,
661
+ light is scattered over a wide image area and is being measured with a very low SNR. A sharp clean spot can be imaged when
662
+ the limited number of photons is corrected in the optical path and brought into a single sensor pixel. (g) By correcting the
663
+ emission such that a single spot is excited and leaving the imaging path uncorrected, we can visualize the actual aberration
664
+ of a single fluorescent point source.
665
+ [2] Antonello, J., Barbotin, A., Chong, E. Z.,
666
+ Rittscher, J., and Booth, M. J.
667
+ Multi-scale
668
+ sensorless adaptive optics: application to stimulated
669
+ emission depletion microscopy. Opt. Express 28, 11
670
+ (May 2020), 16749–16763.
671
+ [3] Boniface, A., Blochet, B., Dong, J., and Gi-
672
+ gan, S.
673
+ Noninvasive light focusing in scattering
674
+ media using speckle variance optimization. Optica
675
+ (2019).
676
+ [4] Bonora, S., and Zawadzki, R. J. Wavefront sen-
677
+ sorless modal deformable mirror correction in adap-
678
+ tive optics: optical coherence tomography. Opt. Lett.
679
+ 38, 22 (Nov 2013), 4801–4804.
680
+ [5] Booth, M. Adaptive optical microscopy: The on-
681
+ going quest for a perfect image. Light: Science and
682
+ Applications 3 (04 2014), e165.
683
+ [6] Booth, M. J., Neil, M. A. A., Juˇskaitis, R.,
684
+ and Wilson, T. Adaptive aberration correction in
685
+ a confocal microscope. Proceedings of the National
686
+ Academy of Sciences 99, 9 (2002), 5788–5792.
687
+ [7] Chen, Y., Sharma, M. K., Sabharwal, A.,
688
+ Veeraraghavan, A., and Sankaranarayanan,
689
+ A. C.
690
+ 3PointTM: Faster measurement of high-
691
+ dimensional transmission matrices. In Euro. Conf.
692
+ Computer Vision (ECCV) (2020).
693
+ [8] Conkey, D. B., Brown, A. N., Caravaca-
694
+ Aguirre, A. M., and Piestun, R. Genetic algo-
695
+ rithm optimization for focusing through turbid me-
696
+ dia in noisy environments. Opt. Express (2012).
697
+ [9] Daniel, A., Oron, D., and Silberberg, Y. Light
698
+ focusing through scattering media via linear fluores-
699
+ cence variance maximization, and its application for
700
+ fluorescence imaging. Opt. Express (2019).
701
+ [10] Fiolka, R., Si, K., and Cui, M. Complex wave-
702
+ front corrections for deep tissue focusing using low
703
+ coherence backscattered light. Opt. Express 20, 15
704
+ (Jul 2012), 16532–16543.
705
+ [11] Gigan, S., Katz, O., et al. Roadmap on wave-
706
+ front shaping and deep imaging in complex media.
707
+ arXiv preprint arXiv:2111.14908 (2021).
708
+ 7
709
+
710
+ 10μm10 μm10 μm10μm10μm0.176
711
+ 0.147
712
+ 0.119
713
+ 0.09
714
+ 0.061
715
+ 0.03210μm2.002
716
+ 1.614
717
+ 1.225
718
+ 0.837
719
+ 0.448
720
+ 0.0610 μm0.276
721
+ 0.228
722
+ 0.179
723
+ 0.131
724
+ 0.082
725
+ 0.03410μm10μm10 μm10μm10 μm0.222
726
+ 0.184
727
+ 0.146
728
+ 0.108
729
+ 0.07
730
+ 0.03210μm3.191
731
+ 2.57
732
+ 1.948
733
+ 1.326
734
+ 0.704
735
+ 0.08210μm0.436
736
+ 0.356
737
+ 0.277
738
+ 0.197
739
+ 0.117
740
+ 0.03710μm10 μm10μm10μm10μm0.265
741
+ 0.218
742
+ 0.171
743
+ 0.125
744
+ 0.078
745
+ 0.03110μm1.004
746
+ 0.812
747
+ 0.62
748
+ 0.427
749
+ 0.235
750
+ 0.04310μm0.271
751
+ 0.223
752
+ 0.176
753
+ 0.128
754
+ 0.081
755
+ 0.034(a) Uncorrected
756
+ (b) Corrected
757
+ (c) Reference
758
+ Main Camera
759
+ Main Camera
760
+ Validation Camera
761
+ Fig. 4: Wide area imaging: We use an unmodulated illumination to excite a wide fluorescent region, but place the recovered
762
+ modulation the imaging SLM to correct the emitted light. We compare this to an undistorted reference viewed by the validation
763
+ camera, and to the initial uncorrected image of the main camera. Notice how the neuron contrast is improved and even some
764
+ of the axons are revealed.
765
+ [12] Hampson,
766
+ K.,
767
+ Turcotte,
768
+ R.,
769
+ Miller,
770
+ D.,
771
+ Kurokawa, K., Males, J., Ji, N., and Booth,
772
+ M. Adaptive optics for high-resolution imaging. Na-
773
+ ture Reviews Methods Primers 1 (10 2021), 68.
774
+ [13] Horstmeyer, R., Ruan, H., and Yang, C.
775
+ Guidestar-assisted wavefront-shaping methods for
776
+ focusing light into biological tissue. Nature Photon-
777
+ ics (2015).
778
+ [14] Jang, J., Lim, J., Yu, H., Choi, H., Ha, J.,
779
+ Park, J.-H., Oh, W.-Y., Jang, W., Lee, S., and
780
+ Park, Y. Complex wavefront shaping for optimal
781
+ depth-selective focusing in optical coherence tomog-
782
+ raphy. Opt. Express 21, 3 (Feb 2013), 2890–2902.
783
+ [15] Ji, N. Adaptive optical fluorescence microscopy. Na-
784
+ ture Methods 14 (03 2017), 374–380.
785
+ [16] Ji, N., Milkie, D., and Betzig, E. Adaptive op-
786
+ tics via pupil segmentation for high-resolution imag-
787
+ ing in biological tissues. Nature methods 7 (02 2010),
788
+ 141–7.
789
+ [17] Judkewitz, B., Horstmeyer, R., Vellekoop,
790
+ I., and Yang, C.
791
+ Translation correlations in
792
+ anisotropically scattering media.
793
+ Nature Physics
794
+ (2014).
795
+ [18] Katz, O., Small, E., Guan, Y., and Silber-
796
+ berg, Y. Noninvasive nonlinear focusing and imag-
797
+ ing through strongly scattering turbid layers. Optica
798
+ 1, 3 (Sep 2014), 170–174.
799
+ [19] Kong, F., Silverman, R. H., Liu, L., Chit-
800
+ nis, P. V., Lee, K. K., and Chen, Y. C.
801
+ Photoacoustic-guided convergence of light through
802
+ optically diffusive media.
803
+ Opt. Lett. 36, 11 (Jun
804
+ 2011), 2053–2055.
805
+ 8
806
+
807
+ 10μm10 μm10 μm10μm10μm10μm10μm10μm10μm[20] Liu, T.-L., et al. Observing the cell in its native
808
+ state: Imaging subcellular dynamics in multicellular
809
+ organisms. Science 360, 6386 (2018).
810
+ [21] Mertz, J., Paudel, H., and Bifano, T. G. Field
811
+ of view advantage of conjugate adaptive optics in
812
+ microscopy applications. Applied Optics (2015).
813
+ [22] Osnabrugge,
814
+ G.,
815
+ Horstmeyer,
816
+ R.,
817
+ Pa-
818
+ padopoulos,
819
+ I.
820
+ N.,
821
+ Judkewitz,
822
+ B.,
823
+ and
824
+ Vellekoop, I. M. Generalized optical memory ef-
825
+ fect. Optica (2017).
826
+ [23] Popoff, S. M., Aubry, A., Lerosey, G., Fink,
827
+ M., Boccara, A. C., and Gigan, S. Exploiting
828
+ the time-reversal operator for adaptive optics, selec-
829
+ tive focusing, and scattering pattern analysis. Phys.
830
+ Rev. Lett. 107 (Dec 2011), 263901.
831
+ [24] Popoff, S. M., Lerosey, G., Carminati, R.,
832
+ Fink, M., Boccara, A. C., and Gigan, S. Mea-
833
+ suring the transmission matrix in optics:
834
+ An ap-
835
+ proach to the study and control of light propagation
836
+ in disordered media. Phys. Rev. Lett. (2010).
837
+ [25] Rotter, S., and Gigan, S. Light fields in complex
838
+ media: Mesoscopic scattering meets wave control.
839
+ Rev. Mod. Phys. (2017).
840
+ [26] Stern, G., and Katz, O.
841
+ Noninvasive focusing
842
+ through scattering layers using speckle correlations.
843
+ Opt. Lett. (2019).
844
+ [27] Tang, J., Germain, R. N., and Cui, M.
845
+ Su-
846
+ perpenetration optical microscopy by iterative mul-
847
+ tiphoton adaptive compensation technique. Proceed-
848
+ ings of the National Academy of Sciences 109, 22
849
+ (2012), 8434–8439.
850
+ [28] Vellekoop, I. M., Cui, M., and Yang, C. Digi-
851
+ tal optical phase conjugation of fluorescence in turbid
852
+ tissue. Applied Physics Letters (2012).
853
+ [29] Vellekoop, I. M., Lagendijk, A., and Mosk,
854
+ A. P. Exploiting disorder for perfect focusing. Na-
855
+ ture Photonics (2010).
856
+ [30] Vellekoop, I. M., and Mosk, A. P. Focusing co-
857
+ herent light through opaque strongly scattering me-
858
+ dia. Opt. Lett. (2007).
859
+ [31] Verstraete, H. R. G. W., Wahls, S., Kalk-
860
+ man, J., and Verhaegen, M. Model-based sensor-
861
+ less wavefront aberration correction in optical coher-
862
+ ence tomography. Opt. Lett. 40, 24 (Dec 2015), 5722–
863
+ 5725.
864
+ [32] Wang, C., Liu, R., Milkie, D., Sun, W., Tan,
865
+ Z., Kerlin, A., Chen, T.-W., Kim, D., and Ji,
866
+ N.
867
+ Multiplexed aberration measurement for deep
868
+ tissue imaging in vivo. Nature methods 11 (08 2014).
869
+ [33] Wang, Y. M., Judkewitz, B., DiMarzio, C. A.,
870
+ and Yang, C. Deep-tissue focal fluorescence imag-
871
+ ing with digitally time-reversed ultrasound-encoded
872
+ light. Nature Communications 3 (2012).
873
+ [34] Xu, X., Liu, H., and Wang, L. Time-reversed ul-
874
+ trasonically encoded optical focusing into scattering
875
+ media. Nature Photonics 5 (2011), 154–157.
876
+ [35] Yaqoob, Z., Psaltis, D., Feld, M., and Yang,
877
+ C. Optical phase conjugation for turbidity suppres-
878
+ sion in biological samples. Nature photonics (2008).
879
+ [36] Yeminy, T., and Katz, O. Guidestar-free image-
880
+ guided wavefront-shaping. Science Advances 7, 21
881
+ (2021), eabf5364.
882
+ [37] Yu, H., Park, J., Lee, K., Yoon, J., Kim, K.,
883
+ Lee, S., and Park, Y. Recent advances in wave-
884
+ front shaping techniques for biomedical applications.
885
+ Current Applied Physics 15, 5 (2015), 632–641.
886
+ 9
887
+
CtFJT4oBgHgl3EQfAiym/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E1T4oBgHgl3EQf-QZ6/content/2301.03566v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a63ebafa18da79ee17a2cdddf089c4f7d818543207dc940bc3775ef4db8c8822
3
+ size 1112695
D9E4T4oBgHgl3EQffA2Y/content/2301.05104v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6c23366bf061a7ee220d96124f6120cb49ccc5e181dac19909abe148f6862e6
3
+ size 633557
D9E4T4oBgHgl3EQffA2Y/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42bbf44f20ce4a8300e99eb06822d1f5bb9f2d3ae18000ab5bde11c89683d490
3
+ size 122559
FNE0T4oBgHgl3EQfzAKR/content/2301.02667v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a5a14270818df51d1080326cd68638795914ff2ba45e76428020455658f5117
3
+ size 14458521
G9FJT4oBgHgl3EQfty2e/content/tmp_files/2301.11619v1.pdf.txt ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analysis of a subsolar-mass black hole trigger
2
+ from the second observing run of Advanced LIGO
3
+ Gonzalo Morr´as,1 Jos´e Francisco Nu˜no Siles,1 Alexis Men´endez-V´azquez,2 Christos
4
+ Karathanasis,2 Katarina Martinovic,3 Khun Sang Phukon,4, 5, 6, 7 Sebastien Clesse,8 Juan
5
+ Garc´ıa-Bellido,1 Mario Mart´ınez,2, 9 Ester Ruiz Morales,1, 10 and Mairi Sakellariadou3
6
+ 1Instituto de F´ısica Te´orica UAM/CSIC, Universidad Aut´onoma de Madrid, Cantoblanco 28049 Madrid, Spain
7
+ 2Institut de F´ısica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, E-08193 Barcelona, Spain
8
+ 3Theoretical Particle Physics and Cosmology Group,
9
+ Physics
10
+ Department,
11
+ King’s College London,
12
+ University
13
+ of London,
14
+ Strand,
15
+ London
16
+ WC2R
17
+ 2LS,
18
+ UK
19
+ 4Nikhef - National Institute for Subatomic Physics,
20
+ Science Park, 1098 XG Amsterdam, The Netherlands
21
+ 5Institute for High-Energy Physics, University of Amsterdam,
22
+ Science Park, 1098 XG Amsterdam, The Netherlands
23
+ 6Institute for Gravitational and Subatomic Physics, Utrecht University,
24
+ Princetonplein 1, 3584 CC Utrecht, The Netherlands
25
+ 7School of Physics and Astronomy and Institute for Gravitational Wave Astronomy,
26
+ University of Birmingham, Edgbaston, Birmingham, B15 9TT, United Kingdom
27
+ 8Service de Physique Th´eorique, Universit´e Libre de Bruxelles (ULB),
28
+ Boulevard du Triomphe, CP225, B-1050 Brussels, Belgium
29
+ 9Instituci´o Catalana de Recerca i Estudis Avan¸cats (ICREA), Barcelona, Spain
30
+ 10Departamento de F´ısica, ETSIDI, Universidad Polit´ecnica de Madrid, 28012 Madrid, Spain
31
+ (Dated: January 30, 2023)
32
+ We perform an exhaustive follow-up analysis of a subsolar-mass black hole candidate from the
33
+ second observing run of Advanced LIGO, reported by Phukon et al. in 2021. The origin of this trigger
34
+ is unclear, because the reported signal-to-noise ratio (SNR) of 8.6 and inverse false alarm rate of
35
+ about 0.5 yr are too low to claim a gravitational-wave origin, but large enough to be intriguing. When
36
+ using more precise waveforms, extending the frequency range down to 20 Hz, removing a prominent
37
+ blip glitch and marginalizing over all the model parameters, we find that the network signal-to-noise
38
+ ratio posterior distribution lies mostly below the search value, with the 90% confidence interval
39
+ being 7.94+0.70
40
+ −1.05. If one assumes that the signal comes from a real gravitational-wave merger event,
41
+ we find a light component m2 = 0.76+0.50
42
+ −0.14M⊙, suggesting a compact object of mass below one
43
+ solar mass at 83.8% confidence level.
44
+ Such a low mass for a compact object would suggest an
45
+ unexpectedly light neutron star or a black hole of primordial or exotic origin. The primary mass
46
+ would be m1 = 4.71+1.57
47
+ −2.18M⊙, likely in the lower mass gap, for a mass ratio of q =0.16+0.34
48
+ −0.06, at a
49
+ distance of DL =124+82
50
+ −48Mpc. The improved sensitivity of the next observing runs would make it
51
+ possible to observe similar signals with a higher SNR and to distinguish a sub-solar mass component.
52
+ I.
53
+ INTRODUCTION
54
+ The development of gravitational wave (GW) astron-
55
+ omy, with about 90 binary black hole (BBH) coalescence
56
+ events detected so far [1–6] by the LIGO-Virgo-KAGRA
57
+ (LVK) collaboration [7], is driving a true revolution in
58
+ astrophysics and cosmology. As the number of detected
59
+ events grows with successive observing catalogs, prop-
60
+ erties of the progenitors seem to challenge prior expec-
61
+ tations for a population of astrophysical objects.
62
+ Re-
63
+ cent examples are BBH events like GW190521 [8, 9] with
64
+ its most massive component in the pair-instability mass
65
+ gap [10], as well as events like GW190814 which has a
66
+ very low mass ratio and a secondary in the lower mass
67
+ gap [11]. Evidence for misaligned spins in the black hole
68
+ population has been found [12], suggesting a dynamical
69
+ binary formation.
70
+ The frequency range of the LIGO [13] and Virgo [14]
71
+ detectors makes them sensitive to compact object bina-
72
+ ries with masses below 1M⊙.
73
+ There is no compelling
74
+ stellar evolution model that can produce neutron stars
75
+ or black holes below 1 M⊙.
76
+ Therefore, the detection
77
+ of a subsolar-mass (SSM) black hole directly points to
78
+ a new black hole formation mechanism operating in the
79
+ Universe, an alternative to the astrophysical evolution
80
+ and collapse of ordinary matter. Primordial black holes
81
+ (PBHs) are natural candidates since they can be pro-
82
+ duced with a wide mass spectrum in the early Universe
83
+ through the collapse of highly overdense regions [15]. An
84
+ SSM compact object detection provides the cleanest sig-
85
+ nature for a PBH, though there are some proposals of
86
+ dark matter with exotic properties that could also pro-
87
+ duce subsolar-mass objects [16–29].
88
+ Before the advent of GW astronomy, the only way to
89
+ detect SSM black holes was via X-ray binaries [30] or
90
+ microlensing [31]. At present, some hints of the existence
91
+ of such light black holes come from microlensing events
92
+ towards the bulge [32], from Andromeda [33] and lensed
93
+ quasars [34, 35], although the mass, the nature and the
94
+ abundance of the lenses remain uncertain.
95
+ Complementary to these astrophysical searches, com-
96
+ arXiv:2301.11619v1 [gr-qc] 27 Jan 2023
97
+
98
+ 2
99
+ pact binary coalescences (CBCs) with at least one sub-
100
+ solar component have been searched for in the first (O1),
101
+ second (O2) and third (O3) observing runs of LVK, with-
102
+ out convincing evidence [36–40]. Nevertheless, a further
103
+ search for SSM black holes with low mass ratio in the
104
+ O2 data has recently revealed four potential candidate
105
+ events1 (we refer the reader to Table I of [41]) with a
106
+ false alarm rate smaller than 2 yr−1.
107
+ In this paper, we follow up this search and perform pa-
108
+ rameter inference of the four events. Our primary goal is
109
+ to further investigate these SSM triggers using the stan-
110
+ dard parameter estimation (PE) methods. These allow
111
+ us to extend the frequency range of the search and use
112
+ more accurate waveforms including spin precession, and
113
+ higher order modes, as well as the merger and ringdown
114
+ phases. We also can visually inspect the quality of the
115
+ data and subtract non-gaussianities using standard tools
116
+ such as BayesWave [42–44].
117
+ We focus on the third candidate event reported in Ta-
118
+ ble I of [41], observed by both LIGO Hanford and LIGO
119
+ Livingston interferometers. It is the most significant two
120
+ detector trigger of the search and the only one having
121
+ significant support for an SSM component after further
122
+ inspection with PE. We analyse in detail the data and
123
+ perform a careful PE around this trigger, observed on
124
+ April 1st 2017 and referred here as SSM170401.
125
+ Fur-
126
+ thermore, we discuss the impact of a prominent glitch
127
+ removal. As a by-product, the PE allows us to infer the
128
+ component masses, spins, distance and sky locations. In
129
+ particular, we infer the probability of an SSM compo-
130
+ nent, if one assumes that the signal is coming from a
131
+ BBH merger event.
132
+ II.
133
+ PROPERTIES OF THE CANDIDATE
134
+ To obtain the properties of the candidate we interpret
135
+ the signal as coming from the coalescence of two com-
136
+ pact objects. The signal was found in data taken on 2017
137
+ April 1, 01:43:34 UTC during the O2 LIGO-Virgo observ-
138
+ ing run. This candidate was not reported by any of the
139
+ LVK searches, both generic [3] and SSM specific [45], but
140
+ it was reported as part of a search for SSM candidates
141
+ in asymmetric binaries using the GstLAL pipeline [41].
142
+ The trigger had detector frame masses of 4.897 M⊙ and
143
+ 0.7795 M⊙, with a false-alarm-rate (FAR) of 0.4134 yr−1
144
+ and a combined network signal-to-noise ratio (SNR) of
145
+ ∼ 8.67.
146
+ The strain in Hanford presents a glitch 14 s before co-
147
+ alescence, as shown in Fig. 1. The search presented in
148
+ Ref. [41] uses templates starting at f=45 Hz. The loud-
149
+ est template, in this case, is only 10 s long and so should
150
+ be unaffected by the glitch. However, PE was performed
151
+ 1 Three additional subsolar-mass triggers were recently reported
152
+ in [40] which could be the object of future analysis.
153
+ FIG. 1. Figure showing the Hanford original whitened strain
154
+ ˜hwhitened(f) = ˜h(f)/
155
+
156
+ Sn(f), the whitened glitch model and
157
+ the whitened clean data after subtracting the glitch. Times
158
+ are shown relative to the trigger time.
159
+ with templates starting at 20 Hz, which are roughly 100
160
+ s long for the component masses discussed. In this sit-
161
+ uation the glitch must be removed.
162
+ Using BayesWave
163
+ [42, 43] we fit to the data a combined glitch, signal and
164
+ Gaussian noise model. We then subtract the glitch part
165
+ of the model from the original data and obtain the clean
166
+ data to be used for PE. The same procedure was used by
167
+ the LVK collaboration for GW170817 to clean the data
168
+ from a large glitch [46].
169
+ We infer the CBC parameters of the signal using a
170
+ Bayesian analysis of the data from LIGO Livingston
171
+ and LIGO Hanford, following the methodology outlined
172
+ in Appendix B of [3].
173
+ In analysing the data, we fit
174
+ two different waveform models: IMRPhenomPv2 [47] and
175
+ IMRPhenomXPHM [48], the latter including higher order
176
+ modes.
177
+ We then compare the posterior samples from
178
+ each of these, and find consistency between the two mod-
179
+ els, noting that both of them take into account precessing
180
+ spins. The TaylorF2 [49] waveform model has also been
181
+ tested and, despite it providing compatible results, it fails
182
+ to reach the same level of significance.
183
+ We use a low-frequency cutoff of 20 Hz in both detec-
184
+ tors for the likelihood evaluation and choose uninforma-
185
+ tive and wide priors (see Supplemental Material). The
186
+ primary tool used for sampling the posterior distribution
187
+ is the LALInference Markov Chain Monte Carlo imple-
188
+ mentation as described in [55]. The power spectral den-
189
+ sity used in the calculations of the likelihood is estimated
190
+ using BayesWave [42, 43]. The study uses the O2 open
191
+ access data [56] with a sampling frequency of 4096 Hz;
192
+ however the likelihood is integrated up to 1600 Hz.
193
+ The signal is present in the detector for ∼ 3000 cycles,
194
+ allowing us to constrain the source properties. The esti-
195
+ mated parameters are reported in Table I. The marginal-
196
+ ized posterior for the absolute value of the matched filter
197
+ SNR is 7.98+0.62
198
+ −1.03
199
+ for IMRPhenomPv2 and 7.94+0.70
200
+ −1.05
201
+ for
202
+
203
+ Hanford
204
+ original data
205
+ 15
206
+ clean data
207
+ glitch
208
+ 10
209
+ Whitened Strain
210
+ 5
211
+ -5
212
+ 14.19-14.16-14.13 -14.1 -14.07-14.04-14.01-13.98-13.95-13.92
213
+ Time [seco0nds1 from 2017-04-01 01:43:34.677 UTC (1175046232.677)3
214
+ Parameter
215
+ IMRPhenomPv2 IMRPhenomXPHM
216
+ Signal to Noise Ratio
217
+ 7.98+0.62
218
+ −1.03
219
+ 7.94+0.70
220
+ −1.05
221
+ Primary mass (M⊙)
222
+ 4.65+1.21
223
+ −2.15
224
+ 4.71+1.57
225
+ −2.18
226
+ Secondary mass (M⊙)
227
+ 0.77+0.50
228
+ −0.12
229
+ 0.76+0.50
230
+ −0.14
231
+ Primary spin magnitude
232
+ 0.32+0.47
233
+ −0.26
234
+ 0.36+0.46
235
+ −0.30
236
+ Secondary spin magnitude
237
+ 0.48+0.46
238
+ −0.43
239
+ 0.47+0.46
240
+ −0.42
241
+ Total mass (M⊙)
242
+ 5.42+1.10
243
+ −1.65
244
+ 5.47+1.43
245
+ −1.68
246
+ Mass ratio (m2/m1 ≤ 1)
247
+ 0.17+0.34
248
+ −0.05
249
+ 0.16+0.34
250
+ −0.06
251
+ χeff [50, 51]
252
+ −0.06+0.17
253
+ −0.32
254
+ −0.05+0.22
255
+ −0.35
256
+ χp [52]
257
+ 0.28+0.34
258
+ −0.21
259
+ 0.33+0.33
260
+ −0.26
261
+ Luminosity Distance (Mpc)
262
+ 119+82
263
+ −48
264
+ 124+82
265
+ −48
266
+ Redshift
267
+ 0.028+0.018
268
+ −0.010
269
+ 0.028+0.017
270
+ −0.011
271
+ Ra (◦)
272
+ −2+34
273
+ −35
274
+ −1+34
275
+ −37
276
+ Dec (◦)
277
+ 47+14
278
+ −26
279
+ 46+14
280
+ −29
281
+ Final mass (M⊙)
282
+ 5.34+1.11
283
+ −1.70
284
+ 5.40+1.45
285
+ −1.73
286
+ Final spin
287
+ 0.39+0.24
288
+ −0.07
289
+ 0.42+0.22
290
+ −0.10
291
+ P(m2 < 1 M⊙)
292
+ 85.5%
293
+ 83.8%
294
+ P(m2 < 1.2 M⊙)
295
+ 92.7%
296
+ 92.7%
297
+ TABLE I. Parameters of SSM170401. All masses are in the
298
+ source frame.
299
+ We assume Planck15 Cosmology [53].
300
+ The
301
+ statistical uncertainty of all the parameters is quantified by
302
+ the equal-tailed 90% credible intervals about the median of
303
+ the marginalized one-dimensional posteriors. Right ascension
304
+ (Ra) and declination (Dec) are measured in the International
305
+ Celestial Reference System (ICRS) [54].
306
+ IMRPhenomXPHM. The median value of the SNR is lower
307
+ than that found by the search, which was 8.67. How-
308
+ ever, these two quantities are not directly comparable.
309
+ The SNR from the search is obtained by maximizing the
310
+ ranking statistic over a discrete template bank [41, 57–
311
+ 59], while the quoted SNR from the PE is the median
312
+ value over the samples. Since the ranking statistic and
313
+ the SNR are closely related, the SNR that is more compa-
314
+ rable to that of the search would be the maximum SNR
315
+ as found by the PE. The values of this maximum PE SNR
316
+ are 9.09 for IMRPhenomPv2 and 9.18 for IMRPhenomXPHM.
317
+ These values are slightly larger than that of the search,
318
+ which is consistent with what would happen if the signal
319
+ was astrophysical. However, this is also expected in the
320
+ noise case due to the larger parameter space that allows
321
+ more flexibility for the PE analysis to fit the data. We
322
+ also notice the maximum value of the SNR to be larger
323
+ for IMRPhenomXPHM than for IMRPhenomPv2. In a simi-
324
+ lar way, this is expected for an astrophysical signal but
325
+ also for noise, since the waveform includes Higher Order
326
+ Modes and thus has more flexibility to fit the data.
327
+ The signal is then compatible with a compact binary
328
+ system having an unequal mass ratio q =0.17+0.34
329
+ −0.05
330
+ (all
331
+ uncertainties are quoted at 90% C.L.), a source frame
332
+ 1
333
+ 2
334
+ 3
335
+ 4
336
+ 5
337
+ 6
338
+ 7
339
+ msource
340
+ 1
341
+ [M ]
342
+ 0.4
343
+ 0.6
344
+ 0.8
345
+ 1.0
346
+ 1.2
347
+ 1.4
348
+ msource
349
+ 2
350
+ [M ]
351
+ IMRPhenomPv2
352
+ IMRPhenomXPHM
353
+ FIG. 2. Posterior distributions for the primary and secondary
354
+ mass in the source frame. The 90% credible regions are in-
355
+ dicated by the solid contour in the joint distribution, and by
356
+ the dashed vertical and horizontal lines in the marginalized
357
+ distributions.
358
+ primary mass m1 = 4.65+1.21
359
+ −2.15M⊙ and a source frame
360
+ secondary mass m2 = 0.77+0.50
361
+ −0.12M⊙ as shown in Fig. 2.
362
+ The marginalised posterior distribution for the secondary
363
+ mass favors a mass lower than 1M⊙ (85.5% C.L.) and
364
+ provides strong support for a mass lower than 1.2M⊙
365
+ (92.7% C.L.). Using the IMRPhenomXPHM waveform, we
366
+ find almost identical results, with a mass lower than 1M⊙
367
+ at 83.8%C.L.
368
+ The left panel of Fig. 3 shows the posterior distribu-
369
+ tions for the magnitude and tilt angle of the individual
370
+ spins, measured at a reference frequency of 20 Hz. All
371
+ pixels in this plot have an equal prior probability. The
372
+ spin of the secondary BH is largely unconstrained, as ex-
373
+ pected for very unequal masses.
374
+ The primary spin, if
375
+ present, is likely to be misaligned with the orbital an-
376
+ gular momentum with a preference for small spin mag-
377
+ nitude (a1 =0.32+0.47
378
+ −0.26).
379
+ As can be seen in the right
380
+ panel of Fig. 3, this leads to a χeff compatible with 0
381
+ (χeff =−0.05+0.22
382
+ −0.35) and an uninformative posterior in χp
383
+ (χp =0.33+0.33
384
+ −0.26).
385
+ The luminosity distance and inclination angle θJN pos-
386
+ terior distributions are shown together in the left panel of
387
+ Fig. 4, since these two quantities are correlated. We find
388
+ a luminosity distance of dL =119+82
389
+ −48Mpc. We identify
390
+ a bimodal distribution for θJN due to the fact that we
391
+ can not distinguish whether the system is being observed
392
+ face-on (θJN ∼ 0) or face-away (θJN ∼ π), but it being
393
+ edge-on (θJN ∼ π/2) is disfavoured. In the face-on(off)
394
+ configuration, the effects of precession [60] and higher or-
395
+ der modes in the signal are suppressed [61], as is the case
396
+
397
+ 4
398
+ 0.0
399
+ 0.2
400
+ 0.4
401
+ 0.6
402
+ 0.8
403
+ /(
404
+ )
405
+ /(
406
+ )
407
+ ×
408
+ 0.0
409
+ 0.5
410
+ 1.0
411
+ 1.5
412
+ 2.0
413
+ 2.5
414
+ posterior probability per pixel
415
+ 0.0
416
+ 0.2
417
+ 0.4
418
+ 0.6
419
+ 0.8
420
+ 1.0
421
+ p
422
+ 1.00
423
+ 0.75
424
+ 0.50
425
+ 0.25
426
+ 0.00
427
+ 0.25
428
+ 0.50
429
+ 0.75
430
+ 1.00
431
+ eff
432
+ IMRPhenomPv2
433
+ IMRPhenomXPHM
434
+ Prior
435
+ FIG. 3. Left: posterior distribution for the individual spins of SSM170401 according to the IMRPhenomXPHM waveform model.
436
+ The radial coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as
437
+ the angle between the spin and the orbital angular momentum of the binary at a reference frequency of 20 Hz. A tilt of 0°
438
+ indicates that the spin is aligned with the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180°
439
+ imply a precessing orbital plane. All bins have an equal prior probability. Right: posterior distributions for the effective spin
440
+ and effective in-plane spin parameters. The black lines in the right panel show the prior distributions for the effective spin
441
+ parameters. The 90% credible regions are indicated by the solid contour in the joint distribution, and by dashed vertical and
442
+ horizontal lines in the marginalized distributions. The large density for tilts close to 90° leads to non-zero values for χp and
443
+ low values for χeff.
444
+ here.
445
+ From the right panel of Fig. 4, it can be seen that
446
+ the signal came from a position in the sky for which the
447
+ LIGO network has good sensitivity to the two GW polar-
448
+ izations [62]. This, however, does not represent the area
449
+ with the best sensitivity, which would be located on top
450
+ of the continental US and its antipodes.
451
+ In summary, the PE shows that the chirp and compo-
452
+ nent masses, the effective spin, the luminosity distance
453
+ and the sky location can be reconstructed, and are con-
454
+ sistent with that of a BBH merger event. However, it
455
+ is known that Gaussian noise can also mimic such a sig-
456
+ nal [63], and given the low values of the SNR and iFAR,
457
+ it is not possible to ascertain the origin of the signal, as
458
+ it could very well have been generated by detector noise.
459
+ III.
460
+ DISCUSSION
461
+ Even if the significance of the trigger did not improve
462
+ with the present analysis and PE since it remains at the
463
+ threshold limit, it is interesting to speculate on the possi-
464
+ ble origin of the secondary component (with a preferred
465
+ mass below 1 M⊙ for such a compact object, if inter-
466
+ preted as a GW event).
467
+ The neutron star nature of the light compact object
468
+ seems disfavored. Indeed, neutron stars have relatively
469
+ well-determined masses from observations of binary sys-
470
+ tems, including pulsars or X-ray binaries involving an
471
+ accreting neutron star from a companion. Their masses
472
+ are contained within a narrow range 1.25-1.45 M⊙ [64],
473
+ further confirmed by the observation of GW170817 [46].
474
+ Even though there is a recent claim [65] for a neutron star
475
+ of mass around 0.7 M⊙, modern core-collapse supernova
476
+ simulations [66, 67] indicate it is difficult to form neutron
477
+ stars with masses below one solar mass. Such a small
478
+ mass for a neutron star probably requires a QCD equa-
479
+ tion of state that is beyond theoretical predictions [68].
480
+ Although the neutron star interpretation of the hypo-
481
+ thetical trigger SSM170401 is observationally disfavored,
482
+ given our current limited knowledge of the equation of
483
+ state we cannot exclude a neutron star origin.
484
+ On the other hand, PBHs [69–72], formed by the grav-
485
+ itational collapse of large inhomogeneities in the early
486
+ Universe are already considered as a possible explana-
487
+ tion of LVK GW detections, see e.g. [73–85]. Depending
488
+
489
+ 5
490
+ 0.0
491
+ 0.5
492
+ 1.0
493
+ 1.5
494
+ 2.0
495
+ 2.5
496
+ 3.0
497
+ JN [radians]
498
+ 50
499
+ 100
500
+ 150
501
+ 200
502
+ 250
503
+ 300
504
+ 350
505
+ 400
506
+ DL [Mpc]
507
+ Prior
508
+ IMRPhenomPv2
509
+ IMRPhenomXPHM
510
+ -135°
511
+ -90°
512
+ -45°
513
+
514
+ 45°
515
+ 90°
516
+ 135°
517
+
518
+ 30°
519
+ 60°
520
+ 60°
521
+ 30°
522
+
523
+ -30°
524
+ -60°
525
+ -60°
526
+ -30°
527
+ 50% area: 711 deg²
528
+ 90% area: 2,658 deg²
529
+ FIG. 4. Left: posterior distributions for the luminosity distance and the inclination angle of SSM170401, according to the
530
+ IMRPhenomXPHM and IMRPhenomPv2 waveform models. The inclination angle indicates the angle between the line of sight and
531
+ the total angular momentum of the binary. For nonprecessing binaries, this is equal to the angle between the orbital angular
532
+ momentum and the line of sight. The solid lines and the central contour denote 90% credible regions. Right: sky position of
533
+ the event as evaluated from the Greenwich meridian according to the IMRPhenomXPHM waveform model.
534
+ on the model, they may explain anything from a tiny
535
+ fraction of Dark Matter to its entirety. PBHs have been
536
+ the main motivation to conduct searches of SSM black
537
+ holes in the LVK data [38, 39, 41, 45, 86–88], in partic-
538
+ ular, the extended subsolar search with low-mass ratios
539
+ in O2 which reported SSM170401 as a possible candi-
540
+ date [41]. If some of the observed binary coalescences
541
+ are indeed due to PBHs, they must have a relatively ex-
542
+ tended mass distribution that would have been imprinted
543
+ by the thermal history of the Universe [78, 89].
544
+ This
545
+ would lead to a peak in the mass distribution around a
546
+ solar mass which is naturally produced at the QCD tran-
547
+ sition [78, 89–94], and SSM170401 could be an example
548
+ of a subsolar PBH around the QCD-induced peak. The
549
+ spin posterior is quite broad and the spin is compatible
550
+ with zero, although a slight preference for a primary spin
551
+ around 0.3 is observed. In this case, the non-zero but
552
+ relatively low spin of the primary component may have
553
+ been acquired by matter accretion, previous mergers or
554
+ hyperbolic encounters [84, 95, 96].
555
+ Dark Matter with very special particle composition
556
+ could also be at the origin of solar-mass black holes if
557
+ it can accumulate inside neutron stars and lead to their
558
+ collapse into a black hole. Several scenarios have been
559
+ proposed [22, 26, 97–100], but they all require very par-
560
+ ticular conditions, in order not to change the correspond-
561
+ ing Chandrasekhar limit. Such transmutations, if leading
562
+ to SSM black holes, would be accompanied by violent ex-
563
+ plosions that would have been observed. It is therefore
564
+ still unclear if such scenarios are realistic and compati-
565
+ ble with observations. In an alternative scenario, with
566
+ complex and dissipative Dark Matter composition, SSM
567
+ black holes could form through the cooling and gravita-
568
+ tional collapse of Dark Matter halos [23]. This model was
569
+ constrained by the LVK data in [39, 101, 102].
570
+ Another possibility, if considered as a real GW event,
571
+ could be that the secondary component of SSM170401 is
572
+ a boson star, a hypothetical horizonless compact object
573
+ formed by an ultralight bosonic field. If the mass of the
574
+ bosonic particle is larger than 10−10eV/c2, the boson star
575
+ can have subsolar mass [103]. Note that due to Beken-
576
+ stein’s bound, any object of a given mass which is as
577
+ compact as a black hole can only be a black hole. Boson
578
+ stars necessarily must be larger, implying a lower ISCO
579
+ frequency in the middle or lower than the LIGO sensitiv-
580
+ ity band. So the viable parameter space for a boson star
581
+ is probably very limited.
582
+ Finally, we comment on the mass of the primary com-
583
+ ponent, which would preferably lie in the low mass gap
584
+ between 2.5 and 5M⊙ (61%C.L.). Assuming a real GW
585
+ merger event, it would most probably be a black hole. A
586
+ neutron star origin with mass above 2.5M⊙ is strongly
587
+ disfavoured. Other black hole candidates in the low mass
588
+ gap were observed in the GWTC-3 catalog, which may
589
+ bring additional support for a primordial origin since
590
+ PBHs should not have a mass gap.
591
+ IV.
592
+ CONCLUSIONS
593
+ In this work, we investigate the most significant can-
594
+ didate reported in [41], removing a prominent blip glitch
595
+
596
+ 6
597
+ in the data and estimating the CBC parameters with
598
+ the state-of-the-art waveform families IMRPhenomPv2 and
599
+ IMRPhenomXPHM, taking into account contributions from
600
+ higher order modes and extending the frequency range
601
+ down to 20 Hz. However, with this improved modelling
602
+ with respect to the search, we find a 90% confidence level
603
+ network SNR of 7.94+0.70
604
+ −1.05, which is lower than the SNR
605
+ of 8.6 obtained in the template-bank-based search.
606
+ Nevertheless, if one would assume that it is coming
607
+ from a real GW event, the trigger observed on the 1st of
608
+ April, 2017, is identified consistently in both LIGO de-
609
+ tectors with a light mass component, m2 = 0.76+0.50
610
+ −0.14M⊙
611
+ (90% credible interval). Such low mass is below one solar
612
+ mass and below 1.2 solar masses at 83.8% and 92.7% con-
613
+ fidence level, respectively. The compact binary coales-
614
+ cence presents a total mass of 5.47+1.43
615
+ −1.68M⊙, correspond-
616
+ ing to a mass ratio of q =0.16+0.34
617
+ −0.06, and a luminosity
618
+ distance of 124+82
619
+ −48Mpc.
620
+ The values quoted here are a
621
+ result of using IMRPhenomXPHM but consistent results are
622
+ obtained with different analysis pipelines and waveform
623
+ families. At this point, the observational data and the
624
+ search from [41] do not show enough significance to claim
625
+ a firm GW observation. Nevertheless, our analysis shows
626
+ that the signal, if coming from a GW event, is consistent
627
+ with an SSM black hole. We discuss several scenarios for
628
+ the production of such a possible SSM black hole candi-
629
+ date and conclude that a neutron star origin is disfavored
630
+ or at least requires a non-standard matter equation of
631
+ state. Other possibilities could include primordial black
632
+ holes, black holes formed from the accretion of hypothet-
633
+ ical Dark Matter particles onto neutron stars, or boson
634
+ stars. Given that PBHs can also explain some intriguing
635
+ properties of other compact binary coalescences without
636
+ being restricted by the Chandrashekar mass, they can be
637
+ considered as our preferred hypothesis.
638
+ The data from the third observing run O3, as well as
639
+ data from the future planned runs with improved sensi-
640
+ tivity, O4 and O5, offer a great opportunity for discover-
641
+ ing additional SSM candidate events, and could increase
642
+ the statistical significance for the existence of a new class
643
+ of SSM compact objects.
644
+ ACKNOWLEDGMENTS
645
+ S.C. acknowledges support from the Francqui Foun-
646
+ dation
647
+ through
648
+ a
649
+ Starting
650
+ Grant.
651
+ K.M.
652
+ is
653
+ sup-
654
+ ported by King’s College London through a Postgrad-
655
+ uate International Scholarship.
656
+ M.S. is supported in
657
+ part by the Science and Technology Facility Council
658
+ (STFC), United Kingdom, under the research grant
659
+ ST/P000258/1.
660
+ This work is partially supported by
661
+ the Spanish grants PID2020-113701GB-I00, PID2021-
662
+ 123012NB-C43 [MICINN-FEDER], and the Centro de
663
+ Excelencia Severo Ochoa Program CEX2020-001007-S
664
+ through IFT, some of which include ERDF funds from
665
+ the European Union.
666
+ IFAE is partially funded by the
667
+ CERCA program of the Generalitat de Catalunya. We
668
+ acknowledge the use of IUCAA LDG cluster Sarathi
669
+ for the computational/numerical work. This material is
670
+ based upon work supported by NSF’s LIGO Laboratory
671
+ which is a major facility fully funded by the National
672
+ Science Foundation.
673
+ [1] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
674
+ Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc].
675
+ [2] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
676
+ X 6, 041015 (2016), [Erratum: Phys.Rev.X 8, 039903
677
+ (2018)], arXiv:1606.04856 [gr-qc].
678
+ [3] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
679
+ X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE].
680
+ [4] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X
681
+ 11, 021053 (2021), arXiv:2010.14527 [gr-qc].
682
+ [5] R. Abbott et al. (LIGO Scientific, VIRGO),
683
+ (2021),
684
+ arXiv:2108.01045 [gr-qc].
685
+ [6] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA),
686
+ (2021), arXiv:2111.03606 [gr-qc].
687
+ [7] B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Ac-
688
+ ernese, K. Ackley, C. Adams, V. Adya, C. Affeldt,
689
+ M. Agathos, K. Agatsuma, N. Aggarwal, O. Aguiar,
690
+ L. Aiello, A. Ain, P. Ajith, T. Akutsu, G. Allen,
691
+ and
692
+ A. Allocca, Living Reviews in Relativity 23 (2020),
693
+ 10.1007/s41114-020-00026-9.
694
+ [8] R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
695
+ Lett. 125, 101102 (2020), arXiv:2009.01075 [gr-qc].
696
+ [9] R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J.
697
+ Lett. 900, L13 (2020), arXiv:2009.01190 [astro-ph.HE].
698
+ [10] S.
699
+ E.
700
+ Woosley,
701
+ Astrophys.
702
+ J.
703
+ 836,
704
+ 244
705
+ (2017),
706
+ arXiv:1608.08939 [astro-ph.HE].
707
+ [11] R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J.
708
+ 896, L44 (2020), arXiv:2006.12611 [astro-ph.HE].
709
+ [12] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
710
+ (2021), arXiv:2111.03634 [astro-ph.HE].
711
+ [13] T. L. S. Collaboration, J. Aasi, B. P. Abbott, R. Ab-
712
+ bott, et al., Classical and Quantum Gravity 32, 074001
713
+ (2015).
714
+ [14] F. Acernese, M. Agathos, et al., Classical and Quantum
715
+ Gravity 32, 024001 (2014).
716
+ [15] J. Garc´ıa-Bellido, A. D. Linde,
717
+ and D. Wands, Phys.
718
+ Rev. D 54, 6040 (1996), arXiv:astro-ph/9605094.
719
+ [16] I. Goldman and S. Nussinov, Phys. Rev. D 40, 3221
720
+ (1989).
721
+ [17] C. Kouvaris and P. Tinyakov, Phys. Rev. D 83, 083512
722
+ (2011), arXiv:1012.2039 [astro-ph.HE].
723
+ [18] A. de Lavallaz and M. Fairbairn, Phys. Rev. D 81,
724
+ 123521 (2010), arXiv:1004.0629 [astro-ph.GA].
725
+ [19] J. Bramante and T. Linden, Phys. Rev. Lett. 113,
726
+ 191301 (2014), arXiv:1405.1031 [astro-ph.HE].
727
+ [20] J. Bramante and F. Elahi, Phys. Rev. D 91, 115001
728
+ (2015), arXiv:1504.04019 [hep-ph].
729
+ [21] J. Bramante, T. Linden, and Y.-D. Tsai, Phys. Rev. D
730
+ 97, 055016 (2018), arXiv:1706.00001 [hep-ph].
731
+
732
+ 7
733
+ [22] C. Kouvaris, P. Tinyakov, and M. H. G. Tytgat, Phys.
734
+ Rev. Lett. 121, 221102 (2018), arXiv:1804.06740 [astro-
735
+ ph.HE].
736
+ [23] S. Shandera, D. Jeong, and H. S. G. Gebhardt, Phys.
737
+ Rev. Lett. 120, 241102 (2018), arXiv:1802.08206 [astro-
738
+ ph.CO].
739
+ [24] J. H. Chang, D. Egana-Ugrinovic, R. Essig,
740
+ and
741
+ C. Kouvaris, JCAP 03, 036 (2019), arXiv:1812.07000
742
+ [hep-ph].
743
+ [25] M. A. Latif, A. Lupi, D. R. G. Schleicher, G. D’Amico,
744
+ P. Panci, and S. Bovino, Mon. Not. Roy. Astron. Soc.
745
+ 485, 3352 (2019), arXiv:1812.03104 [astro-ph.CO].
746
+ [26] B. Dasgupta, R. Laha,
747
+ and A. Ray, Phys. Rev. Lett.
748
+ 126, 141105 (2021), arXiv:2009.01825 [astro-ph.HE].
749
+ [27] J. Gurian,
750
+ M. Ryan,
751
+ S. Schon,
752
+ D. Jeong,
753
+ and
754
+ S. Shandera, Astrophys. J. Lett. 939, L12 (2022),
755
+ arXiv:2209.00064 [astro-ph.CO].
756
+ [28] M. Ryan and D. Radice, Phys. Rev. D 105, 115034
757
+ (2022), arXiv:2201.05626 [astro-ph.HE].
758
+ [29] M.
759
+ Hippert,
760
+ E.
761
+ Dillingham,
762
+ H.
763
+ Tan,
764
+ D.
765
+ Curtin,
766
+ J.
767
+ Noronha-Hostler,
768
+ and
769
+ N.
770
+ Yunes,
771
+ (2022),
772
+ arXiv:2211.08590 [astro-ph.HE].
773
+ [30] J. M. Corral-Santana, J. Casares, T. Munoz-Darias,
774
+ F. E. Bauer, I. G. Martinez-Pais,
775
+ and D. M. Russell,
776
+ Astron. Astrophys. 587, A61 (2016), arXiv:1510.08869
777
+ [astro-ph.HE].
778
+ [31] B. Paczynski, Astrophys. J. 304, 1 (1986).
779
+ [32] �L. Wyrzykowski and I. Mandel, Astron. Astrophys. 636,
780
+ A20 (2020), arXiv:1904.07789 [astro-ph.SR].
781
+ [33] H. Niikura et al., Nature Astron. 3, 524 (2019),
782
+ arXiv:1701.02151 [astro-ph.CO].
783
+ [34] M. R. S. Hawkins, Astron. Astrophys. 643, A10 (2020),
784
+ arXiv:2010.15007 [astro-ph.CO].
785
+ [35] M. R. S. Hawkins, Mon. Not. Roy. Astron. Soc. 512,
786
+ 5706 (2022), arXiv:2204.09143 [astro-ph.CO].
787
+ [36] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys.
788
+ Rev. Lett. 121, 231103 (2018), arXiv:1808.04771 [astro-
789
+ ph.CO].
790
+ [37] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys.
791
+ Rev. Lett. 123, 161102 (2019), arXiv:1904.08976 [astro-
792
+ ph.CO].
793
+ [38] A.
794
+ H.
795
+ Nitz
796
+ and
797
+ Y.-F.
798
+ Wang,
799
+ arXiv
800
+ (2021),
801
+ arXiv:2102.00868 [astro-ph.HE].
802
+ [39] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA),
803
+ (2021), arXiv:2109.12197 [astro-ph.CO].
804
+ [40] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),
805
+ (2022), arXiv:2212.01477 [astro-ph.HE].
806
+ [41] K. S. Phukon, G. Baltus, S. Caudill, S. Clesse, A. De-
807
+ passe, M. Fays, H. Fong, S. J. Kapadia, R. Magee,
808
+ and A. J. Tanasijczuk, (2021), arXiv:2105.11449 [astro-
809
+ ph.CO].
810
+ [42] N. J. Cornish and T. B. Littenberg, Classical and Quan-
811
+ tum Gravity 32, 135012 (2015).
812
+ [43] T. B. Littenberg and N. J. Cornish, Phys. Rev. D 91,
813
+ 084034 (2015).
814
+ [44] D. Davis, T. B. Littenberg, I. M. Romero-Shaw, M. Mill-
815
+ house, J. McIver, F. D. Renzo, and G. Ashton, Classical
816
+ and Quantum Gravity 39, 245013 (2022).
817
+ [45] B. P. Abbott, R. Abbott, T. Abbott, S. Abraham,
818
+ F. Acernese, K. Ackley, C. Adams, R. X. Adhikari,
819
+ V. Adya, C. Affeldt, et al., Physical review letters 123,
820
+ 161102 (2019).
821
+ [46] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.
822
+ Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].
823
+ [47] S.
824
+ Khan,
825
+ K.
826
+ Chatziioannou,
827
+ M.
828
+ Hannam,
829
+ and
830
+ F. Ohme, Physical Review D 100 (2019), 10.1103/phys-
831
+ revd.100.024059.
832
+ [48] G. Pratten, C. Garc´ıa-Quir´os, M. Colleoni, A. Ramos-
833
+ Buades, H. Estell´es, M. Mateu-Lucena, R. Jaume,
834
+ M. Haney, D. Keitel, J. E. Thompson, and et al., Physi-
835
+ cal Review D 103 (2021), 10.1103/physrevd.103.104056.
836
+ [49] A. Buonanno, B. Iyer, E. Ochsner, Y. Pan,
837
+ and
838
+ B. S. Sathyaprakash, Phys. Rev. D 80, 084043 (2009),
839
+ arXiv:0907.0700 [gr-qc].
840
+ [50] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Br¨ugmann,
841
+ N. Dorband, D. M¨uller, F. Ohme, D. Pollney, C. Reiss-
842
+ wig, L. Santamar´ıa, and J. Seiler, Phys. Rev. Lett. 106,
843
+ 241101 (2011).
844
+ [51] L. Santamar´ıa, F. Ohme, P. Ajith, B. Br¨ugmann,
845
+ N. Dorband, M. Hannam, S. Husa, P. M¨osta, D. Pollney,
846
+ C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan,
847
+ Phys. Rev. D 82, 064016 (2010).
848
+ [52] P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D
849
+ 91, 024043 (2015).
850
+ [53] Planck Collaboration, A&A 594, A13 (2016).
851
+ [54] E. F. Arias, P. Charlot, M. Feissel, and J. F. Lestrade,
852
+ Astronomy and Astrophysics 303, 604 (1995).
853
+ [55] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff,
854
+ S. Vitale, B. Aylott, K. Blackburn, N. Christensen,
855
+ M. Coughlin, W. Del Pozzo, F. Feroz, J. Gair, C.-
856
+ J. Haster, V. Kalogera, T. Littenberg, I. Mandel,
857
+ R. O’Shaughnessy, M. Pitkin, C. Rodriguez, C. R¨over,
858
+ T. Sidery, R. Smith, M. Van Der Sluys, A. Vecchio,
859
+ W. Vousden,
860
+ and L. Wade, Phys. Rev. D 91, 042003
861
+ (2015).
862
+ [56] R. Abbott et al. (LIGO Scientific, Virgo), SoftwareX
863
+ 13, 100658 (2021), arXiv:1912.11716 [gr-qc].
864
+ [57] C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Can-
865
+ non, R. Cariou, S. Caudill, S. J. Chamberlin, J. D.
866
+ Creighton, R. Everett, et al., Physical Review D 95,
867
+ 042001 (2017).
868
+ [58] K. Cannon, R. Cariou, A. Chapman, M. Crispin-
869
+ Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara,
870
+ D. Keppel, L. Liao, et al., The Astrophysical Journal
871
+ 748, 136 (2012).
872
+ [59] K. Cannon, S. Caudill, C. Chan, B. Cousins, J. D.
873
+ Creighton, B. Ewing, H. Fong, P. Godwin, C. Hanna,
874
+ S. Hooper, R. Huxford, R. Magee, D. Meacher, C. Mes-
875
+ sick, S. Morisaki, D. Mukherjee, H. Ohta, A. Pace,
876
+ S. Privitera,
877
+ I. de Ruiter,
878
+ S. Sachdev,
879
+ L. Singer,
880
+ D. Singh, R. Tapia, L. Tsukada, D. Tsuna, T. Tsutsui,
881
+ K. Ueno, A. Viets, L. Wade, and M. Wade, SoftwareX
882
+ 14, 100680 (2021).
883
+ [60] J. Calder´on Bustillo, P. Laguna,
884
+ and D. Shoemaker,
885
+ Phys. Rev. D 95, 104038 (2017).
886
+ [61] C. Mills and S. Fairhurst, Phys. Rev. D 103, 024042
887
+ (2021), arXiv:2007.04313 [gr-qc].
888
+ [62] N. Andersson, J. Baker, K. Belczynski, S. Bernuzzi,
889
+ E. Berti, L. Cadonati, P. Cerd´a-Dur´an, J. Clark, M. Fa-
890
+ vata, L. S. Finn,
891
+ and et al., Classical and Quantum
892
+ Gravity 30, 193002 (2013).
893
+ [63] G. Morras, J. F. Nu˜no Siles, J. Garc´ıa-Bellido,
894
+ and
895
+ E. R. Morales, (2022), arXiv:2209.05475 [gr-qc].
896
+ [64] J. M. Lattimer, Universe 5 (2019).
897
+ [65] V. Doroshenko, V. Suleimanov, G. P¨uhlhofer,
898
+ and
899
+ A. Santangelo, Nature Astronomy 6, 1444 (2022).
900
+ [66] B. M¨uller,
901
+ T. M. Tauris,
902
+ A. Heger,
903
+ P. Banerjee,
904
+ Y. Z. Qian, J. Powell, C. Chan, D. W. Gay,
905
+ and
906
+
907
+ 8
908
+ N. Langer, Mon. Not. Roy. Astron. Soc. 484, 3307
909
+ (2019), arXiv:1811.05483 [astro-ph.SR].
910
+ [67] A. Burrows, D. Radice, D. Vartanyan, H. Nagakura,
911
+ M. A. Skinner, and J. Dolence, Mon. Not. Roy. Astron.
912
+ Soc. 491, 2715 (2020), arXiv:1909.04152 [astro-ph.HE].
913
+ [68] H. Sotani, K. Iida, K. Oyamatsu,
914
+ and A. Ohnishi,
915
+ PTEP 2014, 051E01 (2014), arXiv:1401.0161 [astro-
916
+ ph.HE].
917
+ [69] Y. B. Zel’dovich and I. D. Novikov, Soviet Astronomy
918
+ 10, 602 (1967).
919
+ [70] S. Hawking, Mon. Not. Roy. Astron. Soc. 152, 75
920
+ (1971).
921
+ [71] B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron.
922
+ Soc. 168, 399 (1974).
923
+ [72] G. F. Chapline, Nature 253, 251 (1975).
924
+ [73] S. Bird, I. Cholis, J. B. Mu˜noz, Y. Ali-Ha¨ımoud,
925
+ M. Kamionkowski, E. D. Kovetz, A. Raccanelli,
926
+ and
927
+ A. G. Riess, Phys. Rev. Lett. 116, 201301 (2016),
928
+ arXiv:1603.00464 [astro-ph.CO].
929
+ [74] S. Clesse and J. Garc´ıa-Bellido, Phys. Dark Univ. 15,
930
+ 142 (2017), arXiv:1603.05234 [astro-ph.CO].
931
+ [75] M. Sasaki, T. Suyama, T. Tanaka,
932
+ and S. Yokoyama,
933
+ Phys.
934
+ Rev.
935
+ Lett.
936
+ 117,
937
+ 061101
938
+ (2016),
939
+ [Erratum:
940
+ Phys.Rev.Lett. 121, 059901 (2018)], arXiv:1603.08338
941
+ [astro-ph.CO].
942
+ [76] S. Clesse and J. Garc´ıa-Bellido, Phys. Dark Univ. 22,
943
+ 137 (2018), arXiv:1711.10458 [astro-ph.CO].
944
+ [77] N. Fernandez and S. Profumo, JCAP 08, 022 (2019),
945
+ arXiv:1905.13019 [astro-ph.HE].
946
+ [78] B. Carr, S. Clesse, J. Garc´ıa-Bellido,
947
+ and F. K¨uhnel,
948
+ Phys. Dark Univ. 31, 100755 (2021), arXiv:1906.08217
949
+ [astro-ph.CO].
950
+ [79] K. Jedamzik, JCAP 09, 022 (2020), arXiv:2006.11172
951
+ [astro-ph.CO].
952
+ [80] K. Jedamzik, Phys. Rev. Lett. 126, 051302 (2021),
953
+ arXiv:2007.03565 [astro-ph.CO].
954
+ [81] S. Clesse and J. Garc´ıa-Bellido, Phys. Dark Univ. 38,
955
+ 101111 (2022), arXiv:2007.06481 [astro-ph.CO].
956
+ [82] G. H¨utsi, M. Raidal, V. Vaskonen,
957
+ and H. Veerm¨ae,
958
+ JCAP 03, 068 (2021), arXiv:2012.02786 [astro-ph.CO].
959
+ [83] A. Hall, A. D. Gow, and C. T. Byrnes, Phys. Rev. D
960
+ 102, 123524 (2020), arXiv:2008.13704 [astro-ph.CO].
961
+ [84] J.
962
+ Garc´ıa-Bellido,
963
+ J.
964
+ F.
965
+ Nu˜no
966
+ Siles,
967
+ and
968
+ E.
969
+ Ruiz
970
+ Morales,
971
+ Phys.
972
+ Dark
973
+ Univ.
974
+ 31,
975
+ 100791
976
+ (2021), arXiv:2010.13811 [astro-ph.CO].
977
+ [85] G. Franciolini, V. Baibhav, V. De Luca, K. K. Y. Ng,
978
+ K. W. K. Wong, E. Berti, P. Pani, A. Riotto,
979
+ and
980
+ S. Vitale, (2021), arXiv:2105.03349 [gr-qc].
981
+ [86] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys.
982
+ Rev. Lett. 121, 231103 (2018), arXiv:1808.04771 [astro-
983
+ ph.CO].
984
+ [87] A. H. Nitz and Y.-F. Wang, Phys. Rev. Lett. 126,
985
+ 021103 (2021), arXiv:2007.03583 [astro-ph.HE].
986
+ [88] A. H. Nitz and Y.-F. Wang, (2022), arXiv:2202.11024
987
+ [astro-ph.HE].
988
+ [89] C. T. Byrnes, M. Hindmarsh, S. Young, and M. R. S.
989
+ Hawkins, JCAP 1808, 041 (2018), arXiv:1801.06138
990
+ [astro-ph.CO].
991
+ [90] K. Jedamzik, Phys. Rev. D 55, 5871 (1997), arXiv:astro-
992
+ ph/9605152.
993
+ [91] J. C. Niemeyer and K. Jedamzik, Phys. Rev. Lett. 80,
994
+ 5481 (1998), arXiv:astro-ph/9709072.
995
+ [92] J. Garcia-Bellido, H. Murayama, and G. White, JCAP
996
+ 12, 023 (2021), arXiv:2104.04778 [hep-ph].
997
+ [93] A.
998
+ Escriv`a,
999
+ E.
1000
+ Bagui,
1001
+ and
1002
+ S.
1003
+ Clesse,
1004
+ (2022),
1005
+ arXiv:2209.06196 [astro-ph.CO].
1006
+ [94] G. Franciolini, I. Musco, P. Pani,
1007
+ and A. Urbano,
1008
+ (2022), arXiv:2209.05959 [astro-ph.CO].
1009
+ [95] V. De Luca, G. Franciolini, P. Pani,
1010
+ and A. Riotto,
1011
+ JCAP 04, 052 (2020), arXiv:2003.02778 [astro-ph.CO].
1012
+ [96] S. Jaraba and J. Garc´ıa-Bellido, Phys. Dark Univ. 34,
1013
+ 100882 (2021), arXiv:2106.01436 [gr-qc].
1014
+ [97] J. Kopp, R. Laha, T. Opferkuch,
1015
+ and W. Shepherd,
1016
+ JHEP 11, 096 (2018), arXiv:1807.02527 [hep-ph].
1017
+ [98] M. I. Gresham and K. M. Zurek, Phys. Rev. D 99,
1018
+ 083008 (2019), arXiv:1809.08254 [astro-ph.CO].
1019
+ [99] V. Takhistov, G. M. Fuller,
1020
+ and A. Kusenko, Phys.
1021
+ Rev. Lett. 126, 071101 (2021), arXiv:2008.12780 [astro-
1022
+ ph.HE].
1023
+ [100] R. Garani, D. Levkov,
1024
+ and P. Tinyakov,
1025
+ (2021),
1026
+ arXiv:2112.09716 [hep-ph].
1027
+ [101] D. Singh, M. Ryan, R. Magee, T. Akhter, S. Shandera,
1028
+ D. Jeong,
1029
+ and C. Hanna, Phys. Rev. D 104, 044015
1030
+ (2021), arXiv:2009.05209 [astro-ph.CO].
1031
+ [102] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA),
1032
+ “Search for subsolar-mass black hole binaries in the sec-
1033
+ ond part of advanced ligo’s and advanced virgo’s third
1034
+ observing run,” (2022).
1035
+ [103] S. L. Liebling and C. Palenzuela, Living Rev. Rel. 15,
1036
+ 6 (2012), arXiv:1202.5809 [gr-qc].
1037
+
G9FJT4oBgHgl3EQfty2e/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
G9FLT4oBgHgl3EQfHS_T/content/tmp_files/2301.11996v1.pdf.txt ADDED
@@ -0,0 +1,2048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11996v1 [math.AP] 27 Jan 2023
2
+ L2 DIFFUSIVE EXPANSION FOR NEUTRON TRANSPORT EQUATION
3
+ YAN GUO AND LEI WU
4
+ Abstract. Grazing set singularity leads to a surprising counter-example and breakdown [24] of the classical
5
+ mathematical theory for L∞ diffusive expansion (1.9) of neutron transport equation with in-flow boundary
6
+ condition in term of the Knudsen number ε, one of the most classical problems in the kinetic theory. Even
7
+ though a satisfactory new theory has been established by constructing new boundary layers with favorable
8
+ ε-geometric correction for convex domains [24, 7, 8, 22, 23], the severe grazing singularity from non-convex
9
+ domains has prevented any positive mathematical progress. We develop a novel and optimal L2 expansion
10
+ theory for general domain (including non-convex domain) by discovering a surprising ε
11
+ 1
12
+ 2 gain for the average
13
+ of remainder.
14
+ Contents
15
+ 1.
16
+ Introduction
17
+ 1
18
+ 2.
19
+ Asymptotic Analysis
20
+ 5
21
+ 3.
22
+ Remainder Equation
23
+ 7
24
+ 4.
25
+ Remainder Estimate
26
+ 10
27
+ 5.
28
+ Proof of Main Theorem
29
+ 13
30
+ References
31
+ 13
32
+ 1. Introduction
33
+ 1.1. Problem Formulation. We consider the steady neutron transport equation in a three-dimensional
34
+ C3 bounded domain (convex or non-convex) with in-flow boundary condition. In the spatial domain Ω ∋
35
+ x = (x1, x2, x3) and the velocity domain S2 ∋ w = (w1, w2, w3), the neutron density uε(x, w) satisfies
36
+
37
+
38
+
39
+ w · ∇xuε + ε−1�
40
+ uε − uε
41
+
42
+ = 0 in Ω × S2,
43
+ uε(x0, w) = g(x0, w) for w · n < 0 and x0 ∈ ∂Ω,
44
+ (1.1)
45
+ where g is a given function denoting the in-flow data,
46
+ uε(x) := 1
47
+
48
+
49
+ S2 uε(x, w)dw,
50
+ (1.2)
51
+ n is the outward unit normal vector, with the Knudsen number 0 < ε ≪ 1. We intend to study the asymptotic
52
+ behavior of uε as ε → 0.
53
+ Based on the flow direction, we can divide the boundary γ :=
54
+
55
+ (x0, w) :
56
+ x0 ∈ ∂Ω, w ∈ S2�
57
+ into the
58
+ incoming boundary γ−, the outgoing boundary γ+, and the grazing set γ0 based on the sign of w · n(x0). In
59
+ particular, the boundary condition of (1.1) is only given on γ−.
60
+ 2020 Mathematics Subject Classification. Primary 35Q49, 82D75; Secondary 35Q62, 35Q20.
61
+ Key words and phrases. non-convex domains, transport equation, diffusive limit.
62
+ Y. Guo was supported by NSF Grant DMS-2106650.
63
+ L. Wu was supported by NSF Grant DMS-2104775.
64
+ 1
65
+
66
+ 2
67
+ Y. GUO, L. WU
68
+ 1.2. Normal Chart near Boundary. We follow the approach in [8, 23] to define the geometric quantities,
69
+ and the details can be found in Section 2.2. For smooth manifold ∂Ω, there exists an orthogonal curvilinear
70
+ coordinates system (ι1, ι2) such that the coordinate lines coincide with the principal directions at any x0 ∈
71
+ ∂Ω. Assume ∂Ω is parameterized by r = r(ι1, ι2). Let the vector length be Li := |∂ιir| and unit vector
72
+ ςi := L−1
73
+ i ∂ιir for i = 1, 2.
74
+ Consider the corresponding new coordinate system (µ, ι1, ι2), where µ denotes the normal distance to the
75
+ boundary surface ∂Ω, i.e.
76
+ x = r − µn.
77
+ (1.3)
78
+ Define the orthogonal velocity substitution for w := (ϕ, ψ) as
79
+ −w · n = sin ϕ,
80
+ w · ς1 = cos ϕ sin ψ,
81
+ w · ς2 = cos ϕ cos ψ.
82
+ (1.4)
83
+ Finally, we define the scaled normal variable η = µ
84
+ ε , which implies ∂
85
+ ∂µ = 1
86
+ ε
87
+
88
+ ∂η .
89
+ 1.3. Asymptotic Expansion and Remainder Equation. We seek a solution to (1.1) in the form
90
+ uε =U + U B + R =
91
+
92
+ U0 + εU1 + ε2U2
93
+
94
+ + U B
95
+ 0 + R,
96
+ (1.5)
97
+ where the interior solution is
98
+ U(x, w) := U0(x, w) + εU1(x, w) + ε2U2(x, w),
99
+ (1.6)
100
+ and the boundary layer is
101
+ U B(η, ι1, ι2, w) := U B
102
+ 0 (η, ι1, ι2, w).
103
+ (1.7)
104
+ Here U0, U1, U2 and U B
105
+ 0 are constructed in Section 2.1 and Section 2.2, and R(x, v) is the remainder.
106
+ 1.4. Literature. The study of the neutron transport equation in bounded domains, has attracted a lot
107
+ of attention since the dawn of the atomic age.
108
+ Besides its significance in nuclear sciences and medical
109
+ imaging, neutron transport equation is usually regarded as a linear prototype of the more important yet more
110
+ complicated nonlinear Boltzmann equation, and thus, is an ideal starting point to develop new theories and
111
+ techniques. We refer to [10, 11, 12, 13, 14, 15, 16, 17, 18] for the formal expansion with respect to ε and explicit
112
+ solution. The discussion on bounded domain and half-space cases can be found in [5, 4, 3, 1, 2, 19, 20, 21].
113
+ The classical boundary layer of neutron transport equation dictates that U B
114
+ 0 (η, ι1, ι2, w) satisfies the Milne
115
+ problem
116
+ sin ϕ∂U B
117
+ 0
118
+ ∂η
119
+ + U B
120
+ 0 − U B
121
+ 0 = 0.
122
+ (1.8)
123
+ From the formal expansion in ε (see (2.6)), it is natural to expect the remainder estimate [5]
124
+ ∥R∥L∞ ≲ ε.
125
+ (1.9)
126
+ Even though this is valid for domains with flat boundary, a counter-example is constructed [24] so that (1.9)
127
+ is invalid for a 2D disk. This is due to the grazing set singularity.
128
+ To be more specific, in order to show the remainder estimates (1.9), the higher-order boundary layer
129
+ expansion U B
130
+ 1 ∈ L∞ is necessary, which further requires ∂ιiU B
131
+ 0 ∈ L∞. Nevertheless, though U B
132
+ 0 ∈ L∞, it is
133
+ shown that the normal derivative ∂ηU B
134
+ 0 is singular at the grazing set ϕ = 0. Furthermore, this singularity
135
+ ∂ηU B
136
+ 0
137
+ /∈ L∞ will be transferred to ∂ιiU B
138
+ 0
139
+ /∈ L∞. A careful construction of boundary data [24] justifies this
140
+ invalidity, i.e. both the method and result of the boundary layer (1.8) are problematic.
141
+ A new construction of boundary layer [24] based on the ε-Milne problem with geometric correction for
142
+
143
+ U B
144
+ 0 (η, ι1, ι2, w)
145
+ sin ϕ∂�
146
+ U B
147
+ 0
148
+ ∂η
149
+
150
+ ε
151
+ 1 − εη cos ϕ∂�
152
+ U B
153
+ 0
154
+ ∂ϕ + �
155
+ U B
156
+ 0 − �
157
+ U B
158
+ 0 = 0
159
+ (1.10)
160
+ has been shown to provide the satisfactory characterization of the L∞ diffusive expansion in 2D disk domains.
161
+ With more detailed regularity analysis and boundary layer decomposition techniques for (1.10), such result
162
+ has been generalized to 2D/3D smooth convex domains [7, 8, 22, 23] and even 2D annulus domain [25].
163
+
164
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
165
+ 3
166
+ In non-convex domains, the boundary layer with geometric correction is essentially
167
+ sin ϕ∂�
168
+ U B
169
+ 0
170
+ ∂η
171
+
172
+ ε
173
+ 1 + εη cos ϕ∂�
174
+ U B
175
+ 0
176
+ ∂ϕ + �
177
+ U B
178
+ 0 − �
179
+ U B
180
+ 0 = 0
181
+ (1.11)
182
+ Compared to (1.10), this sign flipping dramatically changes the characteristics.
183
+ 0
184
+ 1
185
+ 2
186
+ 3
187
+ 4
188
+ 5
189
+ 6
190
+ 7
191
+ 8
192
+ −1.5
193
+ −1
194
+ −0.5
195
+ 0
196
+ 0.5
197
+ 1
198
+ 1.5
199
+ η
200
+ φ
201
+ Figure 1. Characteristics in Convex Domains
202
+ 0
203
+ 1
204
+ 2
205
+ 3
206
+ 4
207
+ 5
208
+ 6
209
+ 7
210
+ 8
211
+ −1.5
212
+ −1
213
+ −0.5
214
+ 0
215
+ 0.5
216
+ 1
217
+ 1.5
218
+ η
219
+ φ
220
+ Figure 2. Characteristics in Non-
221
+ Convex Domains
222
+ In Figure 1 and Figure 2 [25], the horizontal direction represents the scaled normal variable η and the
223
+ vertical direction represents the velocity ϕ. There exists a “hollow” region in Figure 2 that the characteristics
224
+ may never track back to the left boundary η = 0 and ϕ > 0, making the W 1,∞ estimates impossible and
225
+ thus preventing higher-order boundary layer expansion.
226
+ In this paper, we will employ a fresh approach to design a cutoff boundary layer without the geometric
227
+ correction and justify the L2 diffusive expansion in smooth non-convex domains.
228
+ 1.5. Notation and Convention. Let ⟨ · , · ⟩w denote the inner product for w ∈ S2, ⟨ · , · ⟩x for x ∈ Ω,
229
+ and ⟨ · , · ⟩ for (x, w) ∈ Ω × S2. Also, let ⟨ · , · ⟩γ± denote the inner product on γ± with measure dγ :=
230
+ |w · n| dwdSx = |sin ϕ| cos ϕdwdSx. Denote the bulk and boundary norms
231
+ ∥f∥L2 :=
232
+ ���
233
+ Ω×S2 |f(x, w)|2 dwdx
234
+ � 1
235
+ 2
236
+ ,
237
+ |f|L2
238
+ γ± :=
239
+ ��
240
+ γ±
241
+ |f(x, w)|2 dγ
242
+ � 1
243
+ 2
244
+ .
245
+ (1.12)
246
+ Define the L∞ norms
247
+ ∥f∥L∞ :=
248
+ ess sup
249
+ (x,w)∈Ω×S2
250
+ ��f(x, w)
251
+ ��,
252
+ |f|L∞
253
+ γ± := ess sup
254
+ (x,w)∈γ±
255
+ ��f(x, w)
256
+ ��.
257
+ (1.13)
258
+ Let ∥·∥W k,p
259
+ x
260
+ denote the usual Sobolev norm for x ∈ Ω and |·|W k,p
261
+ x
262
+ for x ∈ ∂Ω, and ∥·∥W k,p
263
+ x
264
+ Lq
265
+ w denote W k,p
266
+ norm for x ∈ Ω and Lq norm for w ∈ S2. The similar notation also applies when we replace Lq by Lq
267
+ γ. When
268
+ there is no possibility of confusion, we will ignore the (x, w) variables in the norms.
269
+ Throughout this paper, C > 0 denotes a constant that only depends on the domain Ω, but does not
270
+ depend on the data or ε. It is referred as universal and can change from one inequality to another. We write
271
+ a ≲ b to denote a ≤ Cb and a ≳ b to denote a ≥ Cb. Also, we write a ≃ b if a ≲ b and a ≳ b. We will use
272
+ o(1) to denote a sufficiently small constant independent of the data.
273
+ 1.6. Main Results.
274
+ Theorem 1.1. Under the assumption
275
+ |g|W 3,∞L∞
276
+ γ− ≲ 1,
277
+ (1.14)
278
+ there exists a unique solution uε(x, w) ∈ L∞(Ω × S2) to (1.1). Moreover, the solution obeys the estimate
279
+ ∥uε − U0∥L2 ≲ ε
280
+ 1
281
+ 2 .
282
+ (1.15)
283
+
284
+ 4
285
+ Y. GUO, L. WU
286
+ Here U0(x) satisfies the Laplace equation with Dirichlet boundary condition
287
+
288
+ ∆xU0(x) = 0 in Ω,
289
+ U0(x0) = Φ∞(x0) on ∂Ω,
290
+ (1.16)
291
+ in which Φ∞(ι1, ι2) = Φ∞(x0) for x0 ∈ ∂Ω is given by solving the Milne problem for Φ(η, ι1, ι2, w)
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+ sin ϕ∂Φ
304
+ ∂η + Φ − Φ = 0,
305
+ Φ(0, ι1, ι2, w) = g(ι1, ι2, w) for
306
+ sin ϕ > 0,
307
+ lim
308
+ η→∞ Φ(η, ι1, ι2, w) = Φ∞(ι1, ι2).
309
+ (1.17)
310
+ Remark 1.2. In [24, 22, 23] for 2D/3D convex domains, as well as [25] for 2D annulus domain, it is justified
311
+ that for any 0 < δ ≪ 1
312
+ ���uε − �
313
+ U0 − �
314
+ U B
315
+ 0
316
+ ���
317
+ L2 ≲ ε
318
+ 5
319
+ 6 −δ,
320
+ (1.18)
321
+ where �
322
+ U B
323
+ 0 (η, ι1, ι2, w) is the boundary layer with geometric correction defined in (1.10), and �
324
+ U0 is the cor-
325
+ responding interior solution.
326
+ [21, Theorem 2.1] reveals that the difference between two types of interior
327
+ solutions
328
+ ����
329
+ U0 − U0
330
+ ���
331
+ L2 ≲ ε
332
+ 2
333
+ 3 .
334
+ (1.19)
335
+ Due to the rescaling η = ε−1µ, for general in-flow boundary data g, the boundary layer �
336
+ U B
337
+ 0 ̸= 0 satisfies
338
+ ����
339
+ U B
340
+ 0
341
+ ���
342
+ L2 ≃ ε
343
+ 1
344
+ 2 .
345
+ (1.20)
346
+ Hence, we conclude that
347
+ ∥uε − U0∥L2 ≃ ε
348
+ 1
349
+ 2 .
350
+ (1.21)
351
+ Therefore, this indicates that (1.15) in Theorem 1.1 achieves the optimal L2 bound of the diffusive approxi-
352
+ mation.
353
+ 1.7. Methodology. It is well-known that the key of the remainder estimate is to control R. In a series of
354
+ work [24, 25, 7, 8, 22, 23] based on a L2 → L∞ framework, it is shown that
355
+ ��R
356
+ ��
357
+ L2 ≲ ε−1 ��R − R
358
+ ��
359
+ L2 ≲ 1
360
+ (1.22)
361
+ combined from the expected energy (entropy production) bound for ε−1 ��R − R
362
+ ��
363
+ L2. This bound requires
364
+ the next-order ε expansion of boundary layer approximation, which is impossible for non-convex domains,
365
+ and barely possible by the new boundary layer theory with the ε-geometric correction. The key improvement
366
+ in our work is
367
+ ��R
368
+ ��
369
+ L2 ≲ ε
370
+ 1
371
+ 2
372
+ (1.23)
373
+ which is a consequence of the following conservation law for test function ξ(x) satisfying −∆xξ = R and
374
+ ξ
375
+ ��
376
+ ∂Ω = 0:
377
+
378
+
379
+ R, w · ∇xξ
380
+
381
+ = −
382
+
383
+ R − R, w · ∇xξ
384
+
385
+ =
386
+
387
+ S, ξ
388
+
389
+ ,
390
+ (1.24)
391
+ where
392
+
393
+ R, w ·∇xξ
394
+
395
+ = 0 thanks to the oddness. This conservation law exactly cancels the worst contribution
396
+ of ε−1 ��R − R
397
+ ��
398
+ L2 in
399
+ ��R
400
+ ��
401
+ L2 estimate, which comes from taking test function w · ∇xξ
402
+
403
+ γ
404
+ R
405
+
406
+ w · ∇xξ
407
+
408
+ (w · n) −
409
+
410
+ R, w · ∇x
411
+
412
+ w · ∇xξ
413
+ ��
414
+ + ε−1�
415
+ R − R, w · ∇xξ
416
+
417
+ =
418
+
419
+ S, w · ∇xξ
420
+
421
+ .
422
+ (1.25)
423
+ Such a key cancellation produces an extra crucial gain of ε
424
+ 1
425
+ 2 . We then conclude the remainder estimate
426
+ without any further expansion of the (singular) boundary layer approximation.
427
+
428
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
429
+ 5
430
+ In addition, we construct a new cut-off boundary layer near ϕ = 0 to avoid the singularity, and are able
431
+ to perform delicate and precise estimates to control the resulting complex forcing term S (see (3.7)–(3.10)),
432
+ in terms of the desired order ε for closure.
433
+ 2. Asymptotic Analysis
434
+ 2.1. Interior Solution. Inserting (1.6) into (1.1) and comparing the order of ε, following the analysis in
435
+ [8, 23], we deduce that
436
+ U0 = U 0,
437
+ ∆xU 0 = 0,
438
+ (2.1)
439
+ U1 = U 1 − w · ∇xU0,
440
+ ∆xU 1 = 0,
441
+ (2.2)
442
+ U2 = U 2 − w · ∇xU1,
443
+ ∆xU 2 = 0.
444
+ (2.3)
445
+ We need the boundary layer to determine the boundary conditions for U0, U 1 and U 2.
446
+ 2.2. Boundary Layer.
447
+ 2.2.1. Geometric Substitutions. The construction of boundary layer requires a local description in a neigh-
448
+ borhood of the physical boundary ∂Ω. We follow the procedure in [8, 23]:
449
+ Substitution 1: Spacial Substitution. Following the notation in Section 1.2, under the coordinate system
450
+ (µ, ι1, ι2), we have
451
+ w · ∇x = −(w · n) ∂
452
+ ∂µ −
453
+ w · ς1
454
+ L1(κ1µ − 1)
455
+
456
+ ∂ι1
457
+
458
+ w · ς2
459
+ L2(κ2µ − 1)
460
+
461
+ ∂ι2
462
+ ,
463
+ (2.4)
464
+ where κi(ι1, ι2) for i = 1, 2 is the principal curvature.
465
+ Substitution 2: Velocity Substitution. Under the orthogonal velocity substitution (1.4) for ϕ ∈
466
+
467
+ −π
468
+ 2 , π
469
+ 2
470
+
471
+ and
472
+ ψ ∈ [−π, π], we have
473
+ w · ∇x = sin ϕ ∂
474
+ ∂µ −
475
+ � sin2 ψ
476
+ R1 − µ + cos2 ψ
477
+ R2 − µ
478
+
479
+ cos ϕ ∂
480
+ ∂ϕ + cos ϕ sin ψ
481
+ L1(1 − κ1µ)
482
+
483
+ ∂ι1
484
+ + cos ϕ cos ψ
485
+ L2(1 − κ2µ)
486
+
487
+ ∂ι2
488
+ (2.5)
489
+ +
490
+ sin ψ
491
+ R1 − µ
492
+ �R1 cos ϕ
493
+ L1L2
494
+
495
+ ς1 ·
496
+
497
+ ς2 ×
498
+
499
+ ∂ι1ι2r × ς2
500
+ ���
501
+ − sin ϕ cos ψ
502
+ � ∂
503
+ ∂ψ
504
+ − cos ψ
505
+ R2 − µ
506
+ �R2 cos ϕ
507
+ L1L2
508
+
509
+ ς2 ·
510
+
511
+ ς1 ×
512
+
513
+ ∂ι1ι2r × ς1
514
+ ���
515
+ − sin ϕ sin ψ
516
+ � ∂
517
+ ∂ψ,
518
+ where Ri = κ−1
519
+ i
520
+ represents the radius of curvature. Note that the Jacobian dw = cos ϕdϕdψ will be present
521
+ when we perform integration.
522
+ Substitution 3: Scaling Substitution. Considering the scaled normal variable η = ε−1µ, we have
523
+ w · ∇x =ε−1 sin ϕ ∂
524
+ ∂η −
525
+ � sin2 ψ
526
+ R1 − εη + cos2 ψ
527
+ R2 − εη
528
+
529
+ cos ϕ ∂
530
+ ∂ϕ + R1 cos ϕ sin ψ
531
+ L1(R1 − εη)
532
+
533
+ ∂ι1
534
+ + R2 cos ϕ cos ψ
535
+ L2(R2 − εη)
536
+
537
+ ∂ι2
538
+ (2.6)
539
+ +
540
+ sin ψ
541
+ R1 − εη
542
+ �R1 cos ϕ
543
+ L1L2
544
+
545
+ ς1 ·
546
+
547
+ ς2 ×
548
+
549
+ ∂ι1ι2r × ς2
550
+ ���
551
+ − sin ϕ cos ψ
552
+ � ∂
553
+ ∂ψ
554
+
555
+ cos ψ
556
+ R2 − εη
557
+ �R2 cos ϕ
558
+ L1L2
559
+
560
+ ς2 ·
561
+
562
+ ς1 ×
563
+
564
+ ∂ι1ι2r × ς1
565
+ ���
566
+ − sin ϕ sin ψ
567
+ � ∂
568
+ ∂ψ .
569
+ 2.2.2. Milne Problem. Let Φ(η, ι1, ι2, w) be the solution to the Milne problem
570
+ sin ϕ∂Φ
571
+ ∂η + Φ − Φ =0,
572
+ Φ(η, ι1, ι2) = 1
573
+
574
+ � π
575
+ −π
576
+
577
+ π
578
+ 2
579
+ − π
580
+ 2
581
+ Φ(η, ι1, ι2, w) cos ϕdϕdψ,
582
+ (2.7)
583
+ with boundary condition
584
+ Φ(0, ι1, ι2, w) = g(ι1, ι2, w) for
585
+ sin ϕ > 0.
586
+ (2.8)
587
+
588
+ 6
589
+ Y. GUO, L. WU
590
+ We are interested in the solution that satisfies
591
+ lim
592
+ η→∞ Φ(η, ι1, ι2, w) = Φ∞(ι1, ι2)
593
+ (2.9)
594
+ for some Φ∞(ι1, ι2). Based on [8, Section 4], we have the well-posedness and regularity of (2.7).
595
+ Proposition 2.1. Under the assumption (1.14), there exist Φ∞(ι1, ι2) and a unique solution Φ to (2.7)such
596
+ that Ψ := Φ − Φ∞ satisfies
597
+
598
+
599
+
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+
608
+ sin ϕ∂Ψ
609
+ ∂η + Ψ − Ψ = 0,
610
+ Ψ(0, ι1, ι2, w) = g(ι1, ι2, w) − Φ∞(ι1, ι2),
611
+ lim
612
+ η→0 Ψ(η, ι1, ι2, w) = 0,
613
+ (2.10)
614
+ and for some constant K > 0 and any 0 < r ≤ 3
615
+ |Φ∞|W 3,∞
616
+ ι1,ι2 +
617
+ ��eKηΨ
618
+ ��
619
+ L∞ ≲1,
620
+ (2.11)
621
+ ����eKη sin ϕ∂Ψ
622
+ ∂η
623
+ ����
624
+ L∞ +
625
+ ����eKη sin ϕ∂Ψ
626
+ ∂ϕ
627
+ ����
628
+ L∞ +
629
+ ����eKη ∂Ψ
630
+ ∂ψ
631
+ ����
632
+ L∞ ≲1,
633
+ (2.12)
634
+ ����eKη ∂rΨ
635
+ ∂ιr
636
+ 1
637
+ ����
638
+ L∞
639
+ +
640
+ ����eKη ∂rΨ
641
+ ∂ιr
642
+ 2
643
+ ����
644
+ L∞
645
+ ≲1.
646
+ (2.13)
647
+ Let χ(y) ∈ C∞(R) and �χ(y) = 1 − χ(y) be smooth cut-off functions satisfying χ(y) = 1 if |y| ≤ 1 and
648
+ χ(y) = 0 if |y| ≥ 2. We define the boundary layer
649
+ U B
650
+ 0 (η, ι1, ι2, w) := �χ
651
+
652
+ ε−1ϕ
653
+
654
+ χ(εη)Ψ(η, ι1, ι2, w).
655
+ (2.14)
656
+ Remark 2.2. Due to the cutoff in (2.14), we have
657
+ U B
658
+ 0 (0, ι1, ι2, w) = �χ
659
+
660
+ ε−1ϕ
661
+ ��
662
+ g(ι1, ι2, w) − Φ∞(ι1, ι2)
663
+
664
+ = �χ
665
+
666
+ ε−1ϕ
667
+
668
+ Ψ(0, ι1, ι2, w),
669
+ (2.15)
670
+ and
671
+ sin ϕ∂U B
672
+ 0
673
+ ∂η
674
+ + U B
675
+ 0 − U B
676
+ 0 = −�χ
677
+
678
+ ε−1ϕ
679
+
680
+ χ(εη)Ψ + Ψ�χ(ε−1ϕ)χ(εη).
681
+ (2.16)
682
+ 2.3. Matching Procedure. We plan to enforce the matching condition for x0 ∈ ∂Ω and w · n < 0
683
+ U0(x0) + U B
684
+ 0 (x0, w) =g(x0, w) + O(ε).
685
+ (2.17)
686
+ Considering (2.15), it suffices to require
687
+ U0(x0) = Φ∞(x0) := Φ∞(ι1, ι2),
688
+ (2.18)
689
+ which yields
690
+ U0(x0) + Ψ(x0, w) =g(x0, w).
691
+ (2.19)
692
+ Hence, we obtain
693
+ U0(x0, w) + U B
694
+ 0 (x0, w) = g(x0, w) + χ
695
+
696
+ ε−1ϕ
697
+
698
+ Ψ(0, ι1, ι2, w).
699
+ (2.20)
700
+ Construction of U0. Based on (2.1) and (2.18), define U0(x) satisfying
701
+ U0 = U0,
702
+ ∆xU 0 = 0,
703
+ U0(x0) = Φ∞(x0).
704
+ (2.21)
705
+ From standard elliptic estimates [9] and Proposition 2.1, we have for any s ∈ [2, ∞)
706
+ ∥U0∥W 3+ 1
707
+ s ,s + |U0|W 3,s ≲ 1.
708
+ (2.22)
709
+ Construction of U1. Based on (2.2), define U1(x, w) satisfying
710
+ U1 = U 1 − w · ∇xU0,
711
+ ∆xU 1 = 0,
712
+ U 1(x0) = 0.
713
+ (2.23)
714
+ From (2.22), we have for any s ∈ [2, ∞)
715
+ ∥U1∥W 2+ 1
716
+ s ,sL∞ + |U1|W 2,sL∞ ≲ 1.
717
+ (2.24)
718
+
719
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
720
+ 7
721
+ Construction of U2. Based on (2.2), define U2(x, w) satisfying
722
+ U2 = U 2 − w · ∇xU1,
723
+ ∆xU 2 = 0,
724
+ U 2(x0) = 0.
725
+ (2.25)
726
+ From (2.24), we have for any s ∈ [2, ∞)
727
+ ∥U2∥W 1+ 1
728
+ s ,sL∞ + |U2|W 1,sL∞ ≲ 1.
729
+ (2.26)
730
+ Summarizing the above analysis, we have the well-posedness and regularity estimates of the interior
731
+ solution and boundary layer:
732
+ Proposition 2.3. Under the assumption (1.14), we can construct U0, U1, U2, U B
733
+ 0 as in (2.21)(2.23)(2.25)(2.14)
734
+ satisfying for any s ∈ [2, ∞)
735
+ ∥U0∥W 3+ 1
736
+ s ,s + |U0|W 3,s ≲1,
737
+ (2.27)
738
+ ∥U1∥W 2+ 1
739
+ s ,sL∞ + |U1|W 2,sL∞ ≲1,
740
+ (2.28)
741
+ ∥U2∥W 1+ 1
742
+ s ,sL∞ + |U2|W 1,sL∞ ≲1,
743
+ (2.29)
744
+ and for some constant K > 0 and any 0 < r ≤ 3
745
+ ��eKηU B
746
+ 0
747
+ ��
748
+ L∞ +
749
+ ����eKη ∂rU B
750
+ 0
751
+ ∂ιr
752
+ 1
753
+ ����
754
+ L∞
755
+ +
756
+ ����eKη ∂rU B
757
+ 0
758
+ ∂ιr
759
+ 2
760
+ ����
761
+ L∞
762
+ ≲1.
763
+ (2.30)
764
+ 3. Remainder Equation
765
+ Denote the approximate solution
766
+ ua :=
767
+
768
+ U0 + εU1 + ε2U2
769
+
770
+ + U B
771
+ 0 .
772
+ (3.1)
773
+ Inserting (1.5) into (1.1), we have
774
+ w · ∇x
775
+
776
+ ua + R
777
+
778
+ + ε−1�
779
+ ua + R
780
+
781
+ − ε−1�
782
+ ua + R
783
+
784
+ = 0,
785
+
786
+ ua + R
787
+ ����
788
+ γ−
789
+ = g,
790
+ (3.2)
791
+ which yields
792
+ w · ∇xR + ε−1�
793
+ R − R
794
+
795
+ = −w · ∇xua − ε−1�
796
+ ua − ua
797
+
798
+ ,
799
+ R
800
+ ���
801
+ γ− =
802
+
803
+ g − ua
804
+ ����
805
+ γ−.
806
+ (3.3)
807
+ 3.1. Formulation of Remainder Equation. We consider the remainder equation
808
+
809
+
810
+
811
+ w · ∇xR + ε−1�
812
+ R − R
813
+
814
+ = S in Ω × S2,
815
+ R(x0, w) = h(x0, w) for w · n < 0 and x0 ∈ ∂Ω,
816
+ (3.4)
817
+ where R(x) = 1
818
+
819
+
820
+ S2 R(x, w)dw. Here the boundary data h is given by
821
+ h := −εw · ∇xU0 − ε2w · ∇xU1 − χ
822
+
823
+ ε−1ϕ
824
+
825
+ Ψ(0),
826
+ (3.5)
827
+ and the source term S is given by
828
+ S := S0 + S1 + S2 + S3,
829
+ (3.6)
830
+
831
+ 8
832
+ Y. GUO, L. WU
833
+ where
834
+ S0 := − ε2w · ∇xU2,
835
+ (3.7)
836
+ S1 :=
837
+ � sin2 ψ
838
+ R1 − εη + cos2 ψ
839
+ R2 − εη
840
+
841
+ cos ϕ∂U B
842
+ 0
843
+ ∂ϕ ,
844
+ (3.8)
845
+ S2 :=ε−1 sin φ�χ
846
+
847
+ ε−1ϕ
848
+ �∂χ(εη)
849
+ ∂η
850
+ Ψ + R1 cos ϕ sin ψ
851
+ L1(R1 − εη)
852
+ ∂U B
853
+ 0
854
+ ∂ι1
855
+ + R2 cos ϕ cos ψ
856
+ L2(R2 − εη)
857
+ ∂U B
858
+ 0
859
+ ∂ι2
860
+ (3.9)
861
+ +
862
+ sin ψ
863
+ R1 − εη
864
+ �R1 cos ϕ
865
+ L1L2
866
+
867
+ ς1 ·
868
+
869
+ ς2 ×
870
+
871
+ ∂ι1ι2r × ς2
872
+ ���
873
+ − sin ϕ cos ψ
874
+ �∂U B
875
+ 0
876
+ ∂ψ
877
+
878
+ cos ψ
879
+ R2 − εη
880
+ �R2 cos ϕ
881
+ L1L2
882
+
883
+ ς2 ·
884
+
885
+ ς1 ×
886
+
887
+ ∂ι1ι2r × ς1
888
+ ���
889
+ − sin ϕ sin ψ
890
+ �∂U B
891
+ 0
892
+ ∂ψ ,
893
+ S3 :=ε−1
894
+
895
+ �χ
896
+
897
+ ε−1ϕ
898
+
899
+ χ(εη)Ψ − Ψ�χ
900
+
901
+ ε−1ϕ
902
+
903
+ χ(εη)
904
+
905
+ .
906
+ (3.10)
907
+ 3.2. Weak Formulation.
908
+ Lemma 3.1 (Green’s Identity, Lemma 2.2 of [6]). Assume f(x, w), g(x, w) ∈ L2(Ω × S2) and w · ∇xf, w ·
909
+ ∇xg ∈ L2(Ω × S2) with f, g ∈ L2
910
+ γ. Then
911
+ ��
912
+ Ω×S2
913
+ ��
914
+ w · ∇xf
915
+
916
+ g +
917
+
918
+ w · ∇xg
919
+
920
+ f
921
+
922
+ dxdw =
923
+
924
+ γ
925
+ fg(w · n) =
926
+
927
+ γ+
928
+ fgdγ −
929
+
930
+ γ−
931
+ fgdγ.
932
+ (3.11)
933
+ Using Lemma 3.1, we can derive the weak formulation of (3.4). For any test function g(x, w) ∈ L2(Ω×S2)
934
+ with w · ∇xg ∈ L2(Ω × S2) with g ∈ L2
935
+ γ, we have
936
+
937
+ γ
938
+ Rg(w · n) −
939
+ ��
940
+ Ω×S2 R
941
+
942
+ w · ∇xg
943
+
944
+ + ε−1
945
+ ��
946
+ Ω×S2
947
+
948
+ R − R
949
+
950
+ g =
951
+ ��
952
+ Ω×S2 Sg.
953
+ (3.12)
954
+ 3.3. Estimates of Boundary and Source Terms.
955
+ Lemma 3.2. Under the assumption (1.14), for h defined in (3.5), we have
956
+ |h|L2
957
+ γ− ≲ ε.
958
+ (3.13)
959
+ Proof. Based on Proposition 2.3, we have
960
+ |εw · ∇xU0|L2
961
+ γ− +
962
+ ��ε2w · ∇xU1
963
+ ��
964
+ L2γ− ≲ ε.
965
+ (3.14)
966
+ Noting the cutoff χ
967
+
968
+ ε−1ϕ
969
+
970
+ restricts the support to |ϕ| ≲ ε and dγ measure contributes an extra sin ϕ, we
971
+ have
972
+ ��χ
973
+
974
+ ε−1ϕ
975
+
976
+ Ψ(0)
977
+ ��
978
+ L2γ− ≲ ε.
979
+ (3.15)
980
+ Hence, our result follows.
981
+
982
+ Lemma 3.3. Under the assumption (1.14), for S0 defined in (3.7), we have
983
+ ∥S0∥L2 ≲ ε2.
984
+ (3.16)
985
+ Proof. This follows from Proposition 2.3.
986
+
987
+ Lemma 3.4. Under the assumption (1.14), for S1 defined in (3.8), we have
988
+ ���
989
+ 1 + η
990
+
991
+ S1
992
+ ��
993
+ L2 ≲ 1.
994
+ (3.17)
995
+ Also, for the boundary layer U B
996
+ 0 defined in (2.14), we have
997
+ ���
998
+ 1 + η
999
+
1000
+ U B
1001
+ 0
1002
+ ��
1003
+ L2 ≲ ε
1004
+ 1
1005
+ 2 ,
1006
+ ���
1007
+ 1 + η
1008
+
1009
+ U B
1010
+ 0
1011
+ ��
1012
+ L2xL1w ≲ ε
1013
+ 1
1014
+ 2 ,
1015
+ (3.18)
1016
+ and
1017
+ ���
1018
+ ��
1019
+ 1 + η
1020
+
1021
+ S1, g
1022
+ ���� ≲
1023
+ ���
1024
+
1025
+ 1 + η
1026
+
1027
+ ⟨v⟩2 U B
1028
+ 0
1029
+ ���
1030
+ L2 ∥∇wg∥L2 ≲ ε
1031
+ 1
1032
+ 2 ∥∇wg∥L2 .
1033
+ (3.19)
1034
+
1035
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
1036
+ 9
1037
+ Proof. We split
1038
+ S1 = S11 + S12 :=
1039
+ � sin2 ψ
1040
+ R1 − εη + cos2 ψ
1041
+ R2 − εη
1042
+
1043
+ cos ϕ∂Ψ
1044
+ ∂ϕ �χ
1045
+
1046
+ ε−1ϕ
1047
+
1048
+ χ(εη)
1049
+ (3.20)
1050
+ +
1051
+ � sin2 ψ
1052
+ R1 − εη + cos2 ψ
1053
+ R2 − εη
1054
+
1055
+ cos ϕ∂�χ
1056
+
1057
+ ε−1ϕ
1058
+
1059
+ ∂ϕ
1060
+ χ(εη)Ψ.
1061
+ Note that S11 is nonzero only when |ϕ| ≥ ε and thus based on Proposition 2.1, we know
1062
+ ����
1063
+ ∂Ψ
1064
+ ∂ϕ
1065
+ ���� ≤ |sin ϕ|−1 |Ψ| ≲
1066
+ ε−1. Hence, using dµ = εdη, we have
1067
+ ∥S11∥L2 ≲
1068
+ ���
1069
+ |ϕ|≥ε
1070
+ ����
1071
+ ∂Ψ
1072
+ ∂ϕ
1073
+ ����
1074
+ 2
1075
+ dϕdµ
1076
+ � 1
1077
+ 2
1078
+
1079
+ ���
1080
+ |ϕ|≥ε
1081
+ |sin ϕ|−2 |Ψ|2 dϕdµ
1082
+ � 1
1083
+ 2
1084
+ (3.21)
1085
+
1086
+ ���
1087
+ |ϕ|≥ε
1088
+ |sin ϕ|−2 e−2Kηdϕdµ
1089
+ � 1
1090
+ 2
1091
+
1092
+
1093
+ ε
1094
+ ��
1095
+ |ϕ|≥ε
1096
+ |sin ϕ|−2 e−2Kηdϕdη
1097
+ � 1
1098
+ 2
1099
+
1100
+
1101
+ εε−1� 1
1102
+ 2 = 1.
1103
+ Noticing ∂�χ
1104
+
1105
+ ε−1ϕ
1106
+
1107
+ ∂ϕ
1108
+ = ε−1�χ′�
1109
+ ε−1ϕ
1110
+
1111
+ , and �χ′�
1112
+ ε−1ϕ
1113
+
1114
+ is nonzero only when ε < |ϕ| < 2ε, based on Proposition
1115
+ 2.1, we have
1116
+ ∥S12∥L2 ≲ε−1
1117
+ ���
1118
+ ε<|ϕ|<2ε
1119
+ |Ψ|2 dϕdµ
1120
+ � 1
1121
+ 2
1122
+ ≲ ε−1
1123
+ ���
1124
+ ε<|ϕ|<2ε
1125
+ e−2Kηdϕdµ
1126
+ � 1
1127
+ 2
1128
+ (3.22)
1129
+ ≲ε−1
1130
+
1131
+ ε
1132
+ ��
1133
+ ε<|ϕ|<2ε
1134
+ e−2Kηdϕdη
1135
+ � 1
1136
+ 2
1137
+ ≲ ε−1 (εε)
1138
+ 1
1139
+ 2 = 1.
1140
+ Collecting (3.21) and (3.22), we have (3.17). Note that e−Kη will suppress the growth from the pre-factor
1141
+ 1 + η.
1142
+ (3.18) comes from Proposition 2.1.
1143
+ Then we turn to (3.19).
1144
+ The most difficult term in
1145
+ �� ⟨S1, g⟩
1146
+ �� is
1147
+ essentially
1148
+ ����
1149
+ �∂U B
1150
+ 0
1151
+ ∂ϕ , g
1152
+ �����. Integration by parts with respect to ϕ implies
1153
+ ����
1154
+ �∂U B
1155
+ 0
1156
+ ∂ϕ , g
1157
+ ����� ≲
1158
+ ����
1159
+
1160
+ U B
1161
+ 0 , ∂g
1162
+ ∂ϕ
1163
+ ����� ≲
1164
+ ��U B
1165
+ 0
1166
+ ��
1167
+ L2
1168
+ ����
1169
+ ∂g
1170
+ ∂ϕ
1171
+ ����
1172
+ L2 .
1173
+ (3.23)
1174
+ From (1.4) and ∂x
1175
+ ∂ϕ = 0, we know the substitution (µ, ι1, ι2, w) → (µ, ι1, ι2, w) implies
1176
+ −∂w
1177
+ ∂ϕ · n = cos ϕ,
1178
+ ∂w
1179
+ ∂ϕ · ς1 = − sin ϕ sin ψ,
1180
+ ∂w
1181
+ ∂ϕ · ς2 = − sin ϕ cos ψ.
1182
+ (3.24)
1183
+ Hence, we know
1184
+ ����
1185
+ ∂w
1186
+ ∂ϕ
1187
+ ���� ≲ 1, and thus
1188
+ ����
1189
+ ∂g
1190
+ ∂ϕ
1191
+ ���� ≲ |∇wg|
1192
+ ����
1193
+ ∂w
1194
+ ∂ϕ
1195
+ ���� ≲ |∇wg| .
1196
+ (3.25)
1197
+ Hence, we know that
1198
+ ����
1199
+ �∂U B
1200
+ 0
1201
+ ∂ϕ , g
1202
+ ����� ≲
1203
+ ��U B
1204
+ 0
1205
+ ��
1206
+ L2 ∥∇wg∥L2 ≲ ε
1207
+ 1
1208
+ 2 ∥∇wg∥L2 .
1209
+ (3.26)
1210
+
1211
+ Lemma 3.5. Under the assumption (1.14), for S2 defined in (3.9), we have
1212
+ ���
1213
+ 1 + η
1214
+
1215
+ S2
1216
+ ��
1217
+ L2 ≲ ε
1218
+ 1
1219
+ 2 ,
1220
+ ���
1221
+ 1 + η
1222
+
1223
+ S2
1224
+ ��
1225
+ L2xL1w ≲ ε
1226
+ 1
1227
+ 2 .
1228
+ (3.27)
1229
+
1230
+ 10
1231
+ Y. GUO, L. WU
1232
+ Proof. Notice that
1233
+ ����ε−1 sin φ�χ
1234
+
1235
+ ε−1ϕ
1236
+ �∂χ(εη)
1237
+ ∂η
1238
+ ���� ≲ 1. Based on Proposition 2.1 and Proposition 2.3, we directly
1239
+ bound
1240
+ ∥S2∥L2 ≲
1241
+ ��� �
1242
+ |Φ|2 +
1243
+ ����
1244
+ ∂Φ
1245
+ ∂ι1
1246
+ ����
1247
+ 2
1248
+ +
1249
+ ����
1250
+ ∂Φ
1251
+ ∂ι2
1252
+ ����
1253
+ 2
1254
+ +
1255
+ ����
1256
+ ∂Φ
1257
+ ∂ψ
1258
+ ����
1259
+ 2 �
1260
+ dϕdµ
1261
+ � 1
1262
+ 2
1263
+ (3.28)
1264
+
1265
+ ���
1266
+ e−2Kηdϕdµ
1267
+ � 1
1268
+ 2
1269
+
1270
+
1271
+ ε
1272
+ ��
1273
+ e−2Kηdϕdη
1274
+ � 1
1275
+ 2
1276
+ ≲ ε
1277
+ 1
1278
+ 2 .
1279
+ Then the L2
1280
+ xL1
1281
+ w estimate follows from a similar argument noting that there is no rescaling in w variables.
1282
+
1283
+ Lemma 3.6. Under the assumption (1.14), for S3 defined in (3.10), we have
1284
+ ���
1285
+ 1 + η
1286
+
1287
+ S3
1288
+ ��
1289
+ L2 ≲ 1,
1290
+ ���
1291
+ 1 + η
1292
+
1293
+ S3
1294
+ ��
1295
+ L2xL1w ≲ ε
1296
+ 1
1297
+ 2 .
1298
+ (3.29)
1299
+ Proof. Using χ = 1 − �χ, we split
1300
+ S3 = S31 + S32 :=ε−1Ψχ
1301
+
1302
+ ε−1ϕ
1303
+
1304
+ χ(εη) − ε−1χ
1305
+
1306
+ ε−1ϕ
1307
+
1308
+ χ(εη)Ψ.
1309
+ (3.30)
1310
+ Noting that S31 is nonzero only when |ϕ| ≤ ε, based on Proposition 2.1, we have
1311
+ ∥S31∥L2 ≲
1312
+ ���
1313
+ |ϕ|≤ε
1314
+ ��ε−1Ψ
1315
+ ��2 dϕdµ
1316
+ � 1
1317
+ 2
1318
+
1319
+
1320
+ ε−2
1321
+ ��
1322
+ |ϕ|≤ε
1323
+ e−2Kηdϕdµ
1324
+ � 1
1325
+ 2
1326
+ (3.31)
1327
+
1328
+
1329
+ ε−1
1330
+ ��
1331
+ |ϕ|≤ε
1332
+ e−2Kηdϕdη
1333
+ � 1
1334
+ 2
1335
+
1336
+
1337
+ ε−1ε
1338
+ � 1
1339
+ 2 ≲ 1.
1340
+ Analogously, noting that S32 contains w integral, we have
1341
+ ∥S32∥L2 ≲
1342
+ ���� ���ε−1Ψχ(ε−1ϕ)
1343
+ ���
1344
+ 2
1345
+ dϕdµ
1346
+ � 1
1347
+ 2
1348
+
1349
+
1350
+ ε−2
1351
+ �� �����
1352
+
1353
+ |ϕ|≤ε
1354
+ Ψdϕ
1355
+ �����
1356
+ 2
1357
+ dϕdµ
1358
+
1359
+
1360
+ 1
1361
+ 2
1362
+ (3.32)
1363
+
1364
+
1365
+ ε−2
1366
+ �� �����
1367
+
1368
+ |ϕ|≤ε
1369
+ e−Kηdϕ
1370
+ �����
1371
+ 2
1372
+ dϕdµ
1373
+
1374
+
1375
+ 1
1376
+ 2
1377
+
1378
+
1379
+ ε−2
1380
+ ��
1381
+ ε2e−2Kηdϕdµ
1382
+ � 1
1383
+ 2
1384
+
1385
+ ���
1386
+ e−2Kηdϕdµ
1387
+ � 1
1388
+ 2
1389
+
1390
+
1391
+ ε
1392
+ ��
1393
+ e−2Kηdϕdη
1394
+ � 1
1395
+ 2
1396
+ ≲ ε
1397
+ 1
1398
+ 2 .
1399
+ Collecting (3.31) and (3.32), we have the L2 estimate. Similarly, we derive the L2
1400
+ xL1
1401
+ w bound:
1402
+ ∥S31∥L2xL1w ≲
1403
+ �� � �
1404
+ |ϕ|≤ε
1405
+ ��ε−1Ψ
1406
+ �� dϕ
1407
+ �2
1408
+
1409
+ � 1
1410
+ 2
1411
+
1412
+ ��
1413
+ e−2Kηdµ
1414
+ � 1
1415
+ 2
1416
+
1417
+
1418
+ ε
1419
+
1420
+ e−2Kηdη
1421
+ � 1
1422
+ 2
1423
+ ≲ ε
1424
+ 1
1425
+ 2 ,
1426
+ (3.33)
1427
+ ∥S32∥L2xL1w ≲
1428
+ �� � � ���ε−1Ψχ(ε−1ϕ)
1429
+ ��� dϕ
1430
+ �2
1431
+
1432
+ � 1
1433
+ 2
1434
+
1435
+
1436
+ ε−2
1437
+ � � � �����
1438
+
1439
+ |ϕ|≤ε
1440
+ Ψdϕ
1441
+ ����� dϕ
1442
+ �2
1443
+
1444
+ � 1
1445
+ 2
1446
+ (3.34)
1447
+
1448
+
1449
+ ε−2
1450
+ � � �
1451
+ εe−Kηdϕ
1452
+ �2
1453
+
1454
+ � 1
1455
+ 2
1456
+
1457
+ ��
1458
+ e−2Kηdµ
1459
+ � 1
1460
+ 2
1461
+
1462
+
1463
+ ε
1464
+
1465
+ e−2Kηdη
1466
+ � 1
1467
+ 2
1468
+ ≲ ε
1469
+ 1
1470
+ 2 .
1471
+
1472
+ 4. Remainder Estimate
1473
+ 4.1. Basic Energy Estimate.
1474
+ Lemma 4.1. Under the assumption (1.14), we have
1475
+ ε−1 |R|2
1476
+ L2γ+ + ε−2 ��R − R
1477
+ ��2
1478
+ L2 ≲ o(1)ε−1 ��R
1479
+ ��2
1480
+ L2 + 1.
1481
+ (4.1)
1482
+
1483
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
1484
+ 11
1485
+ Proof. Taking g = ε−1R in (3.12), we obtain
1486
+ ε−1
1487
+ 2
1488
+
1489
+ γ
1490
+ |R|2 (w · n) + ε−2�
1491
+ R, R − R
1492
+
1493
+ = ε−1�
1494
+ R, S
1495
+
1496
+ .
1497
+ (4.2)
1498
+ Then using the orthogonality of R and R − R, we have
1499
+ ε−1
1500
+ 2
1501
+ |R|2
1502
+ L2γ+ + ε−2 ��R − R
1503
+ ��2
1504
+ L2 = ε−1�
1505
+ R, S
1506
+
1507
+ + ε−1
1508
+ 2
1509
+ |h|2
1510
+ L2γ− .
1511
+ (4.3)
1512
+ Using Lemma 3.2, we know
1513
+ ε−1 |R|2
1514
+ L2γ+ + ε−2 ��R − R
1515
+ ��2
1516
+ L2 ≲ ε + ε−1�
1517
+ R, S0 + S1 + S2 + S3
1518
+
1519
+ .
1520
+ (4.4)
1521
+ Using Lemma 3.3, we have
1522
+ ���ε−1�
1523
+ R, S0
1524
+ ���� ≲ ε−1 ∥R∥L2 ∥S0∥L2 ≲ ε ∥R∥L2 ≲ o(1) ∥R∥2
1525
+ L2 + ε2.
1526
+ (4.5)
1527
+ Using Lemma 3.4, Lemma 3.5 and Lemma 3.6, we have
1528
+ ���ε−1�
1529
+ R − R, S1 + S2 + S3
1530
+ ���� ≲ε−1 ��R − R
1531
+ ��
1532
+ L2 ∥S1 + S2 + S3∥L2
1533
+ (4.6)
1534
+ ≲ε−1 ��R − R
1535
+ ��
1536
+ L2 ≲ o(1)ε−2 ��R − R
1537
+ ��2
1538
+ L2 + 1.
1539
+ Finally, we turn to ε−1�
1540
+ R, S1 + S2 + S3
1541
+
1542
+ . For S1, we integrate by parts with respect to ϕ and use Lemma
1543
+ 3.4 to obtain
1544
+ ���ε−1�
1545
+ R, S1
1546
+ ���� =ε−1
1547
+ ����
1548
+
1549
+ R,
1550
+ � sin2 ψ
1551
+ R1 − εη + cos2 ψ
1552
+ R2 − εη
1553
+
1554
+ cos ϕ∂U B
1555
+ 0
1556
+ ∂ϕ
1557
+ �����
1558
+ (4.7)
1559
+ =ε−1
1560
+ ����
1561
+
1562
+ R,
1563
+ � sin2 ψ
1564
+ R1 − εη + cos2 ψ
1565
+ R2 − εη
1566
+
1567
+ U B
1568
+ 0 sin ϕ
1569
+ �����
1570
+ ≲ε−1 ��R
1571
+ ��
1572
+ L2
1573
+ ��U B
1574
+ 1
1575
+ ��
1576
+ L2xL1w ≲ ε− 1
1577
+ 2 ��R
1578
+ ��
1579
+ L2 ≲ o(1)ε−1 ��R
1580
+ ��2
1581
+ L2 + 1.
1582
+ Also, Lemma 3.5 and Lemma 3.6 yield
1583
+ ���ε−1�
1584
+ R, S2 + S3
1585
+ ���� ≲ε−1 ��R
1586
+ ��
1587
+ L2
1588
+
1589
+ ∥S2∥L2xL1w + ∥S3∥L2xL1w
1590
+
1591
+ ≲ ε− 1
1592
+ 2 ��R
1593
+ ��
1594
+ L2 ≲ o(1)ε−1 ��R
1595
+ ��2
1596
+ L2 + 1.
1597
+ (4.8)
1598
+ Collecting (4.5)(4.6)(4.7)(4.8), we obtain
1599
+ ���ε−1�
1600
+ R, S0 + S1 + S2 + S3
1601
+ ���� ≲ o(1)ε−2 ��R − R
1602
+ ��2
1603
+ L2 + o(1)ε−1 ∥R∥2
1604
+ L2 + 1.
1605
+ (4.9)
1606
+ Combining (4.9) and (4.4), we have (4.1).
1607
+
1608
+ 4.2. Kernel Estimate.
1609
+ Lemma 4.2. Under the assumption (1.14), we have
1610
+ ��R
1611
+ ��2
1612
+ L2 ≲
1613
+ ��R − R
1614
+ ��2
1615
+ L2 + |R|2
1616
+ L2γ+ + ε.
1617
+ (4.10)
1618
+ Proof. Denote ξ(x) satisfying
1619
+
1620
+ −∆xξ = R in Ω,
1621
+ ξ(x0) = 0 on ∂Ω.
1622
+ (4.11)
1623
+ Based on standard elliptic estimates and trace estimates, we have
1624
+ ∥ξ∥H2 + |ξ|H
1625
+ 3
1626
+ 2 ≲
1627
+ ��R
1628
+ ��
1629
+ L2 .
1630
+ (4.12)
1631
+ Taking g = ξ in (3.12), we have
1632
+
1633
+ γ
1634
+ Rξ(w · n) −
1635
+
1636
+ R, w · ∇xξ
1637
+
1638
+ + ε−1�
1639
+ R − R, ξ
1640
+
1641
+ =
1642
+
1643
+ S, ξ
1644
+
1645
+ .
1646
+ (4.13)
1647
+ Using oddness, orthogonality and ξ
1648
+ ��
1649
+ ∂Ω = 0, we obtain (1.24).
1650
+ Then taking g = w · ∇xξ in (3.12), we obtain (1.25).
1651
+
1652
+ 12
1653
+ Y. GUO, L. WU
1654
+ Adding ε−1×(1.24) and (1.25) to eliminate ε−1�
1655
+ R − R, w · ∇xξ
1656
+
1657
+ , we obtain
1658
+
1659
+ γ
1660
+ R
1661
+
1662
+ w · ∇xξ
1663
+
1664
+ (w · n) −
1665
+
1666
+ R, w · ∇x
1667
+
1668
+ w · ∇xξ
1669
+ ��
1670
+ =ε−1�
1671
+ S, ξ
1672
+
1673
+ +
1674
+
1675
+ S, w · ∇xξ
1676
+
1677
+ .
1678
+ (4.14)
1679
+ Notice that
1680
+
1681
+
1682
+ R, w · ∇x
1683
+
1684
+ w · ∇xξ
1685
+ ��
1686
+ = −
1687
+
1688
+ R, w · ∇x
1689
+
1690
+ w · ∇xξ
1691
+ ��
1692
+
1693
+
1694
+ R − R, w · ∇x
1695
+
1696
+ w · ∇xξ
1697
+ ��
1698
+ ,
1699
+ (4.15)
1700
+ where (4.12) and Cauchy’s inequality yield
1701
+
1702
+
1703
+ R, w · ∇x
1704
+
1705
+ w · ∇xξ
1706
+ ��
1707
+
1708
+ ��R
1709
+ ��2
1710
+ L2 ,
1711
+ (4.16)
1712
+ ���
1713
+
1714
+ R − R, w · ∇x
1715
+
1716
+ w · ∇xξ
1717
+ ����� ≲
1718
+ ��R − R
1719
+ ��2
1720
+ L2 + o(1)
1721
+ ��R
1722
+ ��2
1723
+ L2 .
1724
+ (4.17)
1725
+ Also, using (4.12) and Lemma 3.2, we have
1726
+ ����
1727
+
1728
+ γ
1729
+ R
1730
+
1731
+ w · ∇xξ
1732
+
1733
+ (w · n)
1734
+ ���� ≲
1735
+
1736
+ |R|L2γ+ + |h|L2γ−
1737
+
1738
+ |∇xξ|L2 ≲ o(1)
1739
+ ��R
1740
+ ��2
1741
+ L2 + |R|2
1742
+ L2γ+ + ε2.
1743
+ (4.18)
1744
+ Inserting (4.15)–(4.18) into (4.14), we obtain
1745
+ ��R
1746
+ ��2
1747
+ L2 ≲ε2 +
1748
+ ��R − R
1749
+ ��2
1750
+ L2 + |R|2
1751
+ L2γ+ +
1752
+ ���ε−1�
1753
+ S, ξ
1754
+ ���� +
1755
+ ���
1756
+
1757
+ S, w · ∇xξ
1758
+ ���� .
1759
+ (4.19)
1760
+ Then we turn to the estimate of source terms in (4.19). Cauchy’s inequality and Lemma 3.3 yield
1761
+ ���ε−1�
1762
+ S0, ξ
1763
+ ���� +
1764
+ ���
1765
+
1766
+ S0, w · ∇xξ
1767
+ ���� ≲ ε−1 ∥S0∥L2 ∥ξ∥H1 ≲ ε
1768
+ ��R
1769
+ ��
1770
+ L2 ≲ o(1)
1771
+ ��R
1772
+ ��2
1773
+ L2 + ε2.
1774
+ (4.20)
1775
+ Similar to (4.7), we first integrate by parts with respect to ϕ in S1. Using ξ
1776
+ ��
1777
+ ∂Ω = 0, (4.12), Hardy’s inequality
1778
+ and Lemma 3.4, Lemma 3.5, Lemma 3.6, we have
1779
+ ���ε−1�
1780
+ S1 + S2 + S3, ξ
1781
+ ���� ≲
1782
+ ����ε−1�
1783
+ U B
1784
+ 0 + S2 + S3,
1785
+ � µ
1786
+ 0
1787
+ ∂ξ
1788
+ ∂µ
1789
+ ����� =
1790
+ ����
1791
+
1792
+ ηU B
1793
+ 0 + ηS2 + ηS3, 1
1794
+ µ
1795
+ � µ
1796
+ 0
1797
+ ∂ξ
1798
+ ∂µ
1799
+ �����
1800
+ (4.21)
1801
+
1802
+ ��ηU B
1803
+ 0 + ηS2 + ηS3
1804
+ ��
1805
+ L2xL1w
1806
+ ����
1807
+ 1
1808
+ µ
1809
+ � µ
1810
+ 0
1811
+ ∂ξ
1812
+ ∂µ
1813
+ ����
1814
+ L2
1815
+
1816
+ ��ηU B
1817
+ 0 + ηS2 + ηS3
1818
+ ��
1819
+ L2xL1w
1820
+ ����
1821
+ ∂ξ
1822
+ ∂µ
1823
+ ����
1824
+ L2
1825
+ ≲ ε
1826
+ 1
1827
+ 2 ∥ξ∥H1
1828
+ ≲ε
1829
+ 1
1830
+ 2 ��R
1831
+ ��
1832
+ L2 ≲ o(1)
1833
+ ��R
1834
+ ��2
1835
+ L2 + ε.
1836
+ Analogously, we integrate by parts with respect to ϕ in S1. Then using (4.12), fundamental theorem of
1837
+ calculus, Hardy’s inequality and Lemma 3.4, Lemma 3.5, Lemma 3.6, we bound
1838
+ ���
1839
+
1840
+ S1 + S2 + S3, w · ∇xξ
1841
+ ���� ≲
1842
+ �����
1843
+
1844
+ U B
1845
+ 0 + S2 + S3, ∇xξ
1846
+ ���
1847
+ µ=0 +
1848
+ � µ
1849
+ 0
1850
+
1851
+
1852
+ ∇xξ
1853
+
1854
+ ∂µ
1855
+ ������
1856
+ (4.22)
1857
+
1858
+ ����
1859
+
1860
+ U B
1861
+ 0 + S2 + S3, ∇xξ
1862
+ ���
1863
+ µ=0
1864
+ ����� +
1865
+ �����ε
1866
+
1867
+ ηU B
1868
+ 0 + ηS2 + ηS3, 1
1869
+ µ
1870
+ � µ
1871
+ 0
1872
+
1873
+
1874
+ ∇xξ
1875
+
1876
+ ∂µ
1877
+ ������
1878
+
1879
+ ��U B
1880
+ 0 + S2 + S3
1881
+ ��
1882
+ L2xL1w |∇xξ|L2 + ε
1883
+ ��ηU B
1884
+ 0 + ηS2 + ηS3
1885
+ ��
1886
+ L2
1887
+ �����
1888
+
1889
+
1890
+ ∇xξ
1891
+
1892
+ ∂µ
1893
+ �����
1894
+ L2
1895
+ ≲ε
1896
+ 1
1897
+ 2 |∇xξ|L2
1898
+ ∂Ω + ε ∥ξ∥H2 ≲ ε
1899
+ 1
1900
+ 2 ��R
1901
+ ��
1902
+ L2 ≲ o(1)
1903
+ ��R
1904
+ ��2
1905
+ L2 + ε.
1906
+ Hence, inserting (4.20), (4.21) and (4.22) into (4.19), we have shown (4.10).
1907
+
1908
+ 4.3. Synthesis.
1909
+ Proposition 4.3. Under the assumption (1.14), we have
1910
+ ε− 1
1911
+ 2 |R|L2γ+ + ε− 1
1912
+ 2 ��R
1913
+ ��
1914
+ L2 + ε−1 ��R − R
1915
+ ��
1916
+ L2 ≲ 1.
1917
+ (4.23)
1918
+
1919
+ DIFFUSIVE EXPANSION OF NEUTRON TRANSPORT EQUATION
1920
+ 13
1921
+ Proof. From (4.1), we have
1922
+ ε−1 |R|2
1923
+ L2γ+ + ε−2 ��R − R
1924
+ ��2
1925
+ L2 ≲ o(1)ε−1 ��R
1926
+ ��2
1927
+ L2 + 1.
1928
+ (4.24)
1929
+ From (4.10), we have
1930
+ ��R
1931
+ ��2
1932
+ L2 ≲
1933
+ ��R − R
1934
+ ��2
1935
+ L2 + |R|2
1936
+ L2γ+ + ε.
1937
+ (4.25)
1938
+ Inserting (4.25) into (4.24), we have
1939
+ ε−1 |R|2
1940
+ L2γ+ + ε−2 ��R − R
1941
+ ��2
1942
+ L2 ≲ 1.
1943
+ (4.26)
1944
+ Inserting (4.26) into (4.25), we have
1945
+ ��R
1946
+ ��2
1947
+ L2 ≲ ε.
1948
+ (4.27)
1949
+ Hence, adding ε−1×(4.27) and (4.26), we have
1950
+ ε−1 |R|2
1951
+ L2γ+ + ε−1 ��R
1952
+ ��2
1953
+ L2 + ε−2 ��R − R
1954
+ ��2
1955
+ L2 ≲ 1.
1956
+ (4.28)
1957
+ Then our result follows.
1958
+
1959
+ 5. Proof of Main Theorem
1960
+ The well-posedness of (1.1) is well-known [5, 4, 24]. The construction of U0, Φ and Φ∞ follows from
1961
+ Proposition 2.1 and Proposition 2.3, so we focus on the derivation of (1.15).
1962
+ Based on Proposition 4.3 and (1.5), we have
1963
+ ��uε − U0 − εU1 − ε2U2 − U B
1964
+ 0
1965
+ ��
1966
+ L2 ≲ ε
1967
+ 1
1968
+ 2 .
1969
+ (5.1)
1970
+ Using Proposition 2.3, we have
1971
+ ��εU1 + ε2U2
1972
+ ��
1973
+ L2 ≲ ε.
1974
+ (5.2)
1975
+ Using Proposition 2.3 and the rescaling η = ε−1µ, we have
1976
+ ��U B
1977
+ 0
1978
+ ��
1979
+ L2 ≲ ε
1980
+ 1
1981
+ 2 .
1982
+ (5.3)
1983
+ Then (1.15) follows from inserting (5.2)(5.3) into (5.1).
1984
+ References
1985
+ [1] C. Bardos, F. Golse, and B. Perthame, The Rosseland approximation for the radiative transfer equations, Comm. Pure
1986
+ Appl. Math., 40 (1987), pp. 69–721.
1987
+ [2] C. Bardos, F. Golse, B. Perthame, and R. Sentis, The nonaccretive radiative transfer equations: existence of solutions
1988
+ and Rosseland approximation, J. Funct. Anal., 77 (1988), pp. 434–460.
1989
+ [3] C. Bardos and K. D. Phung, Observation estimate for kinetic transport equations by diffusion approximation, C. R.
1990
+ Math. Acad. Sci. Paris, 355 (2017), pp. 640–664.
1991
+ [4] C. Bardos, R. Santos, and R. Sentis, Diffusion approximation and computation of the critical size, Trans. Amer. Math.
1992
+ Soc., 284 (1984), pp. 617–649.
1993
+ [5] A. Bensoussan, J.-L. Lions, and G. C. Papanicolaou, Boundary layers and homogenization of transport processes,
1994
+ Publ. Res. Inst. Math. Sci., 15 (1979), pp. 53–157.
1995
+ [6] R. Esposito, Y. Guo, C. Kim, and R. Marra, Non-isothermal boundary in the Boltzmann theory and Fourier law,
1996
+ Comm. Math. Phys., 323 (2013), pp. 177–239.
1997
+ [7] Y. Guo and L. Wu, Geometric correction in diffusive limit of neutron transport equation in 2D convex domains, Arch.
1998
+ Rational Mech. Anal., 226 (2017), pp. 321–403.
1999
+ [8]
2000
+ , Regularity of Milne problem with geometric correction in 3D, Math. Models Methods Appl. Sci., 27 (2017), pp. 453–
2001
+ 524.
2002
+ [9] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces., American Mathematical Society, Providence,
2003
+ RI, 2008.
2004
+ [10] E. W. Larsen, A functional-analytic approach to the steady, one-speed neutron transport equation with anisotropic scat-
2005
+ tering, Comm. Pure Appl. Math., 27 (1974), pp. 523–545.
2006
+ [11]
2007
+ , Solutions of the steady, one-speed neutron transport equation for small mean free paths, J. Mathematical Phys., 15
2008
+ (1974), pp. 299–305.
2009
+ [12]
2010
+ , Neutron transport and diffusion in inhomogeneous media I, J. Mathematical Phys., 16 (1975), pp. 1421–1427.
2011
+ [13]
2012
+ , Asymptotic theory of the linear transport equation for small mean free paths II, SIAM J. Appl. Math., 33 (1977),
2013
+ pp. 427–445.
2014
+
2015
+ 14
2016
+ Y. GUO, L. WU
2017
+ [14] E. W. Larsen and J. D’Arruda, Asymptotic theory of the linear transport equation for small mean free paths I, Phys.
2018
+ Rev., 13 (1976), pp. 1933–1939.
2019
+ [15] E. W. Larsen and G. J. Habetler, A functional-analytic derivation of Case’s full and half-range formulas, Comm. Pure
2020
+ Appl. Math., 26 (1973), pp. 525–537.
2021
+ [16] E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths, J.
2022
+ Mathematical Phys., 15 (1974), pp. 75–81.
2023
+ [17] E. W. Larsen and P. F. Zweifel, On the spectrum of the linear transport operator, J. Mathematical Phys., 15 (1974),
2024
+ pp. 1987–1997.
2025
+ [18]
2026
+ , Steady, one-dimensional multigroup neutron transport with anisotropic scattering, J. Mathematical Phys., 17
2027
+ (1976), pp. 1812–1820.
2028
+ [19] Q. Li, J. Lu, and W. Sun, Diffusion approximations and domain decomposition method of linear transport equations:
2029
+ asymptotics and numerics, J. Comput. Phys., 292 (2015), pp. 141–167.
2030
+ [20]
2031
+ , Half-space kinetic equations with general boundary conditions, Math. Comp., 86 (2017), pp. 1269–1301.
2032
+ [21]
2033
+ , Validity and regularization of classical half-space equations, J. Stat. Phys., 166 (2017), pp. 398–433.
2034
+ [22] L. Wu, Boundary layer of transport equation with in-flow boundary, Arch. Rational Mech. Anal., 235 (2020), pp. 2085–
2035
+ 2169.
2036
+ [23]
2037
+ , Diffusive limit of transport equation in 3D convex domains, Peking Math. J., 4 (2021), pp. 203–284.
2038
+ [24] L. Wu and Y. Guo, Geometric correction for diffusive expansion of steady neutron transport equation, Comm. Math.
2039
+ Phys., 336 (2015), pp. 1473–1553.
2040
+ [25] L. Wu, X. Yang, and Y. Guo, Asymptotic analysis of transport equation in annulus, J. Stat. Phys., 165 (2016), pp. 585–
2041
+ 644.
2042
+ (Y. Guo)
2043
+ Division of Applied Mathematics, Brown University
2044
+ Email address: yan guo@brown.edu
2045
+ (L. Wu)
2046
+ Department of Mathematics, Lehigh University
2047
+ Email address: lew218@lehigh.edu
2048
+
G9FLT4oBgHgl3EQfHS_T/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtFKT4oBgHgl3EQfcC5D/content/tmp_files/2301.11814v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtFKT4oBgHgl3EQfcC5D/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdE2T4oBgHgl3EQf_Alo/content/2301.04244v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eefb57608a6d172e9361f9388a4bf79d0000e15a3d6bedc59185e174f7ab7d70
3
+ size 296307
HdE2T4oBgHgl3EQf_Alo/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12f23185cfaaf666031dd3f0a402c7042b515f1f1c3b52c1ce6bedc6fc317558
3
+ size 1245229
HdE2T4oBgHgl3EQf_Alo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9d0eb416c7b4c2bf7c24682ec2e128250ce69d46b98ff9bf4fb10d59f877bf2
3
+ size 62706
HdFJT4oBgHgl3EQfuS10/content/2301.11621v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf5a21e6fde83928890b4f50ecc3cf1a023b645d134bacdfb5b05b624468c83e
3
+ size 696252
HdFJT4oBgHgl3EQfuS10/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b81aa5136a449930e694696a14d08e59dc8334b4654db30f27e909421e8932a
3
+ size 3538989