jackkuo commited on
Commit
e6b99c1
·
verified ·
1 Parent(s): 4863c38

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE2T4oBgHgl3EQfQQbP/content/tmp_files/2301.03769v1.pdf.txt +856 -0
  2. -NE2T4oBgHgl3EQfQQbP/content/tmp_files/load_file.txt +0 -0
  3. -tAyT4oBgHgl3EQfRPa5/content/tmp_files/2301.00063v1.pdf.txt +1105 -0
  4. -tAyT4oBgHgl3EQfRPa5/content/tmp_files/load_file.txt +0 -0
  5. .gitattributes +41 -0
  6. 1tE2T4oBgHgl3EQfiwdZ/content/2301.03961v1.pdf +3 -0
  7. 1tE2T4oBgHgl3EQfiwdZ/vector_store/index.pkl +3 -0
  8. 2tFIT4oBgHgl3EQf5CvJ/content/2301.11388v1.pdf +3 -0
  9. 2tFIT4oBgHgl3EQf5CvJ/vector_store/index.faiss +3 -0
  10. 2tFIT4oBgHgl3EQf5CvJ/vector_store/index.pkl +3 -0
  11. 4NFIT4oBgHgl3EQf6iua/content/2301.11394v1.pdf +3 -0
  12. 4NFIT4oBgHgl3EQf6iua/vector_store/index.pkl +3 -0
  13. 4tA0T4oBgHgl3EQfNf_3/content/tmp_files/2301.02149v1.pdf.txt +3574 -0
  14. 4tA0T4oBgHgl3EQfNf_3/content/tmp_files/load_file.txt +0 -0
  15. 59AyT4oBgHgl3EQf2fl-/content/2301.00752v1.pdf +3 -0
  16. 59AyT4oBgHgl3EQf2fl-/vector_store/index.faiss +3 -0
  17. 5dAyT4oBgHgl3EQfcfda/content/tmp_files/2301.00283v1.pdf.txt +755 -0
  18. 5dAyT4oBgHgl3EQfcfda/content/tmp_files/load_file.txt +317 -0
  19. 69E5T4oBgHgl3EQfPw7T/vector_store/index.faiss +3 -0
  20. 6dE1T4oBgHgl3EQfmwTN/content/tmp_files/2301.03302v1.pdf.txt +2603 -0
  21. 6dE1T4oBgHgl3EQfmwTN/content/tmp_files/load_file.txt +0 -0
  22. 8NAyT4oBgHgl3EQf2_mV/content/tmp_files/2301.00761v1.pdf.txt +4133 -0
  23. 8NAyT4oBgHgl3EQf2_mV/content/tmp_files/load_file.txt +0 -0
  24. 9dAzT4oBgHgl3EQf-_6e/content/tmp_files/2301.01942v1.pdf.txt +835 -0
  25. 9dAzT4oBgHgl3EQf-_6e/content/tmp_files/load_file.txt +0 -0
  26. BNE0T4oBgHgl3EQfxwK1/vector_store/index.faiss +3 -0
  27. CtE2T4oBgHgl3EQf9Ant/content/tmp_files/2301.04225v1.pdf.txt +2539 -0
  28. CtE2T4oBgHgl3EQf9Ant/content/tmp_files/load_file.txt +0 -0
  29. D9FRT4oBgHgl3EQfAjeU/vector_store/index.pkl +3 -0
  30. E9E0T4oBgHgl3EQfhAEU/content/tmp_files/2301.02424v1.pdf.txt +1455 -0
  31. E9E0T4oBgHgl3EQfhAEU/content/tmp_files/load_file.txt +0 -0
  32. EtE0T4oBgHgl3EQfQwBZ/content/2301.02197v1.pdf +3 -0
  33. EtE0T4oBgHgl3EQfQwBZ/vector_store/index.faiss +3 -0
  34. EtE1T4oBgHgl3EQfWwQ3/content/2301.03117v1.pdf +3 -0
  35. EtE1T4oBgHgl3EQfWwQ3/vector_store/index.faiss +3 -0
  36. EtE1T4oBgHgl3EQfWwQ3/vector_store/index.pkl +3 -0
  37. FtE5T4oBgHgl3EQfVg81/content/2301.05551v1.pdf +3 -0
  38. FtE5T4oBgHgl3EQfVg81/vector_store/index.faiss +3 -0
  39. FtE5T4oBgHgl3EQfVg81/vector_store/index.pkl +3 -0
  40. G9AzT4oBgHgl3EQfHfuN/content/2301.01046v1.pdf +3 -0
  41. G9AzT4oBgHgl3EQfHfuN/vector_store/index.pkl +3 -0
  42. GNE5T4oBgHgl3EQfVw9O/content/2301.05553v1.pdf +3 -0
  43. GNE5T4oBgHgl3EQfVw9O/vector_store/index.faiss +3 -0
  44. GNE5T4oBgHgl3EQfVw9O/vector_store/index.pkl +3 -0
  45. ItFLT4oBgHgl3EQfJS9D/vector_store/index.faiss +3 -0
  46. LNE1T4oBgHgl3EQfswVe/content/tmp_files/2301.03369v1.pdf.txt +1216 -0
  47. LNE1T4oBgHgl3EQfswVe/content/tmp_files/load_file.txt +0 -0
  48. MtE2T4oBgHgl3EQfBQa7/content/tmp_files/2301.03601v1.pdf.txt +2972 -0
  49. MtE2T4oBgHgl3EQfBQa7/content/tmp_files/load_file.txt +0 -0
  50. PdAzT4oBgHgl3EQfzv5V/vector_store/index.faiss +3 -0
-NE2T4oBgHgl3EQfQQbP/content/tmp_files/2301.03769v1.pdf.txt ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Learning from What is Already Out There:
2
+ Few-shot Sign Language Recognition with Online Dictionaries
3
+ Maty´aˇs Boh´aˇcek1,2 and Marek Hr´uz1
4
+ 1 Department of Cybernetics and New Technologies for the Information Society,
5
+ University of West Bohemia, Pilsen, Czech Republic
6
+ 2 Gymnasium of Johannes Kepler, Prague, Czech Republic
7
+ Abstract— Today’s sign language recognition models require
8
+ large training corpora of laboratory-like videos, whose collec-
9
+ tion involves an extensive workforce and financial resources.
10
+ As a result, only a handful of such systems are publicly
11
+ available, not to mention their limited localization capabili-
12
+ ties for less-populated sign languages. Utilizing online text-to-
13
+ video dictionaries, which inherently hold annotated data of
14
+ various attributes and sign languages, and training models
15
+ in a few-shot fashion hence poses a promising path for the
16
+ democratization of this technology. In this work, we collect
17
+ and open-source the UWB-SL-Wild few-shot dataset, the first
18
+ of its kind training resource consisting of dictionary-scraped
19
+ videos. This dataset represents the actual distribution and
20
+ characteristics of available online sign language data. We select
21
+ glosses that directly overlap with the already existing datasets
22
+ WLASL100 and ASLLVD and share their class mappings to
23
+ allow for transfer learning experiments. Apart from providing
24
+ baseline results on a pose-based architecture, we introduce a
25
+ novel approach to training sign language recognition models
26
+ in a few-shot scenario, resulting in state-of-the-art results on
27
+ ASLLVD-Skeleton and ASLLVD-Skeleton-20 datasets with top-
28
+ 1 accuracy of 30.97 % and 95.45 %, respectively.
29
+ I. INTRODUCTION
30
+ Sign languages (SLs) are natural language systems based
31
+ on manual articulations and non-manual components, serving
32
+ as the primary means of communication among d/Deaf
33
+ communities. While they allow one to convey identical
34
+ semantics as the written and spoken language, they operate in
35
+ a distinctively more variable gestural-visual modality. There
36
+ are currently over 70 million people worldwide whose native
37
+ language is one of the approximately 300 SLs that exist [1].
38
+ Nevertheless, no publicly available SL translation system
39
+ has been introduced so far. This hinders d/Deaf people’s
40
+ ability to use their natural form of communication when
41
+ working with technology or interacting with people that do
42
+ not sign. Although the problem of automatic SL Recognition
43
+ (SLR) has been addressed for many years, it is far from
44
+ being solved. Modern solutions utilizing deep learning show
45
+ promise, and neural networks might help tear these barriers
46
+ down.
47
+ There are two prevalent topics related to SLs pursued
48
+ in the literature - SL Synthesis and SLR. The first one’s
49
+ objective is to translate written language into SL, typically by
50
+ animating avatars. The second is intended to translate videos
51
+ of performed signs into the written form of a language. It can
52
+ This work has been accepted and scheduled for publication at the Face
53
+ & Gestures 2023 conference. 979-8-3503-4544-5/23/$31.00 ©2023 IEEE
54
+ be further divided into isolated SLR, which recognizes single
55
+ sign lemmas out of a known set of glosses, and continuous
56
+ SLR, translating unconstrained signing utterances. In this
57
+ paper, we attend to the task of few-shot isolated SLR.
58
+ The current methods can be generally divided into two
59
+ main approaches differing in the means of input repre-
60
+ sentations; the appearance-based and the pose-based. The
61
+ first prevalent stream of works uses a sequence of RGB
62
+ images, optionally complemented with the depth channel.
63
+ These methods reach state-of-the-art results but are more
64
+ computationally demanding. The second approach performs
65
+ an intermediate step of first estimating a body pose sequence
66
+ which is then fed into an ensuing recognition model. These
67
+ systems tend to be more lightweight and would thus be
68
+ more suitable for applications on conventional consumer
69
+ technology, e.g., laptops or mobile phones.
70
+ Multiple model training and evaluation datasets have been
71
+ published over recent years. Generally large-scale in size of
72
+ glosses and instances, they vary primarily in the originating
73
+ SL and the manners of data collection. It is essential to con-
74
+ sider that, unlike with many tasks in the Natural Language
75
+ Processing (NLP) domain, no organic sources of potential SL
76
+ training data (such as the internet and printed media in the
77
+ case of NLP) yield vast amounts of training instances daily.
78
+ It hence takes a dedicated, tailored effort to record a SLR
79
+ dataset. Such an operation is costly and requires specialists
80
+ from multiple fields at once, making it strenuous and risky
81
+ to begin with. Accordingly, languages with a smaller user
82
+ base receive less attention.
83
+ Some of the few resources that contain SL data with
84
+ built-in annotations are online text-to-video dictionaries.
85
+ We believe they will be crucial in minimizing barriers
86
+ in constructing future SLR systems, especially for niche
87
+ regional contexts. We thus focus on training models using
88
+ data scraped from such websites. As these services usually
89
+ contain a few repetitions per sign lemma, such a configu-
90
+ ration comprises a few-shot training paradigm. To account
91
+ for the lack of a diverse, high-repetitive dataset, we utilize
92
+ SPOTER [7], a pose-based Transformer [34] architecture
93
+ for SLR. We hypothesize that it will learn faster since it
94
+ considers only pre-selected information necessary for such
95
+ a classification, which is much smaller in dimension than
96
+ raw RGB video. Appearance-based methods, contrastingly,
97
+ glutted by the large volume of additional sensory infor-
98
+ mation, need more data to generalize sturdily, as observed
99
+ arXiv:2301.03769v1 [cs.CV] 10 Jan 2023
100
+
101
+ by Boh´aˇcek et al. [7]. We further investigate the ability
102
+ of models to learn across different datasets and introduce
103
+ boosting training mechanisms. The main contributions of this
104
+ work include:
105
+ • Introducing and open-sourcing UWB-SL-Wild: a new
106
+ dataset for few-shot SLR obtained from public SL
107
+ dictionary data, provided with class mappings to already
108
+ existing SLR datasets;
109
+ • Proposing Validation Score-Conscious Training proce-
110
+ dure which adaptively augments and re-trains for classes
111
+ that are identified as under-performing during training;
112
+ • Establishing the state-of-the-art results on the ASLLVD-
113
+ Skeleton and ASLLVD-Skeleton-20 datasets.
114
+ II. RELATED WORK
115
+ This section reviews the existing datasets and methods
116
+ for isolated SLR. As low-instance training has not yet been
117
+ explored to a greater extent for this task, we consider
118
+ the overlaps to few-shot or zero-shot gesture and action
119
+ recognition.
120
+ A. Datasets
121
+ Multiple datasets of isolated signs have been published and
122
+ studied in the literature. We summarize the prominent ones in
123
+ Table I. Purdue RVL-SLLL ASL Database [23], containing
124
+ 1, 834 videos across 104 classes within the American Sign
125
+ Language (ASL), was one of the first to encompass a larger
126
+ vocabulary. LSA64 [28] for the Argentinian Sign language is
127
+ similar in size, as it contains 3, 200 instances from 64 classes.
128
+ Later on, substantially larger corpora started to emerge.
129
+ DEVISIGN [12], for instance, provides 24, 000 recordings
130
+ spanning 2, 000 glosses from the Chinese sign language. Its
131
+ videos were captured in a laboratory-like environment and
132
+ were, to the best of our knowledge, the first to provide the
133
+ depth information along RGB for this task. MS-ASL [17]
134
+ brings a similar scale for the ASL, as it contains 25, 000 RGB
135
+ videos from 1, 000 classes. Lastly, the AUTSL [31] dataset
136
+ pushed the size and per-class instance ratio even further. It
137
+ holds 38, 366 RGB-D recordings spanning 226 classes from
138
+ the Turkish SL.
139
+ While the available datasets span different geographical
140
+ contexts, most research has centered around ASL. We left
141
+ out recent datasets, which we consider to capture the most
142
+ significant traction within the community, from the introduc-
143
+ tory survey and provide their detailed descriptions below. We
144
+ later utilize these for experiments and for constructing our
145
+ new dataset.
146
+ 1) WLASL:
147
+ Word-level
148
+ American
149
+ Sign
150
+ Language
151
+ dataset [21] is a large-scale database of lemmas from
152
+ the
153
+ ASL
154
+ collected
155
+ from
156
+ multiple
157
+ online
158
+ sources
159
+ and
160
+ organizations. The dataset’s gloss totals 2, 000 terms with
161
+ their translations to English. The authors provide training,
162
+ validation, and test splits. There is an average of over 10
163
+ repetitions in the training set for each class. There are
164
+ three primary splits of the dataset depending on the number
165
+ of
166
+ classes
167
+ they
168
+ cover:
169
+ WLASL100,
170
+ WLASL300,
171
+ and
172
+ WLASL2000. In our experiments, we use the WLASL100
173
+ split only.
174
+ TABLE I
175
+ SURVEY OF PROMINENT SLR DATASETS.
176
+ Dataset
177
+ SL
178
+ Gloss
179
+ Instances
180
+ Format
181
+ DEVISIGN [12]
182
+ CN
183
+ 2,000
184
+ 24,000
185
+ RGB-D
186
+ LSA64 [28]
187
+ AR
188
+ 64
189
+ 3,200
190
+ RGB
191
+ AUTSL [31]
192
+ TR
193
+ 226
194
+ 38,336
195
+ RGB-D
196
+ RVL-SLLL [23]
197
+ US
198
+ 104
199
+ 1,834
200
+ RGB
201
+ ASLLVD [24]
202
+ US
203
+ 2,745
204
+ 9,763
205
+ RGB/Skelet.
206
+ MS-ASL [17]
207
+ US
208
+ 1,000
209
+ 25,000
210
+ RGB
211
+ WLASL [21]
212
+ US
213
+ 2,000
214
+ 21,083
215
+ RGB
216
+ 2) ASLLVD: American Sign Language Lexicon Video
217
+ Dataset [24] holds 2, 745 classes of unique terms in the
218
+ ASL. The authors recorded the data in a consistent lab-like
219
+ environment with a handful of protagonists. The authors have
220
+ not defined training and testing splits, resulting in an average
221
+ of nearly 4 repetitions per gloss in the whole set.
222
+ 3) ASLLVD-Skeleton: Amorim et al. have later created an
223
+ abbreviation of the ASLLVD dataset focused on evaluating
224
+ pose-based methods. They open-sourced pose estimations of
225
+ all the included videos from OpenPose [10] and proposed
226
+ fixed training and test splits. The authors also introduced
227
+ ASLLVD-Skeleton-20, a smaller subset with only 20 classes,
228
+ enabling computationally resource-lighter and more distinc-
229
+ tive ablations studies.
230
+ B. Sign language recognition
231
+ The primal works in SLR have leveraged shallow sta-
232
+ tistical modeling such as Hidden Markov Models [32],
233
+ [33], which achieved reasonable performance on very small
234
+ datasets. A big leap has been observed with the advent of
235
+ deep learning. Convolutional Neural Networks (CNNs) were
236
+ amidst the first deep architectures employed for this prob-
237
+ lem [9], [20], [26], [29]. These were used to construct unitary
238
+ representations of the input frames that could be thereafter
239
+ used for recognition. Later, various Recurrent Neural Net-
240
+ works (RNNs) have been utilized for input encoding as well -
241
+ namely Long Short-Term Memory Networks (LSTMs) [13],
242
+ [19] or Transformers [8], [29]. The usage of different 3D
243
+ CNNs has also been studied extensively (e.g., with I3D [11],
244
+ [17], [21]). With the advances in pose estimation, another
245
+ stream of approaches has emerged, making use of signer pose
246
+ representations at the input. Unlike the previous methods,
247
+ these models do not process raw RGB/RGB-D data, but
248
+ rather pose representations of the estimated body, hand, and
249
+ face landmarks. V´azquez-Enr´ıquez et al. [35] have been
250
+ the first to use a Graph Convolutional Network (GCN)
251
+ on top of pose sequences, following Yan et al. [38] who
252
+ earlier proposed using GCNs for action recognition. Trans-
253
+ formers have been recently employed in this regard, as
254
+ Boh´aˇcek et al. [7] introduced Pose-based Transformer for
255
+ SLR (SPOTER). While the architecture does not surpass
256
+ the existing appearance-based approaches in general bench-
257
+ marks, the authors have shown that when trained only on
258
+ small splits of a training set, SPOTER outperforms even the
259
+ appearance-based approaches significantly. Lastly, multiple
260
+
261
+ Fig. 1.
262
+ Illustrative examples of videos from the used datasets: ASLLVD, WLASL, and our new UWB-SL-Wild. ASLLVD contains videos from a
263
+ homogeneous lab environment with few repetitions for each class. WLASL consists of videos captured in multiple settings with a larger instance repetition.
264
+ UWB-SL-Wild, on the other hand, contains videos from an online dictionary with only a handful of examples for each class and both inconsistent signers
265
+ and recording settings.
266
+ ensemble models combining the raw visual data with the
267
+ pose estimates [16] have also transpired.
268
+ C. Few-shot gesture and action recognition
269
+ Both few-shot gesture and action recognition have not
270
+ gained extensive traction in literature and are hence not
271
+ greatly investigated. Most methods have employed metric
272
+ learning, where the similarity between input videos is learned
273
+ to classify unfamiliar classes at inference using nearest
274
+ neighbors. Bishay et al. [6] have proposed the TARN ar-
275
+ chitecture, being the first to incorporate attention mechanism
276
+ for this task. More recently, Generative Adversarial Networks
277
+ (GANs) have also been studied in this regard [15].
278
+ D. Few- and Zero-shot SLR
279
+ Zero-shot SLR has been studied by Bilge et al. [4], [5].
280
+ In both works, the authors propose a pipeline consisting
281
+ of multiple RNNs and CNNs exploiting the BERT [14]
282
+ representations of given SL lemmas’ textual translations in
283
+ corresponding primary written language. This has enabled
284
+ zero-shot SLR to a limited, yet promising extent, supposing
285
+ the BERT embeddings are available. To the best of our
286
+ knowledge, the only work addressing few-shot SLR specif-
287
+ ically is introduced in [36]. Therein, Wang et al. leverage
288
+ a Siamese Network [18] for feature extraction followed by
289
+ K-means and a custom matching algorithm.
290
+ III. UWB-SL-WILD
291
+ Online SL dictionaries and learning resources are an
292
+ excellent fit for in-the-wild training data, as they inherently
293
+ dispose of a gloss annotation. However, since the primary
294
+ intention with such platforms is not the training of neural
295
+ networks, only a limited amount of repetitions can be found
296
+ for each gloss (often 2 − 3). To the best of our knowledge,
297
+ no available benchmark in the literature can simulate such a
298
+ training paradigm, and we thus decided to create one. We
299
+ collected a custom dataset called UWB-SL-Wild and are
300
+ introducing it in this paper.
301
+ There are numerous text-to-video dictionaries available on
302
+ the internet1. We decided to use the Sign ASL dictionary as it
303
+ 1As
304
+ an
305
+ example,
306
+ let
307
+ us
308
+ mention
309
+ Spread
310
+ the
311
+ Sign
312
+ (www.
313
+ spreadthesign.com), Signing Savvy (www.signingsavvy.com),
314
+ Handspeak (www.handspeak.com), and Sign ASL (www.signasl.
315
+ org) websites.
316
+ Fig. 2.
317
+ Distribution of video repetitions per class in the UWB-SL-Wild
318
+ dataset.
319
+ introduces the largest variability of signer identities and video
320
+ settings due to gathering videos from multiple providers.
321
+ The first three websites either contain laboratory-like videos
322
+ with a single signer (similar to the already existing datasets),
323
+ have a limited vocabulary, or hold other unsuitable video
324
+ properties (such as only possessing black-and-white footage).
325
+ To allow for transfer learning experiments with the
326
+ already-existing datasets, we decided that our dataset’s vo-
327
+ cabulary would be equivalent to that of WLASL100. We
328
+ then scraped the dataset structure from the Sign ASL portal.
329
+ This yielded 307 videos from 100 classes (corresponding to
330
+ lemmas in ASL), leaving us with a mean of under 3 repeti-
331
+ tions per class. The total distribution of repetitions per class
332
+ is depicted in Figure 2. There are 25 unique signers in the
333
+ set. Each goes hand-in-hand with a different setting: video
334
+ quality, distance and angle from the camera, and background.
335
+ While some stand in front of a wall, many sit casually on a
336
+ sofa or at a table. We manually annotated the signer identity
337
+ in each video and are providing this information along with
338
+ the dataset. The 100 classes in UWB-SL-Wild represent
339
+ lemmas of frequent terms in ASL, including ordinary objects
340
+ (e.g., book, candy, and hat), verbs (e.g., play, enjoy, go), and
341
+ other adjectives or particles (e.g., thin, who, blue). Given that
342
+ certain signs in ASL dispose of different variations, it may
343
+ almost seem as if the signs gathered under a single class
344
+ were sometimes completely different. Despite distinctively
345
+ unalike in appearance, they still convey identical or highly
346
+ similar meanings. This further enlarges the difficulty of
347
+ learning on this dataset since some glosses’ sign variations
348
+
349
+ ASLLVD (lab recording)
350
+ UWB Wild Dataset (wild low-shot data)
351
+ WLASL (uniform sources, large-scale)
352
+ class mapping
353
+ class mapping25
354
+ 23
355
+ 22
356
+ 20
357
+ 20
358
+ 19
359
+ Number of classes
360
+ 15
361
+ 10
362
+ 7
363
+ 5
364
+ 5
365
+ 2
366
+ 1
367
+ 1
368
+ 0
369
+ 1
370
+ 2
371
+ 3
372
+ 4
373
+ 5
374
+ 6
375
+ 7
376
+ 8
377
+ 9
378
+ Number of training instanceseventually ended up with only a single instance in the entire
379
+ set (supposing each of the 2 − 3 videos in a given class
380
+ depicts a different variation). While this is not the case for
381
+ most classes with just a single variant, a considerable part
382
+ of the dataset’s glosses hold at least two versions. We thus
383
+ provide manual annotations identifying different variations in
384
+ each class. We created a mapping schema of classes between
385
+ UWB-SL-Wild, WLASL100, and ASLLVD datasets2. This
386
+ enables future researchers to train on and evaluate using these
387
+ three datasets. Examples of videos from all three sources can
388
+ be seen in Figure 1. We are open-sourcing the UWB-SL-
389
+ Wild dataset, including the cross-datasets mappings and pose
390
+ estimates of signers in all videos at https://github.
391
+ com/matyasbohacek/uwb-sl-wild.
392
+ IV. METHODS
393
+ This section presents a method that can learn in a few-
394
+ shot scenario. We build upon SPOTER [7], as it has shown
395
+ substantial promise for training on smaller sets of data, fitting
396
+ our few-shot use case. According to the authors, it should
397
+ require lower amounts of training data because it is a pose-
398
+ based method. We review the pipeline’s key elements and the
399
+ changes we have made below. Any unmentioned attributes or
400
+ configurations were kept identical. We hence refer the reader
401
+ to the original publication for details.
402
+ Preprocessing: We first estimate the signer’s pose in all
403
+ input video frames. 2-D coordinates of key landmarks are
404
+ obtained for the upper body (9), hands (2 × 21), and face
405
+ (70).
406
+ Augmentations and normalization: We follow the aug-
407
+ mentation and normalization procedures from [7] to the full
408
+ extent.
409
+ A. Architecture
410
+ SPOTER is a moderate abbreviation of the Transformer
411
+ architecture [34]. The input to the network is a sequence
412
+ of normalized and flattened skeletal representations with a
413
+ dimension of 242. Learnable positional encoding is added to
414
+ the sequence before it is processed further by the standard
415
+ Encoder module. The input to the Decoder module is a
416
+ single classification query. It is decoded into corresponding
417
+ class probabilities by a multi-layer perceptron on top of the
418
+ Decoder.
419
+ TABLE II
420
+ PERFORMANCE COMPARISON ON ASLLVD-SKELETON DATASET
421
+ ASLLVD-S
422
+ ASLLVD-S-20
423
+ Model
424
+ top-1
425
+ top-5
426
+ top-1
427
+ top-5
428
+ HOF [22]
429
+
430
+
431
+ 70.0
432
+
433
+ BHOF [22]
434
+
435
+
436
+ 85.0
437
+
438
+ ST-GCN [2]
439
+ 16.48
440
+ 37.15
441
+ 61.04
442
+ 86.36
443
+ SPOTER [7]
444
+ 30.77
445
+ 52.05
446
+ 93.18
447
+ 97.72
448
+ SPOTER + VSCT
449
+ 30.97
450
+ 52.87
451
+ 95.45
452
+ 100.00
453
+ 2There were no related videos for 3 classes of WLASL100 split in
454
+ SignASL.org. We thus took the following 3 classes from the full WLASL
455
+ to compensate for this.
456
+ B. Validation score-conscious training
457
+ In an attempt to adapt the SLR pipeline for the few-
458
+ shot training environment, we propose the Validation Score-
459
+ Conscious Training (VSCT). It aims to minimize the classi-
460
+ fication error on the fly by identifying the bottleneck classes,
461
+ i.e., the classes that get misclassified the most. VSCT adds
462
+ the following steps at the end of each epoch of batch gradient
463
+ descent:
464
+ 1) Validation accuracy is calculated for every class within
465
+ the set. If a validation split is unavailable, the accuracy
466
+ is computed on the training split.
467
+ 2) The classes are sorted by their performance. A set of
468
+ classes Wvsct is found as a proportion of γvsct × c
469
+ worst-performing ones, where c is the total number of
470
+ classes.
471
+ 3) Next, a mini-batch is constructed as a random τvsct
472
+ share of the training set with classes from Wvsct.
473
+ 4) Backpropagation is performed yet again on the above-
474
+ described mini-batch. However, the parameters of aug-
475
+ mentations are drawn from a different distribution. This
476
+ allows us to target the problematic classes with better-
477
+ suited representations.
478
+ γvsct, τvsct, and all VSCT-specific augmentation parame-
479
+ ters are constant hyperparameters of a training run.
480
+ V. EXPERIMENTS
481
+ In this section, we report our results compared to the
482
+ already existing methods. We also evaluate our approach on
483
+ a newly proposed benchmark leveraging the class mappings
484
+ from UWB-SL-Wild and ASLLVD datasets to WLASL100.
485
+ A. Implementation details
486
+ The SPOTER architecture with VSCT has been imple-
487
+ mented in PyTorch [25]. The model’s weights were initial-
488
+ ized from a uniform distribution within [0, 1). We trained it
489
+ for 130 epochs with an SGD optimizer. The learning rate
490
+ was set to 0.001 with no scheduler and both momentum and
491
+ weight decay set to 0, following the original implementation.
492
+ VSCT hyperparameters differ based on the examined dataset.
493
+ For body pose estimation, we used the HRNet-w48 [37]
494
+ complemented by a Faster R-CNN [27] for person detec-
495
+ tion within the MMPose library [30]. We also leveraged
496
+ the Sweep functionality (hyperparameter search) within the
497
+ Weights and Biases library [3] to find augmentation and
498
+ VSCT hyperparameters. We namely employed the Bayesian
499
+ hyperparameter search method 3 and conducted this proce-
500
+ dure for each dataset individually.
501
+ B. Quantitative results
502
+ The results on the ASLLVD-Skeleton dataset, along with
503
+ a comparison to the already available methods, are shown
504
+ in Table II. We establish an overall state-of-the-art on this
505
+ benchmark by achieving 30.97% top-1 and 52.87% top-5
506
+ accuracy on the primary dataset. Our method surpasses the
507
+ 3For details on this search method, we refer the reader to the official
508
+ Weights and Biases documentation available at https://docs.wandb.
509
+ ai/guides/sweeps/.
510
+
511
+ TABLE III
512
+ RESULTS OF THE TRANSFER LEARNING EXPERIMENTS WHERE TRAINING AND EVALUATION WERE PERFORMED ON DIFFERENT DATASETS
513
+ ASLLVD → WLASL
514
+ UWB-SL-Wild → WLASL
515
+ Norm.
516
+ Aug.
517
+ Bal. sample
518
+ VSCT
519
+ test
520
+ val
521
+ test
522
+ val
523
+ 
524
+ 
525
+ 
526
+ 
527
+ 10.51
528
+ 5.94
529
+ 8.56
530
+ 7.41
531
+ 
532
+ 
533
+ 
534
+ 
535
+ 19.07
536
+ 16.62
537
+ 14.79
538
+ 16.62
539
+ 
540
+ 
541
+ 
542
+ 
543
+ 19.84
544
+ 15.73
545
+ 15.18
546
+ 16.91
547
+ 
548
+ 
549
+ 
550
+ 
551
+ 20.23
552
+ 15.13
553
+ 16.73
554
+ 14.54
555
+ 
556
+ 
557
+ 
558
+ 
559
+ 22.96
560
+ 13.95
561
+ 18.68
562
+ 16.02
563
+ pose-based ST-GCN by a significant margin, almost doubling
564
+ the top-1 performance. When evaluated on the much smaller
565
+ 20-class subsplit, SPOTER+VSCT achieves 95.45% top-
566
+ 1 and 100.0% top-5 accuracy, which exceeds the so far
567
+ best BHOF by more than absolute 10%. Note that all the
568
+ models listed in rows 1-5 of Table II use appearance-based
569
+ representations. BHOF, for instance, builds upon a block-
570
+ based histogram of the incoming videos’ optical flow.
571
+ The latter of our evaluation settings makes use of
572
+ the class mappings introduced in Section III. We trained
573
+ SPOTER+VSCT on ASLLVD or UWB-SL-Wild dataset but
574
+ calculated the accuracy on the WLASL100 testing set. We
575
+ made the WLASL100 validation split available to the training
576
+ procedure for the purposes of per-class statistics computa-
577
+ tion within VSCT. The results are presented in Table III.
578
+ SPOTER+VSCT achieves a top-1 accuracy of 22.96% when
579
+ trained on ASLLVD and 18.68% when trained using UWB-
580
+ SL-Wild.
581
+ TABLE IV
582
+ ABLATION STUDY ON ASLLVD-SKELETON DATASET
583
+ ASLLVD-S
584
+ Norm.
585
+ Aug.
586
+ Bal. sample
587
+ VSCT
588
+ Full
589
+ 20 cls.
590
+ 
591
+ 
592
+ 
593
+ 
594
+ 5.13
595
+ 47.73
596
+ 
597
+ 
598
+ 
599
+ 
600
+ 29.18
601
+ 86.36
602
+ 
603
+ 
604
+ 
605
+ 
606
+ 30.77
607
+ 88.64
608
+ 
609
+ 
610
+ 
611
+ 
612
+ 30.77
613
+ 90.91
614
+ 
615
+ 
616
+ 
617
+ 
618
+ 30.97
619
+ 95.45
620
+ To provide context to these values, let us consider the
621
+ results of Boh´aˇcek et al. [7] who trained and evaluated
622
+ SPOTER (without VSCT) on WLASL100. They achieved
623
+ 63.18%, roughly three times greater accuracy. Their training
624
+ set averaged 10.5 repetitions per class, whereas ASLLVD
625
+ and UWB-SL-Wild have a mean of 3.6 and 2.9 per-class
626
+ instances, respectively. Moreover, UWB-SL-Wild is signifi-
627
+ cantly more variable as opposed to the other two datasets
628
+ in both unique protagonists and camera settings. While
629
+ these cross-dataset results are not nearly comparable to the
630
+ standard methods applied for WLASL100 benchmarking, we
631
+ believe they attest to the pose-based methods’ ability to
632
+ generalize on characteristically distinct few-shot data.
633
+ C. Ablation study
634
+ We have conducted an ablation study of the individual con-
635
+ tributions of normalization, augmentations, and the VSCT
636
+ to the above-presented results. We also compare VSCT to
637
+ the balanced sampling of classes, which counterbalances the
638
+ disproportion of per-class samples in the training set. We
639
+ summarize the ablations on the ASLLVD-Skeleton dataset
640
+ and its 20-class subset in Table IV. Norm., Aug., and Bal.
641
+ sample refer to using normalization, augmentations, and
642
+ balanced sampling, respectively, in the given model variant.
643
+ The baseline models achieved an accuracy of 5.13% and
644
+ 46.73%, respectively. We can observe that normalization
645
+ itself provides the most significant improvement to 29.18%
646
+ and 86.36%, while augmentations provide a slight boost on
647
+ top of that, resulting in an accuracy of 30.77% and 88.64%.
648
+ With all the previous modules fixed, we test the advan-
649
+ tages of using either balanced sampling or VSCT. As for
650
+ the complete dataset, balanced sampling does not provide
651
+ any performance benefits, whereas VSCT brings a slight
652
+ improvement resulting in 30.97% testing accuracy. When
653
+ examined on the smaller subset, the balanced sampling
654
+ improves the result by a relative 2.6% to 90.91%. VSCT,
655
+ nevertheless, still outperforms it by enhancing the result with
656
+ a relative 7.7% to the final 95.45% testing accuracy.
657
+ The outturn of ablations on the cross-dataset training
658
+ experiments is shown in Table III. For both ASLLVD and
659
+ UWB-SL-Wild, we conduct the same ablations. The results
660
+ mimic the tendencies commented on in the previous exper-
661
+ iment. This study suggests that VSCT provides merits to
662
+ training on such low-shot data, evincing itself more beneficial
663
+ than a standard balanced sampling of classes.
664
+ VI. CONCLUSION
665
+ We collected and open-sourced a new dataset for SLR
666
+ with footage from online text-to-video dictionaries. We con-
667
+ structed it with the already-available datasets in mind and
668
+ created class mappings to WLASL100 and ASLLVD. To
669
+ reflect the attained problem’s few-shot setting, we proposed a
670
+ novel procedure of training a neural pose-based SLR system
671
+ called Validation Score-Conscious Training. This procedure
672
+ analyzes intermediate training results on a validation split
673
+ and adaptively selects samples from the worst-performing
674
+ classes to create additional mini-batches for training. We
675
+ demonstrated VSCT’s merits in several experiments of few-
676
+ shot learning tasks utilizing the SPOTER model, resulting in
677
+ a state-of-the-art result on the ASLLVD-Skeleton dataset.
678
+ ACKNOWLEDGEMENT
679
+ This work was supported by the Ministry of Educa-
680
+ tion, Youth and Sports of the Czech Republic, Project
681
+ No. LM2018101 LINDAT/CLARIAH-CZ. Computational
682
+ resources were supplied by the project ”e- Infrastruktura CZ”
683
+ (e-INFRA CZ LM2018140).
684
+
685
+ REFERENCES
686
+ [1] World federation of the deaf.
687
+ https://wfdeaf.org, 2016.
688
+ Accessed: 2022-08-30.
689
+ [2] C. C. d. Amorim, D. Macˆedo, and C. Zanchettin. Spatial-temporal
690
+ graph convolutional networks for sign language recognition.
691
+ In
692
+ International Conference on Artificial Neural Networks, pages 646–
693
+ 657. Springer, 2019.
694
+ [3] L. Biewald.
695
+ Experiment tracking with weights and biases, 2020.
696
+ Software available from wandb.com.
697
+ [4] Y. C. Bilge, R. G. Cinbis, and N. Ikizler-Cinbis. Towards zero-shot
698
+ sign language recognition. IEEE transactions on pattern analysis and
699
+ machine intelligence, PP, 2022.
700
+ [5] Y. C. Bilge, N. Ikizler-Cinbis, and R. G. Cinbis.
701
+ Zero-shot sign
702
+ language recognition: Can textual data uncover sign languages? In
703
+ The British Machine Vision Conference (BMVC), 2019.
704
+ [6] M. Bishay, G. Zoumpourlis, and I. Patras. Tarn: Temporal attentive
705
+ relation network for few-shot and zero-shot action recognition. In The
706
+ British Machine Vision Conference (BMVC), 2019.
707
+ [7] M. Boh´aˇcek and M. Hr´uz. Sign pose-based transformer for word-level
708
+ sign language recognition. In Proceedings of the IEEE/CVF Winter
709
+ Conference on Applications of Computer Vision (WACV) Workshops,
710
+ pages 182–191, January 2022.
711
+ [8] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden. Multi-channel
712
+ transformers for multi-articulatory sign language translation.
713
+ In
714
+ European Conference on Computer Vision, pages 301–319. Springer,
715
+ 2020.
716
+ [9] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden.
717
+ Sign
718
+ language transformers: Joint end-to-end sign language recognition and
719
+ translation. In Proceedings of the IEEE/CVF conference on computer
720
+ vision and pattern recognition, pages 10023–10033, 2020.
721
+ [10] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Openpose:
722
+ Realtime multi-person 2d pose estimation using part affinity fields.
723
+ IEEE Transactions on Pattern Analysis and Machine Intelligence,
724
+ 43:172–186, 2021.
725
+ [11] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new
726
+ model and the kinetics dataset. In proceedings of the IEEE Conference
727
+ on Computer Vision and Pattern Recognition, pages 6299–6308, 2017.
728
+ [12] X. Chai, H. Wang, and X. Chen. The devisign large vocabulary of
729
+ chinese sign language database and baseline evaluations. In Technical
730
+ report VIPL-TR-14-SLR-001. Key Lab of Intelligent Information Pro-
731
+ cessing of Chinese Academy of Sciences (CAS). Institute of Computing
732
+ Technology, 2014.
733
+ [13] R. Cui, H. Liu, and C. Zhang. Recurrent convolutional neural networks
734
+ for continuous sign language recognition by staged optimization. In
735
+ 2017 IEEE Conference on Computer Vision and Pattern Recognition
736
+ (CVPR), pages 1610–1618, 2017.
737
+ [14] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
738
+ of deep bidirectional transformers for language understanding.
739
+ In
740
+ J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the
741
+ 2019 Conference of the North American Chapter of the Association for
742
+ Computational Linguistics: Human Language Technologies, NAACL-
743
+ HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
744
+ and Short Papers), pages 4171–4186. Association for Computational
745
+ Linguistics, 2019.
746
+ [15] S. K. Dwivedi, V. Gupta, R. Mitra, S. Ahmed, and A. Jain. Protogan:
747
+ Towards few shot learning for action recognition. 2019 IEEE/CVF
748
+ International Conference on Computer Vision Workshop (ICCVW),
749
+ pages 1308–1316, 2019.
750
+ [16] S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu.
751
+ Skeleton
752
+ aware multi-modal sign language recognition. In Proceedings of the
753
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
754
+ pages 3413–3423, 2021.
755
+ [17] H. R. V. Joze and O. Koller. MS-ASL: A large-scale data set and
756
+ benchmark for understanding american sign language. In Proceedings
757
+ of the British Machine Vision Conference 2019. University of Surrey,
758
+ 2019.
759
+ [18] G. Koch. Siamese Neural Networks for One-Shot Image Recognition.
760
+ PhD thesis, University of Toronto, 2015.
761
+ [19] O. Koller, N. C. Camgoz, H. Ney, and R. Bowden. Weakly supervised
762
+ learning with multi-stream cnn-lstm-hmms to discover sequential
763
+ parallelism in sign language videos. IEEE Transactions on Pattern
764
+ Analysis and Machine Intelligence, 42:2306–2320, 2020.
765
+ [20] O. Koller, O. Zargaran, H. Ney, and R. Bowden. Deep sign: Hybrid
766
+ cnn-hmm for continuous sign language recognition. In Proceedings
767
+ of the British Machine Vision Conference 2016. University of Surrey,
768
+ 2016.
769
+ [21] D. Li, C. Rodriguez, X. Yu, and H. Li. Word-level deep sign lan-
770
+ guage recognition from video: A new large-scale dataset and methods
771
+ comparison. In Proceedings of the IEEE/CVF winter conference on
772
+ applications of computer vision, pages 1459–1469, 2020.
773
+ [22] K. M. Lim, A. W. Tan, and S. C. Tan.
774
+ Block-based histogram of
775
+ optical flow for isolated sign language recognition. volume 40, pages
776
+ 538–545, 2016.
777
+ [23] A. Martinez, R. Wilbur, R. Shay, and A. Kak.
778
+ Purdue rvl-slll asl
779
+ database for automatic recognition of american sign language.
780
+ In
781
+ Proceedings. Fourth IEEE International Conference on Multimodal
782
+ Interfaces, pages 167–172, 2002.
783
+ [24] C. Neidle, A. Thangali, and S. Sclaroff. Challenges in development
784
+ of the american sign language lexicon video dataset (ASLLVD)
785
+ corpus. In Proceedings of the 5th Workshop on the Representation
786
+ and Processing of Sign Languages: Interactions between Corpus and
787
+ Lexicon, Language Resources and Evaluation Conference (LREC)
788
+ 2012, 2012.
789
+ [25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
790
+ T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
791
+ E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
792
+ L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-
793
+ performance deep learning library.
794
+ In H. Wallach, H. Larochelle,
795
+ A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett, editors,
796
+ Advances in Neural Information Processing Systems 32, pages 8024–
797
+ 8035. Curran Associates, Inc., 2019.
798
+ [26] G. A. Rao, K. Syamala, P. Kishore, and A. Sastry. Deep convolutional
799
+ neural networks for sign language recognition.
800
+ In 2018 Confer-
801
+ ence on Signal Processing And Communication Engineering Systems
802
+ (SPACES), pages 194–197. IEEE, 2018.
803
+ [27] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster r-cnn: Towards
804
+ real-time object detection with region proposal networks.
805
+ IEEE
806
+ Transactions on Pattern Analysis and Machine Intelligence, 39:1137–
807
+ 1149, 2015.
808
+ [28] F. Ronchetti, F. Quiroga, C. A. Estrebou, L. C. Lanzarini, and
809
+ A. Rosete.
810
+ LSA64: an argentinian sign language dataset.
811
+ In XXII
812
+ Congreso Argentino de Ciencias de la Computaci´on (CACIC 2016).,
813
+ 2016.
814
+ [29] B. Saunders, N. C. Camgoz, and R. Bowden. Continuous 3D multi-
815
+ channel sign language production via progressive transformers and
816
+ mixture density networks. International Journal of Computer Vision,
817
+ 129:2113–2135, 2021.
818
+ [30] A. Sengupta, F. Jin, R. Zhang, and S. Cao. mm-Pose: Real-time human
819
+ skeletal posture estimation using mmwave radars and cnns.
820
+ IEEE
821
+ Sensors Journal, 20:10032–10044, 2020.
822
+ [31] O. M. Sincan and H. Y. Keles. AUTSL: A large scale multi-modal
823
+ turkish sign language dataset and baseline methods.
824
+ IEEE Access,
825
+ 8:181340–181355, 2020.
826
+ [32] T. Starner and A. Pentland.
827
+ Real-time american sign language
828
+ recognition from video using hidden markov models. Proceedings of
829
+ International Symposium on Computer Vision - ISCV, pages 265–270,
830
+ 1995.
831
+ [33] T. Starner, J. Weaver, and A. Pentland.
832
+ Real-time american sign
833
+ language recognition using desk and wearable computer based video.
834
+ IEEE Transactions on pattern analysis and machine intelligence,
835
+ 20:1371–1375, 1998.
836
+ [34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
837
+ Gomez, Ł. Kaiser, and I. Polosukhin.
838
+ Attention is all you need.
839
+ Advances in neural information processing systems, 30, 2017.
840
+ [35] M. V´azquez-Enr´ıquez, J. L. Alba-Castro, L. Doc´ıo-Fern´andez, and
841
+ E. Rodr´ıguez-Banga. Isolated sign language recognition with multi-
842
+ scale spatial-temporal graph convolutional networks. In Proceedings
843
+ of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
844
+ nition, pages 3462–3471, 2021.
845
+ [36] F. Wang, C. Li, Z. Zeng, K. Xu, S. Cheng, Y. Liu, and S. Sun. Corner-
846
+ stone network with feature extractor: a metric-based few-shot model
847
+ for chinese natural sign language. Applied Intelligence, 51:7139–7150,
848
+ 2021.
849
+ [37] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
850
+ Y. Mu, M. Tan, X. Wang, W. Liu, and B. Xiao. Deep high-resolution
851
+ representation learning for visual recognition. IEEE Transactions on
852
+ Pattern Analysis and Machine Intelligence, 43:3349–3364, 2021.
853
+ [38] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional
854
+ networks for skeleton-based action recognition. Thirty-second AAAI
855
+ conference on artificial intelligence, 2018.
856
+
-NE2T4oBgHgl3EQfQQbP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-tAyT4oBgHgl3EQfRPa5/content/tmp_files/2301.00063v1.pdf.txt ADDED
@@ -0,0 +1,1105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00063v1 [math.PR] 30 Dec 2022
2
+ The Sticky L´evy Process as a solution to a Time Change Equation
3
+ Miriam Ram´ırez & Ger´onimo Uribe Bravo
4
+ Instituto de Matem´aticas
5
+ Universidad Nacional Aut´onoma de M´exico
6
+ ABSTRACT. Stochastic Differential Equations (SDEs) were originally devised by Itˆo to provide a path-
7
+ wise construction of diffusion processes. A less explored approach to represent them is through Time
8
+ Change Equations (TCEs) as put forth by Doeblin. TCEs are a generalization of Ordinary Differential
9
+ Equations driven by random functions. We present a simple example where TCEs have some advantage
10
+ over SDEs.
11
+ We represent sticky L´evy processes as the unique solution to a TCE driven by a L´evy process with
12
+ no negative jumps. The solution is adapted to the time-changed filtration of the L´evy process driving
13
+ the equation. This is in contrast to the SDE describing sticky Brownian motion, which is known to have
14
+ no adapted solutions as first proved by Chitashvili. A known consequence of such non-adaptability for
15
+ SDEs is that certain natural approximations to the solution of the corresponding SDE do not converge in
16
+ probability, even though they do converge weakly. Instead, we provide strong approximation schemes for
17
+ the solution of our TCE (by adapting Euler’s method for ODEs), whenever the driving L´evy process is
18
+ strongly approximated.
19
+ 1. INTRODUCTION AND STATEMENT OF THE RESULTS
20
+ Feller’s discovery of sticky boundary behavior for Brownian motion on [0,∞) (in [Fel52, Fel54])
21
+ is, undoubtedly, a remarkable achievement. The discovery is inscribed in the problem of describing
22
+ every diffusion processes on [0,∞) that behaves as a Brownian motion up to the time the former first
23
+ hits 0. See [EP14] for a historical account and [IM63] for probabilistic intuitions and constructions.
24
+ We now consider a definition for sticky L´evy processes associated L´evy processes which only jump
25
+ upwards (also known as Spectrally Positive L´evy process and abbreviated SPLP). General information
26
+ on SPLPs can be consulted in [Ber96, Ch. VII].
27
+ Definition 1. Let X be a SPLP and X0 stand for X killed upon reaching zero. An extension of X0 will
28
+ be c`adl`ag a strong Markov process Z with values in [0,∞) such that X and Z have the same law if
29
+ killed upon reaching 0. We say that Z is a L´evy process with sticky boundary at 0 based on X (or a
30
+ sticky L´evy process for short) if Z is an extension of X0 for which 0 is regular and instantaneous and
31
+ which spends positive time at zero. In other words, if Z0 = 0 then
32
+ 0 = inf{t > 0 : Zt = 0} = inf{t > 0 : Zt ̸= 0}
33
+ and
34
+ � ∞
35
+ 0 I(Zs = 0)ds > 0
36
+ almost surely.
37
+ It is well known that sticky Brownian motion satisfies a stochastic differential equation (SDE) of the
38
+ form
39
+ (1)
40
+ Zt = z+
41
+ � t
42
+ 0 I(Zs > 0)dBs +γ
43
+ � t
44
+ 0 I(Zs = 0)ds,
45
+ t ≥ 0,
46
+ 2010 Mathematics Subject Classification.
47
+ 60G51, 60G17, 34F05.
48
+ Research supported by UNAM-DGAPA-PAPIIT grant IN114720.
49
+ 1
50
+
51
+ The Sticky L´evy Process as a solution to a Time Change Equation
52
+ 2
53
+ where B is a standard Brownian motion, the stickiness parameter γ is strictly positive and I denotes
54
+ the indicator function. This equation has no strong solutions, which means that any process satisfying
55
+ (1) involves some extra randomness to that of Brownian motion B. This result was conjectured by
56
+ Skorohod and initially proved by R. Chitashvili in [Chi89] (later published as [Chi97]) and [War97].
57
+ More recent proofs can be found in [EP14, Bas14] and [HCA17]. In contrast to the representation of
58
+ the sticky Brownian motion as a solution to an SDE, we propose a representation of any SPLP with
59
+ a sticky boundary as a solution to a TCE. The particularity of our representation is that it does not
60
+ require any extra randomness to that generated by the L´evy process driving the equation. In the L´evy
61
+ process case, a fundamental hypothesis to construct sticky L´evy processes will be that the sample paths
62
+ have unbounded variation on any interval. Equivalently, we can assume that either there is a Gaussian
63
+ component or the sum of jumps is absolutely divergent (i.e. ∑s≤t |Xs −Xs−| = ∞ almost surely for some
64
+ t > 0).
65
+ Theorem 1. Let X be a SPLP adapted to a right-continuous and complete filtration (Ft,t ≥ 0). Assume
66
+ that the sample paths of X have unbounded variation. Given a parameter γ > 0 and a point z ≥ 0, there
67
+ exists a unique pair of stochastic processes Z = (Zt,t ≥ 0) and C = (Ct,t ≥ 0) satisfying
68
+ (2)
69
+ Zt = z+XCt +γ
70
+ � t
71
+ 0 I(Zs = 0)ds,
72
+ where
73
+ Ct =
74
+ � t
75
+ 0 I(Zs > 0)ds,
76
+ for every t ≥ 0. For the unique pair (Z,C) verifying Equation (2), it holds that C is a (Ft)-time change
77
+ and that Z is adapted to the time-changed filtration ( �
78
+ Ft,t ≥ 0) given by �
79
+ Ft = FCt. Furthermore, Z is
80
+ a sticky L´evy process based on X.
81
+ This result attempts to honor the memory of Wolfgang Doeblin, the pioneer of TCEs, because for
82
+ historical reasons that can be consulted in [BY02], the representation of diffusion processes suggested
83
+ by Doeblin using TCEs is less known than the one given by Kiyosi Itˆo via SDEs. In particular, the
84
+ region of applicability of TCEs has not been as carefully delineated as the one for SDEs. Note, however,
85
+ that TCEs a priori do not even need the notion of a stochastic integral to be stated and, as showed in
86
+ [CPGUB17, CPGUB13], TCEs have much better stability properties than SDEs.
87
+ To explain the unbounded variation assumption, it implies that the Dini derivatives of X are infinite
88
+ (as proved originally in [Rog68]; see [AHUB20] for an extension and further applications). In other
89
+ words, at any given stopping time T (such as the hitting time of zero), we have
90
+ −liminf
91
+ h→0+
92
+ XT+h −XT
93
+ h
94
+ = limsup
95
+ h→0+
96
+ XT+h −XT
97
+ h
98
+ = ∞.
99
+ This will aid in proving that 0 is regular and instantaneous for Z. The following (counter)example also
100
+ indirectly shows its relevance: the equation
101
+ h(t) = β
102
+ � t
103
+ 0 I(h(s) > 0)ds+γ
104
+ � t
105
+ 0 I(h(s) = 0)ds
106
+ does not admit solutions if β < 0 < γ. The difficulty with a time-change equation such as (2) is the
107
+ discontinuity of the indicator functions of (0,∞) and of {0}. The success in its analysis follows from
108
+ an explicit description of a solution in terms of reflection in the sense of Skorohod. This is done for a
109
+ deterministic version of (2) in Proposition 3 of Section 2.2.
110
+ Sticky L´evy processes are a one parameter family of processes built from the trajectories of X and
111
+ are part of the notion of recurrent extensions of X0 analyzed in [RUB22] in terms of three non-negative
112
+ constants and a measure on (0,∞). Such processes are called SPLP (with values) in [0,∞). As in Feller’s
113
+ result, these parameters describe the domain of the infinitesimal generator L of the corresponding
114
+ recurrent extension. A possible boundary condition describing such a domain is given by
115
+ f ′(0+) = γ−1L f(0+)
116
+
117
+ The Sticky L´evy Process as a solution to a Time Change Equation
118
+ 3
119
+ for some constant γ > 0. In the Brownian case, this condition corresponds to the so-called sticky
120
+ Brownian motion with stickiness parameter γ. Generalizing the Brownian case, we will compute the
121
+ boundary condition for the generator of the sticky L´evy process of Theorem 1 in Section 3.3. Gen-
122
+ erator considerations are also relevant to explain the assumption on X having no negative jumps: The
123
+ generator L of such a L´evy process acts on functions defined on R, but immediately makes sense on
124
+ functions only defined on [0,∞). This last assertion is not true for the generator of a L´evy process with
125
+ jumps of both signs.
126
+ Our second main result exposes a positive consequence of the adaptability of the solution to the TCE
127
+ (2). In [Bas14], an equivalent system to the SDE (1) is studied. In particular, it is showed that the non-
128
+ existence of strong solutions prevent the convergence in probability of certain natural approximations
129
+ to the solutions of the corresponding SDE, even though they converge weakly. In contrast, we present
130
+ a simple (albeit strong!) approximation scheme for the solution to the TCE (2). To establish such a
131
+ convergence result, we start from an approximation to the L´evy process X which drives the TCE (2).
132
+ Theorem 2. Let X be a SPLP with unbounded variation. Let (Z,C) denote the unique solution to the
133
+ TCE (2). Consider (Xn,n ≥ 1) a sequence of processes with c`adl`ag paths, such that each Xn is the
134
+ piecewise constant extension of some discrete-time process defined on N/n and starts at 0. Suppose
135
+ that Xn → X in the Skorohod topology, either weakly or almost surely. Let (zn,n ≥ 1) be a sequence
136
+ of non-negative real numbers converging to a point z. Consider the processes Cn and Zn defined by
137
+ Cn(0) = Cn(0−) = 0,
138
+ Cn(t) = Cn(⌊nt⌋/n−)+(t −⌊nt⌋/n)I(Zn(t) > 0)
139
+ (3)
140
+ and
141
+ Zn(t) = (zn +Xn −γ Id)(Cn(⌊nt⌋/n))+γ⌊nt⌋/n.
142
+ (4)
143
+ Then Cn →C uniformly on compact sets and Zn → Z in the Skorohod topology. The type of convergence
144
+ will be weak or almost sure, depending on the type of convergence of (Xn,n ≥ 1).
145
+ Observe that the above procedure corresponds to an Euler-type approximation for the solution to
146
+ the TCE (2). If we consider the same equation but now driven by a process for which we could not
147
+ guarantee the existence of a solution, our approximation scheme might converge but the limit might not
148
+ be solution, as shown in the following simple but illustrative example. Let X = −Id, z = 0 and γ = 1.
149
+ Then the approximations proposed in (3) and (4) reduce to
150
+ Cn
151
+ �2k −1
152
+ n
153
+
154
+ = Cn
155
+ �2k
156
+ n
157
+
158
+ = k
159
+ n
160
+ and
161
+ Zn
162
+ �k
163
+ n
164
+
165
+ =
166
+
167
+ 0
168
+ if k is even
169
+ − 1
170
+ n
171
+ if k is odd
172
+ for each k ∈ N. These sequences converge to C∗(t) = t/2 and Z∗ = 0, but clearly such processes do
173
+ not satisfy TCE (2). In general, TCEs are very robust under approximations; the failure to converge is
174
+ related to the fact that the equation that we just considered actually admits no solutions, as commented
175
+ in a previous paragraph.
176
+ Weak approximation results for sticky Brownian motion or of L´evy processes of the sticky type have
177
+ been given in [Yam94] and [HL81]. In the latter reference, reflecting Brownian motion is used, while in
178
+ the former, an SDE representation is used. In [BRHC20], the reader will find an approximation of sticky
179
+ Brownian motions by discrete space Markov chains and by diffusions in deep-well potentials as well a
180
+ numerical study and many references regarding applications. In particular, we find there the following
181
+ phrase which highlights why Theorem 2 is surprising: ... there are currently no methods to simulate
182
+ a sticky diffusion directly: there is no practical way to extend existing methods for discretizing SDEs
183
+ based on choosing discrete time steps, such as Euler-Maruyama or its variants ... to sticky processes...
184
+ It is argued that the Markov chain approximation can be extended to multiple sticky Brownian motions.
185
+ In the setting of multiple sticky Brownian motions, one can consult [BR20] and [RS15]. We are only
186
+
187
+ The Sticky L´evy Process as a solution to a Time Change Equation
188
+ 4
189
+ aware of a strong approximation of sticky Brownian motion, in terms of time-changed embedded simple
190
+ and symmetric random walks, in [Ami91].
191
+ The rest of this paper is structured as follows. We split the proof of Theorem 1 into several parts. In
192
+ Section 2 we explore a deterministic version of the TCE (2), which is applied in Section 2.1 to show
193
+ a monotonicity property, the essential ingredient to show uniqueness and convergence of the proposed
194
+ approximation scheme (Section 2.3). In Section 2.2, we obtain conditions for the existence of the
195
+ unique solution to the deterministic version of the TCE (2). The purpose of Section 3.1 is to apply
196
+ the deterministic analysis to prove existence and uniqueness of the solution to the TCE (2) and the
197
+ approximation Theorem 2. Then in Section 3.2, we verify that the unique process satisfying the TCE
198
+ (2) is is measurable with respect to the time-changed filtration and that it is a sticky L´evy process.
199
+ Finally in Section 3.3, using stochastic calculus instead of Theorem 2 from [RUB22], we analyze the
200
+ boundary behavior of the solution to the proposed TCE to describe the infinitesimal generator of a
201
+ sticky L´evy process.
202
+ 2. DETERMINISTIC ANALYSIS
203
+ Following the ideas from [CPGUB13] and [CPGUB17], we start by considering a deterministic
204
+ version of the TCE (2).
205
+ We will prove that every solution to the corresponding equation satisfies a monotonicity property,
206
+ which will be the key in the proof of uniqueness. Assume that Z solves almost surely the TCE (2).
207
+ Hence, its paths satisfy an equation of the type
208
+ (5)
209
+ h(t) = f(c(t))+g(t),
210
+ c(t) =
211
+ � t
212
+ 0 I(h(s) > 0)ds.
213
+ where f : [0,∞) → R is a c`adl`ag function without negative jumps starting at some non-negative value
214
+ and g is an non-decreasing c`adl`ag
215
+ function. (Indeed, we can take as f a typical sample path of
216
+ t �→ z + Xt − γt and g(t) = γt.) Recall that, f being c`adl`ag , we can define the jump of f at t, denoted
217
+ ∆ f(t), as f(t) − f(t−). By a solution to (5), we might refer either to the function h (from which c is
218
+ immediately constructed), or to the pair (h,c).
219
+ We first verify the non-negativity of the function h.
220
+ Proposition 1. Let f and g be c`adl`ag and assume that ∆ f ≥ 0, g is non-decreasing and f(0)+g(0) ≥
221
+ 0. Then, every solution h to the TCE (5) is non-negative. Furthermore, if g is strictly increasing, the
222
+ function c given by c(t) =
223
+ � t
224
+ 0 I(h(s) > 0)ds is also strictly increasing.
225
+ Proof. Let h be a solution to (5) and suppose that it takes negative values. Note that h(0) = f(0) +
226
+ g(0) ≥ 0 and that h is c`adl`ag without negative jumps. Hence, h reaches (−∞,0) continuously. The
227
+ right continuity of f (and then of h) ensures the existence of some non-degenerate interval on which h
228
+ is negative. Fix ε > 0 small enough to ensure that τ defined by
229
+ τ = inf{t ≥ 0 : h < 0 on (t,t +ε)}
230
+ is finite. (Note that, with this definition and the fact that f decreases continuously, we have that h(τ) =
231
+ 0. ) Given that h is negative on a right neighborhood of τ, then
232
+ � τ
233
+ 0 I(h(s) > 0)ds =
234
+ � τ+ε
235
+ 0
236
+ I(h(s) > 0)ds,
237
+ which leads us to a contradiction because
238
+ 0 = h(τ) = f
239
+ �� τ
240
+ 0 I(h(s) > 0)ds
241
+
242
+ +g(τ) ≤ f
243
+ �� τ+ε
244
+ 0
245
+ I(h(s) > 0)ds
246
+
247
+ +g(τ +ε) = h(τ +ε) < 0.
248
+ Hence, h is non-negative.
249
+
250
+ The Sticky L´evy Process as a solution to a Time Change Equation
251
+ 5
252
+ Assume now that g is strictly increasing. By definition, c is non-decreasing. We prove that c is
253
+ strictly increasing by contradiction: assume that c(t) = c(s) for some s < t. Then, h = 0 on (s,t) and,
254
+ by working on a smaler interval, we can assume that h(s) = h(t) = 0. However, we then get
255
+ 0 = h(s) = f ◦c(s)+g(s) < f ◦c(s)+g(t) = f ◦c(t)+g(t) = h(t) = 0.
256
+ The contradiction implies that c is strictly increasing.
257
+
258
+ If f−(t) = f(t−), note that the above result and (a slight modification of) its proof also holds for
259
+ solutions to the inequality
260
+ � t
261
+ s I(h(r) > 0)dr ≤ c(t)−c(s) ≤
262
+ � t
263
+ s I(h(r) ≥ 0)dr
264
+ where h(r) = f− ◦c(r)+g−(r) and f and g satisfy the hypotheses of Proposition 1. These inequalities
265
+ are natural when studying the stability of solutions to (5) and will come up in the proof of Theorem 2.
266
+ 2.1. Monotonicity and Uniqueness. The following comparison result for the solutions to Equation
267
+ (5) will be the key idea in the uniqueness proof of Theorem (1). Moreover, we pick up it in Section 2.3,
268
+ where it also plays an essential role in the approximation of sticky L´evy processes.
269
+ Proposition 2. Let ( f 1,g1) and ( f 2,g2) be pairs of functions satisfying that f i and gi are c`adl`ag ,
270
+ ∆ f i ≥ 0, gi is strictly increasing and f i(0)+gi(0) ≥ 0. Suppose that f 1 ≤ f 2 and g1 ≤ g2. If h1 and h2
271
+ satisfy
272
+ hi(t) = f i(ci(t))+gi(t),
273
+ ci(t) =
274
+ � t
275
+ 0 I(hi(s) > 0)ds,
276
+ for i = 1,2, then we have the inequality c1 ≤ c2. In particular, Equation (5) admits has at most one
277
+ solution when g is strictly increasing.
278
+ Proof. Fix ε > 0 and define cε(t) = c2(ε +t). Set
279
+ τ = inf{t > 0 : c1(t) > cε(t)}.
280
+ To get a contradiction, suppose that τ < ∞. The continuity of c1 and cε guarantees that c1(τ) = cε(τ)
281
+ and c1 is bigger than cε at some point t of every right neighborhood of τ. At such points, the inequality
282
+ cε(t)−cε(τ) < c1(t)−c1(τ) is satisfied. Applying a change of variable, this is equivalent to
283
+ (6)
284
+ � t
285
+ τ I(h2(ε +s) > 0)ds <
286
+ � t
287
+ τ I(h1(s) > 0)ds.
288
+ The assumpions about g1 and g2 imply that g1(τ) < g2(ε +τ). Therefore
289
+ 0 ≤ h1(τ) = f 1(c1(τ))+g1(τ) < f 2(cε(τ))+g2(ε +τ) = h2(ε +τ).
290
+ Thanks to the right continuity of h2, we can choose t close enough to τ such that h2(ε +s) > 0 for every
291
+ s ∈ [τ,t). Going back to the inequality (6), we see that
292
+ t −τ =
293
+ � t
294
+ τ I(h2(ε +s) > 0)ds <
295
+ � t
296
+ τ I(h1(s) > 0)ds ≤ t −τ,
297
+ which is a contradiction. Therefore τ = ∞ and we conclude the announced result by letting ε → 0.
298
+ In particular, if (h1,c1) and (h2,c2) are two solutions to (5) (driven by the same functions f and
299
+ g), then the above monotonicity result (applied twice) implies c1 = c2 and therefore h1 = f ◦c1 +g =
300
+ f ◦c2 +g = h2.
301
+
302
+
303
+ The Sticky L´evy Process as a solution to a Time Change Equation
304
+ 6
305
+ 2.2. Existence. The following variant of a well-known result of Skorohod (cf. [RY99, Chapter VI,
306
+ Lemma 2.1]) will be helpful to verify the existence of the unique solution to the TCE (5).
307
+ Lemma 1. Let f : [0,∞) → R be a c`adl`ag function with non-negative jumps and f(0) ≥ 0. Then there
308
+ exists a unique pair of functions (r,l) defined on [0,∞) which satisfies: r = f + l, r is non-negative,
309
+ l is a non-decreasing continuous function that increases only on the set {s : r(s) = 0} and such that
310
+ l(0) = 0. Moreover, the function l is given by
311
+ l(t) = sup
312
+ s≤t
313
+ (− f(s)∨0).
314
+ Note that the lack of negative jumps of f is fundamental to obtain a continuous process l.
315
+ With the above Lemma, we can give a deterministic existence result for equation (5).
316
+ Proposition 3. Assume that f is c`adl`ag , ∆ f ≥ 0 and f(0) ≥ 0. Let (r,l) be the pair of processes of
317
+ Lemma 1 applied to f. If {t ≥ 0 : r(t) = 0} has Lebesgue measure zero, then, for every γ > 0 there
318
+ exists a solution h to
319
+ (7)
320
+ h = f
321
+ �� t
322
+ 0 I(h(s) > 0)ds
323
+
324
+
325
+ � t
326
+ 0 I(h(s) = 0)ds.
327
+ Equivalently, in terms of Equation (5), the function h satisfies
328
+ (8)
329
+ h = f γ ◦c+γ Id,
330
+ c(t) =
331
+ � t
332
+ 0 I(h(s) > 0)ds.
333
+ where f γ(t) = f(t)−γt.
334
+ Proof. Applying Lemma 1 to f, we deduce the existence of a unique pair of processes (r,l) satisfying
335
+ r(t) = f(t) + l(t) with r is a non-negative function and l a continuous function with non-decreasing
336
+ paths such that l(0) = 0 and
337
+ (9)
338
+ � t
339
+ 0 I(r(s) > 0)l(ds) = 0.
340
+ To construct the solution to the deterministic TCE (7), let us consider the continuous and strictly in-
341
+ creasing function a defined by a(t) = t + l(t)/γ for every t ≥ 0. Denote its inverse by c and consider
342
+ the composition h = r ◦c. The hypothesis on f implies that
343
+ � t
344
+ 0 I(r(s) = 0)ds = 0 for all t. Therefore,
345
+ since r is non-negative, then
346
+ t =
347
+ � t
348
+ 0 I(r(s) > 0)ds =
349
+ � t
350
+ 0 I(r(s) > 0)(ds+γ−1l(ds)).
351
+ Substituting the deterministic time t for c(t) in the previous expression and using that c is the inverse
352
+ of a, we have
353
+ c(t) =
354
+ � c(t)
355
+ 0
356
+ I(r(s) > 0)a(ds) =
357
+ � t
358
+ 0 I(h(s) > 0)ds.
359
+ Finally, the definition of a and its continuity imply l(t) = γ(a(t)−t), so that
360
+ l(c(t)) = γ(t −c(t)) = γ
361
+ � t
362
+ 0 I(h(s) = 0)ds.
363
+ Hence, the identity h(t) = r(c(t)) can be written as
364
+ h(t) = f
365
+ �� t
366
+ 0 I(h(s) > 0)ds
367
+
368
+
369
+ � t
370
+ 0 I(h(s) = 0)ds,
371
+ as we wanted.
372
+
373
+
374
+ The Sticky L´evy Process as a solution to a Time Change Equation
375
+ 7
376
+ 2.3. Approximation. It is our purpose now to discuss a simple method to approximate the solution
377
+ to the TCE (7). Among the large number of existing discretization schemes, we choose a widely used
378
+ method, an adaptation of that of Euler’s. Again, the key to the proof relies deeply on our monotonicity
379
+ result.
380
+ Proposition 4. Let f be c`adl`ag and satisfy ∆ f ≥ 0, and f(0) ≥ 0. Assume that Equation (7), or
381
+ equivalently (8), admits a unique solution denoted by (h,c). Let ˜f n be a sequence of c`adl`ag functions
382
+ which converge to f and let f n = ˜f n −γ⌊n·⌋/n. Let cn and hn be given by cn(0) = cn(0−) = 0,
383
+ cn(t) = cn(⌊nt⌋/n−)+(t −⌊nt⌋/n)I(hn(t) > 0)
384
+ (10)
385
+ and
386
+ hn(t) = f n(cn(⌊nt⌋/n))+γ⌊nt⌋/n.
387
+ (11)
388
+ Then hn → h in the Skorohod J1 topology and cn → c uniformly on compact sets.
389
+ Note that Propositions 2 and 3 give us conditions for the existence of a unique solution, which is
390
+ the main assumption in the above proposition. Also, hn is piecewise on [(k −1)/n,k/n) and, therefore,
391
+ cn is piecewise linear on [(k − 1)/n,k/n] and, at the endpoints of this interval, cn takes values in N/n.
392
+ Hence, cn(⌊tn⌋/n) = ⌊ncn(t)/n⌋.
393
+ The proof of Proposition 4 is structured as follows: we prove that the sequence (cn,n ≥ 1) is
394
+ relatively compact. Given (cnj, j ≥ 1) a subsequence that converges to certain limit c∗, we see that
395
+ ((cnj,hnj), j ≥ 1) also converges and its limit is given by (c∗,h∗), where h∗ = f γ ◦c∗ +γ Id and we re-
396
+ call that f γ = f −γ Id. A slight modification of the proof of Proposition 2 implies that the limit (c∗,h∗)
397
+ does not depend on the choice of the subsequence (nj, j ≥ 1) and consequently the whole sequence
398
+ ((cn,hn),n ≥ 1) converges.
399
+ Proof of Proposition 4. Since γ Id is continuous, then our hypothesiss ˜f n → f implies that f n → f −
400
+ γ Id. (Since addition is not a continuous operation on Skorohod space as in [Bil99, Ex. 12.2], we need
401
+ to use Theorem 4.1 in [Whi80] or Theorem 12.7.3 in [Whi02].)
402
+ Fix t0 > 0. Note that Equation (10) can be written as
403
+ cn(t) =
404
+ � t
405
+ 0 I(hn(s) > 0)ds.
406
+ This guarantees that the functions cn are Lipschitz continuous with Lipschitz constant equal to 1. Hence
407
+ they are non-decreasing, equicontinuous and uniformly bounded on [0,t0]. It follows from Arzel`a-
408
+ Ascoli Theorem that (cn,n ≥ 1) is relatively compact. Let (cnj, j ≥ 1) be a subsequence which con-
409
+ verges uniformly in the space of continuous function on [0,t0], let us call c∗ to the limit, which is
410
+ non-decreasing and continuous. Actually, c∗ is 1-Lipschitz continuous, so that c∗(t)−c∗(s) ≤ t −s for
411
+ s ≤ t. This is a fundamental fact which will be relevant to proving that c = c∗. Since cnj(⌊njt⌋/nj) =
412
+ ⌊njcnj(t)⌋/nj for every t ≥ 0, we can write hnj = f nj ◦cnj +γ⌊nj·⌋/nj. We now prove that: as j → ∞:
413
+ (cnj, f nj ◦cnj) → (c∗, f γ ◦c∗). Indeed, the convergence f n → f γ implies that liminfn→∞ f n(tn) ≥ f γ
414
+ −(t)
415
+ whenever tn → t. (If a proof is needed, note that Proposition 3.6.5 in [EK86] tells us that the accumu-
416
+ lation points of f n(tn) belong to {f γ
417
+ −(t), f γ(t)}.) Then,
418
+ I( f γ
419
+ − ◦c∗(s)+γs > 0) ≤ liminf
420
+ j
421
+ I( f nj ◦cnj(s)+γ⌊ns⌋/n > 0),
422
+ so that, by Fatou’s lemma,
423
+ � t
424
+ s I( f γ
425
+ − ◦c∗(r)+γr > 0)dr ≤ c∗(t)−c∗(s).
426
+ But now, arguing as in Proposition 1, we see that f γ
427
+ − ◦c∗ +γ Id is non-negative and that c∗ is strictly in-
428
+ creasing. Since c∗ is continuous and stricly increasing, Theorem 13.2.2 in [Whi80, p. 430] implies that
429
+
430
+ The Sticky L´evy Process as a solution to a Time Change Equation
431
+ 8
432
+ the composition operation is continuous at ( f γ,c∗), so that f nj ◦cnj → f γ ◦c∗. Since γ Id is continuous,
433
+ we see that hnj → h∗ := f γ ◦c∗ +γ Id, as asserted.
434
+ Another application of Fatou’s lemma gives
435
+ � t
436
+ s I( f γ ◦c∗(r)+γr > 0)dr ≤ c∗(t)−c∗(s).
437
+ Now, arguing as in the monotonicity result of Proposition 2, we get c ≤ c∗.
438
+ Let us obtain the converse inequality c∗ ≤ c by a small adaptation of the proof of the aforementioned
439
+ proposition, which then finishes the proof of Theorem 2. Let ε > 0, define ˜c(t) = c(ε + t) and let
440
+ τ = inf{t ≥ 0 : c∗(t) > ˜c(t)}. If τ < ∞, note that c∗(τ) = ˜c(τ) and, in every right neighborhood of τ,
441
+ there exists t such that c∗(t) > ˜c(t). At τ, observe that
442
+ 0 ≤ h∗(τ) = f γ ◦c∗(τ)+γτ < f γ ◦ ˜c(τ)+γ(τ +ε) = h(τ +ε).
443
+ Thanks to the right continuity of the right hand side, there exists a right neighborhood of τ on which
444
+ h(· + ε) is strictly positive and on which, by definition of c, ˜c grows linearly. Let t belong to that
445
+ right-neighborhood and satisfy c∗(t) > ˜c(t). Since c∗ is 1-Lipschitz continuous, we then obtain the
446
+ contradiction:
447
+ (t −τ) =
448
+ � t
449
+ τ I(h(ε +r) > 0)dr = ˜c(t)− ˜c(τ) < c∗(t)−c∗(τ) ≤ t −τ.
450
+ Hence, τ = ∞ and therefore c∗ ≤ ˜c. Since this inequality holds for any ε > 0, we deduce that c∗ ≤ c.
451
+ The above implies that c∗ = c and consequently h∗ = h. In other words, the limits c∗ and h∗ do not
452
+ depend on the subsequence (nj, j ≥ 1) and then we conclude the convergence of the whole sequence
453
+ ((cn,hn),n ≥ 1) to the unique solution to the TCE (8).
454
+
455
+ 3. APPLICATION TO STICKY L´EVY PROCESSES
456
+ The aim of this section is to apply the deterministic analysis of the preceeding section to prove
457
+ Theorems 1 and 2. The easy part is to obtain existence, uniqueness and approximation, while the
458
+ Markov property and the fact that the solution Z to Equation (2) is a sticky L´evy process require some
459
+ extra (probabilistic) work. We tackle the existence and uniqueness assertions in Theorem 1 and prove
460
+ Theorem 2 in Subsection 3.1. Then, we prove the strong Markov property of solutions to Equation 2 in
461
+ Subsection 3.2. This allows us to prove that solutions are sticky L´evy processes, thus finishing the proof
462
+ of Theorem 1, but leaves open the precise computation of the stickiness parameter (or, equivalently,
463
+ the boundary condition for its infinitesimal generator). We finally obtain the boundary condition in
464
+ Subsection 3.3. We could use the excursion analysis of [RUB22] to obtain the boundary condition but
465
+ decided to also include a different proof via stochastic analysis to make the two works independent.
466
+ 3.1. Existence, Uniqueness and Approximation. We now turn to the proof of the existence and
467
+ uniqueness assertions in Theorem 1.
468
+ Proof of Theorem 1, Existence and Uniqueness. Note that uniqueness of Equation (2) is immediate
469
+ from Proposition 2 by replacing the c`adl`ag function f by the paths of x+X −γ Id and taking g = γ Id.
470
+ To get existence, note that applying Lemma 1 to the paths of X, we deduce the existence of a unique
471
+ pair of processes (R,L) satisfying Rt = z + Xt + Lt with R a non-negative process and L a continuous
472
+ process with non-decreasing paths such that L0 = 0 and
473
+ � t
474
+ 0 I(Rs > 0)dLs = 0. In fact, we have an explicit
475
+ representation of L as
476
+ (12)
477
+ Lt = sup
478
+ s≤t
479
+ ((−z−Xs)∨0) = −inf
480
+ s≤t((z+Xs)∧0).
481
+ Note that R corresponds to the process X reflected at its infimum which has been widely studied as a
482
+ part of the fluctuation theory of L´evy processes (cf. [Ber96, Ch. VI, VII], [Bin75] and [Kyp14]).
483
+
484
+ The Sticky L´evy Process as a solution to a Time Change Equation
485
+ 9
486
+ From the explicit description of the process L given in (12), it follows that P(Rt = 0) = P(Xt = Xt),
487
+ where Xt = infs≤t(Xs ∧ 0). Similarly, we denote Xt = sups≤t(Xs ∨ 0). Proposition 3 from [Ber96, Ch.
488
+ VI] ensures that the pairs of variables (Xt −Xt,−Xt) and (Xt,Xt −Xt) have the same distribution under
489
+ P. Consequently
490
+ P(Xt = Xt) = P((Xt −Xt,−Xt) ∈ {0}×[0,∞)) = P((Xt,Xt −Xt) ∈ {0}×[0,∞)) ≤ P(Xt = 0).
491
+ The unbounded variation of X guarantees that 0 is regular for (−∞,0) and for (0,∞) (as mentioned, this
492
+ result can be found in [Rog68] and has been extended in [AHUB20]). Hence, for any t > 0, Xt > 0.
493
+ We decude that P(Xt = 0) = 1−P(Xs > 0 for some s ≤ t) = 0. Thus,
494
+ E
495
+ �� ∞
496
+ 0 I(Rt = 0)dt
497
+
498
+ =
499
+ � ∞
500
+ 0 P(Xt = Xt)dt = 0.
501
+ Therefore, we can apply Proposition 3 to deduce the existence of solutions to Equation (2).
502
+
503
+ Let us now pass to the proof of 2.
504
+ Proof of Theorem 2. As we have stated in Theorem 2, we allow the convergence Xn → X to be weak
505
+ or almost surely. Using Skorohod’s representation Theorem, we may assume that it is satisfied almost
506
+ surely in some suitable probability space. The desired result follows immediately from Proposition 4
507
+ by considering the paths of f = z+X −γ Id and f n = zn +Xn −γ⌊n·⌋/n.
508
+
509
+ 3.2. Measurability details and the strong Markov property. In order to complete the proof of The-
510
+ orem 1, it remains to verify the adaptability of the unique solution to the TCE (2) to the time changed
511
+ filtration ( �
512
+ Ft,t ≥ 0) and that such a solution is, in fact, a sticky L´evy process based on X. This is the
513
+ objective of the current section, which ends the proof of Theorem 1.
514
+ By construction the mapping t �→ Ct is continuous and strictly increasing. Furthermore, given that C
515
+ is the inverse of the map t �→ t +Lt/γ, we can write
516
+ {Ct ≤ s} = {γ(t −s) ≤ Ls} ∈ Fs,
517
+ for every t ≥ 0. In other words, the random time Ct is a (Fs)-stopping time, since the filtration is
518
+ right-continuous. Therefore the process C is a (Fs)-time change and Z is adapted to the time-changed
519
+ filtration ( �
520
+ Ft,t ≥ 0). In this sense we say that Z exhibits no extra randomness to that of the original
521
+ L´evy process. This contrasts with the SDE describing sticky Brownian motion (cf. [War97, Theorem
522
+ 1]).
523
+ Let us verify that the unique solution Z to (2) is an extension of the killed process X0. By construc-
524
+ tion, we see that if Z0 = z > 0, then Z equals X until they both reach zero. Hence Z and X have the
525
+ same law if killed upon reaching zero. Let now Z be the unique solution of (2) with Z0 = z = 0. The
526
+ concrete construction which proves existence to (2) of Section 2.2 shows that
527
+ γ
528
+ � t
529
+ 0 I(Zs = 0)ds = L◦C
530
+ where Ct =
531
+ � t
532
+ 0 I(Zs > 0)ds, Lt = −infs≤t Xs. We have already argued that the unbounded variation
533
+ hypothesis implies that Lt > 0 for any t > 0 and therefore L∞ > 0 almost surely. As above, recalling
534
+ that C is the inverse of Id+L/γ, we see that C∞ = ∞. We conclude that L◦C∞ > 0 almost surely, so that
535
+ Z spends positive time at zero. We will now use the unbounded variation of X to guarantee the regular
536
+ and instantaneous character of 0 for Z. By construction, the unique solution Z to the TCE (2) is the
537
+ process X reflected at its infimum by applying a continuous strictly increasing time change C to it, that
538
+ is Z = R◦C where R = X −X. Consequently
539
+ P(inf{s > 0 : Zs = 0} = 0) = P(inf{s > 0 : X ◦Cs = X ◦Cs} = 0) = P(inf{s > 0 : Xs = Xs} = 0).
540
+
541
+ The Sticky L´evy Process as a solution to a Time Change Equation
542
+ 10
543
+ Since 0 is regular for (−∞,0) thanks to the unbounded variation hypothesis (meaning that X visits
544
+ (−∞,0) immediatly upon reaching 0), we conclude the regularity of 0. Similarly, given the regularity
545
+ of 0 for (0,∞) for X, we have
546
+ P(inf{s > 0 : Zs > 0} = 0) = P(inf{s > 0 : Xs > Xs} = 0) ≥ P(inf{s > 0 : Xs > 0} = 0) = 1.
547
+ Thus, 0 is an instantaneous point.
548
+ To conclude the proof of Theorem 1, it now remains to prove the strong Markov property. From the
549
+ construction of the unique solution to the TCE (2), we deduce the existence of a measurable mapping Fs
550
+ that maps the paths of the L´evy process X and the initial condition z to the unique solution to the TCE
551
+ (2) evaluated at time s, that is, Zs = Fs(X,z) for s ≥ 0. Let T be a ( �
552
+ Ft)-stopping time. Approximating
553
+ T by a decreasing sequence of ( �
554
+ Ft)-stopping times (T n,n ≥ 1) taking only finitely many values, we
555
+ see that CT is an (Ft)-stopping time. From the TCE (2), we deduce that
556
+ ZT+s = ZT +(XC(T+s) −XC(T))+γ
557
+ � s
558
+ 0 I(ZT+r = 0)dr.
559
+ Consider the processes ˜C, ˜X and ˜Z given by ˜Cs =C(T +s)−C(T), ˜Xs = XC(T)+s −XC(T) and ˜Zs = ZT+s
560
+ respectively. We can write the last equation as
561
+ (13)
562
+ ˜Zs = ZT + ˜X ˜C(s) +γ
563
+ � s
564
+ 0 I( ˜Zr = 0)dr,
565
+ and ˜C satisfies ˜Cs =
566
+ � s
567
+ 0 I( ˜Zr > 0)dr for s ≥ 0. In other words, ˜Z is solution to the TCE (2) driven by
568
+ ˜X with initial condition ZT. Consequently ˜Zs = Fs( ˜X,ZT). Note that ˜X has the same distribution as X
569
+ and it is independent of �
570
+ FT. Hence, the conditional law of ˜Z given �
571
+ FT is that of F(·,ZT). (One could
572
+ make appeal to Lemma 8.7 in [Kal21, p. 169] if needed.) This allows us to conclude that Z is a strong
573
+ Markov process and concludes the proof of Theorem 1.
574
+ 3.3. Stickiness and martingales. In this section we aim at describing the boundary condition of the
575
+ infinitesimal generator of the sticky L´evy process Z of Theorem 1 by proving the following result.
576
+ Proposition 5. Let X be a L´evy process of unbounded variation and no negative jumps and let L be
577
+ its infinitesimal generator. For a given z ≥ 0, let Z be the unique (strong Markov) process satisfying the
578
+ time-change equation (2):
579
+ Zt = z+X� t
580
+ 0 I(Zs>0)ds +γ
581
+ � t
582
+ 0 I(Zs = 0)ds.
583
+ Then, for every f : [0,∞) → R which is of class C2,b and which satisfies the boundary condition
584
+ γ f ′(0+) = L f(0+), the process M defined by
585
+ Mt = f(Zt)−
586
+ � t
587
+ 0 L f(Zs)ds
588
+ is a martingale and
589
+
590
+ ∂t
591
+ ����
592
+ t=0
593
+ E( f(Zt)) = L f(z).
594
+ Theorem 2 from [RUB22] describes the domain of the infinitesimal generator of any recurrent exten-
595
+ sion of X0 (which is proved to be a Feller process) by means of three non-negative constants pc, pd, pκ
596
+ and a measure µ on (0,∞). To describe such parameters we note a couple of important facts about the
597
+ unique solution to (2). By construction we can see that it leaves 0 continuously. Indeed, if we consider
598
+ the left endpoint g of some excursion interval of Z, then Cg is the left endpoint of some excursion inter-
599
+ val of the process reflected at its infimum R. Thanks to Proposition 2 from [RUB22], such excursions
600
+ start at 0, so Z leaves 0 continuously. Thus, from [RUB22], pc > 0 and µ = 0. Note also that Z has
601
+ infinite lifetime because R has it and C is bounded by the identity function, so pκ = 0. Finally, since Z
602
+
603
+ The Sticky L´evy Process as a solution to a Time Change Equation
604
+ 11
605
+ spends positive time at 0, then pd > 0. Theorem 2 from [RUB22] ensures that every function f in the
606
+ domain of the infinitesimal generator of Z satisfies
607
+ f ′(0+) = pd
608
+ pc
609
+ L f(0+).
610
+ Our proof of Proposition 5 does not require the results from [RUB22]. The main intention is to give
611
+ an application of stochastic calculus, since we recall that a classical computation of the infinitesimal
612
+ generator for L´evy processes is based on Fourier analysis (cf. [Ber96]). Regarding the generator L ,
613
+ recall that it can be applied to C2,b functions such as f and that L f is continuous (an explicit expression
614
+ is forthcoming). The lack of negative jumps implies that L f is defined even if f is only defined and
615
+ C2,b on an open set containing [0,∞).
616
+ Proof of Proposition 5. Let Z be the unique solution to the TCE (2) driven by the SPLP X. Itˆo’s formula
617
+ for semimartingales [Pro04, Chapter II, Theorem 32] guarantees that for every function f ∈ C2
618
+ 0[0,∞):
619
+ f(Zt) = f(z)+
620
+ � t
621
+ 0 f ′(Z−
622
+ s )dXCs +
623
+ � t
624
+ 0 γ f ′(Z−
625
+ s )I(Z−
626
+ s = 0)ds+ 1
627
+ 2
628
+ � t
629
+ 0 f ′′(Z−
630
+ s )d[Z,Z]c
631
+ s
632
+ +∑
633
+ s≤t
634
+ (∆ f(Zs)− f ′(Z−
635
+ s )∆Zs).
636
+ (14)
637
+ In order to analyze this expression, we recall the so-called L´evy-Itˆo decomposition, which describes
638
+ the structure of any L´evy process in terms of three independent auxiliary L´evy processes, each with a
639
+ different type of path behaviour. Consider the Poisson point process N of the jumps of X given by
640
+ Nt = ∑
641
+ s≤t
642
+ δ(s,∆Xs).
643
+ Denote by ν the characteristic measure of N, which is called the L´evy measure of X and fulfills the
644
+ integrability condition
645
+
646
+ (0,∞)(1 ∧ x2)ν(dx) < ∞. Then, we write the L´evy-Itˆo decomposition as X =
647
+ X(1) + X(2) + X(3), where X(1) = bt + σBt is a Brownian motion independent of N, with diffusion
648
+ coefficient σ 2 ≥ 0 and drift b = E[X1 −
649
+
650
+ (0,1]
651
+
652
+ [1,∞) xN(ds,dx)],
653
+ X(2) =
654
+
655
+ (0,t]
656
+
657
+ [1,∞) xN(ds,dx)
658
+ is a compound Poisson process consisting of the sum of the large jumps of X and finally
659
+ X(3) =
660
+
661
+ (0,t]
662
+
663
+ (0,1) x(N(ds,dx)−ν(dx)ds)
664
+ is a square-integrable martingale.
665
+ Assuming the L´evy-Itˆo decomposition of X and using the next result, whose proof is postponed, we
666
+ will see that
667
+ � t
668
+ 0 f ′(Z−
669
+ s )dXCs is a semimartingale of the form
670
+ (15)
671
+ Mt +
672
+ � t
673
+ 0 bf ′(Z−
674
+ s )(1−I(Zs = 0))ds+
675
+ � t
676
+ 0 f ′(Z−
677
+ s )dX(2)
678
+ Cs ,
679
+ for some square-integrable martingale M.
680
+ Lemma 2. Let C be a (Ft)-time change whose paths are continuous and locally bounded. Let X be a
681
+ right-continuous local martingale with respect to (Ft,t ≥ 0). Then the time-changed process XC is a
682
+ right-continuous local martingale with respect to the time-changed filtration ( �
683
+ Ft,t ≥ 0).
684
+ Lemma 2 ensures that the time-changed process (σB + X(3)) ◦C remains a local martingale. Ac-
685
+ cording to Theorem 20 from [Pro04, Chapter II], square-integrable local martingales are preserved
686
+
687
+ The Sticky L´evy Process as a solution to a Time Change Equation
688
+ 12
689
+ under stochastic integration provided that the integrand process is adapted and has c`adl`ag paths. Con-
690
+ sequently the stochastic integral1 M = f ′(Z−) · (σBC + X(3)
691
+ C ) is a ( �
692
+ Ft)-local martingale. Thanks to
693
+ Corollary 27.3 from [Pro04, Chapter II], we know that a necessary and sufficient condition for a local
694
+ martingale to be a square-integrable martingale is that its quadratic variation is integrable. Let us verify
695
+ that E[[M,M]t] < ∞ for every t ≥ 0. Theorem 10.17 from [Jac79] implies the quadratic variation of the
696
+ time-changed process coincides with the time change of the quadratic variation
697
+
698
+ σBC +X(3)
699
+ C ,σBC +X(3)
700
+ C
701
+
702
+ t =
703
+
704
+ σB+X(3),σB+X(3)�
705
+ Ct ,
706
+ t ≥ 0.
707
+ Given that the Brownian motion B is independent of X(3), the quadratic variation is σ 2Ct +
708
+
709
+ X(3),X(3)�
710
+ Ct,
711
+ which is bounded by σ 2t +
712
+
713
+ X(3),X(3)�
714
+ t. Thus
715
+ E[[M,M]t] ≤ ∥f ′∥2
716
+ ∞E
717
+ ��
718
+ σB+X(3),σB+X(3)�
719
+ Ct
720
+
721
+ ≤ ∥f ′∥2
722
+
723
+
724
+ σ 2t +t
725
+
726
+ (−1,1) x2 ν(dx)
727
+
728
+ < ∞.
729
+ This verifies the decomposition (15). Later we will deal with the last term of this decomposition.
730
+ Coming back to Itˆo’s formula (14), we need to calculate the term corresponding to the integral with
731
+ respect to the continuous part of the quadratic variation of Z. First, we decompose the variation as
732
+ [Z,Z]s = [XC,XC]s +2[XC,γ(Id−C)]s +γ2[Id−C,Id−C]s,
733
+ for every s ≥ 0. The first term is [X,X]Cs. Given the finite variation of γ(Id−C) and the continuity
734
+ of C, Theorem 26.6 from [Kal02] implies that almost surely the other two terms are zero. Thereby
735
+ [Z,Z]s = [X,X]Cs for every s ≥ 0 and
736
+ 1
737
+ 2
738
+ � t
739
+ 0 f ′′(Z−
740
+ s )d[Z,Z]c
741
+ s = 1
742
+ 2
743
+ � t
744
+ 0 σ 2 f ′′(Z−
745
+ s )(1−I(Zs = 0))ds.
746
+ Now we analyze the last term on the right-hand side from (14), which corresponds to the jump part.
747
+ Let us note that the discontinuities of f ◦Z derive from the discontinuities of Z, which are caused by
748
+ the jumps of X ◦C, in other words
749
+ {s ≤ t : |∆ f(Zs)| > 0}⊆{s ≤ t : ∆Zs > 0} = {s ≤ t : ∆(X ◦C)s > 0}.
750
+ Making the change of variable r = Cs, the sum of the jumps in (14) can be written as
751
+ (16)
752
+
753
+ r≤Ct
754
+ (∆ f(Z ◦Ar)− f ′(Z− ◦Ar)∆(Z ◦Ar)),
755
+ where A denotes the inverse of C. We claim that A is a ( �
756
+ Ft)-time change. Indeed, splitting in the cases
757
+ r < t and r ≥ t, we see that {At ≤ s}∩{Cs ≤ r} = {t ≤Cs ≤ r} ∈ Fr for any r ≥ 0. Exercise 1.12 from
758
+ [RY99, Chapter V] ensures that the time-changed filtration ( �
759
+ FAt,t ≥ 0) is in fact (Ft,t ≥ 0). Thus, for
760
+ any continuous function g, the process (g(Z−
761
+ At),t ≥ 0) is (Ft)-predictable.
762
+ We return to (15) to put together the sum of the jumps in (16) and the stochastic integral ( f ′ ◦Z−)·
763
+ (X(2) ◦C). For this purpose, it is convenient to rewrite the last integral as ( f ′ ◦Z− ◦A ◦C) · (X(2) ◦C)
764
+ and apply Lemma 10.18 from [Jac79] to deduce that ( f ′ ◦Z−) · (X(2) ◦C) = (( f ′ ◦Z− ◦A) · X(2)) ◦C.
765
+ 1We use both notations
766
+ � Hs dXs and H ·X to refer to the stochastic integral.
767
+
768
+ The Sticky L´evy Process as a solution to a Time Change Equation
769
+ 13
770
+ Consequently
771
+ � t
772
+ 0 f ′(Z−
773
+ s )dX(2)
774
+ Cs + ∑
775
+ s≤Ct
776
+ (∆ f(Z ◦As)− f ′(Z− ◦As)∆(Z ◦As))
777
+ =
778
+ � Ct
779
+ 0
780
+
781
+ (0,∞)
782
+
783
+ f(Z−
784
+ As +x)− f(Z−
785
+ As)− f ′(Z−
786
+ As)xI(x ∈ (0,1))
787
+
788
+ (N(ds,dx)−ν(dx)ds)
789
+ +
790
+ � Ct
791
+ 0
792
+
793
+ (0,∞)
794
+
795
+ f(Z−
796
+ As +x)− f(Z−
797
+ As)− f ′(Z−
798
+ As)xI(x ∈ (0,1))
799
+
800
+ ν(dx)ds.
801
+ (17)
802
+ Define the process M by
803
+ Mt =−
804
+ � t
805
+ 0
806
+
807
+ [1,∞)
808
+
809
+ f(Z−
810
+ As +x)− f(Z−
811
+ As)
812
+
813
+ ν(dx)ds
814
+ +
815
+ � t
816
+ 0
817
+
818
+ [1,∞)
819
+
820
+ f(Z−
821
+ As +x)− f(Z−
822
+ As)
823
+
824
+ N(ds,dx)
825
+ +
826
+ � t
827
+ 0
828
+
829
+ (0,1)
830
+
831
+ f(Z−
832
+ As +x)− f(Z−
833
+ As)− f ′(Z−
834
+ As)x
835
+
836
+ (N(ds,dx)− ds).
837
+ Since ν is a L´evy measure, then
838
+ E
839
+ �� t
840
+ 0
841
+
842
+ [1,∞)
843
+ �� f(Z−
844
+ As +x)− f(Z−
845
+ As)
846
+ �� ds
847
+
848
+ ≤ ∥f∥2
849
+ ∞tν([1,∞)) < ∞.
850
+ We develop the first degree Taylor polynomial of f(Z−
851
+ As +x) to obtain
852
+ f ′(Z−
853
+ As)x = f(Z−
854
+ As +x)− f(Z−
855
+ As)−R(x),
856
+ x ∈ (0,1),
857
+ where the remainder R satisfies |R(x)| ≤ 1
858
+ 2∥f ′′∥∞x2. Therefore
859
+ E
860
+ �� t
861
+ 0
862
+
863
+ (0,1)
864
+
865
+ f(Z−
866
+ As +x)− f(Z−
867
+ As)− f ′(Z−
868
+ As)x
869
+
870
+ ν(dx)ds
871
+
872
+ ≤ 1
873
+ 2∥f ′′∥∞tE
874
+ ��
875
+ (0,1) x2 ν(dx)
876
+
877
+ < ∞.
878
+ Theorem 5.2.1 from [App09] ensures that M is a (Ft)-local martingale and Lemma 2 implies that MC
879
+ is a ( �
880
+ Ft)-local martingale. Furthermore, for t ≥ 0 it holds that
881
+ E
882
+
883
+ sup
884
+ s≤t
885
+ |MCs|
886
+
887
+ ≤ E
888
+
889
+ sup
890
+ s≤t
891
+ |Ms|
892
+
893
+
894
+
895
+ 2∥f∥∞ + 1
896
+ 2∥f ′′∥2
897
+
898
+
899
+ t
900
+
901
+ (0,∞)(1∧x2)ν(dx) < ∞.
902
+ It follows from Theorem 51 from [Pro04, Chapter I] that MC is a true martingale.
903
+ Gathering all the expressions involved in Itˆo’s formula (14), we get the semimartingale decomposi-
904
+ tion
905
+ f(Zt)− f(z) =Mt +
906
+ � t
907
+ 0 bf ′(Z−
908
+ s )(1−I(Zs = 0))ds+
909
+ � t
910
+ 0 γ f ′(0+)I(Zs = 0)ds
911
+ + 1
912
+ 2
913
+ � t
914
+ 0 σ 2 f ′′(Z−
915
+ s )(1−I(Zs = 0))ds+MCt
916
+ +
917
+ � Ct
918
+ 0
919
+
920
+ (0,∞)
921
+
922
+ f(Z−
923
+ As +x)− f(Z−
924
+ As)− f ′(Z−
925
+ As)xI(x ∈ (0,1))
926
+
927
+ ν(dx)ds.
928
+ Recall that the extended generator of X (as in [RY99, Ch. VII]) is given by
929
+ L f(z) = bf ′(z)+ σ 2
930
+ 2 f ′′(z)+
931
+
932
+ R+
933
+
934
+ f(z+x)− f(z)− f ′(z)xI(x ∈ (0,1))
935
+
936
+ ν(dx)
937
+
938
+ The Sticky L´evy Process as a solution to a Time Change Equation
939
+ 14
940
+ on C2,b functions and that the extended generator of X0 is given by L f on C2,b functions f on [0,∞)
941
+ which vanish (together with its derivatives) at 0 and ∞. Note that L f(z) is bounded. Define
942
+ ˜
943
+ L f(0) by
944
+ ˜
945
+ L f(0) = (b−γ) f ′(0+)+ σ 2
946
+ 2 f ′′(0+)+
947
+
948
+ R+
949
+
950
+ f(x)− f(0+)− f ′(0+)xI(x ∈ (0,1))
951
+
952
+ ν(dx).
953
+ Given that
954
+ ˜
955
+ L f(0) = L f(0+)−γ f ′(0+), we can write the martingale M +MC as
956
+ M +MCt = f(Zt)− f(z)−
957
+ � t
958
+ 0 L f(Z−
959
+ s )ds+
960
+ � t
961
+ 0
962
+ ˜
963
+ L f(0)I(Zs = 0)ds.
964
+ We deduce that if a function f ∈ C2[0,∞) satisfies the boundary condition
965
+ ˜
966
+ L f(0) = 0 or equivalently
967
+ γ f ′(0+) = L f(0+), then f(Zt) − f(z) −
968
+ � t
969
+ 0 L f(Zs)ds is a martingale. By hypothesis, the last term
970
+ is bounded by a linear function of t, so that E[f(Zt)] is differentiable at zero and the derivative equals
971
+ L f(z).
972
+
973
+ We conclude this section with the proof of Lemma 2.
974
+ Proof. (Lemma 2) Let (βn,n ≥ 1) be localizing sequence for X, then βn → ∞ as n → ∞ and for each
975
+ n ≥ 1, the process XβnI(βn > 0) is a uniformly integrable martingale. Keeping the notation A for the
976
+ inverse of C, we will prove that (A(βn),n ≥ 1) is a sequence of ( �
977
+ Ft)-stopping times that localizes to XC.
978
+ The property of being (Ft)-stopping time is deduced by observing that {βn ≤ Ct} ∈ Fβn ∩FCt ⊂ �
979
+ Ft,
980
+ which implies that
981
+ {A(βn) ≤ t}∩{Ct ≤ s} = {βn ≤ Ct}∩{Ct ≤ s} ∈ Fs.
982
+ Since C ◦A = Id, then
983
+ (Z ◦C)A(βn)
984
+ t
985
+ = ZCt∧βn = Zβn
986
+ Ct .
987
+ Given that Zβn is a (Ft)-martingale, Optional Stopping Theorem guarantees that
988
+ E
989
+
990
+ Zβn
991
+ Ct
992
+ ���FCs
993
+
994
+ = Zβn
995
+ Cs ,
996
+ 0 ≤ s ≤ t.
997
+ Hence (Z ◦C)A(βn) is a ( �
998
+ Ft)-martingale. Moreover A(βn) → ∞ as n → ∞ since C ≤ Id.
999
+
1000
+ REFERENCES
1001
+ [AHUB20]
1002
+ Osvaldo Angtuncio Hern´andez and Ger´onimo Uribe Bravo, Dini derivatives and regularity for exchangeable
1003
+ increment processes, Trans. Amer. Math. Soc. Ser. B 7 (2020), 24–45. ↑2, ↑9
1004
+ [Ami91]
1005
+ Madjid Amir, Sticky Brownian motion as the strong limit of a sequence of random walks, Stochastic Process.
1006
+ Appl. 39 (1991), no. 2, 221–237. ↑4
1007
+ [App09]
1008
+ David Applebaum, L´evy processes and stochastic calculus, second ed., Cambridge Studies in Advanced Math-
1009
+ ematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800 ↑13
1010
+ [Bas14]
1011
+ Richard F. Bass, A stochastic differential equation with a sticky point, Electron. J. Probab. 19 (2014), no. 32,
1012
+ 22. MR 3183576 ↑2, ↑3
1013
+ [Ber96]
1014
+ Jean Bertoin, L´evy processes, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cam-
1015
+ bridge, 1996. MR 1406564 ↑1, ↑8, ↑9, ↑11
1016
+ [Bil99]
1017
+ Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics:
1018
+ Probability and Statistics, John Wiley & Sons Inc., New York, 1999. ↑7
1019
+ [Bin75]
1020
+ N. H. Bingham, Fluctuation theory in continuous time, Advances in Appl. Probability 7 (1975), no. 4, 705–766.
1021
+ MR MR0386027 ↑8
1022
+ [BR20]
1023
+ Guillaume Barraquand and Mark Rychnovsky, Large deviations for sticky Brownian motions, Electron. J.
1024
+ Probab. 25 (2020), Paper No. 119, 52. ↑3
1025
+ [BRHC20]
1026
+ Nawaf Bou-Rabee and Miranda C. Holmes-Cerfon, Sticky Brownian motion and its numerical solution, SIAM
1027
+ Rev. 62 (2020), no. 1, 164–195. ↑3
1028
+ [BY02]
1029
+ Bernard Bru and Marc Yor, Comments on the life and mathematical legacy of Wolfgang Doeblin, Finance Stoch.
1030
+ 6 (2002), no. 1, 3–47. MR 1885582 ↑2
1031
+
1032
+ The Sticky L´evy Process as a solution to a Time Change Equation
1033
+ 15
1034
+ [Chi89]
1035
+ R. Chitashvili, On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion,
1036
+ Tech. report, Department of Operations Research and System Theory, Centrum Wiskunde & Informatica, 1989.
1037
+ ↑2
1038
+ [Chi97]
1039
+ , On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion, Proc.
1040
+ A. Razmadze Math. Inst. 115 (1997), 17–31. MR 1639096 ↑2
1041
+ [CPGUB13] Ma. Emilia Caballero, Jos´e Luis P´erez Garmendia, and Ger´onimo Uribe Bravo, A Lamperti-type representa-
1042
+ tion of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627.
1043
+ MR 3098685 ↑2, ↑4
1044
+ [CPGUB17] M. Emilia Caballero, Jos´e Luis P´erez Garmendia, and Ger´onimo Uribe Bravo, Affine processes on Rm+ × Rn
1045
+ and multiparameter time changes, Ann. Inst. Henri Poincar´e Probab. Stat. 53 (2017), no. 3, 1280–1304.
1046
+ MR 3689968 ↑2, ↑4
1047
+ [EK86]
1048
+ Stewart N. Ethier and Thomas G. Kurtz, Markov processes. Characterization and convergence., John Wiley &
1049
+ Sons Inc., 1986. MR 838085 ↑7
1050
+ [EP14]
1051
+ Hans-J¨urgen Engelbert and Goran Peskir, Stochastic differential equations for sticky Brownian motion, Stochas-
1052
+ tics 86 (2014), no. 6, 993–1021. MR 3271518 ↑1, ↑2
1053
+ [Fel52]
1054
+ William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann.
1055
+ of Math. (2) 55 (1952), 468–519. ↑1
1056
+ [Fel54]
1057
+ , Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1–31. ↑1
1058
+ [HCA17]
1059
+ Hatem Hajri, Mine Caglar, and Marc Arnaudon, Application of stochastic flows to the sticky Brownian motion
1060
+ equation, Electron. Commun. Probab. 22 (2017), Paper No. 3, 10. ↑2
1061
+ [HL81]
1062
+ J. Michael Harrison and Austin J. Lemoine, Sticky Brownian motion as the limit of storage processes, J. Appl.
1063
+ Probab. 18 (1981), no. 1, 216–226. ↑3
1064
+ [IM63]
1065
+ K. Itˆo and H. P. McKean, Jr., Brownian motions on a half line, Illinois J. Math. 7 (1963), 181–231. MR 154338
1066
+ ↑1
1067
+ [Jac79]
1068
+ Jean Jacod, Calcul stochastique et probl`emes de martingales, Lecture Notes in Mathematics, vol. 714, Springer,
1069
+ Berlin, 1979. MR 542115 ↑12
1070
+ [Kal02]
1071
+ Olav Kallenberg, Foundations of modern probability, 2nd ed., Springer-Verlag, 2002. MR 1876169 ↑12
1072
+ [Kal21]
1073
+ , Foundations of modern probability, Probability Theory and Stochastic Modelling, vol. 99, Springer,
1074
+ Cham, 2021. ↑10
1075
+ [Kyp14]
1076
+ Andreas E. Kyprianou, Fluctuations of L´evy processes with applications, second ed., Universitext, Springer,
1077
+ Heidelberg, 2014. MR 3155252 ↑8
1078
+ [Pro04]
1079
+ Philip E. Protter, Stochastic integration and differential equations, 2nd ed., Springer-Verlag, 2004. MR 2020294
1080
+ ↑11, ↑12, ↑13
1081
+ [Rog68]
1082
+ B. A. Rogozin, The local behavior of processes with independent increments, Teor. Verojatnost. i Primenen. 13
1083
+ (1968), 507–512. MR 0242261 ↑2, ↑9
1084
+ [RS15]
1085
+ Mikl´os Z. R´acz and Mykhaylo Shkolnikov, Multidimensional sticky Brownian motions as limits of exclusion
1086
+ processes, Ann. Appl. Probab. 25 (2015), no. 3, 1155–1188. ↑3
1087
+ [RUB22]
1088
+ Miriam Ram´ırez and Ger´onimo Uribe Bravo, On the characterization of spectrally positive L´evy processes on
1089
+ [0,∞), Work in progress, 2022. ↑2, ↑4, ↑8, ↑10, ↑11
1090
+ [RY99]
1091
+ Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der Mathe-
1092
+ matischen Wissenschaften, vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357 ↑6, ↑12, ↑13
1093
+ [War97]
1094
+ Jonathan Warren, Branching processes, the Ray-Knight theorem, and sticky Brownian motion, S´eminaire de
1095
+ Probabilit´es, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin, 1997, pp. 1–15. MR 1478711 ↑2, ↑9
1096
+ [Whi80]
1097
+ Ward Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980), no. 1, 67–85.
1098
+ MR 561155 ↑7
1099
+ [Whi02]
1100
+ , Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002.
1101
+ ↑7
1102
+ [Yam94]
1103
+ Keigo Yamada, Reflecting or sticky Markov processes with L´evy generators as the limit of storage processes,
1104
+ Stochastic Process. Appl. 52 (1994), no. 1, 135–164. ↑3
1105
+
-tAyT4oBgHgl3EQfRPa5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -311,3 +311,44 @@ btA0T4oBgHgl3EQfGf-a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
311
  AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf filter=lfs diff=lfs merge=lfs -text
312
  ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf filter=lfs diff=lfs merge=lfs -text
313
  HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
  AtAyT4oBgHgl3EQfd_hU/content/2301.00312v1.pdf filter=lfs diff=lfs merge=lfs -text
312
  ItFLT4oBgHgl3EQfJS9D/content/2301.12003v1.pdf filter=lfs diff=lfs merge=lfs -text
313
  HtAzT4oBgHgl3EQfjf0-/content/2301.01516v1.pdf filter=lfs diff=lfs merge=lfs -text
314
+ _NFST4oBgHgl3EQfdDhQ/content/2301.13805v1.pdf filter=lfs diff=lfs merge=lfs -text
315
+ pNE0T4oBgHgl3EQfqgGa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
316
+ 59AyT4oBgHgl3EQf2fl-/content/2301.00752v1.pdf filter=lfs diff=lfs merge=lfs -text
317
+ UdFOT4oBgHgl3EQf5zR2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
318
+ UdFOT4oBgHgl3EQf5zR2/content/2301.12955v1.pdf filter=lfs diff=lfs merge=lfs -text
319
+ BNE0T4oBgHgl3EQfxwK1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
320
+ 69E5T4oBgHgl3EQfPw7T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
321
+ 1tE2T4oBgHgl3EQfiwdZ/content/2301.03961v1.pdf filter=lfs diff=lfs merge=lfs -text
322
+ qNFKT4oBgHgl3EQfzS7F/content/2301.11911v1.pdf filter=lfs diff=lfs merge=lfs -text
323
+ xNE2T4oBgHgl3EQfhAd2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
324
+ ItFLT4oBgHgl3EQfJS9D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
325
+ FtE5T4oBgHgl3EQfVg81/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
326
+ _NFST4oBgHgl3EQfdDhQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
327
+ G9AzT4oBgHgl3EQfHfuN/content/2301.01046v1.pdf filter=lfs diff=lfs merge=lfs -text
328
+ EtE0T4oBgHgl3EQfQwBZ/content/2301.02197v1.pdf filter=lfs diff=lfs merge=lfs -text
329
+ qtE3T4oBgHgl3EQf8Qv-/content/2301.04807v1.pdf filter=lfs diff=lfs merge=lfs -text
330
+ qtE3T4oBgHgl3EQf8Qv-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
331
+ GNE5T4oBgHgl3EQfVw9O/content/2301.05553v1.pdf filter=lfs diff=lfs merge=lfs -text
332
+ FtE5T4oBgHgl3EQfVg81/content/2301.05551v1.pdf filter=lfs diff=lfs merge=lfs -text
333
+ EtE0T4oBgHgl3EQfQwBZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
334
+ PdAzT4oBgHgl3EQfzv5V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
335
+ EtE1T4oBgHgl3EQfWwQ3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
336
+ GNE5T4oBgHgl3EQfVw9O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
337
+ V9E2T4oBgHgl3EQfDQar/content/2301.03623v1.pdf filter=lfs diff=lfs merge=lfs -text
338
+ ltE0T4oBgHgl3EQf8AIs/content/2301.02782v1.pdf filter=lfs diff=lfs merge=lfs -text
339
+ o9FRT4oBgHgl3EQfczdJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
340
+ 2tFIT4oBgHgl3EQf5CvJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
341
+ V9E2T4oBgHgl3EQfDQar/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
342
+ 4NFIT4oBgHgl3EQf6iua/content/2301.11394v1.pdf filter=lfs diff=lfs merge=lfs -text
343
+ 59AyT4oBgHgl3EQf2fl-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
344
+ 2tFIT4oBgHgl3EQf5CvJ/content/2301.11388v1.pdf filter=lfs diff=lfs merge=lfs -text
345
+ o9FRT4oBgHgl3EQfczdJ/content/2301.13565v1.pdf filter=lfs diff=lfs merge=lfs -text
346
+ ltE0T4oBgHgl3EQf8AIs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
347
+ ztE0T4oBgHgl3EQftwFw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
348
+ dtFRT4oBgHgl3EQfUDfM/content/2301.13535v1.pdf filter=lfs diff=lfs merge=lfs -text
349
+ EtE1T4oBgHgl3EQfWwQ3/content/2301.03117v1.pdf filter=lfs diff=lfs merge=lfs -text
350
+ mdAyT4oBgHgl3EQfyvlr/content/2301.00689v1.pdf filter=lfs diff=lfs merge=lfs -text
351
+ x9FLT4oBgHgl3EQfmS__/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
352
+ mdAyT4oBgHgl3EQfyvlr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
353
+ ltA0T4oBgHgl3EQfJP-2/content/2301.02088v1.pdf filter=lfs diff=lfs merge=lfs -text
354
+ h9AzT4oBgHgl3EQfbPwA/content/2301.01380v1.pdf filter=lfs diff=lfs merge=lfs -text
1tE2T4oBgHgl3EQfiwdZ/content/2301.03961v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487f6e6b453fb423e384300a7d183efe40839da1174c7cf6e11a4193cc41f960
3
+ size 2245293
1tE2T4oBgHgl3EQfiwdZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:130a111d082dfcbf8751c2278b35713ee65625ac882df54b8ea013b8a6096f43
3
+ size 415533
2tFIT4oBgHgl3EQf5CvJ/content/2301.11388v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78dc113a77fc7248424801d90213b5cba5738cb08b896c3baf59565c886cebb1
3
+ size 239284
2tFIT4oBgHgl3EQf5CvJ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45262538da5ef2c1fb44a7eabc38b733b6674b0171865287787fbbce9421282
3
+ size 2424877
2tFIT4oBgHgl3EQf5CvJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:360ec21ea35bc1036fc478ed3a8b1b67770008c4c0181afee3818209daed9286
3
+ size 98351
4NFIT4oBgHgl3EQf6iua/content/2301.11394v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27fb4bb38171b74d9d9eea0b3af546ad375fbd873aed59801ccf900a862ce72b
3
+ size 390400
4NFIT4oBgHgl3EQf6iua/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2aeb835c30ad10d57a1e7a11ef6b6efe3107fdf7b949627c3cfe82311cc9d3
3
+ size 734536
4tA0T4oBgHgl3EQfNf_3/content/tmp_files/2301.02149v1.pdf.txt ADDED
@@ -0,0 +1,3574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Stochastics of DNA Quantification
2
+ Abdoelnaser M Degoot and Wilfred Ndifon∗
3
+ African Institute for Mathematical Sciences, Next Einstein Initiative, Rwanda
4
+ January 6, 2023
5
+ 1
6
+ Abstract
7
+ A common approach to quantifying DNA involves repeated cycles of DNA amplification.
8
+ This approach, employed by the polymerase chain reaction (PCR), produces outputs that
9
+ are corrupted by amplification noise, making it challenging to accurately back-calculate
10
+ the amount of input DNA. Standard mathematical solutions to this back-calculation prob-
11
+ lem do not take adequate account of such noise and are error-prone. Here, we develop a
12
+ parsimonious mathematical model of the stochastic mapping of input DNA onto experi-
13
+ mental outputs that accounts, in a natural way, for amplification noise. We use the model
14
+ to derive the probability density of the quantification cycle, a frequently reported exper-
15
+ imental output, which can be fit to data to estimate input DNA. Strikingly, the model
16
+ predicts that a sample with only one input DNA molecule has a <4% chance of testing
17
+ positive, which is >25-fold lower than assumed by a standard method of interpreting PCR
18
+ data. We provide formulae for calculating both the limit of detection and the limit of quan-
19
+ tification, two important operating characteristics of DNA quantification methods that are
20
+ frequently assessed by using ad-hoc mathematical techniques. Our results provide a math-
21
+ ematical foundation for the rigorous analysis of DNA quantification.
22
+ 2
23
+ Introduction
24
+ The quantification of genomic targets is of interest in a large variety of applications in
25
+ biology, biotechnology and medicine, from determining an individual’s disease status to
26
+ detecting minute changes in gene expression profiles occurring across space and time (eg.
27
+ [1, 2]). This is typically achieved by converting non-DNA genomic targets into DNA, which
28
+ is then amplified to enable its quantification. In principle, this allows even small numbers
29
+ ∗Address for correspondence: wndifon@aims.ac.za
30
+ 1
31
+ arXiv:2301.02149v1 [q-bio.QM] 5 Jan 2023
32
+
33
+ of genomic targets to be accurately measured. However, in practice, the DNA amplifica-
34
+ tion process, being stochastic, generates outputs that contain noise. Accurate measure-
35
+ ment, therefore, requires an adequate, quantitative understanding of this noise. Thus far,
36
+ this has proved challenging to achieve.
37
+ A specific and very popular instance of a DNA quantification method is the real-time
38
+ polymerase chain reaction (PCR) [3, 4]. In PCR, DNA molecules are repeatedly amplified
39
+ in a cyclic manner. As they are amplified, fluorescently labeled nucleotides are incorpo-
40
+ rated into the newly formed DNA molecules, increasing the overall fluorescence emitted.
41
+ The resulting fluorescence profile is used to determine the quantification cycle (denoted
42
+ Cq or Ct value), at which the number of molecules exceeds a defined threshold, called
43
+ the quantification threshold. A PCR reaction is considered to be positive if its Ct value
44
+ is less than or equal to the maximum possible cycle. Despite the fact that the Ct value is
45
+ only an indirect readout of the number of input DNA molecules, it is often the only re-
46
+ ported output of PCR experiments. A variant of conventional PCR, called digital PCR [5],
47
+ uses the fraction of positive reactions to estimate the number of input DNA molecules. To
48
+ this end, it assumes that a reaction is positive if and only if it contains at least one target
49
+ molecule. It is unclear under what conditions this assumption is valid, and when it must
50
+ be discarded in favor of a more realistic alternative.
51
+ Here we describe a parsimonious mathematical model that is useful for analysing the
52
+ DNA quantification process, and for guiding the interpretation of experimental outputs.
53
+ We use PCR as an example, although our analysis is applicable to other methods such as
54
+ loop-mediated isothermal amplification of DNA [6]. Experiments indicate that the PCR
55
+ process exhibits different phases, characterized by different efficiencies of DNA amplifi-
56
+ cation. Therefore, we construct a mathematical model of a PCR process with an arbitrary
57
+ number of phases, each with its own amplification efficiency. We use this model to obtain
58
+ the following results:
59
+ • We derive the generating function for the probability distribution of the number of
60
+ molecules found in a PCR experiment at an arbitrary time t. We also derive the
61
+ probability density function (pdf), mean, variance, and cumulative density function
62
+ (cdf) of the Ct values produced by such an experiment. Either the pdf or the cdf can
63
+ be fit to PCR data to estimate the number of input DNA molecules.
64
+ • In the simplest instance of our model – a single-phase PCR model that accounts for
65
+ amplification noise but not for (upstream) DNA sampling noise – the mean Ct value,
66
+ given by (ψ(x +1)−ψ(n))/r, is well approximated by ln(x/n)/r [7] when n ≫ 1, where
67
+ n is the number of input molecules, r (defined on a base-e scale) is the amplification
68
+ efficiency, x is the quantification threshold, and ψ(·) denotes the digamma function.
69
+ • We provide a formula for calculating the limit of detection (LoD) of a PCR experi-
70
+ 2
71
+
72
+ ment, that is, the smallest number of input molecules that can be detected with a
73
+ failure rate not exceeding α. Using a single-phase PCR model, we find that when
74
+ α = 0.05, the LoD increases from 3, the value determined while accounting for sam-
75
+ pling noise only, to ≈10 when both sampling noise and amplification noise (with r
76
+ set to 95% of the maximum possible efficiency, m.p.e.) are considered. The LoD
77
+ increases as r decreases, doubling to ≈20 at 90% m.p.e. This illustrates the under-
78
+ appreciated, dramatic effect that amplification efficiency has on the LoD.
79
+ • We provide a formula for calculating the limit of quantification (LoQ) of a PCR ex-
80
+ periment, that is, the smallest number of molecules that can be quantified with a
81
+ defined level of precision and a given maximum failure rate α. Counter-intuitively,
82
+ the single-phase PCR model predicts that the LoQ does not depend on amplifica-
83
+ tion efficiency. When α = 0.05, the LoQ increases from 10, obtained when up to a
84
+ two-fold deviation from the expected number of input molecules is allowed, to 820,
85
+ when at most a 10% deviation is allowed. This indicates that 10 or fewer molecules
86
+ cannot be measured with a better than 2-fold error more than 95% of the time.
87
+ • The model indicates that a key assumption commonly used when interpreting digital
88
+ PCR data – that a PCR experiment with only one input molecule will always produce
89
+ a positive outcome – is invalid under a wide range of conditions. Even when the
90
+ amplification efficiency is set to a high value of 95% m.p.e, the probability that such
91
+ an experiment will yield a positive outcome is predicted to be <4%. We describe
92
+ two different approaches by which accurate estimates of the number of input DNA
93
+ molecules may be obtained from digital PCR data.
94
+ It should be noted that there have been previous attempts to improve the interpretation
95
+ of PCR data through mathematical modeling. The classical approach to estimating the
96
+ amount of DNA found in a focal sample involves comparing data generated by that sample
97
+ versus data obtained from a reference sample containing either a known or an unknown
98
+ amount of DNA [8]. The need for a reference sample with a known amount of DNA, the
99
+ determination of which is itself subject to experimental error, makes accurate absolute
100
+ quantification of DNA found in the focal sample challenging. An alternative approach
101
+ involves fitting mathematical models, mostly phenomenological in their construction, to
102
+ PCR data generated by the focal sample alone [4, 8, 9, 10, 11]. See [12] for a comparison
103
+ of various methods based on this approach. None of these methods provides an adequate
104
+ accounting of how amplification noise shapes PCR data.
105
+ The remainder of this paper is organized as follows: We provide an overview of the
106
+ model’s structure in Section 3.1 and present our main mathematical results in Sections
107
+ 3.2 and 3.3. We apply these results to compute the LoD and LoQ in Section 3.4, and
108
+ we investigate how amplification noise complicates the accurate interpretation of digital
109
+ 3
110
+
111
+ PCR data in Section 3.5. We summarize the results and discuss other applications of our
112
+ methods in Section 4. To improve readability, we only present mathematical proofs and
113
+ detailed calculations in the Appendix (Section 5.1).
114
+ 3
115
+ Results
116
+ 3.1
117
+ Preliminaries
118
+ We model the PCR process as a continuous-time, discrete-state Markov jump process [13]
119
+ evolving up to time T . This representation of the PCR process is based on the facts that
120
+ (1) the primary products of PCR reactions, DNA molecules, are countable, and (2) what
121
+ happens in the next cycle of the reaction is conditionally independent of what happened
122
+ in the past given the present state of the reaction. Our decision to make time continuous
123
+ (rather than discrete) is based on the fact that experimentally measured Ct values are
124
+ positive real numbers. As a consequence, reaction rates are defined in base e instead of
125
+ base 2 (expected for a discrete-time PCR process), but it is straightforward to convert
126
+ between these two bases.
127
+ We divide the time interval [0,T ] of the PCR process into p non-overlapping subin-
128
+ tervals Ii, each one corresponding to a distinct phase of the process and associated with
129
+ the probabilistic state transition rate ri, i = 1,2,...,p. These transition rates govern the ef-
130
+ ficiency of DNA amplification. We derive the probability generating function [14] for the
131
+ number of target molecules found at an arbitrary time t. We use this generating func-
132
+ tion to derive the corresponding probability distribution and, importantly, the probability
133
+ density function (pdf) of the Ct value. We derive the pdf in two different cases, namely
134
+ 1. when the initial state of the PCR process is deterministic, and the PCR phase lengths
135
+ and amplification efficiencies are given; and
136
+ 2. when the initial state is Poisson-distributed, and the phase lengths and amplification
137
+ efficiencies are given.
138
+ To illustrate the mathematical ideas, we will report calculations and simulations based
139
+ on a single-phase model. We argue that this simpler instance of our model is sufficient
140
+ for analysing a large variety of real-world PCR experiments. In principle, each PCR ex-
141
+ periment can be divided into the following three amplification rate-dependent phases: a
142
+ pre-exponential phase, in which the amplification rate is sub-exponential; an exponential
143
+ phase; and a post-exponential phase where the rate slows down as DNA molecules saturate
144
+ the reagents required for their further amplification. However, in practice, the usual out-
145
+ put of PCR experiments – the Ct value – is determined as soon as the PCR process enters
146
+ the exponential phase, meaning that dynamics occurring in the pre-exponential phase pri-
147
+ marily determine this particular outcome. Therefore, for the purposes of understanding
148
+ 4
149
+
150
+ the factors that shape the Ct value and its statistics, and evaluating related operating char-
151
+ acteristics of PCR, a single-phase model appears sufficient. Accordingly, when applicable,
152
+ we highlight the forms taken by our mathematical equations in the case of a single-phase
153
+ model. In addition, we estimate the LoD and LoQ using a single-phase model (Section
154
+ 3.4), which we also apply to critique the standard method of interpreting digital PCR data
155
+ (Section 3.5).
156
+ 3.2
157
+ Case 1: A PCR process with a deterministic initial state
158
+ 3.2.1
159
+ Probability generating function for the number of molecules
160
+ Theorem 1. Let {X(t),t ∈ R} be a continuous-time Markov process with p phases, a countable
161
+ state space S ⊂ N+, phase-specific transition rates ri, i ∈ 1,2,...,p, and state transition proba-
162
+ bility given by
163
+ P (X(t′ + ∆t) = x|X(t′) = x′) = δ(x′ − x + 1)
164
+ p
165
+
166
+ i=1
167
+ ri1Ii(t′),
168
+ (1)
169
+ where 1 denotes the indicator function and δ(.) denotes the Kronecker delta function. If the pro-
170
+ cess starts with n molecules, then the probability generating function for the number of molecules
171
+ present at time t ∈ Ik, k ≤ p, is given by
172
+ G(n,⃗r,t,⃗τ;s) =
173
+
174
+ se−z
175
+ 1 − s(1 − e−z)
176
+ �n
177
+ ,
178
+ (2)
179
+ where
180
+ z = rkt +
181
+ k−1
182
+
183
+ i=1
184
+ (ri − rk)τi,
185
+ (3)
186
+ Ii denotes the i’th phase and τi = |Ii|, i < k, is its length.
187
+ The proof of this theorem is given in Section 5.1.1. We will now use the theorem to
188
+ derive the probability distribution of the number of molecules found at time t.
189
+ 3.2.2
190
+ Probability distribution of the number of molecules
191
+ Corollary 1. The probability that there are x molecules at time t ∈ Ik in the PCR process de-
192
+ scribed in Theorem 1 is given by the following negative binomial distribution:
193
+ P(x|n,⃗r,t,⃗τ) =
194
+ �x − 1
195
+ n − 1
196
+
197
+ e−nz × (1 − e−z)x−n ,
198
+ (4)
199
+ where z is given by (3).
200
+ The proof of this corollary is given in Section 5.1.2. We will now use this corollary to
201
+ derive the pdf, mean, variance and cdf of the Ct value.
202
+ 5
203
+
204
+ 3.2.3
205
+ pdf, mean and variance of the Ct value
206
+ Let t be the Ct value of the PCR process described in Theorem 1. By definition, t is the time
207
+ at which the number of molecules reaches the quantification threshold, which we denote
208
+ by x. Let t ∈ Ik. In the Appendix [Section 5.1.5], we show that, given n,⃗r = (r1,r2,...,rk−1),
209
+ and ⃗τ = (τ1,τ2,...,τk−1), the pdf of t has the following form:
210
+ P(t|n,⃗r,⃗τ,x)
211
+ =
212
+ rke−nz (1 − e−z)x−n
213
+ Bθ(n,x − n + 1) ,
214
+ (5)
215
+ where Bθ(n,x − n + 1) is the incomplete Beta function, z is given by (3), and
216
+ θ = e−�k−1
217
+ i=1 riτi.
218
+ (6)
219
+ For the single-phase PCR process, θ = 1, so the pdf is given by
220
+ P(t|n,r1,x)
221
+ =
222
+ r1e−nz (1 − e−z)x−n
223
+ B(n,x − n + 1)
224
+ .
225
+ (7)
226
+ The mean Ct value is given by (see Section 5.1.5)
227
+ E(t)
228
+ =
229
+ k−1
230
+
231
+ i=1
232
+ τi + Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
233
+ rkBθ(n,x − n + 1)
234
+ ,
235
+ (8)
236
+ where 3 ˜F2(n,n,n − x;n + 1,n + 1;θ) is the regularized generalized hypergeometric function.
237
+ For the single-phase process, the mean is given by
238
+ E(t)
239
+ =
240
+ ψ(x + 1) − ψ(n)
241
+ r1
242
+ .
243
+ (9)
244
+ Observe that when n ≫ 1, the right-hand-side of (9) is well-approximated by ln(x/n)/r1.
245
+ The latter expression is commonly used to approximate the mean Ct value. For example,
246
+ it was used in [7] to estimate PCR amplification efficiency from data.
247
+ The variance of the Ct value is given by E(t2) − E(t)2, where E(t2) is given by (85). For
248
+ the single-phase process, the variance is given by
249
+ Var(t) = ψ1(n) − ψ1(x + 1)
250
+ r2
251
+ 1
252
+ ,
253
+ (10)
254
+ where ψ1(·) is the second polygamma function (also called the trigamma function).
255
+ Finally, the cdf of the Ct value is given by [see Section 5.1.5]
256
+ F(t|n,⃗r,⃗τ,x)
257
+ =
258
+ 1 − Be−z(n,x − n + 1)
259
+ Bθ(n,x − n + 1) .
260
+ (11)
261
+ 6
262
+
263
+ For the single-phase process, the cdf is given by
264
+ F(t|n,r1,x)
265
+ =
266
+ 1 − Ie−r1t(n,x − n + 1),
267
+ (12)
268
+ where Ie−r1t(n,x − n + 1) = Be−rt (n,x − n + 1)/B(n,x − n + 1) is the regularized incomplete Beta
269
+ function. Sampling from this cdf is relatively straightforward: A random Ct value t is
270
+ obtained as follows:
271
+ t
272
+ =
273
+ −lnI−1
274
+ 1−u(n,x − n + 1)
275
+ r1
276
+ ,
277
+ (13)
278
+ where u is sampled uniformly at random from the interval (0,1) and I−1
279
+ 1−u is the inverse of
280
+ the regularized incomplete Beta function. To find a Ct value that corresponds to a quantile
281
+ q ∈ (0,1), q is substituted for u.
282
+ To estimate n, either the pdf or the cdf of t can be fit to data. Alternatively, the posterior
283
+ density of n conditioned on t can be computed. In Section 5.1.5, we show that, for the
284
+ single-phase process, it is given by
285
+ P (n|r1,t,x)
286
+ =
287
+ e−(n−1)r1t(1 − e−r1t)x−n
288
+ xB(n,x − n + 1)
289
+ .
290
+ (14)
291
+ In Figure 1, we illustrate the shape of the single-phase pdf for different numbers of
292
+ input molecules and different amplification efficiencies. To this end, we set T = 35 (a com-
293
+ mon upper-bound for the duration of real-world PCR experiments) and x = 2T , which is
294
+ equal to the number of molecules expected after T cycles under perfect amplification con-
295
+ ditions (a sample that contains only one, perfectly amplified input molecule is expected
296
+ to reach the quantification threshold, x, at time t ≤ T). We vary the efficiency from 60%
297
+ m.p.e. (equivalent to setting r1 = 0.6 × ln2) to 100% m.p.e. The pdf has a bell shape, the
298
+ location and width of which are governed by both the efficiency and the number of input
299
+ molecules (Figure 1, left panel). Higher efficiencies or larger numbers of input molecules
300
+ produce smaller mean Ct values, smaller variances, and narrower pdfs. In contrast, lower
301
+ efficiencies or smaller numbers of input molecules produce larger mean Ct values, larger
302
+ variances, and wider pdfs (Figure 1, left panel). In fact, Equation (5) predicts that in the
303
+ limit as the efficiency goes to 0, the pdf will become flat as it will map every Ct value to 0.
304
+ 3.3
305
+ Case 2: A PCR process with a Poisson-distributed initial state
306
+ 3.3.1
307
+ Probability generating function for the number of molecules
308
+ Theorem 2. Let {X(t),t ∈ R} be the continuous-time Markov process described in Theorem 1.
309
+ If, instead of starting with a precisely known number of input DNA molecules, the initial state
310
+ of the process is Poisson-distributed with mean λ, then the probability generating function for
311
+ 7
312
+
313
+ Figure 1: pdf of the quantification cycle for the single-phase process. Processes with
314
+ either a deterministic (left panel) or a Poisson-distributed (right panel) initial state were
315
+ considered. The pdf was calculated using Equation (5) for the former case, and Equation
316
+ (18) for the latter case. The quantification threshold, x, was set to 235. The mean µ and
317
+ variance σ2 corresponding to different amplification efficiences r are shown. For ease of
318
+ comprehension, r, which in our model is defined on a base-e scale, is shown as a percentage
319
+ of its maximum possible value of ln(2).
320
+ 8
321
+
322
+ n =1
323
+ 入 =1
324
+ r=1.0,μ=35.83,α2=3.424
325
+ r=1.0,μ=35.12,o2=3.257
326
+ 0.0010-
327
+ r=0.9,μ=39.81,α2=4.227
328
+ r=0.9,μ=39.02,2=4.021
329
+ 0.2-
330
+ =0.8,μ=44.79,2=5.35
331
+ r=0.8,μ=43.9,g2=5.089
332
+ 0.7,μ=51.19,02=6.987
333
+ r=0.7,50.17,o2=6.647
334
+ 0.6,μ59/72,2=9.51
335
+ =0.6,=58.54,2=9.048
336
+ 0.0005-
337
+ 0.1-
338
+ 0.0000
339
+ 0.0
340
+ 30
341
+ 40
342
+ 50
343
+ 60
344
+ 70
345
+ 30
346
+ 40
347
+ 50
348
+ 60
349
+ 70
350
+ n=10
351
+ 入=10
352
+ 0.6-
353
+ 0.004
354
+ r=1.0,μ=31.75,2=0.219
355
+ r=1.0,μ=31.84,2=0.54
356
+ Probability density
357
+ r=0.9.μ=35.28,g2=0.27
358
+ 0.5-
359
+ r=0.9,μ=35.38,o2=0.666
360
+ 0.003-
361
+ r=0.8,μ=39.69,g2=0.342
362
+ r=0.8,μ=39.8,α2=0.843
363
+ 0.4-
364
+ r=0.7,μ=45.36,?元0.447
365
+ r=6|7,μ=45.49.@2=1.101
366
+ 0.002
367
+ r=06/μ=52.92,=0.608
368
+ 0.3-
369
+ r=0.6,μ=53.07/=1.499
370
+ 0.2-
371
+ 0.001
372
+ 0.1-
373
+ 0.000
374
+ 0.0-
375
+ 30
376
+ 40
377
+ 50
378
+ 30
379
+ 40
380
+ 50
381
+ n=100
382
+ 入=100
383
+ 2.0-
384
+ r=1.0,μ=28.36,2=0.021
385
+ r=1.0,μ=28.37o2=0.042
386
+ r=0.9,μ=31.51,2=0.026
387
+ r=0.9,μ=31.52,2=0.052
388
+ 1.5
389
+ 0.010
390
+ r=0.8,μ=35.45,2=0.033
391
+ r=0.8,μ=35.46,o2=0.066
392
+ r=0.7
393
+ μ=40.52,2=0.@43
394
+ r=0.7μ=40.53,2=0.087
395
+ r=0.6.
396
+ μ=47.27, 2=0.958
397
+ 1.0-
398
+ r=0.6,μ=47.28,o2=q.118
399
+ 0.005
400
+ 0.5-
401
+ 0.000-
402
+ 0.0
403
+ 30
404
+ 35
405
+ 40
406
+ 45
407
+ 30
408
+ 35
409
+ 40
410
+ 45
411
+ Cycles
412
+ Cyclesthe state of the process at a future time t ∈ Ik is given by
413
+ G(λ,⃗r,t,⃗τ;s) = e
414
+ λ(s−1)
415
+ 1−s(1−e−z) ,
416
+ (15)
417
+ where z is given by (3).
418
+ The proof of Theorem 2 is given in Section 5.1.3. We now use Theorem 2 to derive the
419
+ probability distribution of the number of molecules found in the PCR process at time t.
420
+ 3.3.2
421
+ Probability distribution of the number of molecules
422
+ Corollary 2. The probability that there are x molecules at cycle t ∈ Ik in the PCR process
423
+ described in Theorem 2 is given by:
424
+ P(x|λ,⃗r,t,⃗τ) = e−λ (1 − e−z)x
425
+ x
426
+
427
+ i=1
428
+ �x−1
429
+ i−1
430
+
431
+ i!
432
+ � λe−z
433
+ 1 − e−z
434
+ �i
435
+ ,
436
+ (16)
437
+ where z is given by (3).
438
+ The proof of this corollary is provided in Section 5.1.4. It is interesting to note that
439
+ from the proof emerged the following combinatorial triangle, which is related to the well-
440
+ known Narayana triangle [15]:
441
+ x
442
+ 1
443
+ 1
444
+ 2
445
+ 1
446
+ 2
447
+ 3
448
+ 1
449
+ 6
450
+ 6
451
+ 4
452
+ 1
453
+ 12
454
+ 36
455
+ 24
456
+ 5
457
+ 1
458
+ 20
459
+ 120
460
+ 240
461
+ 120
462
+ 1
463
+ 2
464
+ 3
465
+ 4
466
+ 5
467
+ k
468
+ .
469
+ The entries of this triangle, given by
470
+ T(x,k) =
471
+ � x
472
+ k − 1
473
+ ��x − 1
474
+ k − 1
475
+
476
+ (k − 1)!, x ∈ Z+,k = 1,2,...,x,
477
+ (17)
478
+ count the number of ways of obtaining x molecules by replicating a randomly selected
479
+ subset of k molecules. T (x,k) is related to the Narayana numbers N(x,k) by
480
+ T (x,k) = k! N(x,k).
481
+ We will now use this corollary to derive the pdf of the Ct value together with the mean,
482
+ variance and cdf.
483
+ 9
484
+
485
+ 3.3.3
486
+ pdf, mean and variance of the Ct value
487
+ Let t be the Ct value of the PCR process described in Theorem 2. As noted earlier, the Ct
488
+ value t is the time at which the number of DNA molecules found in the process reaches
489
+ the quantification threshold, which we denote by x. In the Appendix [Section 5.1.6], we
490
+ show that the pdf of t is given by
491
+ P(t|λ,⃗r,⃗τ,x)
492
+ =
493
+ rkλe−z(1 − e−z)x−1 1F1
494
+
495
+ 1 − x;2; −λe−z
496
+ 1−e−z
497
+
498
+ �x
499
+ j=1
500
+ (x−1
501
+ j−1)λj
502
+ j!
503
+ Bθ(j,x − j + 1)
504
+ ,
505
+ (18)
506
+ where θ is given by (6), z is given by (3), 1F1(a;b;c) is the hypergeometric function (also
507
+ called the Kummer confluent hypergeometric function of the first kind).
508
+ For the single-phase process, the pdf is given by [see Section 5.1.6]
509
+ P(t|λ,r1,x) =
510
+ r1xλe−r1t(1 − e−r1t)x−1 1F1
511
+
512
+ 1 − x;2; −λe−r1t
513
+ 1−e−r1t
514
+
515
+ eλ − 1
516
+ .
517
+ (19)
518
+ The mean Ct value is given by [see Section 5.1.6]
519
+ E(t)
520
+ =
521
+ �x
522
+ j=1
523
+ (x−1
524
+ j−1)λj
525
+ j!
526
+
527
+ rkBθ(j,x − j + 1)�k−1
528
+ i=1 τi + Γ(j)2θj 3 ˜F2(j,j,j − x;j + 1,j + 1;θ)
529
+
530
+ rk
531
+ �x
532
+ j=1
533
+ (x−1
534
+ j−1)λj
535
+ j!
536
+ Bθ(j,x − j + 1)
537
+ , (20)
538
+ while the second moment is given by (119).
539
+ For the single-phase process, the mean and variance are, respectively, given by [see
540
+ Section 5.1.6]
541
+ E(t)
542
+ =
543
+ ψ(x + 1)
544
+ r1
545
+
546
+ �x
547
+ j=1
548
+ λj
549
+ j! ψ(j)
550
+ r1
551
+
552
+ eλ − 1
553
+
554
+ and
555
+ (21)
556
+ Var(t) =
557
+
558
+ eλ − 1
559
+ ��x
560
+ j=1
561
+ λj
562
+ j!
563
+
564
+ ψ1(j) + ψ(j)2
565
+
566
+
567
+ ��x
568
+ j=1
569
+ λj
570
+ j! ψ(j)
571
+ �2
572
+
573
+ r1(eλ − 1)
574
+ �2
575
+ − ψ1(x + 1)
576
+ r2
577
+ 1
578
+ .
579
+ (22)
580
+ The cdf of the Ct value is given by [see Section 5.1.6]
581
+ F(t|λ,⃗r,⃗τ,x)
582
+ =
583
+ 1 −
584
+ �x
585
+ j=1
586
+ (x−1
587
+ j−1)λj
588
+ j!
589
+ Be−z(j,x − j + 1)
590
+ �x
591
+ j=1
592
+ (x−1
593
+ j−1)λj
594
+ j!
595
+ Bθ(j,x − j + 1)
596
+ .
597
+ (23)
598
+ 10
599
+
600
+ For the single-phase process, the cdf is given by
601
+ F(t|λ,r1,x)
602
+ =
603
+ 1 −
604
+ x�x
605
+ j=1
606
+ (x−1
607
+ j−1)λj
608
+ j!
609
+ Be−r1t(j,x − j + 1)
610
+ eλ − 1
611
+ .
612
+ (24)
613
+ To estimate λ, either the pdf or the cdf of t can be fit to data. Alternatively, the posterior
614
+ density of λ conditioned on t can be computed. In Section 5.1.6, we show that, for the
615
+ single-phase process, it is given by
616
+ P(λ|r1,t,x) =
617
+ λw 1F1(1 − x;2; −λw
618
+ 1−w )
619
+ (eλ − 1)(1 − w)�x
620
+ j=1
621
+ �x−1
622
+ j−1
623
+ �� w
624
+ 1−w
625
+ �j ζ(j + 1)
626
+ ,
627
+ (25)
628
+ where w = e−r1t and ζ(·) denotes the Riemann zeta function.
629
+ Note that, because they result from calculating expectations over the Poisson distribu-
630
+ tion, the summations found in Equations (18) - (25) can be truncated at any value of j ≫ λ
631
+ without a loss of accuracy.
632
+ In Figure 1, we illustrate the shape of the single-phase pdf for different values of λ
633
+ and different amplification efficiencies. As was the case for the PCR process with a deter-
634
+ ministic initial state (Figure 1, left panel), the pdf also has a bell shape (Figure 1, right
635
+ panel). Its location and width are governed by both the efficiency and λ. Consistent with
636
+ expectations, higher efficiencies or larger values of λ produce smaller mean Ct values,
637
+ smaller variances, and narrower pdfs (Figure 1, right panel). In contrast, lower efficiencies
638
+ or smaller values of λ produce larger mean Ct values, larger variances, and wider pdfs.
639
+ 3.4
640
+ Limit of detection and limit of quantification
641
+ We will now demonstrate theoretically how the mathematical framework we have devel-
642
+ oped can be applied to achieve certain operationally important objectives. In particular,
643
+ it is often of interest to quantify the limit of detection (LoD) of a particular instance of
644
+ the PCR method (henceforth referred to as “PCR protocol”). The LoD of a PCR protocol
645
+ is the smallest number of molecules that it can detect with a failure rate not exceeding a
646
+ defined threshold α (α is also called the significance level). Protocols with smaller LoDs
647
+ are in general preferred to those with larger LoDs. Ideally, the LoD should be either equal
648
+ to or smaller than the number of input DNA molecules expected in the considered sample.
649
+ Another important operational objective is to determine a PCR protocol’s limit of quan-
650
+ tification (LoQ) – i.e. the smallest number of molecules that it can estimate with a given
651
+ level of precision (measured here using the parameter β) and a given maximum failure
652
+ rate α. When a ≥ β-fold change in the number of target molecules needs to be detected,
653
+ the protocol should have an LoQ with precision ≤ β. The methods available for estimat-
654
+ ing LoD and LoQ are laborious [16] and frequently rely on certain ad-hoc mathematical
655
+ 11
656
+
657
+ approximations [16, 17], which we would like to circumvent by developing and executing
658
+ mathematically precise statements of the estimation problem.
659
+ We begin with the LoD estimation problem. For the PCR process with a deterministic
660
+ initial state, the LoD can be expressed as follows:
661
+ LoD =
662
+ min n
663
+ s.t. F(T |n,⃗r,⃗τ,x) > 1 − α,
664
+ (26)
665
+ where F(T|n,⃗r,⃗τ,x) is given by (11) and T is the maximum practical duration of the PCR
666
+ process. For the process with a Poisson-distributed initial state, n is replaced by λ.
667
+ In Supplementary Figure 5.1, we show how the LoD varies with amplification effi-
668
+ ciency in a single-phase process with either a deterministic or a Poisson-distributed initial
669
+ state. In the former case, the process contains amplification noise but no sampling noise
670
+ while in the latter case it contains both sampling noise and amplification noise. For com-
671
+ parison, we also show the LoD in a process with sampling noise, modeled by using the
672
+ Poisson distribution, but without amplification noise. The LoD is lowest in a process with
673
+ sampling noise alone (LoD = 3 molecules) and it is highest when both sampling noise and
674
+ amplification noise are present (LoD ranges from 6 molecules, at 100% of maximum pos-
675
+ sible efficiency or m.p.e, to 157 molecules, at 80% m.p.e). A process with amplification
676
+ noise but without sampling noise has an intermediate LoD. In these computational exam-
677
+ ples, the parameters of the equation used to estimate the LoQ are perfectly known, and
678
+ this makes it possible to obtain perfect knowledge of the LoD. In real-world applications,
679
+ the parameter values will be associated with uncertainty, which will, in a quantifiable way,
680
+ make uncertain the LoD estimates.
681
+ We now turn our attention to the problem of estimating the LoQ in a PCR process
682
+ with a deterministic initial state. Suppose that a Ct value t is generated by such a process
683
+ and then used to obtain an estimate, denoted ˆn, of the number of input molecules. Let n
684
+ be the actual number of input molecules. We want to calculate the probability that, for
685
+ any data t generated by the same process, ˆn will not differ from n by more than a factor
686
+ β,β ≥ 1. We define the LoQ as the smallest value of n for which this probability exceeds
687
+ 1 − α. Specifically, the LoQ is given by
688
+ LoQ =
689
+ min n
690
+ s.t. P
691
+ ��n/β� ≤ ˆn ≤ �βn� | n,⃗r,⃗τ,x
692
+
693
+ > 1 − α,
694
+ (27)
695
+ where ⌊v⌋ (respectively ⌈v⌉) denotes the largest (respectively smallest) integer less than
696
+ (respectively greater than) or equal to v.
697
+ Focusing on the single-phase process, to obtain P (�n/β� ≤ ˆn ≤ �βn� | n,r1,x), we marginal-
698
+ ize the right-hand-side of (14) with respect to t and then take the sum from �n/β� to �βn�,
699
+ 12
700
+
701
+ yielding [see Section 5.1.5]
702
+ P (�n/β� ≤ ˆn ≤ �βn� | n,r1,x)
703
+ =
704
+ ⌈βn⌉
705
+
706
+ ˆn=⌊n/β⌋
707
+ B( ˆn + n − 1,2x − ˆn − n + 1)
708
+ xB( ˆn,x − ˆn + 1)B(n,x − n + 1)
709
+ =
710
+ P (�n/β� ≤ ˆn ≤ �βn� | n,x).
711
+ (28)
712
+ Strikingly, while Equation (28) depends on both n and x, it does not depend on the ampli-
713
+ fication efficiency r1. In the Appendix [see Equation (130)], we follow a similar procedure
714
+ to obtain P
715
+ ��λ/β� ≤ ˆλ ≤ �βλ� | λ,r1,x
716
+
717
+ , the probability that, for any data t generated by a
718
+ single-phase PCR process with a Poisson-distributed initial state, the estimated value ofλ,
719
+ denoted ˆλ, will not differ from the actual value by more than a factor β.
720
+ Setting α = 0.05 and allowing at most a 10% deviation of ˆn from n (corresponding to
721
+ setting β = 1.1) results in an LoQ of 820 molecules. The LoQ decreases to 146 molecules
722
+ when a deviation of up to 25% from expectation is allowed (corresponding to β = 1.25),
723
+ and to 43 molecules when the allowable deviation increases to 50% (corresponding to β =
724
+ 1.5). The analysis suggests that at the considered 5% failure rate, 10 input molecules can be
725
+ detected with an error of at least ≈200%, that is, a ≈ 2 fold deviation from n (corresponding
726
+ to β = 2). Because these calculations do not account for sampling noise, they provide only
727
+ a lower-bound for the LoQ that is achievable at the considered failure rate and level of
728
+ precision (β). As noted earlier, in real-world applications the parameters of the equation
729
+ used to estimate LoQ will be imperfectly known, and this will determine the amount of
730
+ uncertainty associated with the estimated LoQ.
731
+ 3.5
732
+ Amplification noise determines digital PCR outcomes
733
+ As noted earlier, digital PCR is a variant of conventional PCR that was developed to im-
734
+ prove the quantification of DNA. In digital PCR, a sample master mix (containing an un-
735
+ known number of input DNA molecules together with all the reagents required for DNA
736
+ replication) is uniformly distributed into hundreds (and sometimes thousands) of phys-
737
+ ical partitions, which may take the form of droplets or microwells [5]. Each partition is
738
+ expected to receive zero, one, or more DNA molecules following a Poisson distribution
739
+ with mean λ = CV /D, where C is the concentration of the DNA in the original sample, V
740
+ is the partition volume, and D is the (known) dilution factor applied to the sample during
741
+ preparation of the mastermix. PCR reactions are independently and simultaneously run
742
+ inside each partition, and positive partitions are identified. The resulting data – i.e. the
743
+ positive or negative outcome of each PCR reaction – are thus digital. The standard method
744
+ of interpreting these data assumes that partitions that receive at least one target molecule
745
+ will test positive, and their fraction, ˆf , is approximated by ˆf ≈ 1 − e−λ, from which λ is
746
+ estimated as ˆλ = −ln(1 − ˆf ) and then used to estimate C.
747
+ 13
748
+
749
+ Figure 2: Under-estimation of λ by the standard method of interpreting digital PCR
750
+ data. We varied both the amplification efficiency and the amount of input DNA λ and
751
+ used Equation (29) to estimate λ. The resulting estimate, denoted ˆλ, was plotted against
752
+ efficiency, expressed as a percentage of the maximum possible efficiency. At efficiencies
753
+ lower than 95%, only a very small amount of the input DNA is detected. At 95% efficiency,
754
+ the amount detected ranges from 12%, when λ = 1, to 69%, when λ = 100. The amount
755
+ detected increases to ≈80% when the efficiency equals 100%.
756
+ However, according to our model, the assumption that the fraction of positive parti-
757
+ tions equals the Poisson probability that a partition receives one or more target molecules
758
+ is untenable due to the effects of PCR amplification noise. Indeed, setting the amplifi-
759
+ cation efficiency to a reasonably high value of 95% m.p.e (i.e. r1 = 0.95 ln2) and us-
760
+ ing T = 35,x = 2T in Equation (24), we predict that <4% of partitions that contain only
761
+ one molecule will test positive, which is >25-fold smaller than assumed by the Poisson
762
+ method. In Supplementary Figure 5.2, we compare the fraction of positive partitions cal-
763
+ culated using our model [Equation(24)] versus the positive fraction calculated by the Pois-
764
+ son method, for different values of λ and different amplification efficiencies. We find that
765
+ the Poisson method over-estimates the fraction of positive partitions for small values of λ,
766
+ including the value (1.61) at which the method is expected [18] to produce its most precise
767
+ estimates of λ. Only for a relatively large value of λ (10) do we find the Poisson method’s
768
+ estimate of the fraction of positive partitions to agree with the noise-adjusted expectation
769
+ calculated using our model (Supplementary Figure 5.2).
770
+ We use our model to investigate how this over-estimation of the fraction of positive
771
+ partitions affects the accuracy of the estimate of λ (denoted ˆλ) produced by the Poisson
772
+ 14
773
+
774
+ 入=1
775
+ 入 =1.61
776
+ 0.8-
777
+ 1.0-
778
+ 0.6
779
+ 0.4-
780
+ 0.5
781
+ 0.2-
782
+ 0.0
783
+ 0.0
784
+ 80
785
+ 85
786
+ 90
787
+ 95
788
+ 100
789
+ 80
790
+ 85
791
+ 90
792
+ 95
793
+ 100
794
+ >
795
+ 入=10
796
+ 入=100
797
+ 6-
798
+ 80
799
+ 5
800
+ 60
801
+ 4
802
+ 3-
803
+ 40
804
+ 2-
805
+ 20
806
+ 1
807
+ 0
808
+ 0.
809
+ 80
810
+ 85
811
+ 90
812
+ 95
813
+ 100
814
+ 80
815
+ 85
816
+ 90
817
+ 95
818
+ 100
819
+ Amplificationefficiency,r(%)method. Setting t = T in Equation (24), we find that
820
+ ˆλ
821
+ =
822
+ −ln
823
+
824
+ 1 − ˆf
825
+
826
+ =
827
+ ln
828
+
829
+ eλ − 1
830
+ �x
831
+ j=1
832
+ (x
833
+ j)
834
+ (j−1)!λjBe−r1T (j,x − j + 1)
835
+
836
+ .
837
+ (29)
838
+ According to Equation (29), ˆλ depends strongly on the amplification efficiency r1. ˆλ equals
839
+ 0 in the limit as r1 tends to 0. As r1 increases to its maximum possible value of ln(2), ˆλ
840
+ also increases, approaching λ. In Figure 2, we illustrate the relationship between ˆλ/λ and
841
+ amplification efficiency. Strikingly, for efficiencies lower than 95% m.p.e, ˆλ/λ is very small,
842
+ indicating that λ is markedly under-estimated by the Poisson method. When the efficiency
843
+ equals 95% m.p.e, ˆλ/λ increases from ≈ 12% (at λ = 1) to ≈69% (at λ = 100). Increasing the
844
+ efficiency to the maximum possible value of 100% m.p.e causes ˆλ/λ to increase to ≈80%
845
+ (at λ = 100). These results indicate that the Poisson method is expected to under-estimate
846
+ λ because it does not account for amplification noise. Indeed, experimental data show a
847
+ strong tendency by the method to under-estimate the number of input DNA molecules
848
+ (eg. see Supplementary Table 6 in [19]).
849
+ 4
850
+ Discussion
851
+ The outputs of DNA quantification experiments, including those based on the polymerase
852
+ chain reaction (PCR), tend to vary within and across different experimental instances,
853
+ making the results difficult to interpret and limiting their utility beyond the particular
854
+ contexts in which they are generated. Indeed, various factors are known to contribute
855
+ to the variability of PCR outputs [20, 21, 22] including the varying complexity of DNA
856
+ templates and the random distribution of target molecules in the reaction environment;
857
+ the type of PCR machine and buffer components used; the durations and temperatures of
858
+ the three thermal cycles of PCR; the binding kinetics of oligonucleotide primers to target
859
+ DNA; and the stability of DNA polymerase and other PCR reagents. Taylor et. al [22]
860
+ reviewed the sources of variability in PCR experiments and proposed a stepwise process
861
+ to minimize such variability in practice.
862
+ A common output of a PCR experiment is the quantification cycle (denoted Ct or Cq
863
+ value), the PCR cycle at which the number of DNA molecules exceeds a defined threshold,
864
+ called the quantification threshold. The Ct value varies with both the number of input
865
+ DNA molecules and the PCR amplification efficiency, which in turn varies with the afore-
866
+ mentioned experimental variables. It is desirable to deconvolute such variable outputs to
867
+ estimate the number of input DNA molecules, which is of greatest interest in experiments,
868
+ by applying mathematical methods that account for the stochasticity that is inherent in the
869
+ 15
870
+
871
+ underlying generative process.
872
+ We have developed a mathematical approach to modeling DNA quantification that
873
+ takes into account the underlying stochasticity. We used PCR, the most widely used class
874
+ of DNA quantification process, to illustrate our mathematical ideas, which are also ap-
875
+ plicable to a broader class of such processes (eg. [6]). Using the model, we derived the
876
+ probability generating function for the number of molecules found in a PCR process with
877
+ either a deterministic or a Poisson-distributed number of input molecules as well as the
878
+ probability density function (pdf), mean, variance and cumulative density function (cdf)
879
+ of the Ct value produced by such a process. In contrast to the deterministic case, in which
880
+ PCR outputs are contaminated only by amplification noise, in the latter case the outputs
881
+ also contain sampling noise. The equations we derived for these important statistical prop-
882
+ erties of the PCR process revealed functional relationships between the Ct value and un-
883
+ derlying variables that could previously only be accessed by empirical means.
884
+ To illustrate our mathematical ideas, we focused on the single-phase PCR process, for
885
+ which our modeling results take relatively simple mathematical forms. We found that
886
+ the common assumption that the mean Ct value is a simple logarithmic function of the
887
+ number of input DNA molecules n is correct when n is large. For small n, corrections
888
+ are required. An exact mean Ct value is given by (ψ(x + 1) − ψ(n))/r, where x is the quan-
889
+ tification threshold, r is the amplification efficiency and ψ(·) denotes the first polygamma
890
+ function. The variance has the elegant form (ψ1(n) − ψ1(x + 1))/r2, where ψ1(·) denotes the
891
+ second polygamma function. Therefore, the variance is strongly dependent on amplifica-
892
+ tion efficiency. This effect is illustrated in Figure 1, which shows that the pdf of the Ct
893
+ value becomes wider as the amplification efficiency decreases. Interestingly, in this simple
894
+ case, the coefficient of variation of the Ct value (i.e. the ratio of the standard deviation to
895
+ the mean) does not depend on amplification efficiency.
896
+ Two important numbers that characterize the performance of a PCR process are the
897
+ limit of detection (LoD) and the limit of quantification (LoQ). The LoD is the smallest
898
+ number of molecules that can be detected with a failure rate not exceeding a threshold
899
+ α, while LoQ is the smallest number of molecules that can be quantified with a given
900
+ level of precision (i.e. allowing a defined maximum fold deviation from the true value)
901
+ and a given maximum failure rate α. We provided mathematical formulae for calculating
902
+ both LoD and LoQ. Close examination of these formulae in the context of a single-phase
903
+ PCR process revealed that a small reduction of the amplification efficiency may cause a
904
+ large increase of LoD. For example, when α = 5%, reducing the efficiency from 95% of the
905
+ maximum possible efficiency (m.p.e) to 90% m.p.e. caused the LoD to double, from ≈10
906
+ input molecules to ≈20 molecules. In contrast to LoD, we found that LoQ is independent
907
+ of efficiency. Allowing up to a 2-fold difference between n and its estimate results in an
908
+ LoQ of ≈10 molecules. Reducing the allowed fold difference to 10% increases LoQ to 820
909
+ 16
910
+
911
+ molecules. Our methods may be used to improve significantly the current approaches to
912
+ estimating LoD and LoQ, which are laborious [16] and frequently rely on certain crude
913
+ mathematical approximations [16, 17] that can be avoided by using our methods.
914
+ Furthermore, we applied our methods to shed light on the effects that amplification
915
+ noise has on estimates of the expected number of input DNA molecules λ obtained by the
916
+ standard method of interpreting digital PCR data. A key assumption of this method is
917
+ that a PCR reaction will be positive if it contains at least one input DNA molecule. We
918
+ showed that this assumption is in general invalid because of the stochastic nature of PCR
919
+ amplification. Stochastic effects are particularly large when λ is small, which is the regime
920
+ in which digital PCR preferentially operates. At a high amplification efficiency of 95%
921
+ m.p.e, we find that the ratio of the fraction of positive digital PCR reactions calculated by
922
+ the standard method versus the value obtained after accounting for amplification noise is
923
+ only 18.3% when λ = 1 and it increases to ≈100% when λ = 10 (Figure 5.2). Accordingly,
924
+ stochastic effects were found to cause a significant under-estimation of λ by the standard
925
+ method. Indeed, at a high efficiency of 95% m.p.e., the standard method is predicted
926
+ to under-estimate λ by factors of ≈8.1, ≈3.1, and ≈1.4 when λ equals 1, 10, and 100,
927
+ respectively (Figure 2). This is in the same range as empirically observed (eg. [19]).
928
+ Using our mathematical methods, the following two different approaches may be used
929
+ to obtain much more accurate estimates of λ. Firstly, if Ct values are available from pos-
930
+ itive digital PCR reactions, then Equation (19) can be fit to those Ct values, using either
931
+ a likelihood-based or a Bayesian statistical approach, to estimate the most probable value
932
+ of λ together with a confidence (or credible) interval for it. Secondly, if only binary (ie.
933
+ positive or negative) outcomes are available from individual reactions, then the variability
934
+ of such outcomes can still be exploited to estimate λ. Specifically, suppose there are N
935
+ different reactions. These can be randomly distributed into groups of N′ reactions each.
936
+ Assuming a binomial distribution of the number of positive reactions found in each group,
937
+ their first and second moments are given by F(T )N′ and F(T)N′ (1 + F(T )(N′ − 1)), respec-
938
+ tively, where F(T ) is calculated using (24). These moments contain information about the
939
+ two free parameters of F(T ) (i.e. λ and r1), which can be readily extracted to estimate λ
940
+ together with a confidence (or credible) interval.
941
+ The Ct value is estimated from the fluorescence profiles produced by DNA molecules
942
+ as they are amplified during PCR. Our mathematical analysis can be straightforwardly ex-
943
+ tended to obtain a time-dependent probability density of the fluorescence intensity Pt(y),
944
+ which can then be fit to fluorescence profiles as an alternative approach to estimating the
945
+ number of input DNA molecules. Using standard results from probability theory (eg. see
946
+ [23]), Pt(y) can be derived from both the cumulative distribution function of the number
947
+ of molecules found in the PCR process at time t, Ft(x) [calculated based on Equation (4)
948
+ or (16)] and the linear relation expected [24] between y and x. Specifically, Pt(y) can be
949
+ 17
950
+
951
+ expressed as
952
+ Pt(y) = 1
953
+ α ht(g−1(y)),
954
+ (30)
955
+ where
956
+ ht(x) = d
957
+ dxFt(x),
958
+ (31)
959
+ y = αx + β = g(x), and α,β > 0. We will explore in detail this alternative approach to
960
+ estimating the number of input DNA molecules in a future paper.
961
+ 5
962
+ Supporting Information
963
+ 5.1
964
+ Appendix
965
+ This section contains mathematical proofs and detailed calculations supporting the results
966
+ presented in Section 3.
967
+ 5.1.1
968
+ Proof of Theorem 1
969
+ Proof. We will prove Theorem 1 by mathematical induction on k.
970
+ • k = 1:
971
+ The Chapman-Kolmogorov forward equation corresponding to the single-phase pro-
972
+ cess is given by:
973
+ ∂P(X = x,t|X = x′,t′)
974
+ ∂t
975
+ = r1(x−1)P(X = x−1,t|X = x′,t′)−r1xP(X = x,t|X = x′,t′), (32)
976
+ where we have set t = t′ +∆t, and r1 is the amplification efficiency associated with the
977
+ process. To simplify our notation, we will abbreviate P(X = x,t|X = x′,t′) by P(x,t).
978
+ We will solve (32) by using a powerful combinatorial device called the probability
979
+ generating function (pgf) [14]. Recall that the pgf of P(x,t) is defined as:
980
+ G(s,t) =
981
+
982
+
983
+ x=0
984
+ sxP(x,t),
985
+ where s is a book-keeping variable.
986
+ 18
987
+
988
+ Multiplying both sides of (32) by sx and summing over all possible values of x yields:
989
+
990
+
991
+ x=0
992
+ sx ∂P(x,t)
993
+ ∂t
994
+ =
995
+ r1
996
+
997
+
998
+ x=0
999
+ (x − 1)sxP(x − 1,t) − r1
1000
+
1001
+
1002
+ x=0
1003
+ xsxP(x,t)
1004
+ =
1005
+ r1s2
1006
+
1007
+
1008
+ x=0
1009
+ (x − 1)sx−2P(x − 1,t) − r1s
1010
+
1011
+
1012
+ x=0
1013
+ xsx−1P(x,t)
1014
+ =
1015
+ = r1s
1016
+
1017
+ ������s
1018
+
1019
+
1020
+ x=0
1021
+ (x − 1)sx−2P(x − 1,t) −
1022
+
1023
+
1024
+ x=0
1025
+ xsx−1P(x,t)
1026
+
1027
+ ������.
1028
+ (33)
1029
+ Using
1030
+ ∂G(s,t)
1031
+ ∂s
1032
+ =
1033
+
1034
+
1035
+ x=0
1036
+ xsx−1P(x,t) and
1037
+ ∂G(s,t)
1038
+ ∂t
1039
+ =
1040
+
1041
+
1042
+ x=0
1043
+ sx ∂P(x,t)
1044
+ ∂t
1045
+ ,
1046
+ (34)
1047
+ we simplify (33) to obtain
1048
+ ∂G(s,t)
1049
+ ∂t
1050
+ = r1s(s − 1)∂G(s,t)
1051
+ ∂s
1052
+ ,
1053
+ (35)
1054
+ which is a partial differential equation (pde) in G(s,t).
1055
+ We will solve (35) by the method of characteristics. To this end, we define new
1056
+ variables
1057
+ u = u(s,t) and v = v(s,t),
1058
+ which will transform (35) into the simpler equation
1059
+ ∂W(u,v)
1060
+ ∂u
1061
+ + H(u,v)W(u,v) = F(u,v),
1062
+ (36)
1063
+ which has the solution
1064
+ W(u,v) = e−
1065
+
1066
+ H(u,v)du
1067
+ ��
1068
+ F(u,v)e
1069
+
1070
+ H(u,v)du + Ψ(v)
1071
+
1072
+ ,
1073
+ where
1074
+ W(u,v) = G(s(u,v),t(u,v)).
1075
+ This requires that v(s,t) = c, where c is an arbitrary constant. The resulting charac-
1076
+ teristic equation is given by
1077
+ ds
1078
+ dt = −r1s(s − 1),
1079
+ 19
1080
+
1081
+ which has the solution
1082
+ s − 1
1083
+ s
1084
+ er1t = c = v(s,t).
1085
+ Setting u(s,t) = t, we obtain
1086
+ ∂G
1087
+ ∂t
1088
+ =
1089
+ ∂W
1090
+ ∂t = ∂W
1091
+ ∂u
1092
+ ∂u
1093
+ ∂t + ∂W
1094
+ ∂v
1095
+ ∂v
1096
+ ∂t
1097
+ =
1098
+ ∂W
1099
+ ∂u + r1(s − 1)
1100
+ s
1101
+ er1t ∂W
1102
+ ∂v
1103
+ (37)
1104
+ and
1105
+ ∂G
1106
+ ∂s
1107
+ =
1108
+ ∂W
1109
+ ∂u
1110
+ ∂u
1111
+ ∂s + ∂W
1112
+ ∂v
1113
+ ∂v
1114
+ ∂s
1115
+ =
1116
+ 1
1117
+ s2 er1t ∂W
1118
+ ∂v .
1119
+ (38)
1120
+ Substituting (37) and (38) into (35) gives
1121
+ ∂W
1122
+ ∂u = 0,
1123
+ (39)
1124
+ which has the same form as (36). The solution to (39) is given by
1125
+ W(u,v)
1126
+ = Ψ(v)
1127
+ =⇒
1128
+ G(s,t)
1129
+ = Ψ
1130
+ �s − 1
1131
+ s
1132
+ er1t�
1133
+ .
1134
+ (40)
1135
+ If there are n molecules at the start of the process (t = 0), then p(x,0) = 1 if x = n and
1136
+ p(x,0) = 0 otherwise. Therefore,
1137
+ G(s,0) = Ψ
1138
+ �s − 1
1139
+ s
1140
+
1141
+ =
1142
+
1143
+
1144
+ x=0
1145
+ sxP(x,0) = sn.
1146
+ (41)
1147
+ In (41), the argument y of Ψ (y) maps onto ( 1
1148
+ 1−y )n, implying that
1149
+ G(s,t) = Ψ
1150
+ �s − 1
1151
+ s
1152
+ er1t�
1153
+ =
1154
+
1155
+ �����
1156
+ 1
1157
+ 1 − s−1
1158
+ s er1t
1159
+
1160
+ �����
1161
+ n
1162
+ =
1163
+ sne−nr1t
1164
+ [1 − s(1 − e−r1t)]n .
1165
+ (42)
1166
+ Equation (42) matches (2) when k = 1.
1167
+ Corollary 3. Equation (42) solves (35).
1168
+ 20
1169
+
1170
+ Proof. The right-hand-side of (35) is
1171
+ ∂G
1172
+ ∂s
1173
+ =
1174
+ nsn−1e−nr1t �
1175
+ 1 − s(1 − e−r1t)
1176
+ �−n + nsne−nr1t �
1177
+ 1 − s(1 − e−r1t)
1178
+ �−(n+1) �
1179
+ 1 − e−r1t�
1180
+ =
1181
+ nsn−1e−nr1t
1182
+ [1 − s(1 − e−r1t)]n
1183
+
1184
+ 1 +
1185
+ s(1 − e−r1t)
1186
+ 1 − s(1 − e−r1t)
1187
+
1188
+ =
1189
+ nsn−1e−nr1t
1190
+ [1 − s(1 − e−r1t)](n+1)
1191
+
1192
+ 1 − s(1 − e−r1t) + s(1 − e−r1t)
1193
+
1194
+ =
1195
+ nsn−1e−nr1t
1196
+ [1 − s(1 − e−r1t)](n+1) ,
1197
+ (43)
1198
+ and the left hand-side is
1199
+ ∂G
1200
+ ∂t
1201
+ =
1202
+ −nr1sne−nr1t �
1203
+ 1 − s(1 − e−r1t)
1204
+ �−n + nsn+1r1e−(n+1)r1t �
1205
+ 1 − s(1 − e−r1t)
1206
+ �−(n+1)
1207
+ =
1208
+ nr1sne−nr1t
1209
+ [1 − s(1 − e−r1t)]n
1210
+
1211
+ se−r1t
1212
+ 1 − s(1 − e−r1t) − 1
1213
+
1214
+ =
1215
+ nr1sne−nr1t
1216
+ [1 − s(1 − e−r1t)](n+1)
1217
+
1218
+ se−r1t − 1 + s − se−r1t�
1219
+ =
1220
+ nr1sne−nr1t(s − 1)
1221
+ [1 − s(1 − e−r1t)](n+1)
1222
+ =
1223
+ r1s(s − 1)
1224
+ this matches (43)
1225
+ ������������������������������������������������
1226
+
1227
+ �����
1228
+ nsn−1e−nr1t
1229
+ [1 − s(1 − e−r1t)](n+1)
1230
+
1231
+ ����� = r1s(s − 1)∂G
1232
+ ∂s .
1233
+ (44)
1234
+ • k = 2:
1235
+ There are two amplification phases with rates r1 and r2, respectively. The first one
1236
+ runs from time t = 0 to t = τ1, and the second one runs from t = τ1 to t = τ1 +
1237
+ τ2. In the second phase, the probability generating function takes exactly the same
1238
+ general functional form as in the first phase, albeit with a different initial condition.
1239
+ Specifically, we have
1240
+ G(s,t) = Ψ
1241
+ �s − 1
1242
+ s
1243
+ er2(t−τ1)�
1244
+ ,
1245
+ with the initial condition (at time t = τ1)
1246
+ G(s,τ1) = Ψ
1247
+ �s − 1
1248
+ s
1249
+
1250
+ =
1251
+ sne−nr1τ1
1252
+ [1 − s(1 − e−r1τ1)]n .
1253
+ 21
1254
+
1255
+ Using the same procedure as in the case when k = 1, we obtain
1256
+ G(s,t)
1257
+ =
1258
+ Ψ
1259
+ �s − 1
1260
+ s
1261
+ er2(t−τ1)�
1262
+ =
1263
+
1264
+ 1
1265
+ 1− s−1
1266
+ s er2(t−τ1)
1267
+ �n
1268
+ e−nr1τ1
1269
+
1270
+ 1 −
1271
+
1272
+ 1
1273
+ 1− s−1
1274
+ s er2(t−τ1)
1275
+
1276
+ (1 − e−r1τ1)
1277
+ �n
1278
+ =
1279
+ sne−n[r2t+(r1−r2)τ1]
1280
+
1281
+ 1 − s
1282
+
1283
+ 1 − e−[r2t+(r1−r2)τ1]��n .
1284
+ (45)
1285
+ The right side of (45) equals (35) when k = 2, as expected.
1286
+ • We assume the statement is true for t ∈ Ik, that is
1287
+ G(s,t) =
1288
+
1289
+ se−z
1290
+ 1 − s(1 − e−z)
1291
+ �n
1292
+ ,
1293
+ where z = rkt + �k−1
1294
+ i=1(ri − rk)τi, and we prove it for t ∈ Ik+1. As before, in phase k + 1,
1295
+ the generating function has the functional form
1296
+ G(s,t) = Ψ
1297
+ �s − 1
1298
+ s
1299
+ erk+1(t−�k
1300
+ i=1 τi)�
1301
+ .
1302
+ At time t = �k
1303
+ i=1 τi, by the induction step, we have
1304
+ G(s,t) = Ψ
1305
+ �s − 1
1306
+ s
1307
+
1308
+ =
1309
+
1310
+ se−z
1311
+ 1 − s(1 − e−z)
1312
+ �n
1313
+ .
1314
+ Using the same arguments as before, we find that, for t ∈ Ik+1,
1315
+ G(s,t)
1316
+ =
1317
+ Ψ
1318
+ �s − 1
1319
+ s
1320
+ erk+1(t−�k
1321
+ i=1 τi)�
1322
+ =
1323
+
1324
+ ���������
1325
+ 1
1326
+ 1− s−1
1327
+ s erk+1(t−�k
1328
+ i=1 τi ) e−z
1329
+ 1 −
1330
+ 1
1331
+ 1− s−1
1332
+ s erk+1(t−�k
1333
+ i=1 τi ) (1 − e−z)
1334
+
1335
+ ���������
1336
+ n
1337
+ =
1338
+ sne−n[rk+1t+�k
1339
+ i=1(ri−rk)τi]
1340
+
1341
+ 1 − s
1342
+
1343
+ 1 − e−[rk+1t+�k
1344
+ i=1(ri−rk)τi]
1345
+ ��n ,
1346
+ (46)
1347
+ and this ends the proof of Theorem 1.
1348
+ 22
1349
+
1350
+ 5.1.2
1351
+ Proof of Corollary 1
1352
+ Proof. From Theorem 1, we know that the generating function for P(x|n,⃗r,t,⃗τ) is given by
1353
+ G(s,t) =
1354
+
1355
+ se−z
1356
+ 1 − s(1 − e−z)
1357
+ �n
1358
+ .
1359
+ Let p = e−z and q = 1 − p. Then,
1360
+ G(s,t) =
1361
+
1362
+ sp
1363
+ 1 − sq
1364
+ �n
1365
+ = (sp)n [1 − sq]−n .
1366
+ P(x|n,⃗r,t,⃗τ) is the coefficient of sx in the power series expansion of G(s,t), given by
1367
+ G(s,t)
1368
+ =
1369
+ (sp)n [1 − sq]−n = (sp)n �
1370
+ i=0
1371
+ �−n
1372
+ i
1373
+
1374
+ (−sq)i = (sp)n �
1375
+ i=0
1376
+ �−n
1377
+ i
1378
+
1379
+ (−1)i(sq)i.
1380
+ (47)
1381
+ But
1382
+ �−n
1383
+ i
1384
+
1385
+ =
1386
+ −n(−n − 1)(−n − 2)(−n − 3)...(−n − (i − 2))(−n − (i − 1))
1387
+ 1.2.3....(i − 1)i
1388
+ =
1389
+ (−1)i n(n + 1)(n + 2)(n + 3)...(n + (i − 2))(n + (i − 1))
1390
+ i!
1391
+ =
1392
+ (−1)i
1393
+ �n + i − 1
1394
+ i
1395
+
1396
+ =⇒
1397
+ (−1)i
1398
+ �−n
1399
+ i
1400
+
1401
+ =
1402
+ �n + i − 1
1403
+ i
1404
+
1405
+ .
1406
+ (48)
1407
+ Substituting (48) into (47) gives
1408
+ G(s,t)
1409
+ =
1410
+ (sp)n �
1411
+ i=0
1412
+ �−n
1413
+ i
1414
+
1415
+ (−1)i(sq)i = (sp)n �
1416
+ i=0
1417
+ �n + i − 1
1418
+ i
1419
+
1420
+ (sq)i.
1421
+ (49)
1422
+ Let x = n + i. Then,
1423
+ G(s,t)
1424
+ =
1425
+ (sp)n
1426
+
1427
+
1428
+ x=n
1429
+ �x − 1
1430
+ x − n
1431
+
1432
+ (sq)x−n =
1433
+
1434
+
1435
+ x=n
1436
+ �x − 1
1437
+ x − n
1438
+
1439
+ pnqx−nsx.
1440
+ (50)
1441
+ The probability of having x molecules at time t, P(x,t), is therefore given by
1442
+ P(x,t) =
1443
+ �x − 1
1444
+ x − n
1445
+
1446
+ pnqx−n =
1447
+ �x − 1
1448
+ n − 1
1449
+
1450
+ e−nz (1 − e−z)x−n .
1451
+ (51)
1452
+ Corollary 4. The probability distribution given in Theorem 1 solves the Chapman-Kolmogorov
1453
+ 23
1454
+
1455
+ equation given by (32).
1456
+ Proof.
1457
+ ∂P(x,t)
1458
+ ∂t
1459
+ = �x−1
1460
+ x−n
1461
+ ��
1462
+ −nrke−z (1 − e−z)x−n + rk(x − n)e−2z (1 − e−z)x−n−1�
1463
+ = rk
1464
+ �x−1
1465
+ x−n
1466
+ �e−z (1 − e−z)x−n �
1467
+ −n + (x − n) e−z
1468
+ 1−e−z
1469
+
1470
+ = rk
1471
+ �x−1
1472
+ x−n
1473
+ �e−z (1 − e−z)x−n �
1474
+ −n + (x − n) e−z
1475
+ 1−e−z − x−n
1476
+ 1−e−z + x−n
1477
+ 1−e−z
1478
+
1479
+ = rk
1480
+ �x−1
1481
+ x−n
1482
+ �e−z (1 − e−z)x−n � x−n
1483
+ 1−e−z − n + (x−n)
1484
+ 1−e−z (e−z − 1)
1485
+
1486
+ = rk
1487
+ �x−1
1488
+ x−n
1489
+ �e−z (1 − e−z)x−n � x−n
1490
+ 1−e−z − x
1491
+
1492
+ = rk
1493
+
1494
+ (x − n)�x−1
1495
+ x−n
1496
+ ��
1497
+ e−z (1 − e−z)x−n−1 − rkx�x−1
1498
+ x−n
1499
+ �e−z (1 − e−z)x−n
1500
+ = rk(x − 1)
1501
+ �� x−2
1502
+ x−n−1
1503
+ �e−z (1 − e−z)x−n−1�
1504
+ − rkx
1505
+ ��x−1
1506
+ x−n
1507
+ �e−z (1 − e−z)x−n�
1508
+ = rk(x − 1)P(x − 1,t) − rkxP(x,t),
1509
+ (52)
1510
+ which equals the right-hand side of (32).
1511
+ 5.1.3
1512
+ Proof of Theorem 2
1513
+ Proof. We prove Theorem (2) by mathematical induction on k.
1514
+ • k = 1:
1515
+ There is only one phase with amplification efficiency r1. Recall that the Chapman-
1516
+ Kolmogorov forward equation for the dynamics of P (x,t) is given by (32), with the
1517
+ initial condition
1518
+ P (x,0) = e−λλx
1519
+ x!
1520
+ .
1521
+ Using the same arguments as above, we can write the generating function for P (x,t)
1522
+ as
1523
+ G(s,t) = Ψ
1524
+ �s − 1
1525
+ s
1526
+ er1t�
1527
+ ,
1528
+ (53)
1529
+ with the initial condition
1530
+ G(s,0)
1531
+ =
1532
+ Ψ
1533
+ �s − 1
1534
+ s
1535
+
1536
+ =
1537
+
1538
+
1539
+ x=0
1540
+ sxP(x,0) = eλ(s−1).
1541
+ (54)
1542
+ Therefore,
1543
+ G(s,t)
1544
+ =
1545
+ Ψ
1546
+ �s − 1
1547
+ s
1548
+ er1t�
1549
+ =
1550
+ e
1551
+ λ
1552
+
1553
+ 1
1554
+ 1− s−1
1555
+ s
1556
+ er1t −1
1557
+
1558
+ =
1559
+ e
1560
+
1561
+ λ(s−1)
1562
+ 1−s(1−e−r1t)
1563
+
1564
+ .
1565
+ (55)
1566
+ 24
1567
+
1568
+ Equation (55) matches (15) when k = 1.
1569
+ Corollary 5. The generating function given by (55) solves Equation (35).
1570
+ Proof. Differentiate the right hand side of (55) with respect to s.
1571
+ • k = 2:
1572
+ There are two phases with amplification efficiencies r1 and r2, respectively. The first
1573
+ phase runs from time t = 0 to t = τ1, and the second one runs from t = τ1 to t = τ1+τ2.
1574
+ As before, for t ∈ I2 the probability generating function has the form
1575
+ G(s,t) = Ψ
1576
+ �s − 1
1577
+ s
1578
+ er2(t−τ1)�
1579
+ ,
1580
+ with the initial condition (at time t = t1)
1581
+ G(s,τ1) = Ψ
1582
+ �s − 1
1583
+ s
1584
+
1585
+ = e
1586
+
1587
+ λ(s−1)
1588
+ 1−s(1−e−r1t)
1589
+
1590
+ .
1591
+ Therefore,
1592
+ G(s,t)
1593
+ =
1594
+ Ψ
1595
+ �s − 1
1596
+ s
1597
+ er2(t−τ1)�
1598
+ =
1599
+ e
1600
+
1601
+ �������
1602
+ λ(
1603
+ 1
1604
+ 1− s−1
1605
+ s
1606
+ er2(t−τ1) −1)
1607
+ 1−
1608
+ 1
1609
+ 1− s−1
1610
+ s
1611
+ er2(t−τ1) (1−e−r1t)
1612
+
1613
+ �������
1614
+ =
1615
+ e
1616
+
1617
+ λ(s−1)
1618
+ 1−s(1−e−(r2t+(r1−r2)τ1))
1619
+
1620
+ .
1621
+ (56)
1622
+ The right side of (56) equals (15) for the case k = 2.
1623
+ • We assume the statement is true for t ∈ Ik, that is
1624
+ G(s,t) = e
1625
+
1626
+ λ(s−1)
1627
+ 1−s(1−e−z)
1628
+
1629
+ ,
1630
+ where z = rkt + �k−1
1631
+ i=1(ri − rk)τi, and we prove it for t ∈ Ik+1.
1632
+ In phase k + 1, the probability generating function has the form
1633
+ G(s,t) = Ψ
1634
+ �s − 1
1635
+ s
1636
+ erk+1(t−�k
1637
+ i=1 τi)�
1638
+ .
1639
+ By the induction step, the initial condition (at time t = �k
1640
+ i=1 τi) is given by
1641
+ G(s,t) = Ψ
1642
+ �s − 1
1643
+ s
1644
+
1645
+ = e
1646
+
1647
+ λ(s−1)
1648
+ 1−s(1−e−z)
1649
+
1650
+ .
1651
+ 25
1652
+
1653
+ Therefore, for t ∈ Ik+1, we have
1654
+ G(s,t)
1655
+ =
1656
+ Ψ
1657
+ �s − 1
1658
+ s
1659
+ erk+1(t−�k
1660
+ i=1 τi)�
1661
+ =
1662
+ e
1663
+
1664
+ ����������
1665
+ λ(
1666
+ 1
1667
+ 1− s−1
1668
+ s
1669
+ erk+1(t−�k
1670
+ i=1 τi )
1671
+ −1)
1672
+ 1−
1673
+ 1
1674
+ 1− s−1
1675
+ s
1676
+ erk+1(t−�k
1677
+ i=1 τi )
1678
+ (1−e−z)
1679
+
1680
+ ����������
1681
+ =
1682
+ e
1683
+
1684
+ λ(s−1)
1685
+ 1−s(1−e−z′ )
1686
+
1687
+ ,
1688
+ (57)
1689
+ where z′ = rk+1t + �k
1690
+ i=1(ri − rk+1)τi, and this ends the proof of Theorem 2.
1691
+ 5.1.4
1692
+ Proof of Corollary 2
1693
+ Proof. Recall that P(x|λ,⃗r,t,⃗τ) is the coefficient of sx in the power series expansion of the
1694
+ probability generating function given in Theorem 2, that is
1695
+ P(x|λ,⃗r,t,⃗τ)
1696
+ =
1697
+ 1
1698
+ x!
1699
+ ∂xG(s,t)
1700
+ ∂sx
1701
+ ���s=0.
1702
+ (58)
1703
+ Now, let us compute the partial derivatives of G(s,t) with respect to s. For brevity, we set
1704
+ a = e−z,v = (1 − e−z) = (1 − a),u = λe−z = aλ, and Q(s,t) = 1 − s(1 − e−z) = 1 − sv.
1705
+ Observe that
1706
+ G(s,t) = e
1707
+ λ(s−1)
1708
+ Q ,Q(0,t) = 1,G(0,t) = e−λ, ∂Q(s,t)
1709
+ ∂s
1710
+ = ∂Q(s,t)
1711
+ ∂s
1712
+ ���s=0 = −v
1713
+ 26
1714
+
1715
+ and
1716
+
1717
+ ∂sG(s,t)
1718
+ =
1719
+ u G(s,t)
1720
+ Q2
1721
+ =⇒ ∂
1722
+ ∂sG(s,t)
1723
+ ���s=0 = ue−λ,
1724
+ ∂2
1725
+ ∂s2 G(s,t)
1726
+ =
1727
+ ue−λ
1728
+ Q4
1729
+ �Q2uG(s,t)
1730
+ Q2
1731
+ + 2vQG(s,t)
1732
+
1733
+ = u [u + 2vQ] G(s,t)
1734
+ Q4
1735
+ =⇒
1736
+ ∂2
1737
+ ∂s2 G(s,t)
1738
+ ���s=0 = e−λ �
1739
+ u2 + 2uv
1740
+
1741
+ ,
1742
+ ∂3
1743
+ ∂s3 G(s,t)
1744
+ =
1745
+ u [u + 2v]
1746
+ Q8
1747
+
1748
+ uG(s,t)(u + 2vQ)Q2 − 2v2G(s,t)Q4 + 4vG(s,t)(u + 2vQ)Q3�
1749
+ =
1750
+ u G(s,t)
1751
+ Q6
1752
+
1753
+ u2 + 6uvQ + 6v2Q2�
1754
+ =⇒
1755
+ ∂3
1756
+ ∂s3 G(s,t)
1757
+ ���s=0 = e−λ(u3 + 6u2v + 6uv2),
1758
+ ∂4
1759
+ ∂s4 G(s,t)
1760
+ =
1761
+ u G(s,t)
1762
+ Q8
1763
+
1764
+ u3 + 12u2vQ + 36uv2Q2 + 24v3Q3�
1765
+ =⇒
1766
+ ∂4
1767
+ ∂s4 G(s,t)
1768
+ ���s=0 = e−λ �
1769
+ u4 + 12u3v + 36u2v2 + 24uv3�
1770
+ ∂5
1771
+ ∂s5 G(s,t)
1772
+ =
1773
+ u G(s,t)
1774
+ Q8
1775
+
1776
+ u4 + 20u3vQ + 120u2v2Q2 + 240uv3Q3 + 120v4Q4�
1777
+ ,
1778
+ =⇒
1779
+ ∂4
1780
+ ∂s5 G(s,t)
1781
+ ���s=0 = e−λ �
1782
+ u5 + 20u4v + 120u3v2 + 240u2v3 + 120uv4�
1783
+ .
1784
+ (59)
1785
+ By closely examining the coefficients of powers of the terms u,v and uv in (59), the follow-
1786
+ ing combinatorial triangle emerges
1787
+ x
1788
+ 1
1789
+ 1
1790
+ 2
1791
+ 1
1792
+ 2
1793
+ 3
1794
+ 1
1795
+ 6
1796
+ 6
1797
+ 4
1798
+ 1
1799
+ 12
1800
+ 36
1801
+ 24
1802
+ 5
1803
+ 1
1804
+ 20
1805
+ 120
1806
+ 240
1807
+ 120
1808
+ 1
1809
+ 2
1810
+ 3
1811
+ 4
1812
+ 5
1813
+ i
1814
+ In particular, the (x,i)’th entry of the triangle is given by
1815
+ T (x,i) =
1816
+ � x
1817
+ i − 1
1818
+ ��x − 1
1819
+ i − 1
1820
+
1821
+ (i − 1)!, for i = 1,2,...x.
1822
+ (60)
1823
+ 27
1824
+
1825
+ Thus
1826
+ P(x|λ,⃗r,t,⃗τ)
1827
+ =
1828
+ 1
1829
+ x!
1830
+ ∂x
1831
+ ∂sx G(s,t)
1832
+ ����s=0 = e−λ
1833
+ x!
1834
+ x
1835
+
1836
+ i=1
1837
+ T (x,i)
1838
+ =
1839
+ e−λ
1840
+ x!
1841
+ x
1842
+
1843
+ i=1
1844
+ � x
1845
+ i − 1
1846
+ ��x − 1
1847
+ i − 1
1848
+
1849
+ (i − 1)!(λe−z)x−i+1 (1 − e−z)i−1
1850
+ =
1851
+ e−λ
1852
+ x
1853
+
1854
+ i=1
1855
+ 1
1856
+ (x − i + 1)!
1857
+ �x − 1
1858
+ i − 1
1859
+
1860
+ (λe−z)x−i+1 (1 − e−z)i���1 .
1861
+ (61)
1862
+ Setting k = x − i + 1 in (61) gives the desired result.
1863
+ Corollary 6. The probability distribution given in Theorem 2 solves (32).
1864
+ Proof. Differentiate the right-hand-side of Equation (61) with respect to t.
1865
+ We will now derive the probability density function (pdf), mean, variance, and cumu-
1866
+ lative density function (cdf) of the Ct value. We will consider two different cases, namely:
1867
+ 1. when the initial state of the PCR process is deterministic, and the PCR phase lengths
1868
+ and amplification efficiencies are given; and
1869
+ 2. when the initial state is Poisson-distributed, and the phase lengths and amplification
1870
+ efficiencies are given.
1871
+ 5.1.5
1872
+ Case 1: The initial state is deterministic, and the phase lengths and amplifica-
1873
+ tion efficiencies are given
1874
+ • General form of the pdf
1875
+ Consider the PCR process described in Theorem 1. The process begins with n cDNA
1876
+ molecules, which are amplified across up to p successive phases {Ii} of lengths ⃗τ =
1877
+ (τ1,τ2,...,τp) at the corresponding amplification efficiencies ⃗r = (r1,r2,...,rp). By def-
1878
+ inition, the Ct value t is the time at which the number of molecules reaches the quan-
1879
+ tification threshold, which we denote by x. By Bayes’ theorem, a general expression
1880
+ for the pdf of t is given by
1881
+ P(t|n,⃗r,⃗τ,x)
1882
+ =
1883
+ P(n,⃗r,⃗τ,x|t)P(t)
1884
+ P(n,⃗r,⃗τ,x)
1885
+ .
1886
+ (62)
1887
+ Since n is independent of ⃗r, ⃗τ, and t, and ⃗r is also independent of t and of the values
1888
+ taken by the entries of ⃗τ, we re-write the numerator of the right-hand-side of (62) as
1889
+ 28
1890
+
1891
+ follows:
1892
+ P(n,⃗r,⃗τ,x|t)P(t)
1893
+ =
1894
+ P(x|n,⃗r,⃗τ,t)P(n,⃗r,⃗τ|t)P(t)
1895
+ =
1896
+ P(x|n,⃗r,⃗τ,t)P(n|⃗r,⃗τ,t)P(⃗r,⃗τ|t)P(t)
1897
+ =
1898
+ P(x|n,⃗r,⃗τ,t)P(n)P(⃗r|⃗τ,t)P(⃗τ|t)P(t)
1899
+ =
1900
+ P(x|n,⃗r,⃗τ,t)P(n)P(⃗r)P(t|⃗τ)P(⃗τ).
1901
+ (63)
1902
+ Similarly, the denominator of the right-hand-side of (62) can be simplified to
1903
+ P(n,⃗r,⃗τ,x)
1904
+ =
1905
+ � ∞
1906
+ �k−1
1907
+ i=1 τi
1908
+ P(n,⃗r,⃗τ,x|t)P(t)dt
1909
+ =
1910
+ P(n)P(⃗r)P(⃗τ)
1911
+ � ∞
1912
+ �k−1
1913
+ i=1 τi
1914
+ P(x|n,⃗r,⃗τ,t)P(t|⃗τ)dt.
1915
+ (64)
1916
+ Therefore, (62) can be re-written as
1917
+ P(t|n,⃗r,⃗τ,x)
1918
+ =
1919
+ P(x|n,⃗r,⃗τ,t)P(t|⃗τ)
1920
+ � ∞
1921
+ �k−1
1922
+ i=1 τi P(x|n,⃗r,⃗τ,t)P(t|⃗τ)dt
1923
+ .
1924
+ (65)
1925
+ We will derive the pdf, mean, variance, and cdf of the Ct value for a PCR process
1926
+ with an arbitrary number of phases p. Without loss of generality, we suppose that
1927
+ t ∈ Ik,k ≤ p. We will assume a uniform prior density for t given ⃗τ. As we will
1928
+ demonstrate later, this assumption produces very similar results to those we obtain
1929
+ by assuming a Jeffreys prior [25]. We will state results for the case of a single-phase
1930
+ PCR process whenever these cannot be readily gleaned from the general results.
1931
+ We will first consider the case when the lengths of the intermediate phases, recorded
1932
+ in the vector ⃗τ, are given. This is useful, for example, when it is of interest to estimate
1933
+ the lengths of such phases from data. We will then show how to marginalize ⃗τ out
1934
+ of the pdf.
1935
+ • pdf
1936
+ Using the posterior density given in Equation (65) and the likelihood function given
1937
+ in Corollary 1, we obtain the following functional form for the pdf:
1938
+ P(t|n,⃗r,⃗τ,x)
1939
+
1940
+ e−nz (1 − e−z)x−n ,
1941
+ (66)
1942
+ where
1943
+ z = rkt +
1944
+ k−1
1945
+
1946
+ i=1
1947
+ (ri − rk)τi,
1948
+ (67)
1949
+ ⃗r = (r1,r2,...,rk) is a vector of amplification efficiencies, ⃗τ = (τ1,τ2,...,τk) is a vector of
1950
+ 29
1951
+
1952
+ phase lengths, and we have used a uniform prior for t.
1953
+ The normalizing constant is given by
1954
+ C =
1955
+ � ∞
1956
+ �k−1
1957
+ i=1 τi
1958
+ e−nz(1 − e−z)x−ndt.
1959
+ (68)
1960
+ Let w = e−z. Then,
1961
+ C
1962
+ =
1963
+ 1
1964
+ rk
1965
+ � θ
1966
+ 0
1967
+ wn−1(1 − w)x−ndw
1968
+ =
1969
+ Bθ(n,x − n + 1)
1970
+ rk
1971
+ ,
1972
+ (69)
1973
+ where
1974
+ θ = e−�k−1
1975
+ i=1 riτi.
1976
+ (70)
1977
+ Therefore, the pdf is given by
1978
+ P(t|n,⃗r,⃗τ,x)
1979
+ =
1980
+ rke−nz (1 − e−z)x−n
1981
+ Bθ(n,x − n + 1) .
1982
+ (71)
1983
+ For the single-phase process, θ = 1, so the pdf simplifies to
1984
+ P(t|n,r1,x)
1985
+ =
1986
+ r1e−nr1t �
1987
+ 1 − e−r1t�x−n
1988
+ B(n,x − n + 1)
1989
+ .
1990
+ (72)
1991
+ Note that in some cases (eg. when knowledge of the lengths of individual PCR ampli-
1992
+ fication phases is not of interest), it may be useful to marginalize ⃗τ out of P(t|n,⃗r,⃗τ,x).
1993
+ This can be achieved by using the fact that
1994
+ P(t|n,⃗r,x)
1995
+ =
1996
+
1997
+
1998
+ P(t,⃗τ|n,⃗r,x)d⃗τ
1999
+ =
2000
+
2001
+
2002
+ P(t|n,⃗r,⃗τ,x)P(⃗τ|n,⃗r,x)d⃗τ,
2003
+ (73)
2004
+ where Ω is the domain of ⃗τ.
2005
+ In addition, note that an alternative formulation of the prior for t, based on an ap-
2006
+ proach proposed by Jeffreys [25] for generating priors that are invariant to reparametriza-
2007
+ tion, is the following:
2008
+ p(t|⃗τ) ∝
2009
+
2010
+ |I(t|⃗τ)|,
2011
+ (74)
2012
+ 30
2013
+
2014
+ where I(t|⃗τ) is the Fisher information of the likelihood function and is given by
2015
+ I(t|⃗τ)
2016
+ =
2017
+ EX
2018
+ �� ∂
2019
+ ∂t lnP(x|n,⃗r,⃗τ,x)
2020
+ �2 �
2021
+ =
2022
+ EX
2023
+ �r2
2024
+ k
2025
+
2026
+ w2x2 − 2nwx + n2�
2027
+ (1 − w)2
2028
+
2029
+ =
2030
+ r2
2031
+ k w2
2032
+ (1 − w)2 EX
2033
+
2034
+ x2�
2035
+ − 2nr2
2036
+ k w
2037
+ (1 − w)2 EX
2038
+
2039
+ x
2040
+
2041
+ +
2042
+ n2r2
2043
+ k
2044
+ (1 − w)2
2045
+ =
2046
+ r2
2047
+ k
2048
+ (1 − w)2
2049
+
2050
+ �����w2
2051
+
2052
+
2053
+ j=1
2054
+ x2
2055
+ �x − 1
2056
+ j − 1
2057
+
2058
+ wn(1 − w)x−n − 2nw
2059
+
2060
+
2061
+ j=1
2062
+ x
2063
+ �x − 1
2064
+ j − 1
2065
+
2066
+ wn(1 − w)x−n + n2
2067
+
2068
+ �����,
2069
+ (75)
2070
+ where w = e−z.
2071
+ Observe that
2072
+
2073
+
2074
+ x=1
2075
+ x
2076
+ �x − 1
2077
+ n − 1
2078
+
2079
+ wn(1 − w)x−n
2080
+ =
2081
+
2082
+
2083
+ x=1
2084
+ x!
2085
+ (x − n)!(n − 1)!wn(1 − w)x−n
2086
+ =
2087
+
2088
+
2089
+ y=2
2090
+ (y − 1)!
2091
+ (y − m)!(m − 2)!wm−1(1 − w)y−m
2092
+ =
2093
+ m − 1
2094
+ w
2095
+
2096
+
2097
+ y=1
2098
+ (y − 1)!
2099
+ (y − m)!(m − 1)!wm(1 − w)y−m
2100
+ =
2101
+ m − 1
2102
+ w
2103
+ =
2104
+ n
2105
+ w
2106
+ (76)
2107
+ 31
2108
+
2109
+ and
2110
+
2111
+
2112
+ x=1
2113
+ x2
2114
+ �x − 1
2115
+ n − 1
2116
+
2117
+ wn(1 − w)x−n
2118
+ =
2119
+
2120
+
2121
+ x=1
2122
+ x!x
2123
+ (x − n)!(n − 1)!wn(1 − w)x−n
2124
+ =
2125
+
2126
+
2127
+ y=2
2128
+ (y − 1)!(y − 1)
2129
+ (y − m)!(m − 2)!wm−1(1 − w)y−m
2130
+ =
2131
+
2132
+
2133
+ y=1
2134
+ (y − 1)!y
2135
+ (y − m)!(m − 2)!wm−1(1 − w)y−m − m − 1
2136
+ w
2137
+ =
2138
+
2139
+
2140
+ y′=2
2141
+ (y′ − 1)!
2142
+ (y′ − m′)!(m′ − 3)!wm′−2(1 − w)y′−m′ − m − 1
2143
+ w
2144
+ =
2145
+ (m′ − 1)(m′ − 2)
2146
+ w2
2147
+
2148
+
2149
+ y′=1
2150
+ (y′ − 1)!
2151
+ (y′ − m′)!(m′ − 1)!wm′(1 − w)y′−m′ − m − 1
2152
+ w
2153
+ =
2154
+ (m′ − 1)(m′ − 2)
2155
+ w2
2156
+ − m − 1
2157
+ w
2158
+ =
2159
+ n(n + 1)
2160
+ w2
2161
+ − n
2162
+ w ,
2163
+ (77)
2164
+ where m = n + 1,m′ = m + 1,y = x + 1,y′ = y + 1.
2165
+ Plugging (76) and (77) into (75), we obtain
2166
+ I(t|⃗τ)
2167
+ =
2168
+ nr2
2169
+ k
2170
+ 1 − w
2171
+ =⇒
2172
+ p(t|⃗τ) ∝
2173
+ 1
2174
+
2175
+ 1 − w
2176
+ =
2177
+ 1
2178
+
2179
+ 1 − e−z .
2180
+ (78)
2181
+ Using this prior, and following the steps we used earlier to derive (71), we find that
2182
+ the pdf is given by
2183
+ P(t|n,⃗r,⃗τ,x)
2184
+
2185
+ e−nz (1 − e−z)x−n−1/2
2186
+ =⇒ P(t|n,⃗r,⃗τ,x)
2187
+ =
2188
+ rke−nz (1 − e−z)x−n−1/2
2189
+ Bθ(n,x − n + 1/2)
2190
+ ,
2191
+ (79)
2192
+ which has a similar form as (71).
2193
+ For simplicity, we will continue to use a uniform prior for t.
2194
+ • Mean
2195
+ The mean Ct value is given by
2196
+ E(t)
2197
+ =
2198
+ rk
2199
+ � ∞
2200
+ �k−1
2201
+ i
2202
+ τi te−nz(1 − e−z)x−ndt
2203
+ Bθ(n,x − n + 1)
2204
+ ,
2205
+ (80)
2206
+ 32
2207
+
2208
+ where z is given by (67).
2209
+ Let w = e−z. Then,
2210
+ E(t)
2211
+ =
2212
+ rk
2213
+ � 0
2214
+ θ
2215
+
2216
+ − (lnw−lnθ′)
2217
+ rk
2218
+
2219
+ wn(1 − w)x−n
2220
+
2221
+ − dw
2222
+ rkw
2223
+
2224
+ Bθ(n,x − n + 1)
2225
+ =
2226
+ � 0
2227
+ θ (lnw − lnθ′)wn−1(1 − w)x−ndw
2228
+ rkBθ(n,x − n + 1)
2229
+ =
2230
+ lnθ′ � θ
2231
+ 0 wn−1(1 − w)x−ndw −
2232
+ � θ
2233
+ 0 lnw wn−1(1 − w)x−ndw
2234
+ rkBθ(n,x − n + 1)
2235
+ =
2236
+ lnθ′
2237
+ rk
2238
+
2239
+
2240
+
2241
+ ∂n + ∂
2242
+ ∂x
2243
+
2244
+ Bθ(n,x − n + 1)
2245
+ rkBθ(n,x − n + 1)
2246
+ =
2247
+ ln θ′
2248
+ θ
2249
+ rk
2250
+ + Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
2251
+ rkBθ(n,x − n + 1)
2252
+ =
2253
+ k−1
2254
+
2255
+ i=1
2256
+ τi + Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
2257
+ rkBθ(n,x − n + 1)
2258
+ ,
2259
+ (81)
2260
+ where θ is given by (70), ψ(·) is the first polygamma function (also called the digamma
2261
+ function), and
2262
+ θ′ = θerk
2263
+ �k−1
2264
+ i=1 τi.
2265
+ (82)
2266
+ Note that for the single-phase process, θ = θ′ = 1. In this case, using
2267
+ 3 ˜F2(n,n,n − x;n + 1,n + 1;1) = nΓ(x − n + 1)[ψ(x + 1) − ψ(n)]
2268
+ Γ(n + 1)Γ(x + 1)
2269
+ ,
2270
+ we find that the mean Ct value is given by
2271
+ E(t) = ψ(x + 1) − ψ(n)
2272
+ r1
2273
+ .
2274
+ (83)
2275
+ • Variance
2276
+ The variance of the Ct value is given by E(t2) − E(t)2, where
2277
+ E(t2)
2278
+ =
2279
+ rk
2280
+ � ∞
2281
+ �k−1
2282
+ i=1 τi t2e−nz(1 − e−z)x−ndt
2283
+ Bθ(n,x − n + 1)
2284
+ ,
2285
+ (84)
2286
+ and z is given by (67).
2287
+ 33
2288
+
2289
+ Let w = e−z. Then,
2290
+ E(t2)
2291
+ =
2292
+ rk
2293
+ � 0
2294
+ θ
2295
+
2296
+ lnw−lnθ′
2297
+ rk
2298
+ �2
2299
+ wn(1 − w)x−n
2300
+
2301
+ − dw
2302
+ rkw
2303
+
2304
+ Bθ(n,x − n + 1)
2305
+ =
2306
+ � θ
2307
+ 0 (lnw − lnθ′)2 wn−1(1 − w)x−ndw
2308
+ rk2Bθ(n,x − n + 1)
2309
+ =
2310
+ � θ
2311
+ 0 (lnw)2 wn−1(1 − w)x−ndw − 2lnθ′ � θ
2312
+ 0 lnw wn−1(1 − w)x−ndw
2313
+ rk2Bθ(n,x − n + 1)
2314
+ +
2315
+ (lnθ′)2 � θ
2316
+ 0 wn−1(1 − w)x−ndw
2317
+ rk2Bθ(n,x − n + 1)
2318
+ =
2319
+
2320
+ ∂2
2321
+ ∂n2 + 2 ∂2
2322
+ ∂n∂x + ∂2
2323
+ ∂x2 − 2lnθ′
2324
+
2325
+
2326
+ ∂n + ∂
2327
+ ∂x
2328
+ ��
2329
+ Bθ(n,x − n + 1)
2330
+ rk2Bθ(n,x − n + 1)
2331
+ + (lnθ′)2
2332
+ rk2
2333
+ =
2334
+
2335
+ ∂2
2336
+ ∂n2 + 2 ∂2
2337
+ ∂n∂x + ∂2
2338
+ ∂x2
2339
+
2340
+ Bθ(n,x − n + 1)
2341
+ rk2Bθ(n,x − n + 1)
2342
+ + 2lnθ′Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
2343
+ r2
2344
+ k Bθ(n,x − n + 1)
2345
+ +
2346
+ lnθ′ ln θ′
2347
+ θ2
2348
+ r2
2349
+ k
2350
+ =
2351
+
2352
+ ∂2
2353
+ ∂n2 + 2 ∂2
2354
+ ∂n∂x + ∂2
2355
+ ∂x2
2356
+
2357
+ Bθ(n,x − n + 1)
2358
+ rk2Bθ(n,x − n + 1)
2359
+ + 2lnθ′Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
2360
+ r2
2361
+ k Bθ(n,x − n + 1)
2362
+ +
2363
+
2364
+ ������
2365
+ k−1
2366
+
2367
+ i=1
2368
+ τi
2369
+
2370
+ ������
2371
+ 2
2372
+
2373
+
2374
+ ������
2375
+ k−1
2376
+
2377
+ i=1
2378
+ riτi
2379
+ rk
2380
+
2381
+ ������
2382
+ 2
2383
+ ,
2384
+ (85)
2385
+ where θ is given by (70) and θ′ is given by (82).
2386
+ For the single-phase process, the second moment of the Ct value is given by
2387
+ E(t2)
2388
+ =
2389
+
2390
+ ∂2
2391
+ ∂n2 + 2 ∂2
2392
+ ∂n∂x + ∂2
2393
+ ∂x2
2394
+
2395
+ B(n,x − n + 1)
2396
+ rk2B(n,x − n + 1)
2397
+ =
2398
+ ψ1(n) − ψ1(x + 1) + [ψ(x + 1) − ψ(n)]2
2399
+ rk2
2400
+ ,
2401
+ (86)
2402
+ where ψ1(·) is the second polygamma function (also called the trigamma function).
2403
+ Therefore, the variance is
2404
+ Var(t) = ψ1(n) − ψ1(x + 1)
2405
+ rk2
2406
+ .
2407
+ (87)
2408
+ • cdf
2409
+ 34
2410
+
2411
+ The cdf of the Ct value is given by
2412
+ F(t|n,⃗r,⃗τ,x)
2413
+ =
2414
+ rk
2415
+ Bθ(n,x − n + 1)
2416
+ � t
2417
+ �k−1
2418
+ i=1 τi
2419
+ e−nz′(1 − e−z′)x−nds,
2420
+ (88)
2421
+ where z′ = rks + �k−1
2422
+ i=1(ri − rk)τi
2423
+ Let w = e−z′. Then,
2424
+ F(t|n,⃗r,⃗τ,x)
2425
+ =
2426
+ � θ
2427
+ e−z wn−1(1 − w)x−ndw
2428
+ Bθ(n,x − n + 1)
2429
+ =
2430
+ Bθ(n,x − n + 1) − Be−z(n,x − n + 1)
2431
+ Bθ(n,x − n + 1)
2432
+ =
2433
+ 1 − Be−z(n,x − n + 1)
2434
+ Bθ(n,x − n + 1) ,
2435
+ (89)
2436
+ where θ is given by 70.
2437
+ For the single-phase process, the cdf is given by
2438
+ F(t|n,r1,x)
2439
+ =
2440
+ 1 − Ie−r1t(n,x − n + 1),
2441
+ (90)
2442
+ where Ie−r1t(n,x−n+1) = Be−rt (n,x−n+1)
2443
+ B(n,x−n+1)
2444
+ is the regularized incomplete Beta function. Be-
2445
+ cause the cdf is in closed analytical form, we can apply the efficient inverse transform
2446
+ method to generate random samples of Ct values as follows:
2447
+ t
2448
+ =
2449
+ −lnI−1
2450
+ 1−u(n,x − n + 1)
2451
+ r1
2452
+ ,
2453
+ (91)
2454
+ where u is a real number sampled uniformly at random from the interval (0,1) and
2455
+ I−1
2456
+ 1−u is the inverse of the regularized incomplete Beta function. To find a Ct value
2457
+ that corresponds to a quantile q ∈ (0,1), simply replace u in Equation (91) by q.
2458
+ • Probability distribution of n
2459
+ We conclude by deriving the probability distribution of n, denoted P(n|r1,t,x), for the
2460
+ single-phase PCR process. This distribution can be used to estimate n from measured
2461
+ Ct values. It can also be used to calculate the LoD and LoQ of a PCR assay, as we
2462
+ demonstrated in the main text. The steps described below can also be used to derive
2463
+ P(n|⃗r,t,⃗τ), for a PCR process with an arbitrary number of phases, although this will
2464
+ not yield a closed-form result like we will obtain in the single-phase case.
2465
+ By Bayes’ Theorem, we have
2466
+ P(n|r1,t,x)
2467
+
2468
+ wn(1 − w)x−n
2469
+ B(n,x − n + 1),
2470
+ (92)
2471
+ 35
2472
+
2473
+ where
2474
+ w = e−r1t.
2475
+ (93)
2476
+ The normalizing constant is given by
2477
+ C
2478
+ =
2479
+ x
2480
+
2481
+ n=1
2482
+ wn(1 − w)x−n
2483
+ B(n,x − n + 1)
2484
+ =
2485
+ x
2486
+
2487
+ n=1
2488
+ x! wn(1 − w)x−n
2489
+ (n − 1)! (x − n)! .
2490
+ (94)
2491
+ Let m = n − 1. Then,
2492
+ C
2493
+ =
2494
+ x−1
2495
+
2496
+ m=0
2497
+ x! wm+1(1 − w)x−1−m
2498
+ m! (x − 1 − m)!
2499
+ =
2500
+ xw
2501
+ x−1
2502
+
2503
+ m=0
2504
+ �x − 1
2505
+ m
2506
+
2507
+ wm(1 − w)x−1−m
2508
+ =
2509
+ xw.
2510
+ (95)
2511
+ Therefore, we have
2512
+ P (n|r1,t,x)
2513
+ =
2514
+ wn−1(1 − w)x−n
2515
+ xB(n,x − n + 1).
2516
+ (96)
2517
+ Suppose that t is a Ct value generated by a PCR process with n input molecules. If
2518
+ we replace n by ˆn in Equation (96), then the equation will give the probability that
2519
+ ˆn will be obtained as the estimate of n based on the data t. It is useful – eg. for the
2520
+ purpose of determining the LoQ – to calculate the probability that ˆn will be obtained
2521
+ as the estimate of n based on any data t that can be generated by a PCR process with
2522
+ n input molecules. This probability is given by
2523
+ P ( ˆn|n,r1,x)
2524
+ =
2525
+ � ∞
2526
+ 0
2527
+ P ( ˆn,t|n,r1,x)dt
2528
+ =
2529
+ � ∞
2530
+ 0
2531
+ P ( ˆn|n,r1,t,x)P (t|n,r1,x)dt
2532
+ =
2533
+ � ∞
2534
+ 0
2535
+ P ( ˆn|r1,t,x)P (t|n,r1,x)dt
2536
+ =
2537
+ r1
2538
+ � ∞
2539
+ 0
2540
+ w ˆn−1(1 − w)x− ˆn
2541
+ xB( ˆn,x − ˆn + 1)
2542
+ wn(1 − w)x−n
2543
+ B(n,x − n + 1)dt
2544
+ =
2545
+ � 1
2546
+ 0
2547
+ w ˆn+n−2(1 − w)2x−m−n
2548
+ xB( ˆn,x − ˆn + 1)B(n,x − n + 1)dw
2549
+ =
2550
+ B( ˆn + n − 1,2x − ˆn − n + 1)
2551
+ xB( ˆn,x − ˆn + 1)B(n,x − n + 1) = P( ˆn|n,x),
2552
+ (97)
2553
+ 36
2554
+
2555
+ where, using (96), we have assumed that ˆn is conditionally independent of n given t.
2556
+ Strikingly, (97) does not depend on r1.
2557
+ 5.1.6
2558
+ Case 2: The initial state is Poisson-distributed, and the phase lengths and am-
2559
+ plification efficiencies are given
2560
+ • General form of the pdf
2561
+ Let t be the Ct value of the PCR process described in Theorem 2. The process begins
2562
+ with a Poisson-distributed number of input DNA molecules, with mean λ, which
2563
+ are replicated across up to p distinct phases with lengths ⃗τ = (τ1,τ2,...,τp) and am-
2564
+ plification efficiencies ⃗r = (r1,r2,...,rp). As noted earlier, t is the time at which the
2565
+ number of molecules reaches the quantification threshold, which we denote by x.
2566
+ Let us denote the pdf of t by P(t|λ,⃗r,⃗τ,x). By Bayes’ theorem, we have
2567
+ P(t|λ,⃗r,⃗τ,x)
2568
+ =
2569
+ P(λ,⃗r,⃗τ,x|t)P(t)
2570
+ P(λ,⃗r,⃗τ,x)
2571
+ (98)
2572
+ However, λ is independent of ⃗r, ⃗τ, and t, while ⃗r is also independent of t and of the
2573
+ precise values taken by the entries of ⃗τ. Therefore, by following the same steps we
2574
+ used earlier to derive (65), we find that
2575
+ P(t|λ,⃗r,⃗τ,x)
2576
+ =
2577
+ P(x|λ,⃗r,t,⃗τ)P(t|⃗τ)
2578
+ � ∞
2579
+ �k−1
2580
+ i=1 τi P(x|λ,⃗r,t,⃗τ)P(t|⃗τ)dt
2581
+ .
2582
+ (99)
2583
+ We will derive the pdf, mean, variance, and cdf by assuming, without loss of gener-
2584
+ ality, that t ∈ Ik, and then we will specify the functional forms taken by the results
2585
+ in the instructive case when t ∈ I1. As before, for simplicity, we will use a uniform
2586
+ prior density for t.
2587
+ • pdf
2588
+ We derive the pdf of the Ct value t by using the general expression given in Equation
2589
+ (99), with the probability distribution of the number of molecules given in Theorem
2590
+ 37
2591
+
2592
+ 2 serving as the likelihood. Specifically,
2593
+ P(t|λ,⃗r,⃗τ,x)
2594
+
2595
+ (1 − e−z)x
2596
+ x
2597
+
2598
+ j=1
2599
+ �x−1
2600
+ j−1
2601
+
2602
+ j!
2603
+ � λe−z
2604
+ 1 − e−z
2605
+ �j
2606
+ (100)
2607
+ =
2608
+ (1 − e−z)x
2609
+ x−1
2610
+
2611
+ j=0
2612
+ �x−1
2613
+ j
2614
+
2615
+ (j + 1)!
2616
+ � λe−z
2617
+ 1 − e−z
2618
+ �j+1
2619
+ (101)
2620
+ since (x
2621
+ j)=0 for j>x
2622
+ =
2623
+ (1 − e−z)x
2624
+
2625
+
2626
+ j=0
2627
+ �x−1
2628
+ j
2629
+
2630
+ (j + 1)!
2631
+ � λe−z
2632
+ 1 − e−z
2633
+ �j+1
2634
+ (102)
2635
+ =
2636
+ λe−z(1 − e−z)x−1
2637
+
2638
+
2639
+ j=0
2640
+ (x − 1)(x − 2)···(x − j)
2641
+ (j + 1)! j!
2642
+ � λe−z
2643
+ 1 − e−z
2644
+ �j
2645
+ (103)
2646
+ =
2647
+ λe−z(1 − e−z)x−1
2648
+
2649
+
2650
+ j=0
2651
+ (1 − x)(2 − x)···(j − x)
2652
+ (j + 1)! j!
2653
+ � −λe−z
2654
+ 1 − e−z
2655
+ �j
2656
+ (104)
2657
+ =
2658
+ λe−z(1 − e−z)x−1
2659
+
2660
+
2661
+ j=0
2662
+ (1 − x)j
2663
+ (2)j
2664
+ ����λe−z
2665
+ 1−e−z
2666
+ �j
2667
+ j!
2668
+ (105)
2669
+ =
2670
+ λe−z(1 − e−z)x−1
2671
+ 1F1
2672
+
2673
+ 1 − x;2; −λe−z
2674
+ 1 − e−z
2675
+
2676
+ ,
2677
+ (106)
2678
+ where z is given by (67), 1F1 is the hypergeometric function (also called the Kummer
2679
+ confluent hypergeometric function of the first kind), defined as
2680
+ 1F1
2681
+
2682
+ 1 − x;2; −λe−r1t
2683
+ 1 − e−r1t
2684
+
2685
+ =
2686
+
2687
+
2688
+ j=0
2689
+ (1 − x)j
2690
+ (2)j
2691
+ � −λe−r1t
2692
+ 1−e−r1t
2693
+ �j
2694
+ j!
2695
+ ,
2696
+ and (α)j denotes the rising factorial, i.e. (α)j = α(α+1)(α+2)...(α+j−1) with (α)0 = 1.
2697
+ The normalizing constant is given by
2698
+ C
2699
+ =
2700
+ x
2701
+
2702
+ j=1
2703
+ �x−1
2704
+ j−1
2705
+ �λj
2706
+ j!
2707
+ � ∞
2708
+ �k−1
2709
+ i=1 τi
2710
+ e−jz(1 − e−z)x−jdt.
2711
+ (107)
2712
+ Let w = e−z. Then,
2713
+ C
2714
+ =
2715
+ 1
2716
+ rk
2717
+ x
2718
+
2719
+ j=1
2720
+ �x−1
2721
+ j−1
2722
+ �λj
2723
+ j!
2724
+ � θ
2725
+ 0
2726
+ wj−1(1 − w)x−jdw
2727
+ =
2728
+ 1
2729
+ rk
2730
+ x
2731
+
2732
+ j=1
2733
+ �x−1
2734
+ j−1
2735
+ �λj
2736
+ j!
2737
+ Bθ(j,x − j + 1),
2738
+ (108)
2739
+ where θ is given by (70).
2740
+ 38
2741
+
2742
+ Therefore, the pdf is given by
2743
+ P(t|λ,⃗r,⃗τ,x)
2744
+ =
2745
+ rk(1 − e−z)x �x
2746
+ j=1
2747
+ (x−1
2748
+ j−1)
2749
+ j!
2750
+ � λe−z
2751
+ 1−e−z
2752
+ �j
2753
+ �x
2754
+ j=1
2755
+ (x−1
2756
+ j−1)λj
2757
+ j!
2758
+ Bθ(j,x − j + 1)
2759
+ =
2760
+ rkλe−z(1 − e−z)x−1 1F1
2761
+
2762
+ 1 − x,2, −λe−z
2763
+ 1−e−z
2764
+
2765
+ �x
2766
+ j=1
2767
+ (x−1
2768
+ j−1)λj
2769
+ j!
2770
+ Bθ(j,x − j + 1)
2771
+ ,
2772
+ (109)
2773
+ Recall that for the single-phase process, θ = 1, so we have
2774
+ x
2775
+
2776
+ j=1
2777
+ �x−1
2778
+ j−1
2779
+ �λj
2780
+ j!
2781
+ B(j,x − j + 1)
2782
+ =
2783
+
2784
+
2785
+ j=1
2786
+ �x−1
2787
+ j−1
2788
+ �λj
2789
+ j!
2790
+ B(j,x − j + 1)
2791
+ =
2792
+
2793
+
2794
+ j=0
2795
+ �x−1
2796
+ j
2797
+ �λj+1
2798
+ (j + 1)! B(j + 1,x − j)
2799
+ =
2800
+
2801
+
2802
+ j=0
2803
+ λj+1
2804
+ (j + 1)!
2805
+ =
2806
+ eλ − 1
2807
+ x
2808
+ ,
2809
+ (110)
2810
+ implying that the pdf is given by
2811
+ P(t|λ,r1,x)
2812
+ =
2813
+ r1xλe−r1t(1 − e−r1t)x−1 1F1
2814
+
2815
+ 1 − x,2, −λe−r1t
2816
+ 1−e−r1t
2817
+
2818
+ eλ − 1
2819
+ .
2820
+ (111)
2821
+ Note that in some cases (eg. when knowledge of the lengths of individual PCR ampli-
2822
+ fication phases is not of interest), it may be useful to marginalize ⃗τ out of P(t|λ,⃗r,⃗τ,x).
2823
+ This can be achieved by using the fact that
2824
+ P(t|λ,⃗r,x)
2825
+ =
2826
+
2827
+
2828
+ P(t,⃗τ|λ,⃗r,x)d⃗τ
2829
+ =
2830
+
2831
+
2832
+ P(t|λ,⃗r,⃗τ,x)P(⃗τ|λ,⃗r,x)d⃗τ,
2833
+ (112)
2834
+ where Ω is the domain of ⃗τ.
2835
+ • Mean
2836
+ 39
2837
+
2838
+ The mean Ct value is given by
2839
+ E(t)
2840
+ =
2841
+ rk
2842
+ �x
2843
+ j=1
2844
+ (x−1
2845
+ j−1)λj
2846
+ j!
2847
+ Bθ(j,x − j + 1)
2848
+ x
2849
+
2850
+ j=1
2851
+ �x−1
2852
+ j−1
2853
+ �λj
2854
+ j!
2855
+ (D)
2856
+ ��������������������������������������������������������
2857
+ � ∞
2858
+ �k−1
2859
+ i=1 τi
2860
+ te−jz(1 − e−z)x−jdt,
2861
+ (113)
2862
+ where z is given by (67).
2863
+ Let w = e−z. Then,
2864
+ D
2865
+ see (81)
2866
+ =
2867
+ Bθ(j,x − j + 1)�k−1
2868
+ i=1 τi
2869
+ rk
2870
+ + Γ(j)2θj 3 ˜F2(j,j,j − x;j + 1,j + 1;θ)
2871
+ r2
2872
+ k
2873
+ .
2874
+ (114)
2875
+ Therefore
2876
+ E(t)
2877
+ =
2878
+ �x
2879
+ j=1
2880
+ (x−1
2881
+ j−1)λj
2882
+ j!
2883
+
2884
+ rkBθ(j,x − j + 1)�k−1
2885
+ i=1 τi + Γ(j)2θj 3 ˜F2(j,j,j − x;j + 1,j + 1;θ)
2886
+
2887
+ rk
2888
+ �x
2889
+ j=1
2890
+ (x−1
2891
+ j−1)λj
2892
+ j!
2893
+ Bθ(j,x − j + 1)
2894
+ .
2895
+ (115)
2896
+ Recall that for the single-phase process, θ = θ′ = 1, so
2897
+ E(t)
2898
+ =
2899
+ ψ(x + 1)
2900
+ r1
2901
+
2902
+ �x
2903
+ j=1
2904
+ λj
2905
+ j! ψ(j)
2906
+ r1
2907
+
2908
+ eλ − 1
2909
+ � .
2910
+ (116)
2911
+ • Variance
2912
+ The variance is given by E(t2) − E(t)2, where
2913
+ E(t2)
2914
+ =
2915
+ rk
2916
+ �x
2917
+ j=1
2918
+ (x−1
2919
+ j−1)λj
2920
+ j!
2921
+ Bθ(j,x − j + 1)
2922
+ x
2923
+
2924
+ j=1
2925
+ �x−1
2926
+ j−1
2927
+ �λj
2928
+ j!
2929
+ (D)
2930
+ ������������������������������������������������������������
2931
+ � ∞
2932
+ �k−1
2933
+ i=1 τi
2934
+ t2e−jz(1 − e−z)x−jdt,
2935
+ (117)
2936
+ where z is given by (67).
2937
+ 40
2938
+
2939
+ Let w = e−z. Then,
2940
+ D
2941
+ see (85)
2942
+ =
2943
+
2944
+ ∂2
2945
+ ∂n2 + 2 ∂2
2946
+ ∂n∂x + ∂2
2947
+ ∂x2
2948
+
2949
+ Bθ(n,x − n + 1)
2950
+ rk3
2951
+ + 2lnθ′Γ(n)2θn 3 ˜F2(n,n,n − x;n + 1,n + 1;θ)
2952
+ r3
2953
+ k
2954
+ +
2955
+ Bθ(j,x − j + 1)
2956
+
2957
+ ��������
2958
+ ��k−1
2959
+ i=1 τi
2960
+ �2 −
2961
+ ��k−1
2962
+ i=1
2963
+ riτi
2964
+ rk
2965
+ �2
2966
+ rk
2967
+
2968
+ ��������
2969
+ (118)
2970
+ where θ′ is given by (82).
2971
+ Plugging (118) into (117), we obtain
2972
+ E(t2)
2973
+ =
2974
+ 1
2975
+ r2
2976
+ k
2977
+ �x
2978
+ j=1
2979
+ (x−1
2980
+ j−1)λj
2981
+ j!
2982
+ Bθ(j,x − j + 1)
2983
+ x
2984
+
2985
+ j=1
2986
+ �x−1
2987
+ j−1
2988
+ �λj
2989
+ j!
2990
+
2991
+ �����
2992
+ � ∂2
2993
+ ∂n2 + 2 ∂2
2994
+ ∂n∂x + ∂2
2995
+ ∂x2
2996
+
2997
+ Bθ(n,x − n + 1) +
2998
+ 2lnθ′Γ(n)2θn
2999
+ 3 ˜F2(n,n,n − x;n + 1,n + 1;θ) + r2
3000
+ k Bθ(j,x − j + 1)
3001
+
3002
+ ��������
3003
+
3004
+ ������
3005
+ k−1
3006
+
3007
+ i=1
3008
+ τi
3009
+
3010
+ ������
3011
+ 2
3012
+
3013
+
3014
+ ������
3015
+ k−1
3016
+
3017
+ i=1
3018
+ riτi
3019
+ rk
3020
+
3021
+ ������
3022
+ 2�
3023
+ ��������
3024
+
3025
+ �����.
3026
+ .
3027
+ (119)
3028
+ For the single-phase process, the variance is given by
3029
+ Var(t)
3030
+ =
3031
+ (eλ − 1)�x
3032
+ j=1
3033
+ λj
3034
+ j!
3035
+
3036
+ ψ1(j) + ψ(j)2
3037
+
3038
+
3039
+
3040
+ �����
3041
+ �x
3042
+ j=1
3043
+ λj
3044
+ j! ψ(j)
3045
+
3046
+ �����
3047
+ 2
3048
+
3049
+ r1(eλ − 1)
3050
+ �2
3051
+ − ψ1(x + 1)
3052
+ r2
3053
+ 1
3054
+ .
3055
+ (120)
3056
+ • cdf
3057
+ The cdf of the Ct value is given by
3058
+ F(t|λ,⃗r,⃗τ,x)
3059
+ =
3060
+ rk
3061
+ �x
3062
+ j=1
3063
+ (x−1
3064
+ j−1)λj
3065
+ j!
3066
+ � t�k−1
3067
+ i=1 τi e−jz′(1 − e−z′)x−jds
3068
+ �x
3069
+ j=1
3070
+ (x−1
3071
+ j−1)λj
3072
+ j!
3073
+ Bθ(j,x − j + 1)
3074
+ ,
3075
+ (121)
3076
+ where z′ = rks + �k−1
3077
+ i=1(ri − rk)τi.
3078
+ 41
3079
+
3080
+ Let w = e−z′. Then,
3081
+ F(t|λ,⃗r,⃗τ,x)
3082
+ =
3083
+ �x
3084
+ j=1
3085
+ (x−1
3086
+ j−1)λj
3087
+ j!
3088
+ � θ
3089
+ e−z wj−1(1 − w)x���jdw
3090
+ �x
3091
+ j=1
3092
+ (x−1
3093
+ j−1)λj
3094
+ j!
3095
+ Bθ(j,x − j + 1)
3096
+ =
3097
+ �x
3098
+ j=1
3099
+ (x−1
3100
+ j−1)λj
3101
+ j!
3102
+ �� θ
3103
+ 0 wj−1(1 − w)x−jdw −
3104
+ � e−z
3105
+ 0
3106
+ wj−1(1 − w)x−jdw
3107
+
3108
+ �x
3109
+ j=1
3110
+ (x−1
3111
+ j−1)λj
3112
+ j!
3113
+ Bθ(j,x − j + 1)
3114
+ =
3115
+ �x
3116
+ j=1
3117
+ (x−1
3118
+ j−1)λj
3119
+ j!
3120
+
3121
+ Bθ(j,x − j + 1) − Be−z(j,x − j + 1)
3122
+
3123
+ �x
3124
+ j=1
3125
+ (x−1
3126
+ j−1)λj
3127
+ j!
3128
+ Bθ(j,x − j + 1)
3129
+ =
3130
+ 1 −
3131
+ �x
3132
+ j=1
3133
+ (x−1
3134
+ j−1)λj
3135
+ j!
3136
+ Be−z(j,x − j + 1)
3137
+ �x
3138
+ j=1
3139
+ (x−1
3140
+ j−1)λj
3141
+ j!
3142
+ Bθ(j,x − j + 1)
3143
+ ,
3144
+ (122)
3145
+ where θ is given by (70).
3146
+ For the single-phase process, using (110), we simplify the cdf to obtain
3147
+ F(t|λ,r1,x)
3148
+ =
3149
+ 1 −
3150
+ x�x
3151
+ j=1
3152
+ (x−1
3153
+ j−1)λj
3154
+ j!
3155
+ Be−r1t(j,x − j + 1)
3156
+ eλ − 1
3157
+ .
3158
+ (123)
3159
+ • Probability density of λ
3160
+ We conclude by deriving the probability density of λ, P(λ|r1,t,x), for the single-phase
3161
+ process. This density can be used to estimate λ from measured Ct values, and for
3162
+ calculating both the LoD and the LoQ of a PCR process. The steps described below
3163
+ can also be used to derive P(λ|⃗r,t,⃗τ), for a PCR process with an arbitrary number of
3164
+ phases.
3165
+ By Bayes’ Theorem, we have
3166
+ P(λ|r1,t,x)
3167
+
3168
+ �x
3169
+ j=1
3170
+ (x−1
3171
+ j−1)
3172
+ j!
3173
+ � λw
3174
+ 1−w
3175
+ �j
3176
+ eλ − 1
3177
+ ,
3178
+ (124)
3179
+ where w = e−r1t.
3180
+ 42
3181
+
3182
+ The normalizing constant is given by
3183
+ C
3184
+ =
3185
+ � ∞
3186
+ 0
3187
+ �x
3188
+ j=1
3189
+ (x−1
3190
+ j−1)
3191
+ j!
3192
+ � λw
3193
+ 1−w
3194
+ �j
3195
+ eλ − 1
3196
+
3197
+ =
3198
+ x
3199
+
3200
+ j=1
3201
+ �x−1
3202
+ j−1
3203
+
3204
+ j!
3205
+
3206
+ w
3207
+ 1 − w
3208
+ �j � ∞
3209
+ 0
3210
+ λj
3211
+ eλ − 1dλ
3212
+ =
3213
+ x
3214
+
3215
+ j=1
3216
+ �x−1
3217
+ j−1
3218
+
3219
+ j!
3220
+
3221
+ w
3222
+ 1 − w
3223
+ �j
3224
+ Γ(j + 1)ζ(j + 1)
3225
+ =
3226
+ x
3227
+
3228
+ j=1
3229
+ �x − 1
3230
+ j − 1
3231
+ ��
3232
+ w
3233
+ 1 − w
3234
+ �j
3235
+ ζ(j + 1),
3236
+ (125)
3237
+ where ζ(j) is the Riemann zeta function.
3238
+ Therefore, the probability density of λ is given by
3239
+ P(λ|r1,t,x)
3240
+ =
3241
+ �x
3242
+ j=1
3243
+ (x−1
3244
+ j−1)
3245
+ j!
3246
+ � λw
3247
+ 1−w
3248
+ �j
3249
+ (eλ − 1)�x
3250
+ j=1
3251
+ �x−1
3252
+ j−1
3253
+ �� w
3254
+ 1−w
3255
+ �j ζ(j + 1)
3256
+ =
3257
+ λw 1F1(1 − x,2, −λw
3258
+ 1−w )
3259
+ (eλ − 1)(1 − w)�x
3260
+ j=1
3261
+ �x−1
3262
+ j−1
3263
+ �� w
3264
+ 1−w
3265
+ �j ζ(j + 1)
3266
+ .
3267
+ (126)
3268
+ The probability that λ takes values between a and b is given by
3269
+ P(a ≤ λ ≤ b | r1,t,x)
3270
+ =
3271
+ �x
3272
+ j=1
3273
+ (x−1
3274
+ j−1)
3275
+ j!
3276
+ � w
3277
+ 1−w
3278
+ �j � b
3279
+ a
3280
+ sj
3281
+ es−1ds
3282
+ �x
3283
+ j=1
3284
+ �x−1
3285
+ j−1
3286
+ �� w
3287
+ 1−w
3288
+ �j ζ(j + 1)
3289
+ =
3290
+ �x
3291
+ j=1
3292
+ �x−1
3293
+ j−1
3294
+ �� w
3295
+ 1−w
3296
+ �j [ζb(j + 1) − ζa(j + 1)]
3297
+ �x
3298
+ j=1
3299
+ �x−1
3300
+ j−1
3301
+ �� w
3302
+ 1−w
3303
+ �j ζ(j + 1)
3304
+ ,
3305
+ (127)
3306
+ where ζλ(·) is the incomplete Riemann zeta function.
3307
+ It follows that the cumulative density function of λ is given by
3308
+ F(λ | r1,t,x)
3309
+ =
3310
+ �x
3311
+ j=1
3312
+ �x−1
3313
+ j−1
3314
+ �� w
3315
+ 1−w
3316
+ �j ζλ(j + 1)
3317
+ �x
3318
+ j=1
3319
+ �x−1
3320
+ j−1
3321
+ �� w
3322
+ 1−w
3323
+ �j ζ(j + 1)
3324
+ .
3325
+ (128)
3326
+ As discussed earlier in relation to P(n|⃗r,t,⃗τ,x), Equation (126) can be interpreted
3327
+ as follows: Suppose that a Ct value t is produced by a PCR process with expected
3328
+ number of input molecules λ. If we replace λ by an estimate ˆλ, then (126) gives the
3329
+ 43
3330
+
3331
+ likelihood of ˆλ. For practical purposes (eg. to determine the LoQ), it is useful to
3332
+ calculate the probability that ˆλ will be obtained as the estimate of λ from any data t
3333
+ that can be produced by a PCR process with expected number of input molecules λ.
3334
+ This probability is given by
3335
+ P
3336
+ � ˆλ|λ,r1,x
3337
+
3338
+ =
3339
+ � ∞
3340
+ �k−1
3341
+ i=1 τi
3342
+ P
3343
+ � ˆλ,t|λ,r1,x
3344
+
3345
+ dt
3346
+ =
3347
+ � ∞
3348
+ �k−1
3349
+ i=1 τi
3350
+ P
3351
+ � ˆλ|λ,r1,t,x
3352
+
3353
+ P (t|λ,r1,x)dt
3354
+ =
3355
+ � ∞
3356
+ �k−1
3357
+ i=1 τi
3358
+ P
3359
+ � ˆλ|r1,t,x
3360
+
3361
+ P (t|λ,r1,x)dt
3362
+ =
3363
+ r1x
3364
+
3365
+ eλ − 1
3366
+ ��
3367
+ e ˆλ − 1
3368
+
3369
+ � ∞
3370
+ �k−1
3371
+ i=1 τi
3372
+ (1 − w)x
3373
+ ��x
3374
+ j=1
3375
+ (x−1
3376
+ j−1)
3377
+ j!
3378
+ � λw
3379
+ 1−w
3380
+ �j ���x
3381
+ j=1
3382
+ (x−1
3383
+ j−1)
3384
+ j!
3385
+ � ˆλw
3386
+ 1−w
3387
+ �j �
3388
+ �x
3389
+ j=1
3390
+ �x−1
3391
+ j−1
3392
+ �� w
3393
+ 1−w
3394
+ �j ζ(j + 1)
3395
+ dt
3396
+ =
3397
+ x
3398
+
3399
+ eλ − 1
3400
+ ��
3401
+ e ˆλ − 1
3402
+
3403
+ � θ
3404
+ 0
3405
+ (1 − w)x
3406
+ ��x
3407
+ j=1
3408
+ (x−1
3409
+ j−1)
3410
+ j!
3411
+ � λw
3412
+ 1−w
3413
+ �j ���x
3414
+ j=1
3415
+ (x−1
3416
+ j−1)
3417
+ j!
3418
+ � ˆλw
3419
+ 1−w
3420
+ �j �
3421
+ w�x
3422
+ j=1
3423
+ �x−1
3424
+ j−1
3425
+ �� w
3426
+ 1−w
3427
+ �j ζ(j + 1)
3428
+ dw,
3429
+ (129)
3430
+ where θ is given by (70) and we have assumed that ˆλ is conditionally independent
3431
+ of λ given t.
3432
+ It follows that the t-independent probability that ˆλ will take values between a and b
3433
+ is given by
3434
+ P(a ≤ ˆλ ≤ b | λ,r1,x) =
3435
+ � b
3436
+ a
3437
+ P
3438
+ � ˆλ|λ,r1,x
3439
+
3440
+ d ˆλ.
3441
+ (130)
3442
+ 44
3443
+
3444
+ 5.2
3445
+ Supplementary Figures
3446
+ Figure 5.1: Limit of detection of the single-phase process. The LoD was determined
3447
+ while accounting for either sampling noise alone (solid green line), amplification noise
3448
+ alone (solid red line), or both sampling noise and amplification noise (solid blue line).
3449
+ It was then plotted versus amplification efficiency, which is expressed on a base-2 scale
3450
+ as a percentage. The LoD based on sampling noise alone equals 3, whereas the LoD is
3451
+ highest when accounting for both types of noise. In the latter case, it ranges from 157,
3452
+ when the efficiency is only 80%, to 6, when the efficiency is 100%. The plot shows a strong
3453
+ dependence of the LoD on efficiency.
3454
+ 45
3455
+
3456
+ 150 -
3457
+ 100
3458
+ Noise type
3459
+ LoD
3460
+ Sampling noise only
3461
+ Amplification noise only
3462
+ Sampling + amplification noise
3463
+ 50
3464
+ 0 -
3465
+ 80
3466
+ 85
3467
+ 90
3468
+ 95
3469
+ 100
3470
+ Amplification efficiency (%)Figure 5.2: Ratio of expected versus estimated fraction of positive partitions in digital
3471
+ PCR. For different expected numbers of input molecules λ, the ratio of the fraction of
3472
+ digital PCR partitions expected to test positive was calculated using Equation (24) and
3473
+ divided by the standard estimate based on the Poisson distribution (i.e. 1−e−λ). The result
3474
+ was plotted versus the amplification efficiency. While the efficiency used in calculations
3475
+ is always expressed on a base-e scale, for ease of comprehension it was converted into a
3476
+ base-2 scale and displayed as a percentage.
3477
+ 46
3478
+
3479
+ 1.00
3480
+ 0.75 -
3481
+ 1.61
3482
+ 10
3483
+ 0.25
3484
+ 0.00
3485
+ 08
3486
+ 85
3487
+ 06
3488
+ 95
3489
+ 100
3490
+ Amplification efficiency (%)References
3491
+ [1] Roman W¨olfel, Victor M Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine
3492
+ Zange, Marcel A M¨uller, Daniela Niemeyer, Terry C Jones, Patrick Vollmar, Camilla
3493
+ Rothe, et al. Virological assessment of hospitalized patients with covid-2019. Nature,
3494
+ 581(7809):465–469, 2020.
3495
+ [2] Alice M Wang, Michael V Doyle, and David F Mark. Quantitation of mrna by the
3496
+ polymerase chain reaction. Proceedings of the National Academy of Sciences, 86(24):
3497
+ 9717–9721, 1989.
3498
+ [3] Randall K Saiki, Stephen Scharf, Fred Faloona, Kary B Mullis, Glenn T Horn, Henry A
3499
+ Erlich, and Norman Arnheim.
3500
+ Enzymatic amplification of β-globin genomic se-
3501
+ quences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230
3502
+ (4732):1350–1354, 1985.
3503
+ [4] Russell Higuchi, Carita Fockler, Gavin Dollinger, and Robert Watson. Kinetic pcr
3504
+ analysis: real-time monitoring of dna amplification reactions. Bio/technology, 11(9):
3505
+ 1026–1030, 1993.
3506
+ [5] Phenix-Lan Quan, Martin Sauzade, and Eric Brouzes. dpcr: a technology review.
3507
+ Sensors, 18(4):1271, 2018.
3508
+ [6] Tsugunori Notomi, Hiroto Okayama, Harumi Masubuchi, Toshihiro Yonekawa, Keiko
3509
+ Watanabe, Nobuyuki Amino, and Tetsu Hase. Loop-mediated isothermal amplifica-
3510
+ tion of dna. Nucleic acids research, 28(12):e63–e63, 2000.
3511
+ [7] Leon Mutesa, Pacifique Ndishimye, Yvan Butera, Jacob Souopgui, Annette Uwineza,
3512
+ Robert Rutayisire, Ella Larissa Ndoricimpaye, Emile Musoni, Nadine Rujeni, Thierry
3513
+ Nyatanyi, et al. A pooled testing strategy for identifying sars-cov-2 at low prevalence.
3514
+ Nature, 589(7841):276–280, 2021.
3515
+ [8] Kenneth J Livak and Thomas D Schmittgen. Analysis of relative gene expression data
3516
+ using real-time quantitative pcr and the 2- δδct method. methods, 25(4):402–408,
3517
+ 2001.
3518
+ [9] Robert M Dorazio and Margaret E Hunter. Statistical models for the analysis and
3519
+ design of digital polymerase chain reaction (dpcr) experiments. Analytical chemistry,
3520
+ 87(21):10886–10893, 2015.
3521
+ [10] Robert G Rutledge and Don Stewart. A kinetic-based sigmoidal model for the poly-
3522
+ merase chain reaction and its application to high-capacity absolute quantitative real-
3523
+ time pcr. BMC biotechnology, 8(1):1–28, 2008.
3524
+ 47
3525
+
3526
+ [11] Andrej-Nikolai Spiess, Caroline Feig, and Christian Ritz. Highly accurate sigmoidal
3527
+ fitting of real-time pcr data by introducing a parameter for asymmetry. BMC bioin-
3528
+ formatics, 9(1):1–12, 2008.
3529
+ [12] Jan M Ruijter, Michael W Pfaffl, Sheng Zhao, Andrej N Spiess, Gregory Boggy, Jochen
3530
+ Blom, Robert G Rutledge, Davide Sisti, Antoon Lievens, Katleen De Preter, et al.
3531
+ Evaluation of qpcr curve analysis methods for reliable biomarker discovery: bias,
3532
+ resolution, precision, and implications. Methods, 59(1):32–46, 2013.
3533
+ [13] C W Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural
3534
+ Sciences. Springer, Berlin, Germany, 2004.
3535
+ [14] H A Wilf. Generating functionology. Academic Press Inc, Philadelphia, USA, 1994.
3536
+ [15] Neil JA Sloane et al. The on-line encyclopedia of integer sequences, 2003.
3537
+ [16] Amin Forootan, Robert Sj¨oback, Jens Bj¨orkman, Bj¨orn Sj¨ogreen, Lucas Linz, and
3538
+ Mikael Kubista. Methods to determine limit of detection and limit of quantifica-
3539
+ tion in quantitative real-time pcr (qpcr). Biomolecular detection and quantification, 12:
3540
+ 1–6, 2017.
3541
+ [17] Sabine Nutz, Katharina D¨oll, and Petr Karlovsky. Determination of the loq in real-
3542
+ time pcr by receiver operating characteristic curve analysis: application to qpcr as-
3543
+ says for fusarium verticillioides and f. proliferatum. Analytical and bioanalytical chem-
3544
+ istry, 401(2):717–726, 2011.
3545
+ [18] Nivedita Majumdar, Thomas Wessel, and Jeffrey Marks. Digital pcr modeling for
3546
+ maximal sensitivity, dynamic range and measurement precision.
3547
+ PloS one, 10(3):
3548
+ e0118833, 2015.
3549
+ [19] Christopher M Hindson, John R Chevillet, Hilary A Briggs, Emily N Gallichotte, In-
3550
+ grid K Ruf, Benjamin J Hindson, Robert L Vessella, and Muneesh Tewari. Absolute
3551
+ quantification by droplet digital pcr versus analog real-time pcr. Nature methods, 10
3552
+ (10):1003–1005, 2013.
3553
+ [20] Willard M Freeman, Stephen J Walker, and Kent E Vrana. Quantitative rt-pcr: pitfalls
3554
+ and potential. Biotechniques, 26(1):112–125, 1999.
3555
+ [21] N. Chester and D.R Marshak. Dimethyl sulfoxide-mediated primer tm reduction: A
3556
+ method for analyzing the role of renaturation temperature in the polymerase chain
3557
+ reaction. Analytical Biochemistry, 209:284–290, 1993. doi: 10.1006/abio.1993.1121.
3558
+ [22] Sean C Taylor, Katia Nadeau, Meysam Abbasi, Claude Lachance, Marie Nguyen, and
3559
+ Joshua Fenrich. The ultimate qpcr experiment: producing publication quality, repro-
3560
+ ducible data the first time. Trends in Biotechnology, 37(7):761–774, 2019.
3561
+ 48
3562
+
3563
+ [23] Kyle Siegrist. Transformations of random variables. https://stats.libretexts.
3564
+ org/Bookshelves/Probability_Theory/Probability_Mathematical_
3565
+ Statistics_and_Stochastic_Processes_(Siegrist)/03:_Distributions/3.07:
3566
+ _Transformations_of_Random_Variables, 2022. Accessed: 2022-12-30.
3567
+ [24] Kalpana Rengarajan, Stephen M Cristol, Milan Mehta, and John M Nickerson. Tech-
3568
+ nical brief quantifying dna concentrations using fluorometry: A comparison of fluo-
3569
+ rophores. Molecular Vision, 8:416–421, 2002.
3570
+ [25] Harold Jeffreys. An invariant form for the prior probability in estimation problems.
3571
+ Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
3572
+ 186(1007):453–461, 1946.
3573
+ 49
3574
+
4tA0T4oBgHgl3EQfNf_3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59AyT4oBgHgl3EQf2fl-/content/2301.00752v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eff653fab82ec2d941a0ec167edb0ebd36779b7cb5434d9fe491708014d071e2
3
+ size 2741386
59AyT4oBgHgl3EQf2fl-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f1434180ae96c633941b8c3c86c6e83a761efff4c0a2ef990336846c4c8eec5
3
+ size 6291501
5dAyT4oBgHgl3EQfcfda/content/tmp_files/2301.00283v1.pdf.txt ADDED
@@ -0,0 +1,755 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00283v1 [quant-ph] 31 Dec 2022
2
+ Scaling limit of the time averaged distribution for
3
+ continuous time quantum walk and Szegedy’s walk on the path
4
+ Yusuke Ide
5
+ Department of Mathematics, College of Humanities and Sciences, Nihon University
6
+ 3-25-40 Sakura-josui, Setagaya-ku, Tokyo 156-8550, Japan
7
+ e-mail: ide.yusuke@nihon-u.ac.jp
8
+ Abstract
9
+ In this paper, we consider Szegedy’s walk, a type of discrete time quantum walk, and corresponding continuous time
10
+ quantum walk related to the birth and death chain. We show that the scaling limit of time averaged distribution for
11
+ the continuous time quantum walk induces that of Szegedy’s walk if there exists the spectral gap on so-called the
12
+ corresponding Jacobi matrix .
13
+ 1
14
+ Introduction
15
+ Quantum walks, a quantum counterpart of random walks have been extensively developed in various fields
16
+ during the last two decades. Since quantum walks are very simple models therefore they play fundamental
17
+ and important roles in both theoretical fields and applications. There are good review articles for these
18
+ developments such as Kempe [6], Kendon [7], Venegas-Andraca [14,15], Konno [8], Manouchehri and Wang
19
+ [9], and Portugal [11].
20
+ We investigate the time averaged distribution of a variant of discrete time quantum walk (DTQW)
21
+ so-called Szegedy’s walk [13]. On the path graph, the spectral properties of Szegedy’s walk are directly
22
+ connected to the theory of (finite type) orthogonal polynomials. There are studies of the distribution of
23
+ Szegedy’s walk on the path graph for example [1–3,5,10,12].
24
+ In this paper, we focus on scaling limit of the time averaged distributions of both Szegedy’s walk and
25
+ corresponding continuous time quantum walk on the path graph related to the random walk with reflecting
26
+ walls. In order to our main theorem (Theorem 4.1), if there exists the spectral gap, i.e., the limit superior in
27
+ the size of the path graph tends to infinity of the second largest eigenvalue of the Jacobi matrix is less than
28
+ one (the largest eigenvalue), then the scaling limit of Szegedy’s walk is the same as that of corresponding
29
+ continuous time quantum walk. We should note that existence of the spectral gap of the Jacobi matrix is
30
+ equivalent to that of the transition matrix of corresponding random walk. A typical example of this case
31
+ is space homogeneous random walk with pR
32
+ j = p case (the second largest eigenvalue is 2
33
+
34
+ p(1 − p) cos π/n)
35
+ treated in [5] except for the symmetric random walk with pR
36
+ j = 1/2. Unfortunately we have not been covered
37
+ with non-spectral gap cases including symmetric random walk and the Ehrenfest model (the second largest
38
+ eigenvalue is 1 − 2/n) treated in [3]. To reveal non-spectral gap case is one of interesting future problems.
39
+ The rest of this paper is organized as follows. In Sec. 2, we define our setting of discrete time random
40
+ walk, continuous time quantum walk and discrete time quantum walk on the path graph. Sec. 3 is devoted to
41
+ show relationships between the time averaged distribution of Szegedy’s walk and continuous time quantum
42
+ walk. In the last section, we state our main theorem (Theorem 4.1) and prove it.
43
+ 2
44
+ Definition of the models
45
+ In this paper, we consider the path graph Pn+1 = (V (Pn+1), E(Pn+1)) with the vertex set V (Pn+1) =
46
+ {0, 1, . . ., n} and the (undirected) edge set E(Pn+1) = {(j, j + 1) : j = 0, 1, . . . , n − 1}. On the path graph
47
+ Keywords:
48
+ birth and death chain, Szegedy’s walk, continuous time quantum walk, scaling limit, time averaged distribution
49
+ 1
50
+
51
+ Pn+1, we define a discrete time random walk (DTRW) with reflecting walls as follows:
52
+ Let pL
53
+ j be the transition probability of the random walker at the vertex j ∈ V (Pn+1) to the left (j − 1 ∈
54
+ V (Pn+1)). Also let pR
55
+ j = 1−pL
56
+ j be the transition probability of the random walker at the vertex j ∈ V (Pn+1)
57
+ to the right (j + 1 ∈ V (Pn+1)). For the sake of simplicity, we assume 0 < pL
58
+ j , pR
59
+ j < 1 except for j = 0, n. We
60
+ put the reflecting walls at the vertex 0 ∈ V (Pn+1) and the vertex n ∈ V (Pn+1), i.e., we set pR
61
+ 0 = pL
62
+ n = 1.
63
+ We also call this type of DTRW as the birth and death chain.
64
+ Let a positive constant Cπ be
65
+ Cπ := 1 +
66
+ n
67
+
68
+ j=1
69
+ pR
70
+ 0 · pR
71
+ 1 · · · pR
72
+ j−1
73
+ pL
74
+ 1 · pL
75
+ 2 · · · pL
76
+ j
77
+ then we can define the stationary distribution {π(0), π(1), . . . , π(n)} as
78
+ π(j) =
79
+
80
+
81
+
82
+ 1
83
+
84
+ if j = 0,
85
+ 1
86
+ Cπ ·
87
+ pR
88
+ 0 ·pR
89
+ 1 ···pR
90
+ j−1
91
+ pL
92
+ 1 ·pL
93
+ 2 ···pL
94
+ j
95
+ if j = 1, 2, . . ., n.
96
+ Note that π(j) > 0 for all j ∈ V (Pn+1) and the stationary distribution is satisfied with so-called the detailed
97
+ balance condition,
98
+ π(j) · pR
99
+ j = pL
100
+ j+1 · π(j + 1),
101
+ for j = 0, 1, . . .n − 1.
102
+ In order to define a continuous time quantum walk (CTQW) corresponding to the DTRW, we intro-
103
+ duce the normalized Laplacian matrix L.
104
+ Let P be the transition matrix of the DTRW. Also we de-
105
+ fine diagonal matrices D1/2
106
+ π
107
+ := diag
108
+ ��
109
+ π(0),
110
+
111
+ π(1), . . . ,
112
+
113
+ π(n)
114
+
115
+ and D−1/2
116
+ π
117
+ =
118
+
119
+ D1/2
120
+ π
121
+ �−1
122
+ .
123
+ Note that
124
+ D−1/2
125
+ ��
126
+ = diag
127
+
128
+ 1/
129
+
130
+ π(0), 1/
131
+
132
+ π(1), . . . , 1/
133
+
134
+ π(n)
135
+
136
+ by the definition. The normalized Laplacian matrix L
137
+ is given by
138
+ L := D1/2
139
+ π
140
+ (In+1 − P) D−1/2
141
+ π
142
+ = In+1 − D1/2
143
+ π
144
+ PD−1/2
145
+ π
146
+ ,
147
+ where In+1 be the (n + 1) × (n + 1) identity matrix. We should remark that the matrix
148
+ J := D1/2
149
+ π
150
+ PD−1/2
151
+ π
152
+ ,
153
+ is referred as the Jacobi matrix. So we can rewrite L as L = In+1 − J.
154
+ By using the detailed balance condition, we obtain
155
+ Jj,k = Jk,j =
156
+ ��
157
+ pR
158
+ j pL
159
+ j+1,
160
+ if k = j + 1,
161
+ 0,
162
+ otherwise.
163
+ Thus L = In+1 − J is an Hermitian matrix (real symmetric matrix). The CTQW which is discussed in this
164
+ paper is driven by the time evolution operator (unitary matrix)
165
+ UCT QW (t) := exp (itL) :=
166
+
167
+
168
+ k=0
169
+ (it)k
170
+ k! Lk,
171
+ where i is the imaginary unit. Let XC
172
+ t
173
+ (t ≥ 0) be the random variable representing the position of the
174
+ CTQWer at time t. The distribution of XC
175
+ t is determined by
176
+ P
177
+
178
+ XC
179
+ t = k|XC
180
+ 0 = j
181
+
182
+ := |⟨k|UCT QW (t)|j⟩|2 =
183
+ ���(UCT QW (t))k,j
184
+ ���
185
+ 2
186
+ ,
187
+ where |j⟩ is the (n + 1)-dimensional unit vector (column vector) which j-th component equals 1 and the
188
+ other components are 0 and ⟨v| is the transpose of |v⟩, i.e., ⟨v| = T |v⟩.
189
+ 2
190
+
191
+ Hereafter we only consider XC
192
+ 0 = 0 , i.e., the CTQWer starts from the left most vertex 0 ∈ V (Pn+1),
193
+ cases. The time averaged distribution ¯pC of the CTQW is defined by
194
+ ¯pC(j) := lim
195
+ T →∞
196
+ 1
197
+ T
198
+ � T
199
+ 0
200
+ P
201
+
202
+ XC
203
+ t = j|XC
204
+ 0 = 0
205
+
206
+ dt,
207
+ for each vertex j ∈ V (Pn+1). We define a random variable ¯XC
208
+ n as P
209
+ � ¯XC
210
+ n = j
211
+
212
+ = ¯pC(j).
213
+ In this paper, we also deal with a type of discrete time quantum walk (DTQW) corresponding to the
214
+ DTRW so-called Szegedy’s walk. The time evolution operator for the DTQW is defined by U = SC with
215
+ the coin operator C and the shift operator (flip-flop type shift) S. The coin operator C is defined by
216
+ C = |0⟩⟨0| ⊗ I2 +
217
+ n−1
218
+
219
+ j=1
220
+ |j⟩⟨j| ⊗ Cj + |n⟩⟨n| ⊗ I2,
221
+ where I2 is the 2 × 2 identity matrix and ⊗ is the tensor product. The local coin operator Cj is defined by
222
+ Cj = 2|φj⟩⟨φj| − I2,
223
+ |φj⟩ =
224
+
225
+ pL
226
+ j |L⟩ +
227
+
228
+ pR
229
+ j |R⟩,
230
+ where |L⟩ = T [1 0] and |R⟩ = T [0 1]. The shift operator S is given by
231
+ S (|j⟩ ⊗ |L⟩) = |j − 1⟩ ⊗ |R⟩,
232
+ S (|j⟩ ⊗ |R⟩) = |j + 1⟩ ⊗ |L⟩.
233
+ Let XD
234
+ t (t = 0, 1, . . .) be the random variable representing the position of the DTQWer at time t. In this
235
+ paper, we only consider XD
236
+ 0 = 0 cases. The distribution of XD
237
+ t
238
+ is defined by
239
+ P
240
+
241
+ XD
242
+ t = j|XD
243
+ 0 = 0
244
+
245
+ : = ∥(⟨j| ⊗ I2) UDT QW (t) (|0⟩ ⊗ |R⟩)∥2
246
+ = |(⟨j| ⊗ ⟨L|) UDT QW (t) (|0⟩ ⊗ |R⟩)|2 + |(⟨j| ⊗ ⟨R|) UDT QW (t) (|0⟩ ⊗ |R⟩)|2 .
247
+ We also consider the time averaged distribution ¯pD of the DTQW defined by
248
+ ¯pD(j) := lim
249
+ T →∞
250
+ 1
251
+ T
252
+ T −1
253
+
254
+ t=0
255
+ P
256
+
257
+ XD
258
+ t = j|XD
259
+ 0 = 0
260
+
261
+ ,
262
+ for each vertex j ∈ V (Pn+1). We define a random variable ¯XD
263
+ n as P
264
+ � ¯XD
265
+ n = j
266
+
267
+ = ¯pD(j).
268
+ 3
269
+ Relations between ¯XC
270
+ n and ¯XD
271
+ n
272
+ Since the Jacobi matrix J is a real symmetric matrix with simple [4] and symmetric [3] eigenvalues, we
273
+ obtain eigenvalues 1 = λ0 > λ1 > · · · > λn−1 > λn = −1 and corresponding eigenvectors {|vℓ⟩}n
274
+ ℓ=0 as an
275
+ orthonormal basis of n-dimensional complex vector space Cn. Thus we have the spectral decomposition
276
+ J =
277
+ n
278
+
279
+ ℓ=0
280
+ λℓ|vℓ⟩⟨vℓ|.
281
+ Noting that L = In+1 − J, the spectral decomposition of UCT QW (t) is given by
282
+ UCT QW (t) =
283
+ n
284
+
285
+ ℓ=0
286
+ exp [it (1 − λℓ)] |vℓ⟩⟨vℓ| = eit
287
+ n
288
+
289
+ ℓ=0
290
+ e−itλℓ|vℓ⟩⟨vℓ|.
291
+ Because of simple eigenvalues of the Jacobi matrix J, the time averaged distribution ¯pC is expressed by
292
+ ¯pC(j) =
293
+ n
294
+
295
+ ℓ=0
296
+ |⟨j|vℓ⟩|2 |⟨vℓ|0⟩|2 =
297
+ n
298
+
299
+ ℓ=0
300
+ |vℓ(j)|2 |vℓ(0)|2 ,
301
+ 3
302
+
303
+ where vℓ(j) is the jth component of |vℓ⟩.
304
+ On the other hand, the spectral decomposition of UDT QW (t) is given (see e.g. [3,5,12,13]) by
305
+ UDT QW (t) = µ0|u0⟩⟨u0| +
306
+ n−1
307
+
308
+ ℓ=1
309
+
310
+ 1
311
+ 2(1 − λ2
312
+ ℓ)
313
+
314
+ ±
315
+ µ±ℓ|u±ℓ⟩⟨u±ℓ|
316
+
317
+ + µn|un⟩⟨un|,
318
+ where
319
+
320
+
321
+
322
+
323
+
324
+ µ0 = λ0 = 1,
325
+ |u0⟩ = |v0⟩,
326
+ µ±ℓ = exp
327
+
328
+ ±i cos−1 λℓ
329
+
330
+ ,
331
+ |u±ℓ⟩ = |vℓ⟩ − µ±ℓ S|vℓ⟩,
332
+ µn = λn = −1,
333
+ |un−1⟩ = |vn−1⟩,
334
+ with
335
+ |vℓ⟩ = vℓ(0)|0⟩ ⊗ |R⟩ +
336
+ n−1
337
+
338
+ j=1
339
+ vℓ(j)|j⟩ ⊗ |φj⟩ + vℓ(n)|n⟩ ⊗ |L⟩.
340
+ All the eigenvalues of UDT QW (t) are also simple, the time averaged distribution ¯pD is expressed by
341
+ ¯pD(j) =
342
+
343
+ |(⟨j| ⊗ ⟨L|) |u0⟩|2 + |(⟨j| ⊗ ⟨R|) |u0⟩|2�
344
+ |⟨u0| (|0⟩ ⊗ |R⟩)|2
345
+ +
346
+ n−1
347
+
348
+ ℓ=1
349
+
350
+ 1
351
+ 2(1 − λ2
352
+ ℓ)
353
+
354
+ ±
355
+
356
+ |(⟨j| ⊗ ⟨L|) |u±ℓ⟩|2 + |(⟨j| ⊗ ⟨R|) |u±ℓ⟩|2�
357
+ |⟨u±ℓ| (|0⟩ ⊗ |R⟩)|2
358
+
359
+ +
360
+
361
+ |(⟨j| ⊗ ⟨L|) |un⟩|2 + |(⟨j| ⊗ ⟨R|) |un⟩|2�
362
+ |⟨un| (|0⟩ ⊗ |R⟩)|2 .
363
+ More concrete expression of ¯pD in terms of eigenvalues and eigenvectors of the Jacobi matrix J is given as
364
+ follows (rearrangement of Eq.(10) in [3]):
365
+ ¯pD(j) = 1
366
+ 2 |v0(j)|2 |v0(0)|2 + 1
367
+ 2 |vn(j)|2 |vn(0)|2
368
+ + 1
369
+ 2
370
+ n
371
+
372
+ ℓ=0
373
+ |vℓ(j)|2 |vℓ(0)|2
374
+ + 1
375
+ 2
376
+ n−1
377
+
378
+ ℓ=1
379
+ 1
380
+ 1 − λ2
381
+
382
+
383
+ pR
384
+ j−1 |vℓ(j − 1)|2 − λ2
385
+ ℓ |vℓ(j)|2 + pL
386
+ j+1 |vℓ(j + 1)|2�
387
+ |vℓ(0)|2 ,
388
+ with conventions pR
389
+ −1 = vℓ(−1) = pL
390
+ n+1 = vℓ(n + 1) = 0.
391
+ Now we consider the distribution functions ¯F C
392
+ n (x) := P
393
+ � ¯XC
394
+ n ≤ x
395
+
396
+ = �
397
+ j≤x ¯pC(j) of ¯XC
398
+ n and ¯F D
399
+ n (x) :=
400
+ P
401
+ � ¯XD
402
+ n ≤ x
403
+
404
+ = �
405
+ j≤x ¯pD(j) of ¯XD
406
+ n . For each integer 0 ≤ k ≤ n − 1, we have
407
+ ¯F C
408
+ n (k) =
409
+ k
410
+
411
+ j=0
412
+ ¯pC(j) =
413
+ k
414
+
415
+ j=0
416
+ � n
417
+
418
+ ℓ=0
419
+ |vℓ(j)|2 |vℓ(0)|2
420
+
421
+ .
422
+ 4
423
+
424
+ We also obtain the following expression by using pL
425
+ j + pR
426
+ j = 1, pR
427
+ 0 = 1 and pL
428
+ 1 |vℓ(1)|2 = λ2
429
+ ℓ |vℓ(0)|2:
430
+ ¯F D
431
+ n (k) =
432
+ k
433
+
434
+ j=0
435
+ ¯pD(j)
436
+ = 1
437
+ 2
438
+ k
439
+
440
+ j=0
441
+ |v0(j)|2 |v0(0)|2 + 1
442
+ 2
443
+ k
444
+
445
+ j=0
446
+ |vn(j)|2 |vn(0)|2
447
+ + 1
448
+ 2
449
+ k
450
+
451
+ j=0
452
+ � n
453
+
454
+ ℓ=0
455
+ |vℓ(j)|2 |vℓ(0)|2
456
+
457
+ + 1
458
+ 2
459
+ k
460
+
461
+ j=1
462
+ �n−1
463
+
464
+ ℓ=1
465
+ |vℓ(j)|2 |vℓ(0)|2
466
+
467
+ + 1
468
+ 2
469
+ n−1
470
+
471
+ ℓ=1
472
+ 1
473
+ 1 − λ2
474
+
475
+
476
+ pR
477
+ 0 |vℓ(0)|2 − pL
478
+ 1 |vℓ(1)|2 − pR
479
+ k |vℓ(k)|2 + pL
480
+ k+1 |vℓ(k + 1)|2�
481
+ |vℓ(0)|2
482
+ =
483
+ k
484
+
485
+ j=0
486
+ � n
487
+
488
+ ℓ=0
489
+ |vℓ(j)|2 |vℓ(0)|2
490
+
491
+ + 1
492
+ 2
493
+ n−1
494
+
495
+ ℓ=1
496
+ 1
497
+ 1 − λ2
498
+
499
+
500
+ −pR
501
+ k |vℓ(k)|2 + pL
502
+ k+1 |vℓ(k + 1)|2�
503
+ |vℓ(0)|2
504
+ = ¯F C
505
+ n (k) + 1
506
+ 2
507
+ n−1
508
+
509
+ ℓ=1
510
+ 1
511
+ 1 − λ2
512
+
513
+
514
+ −pR
515
+ k |vℓ(k)|2 + pL
516
+ k+1 |vℓ(k + 1)|2�
517
+ |vℓ(0)|2 .
518
+ 4
519
+ Scaling limit
520
+ In this section, we state our main result and prove it.
521
+ Theorem 4.1 Assume that there exists the spectral gap, i.e., lim supn→∞ λ1 < 1 = λ0. If
522
+ ¯
523
+ XC
524
+ n
525
+ n
526
+ converges
527
+ weakly to the random variable ¯X as n → ∞ then
528
+ ¯
529
+ XD
530
+ n
531
+ n
532
+ also converges weakly to the same random variable ¯X.
533
+ Proof of Theorem 4.1
534
+ Let ¯F be the distribution function of the random variable ¯X. We assume that
535
+ lim
536
+ n→∞ P
537
+ � ¯XC
538
+ n
539
+ n
540
+ ≤ x
541
+
542
+ = ¯F(x)
543
+ (4.1)
544
+ for all points x at which ¯F is continuous. Hereafter we assume ¯F is continuous at x (0 ≤ x ≤ 1). Remark
545
+ that from the definition, Eq. (4.1) means that
546
+ lim
547
+ n→∞
548
+ ¯F C
549
+ n (nx) = lim
550
+ n→∞
551
+ ¯F C
552
+ n (⌊nx⌋) = lim
553
+ n→∞
554
+ ⌊nx⌋
555
+
556
+ j=0
557
+ � n
558
+
559
+ ℓ=0
560
+ |vℓ(j)|2 |vℓ(0)|2
561
+
562
+ = ¯F(x),
563
+ (4.2)
564
+ where ⌊a⌋ denotes the biggest integer which is not greater than a.
565
+ From Eq. (4.2) and the relation
566
+ P
567
+ � ¯XD
568
+ n
569
+ n
570
+ ≤ x
571
+
572
+ = ¯F D
573
+ n (nx) = ¯F D
574
+ n (⌊nx⌋)
575
+ = ¯F C
576
+ n (⌊nx⌋) + 1
577
+ 2
578
+ n−1
579
+
580
+ ℓ=1
581
+ 1
582
+ 1 − λ2
583
+
584
+
585
+ − pR
586
+ ⌊nx⌋ |vℓ(⌊nx⌋)|2 + pL
587
+ ⌊nx⌋+1 |vℓ(⌊nx⌋ + 1)|2
588
+
589
+ |vℓ(0)|2 ,
590
+ if we can prove
591
+ lim
592
+ n→∞
593
+ n−1
594
+
595
+ ℓ=1
596
+ 1
597
+ 1 − λ2
598
+
599
+ |vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim
600
+ n→∞
601
+ n−1
602
+
603
+ ℓ=1
604
+ 1
605
+ 1 − λ2
606
+
607
+ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0,
608
+ (4.3)
609
+ 5
610
+
611
+ then we can conclude
612
+ lim
613
+ n→∞ P
614
+ � ¯XD
615
+ n
616
+ n
617
+ ≤ x
618
+
619
+ = ¯F(x),
620
+ for all points at which ¯F is continuous.
621
+ From Eq.(4.2), we obtain
622
+ 0 ≤
623
+ ⌊nx⌋
624
+
625
+ j=0
626
+ �n−1
627
+
628
+ ℓ=1
629
+ |vℓ(j)|2 |vℓ(0)|2
630
+
631
+ ≤ ¯F C
632
+ n (⌊nx⌋)
633
+ n→∞
634
+ −−−−→ ¯F(x).
635
+ Also we have
636
+ 0 ≤
637
+ ⌊nx⌋+1
638
+
639
+ j=0
640
+ �n−1
641
+
642
+ ℓ=1
643
+ |vℓ(j)|2 |vℓ(0)|2
644
+
645
+ ≤ ¯F C
646
+ n
647
+ ��
648
+ n
649
+
650
+ x + 1
651
+ n
652
+ ���
653
+ n→∞
654
+ −−−−→ ¯F(x),
655
+ from continuity of ¯F at x. These mean that
656
+ lim
657
+ n→∞
658
+ n−1
659
+
660
+ ℓ=1
661
+ |vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim
662
+ n→∞
663
+ n−1
664
+
665
+ ℓ=1
666
+ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0.
667
+ (4.4)
668
+ Therefore combining with Eq. (4.4), we obtain Eq. (4.3) as follows:
669
+ lim sup
670
+ n→∞
671
+ n−1
672
+
673
+ ℓ=1
674
+ 1
675
+ 1 − λ2
676
+
677
+ |vℓ(⌊nx⌋)|2 |vℓ(0)|2 ≤ lim sup
678
+ n→∞
679
+ 1
680
+ 1 − λ2
681
+ 1
682
+ n−1
683
+
684
+ ℓ=1
685
+ |vℓ(⌊nx⌋)|2 |vℓ(0)|2
686
+
687
+ 1
688
+ 1 − lim supn→∞ λ2
689
+ 1
690
+ × lim
691
+ n→∞
692
+ n−1
693
+
694
+ ℓ=1
695
+ |vℓ(⌊nx⌋)|2 |vℓ(0)|2
696
+ = 0,
697
+ lim sup
698
+ n→∞
699
+ n−1
700
+
701
+ ℓ=1
702
+ 1
703
+ 1 − λ2
704
+
705
+ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 ≤ lim sup
706
+ n→∞
707
+ 1
708
+ 1 − λ2
709
+ 1
710
+ n−1
711
+
712
+ ℓ=1
713
+ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2
714
+
715
+ 1
716
+ 1 − lim supn→∞ λ2
717
+ 1
718
+ × lim
719
+ n→∞
720
+ n−1
721
+
722
+ ℓ=1
723
+ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2
724
+ = 0.
725
+ This completes the proof.
726
+
727
+ References
728
+ [1] Anahara, Y., Konno, N., Morioka, H., Segawa, E.: Comfortable place for quantum walker on finite path.
729
+ Quantum Inf. Process. 21, 242 (2022).
730
+ [2] Higuchi, K., Komatsu, T., Konno, N., Morioka, H., Segawa, E.: A discontinuity of the energy of quantum walk
731
+ in impurities. Symmetry 13, 1134 (2022).
732
+ [3] Ho, C.-L., Ide, Y., Konno, N., Segawa, E., Takumi, K.: A spectral analysis of discrete-time quantum walks
733
+ related to the birth and death chains. J. Stat. Phys. 171, 207–219 (2018).
734
+ [4] Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer (2007).
735
+ [5] Ide, Y., Konno, N., Segawa, E.: Time averaged distribution of a discrete-time quantum walk on the path.
736
+ Quantum Inf. Process. 11 (5), 1207–1218 (2012).
737
+ [6] Kempe, J.: Quantum random walks - an introductory overview. Contemporary Physics 44, 307–327 (2003).
738
+ 6
739
+
740
+ [7] Kendon, V.: Decoherence in quantum walks - a review. Math. Struct. in Comp. Sci. 17, 1169–1220 (2007).
741
+ [8] Konno, N.: Quantum Walks. In: Quantum Potential Theory, Franz, U., and Sch¨urmann, M., Eds., Lecture
742
+ Notes in Mathematics: Vol. 1954, pp. 309–452, Springer-Verlag, Heidelberg (2008).
743
+ [9] Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks, Springer (2013).
744
+ [10] Marquezino, F. L., Portugal, R., Abal, G., Donangelo, R.: Mixing times in quantum walks on the hypercube.
745
+ Phys. Rev. A 77, 042312 (2008).
746
+ [11] Portugal, R.: Quantum Walks and Search Algorithms, Springer (2013).
747
+ [12] Segawa, E.: Localization of quantum walks induced by recurrence properties of random walks. J. Comput.
748
+ Nanosci. 10, 1583–1590 (2013).
749
+ [13] Szegedy, M.: Quantum speed-up of Markov chain based algorithms. Proc. of the 45th Annual IEEE Symposium
750
+ on Foundations of Computer Science (FOCS’04), 32–41 (2004).
751
+ [14] Venegas-Andraca, S. E.: Quantum Walks for Computer Scientists, Morgan and Claypool (2008).
752
+ [15] Venegas-Andraca, S. E.: Quantum walks: a comprehensive review, Quantum Inf. Process. 11, 1015–1106
753
+ (2012).
754
+ 7
755
+
5dAyT4oBgHgl3EQfcfda/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf,len=316
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
3
+ page_content='00283v1 [quant-ph] 31 Dec 2022 Scaling limit of the time averaged distribution for continuous time quantum walk and Szegedy’s walk on the path Yusuke Ide Department of Mathematics, College of Humanities and Sciences, Nihon University 3-25-40 Sakura-josui, Setagaya-ku, Tokyo 156-8550, Japan e-mail: ide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
4
+ page_content='yusuke@nihon-u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
5
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
6
+ page_content='jp Abstract In this paper, we consider Szegedy’s walk, a type of discrete time quantum walk, and corresponding continuous time quantum walk related to the birth and death chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
7
+ page_content=' We show that the scaling limit of time averaged distribution for the continuous time quantum walk induces that of Szegedy’s walk if there exists the spectral gap on so-called the corresponding Jacobi matrix .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
8
+ page_content=' 1 Introduction Quantum walks, a quantum counterpart of random walks have been extensively developed in various fields during the last two decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
9
+ page_content=' Since quantum walks are very simple models therefore they play fundamental and important roles in both theoretical fields and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
10
+ page_content=' There are good review articles for these developments such as Kempe [6], Kendon [7], Venegas-Andraca [14,15], Konno [8], Manouchehri and Wang [9], and Portugal [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
11
+ page_content=' We investigate the time averaged distribution of a variant of discrete time quantum walk (DTQW) so-called Szegedy’s walk [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
12
+ page_content=' On the path graph, the spectral properties of Szegedy’s walk are directly connected to the theory of (finite type) orthogonal polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
13
+ page_content=' There are studies of the distribution of Szegedy’s walk on the path graph for example [1–3,5,10,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
14
+ page_content=' In this paper, we focus on scaling limit of the time averaged distributions of both Szegedy’s walk and corresponding continuous time quantum walk on the path graph related to the random walk with reflecting walls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
15
+ page_content=' In order to our main theorem (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
16
+ page_content='1), if there exists the spectral gap, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
17
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
18
+ page_content=', the limit superior in the size of the path graph tends to infinity of the second largest eigenvalue of the Jacobi matrix is less than one (the largest eigenvalue), then the scaling limit of Szegedy’s walk is the same as that of corresponding continuous time quantum walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
19
+ page_content=' We should note that existence of the spectral gap of the Jacobi matrix is equivalent to that of the transition matrix of corresponding random walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
20
+ page_content=' A typical example of this case is space homogeneous random walk with pR j = p case (the second largest eigenvalue is 2 � p(1 − p) cos π/n) treated in [5] except for the symmetric random walk with pR j = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
21
+ page_content=' Unfortunately we have not been covered with non-spectral gap cases including symmetric random walk and the Ehrenfest model (the second largest eigenvalue is 1 − 2/n) treated in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
22
+ page_content=' To reveal non-spectral gap case is one of interesting future problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
23
+ page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
24
+ page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
25
+ page_content=' 2, we define our setting of discrete time random walk, continuous time quantum walk and discrete time quantum walk on the path graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
26
+ page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
27
+ page_content=' 3 is devoted to show relationships between the time averaged distribution of Szegedy’s walk and continuous time quantum walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
28
+ page_content=' In the last section, we state our main theorem (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
29
+ page_content='1) and prove it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
30
+ page_content=' 2 Definition of the models In this paper, we consider the path graph Pn+1 = (V (Pn+1), E(Pn+1)) with the vertex set V (Pn+1) = {0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
31
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
32
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
33
+ page_content=', n} and the (undirected) edge set E(Pn+1) = {(j, j + 1) : j = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
34
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
35
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
36
+ page_content=' , n − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
37
+ page_content=' On the path graph Keywords: birth and death chain, Szegedy’s walk, continuous time quantum walk, scaling limit, time averaged distribution 1 Pn+1, we define a discrete time random walk (DTRW) with reflecting walls as follows: Let pL j be the transition probability of the random walker at the vertex j ∈ V (Pn+1) to the left (j − 1 ∈ V (Pn+1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
38
+ page_content=' Also let pR j = 1−pL j be the transition probability of the random walker at the vertex j ∈ V (Pn+1) to the right (j + 1 ∈ V (Pn+1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
39
+ page_content=' For the sake of simplicity, we assume 0 < pL j , pR j < 1 except for j = 0, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
40
+ page_content=' We put the reflecting walls at the vertex 0 ∈ V (Pn+1) and the vertex n ∈ V (Pn+1), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
41
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
42
+ page_content=', we set pR 0 = pL n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
43
+ page_content=' We also call this type of DTRW as the birth and death chain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
44
+ page_content=' Let a positive constant Cπ be Cπ := 1 + n � j=1 pR 0 · pR 1 · · · pR j−1 pL 1 · pL 2 · · · pL j then we can define the stationary distribution {π(0), π(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
45
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
46
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
47
+ page_content=' , π(n)} as π(j) = \uf8f1 \uf8f2 \uf8f3 1 Cπ if j = 0, 1 Cπ · pR 0 ·pR 1 ···pR j−1 pL 1 ·pL 2 ···pL j if j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
50
+ page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
51
+ page_content=' Note that π(j) > 0 for all j ∈ V (Pn+1) and the stationary distribution is satisfied with so-called the detailed balance condition, π(j) · pR j = pL j+1 · π(j + 1), for j = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
54
+ page_content='n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
55
+ page_content=' In order to define a continuous time quantum walk (CTQW) corresponding to the DTRW, we intro- duce the normalized Laplacian matrix L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
56
+ page_content=' Let P be the transition matrix of the DTRW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
57
+ page_content=' Also we de- fine diagonal matrices D1/2 π := diag �� π(0), � π(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
58
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
59
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
60
+ page_content=' , � π(n) � and D−1/2 π = � D1/2 π �−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
61
+ page_content=' Note that D−1/2 π = diag � 1/ � π(0), 1/ � π(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
62
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
63
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
64
+ page_content=' , 1/ � π(n) � by the definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
65
+ page_content=' The normalized Laplacian matrix L is given by L := D1/2 π (In+1 − P) D−1/2 π = In+1 − D1/2 π PD−1/2 π , where In+1 be the (n + 1) × (n + 1) identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
66
+ page_content=' We should remark that the matrix J := D1/2 π PD−1/2 π , is referred as the Jacobi matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
67
+ page_content=' So we can rewrite L as L = In+1 − J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
68
+ page_content=' By using the detailed balance condition, we obtain Jj,k = Jk,j = �� pR j pL j+1, if k = j + 1, 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
69
+ page_content=' Thus L = In+1 − J is an Hermitian matrix (real symmetric matrix).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
70
+ page_content=' The CTQW which is discussed in this paper is driven by the time evolution operator (unitary matrix) UCT QW (t) := exp (itL) := ∞ � k=0 (it)k k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
71
+ page_content=' Lk, where i is the imaginary unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
72
+ page_content=' Let XC t (t ≥ 0) be the random variable representing the position of the CTQWer at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
73
+ page_content=' The distribution of XC t is determined by P � XC t = k|XC 0 = j � := |⟨k|UCT QW (t)|j⟩|2 = ���(UCT QW (t))k,j ��� 2 , where |j⟩ is the (n + 1)-dimensional unit vector (column vector) which j-th component equals 1 and the other components are 0 and ⟨v| is the transpose of |v⟩, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
74
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
75
+ page_content=', ⟨v| = T |v⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
76
+ page_content=' 2 Hereafter we only consider XC 0 = 0 , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
77
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
78
+ page_content=', the CTQWer starts from the left most vertex 0 ∈ V (Pn+1), cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
79
+ page_content=' The time averaged distribution ¯pC of the CTQW is defined by ¯pC(j) := lim T →∞ 1 T � T 0 P � XC t = j|XC 0 = 0 � dt, for each vertex j ∈ V (Pn+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
80
+ page_content=' We define a random variable ¯XC n as P � ¯XC n = j � = ¯pC(j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
81
+ page_content=' In this paper, we also deal with a type of discrete time quantum walk (DTQW) corresponding to the DTRW so-called Szegedy’s walk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
82
+ page_content=' The time evolution operator for the DTQW is defined by U = SC with the coin operator C and the shift operator (flip-flop type shift) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
83
+ page_content=' The coin operator C is defined by C = |0⟩⟨0| ⊗ I2 + n−1 � j=1 |j⟩⟨j| ⊗ Cj + |n⟩⟨n| ⊗ I2, where I2 is the 2 × 2 identity matrix and ⊗ is the tensor product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
84
+ page_content=' The local coin operator Cj is defined by Cj = 2|φj⟩⟨φj| − I2, |φj⟩ = � pL j |L⟩ + � pR j |R⟩, where |L⟩ = T [1 0] and |R⟩ = T [0 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
85
+ page_content=' The shift operator S is given by S (|j⟩ ⊗ |L⟩) = |j − 1⟩ ⊗ |R⟩, S (|j⟩ ⊗ |R⟩) = |j + 1⟩ ⊗ |L⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
86
+ page_content=' Let XD t (t = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
87
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
88
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
89
+ page_content=') be the random variable representing the position of the DTQWer at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
90
+ page_content=' In this paper, we only consider XD 0 = 0 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
91
+ page_content=' The distribution of XD t is defined by P � XD t = j|XD 0 = 0 � : = ∥(⟨j| ⊗ I2) UDT QW (t) (|0⟩ ⊗ |R⟩)∥2 = |(⟨j| ⊗ ⟨L|) UDT QW (t) (|0⟩ ⊗ |R⟩)|2 + |(⟨j| ⊗ ⟨R|) UDT QW (t) (|0⟩ ⊗ |R⟩)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
92
+ page_content=' We also consider the time averaged distribution ¯pD of the DTQW defined by ¯pD(j) := lim T →∞ 1 T T −1 � t=0 P � XD t = j|XD 0 = 0 � , for each vertex j ∈ V (Pn+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
93
+ page_content=' We define a random variable ¯XD n as P � ¯XD n = j � = ¯pD(j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
94
+ page_content=' 3 Relations between ¯XC n and ¯XD n Since the Jacobi matrix J is a real symmetric matrix with simple [4] and symmetric [3] eigenvalues, we obtain eigenvalues 1 = λ0 > λ1 > · · · > λn−1 > λn = −1 and corresponding eigenvectors {|vℓ⟩}n ℓ=0 as an orthonormal basis of n-dimensional complex vector space Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
95
+ page_content=' Thus we have the spectral decomposition J = n � ℓ=0 λℓ|vℓ⟩⟨vℓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
96
+ page_content=' Noting that L = In+1 − J, the spectral decomposition of UCT QW (t) is given by UCT QW (t) = n � ℓ=0 exp [it (1 − λℓ)] |vℓ⟩⟨vℓ| = eit n � ℓ=0 e−itλℓ|vℓ⟩⟨vℓ|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
97
+ page_content=' Because of simple eigenvalues of the Jacobi matrix J, the time averaged distribution ¯pC is expressed by ¯pC(j) = n � ℓ=0 |⟨j|vℓ⟩|2 |⟨vℓ|0⟩|2 = n � ℓ=0 |vℓ(j)|2 |vℓ(0)|2 , 3 where vℓ(j) is the jth component of |vℓ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
98
+ page_content=' On the other hand, the spectral decomposition of UDT QW (t) is given (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
99
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
100
+ page_content=' [3,5,12,13]) by UDT QW (t) = µ0|u0⟩⟨u0| + n−1 � ℓ=1 � 1 2(1 − λ2 ℓ) � ± µ±ℓ|u±ℓ⟩⟨u±ℓ| � + µn|un⟩⟨un|, where \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 µ0 = λ0 = 1, |u0⟩ = |v0⟩, µ±ℓ = exp � ±i cos−1 λℓ � , |u±ℓ⟩ = |vℓ⟩ − µ±ℓ S|vℓ⟩, µn = λn = −1, |un−1⟩ = |vn−1⟩, with |vℓ⟩ = vℓ(0)|0⟩ ⊗ |R⟩ + n−1 � j=1 vℓ(j)|j⟩ ⊗ |φj⟩ + vℓ(n)|n⟩ ⊗ |L⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
101
+ page_content=' All the eigenvalues of UDT QW (t) are also simple, the time averaged distribution ¯pD is expressed by ¯pD(j) = � |(⟨j| ⊗ ⟨L|) |u0⟩|2 + |(⟨j| ⊗ ⟨R|) |u0⟩|2� |⟨u0| (|0⟩ ⊗ |R⟩)|2 + n−1 � ℓ=1 � 1 2(1 − λ2 ℓ) � ± � |(⟨j| ⊗ ⟨L|) |u±ℓ⟩|2 + |(⟨j| ⊗ ⟨R|) |u±ℓ⟩|2� |⟨u±ℓ| (|0⟩ ⊗ |R⟩)|2 � + � |(⟨j| ⊗ ⟨L|) |un⟩|2 + |(⟨j| ⊗ ⟨R|) |un⟩|2� |⟨un| (|0⟩ ⊗ |R⟩)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
102
+ page_content=' More concrete expression of ¯pD in terms of eigenvalues and eigenvectors of the Jacobi matrix J is given as follows (rearrangement of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
103
+ page_content=' (10) in [3]): ¯pD(j) = 1 2 |v0(j)|2 |v0(0)|2 + 1 2 |vn(j)|2 |vn(0)|2 + 1 2 n � ℓ=0 |vℓ(j)|2 |vℓ(0)|2 + 1 2 n−1 � ℓ=1 1 1 − λ2 ℓ � pR j−1 |vℓ(j − 1)|2 − λ2 ℓ |vℓ(j)|2 + pL j+1 |vℓ(j + 1)|2� |vℓ(0)|2 , with conventions pR −1 = vℓ(−1) = pL n+1 = vℓ(n + 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
104
+ page_content=' Now we consider the distribution functions ¯F C n (x) := P � ¯XC n ≤ x � = � j≤x ¯pC(j) of ¯XC n and ¯F D n (x) := P � ¯XD n ≤ x � = � j≤x ¯pD(j) of ¯XD n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
105
+ page_content=' For each integer 0 ≤ k ≤ n − 1, we have ¯F C n (k) = k � j=0 ¯pC(j) = k � j=0 � n � ℓ=0 |vℓ(j)|2 |vℓ(0)|2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
106
+ page_content=' 4 We also obtain the following expression by using pL j + pR j = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
107
+ page_content=' pR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
108
+ page_content='0 = 1 and pL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
109
+ page_content='1 |vℓ(1)|2 = λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
110
+ page_content='ℓ |vℓ(0)|2: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
111
+ page_content='¯F D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
112
+ page_content='n (k) = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
113
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
114
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
115
+ page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
116
+ page_content='¯pD(j) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
117
+ page_content='= 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
118
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
119
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
120
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
121
+ page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
122
+ page_content='|v0(j)|2 |v0(0)|2 + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
123
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
124
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
125
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
126
+ page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
127
+ page_content='|vn(j)|2 |vn(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
128
+ page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
129
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
130
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
131
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
132
+ page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
133
+ page_content='� n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
134
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
135
+ page_content='ℓ=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
136
+ page_content='|vℓ(j)|2 |vℓ(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
137
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
138
+ page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
139
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
140
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
141
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
142
+ page_content='j=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
143
+ page_content='�n−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
144
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
145
+ page_content='ℓ=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
146
+ page_content='|vℓ(j)|2 |vℓ(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
147
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
148
+ page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
149
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
150
+ page_content='n−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
151
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
152
+ page_content='ℓ=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
153
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
154
+ page_content='1 − λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
155
+ page_content='ℓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
156
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
157
+ page_content='pR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
158
+ page_content='0 |vℓ(0)|2 − pL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
159
+ page_content='1 |vℓ(1)|2 − pR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
160
+ page_content='k |vℓ(k)|2 + pL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
161
+ page_content='k+1 |vℓ(k + 1)|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
162
+ page_content='|vℓ(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
163
+ page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
164
+ page_content='k ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
165
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
166
+ page_content='j=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
167
+ page_content='� n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
168
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
169
+ page_content='ℓ=0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
170
+ page_content='|vℓ(j)|2 |vℓ(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
171
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
172
+ page_content='+ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
173
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
174
+ page_content='n−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
175
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
176
+ page_content='ℓ=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
177
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
178
+ page_content='1 − λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
179
+ page_content='ℓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
180
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
181
+ page_content='−pR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
182
+ page_content='k |vℓ(k)|2 + pL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
183
+ page_content='k+1 |vℓ(k + 1)|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
184
+ page_content='|vℓ(0)|2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
185
+ page_content='= ¯F C ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
186
+ page_content='n (k) + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
187
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
188
+ page_content='n−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
189
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
190
+ page_content='ℓ=1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
191
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
192
+ page_content='1 − λ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
193
+ page_content='ℓ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
194
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
195
+ page_content='−pR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
196
+ page_content='k |vℓ(k)|2 + pL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
197
+ page_content='k+1 |vℓ(k + 1)|2� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
198
+ page_content='|vℓ(0)|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
199
+ page_content=' 4 Scaling limit In this section, we state our main result and prove it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
200
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
201
+ page_content='1 Assume that there exists the spectral gap, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
202
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
203
+ page_content=', lim supn→∞ λ1 < 1 = λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
204
+ page_content=' If ¯ XC n n converges weakly to the random variable ¯X as n → ∞ then ¯ XD n n also converges weakly to the same random variable ¯X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
205
+ page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
206
+ page_content='1 Let ¯F be the distribution function of the random variable ¯X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
207
+ page_content=' We assume that lim n→∞ P � ¯XC n n ≤ x � = ¯F(x) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
208
+ page_content='1) for all points x at which ¯F is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
209
+ page_content=' Hereafter we assume ¯F is continuous at x (0 ≤ x ≤ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
210
+ page_content=' Remark that from the definition, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
211
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
212
+ page_content='1) means that lim n→∞ ¯F C n (nx) = lim n→∞ ¯F C n (⌊nx⌋) = lim n→∞ ⌊nx⌋ � j=0 � n � ℓ=0 |vℓ(j)|2 |vℓ(0)|2 � = ¯F(x), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
213
+ page_content='2) where ⌊a�� denotes the biggest integer which is not greater than a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
214
+ page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
215
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
216
+ page_content='2) and the relation P � ¯XD n n ≤ x � = ¯F D n (nx) = ¯F D n (⌊nx⌋) = ¯F C n (⌊nx⌋) + 1 2 n−1 � ℓ=1 1 1 − λ2 ℓ � − pR ⌊nx⌋ |vℓ(⌊nx⌋)|2 + pL ⌊nx⌋+1 |vℓ(⌊nx⌋ + 1)|2 � |vℓ(0)|2 , if we can prove lim n→∞ n−1 � ℓ=1 1 1 − λ2 ℓ |vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim n→∞ n−1 � ℓ=1 1 1 − λ2 ℓ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
217
+ page_content='3) 5 then we can conclude lim n→∞ P � ¯XD n n ≤ x � = ¯F(x), for all points at which ¯F is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
218
+ page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
219
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
220
+ page_content='2), we obtain 0 ≤ ⌊nx⌋ � j=0 �n−1 � ℓ=1 |vℓ(j)|2 |vℓ(0)|2 � ≤ ¯F C n (⌊nx⌋) n→∞ −−−−→ ¯F(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
221
+ page_content=' Also we have 0 ≤ ⌊nx⌋+1 � j=0 �n−1 � ℓ=1 |vℓ(j)|2 |vℓ(0)|2 � ≤ ¯F C n �� n � x + 1 n ��� n→∞ −−−−→ ¯F(x), from continuity of ¯F at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
222
+ page_content=' These mean that lim n→∞ n−1 � ℓ=1 |vℓ(⌊nx⌋)|2 |vℓ(0)|2 = lim n→∞ n−1 � ℓ=1 |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
223
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
224
+ page_content='4) Therefore combining with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
225
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
226
+ page_content='4), we obtain Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
227
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
228
+ page_content='3) as follows: lim sup n→∞ n−1 � ℓ=1 1 1 − λ2 ℓ |vℓ(⌊nx⌋)|2 |vℓ(0)|2 ≤ lim sup n→∞ 1 1 − λ2 1 n−1 � ℓ=1 |vℓ(⌊nx⌋)|2 |vℓ(0)|2 ≤ 1 1 − lim supn→∞ λ2 1 × lim n→∞ n−1 � ℓ=1 |vℓ(⌊nx⌋)|2 |vℓ(0)|2 = 0, lim sup n→∞ n−1 � ℓ=1 1 1 − λ2 ℓ |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 ≤ lim sup n→∞ 1 1 − λ2 1 n−1 � ℓ=1 |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 ≤ 1 1 − lim supn→∞ λ2 1 × lim n→∞ n−1 � ℓ=1 |vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
229
+ page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
230
+ page_content=' ✷ References [1] Anahara, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
231
+ page_content=', Konno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
232
+ page_content=', Morioka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
233
+ page_content=', Segawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
234
+ page_content=': Comfortable place for quantum walker on finite path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
235
+ page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
236
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
237
+ page_content=' 21, 242 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
238
+ page_content=' [2] Higuchi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
239
+ page_content=', Komatsu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
240
+ page_content=', Konno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
241
+ page_content=', Morioka, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
242
+ page_content=', Segawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
243
+ page_content=': A discontinuity of the energy of quantum walk in impurities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
244
+ page_content=' Symmetry 13, 1134 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
245
+ page_content=' [3] Ho, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
246
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
247
+ page_content=', Ide, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
248
+ page_content=', Konno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
249
+ page_content=', Segawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
250
+ page_content=', Takumi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
251
+ page_content=': A spectral analysis of discrete-time quantum walks related to the birth and death chains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
252
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
253
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
254
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
255
+ page_content=' 171, 207–219 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
256
+ page_content=' [4] Hora, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
257
+ page_content=', Obata, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
258
+ page_content=': Quantum Probability and Spectral Analysis of Graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
259
+ page_content=' Springer (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
260
+ page_content=' [5] Ide, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
261
+ page_content=', Konno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
262
+ page_content=', Segawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
263
+ page_content=': Time averaged distribution of a discrete-time quantum walk on the path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
264
+ page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
265
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
266
+ page_content=' 11 (5), 1207–1218 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
267
+ page_content=' [6] Kempe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
268
+ page_content=': Quantum random walks - an introductory overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
269
+ page_content=' Contemporary Physics 44, 307–327 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
270
+ page_content=' 6 [7] Kendon, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
271
+ page_content=': Decoherence in quantum walks - a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
272
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
273
+ page_content=' Struct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
274
+ page_content=' in Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
275
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
276
+ page_content=' 17, 1169–1220 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
277
+ page_content=' [8] Konno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
278
+ page_content=': Quantum Walks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
279
+ page_content=' In: Quantum Potential Theory, Franz, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
280
+ page_content=', and Sch¨urmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
281
+ page_content=', Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
282
+ page_content=', Lecture Notes in Mathematics: Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
283
+ page_content=' 1954, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
284
+ page_content=' 309–452, Springer-Verlag, Heidelberg (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
285
+ page_content=' [9] Manouchehri, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
286
+ page_content=', Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
287
+ page_content=': Physical Implementation of Quantum Walks, Springer (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
288
+ page_content=' [10] Marquezino, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
289
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
290
+ page_content=', Portugal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
291
+ page_content=', Abal, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
292
+ page_content=', Donangelo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
293
+ page_content=': Mixing times in quantum walks on the hypercube.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
294
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
295
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
296
+ page_content=' A 77, 042312 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
297
+ page_content=' [11] Portugal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
298
+ page_content=': Quantum Walks and Search Algorithms, Springer (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
299
+ page_content=' [12] Segawa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
300
+ page_content=': Localization of quantum walks induced by recurrence properties of random walks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
301
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
302
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
303
+ page_content=' Nanosci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
304
+ page_content=' 10, 1583–1590 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
305
+ page_content=' [13] Szegedy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
306
+ page_content=': Quantum speed-up of Markov chain based algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
307
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
308
+ page_content=' of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), 32–41 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
309
+ page_content=' [14] Venegas-Andraca, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
310
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
311
+ page_content=': Quantum Walks for Computer Scientists, Morgan and Claypool (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
312
+ page_content=' [15] Venegas-Andraca, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
313
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
314
+ page_content=': Quantum walks: a comprehensive review, Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
315
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
316
+ page_content=' 11, 1015–1106 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
317
+ page_content=' 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5dAyT4oBgHgl3EQfcfda/content/2301.00283v1.pdf'}
69E5T4oBgHgl3EQfPw7T/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edf4dc5c9384148a79c9f0d519488f1d9a90b4081dd8ff117ca38f797c7a96b4
3
+ size 3735597
6dE1T4oBgHgl3EQfmwTN/content/tmp_files/2301.03302v1.pdf.txt ADDED
@@ -0,0 +1,2603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03302v1 [eess.SY] 9 Jan 2023
2
+ A Rolling Horizon Game Considering Network Effect
3
+ in Cluster Forming for Dynamic Resilient
4
+ Multiagent Systems
5
+ Yurid Nugraha a, Ahmet Cetinkaya b, Tomohisa Hayakawa a, Hideaki Ishii c,
6
+ Quanyan Zhu d
7
+ aDepartment of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
8
+ bDepartment of Functional Control Systems, Shibaura Institute of Technology, Tokyo, 135-8548, Japan
9
+ cDepartment of Computer Science, Tokyo Insitute of Technology, Yokohama 226-8502, Japan
10
+ dDepartment of Electrical and Computer Engineering, New York University, Brooklyn NY, 11201, USA
11
+ Abstract
12
+ A two-player game-theoretic problem on resilient graphs in a multiagent consensus setting is formulated. An attacker is
13
+ capable to disable some of the edges of the network with the objective to divide the agents into clusters by emitting jamming
14
+ signals while, in response, the defender recovers some of the edges by increasing the transmission power for the communication
15
+ signals. Specifically, we consider repeated games between the attacker and the defender where the optimal strategies for the
16
+ two players are derived in a rolling horizon fashion based on utility functions that take both the agents’ states and the sizes of
17
+ clusters (known as network effect) into account. The players’ actions at each discrete-time step are constrained by their energy
18
+ for transmissions of the signals, with a less strict constraint for the attacker. Necessary conditions and sufficient conditions
19
+ of agent consensus are derived, which are influenced by the energy constraints. The number of clusters of agents at infinite
20
+ time in the face of attacks and recoveries are also characterized. Simulation results are provided to demonstrate the effects of
21
+ players’ actions on the cluster forming and to illustrate the players’ performance for different horizon parameters.
22
+ Key words: Multiagent Systems, Cybersecurity, Game Theory, Consensus, Cluster Forming, Network Effect/Network
23
+ Externality
24
+ 1
25
+ Introduction
26
+ Applications of large-scale networked systems have
27
+ rapidly grown in various areas of critical infrastructures
28
+ including power grids and transportation systems. Such
29
+ systems can be considered as multiagent systems where
30
+ a number of agents capable of making local decisions
31
+ interact over a network and exchange information to
32
+ reach a common goal [2]. While wireless communica-
33
+ tion plays an important role for the functionality of the
34
+ network, it is also prone to cyber attacks initiated by
35
+ malicious adversaries [11,25].
36
+ Email addresses: yurid@dsl.sc.e.titech.ac.jp (Yurid
37
+ Nugraha), ahmet@shibaura-it.ac.jp (Ahmet Cetinkaya),
38
+ hayakawa@sc.e.titech.ac.jp (Tomohisa Hayakawa),
39
+ ishii@c.titech.ac.jp (Hideaki Ishii),
40
+ quanyan.zhu@nyu.edu (Quanyan Zhu).
41
+ Jamming attacks in consensus problems of multiagent
42
+ systems have been studied in [3, 5, 28]. Noncooperative
43
+ games between attackers and other players protecting
44
+ the network are widely used to analyze security prob-
45
+ lems, including jamming attacks [12, 17] and injection
46
+ attacks [18,24,26].
47
+ In a jamming attack formulation, it is natural to consider
48
+ that the jammer/the attacker has an energy constraint
49
+ such that, if it is not connected to energy sources, it is
50
+ impossible to attack all communication links of the net-
51
+ work at all times [4,5]. In the context of game-theoretical
52
+ approaches, this constraint becomes important to char-
53
+ acterize the strategic behaviors of the players [17].
54
+ When the links in the network are attacked, the agents
55
+ may become disconnected from other agents, resulting
56
+ in several groups of connected agents, or clusters. The
57
+
58
+ work [13] proposed the notion of network effect/network
59
+ externality, which refers to the utility of an agent in
60
+ a certain cluster depending on how many other agents
61
+ belong to that particular cluster. Such a concept has
62
+ been used to analyze grouping of agents on, e.g., social
63
+ networks and computer networks, as discussed in [10,16].
64
+ Rolling horizon control has been used to handle sys-
65
+ tems with uncertainties. It is also studied in the context
66
+ of networked control [15,30], where there may be addi-
67
+ tional uncertainties related to communications among
68
+ agents in the networks. Rolling horizon approaches are
69
+ also discussed in noncooperative security game settings
70
+ in [34,35], where horizon lengths affect the resilience of
71
+ the system. Rolling horizon approaches have also been
72
+ used to handle the constraints in the system, e.g., in an
73
+ agent with obstacle avoidance constraints [14,27].
74
+ In this paper, we consider a security problem in a two-
75
+ player game setting between an attacker, who is moti-
76
+ vated to disrupt the communication among agents by
77
+ attacking communication links, and a defender, who at-
78
+ tempts to recover some of the attacked links. We for-
79
+ mulate the problem based on [6, 20], which use graph
80
+ connectivity to characterize the game and the players’
81
+ strategies. The game in this paper is played repeatedly
82
+ over discrete time in the context of multiagent consen-
83
+ sus.
84
+ As a results of these persistent attacks and recover-
85
+ ies, under consensus protocol cluster forming emerges
86
+ among the agents of the networks with different clus-
87
+ ters having different agents’ states. Cluster forming in
88
+ multiagent systems has been studied in, e.g., [1, 7, 29],
89
+ where the relations among certain agents may be hos-
90
+ tile. In this paper, we approach clustering from a dif-
91
+ ferent viewpoint based on a game-theoretic formulation.
92
+ Specifically, the players of the game consider network
93
+ effect/network externality [13] to form clusters among
94
+ agents. Their utilities are determined by how the net-
95
+ work is disconnected into groups of agents as well as how
96
+ the players’ actions affect the states of the agents at each
97
+ time. Under this setting, the number and the size of the
98
+ clusters are influenced by how strong the attacks are;
99
+ the stronger attacker is supposed to be able to separate
100
+ agents into more smaller clusters, and vice versa.
101
+ In the resilient network setting, it is common that there
102
+ exists a network manager who is aware of the incoming
103
+ attack, since the agents try to communicate with their
104
+ neighbor agents at all time and thus quickly know if some
105
+ of their neighbors do not send any signal. The network
106
+ manager then tries to prepare a defense plan to quickly
107
+ recover from such attacks and to repel the subsequent
108
+ attacks.
109
+ From the attacker’s viewpoint, it is also common that the
110
+ attacker knows which edges of the network are the most
111
+ vulnerable as well as how powerful the network manager
112
+ is, e.g., the manager’s remaining resources. Therefore,
113
+ we believe that this sequential model can be applied to
114
+ several real-world settings.
115
+ The main contribution of this paper is that we introduce
116
+ a repeated game played repeatedly over time to model
117
+ the decision making process between the attacker and
118
+ the defender in the context of network security. It is then
119
+ natural to explore how these games affect the networks
120
+ and state evolution of the agents. Consensus protocol is
121
+ considered due to its simple characterization, where all
122
+ agents should converge in the case of no attack. More
123
+ specifically, in comparison to [6, 20], our contribution
124
+ is threefold: (i) We introduce more options for the at-
125
+ tacker’s jamming signal strengths; (ii) the game consists
126
+ of multiple attack-recovery actions, resulting in more
127
+ complicated strategies; and (iii) we consider a rolling
128
+ horizon approach for the players so that their strategies
129
+ may be modified as they obtain new knowledge of the
130
+ status of the system.
131
+ More specifically, it is now possible for the attacker to
132
+ disable links with stronger intensity of attack signals
133
+ so that the defender is unable to recover those links
134
+ (the decision on which edges are to be attacked with
135
+ stronger attack signals is made at the same time as the
136
+ decision on which edges are to be attacked with nor-
137
+ mal attack signals); this feature is motivated by [32,33].
138
+ In practice, this is possible when the attacker emits
139
+ stronger jamming signals that takes more resource that
140
+ results in much lower signal-to-interference-plus-noise
141
+ ratio (SINR) so that it is not possible for the defender to
142
+ recover the communication on those links with its lim-
143
+ ited recovery strength. On the other hand, we consider
144
+ games consisting of multiple parts, where the players
145
+ need to consider their future utilities and energy con-
146
+ straints when deciding their strategies at any point in
147
+ time. This setting enables the the players to think fur-
148
+ ther ahead and prioritize their long-term payoffs, com-
149
+ pared to in a single-step case. The players recalculate and
150
+ may override their strategies as time goes on, according
151
+ to the rolling horizon approach. A related formulation
152
+ without rolling horizon is discussed in [19], where the
153
+ players are not able to change their strategies decided at
154
+ earlier times.
155
+ The paper is organized as follows. In Section 2, we in-
156
+ troduce the framework for the attack-recovery sequence,
157
+ cluster forming among agents, and energy consumption
158
+ models of the players. The utility functions of the games
159
+ in rolling horizon approach of the repeated games is dis-
160
+ cussed in Section 3, whereas the game structure is char-
161
+ acterized in Section 4. In Section 5, we analyze some con-
162
+ ditions of consensus among agents, which are related to
163
+ the parameters of the underlying graph and the players’
164
+ energy constraints. We continue by discussing the clus-
165
+ ter forming of agents when consensus is not achieved in
166
+ Section 6. The equilibrium characterization of the game
167
+ under certain conditions is discussed in Section 7. We
168
+ 2
169
+
170
+ then provide numerical examples on consensus and clus-
171
+ ter forming in Section 8 and conclude the paper in Sec-
172
+ tion 9. The conference version of this paper appeared
173
+ in [21], where we consider a more restricted situation on
174
+ how often players update their strategies.
175
+ The notations used in this paper are fairly standard. We
176
+ denote by |·| the cardinality of a set. The floor function
177
+ and the ceiling function are denoted by ⌊·⌋ and ⌈·⌉, re-
178
+ spectively. The sets of positive and nonnegative integers
179
+ are denoted by N and N0, respectively.
180
+ 2
181
+ Attack/Recovery Characterization for Multi-
182
+ agent Systems Under Consensus Dynamics
183
+ We consider a multiagent system of n agents communi-
184
+ cating to each other in discrete time in the face of jam-
185
+ ming attacks. The agents are aiming to converge to a
186
+ consensus state by interacting with each other over the
187
+ communication network. The network topology for the
188
+ normal operation is given by an undirected and con-
189
+ nected graph G = (V, E). The graph consists of the set V
190
+ of vertices representing the agents and the set E ⊆ V ×V
191
+ of edges representing the communication links. The edge
192
+ connectivity [2] of the connected graph G is denoted by
193
+ λ.
194
+ Each agent i has the scalar state xi[k] following the
195
+ discrete-time update rule at time k ∈ N0 given by
196
+ xi[k + 1] = xi[k] + ui[k],
197
+ x[0] = x0,
198
+ (1)
199
+ where ui[k] denotes the control input applied to agent i.
200
+ We assume that ui[k] is constructed as the weighted sum
201
+ of the state differences between agent i and its neighbor
202
+ agents, commonly used in, e.g., [8], which is given by
203
+ ui[k] =
204
+
205
+ j∈Ni[k]
206
+ aij(xj[k] − xi[k]),
207
+ (2)
208
+ where Ni[k] denotes the set of agents that can communi-
209
+ cate with agent i at time k, and aij represents the weight
210
+ of edge (i, j) ∈ E such that Σn
211
+ j=1,j̸=iaij < 1, i ∈ V to
212
+ ensure that the agents achieve consensus without any
213
+ attack.
214
+ We assume that the jamming attacks on an edge affect
215
+ the communication between the two agents connected
216
+ by that attacked edge. As a result, the set Ni[k] may
217
+ change, and the resulting communication topology can
218
+ be disconnected at time k. Such jamming attacks are
219
+ represented by the removal of edges in G. On the other
220
+ hand, within the system there is a defender that may be
221
+ capable of maintaining the communication among the
222
+ agents, e.g., by asking agents to send stronger commu-
223
+ nication signals to overcome the jamming signals. This
224
+ action is represented as rebuilding some of the attacked
225
+ edges.
226
+ From this sequence of attacks and recoveries, we charac-
227
+ terize the attack-recovery process as a two-player game
228
+ between the attacker and the defender in terms of the
229
+ communication links in the network. In other words, the
230
+ graph characterizing the networked system is resilient if
231
+ the group of agents is able to recover from the damages
232
+ caused by the attacker. However, there may be cases
233
+ where the resiliency level of the graph is reduced if the
234
+ jamming signals are sufficiently strong such that the de-
235
+ fender cannot recover. Note that to achieve consensus,
236
+ the agents need not be connected for all time.
237
+ In this paper, we consider the case where the attacker has
238
+ two types of jamming signals in terms of their strength,
239
+ strong and normal. The defender is able to recover only
240
+ the edges that are attacked with normal strength. In the
241
+ following subsections, we first describe the sequence of
242
+ attacks and recoveries and characterize some constraints
243
+ on the players’ energy and computational ability that
244
+ we need to impose as well as how the objective of the
245
+ problem is formulated.
246
+ 2.1
247
+ Attack-Recovery Sequence
248
+ In our setting, at each discrete time k, the players (the
249
+ attacker and the defender) decide to attack/recover cer-
250
+ tain edges in two stages, with the attacker acting first
251
+ and then the defender. Specifically, at time k the at-
252
+ tacker attacks G by deleting the edges EA
253
+ k
254
+ ⊆ E with
255
+ normal jamming signals and E
256
+ A
257
+ k ⊆ E with strong jam-
258
+ ming signals with EA
259
+ k ∩ E
260
+ A
261
+ k = ∅, whereas the defender
262
+ recovers ED
263
+ k ⊆ EA
264
+ k . As mentioned earlier, the defender
265
+ is not able to recover the edges attacked with strong
266
+ jamming signals, i.e., ED
267
+ k ∩ E
268
+ A
269
+ k
270
+ = ∅. Due to the at-
271
+ tacks and then the recoveries, the network changes from
272
+ G to GA
273
+ k := (V, E \ (EA
274
+ k ∪ E
275
+ A
276
+ k )) and further to GD
277
+ k :=
278
+ (V, (E \ (EA
279
+ k ∪ E
280
+ A
281
+ k )) ∪ ED
282
+ k ) at time k. The agents then
283
+ communicate to their neighbors Ni[k] based on this re-
284
+ sulting graph GD
285
+ k .
286
+ In this game, the players attempt to choose the best
287
+ strategies in terms of edges attacked/recovered (E
288
+ A
289
+ k , EA
290
+ k )
291
+ and ED
292
+ k to maximize their own utility functions. Here,
293
+ the games are played every game period T time steps
294
+ and the lth game is defined over the horizon of h steps
295
+ from time (l − 1)T to (l − 1)T + h − 1, with l ∈ N and
296
+ 1 ≤ T ≤ h. The players make decisions in a rolling hori-
297
+ zon fashion; the optimal strategies obtained at (l − 1)T
298
+ for the future time may be overridden when the play-
299
+ ers recalculate their strategies at time lT when the next
300
+ game starts. Fig. 1 illustrates the discussed sequence over
301
+ time with h = 8 and T = 4, where the filled circles in-
302
+ dicate the implemented strategies and the empty circles
303
+ 3
304
+
305
+ PSfrag replacements
306
+ k
307
+ Edge
308
+ 0
309
+ 1T
310
+ 2T
311
+ l = 1
312
+ l = 2
313
+ l = 3
314
+ horizon length h
315
+ 2nd game
316
+ horizon length h
317
+ game period T
318
+ Fig. 1. Illustration of the games played over discrete time k with rolling
319
+ horizon approaches by the players.
320
+ PSfrag replacements
321
+ 0
322
+ 1
323
+ 2
324
+ 3
325
+ k
326
+ 4
327
+ Energy
328
+ κA
329
+ – Time
330
+ Fig. 2. Energy constraint of the attacker considered
331
+ in the formulation. The dashed line represents the
332
+ total supplied energy to spend. The filled circles
333
+ representing the actual energy consumed by the
334
+ player should be below the dashed line.
335
+ indicate the strategies of the game that are discarded.
336
+ In this setting, the horizon length h indicates the com-
337
+ putational ability, i.e., how long in the future the play-
338
+ ers can plan their strategies, whereas the game period
339
+ T ≤ h indicates the players’ adaptability, i.e., how long
340
+ the players apply the obtained strategies without updat-
341
+ ing (shorter T means that a player is more adaptable).
342
+ The rolling horizon game structure will be discussed in
343
+ Section 4 in more detail.
344
+ 2.2
345
+ Energy Constraints
346
+ The actions of the attacker and the defender are af-
347
+ fected by the constraints on their energy resources. It
348
+ is assumed that the total supplied energy for the play-
349
+ ers increases linearly in time; furthermore, the energy
350
+ consumed by the players is proportional to the number
351
+ of attacked/recovered edges. Here we suppose that the
352
+ players initially possess certain amount of energy κA and
353
+ κD for the attacker and the defender, respectively. More-
354
+ over, the players are assumed to be able to supply en-
355
+ ergy wirelessly to devices that obstruct/retain commu-
356
+ nication signals between the agents so that the energy
357
+ supply rates to these devices are limited by the constant
358
+ values of ρA and ρD every discrete time step. These de-
359
+ vices are supposed to have unlimited battery capacity
360
+ and thus can be supplied constantly by the players with
361
+ a linear rate ρA or ρD.
362
+ For the attacker, the strong attacks on E
363
+ A
364
+ k take β
365
+ A >
366
+ 0 energy per edge per unit time whereas the normal
367
+ attacks on EA
368
+ k take βA > 0 cost per edge, with β
369
+ A > βA.
370
+ The total energy used by the attacker is constrained as
371
+ k
372
+
373
+ m=0
374
+
375
+ A|E
376
+ A
377
+ m|+βA|EA
378
+ m|) ≤ κA + ρAk
379
+ (3)
380
+ for any time k, where κA ≥ ρA > 0. This implies that
381
+ the total energy spent by the attacker cannot exceed the
382
+ available energy characterized as the sum of the initial
383
+ energy κA and the supplied energy ρAk by time k. This
384
+ energy constraint restricts the number of edges that the
385
+ attacker can attack. Note that the attacker’s available
386
+ energy increases by ρA at each k. The condition κA ≥
387
+ ρA allows the attacker to have at least the same attack
388
+ ability at time k = 0.
389
+ Fig. 2 illustrates the energy constraint of the attacker,
390
+ where the dashed line with slope ρA represents the total
391
+ supplied energy and the filled circles indicate the total
392
+ energy spent. A critical case is when βA < ρA, since it is
393
+ possible for the attacker to attack at least one edge for all
394
+ times. This will have implications on the consensus and
395
+ cluster forming of the agents, as we will discuss later.
396
+ The energy constraint for the defender is similar to (3):
397
+ k
398
+
399
+ m=0
400
+ βD|ED
401
+ m|≤ κD + ρDk,
402
+ (4)
403
+ with κD ≥ ρD > 0 and βD > 0. Note that there is a
404
+ single term on the left-hand side because there is only
405
+ one type of recovery signals for the agents.
406
+ 3
407
+ Utility Functions with Cluster Forming and
408
+ Agent-group Index Considerations
409
+ In our game setting, the attacker tries to make the
410
+ graph disconnected to separate the agents into clusters.
411
+ Here, we introduce a few notions related to group-
412
+ ing/clustering of agents. In a given subgraph G′ = (V, E′)
413
+ of G, the agents may be divided into n(G′) number
414
+ of groups, with the groups V′
415
+ 1, V′
416
+ 2, . . . , V′
417
+ n(G′) being a
418
+ partition of V with ∪n(G′)
419
+ p=1 V′
420
+ p = V and V′
421
+ p ∩ V′
422
+ q = ∅, if
423
+ p ̸= q. There is no edge connecting different groups, i.e.,
424
+ ei′,j′ /∈ E′, ∀i′ ∈ V′
425
+ p, j′ ∈ V′
426
+ q. We also call each subset of
427
+ agents taking the same state at infinite time as a clus-
428
+ 4
429
+
430
+ ter, i.e., limk→∞(xi[k] − xj[k]) = 0 implies that agents
431
+ i and j belong to the same cluster.
432
+ In the considered game, the attacker and the defender
433
+ are concerned about the number of agents in each
434
+ group. Specifically, we follow the notion of network ef-
435
+ fect/network externality [13], where the utility of an
436
+ agent in a certain group depends on how many other
437
+ agents belong to that particular group. In the context
438
+ of this game, the attacker wants to isolate agents so
439
+ that fewer agents are in each group, while the defender
440
+ wants as many agents as possible in the same group. We
441
+ then represent the level of grouping in the graph G′ by
442
+ the function c(·), which we call the agent-group index,
443
+ given by
444
+ c(G′) :=
445
+ n(G′)
446
+
447
+ p=1
448
+ |V′
449
+ p|2−|V|2
450
+ (≤ 0).
451
+ (5)
452
+ The value of c(G′) is 0 if G′ is connected, since there is
453
+ only one group (i.e., n(G′) = 1). A larger value (closer to
454
+ 0) of c(G′) implies that there are fewer groups in graph
455
+ G′, and/or each group has more agents. The agent-group
456
+ indices of some graphs are shown in Fig. 3. Here, it is
457
+ interesting that c(GD) is smaller than c(GC), even though
458
+ GC has more groups. It is because the largest cluster is
459
+ constituted by more agents in GC than the case of GD.
460
+ Thus, for an attacker who tries to reduce the number of
461
+ agents in one cluster, GD is preferable to GC.
462
+ In our problem setting, the players also consider the ef-
463
+ fects of their actions on the agent states when attack-
464
+ ing/recovering. For example, the attacker may want to
465
+ separate agents having state values with more differences
466
+ in different groups. We specify the agents’ state differ-
467
+ ence zk as
468
+ zk(E
469
+ A
470
+ k , EA
471
+ k , ED
472
+ k ) := xT[k + 1]Lcx[k + 1],
473
+ (6)
474
+ with Lc, for simplicity, being the Laplacian matrix of the
475
+ complete graph with n agents. That is, (6) represents the
476
+ sum of squares of the state differences of all the agent
477
+ pairs. This implies that all state differences between any
478
+ pair of agents are worth the same and thus the players
479
+ do not prioritize any connection between agents.
480
+ The attacked and recovered edges (E
481
+ A
482
+ k , EA
483
+ k , ED
484
+ k ) will af-
485
+ fect x[k + 1] in accordance with (1) and (2), and in turn
486
+ the value of zk. Note that the value of zk is nonincreas-
487
+ ing over time [2] even if some agents are left discon-
488
+ nected from other agents under attacks. This sum-of-
489
+ square characterization of the agents’ state difference is
490
+ commonly used and essentially the same to our previous
491
+ work [19] for the continuous-time setting; here, we ex-
492
+ tend the formulation to comply with the discrete-time
493
+ 1
494
+ 2
495
+ 3
496
+ 4
497
+ 5
498
+ 6
499
+ 7
500
+ 1
501
+ 2
502
+ 3
503
+ 4
504
+ 5
505
+ 6
506
+ 7
507
+ 1
508
+ 2
509
+ 3
510
+ 4
511
+ 5
512
+ 6
513
+ 7
514
+ 1
515
+ 2
516
+ 3
517
+ 4
518
+ 5
519
+ 6
520
+ 7
521
+ PSfrag replacements
522
+ (a) GA
523
+ (b) GB
524
+ (c) GC
525
+ (d) GD
526
+ Fig. 3. Graphs and their agent-group indices: (a) c(GA) = 0,
527
+ (b) c(GB) = −12, (c) c(GC) = −22, and (d) c(GD) = −24.
528
+ Note that c(GC) is larger than c(GD), even with more number
529
+ of groups.
530
+ setting by considering the states at one time step ahead
531
+ k + 1.
532
+ Now, we combine the two measures in (5) and (6) to
533
+ construct the utility functions for the game in a zero-
534
+ sum manner. Specifically, for the lth game starting at
535
+ time k = (l−1)T , the attacker and the defender’s utility
536
+ functions take account of the agent-group index c(·) and
537
+ the difference zk of agents’ states over h horizon length
538
+ from time (l − 1)T to (l − 1)T + h − 1. With weights
539
+ a, b ≥ 0, the utilities for the lth game U A
540
+ l for the attacker
541
+ and U D
542
+ l
543
+ for the defender are, respectively, defined by
544
+ U A
545
+ l :=
546
+ (l−1)T +h−1
547
+
548
+ k=(l−1)T
549
+ (azk − bc(GD
550
+ k )),
551
+ (7)
552
+ U D
553
+ l := −U A
554
+ l .
555
+ (8)
556
+ In our setting both players attempt to maximize their
557
+ utilities at the start of each game l. The values of a
558
+ and b represent the preference of the players towards
559
+ either a long-term agent clustering or a short-term agent-
560
+ grouping. A higher value of a implies that the players
561
+ prefer to focus on the agent states and the subsequent
562
+ cluster forming, whereas a higher value of b implies that
563
+ they focus on the agent-grouping more. We suppose that
564
+ both players know the underlying topology G as well as
565
+ the states of all agents xi[k].
566
+ 4
567
+ Rolling Horizon Game Structure
568
+ We are interested in finding the subgame perfect equi-
569
+ librium [9] of this game outlined in Section 3. To this
570
+ end, the game is divided into some subgames/decision-
571
+ making points. The subgame perfect equilibrium must
572
+ be an equilibrium in every subgame. The optimal strat-
573
+ egy of each player is obtained by using a backward in-
574
+ duction approach, i.e., by finding the equilibrium from
575
+ the smallest subgames. The tie-break condition happens
576
+ when the players’ strategies result in the same utility. In
577
+ this case, we suppose that the players choose to save their
578
+ energy by attacking/recovering less edges unless they
579
+ have enough energy to attack/recover all edges in ev-
580
+ ery subsequent steps, in which case they attack/recover
581
+ more edges.
582
+ Due to the nature of the rolling horizon approach, the
583
+ 5
584
+
585
+ strategies obtained from the lth game, i.e., attacked and
586
+ recovered edges, are applied only from time (l − 1)T to
587
+ lT − 1. Specifically, in the lth game for time (l − 1)T
588
+ to (l − 1)T + h − 1, the strategies of both players
589
+ are denoted by ((E
590
+ A
591
+ l,1, EA
592
+ l,1, ED
593
+ l,1), . . . , (E
594
+ A
595
+ l,h, EA
596
+ l,h, ED
597
+ l,h)),
598
+ with (E
599
+ A
600
+ l,α, EA
601
+ l,α, ED
602
+ l,α) indicating the strategies at the
603
+ αth step of the lth game with α ∈ {1, . . ., h}. Note
604
+ that here we show the strategies with two subscripts
605
+ representing the game and the step indices along
606
+ the time axis. From the above set of strategies, only
607
+ ((E
608
+ A
609
+ l,1, EA
610
+ l,1, ED
611
+ l,1), . . . , (E
612
+ A
613
+ l,T , EA
614
+ l,T , ED
615
+ l,T ))
616
+ is
617
+ applied.
618
+ Re-
619
+ call that h is taken to be greater than or equal to
620
+ T . Therefore, for the lth game from time (l − 1)T
621
+ to lT − 1, the strategy applied will be written as
622
+ ((E
623
+ A
624
+ (l−1)T , EA
625
+ (l−1)T , ED
626
+ (l−1)T ), . . . , (E
627
+ A
628
+ lT −1, EA
629
+ lT −1, ED
630
+ lT −1)) :=
631
+ ((E
632
+ A
633
+ l,1, EA
634
+ l,1, ED
635
+ l,1), . . . , (E
636
+ A
637
+ l,T , EA
638
+ l,T , ED
639
+ l,T )).
640
+ We look at how the optimal edges can be found by an
641
+ example with h = 2 and T = 1 or 2. In this case, for the
642
+ lth game over time (l−1)T and (l−1)T +1, the optimal
643
+ strategies of the players are given by
644
+ ED∗
645
+ l,2 (E
646
+ A
647
+ l,2, EA
648
+ l,2) ∈ arg max
649
+ ED
650
+ l,2
651
+ U D
652
+ l,2,
653
+ (9)
654
+ (E
655
+ A∗
656
+ l,2 (ED
657
+ l,1), EA∗
658
+ l,2 (ED
659
+ l,1)) ∈ arg
660
+ max
661
+ (E
662
+ A
663
+ l,2,EA
664
+ l,2)
665
+ U A
666
+ l,2,
667
+ (10)
668
+ ED∗
669
+ l,1 (E
670
+ A
671
+ l,1, EA
672
+ l,1) ∈ arg max
673
+ ED
674
+ l,1
675
+ U D
676
+ l ,
677
+ (11)
678
+ (E
679
+ A∗
680
+ l,1 , EA∗
681
+ l,1 ) ∈ arg
682
+ max
683
+ (E
684
+ A
685
+ l,1,EA
686
+ l,1)
687
+ U A
688
+ l ,
689
+ (12)
690
+ where U A
691
+ l,α and U D
692
+ l,α are defined as parts of U A
693
+ l
694
+ and
695
+ U D
696
+ l , respectively, calculated from the αth step to the
697
+ last (hth) step of the lth game, i.e., U A
698
+ l,α = −U D
699
+ l,α :=
700
+ �(l−1)T +h−1
701
+ (l−1)T +α−1(azk − bc(GD
702
+ k )). In this case with h = 2,
703
+ the functions U A
704
+ l,2 and U D
705
+ l,2 are based on the values of
706
+ azk and bGD
707
+ k at k = (l − 1)T + 1 only. Note that to
708
+ find (E
709
+ A∗
710
+ l,1 , EA∗
711
+ l,1 ), one needs to obtain ED∗
712
+ l,1 (E
713
+ A
714
+ l,1, EA
715
+ l,1) be-
716
+ forehand. Likewise, to find ED∗
717
+ l,1 , one needs to obtain
718
+ (E
719
+ A∗
720
+ l,2 (ED
721
+ l,1), EA∗
722
+ l,2 (ED
723
+ l,1)). Similarly, to find (E
724
+ A∗
725
+ l,2 , EA∗
726
+ l,2 ), the
727
+ edges ED∗
728
+ l,2 (E
729
+ A
730
+ l,2, EA
731
+ l,2) must be obtained beforehand. Note
732
+ that deriving the optimal strategies above is subject to
733
+ the energy constraints (3) and (4).
734
+ For h > 2, the players’ optimal strategies consist of 2h
735
+ parts similar to those in (9)–(12), with one time step
736
+ consisting of two parts of strategies corresponding to the
737
+ number of players. They are solved by the players at
738
+ every time k = (l − 1)T of the lth game, l ∈ N. With
739
+ T = h, the players do not have chance to override their
740
+ strategies, which removes the rolling horizon aspect of
741
+ the game.
742
+ We will find the optimal strategies of the players by
743
+ computing all possible combinations, since the choices of
744
+ edges are finite. From the optimization problems speci-
745
+ fied above, the players examine at most 3|E|2|E|h number
746
+ of combinations of attacked and recovered edges for util-
747
+ ity evaluations, since they have to foresee the opponent’s
748
+ response as well. Note that the attacker has three pos-
749
+ sible actions on an edge: no attack, attack with normal
750
+ signals, and attack with strong signals, whereas the de-
751
+ fender has only two actions: recover or not recover. Here
752
+ we can see that the number of computation increases ex-
753
+ ponentially with respect to the number of edges in the
754
+ underlying graph. To address scalability issues, we may
755
+ find edges that are easier to attack first, i.e., edges that
756
+ result in the formation of new groups if attacked, and
757
+ limit the strategy choices over those edges only.
758
+ Our previous works [19, 20] considered related games
759
+ in continuous time, where the timings for launching at-
760
+ tack/defense actions are also part of the decision vari-
761
+ ables. This aspect complicated the formulation, making
762
+ it difficult to study games over a time horizon. In this pa-
763
+ per, we simplify the timing issue and instead introduce
764
+ the rolling horizon feature. This enables the players to
765
+ consider the cluster forming in a longer time range, which
766
+ is especially important when consensus among agents is
767
+ obstructed by adversaries.
768
+ With this rolling horizon setting, it is important for a
769
+ player to know what the opponent’s previous action at
770
+ the previous step of the game is in order to know its
771
+ position at the game tree, i.e., which subgame is the
772
+ player’s playing. For example, if the defender does not
773
+ know which edges are previously attacked, then it cannot
774
+ properly calculate the value of the utility function (8).
775
+ 5
776
+ Consensus Analysis
777
+ In this section, we examine the effect of the game struc-
778
+ ture and players’ energy constraints on consensus.
779
+ We will begin the analysis by looking at the case of
780
+ certain energy conditions of the players. Specifically, if
781
+ a player has enough energy to attack/recover all edges
782
+ from a certain step of the game, then it will use all of
783
+ their energy to attack/recover as many edges as they
784
+ can in the subsequent steps. We will confirm this point
785
+ formally in the following. For simplicity, we denote the
786
+ total energy that the defender consumed before the lth
787
+ game as ˜βD
788
+ l := �(l−1)T −1
789
+ k=0
790
+ βD|ED
791
+ k | and the total energy
792
+ that the defender may consume from the 1st to the αth
793
+ step of the lth game as ˆβD
794
+ α := �α
795
+ m=1 βD|ED
796
+ l,m|, where
797
+ we omit the index l from the left-hand side, with a
798
+ slight abuse of notation. Similarly, for the attacker we
799
+ denote ˜βA
800
+ l
801
+ := �(l−1)T −1
802
+ m=0
803
+ (βA|EA
804
+ m|+β
805
+ A|E
806
+ A
807
+ m|) and ˆβA
808
+ α :=
809
+ �α
810
+ m=1(βA|EA
811
+ l,m|+β
812
+ A|E
813
+ A
814
+ l,m|).
815
+ 6
816
+
817
+ We discuss in Lemma 1 (resp., Lemma 2) the optimal
818
+ strategy of the defender (resp., attacker) at the αth step
819
+ of the game given certain energy conditions mentioned
820
+ in Section 2. This characterization of optimal strategy
821
+ of the defender (resp., attacker) will be useful to obtain
822
+ the necessary (resp., sufficient) conditions for consensus
823
+ not to happen.
824
+ 5.1
825
+ Necessary Conditions for not Reaching Consensus
826
+ This subsection discusses necessary conditions for the
827
+ agents to be separated into different clusters for infinitely
828
+ long duration without achieving overall consensus. We
829
+ first discuss the defender’s optimal strategy on some
830
+ games with specific conditions in Lemmas 1 and 2. In
831
+ Lemma 1, we state the defender’s optimal strategy at
832
+ any step of the lth game given a certain energy condition.
833
+ Lemma 1 If the defender’s total energy ˜βD
834
+ l + ˆβD
835
+ ˆα−1 con-
836
+ sumed before the ˆαth step of the lth game satisfies
837
+ ˜βD
838
+ l + ˆβD
839
+ ˆα−1
840
+ ≤ κD + ρD((l − 1)T + ˆα − 1) − (h − ˆα + 1)|E|βD,
841
+ (13)
842
+ then ED∗
843
+ l,α = EA∗
844
+ l,α for all α ≥ ˆα, i.e., the defender will
845
+ recover all normally attacked edges from the ˆαth step.
846
+ PROOF. We first look at the last (hth) step of the lth
847
+ game. Since the game consists of a horizon of h steps, the
848
+ last step of the game corresponds to the last decision-
849
+ making point, in which the players’ strategies cannot in-
850
+ fluence the decision already made in the previous steps of
851
+ the same game. Hence, in the last step of the lth game the
852
+ players do not save their energy by attacking/recovering
853
+ less edges.
854
+ From the defender’s energy constraint (4), it is clear that
855
+ at any time k, the set of edges that the defender recov-
856
+ ers is bounded as |ED
857
+ k |≤
858
+ κD+ρDk−�k−1
859
+ m=0 βD|ED
860
+ m|
861
+ βD
862
+ . Thus, at
863
+ the hth step, recovered edges satisfy |ED
864
+ l,h|≤ |ED′
865
+ l,h| with
866
+ |ED′
867
+ l,h|:= min{⌊
868
+ κD+ρD((l−1)T +h−1)−( ˜βD
869
+ l + ˆβD
870
+ h−1)
871
+ βD
872
+ ⌋, |EA∗
873
+ l,h |}.
874
+ Depending on which edges are normally attacked,
875
+ the defender may not recover the maximum num-
876
+ ber |ED′
877
+ l,h| of edges. If the defender’s optimal strat-
878
+ egy given normally attacked edges EA
879
+ l,h is not to re-
880
+ cover |ED′
881
+ l,h| number of edges, i.e., recover less, then
882
+ the defender will be able to obtain more utility
883
+ U D
884
+ l,h(E
885
+ A
886
+ l,h, EA
887
+ l,h, ED
888
+ l,h) > U D
889
+ l,h(E
890
+ A
891
+ l,h, EA
892
+ l,h, ED′
893
+ l,h). However, un-
894
+ der (13) with α = h the defender has sufficiently high en-
895
+ ergy, and thus the utility becomes U D
896
+ l,h(E
897
+ A
898
+ l,h, EA
899
+ l,h, ED
900
+ l,h) >
901
+ U D
902
+ l,h(E
903
+ A
904
+ l,h, EA
905
+ l,h, EA
906
+ l,h) = U D
907
+ l,h(E
908
+ A
909
+ l,h, ∅, ∅). It then follows
910
+ that as long as the defender has enough energy, it will
911
+ recover all optimal edges attacked normally at the hth
912
+ step, i.e., ED∗
913
+ l,h = EA∗
914
+ l,h .
915
+ Next, we investigate the effect of this property on the
916
+ earlier steps of the lth game. Since the defender’s strat-
917
+ egy at the hth step is not affected by its strategy at the
918
+ previous (i.e., (h−1)th) step when κD +ρD((l −1)T +h
919
+ −1) − (˜βD
920
+ l + ˆβD
921
+ h−1) ≥ βD|E|, here the defender does not
922
+ need to recover fewer edges at the (h − 1)th step to save
923
+ energy; this is because it already has enough energy to
924
+ recover EA∗
925
+ l,h at the hth step.
926
+ Now, we derive that if κD + ρD((l − 1)T + h − 2)−
927
+ (˜βD
928
+ l + ˆβD
929
+ h−2) ≥ 2βD|E| at the (h − 1)th step, then the
930
+ defender will also recover ED∗
931
+ l,h−1 = EA∗
932
+ l,h−1. To recover all
933
+ attacked edges at steps α ≥ ˆα, it is then sufficient that
934
+ the defender’s energy satisfies (13) so that κD + ρD((l −
935
+ 1)T + α − 1) ≥ ˜βD
936
+ l + ˆβD
937
+ α−1 + βD|E|, i.e., the worst-case
938
+ scenario of the energy constraint (4) when the defender
939
+ recovers all edges, is always satisfied when α ≥ ˆα.
940
+
941
+ From the proof above, note that if the defender’s strat-
942
+ egy is not to recover all normally attacked edges given
943
+ even if (13) is satisfied, i.e., EA
944
+ l,α = ˆEA ̸= ED
945
+ l,α, then
946
+ the attacker will not attack ˆEA set of edges in the first
947
+ place. This is because by attacking ˆEA (and consid-
948
+ ering ED
949
+ l,α ̸= ˆEA) the attacker’s utility for step α ≥
950
+ ˆα becomes U A
951
+ l,α(·, ˆEA, ED
952
+ l,α ̸= ˆEA) < U A
953
+ l,α(·, ∅, ∅), since
954
+ U D
955
+ l,α(·, ˆEA, ED
956
+ l,α ̸= ˆEA) > U D
957
+ l,α(·, ∅, ∅) = U D
958
+ l,α(·, ˆEA, ˆEA)
959
+ and U D
960
+ l = −U A
961
+ l .
962
+ We also remark that in order to derive the same optimal
963
+ strategy for the defender the quantity (h − α + 1)|E|
964
+ in the right-hand side of inequality (13) can be relaxed
965
+ to the maximum number of edges that the attacker can
966
+ attack from step ˆα to step h given its energy condition.
967
+ However, this number of edges may change every game,
968
+ making the inequality complicated to express.
969
+ Lemma 2 gives an interval over which, at least once,
970
+ either not attacking with normal signals or recovering
971
+ nonzero edges is optimal.
972
+ Lemma 2 There is at least one occurrence of either
973
+ ED
974
+ k ̸= ∅ or EA
975
+ k = ∅ every ⌈ h|E|βD−ρD
976
+ ρDT
977
+ + 1⌉ time steps.
978
+ PROOF. It follows from Lemma 1 that in a game with
979
+ index l′ where (13) is satisfied for α = 1, the defender
980
+ always recovers edges that are attacked normally in the
981
+ 1st step, i.e., ED
982
+ l′,1 ̸= ∅ if EA
983
+ l′,1 ̸= ∅. We then investigate
984
+ in which game inequality (13) is satisfied for α = 1.
985
+ Since the defender gains ρD every time k, if ED
986
+ k = ∅ for
987
+ 7
988
+
989
+ any k ∈ {0, . . ., (l′ − 1)T − 1}, then (13) at the first
990
+ step of the l′th game can be written as κD+ρD(l′−1)T
991
+ βD
992
+
993
+ h|E|. With κD = ρD as a worst-case scenario, the left-
994
+ hand side becomes
995
+ ρD(1+(l′−1)T )
996
+ βD
997
+ , and we then obtain
998
+ l′ ≥ ⌈ h|E|βD−ρD
999
+ ρDT
1000
+ + 1⌉.
1001
+ Note that the above fact holds when the defender
1002
+ does not recover any edge for any k ∈ {(j − 1)(l′ ���
1003
+ 1)T, . . . , j(l′ − 1)T − 1}, j
1004
+
1005
+ N. If the defender
1006
+ recovers one or more attacked edges at any k
1007
+
1008
+ {0, . . ., (l′ − 1)T − 1}, then the above result may
1009
+ not hold, i.e., the defender may not be able to re-
1010
+ cover all EA
1011
+ l′ . However, it follows that during time
1012
+ k ∈ {(j − 1)(l′ − 1)T, . . . , j(l′ − 1)T − 1}, either 1) the
1013
+ defender recovers nonzero edges (ED
1014
+ k
1015
+ ̸= ∅), or 2) the
1016
+ attacker attacks no edges with normal signals (EA
1017
+ k = ∅)
1018
+ at least once.
1019
+
1020
+ Lemmas 1 and 2 above imply that the defender is guar-
1021
+ anteed to make recoveries from normal attacks every cer-
1022
+ tain interval. Hence, the attacker needs to attack some
1023
+ edges strongly to prevent the recovery in order to sepa-
1024
+ rate agents into different clusters, as we discuss next.
1025
+ The following two results provide necessary conditions
1026
+ for consensus not to take place. We consider a more gen-
1027
+ eral condition in Proposition 3, whereas in Theorem 4
1028
+ we consider a more specific situation for the utility func-
1029
+ tions that leads to a tighter condition. Recall that λ rep-
1030
+ resents the connectivity of G.
1031
+ Proposition 3 A necessary condition for consensus not
1032
+ to happen is ⌊ρA/βA⌋ ≥ λ.
1033
+ PROOF. In deriving this necessary condition, we sup-
1034
+ pose that there is no recovery by the defender at any time
1035
+ k. Without any recovery from the defender (ED
1036
+ k = ∅),
1037
+ the attacker must attack at least λ number of edges with
1038
+ normal signals (which take less energy) at any time k to
1039
+ make GD
1040
+ k disconnected at all times. Otherwise, there will
1041
+ be time steps where the graph GD
1042
+ k is connected, which
1043
+ implies that consensus will still be reached.
1044
+ If the attacker attacks λ edges with normal jamming
1045
+ signals at all times, the energy constraint (3) becomes
1046
+ (βAλ − ρA)k ≤ κA. Thus, the condition ρA/βA ≥ λ has
1047
+ to be satisfied to ensure that the attacker can make GD
1048
+ k
1049
+ disconnected for all k. Note that, if the attacker does not
1050
+ have enough energy to disconnect GD
1051
+ k given no recovery,
1052
+ then it definitely cannot disconnect GD
1053
+ k in the face of
1054
+ recovery by the defender.
1055
+
1056
+ We now limit the class of utility functions in (7), (8) to
1057
+ the case of b = 0 in the weights. This means that the
1058
+ players do not take account of the agent-group index in
1059
+ the graph, but only the states in consensus. In this case,
1060
+ the attacker may need more energy to prevent consensus
1061
+ as shown in the next theorem.
1062
+ Theorem 4 Suppose that b = 0. A necessary condition
1063
+ for consensus not to happen is ρA/β
1064
+ A ≥ λ.
1065
+ PROOF. We prove by contrapositive; especially, we
1066
+ prove that consensus always happens if ρA/β
1067
+ A < λ.
1068
+ We first suppose that the attacker attempts to attack
1069
+ λ edges strongly at all times to disconnect the graph
1070
+ GD
1071
+ k . From (3), the energy constraint of the attacker at
1072
+ time k becomes (β
1073
+ Aλ − ρA)k ≤ κA. This inequality is
1074
+ not satisfied for sufficiently large k if ρA/β
1075
+ A < λ, since
1076
+ β
1077
+ Aλ − ρA becomes positive and κA is finite. Therefore,
1078
+ the attacker cannot attack λ edges strongly at all times
1079
+ if ρA/β
1080
+ A < λ, and is forced to disconnect the graph by
1081
+ attacking with normal jamming signals instead.
1082
+ Next, by Lemma 2 above, we show that there exists an
1083
+ interval of time where the defender always recovers if
1084
+ there are edges attacked normally, i.e., ED
1085
+ l′ ̸= ∅ is optimal
1086
+ given that EA
1087
+ l′ ̸= ∅.
1088
+ From the definitions in (7), (8), given that b = 0, we can
1089
+ see that the defender obtains a higher utility if the agents
1090
+ are closer. This means that given a nonzero number
1091
+ of edges to recover (at time jl′T described above), the
1092
+ defender recovers the edges connecting further agents.
1093
+ Specifically, for some i ∈ N, for interval [jl′T, (j +i)l′T ],
1094
+ there is a time step where U D
1095
+ l (ED
1096
+ k
1097
+ = E1) ≥ U D
1098
+ l (E2),
1099
+ with edges E1 connecting agents with further states than
1100
+ agents connected by E2. This fact implies that when re-
1101
+ covering, the defender always chooses the further dis-
1102
+ connected agents. Since by communicating with the con-
1103
+ sensus protocol as in (1) the agents’ states are getting
1104
+ closer, the defender will choose different edges to re-
1105
+ cover if the states of agents connected by recovered edges
1106
+ ED
1107
+ k become close enough. Consequently, if ρA/β
1108
+ A < λ,
1109
+ then there exists i ∈ N where the union of graphs,
1110
+ i.e., the graph having the union of the edges of each
1111
+ graph (V, �((E \(E
1112
+ A
1113
+ k ∪EA
1114
+ k ))∪ED
1115
+ k )) over the time interval
1116
+ [j(l′ − 1)T, (j + i)(l′ − 1)T ], becomes a connected graph,
1117
+ where l′ = ⌈ h|E|βD−ρD
1118
+ ρDT
1119
+ + 1⌉ as in Lemma 2 above. These
1120
+ intervals [j(l′−1)T, (j+i)(l′−1)T ] occur infinitely many
1121
+ times, since the defender’s energy bound keeps increas-
1122
+ ing over time.
1123
+ It is shown in [31] that with protocol (1), the agents
1124
+ achieve consensus in the time-varying graph as long as
1125
+ the union of the graphs over bounded time intervals
1126
+ is a connected graph. This implies that consensus is
1127
+ 8
1128
+
1129
+ achieved if (V, �((E \(E
1130
+ A
1131
+ k ∪EA
1132
+ k ))∪ED
1133
+ k )) is connected over
1134
+ [l′
1135
+ i, l′
1136
+ i + 1, . . . , l′
1137
+ i+j]. Thus, if ρA/β
1138
+ A < λ then consensus
1139
+ is achieved.
1140
+
1141
+ The result in Theorem 4 only holds for b = 0, since with
1142
+ b > 0 the defender may choose to recover the edges con-
1143
+ necting agents that already have similar states to maxi-
1144
+ mize c(GD
1145
+ k ) (instead of those connecting further agents).
1146
+ In such a case, the network may remain disconnected and
1147
+ thus the agents may converge to different states. As we
1148
+ see from these results, the weight values affect the nec-
1149
+ essary conditions to prevent consensus, whereas the ef-
1150
+ fect of the weights on the sufficient condition (discussed
1151
+ later) is less straightforward. The effect of the values of
1152
+ a and b on consensus is illustrated in Section 8.
1153
+ 5.2
1154
+ Sufficient Condition to Prevent Consensus
1155
+ The next result provides a sufficient condition for pre-
1156
+ venting consensus. It shows that the attacker can pre-
1157
+ vent consensus if it has sufficiently large recharge rate ρA
1158
+ given the network topology G. We first state Lemma 5
1159
+ about the attacker’s optimal strategy under some energy
1160
+ conditions, similar to the discussion on the defender’s
1161
+ case above.
1162
+ Lemma 5 The attacker’s optimal strategy is E
1163
+ A∗
1164
+ l,α = E if
1165
+ • the attacker’s recharge rate satisfies ρA/β
1166
+ A ≥ |E|,
1167
+ or
1168
+ • the attacker’s total energy ˜βA
1169
+ l + ˆβA
1170
+ α−1 that it con-
1171
+ sumes before αth step of the lth game satisfies
1172
+ ˜βA
1173
+ l + ˆβA
1174
+ α−1
1175
+ ≤ κA + ρA((l − 1)T + α − 1) − (h − α + 1)β
1176
+ A|E|.
1177
+ (14)
1178
+ PROOF. We first observe that in the hth step of the lth
1179
+ game the attacker does not save their energy by attack-
1180
+ ing fewer edges. Since zl,h(E, ∅, ∅) > zl,h(E
1181
+ A
1182
+ l,h, EA
1183
+ l,h, ED
1184
+ l,h)
1185
+ and c((V, ∅)) ≥ c((V, (E \ (E
1186
+ A
1187
+ l,h ∪ EA
1188
+ l,h) ∪ ED
1189
+ l,h))) are al-
1190
+ ways satisfied for any edges E
1191
+ A
1192
+ l,h, EA
1193
+ l,h, ED
1194
+ l,h, the function
1195
+ U A
1196
+ h always has the highest value if the attacker strongly
1197
+ attacks all edges E. It then follows that the attacker with
1198
+ enough energy, i.e., κA + ρA((l − 1)T + h − 1) − (˜βA
1199
+ l +
1200
+ ˆβA
1201
+ h−1) ≥ β
1202
+ A|E| is satisfied, will choose to attack all edges
1203
+ with strong signals.
1204
+ Similar to the proof in Lemma 1, inequalities zl,α(E, ∅,
1205
+ ∅) > zl,α(E
1206
+ A
1207
+ l,α, EA
1208
+ l,α, ED
1209
+ l,α) and c((V, ∅)) ≥ c((V, (E\(E
1210
+ A
1211
+ l,α∪
1212
+ EA
1213
+ l,α) ∪ ED
1214
+ l,α))) are always satisfied for any step α. Hence,
1215
+ the attacker will choose to attack all edges with strong
1216
+ signals in any step α given enough energy. This can be
1217
+ achieved if the attacker has high enough stored energy,
1218
+ i.e., (14) is satisfied, or if the attacker has high enough
1219
+ recharge rate, i.e., ρA ≥ β
1220
+ A|E|. These conditions enable
1221
+ the attacker to attack all edges strongly while still sat-
1222
+ isfying the energy constraint (3) above for all steps.
1223
+
1224
+ Proposition 6 A sufficient condition for all agents not
1225
+ to achieve consensus at infinite time is that the attacker’s
1226
+ parameters satisfy ρA/β
1227
+ A ≥ |E|.
1228
+ PROOF. By Lemma 5, the attacker always strongly at-
1229
+ tacks all edges with strong signals in a game at any step
1230
+ α given either sufficient recharge rate or sufficient stored
1231
+ energy at the beginning of the game. Consequently, if
1232
+ the attacker’s recharge rate satisfies ρA/β
1233
+ A ≥ |E|, the
1234
+ attacker will attack E with stronger jamming signals at
1235
+ all steps of all games, separating every agent at all times.
1236
+ As a result, there are n clusters formed, and hence, ob-
1237
+ viously, consensus is not reached.
1238
+
1239
+ Remark 7 Note that the necessary conditions and the
1240
+ sufficient condition above consider zk = xTLcx in (6)
1241
+ which is a nonincreasing function. It is possible to con-
1242
+ sider other Laplacian matrices, e.g., Laplacian of the un-
1243
+ derlying graph G, however the function zk may not be non-
1244
+ increasing anymore. For example, we consider a simple
1245
+ path graph 1-2-3 with initial states x0 = [10, 0, −5]T and
1246
+ Laplacian of graph G considered in state difference func-
1247
+ tion zk. With weights of the utility functions (7) and (8)
1248
+ a = 1 and b = 0 and under consensus protocol (1) and (2)
1249
+ with weights a12 = 0.1 and a23 = 0.8, the players’ utili-
1250
+ ties in the first game with h = 1 are U A
1251
+ 1 = −U D
1252
+ 1 = 148
1253
+ without any attacks, and U A
1254
+ 1 = U A
1255
+ 0 = −U D
1256
+ 1 = 125 if both
1257
+ edges are attacked. This implies that not attacking any
1258
+ edge may actually be optimal for the attacker even with
1259
+ large enough energy. As a consequence, with Laplacian
1260
+ of graph G considered in state difference function zk, the
1261
+ analysis becomes more complicated and some of the the-
1262
+ oretical results do not hold anymore, e.g., the sufficient
1263
+ condition in Proposition 6.
1264
+ 5.3
1265
+ Example on a Gap Between Necessary Condition
1266
+ and Sufficient Condition
1267
+ In this subsection we provide an example that illustrates
1268
+ the gap between the necessary condition for preventing
1269
+ consensus in Theorem 4 and the sufficient condition in
1270
+ Proposition 6. Here we suppose that the defender has a
1271
+ very high recharge rate (i.e., ρD is much larger than βD)
1272
+ such that it can recover any normally-attacked edges at
1273
+ any k (note that the condition in Theorem 4 only consists
1274
+ of the attacker’s parameters). This will force the attacker
1275
+ 9
1276
+
1277
+ 1
1278
+ 2
1279
+ 3
1280
+ 4
1281
+ Fig. 4. Graph G used in the case study.
1282
+ Table 1
1283
+ Agent state difference for various values of ρA/β
1284
+ A
1285
+ ρA/β
1286
+ A
1287
+ z20
1288
+ Consensus
1289
+ 1
1290
+ 0.113
1291
+ Yes
1292
+ 1.1
1293
+ 0.115
1294
+ Yes
1295
+ 1.2
1296
+ 1.3405
1297
+ No
1298
+ 1.4
1299
+ 235.345
1300
+ No
1301
+ 1.8
1302
+ 706.8
1303
+ No
1304
+ 2
1305
+ 1354
1306
+ No
1307
+ to attack with strong jamming signals to disconnect any
1308
+ agent.
1309
+ We consider a graph G as in Fig. 4, with x[0] =
1310
+ [−5, 0, −20, 10], h = 2, and κA = ρA. The weight of the
1311
+ utility functions are set to be a = 1 and b = 0. We test
1312
+ various values of 1 ≤ ρA/β
1313
+ A ≤ 2, implying that the
1314
+ attacker can attack one edge with strong signals at all
1315
+ time without running out of energy. Thus, the attacker
1316
+ needs to attack e12 (min-cut edge of G) at all times in
1317
+ order to prevent consensus, since it is the only edge
1318
+ which, if attacked, will make the graph disconnected.
1319
+ Note that this ratio 1 ≤ ρA/β
1320
+ A ≤ 2 satisfies the neces-
1321
+ sary condition for preventing consensus in Theorem 4,
1322
+ but not the sufficient condition in Proposition 6.
1323
+ Specifically in this example we test whether consensus
1324
+ is prevented or not for various value of ρA/β
1325
+ A based on
1326
+ agent states at time k = 20. It is interesting to note
1327
+ from Table 1 that even with a relatively small value of
1328
+ ρA/β
1329
+ A < |E|, consensus can still be prevented by the
1330
+ attacker.
1331
+ From this example, we observe that there is a gap be-
1332
+ tween the necessary condition and the sufficient condi-
1333
+ tion. Note that this gap may be larger for a more con-
1334
+ nected G as well as for network consisting of more agents,
1335
+ where typically |E|>> λ. Later in Section 8, we pro-
1336
+ vide more detailed examples which illustrate the effect
1337
+ of these parameters’ values on consensus.
1338
+ As the last result of the section, we state that for a special
1339
+ case with the complete graph under b = 0 and h =
1340
+ 1, i.e., a single-step game without rolling horizon, the
1341
+ condition in Theorem 4 is also sufficient, i.e., there is no
1342
+ gap between the necessary condition and the sufficient
1343
+ condition.
1344
+ Proposition 8 Suppose that b = 0 and h = 1. In the
1345
+ complete graph G, a sufficient condition for consensus
1346
+ not to happen is ρA/β
1347
+ A ≥ n − 1.
1348
+ PROOF. With h = 1, the attacker will spend all of its
1349
+ energy at the only step of the game. With ρA/β
1350
+ A ≥ n−1,
1351
+ the attacker is always able to disconnect the complete
1352
+ graph G.
1353
+ In the complete graph G, every agent is connected to
1354
+ all other agents regardless of their states, implying that
1355
+ there is no agent that can be prioritized to be isolated by
1356
+ the attacker (different from the example above). Then,
1357
+ with b = 0, the attacker is ensured to separate the fur-
1358
+ thest agent. This implies that, at each game (and at each
1359
+ k), the attacker will always attack the same edges, re-
1360
+ sulting in disconnected GD
1361
+ k at each time.
1362
+
1363
+ We note that in different class of graphs (including in
1364
+ other symmetric graphs such as cycle graphs or star
1365
+ graphs), it is more challenging to derive a tighter suffi-
1366
+ cient condition. This is because agents have direct access
1367
+ only to some other agents which makes cluster forming
1368
+ based on the agent states more difficult.
1369
+ 6
1370
+ Clustering Analysis
1371
+ In this section, we derive some results on the number of
1372
+ formed clusters of agents at infinite time. From Propo-
1373
+ sition 6, the result implies the simple case where if the
1374
+ attacker has enough energy such that ρA/β
1375
+ A ≥ |E|, then
1376
+ the attacker can attack all the edges of the underlying
1377
+ topology G so that the number of clusters is n (i.e., all
1378
+ the agents are separated).
1379
+ The next result discusses a relation between the at-
1380
+ tacker’s cost and energy recharge rate with the maxi-
1381
+ mum number of clusters that the attacker may create
1382
+ through jamming. In the subsequent results of this sec-
1383
+ tion, we suppose that b = 0.
1384
+ We first define a vector which characterizes the maxi-
1385
+ mum number of clusters of G, given the parameters ρA
1386
+ and β
1387
+ A. Specifically, we define a vector Θ ∈ R|E| with el-
1388
+ ements Θj := max|EA|=j n(V, E \ EA), with n(V, E \ EA)
1389
+ being the number of agent groups of (V, E \ EA).
1390
+ Proposition 9 An upper bound on the number of
1391
+ formed clusters at infinite time is Θ⌊ρA/β
1392
+ A⌋.
1393
+ PROOF. The vector Θ consists of the maximum num-
1394
+ ber of formed groups n(V, E \ EA) given the number of
1395
+ 10
1396
+
1397
+ attacked edges as the element index. Since some edges
1398
+ need to be attacked consistently in order to divide the
1399
+ agents into different clusters, the number of formed clus-
1400
+ ters at infinite time is never more than the maximum
1401
+ number of groups at any time k given the same number
1402
+ of strongly attacked edges.
1403
+ Recall that ⌊ρA/β
1404
+ A⌋ is the maximum achievable num-
1405
+ ber of edges that can be strongly attacked at all times.
1406
+ Given the known graph topology G, we then can imply
1407
+ that Θ⌊ρA/β
1408
+ A⌋ gives the maximum number of clusters at
1409
+ infinite time.
1410
+
1411
+ We continue by addressing a special case where all the
1412
+ agents in the network are connected with each other.
1413
+ Corollary 10 In the complete graph G, the attacker can-
1414
+ not divide the agents into more than
1415
+ 1 +
1416
+ (n−1)
1417
+
1418
+ j=1
1419
+ min
1420
+
1421
+ 1,
1422
+
1423
+ 2ρA
1424
+
1425
+ A(2n − j − 1)
1426
+ ��
1427
+ (15)
1428
+ number of clusters.
1429
+ PROOF. In the complete graph, every agent is con-
1430
+ nected to all other n − 1 agents. From Proposition 9, we
1431
+ can derive the vector Θ of the complete graph G as
1432
+ Θ =[1, . . . , 1, 2, . . ., 2, 3, . . . , n − 1, n]T,
1433
+ where the value of the (n−1)th entry is 2, the value of the
1434
+ ((n−1)+(n−2))th entry is 3, and so on. This is because
1435
+ in the complete graph G the attacker needs to attack
1436
+ (n−1) number of edges to disconnect the graph, further
1437
+ (n − 2) number of edges to make three groups of agents,
1438
+ further (n − 3) number of edges to make four groups of
1439
+ agents, and so on, until (n − 1) + (n − 2) + · · · + 1 =
1440
+ n(n − 1)/2 agents to make n groups. The value of the
1441
+ ⌊ρA/β
1442
+ A⌋th entry of this Θ matrix for the complete graph
1443
+ can be written as in (15). This value determines the
1444
+ upper bound of the number of clusters.
1445
+
1446
+ In Proposition 9, we use the information of the graph
1447
+ structure to obtain the vector Θ. We remark that if the graph
1448
+ structure G is not known, then the number of clusters at
1449
+ infinite time is in general upper bounded by ⌊ρA/β
1450
+ A⌋ + 1.
1451
+ This is because the attacker can attack continuously at all
1452
+ time at most ⌊ρA/β
1453
+ A⌋ number of edges, and in the most
1454
+ vulnerable graph with λ = 1, i.e., tree graphs, any attacked
1455
+ edge will result in a new group.
1456
+ To illustrate the relationship between Θ and ρA/β
1457
+ A, we look
1458
+ Table 2
1459
+ Possible cases of attack and recovery actions
1460
+ Case
1461
+ c(GA
1462
+ l,α)
1463
+ c(GD
1464
+ l,α)
1465
+ 1
1466
+ c(GA
1467
+ l,α) = c(G)
1468
+ c(GD
1469
+ l,α) = c(GA
1470
+ l,α)
1471
+ 2
1472
+ c(GA
1473
+ l,α) < c(G)
1474
+ c(GD
1475
+ l,α) = c(GA
1476
+ l,α)
1477
+ 3
1478
+ c(GA
1479
+ l,α) < c(G)
1480
+ c(GD
1481
+ l,α) > c(GA
1482
+ l,α)
1483
+ 7
1484
+ Equilibrium Characterization
1485
+ In this game the strategy choices are all finite in form of
1486
+ edges attacked and recovered. Here, we characterize the
1487
+ equilibrium/optimal strategies of the players in certain
1488
+ situations for the case where the players’ horizon length
1489
+ is 1 so that they myopically update their strategies every
1490
+ time step.
1491
+ In this section, we state some results when a = 0, i.e.,
1492
+ when the players do not consider the agents’ states but
1493
+ agent-group index in determining their strategies so that
1494
+ the defender (resp., attacker) has higher (resp., lower)
1495
+ utility when more agents belong to the same group. Sim-
1496
+ ilar to the analysis in [20], here we explore some possible
1497
+ optimal strategy candidates for the players in a game.
1498
+ However, since a game consists of several steps in this
1499
+ formulation, the subgame perfect equilibrium is more in-
1500
+ volved to characterize, compared to the case of a game
1501
+ consisting of one step as in [20].
1502
+ In the αth step of each game, there are three possibilities
1503
+ in function c(·) as shown in Table 2 (Cases 1, 2, and 3).
1504
+ From this table, we characterize the optimal strategies
1505
+ of both players in each case:
1506
+ • Case 1: When c(G) = c(GD
1507
+ l,α), the attacker’s utility
1508
+ in one time step is c(G), which implies that the at-
1509
+ tacker should not attack any edge either with nor-
1510
+ mal signals or strong signals, with the utilities of
1511
+ both players equal to zero. The players’ strategies
1512
+ in this case are called Combined Strategy 1.
1513
+ • Case 2: When c(GD
1514
+ l,α) = c(GA
1515
+ l,α), the defender does
1516
+ not recover any attacked edge, whereas the attacker
1517
+ should attack some edges either with strong or nor-
1518
+ mal signals. The players’ strategies in this case are
1519
+ classified as Combined Strategy 2.
1520
+ • Case 3: Here both players will attack/recover
1521
+ nonzero number of edges. In particular, the at-
1522
+ tacker will attack with normal signals and poten-
1523
+ tially with strong signals. The players’ strategies
1524
+ here are called Combined Strategy 3.
1525
+ at the graph in Fig. 4 from the last section. Here, Θ =
1526
+ [2, 2, 3, 4]T, whereas the values of ⌊ρA/β
1527
+ A⌋ + 1 are 2, 3, 4,
1528
+ 5 for ρA/β
1529
+ A = 1, 2, 3, and 4, respectively. Note that for
1530
+ any value of ρA/β
1531
+ A, inequality Θ⌊ρA/βA⌋ ≤ ⌊ρA/β
1532
+ A⌋ + 1 is
1533
+ always satisfied, indicating that knowing the graph structure
1534
+ helps to better estimate the upper bound of the number of
1535
+ clusters.
1536
+ 11
1537
+
1538
+ We will then discuss the equilibrium for this game in
1539
+ Proposition 11 below. For simplicity, we only consider
1540
+ the case when h = 1. The case of h > 1 can be examined
1541
+ based on the characterization here for h = 1.
1542
+ Proposition 11 The optimal strategies for the players
1543
+ with h = 1 satisfy the following:
1544
+ (1) Combined Strategy 1 if ˜βA
1545
+ l +βA > κA +ρA(l −1)T ,
1546
+ (2) Otherwise,
1547
+ (a) Combined Strategy 2 if
1548
+ (i) ˜βD
1549
+ l + βD > κD + ρD(l − 1)T , or
1550
+ (ii) ˜βD
1551
+ l
1552
+ + βD
1553
+
1554
+ κD + ρD(l − 1)T
1555
+ and
1556
+ U A
1557
+ l (⌊(κA + ρA(l − 1)T − ˜βA
1558
+ l )/β
1559
+ A⌋, ∅, ∅) =
1560
+ maxE
1561
+ A
1562
+ k ,EA
1563
+ k ,ED
1564
+ k U A
1565
+ l (E
1566
+ A
1567
+ k , EA
1568
+ k , ED
1569
+ k ),
1570
+ (b) Combined Strategy 3 if ˜βD
1571
+ l
1572
+ + βD ≤ κD +
1573
+ ρD(l − 1)T and U A
1574
+ l (⌊(κA + ρA(l − 1)T −
1575
+ ˜βA
1576
+ l )/β
1577
+ A⌋, ∅, ∅) ̸= maxE
1578
+ A
1579
+ k ,EA
1580
+ k ,ED
1581
+ k U A
1582
+ l (E
1583
+ A
1584
+ k , EA
1585
+ k , ED
1586
+ k ).
1587
+ PROOF. With a = 0, we observe that the defender al-
1588
+ ways recovers from the optimal attack at the last step
1589
+ given sufficient energy, which implies that it always re-
1590
+ covers for h = 1 if ˜βD
1591
+ l + βD ≤ κD + ρD((l − 1)T ) is sat-
1592
+ isfied. Similar to the defender, the attacker obtains the
1593
+ least utility, i.e., zero, by not attacking for the case of
1594
+ h = 1. Therefore, the attacker will attack at least one
1595
+ edge as long as it has enough energy to do so. We prove
1596
+ each point of the proposition statement as below.
1597
+ (1): We now suppose that ˜βA
1598
+ l + βA > κA + ρA((l − 1)T )
1599
+ (point (1) in the statement) is satisfied, i.e., the attacker
1600
+ does not have enough energy to even attack one edge
1601
+ normally. In this case, Combined Strategy 1 becomes
1602
+ optimal since there is no other choice, i.e., the attacker
1603
+ cannot attack even one edge with normal signals. In the
1604
+ rest of the proof, we assume that ˜βA
1605
+ l +βA ≤ κA+ρA((l−
1606
+ 1)T ) is satisfied.
1607
+ (2a(i)): We now continue by providing the conditions
1608
+ for Combined Strategy 2. Similarly to the attacker
1609
+ above, we observe that the defender cannot recover any
1610
+ edge if ˜βD
1611
+ l + βD > κD + ρD((l − 1)T ), implying that
1612
+ c(GA
1613
+ l,α) < c(G) and c(GD
1614
+ l,α) = c(GA
1615
+ l,α) (corresponds to
1616
+ point (2a(i))).
1617
+ (2a(ii)): We then suppose that ˜βD
1618
+ l
1619
+ + βD ≤ κD +
1620
+ ρD((l − 1)T ) is satisfied. It then follows that given
1621
+ enough energy for the defender, the attacker needs to
1622
+ attack nonzero number of edges with strong signals to
1623
+ satisfy c(GA
1624
+ l,α) < c(G) and c(GD
1625
+ l,α) = c(GA
1626
+ l,α). In order for
1627
+ Combined Strategy 2 to be optimal, the attacker then
1628
+ needs to attack edges strongly without attacking with
1629
+ normal signals at all, i.e., EA
1630
+ k = ∅. Thus, β
1631
+ A needs to be
1632
+ sufficiently low to make strong attack feasible. Specif-
1633
+ ically, U A
1634
+ l (E
1635
+ A′
1636
+ k , ∅, ∅)
1637
+ =
1638
+ maxE
1639
+ A
1640
+ k ,EA
1641
+ k ,ED
1642
+ k U A
1643
+ l (E
1644
+ A
1645
+ k , EA
1646
+ k , ED
1647
+ k ),
1648
+ with |E
1649
+ A′
1650
+ k |= ⌊(κA + ρA((l − 1)T ) − ˜βA
1651
+ l )/β
1652
+ A⌋ indicating
1653
+ the maximum number of edges the attacker attacks
1654
+ strongly. This corresponds to point (2a(ii)).
1655
+ (2b): Consequently, if ˜βD
1656
+ l + βD ≤ κD + ρD((l − 1)T )
1657
+ and U A
1658
+ l (E
1659
+ A′
1660
+ k , ∅, ∅) ̸= maxE
1661
+ A
1662
+ k ,EA
1663
+ k ,ED
1664
+ k U A
1665
+ l (E
1666
+ A
1667
+ k , EA
1668
+ k , ED
1669
+ k ) are
1670
+ true, then the attacker normally attacks nonzero num-
1671
+ ber of edges and the defender recovers nonzero number
1672
+ of edges, which imply that Combined Strategy 3 is op-
1673
+ timal (point 2b).
1674
+
1675
+ Remark 12 The characterization of optimal strategies
1676
+ in Proposition 11 also holds for a more general class of
1677
+ agent-group indices other than c(G′) defined in (5), as
1678
+ long as the utility function structure (7) and (8) does not
1679
+ change. Specifically, it holds for those indices that belong
1680
+ to the class given by
1681
+ C := {˜c : 2V × 2E → R : ˜c((V, E ∪ E′)) ≥ ˜c((V, E)),
1682
+ E, E′ ⊆ E}.
1683
+ (16)
1684
+ The condition ˜c((V, E ∪ E′)) ≥ ˜c((V, E)) implies that not
1685
+ attacking results in the maximum value of ˜c(GA
1686
+ l,α) of the
1687
+ attacker. Similarly, for the defender, this condition im-
1688
+ plies that not recovering given the attacks results in the
1689
+ minimum value of ˜c(GD
1690
+ l,α). This condition is necessary
1691
+ for ensuring the equilibrium as in Proposition 11, since it
1692
+ guarantees that attacking/recovering nonzero number of
1693
+ edges (corresponding to Combined Strategy 3) is always
1694
+ optimal for the players as long as they have the energy to
1695
+ do so.
1696
+ In general, since the cases discussed above are for one
1697
+ step only, for longer h > 1 the optimal strategies will
1698
+ take form of a set of combined strategies. For exam-
1699
+ ple, if h = 3, the sequence of optimal strategies may be
1700
+ {Combined Strategy 1, Combined Strategy 2, Combined
1701
+ Strategy 2}. On the other hand, for a > 0, the condition
1702
+ in Proposition 11 becomes more complicated to charac-
1703
+ terize since attacking more edges does not necessarily
1704
+ result in the highest possible utility.
1705
+ 8
1706
+ Simulation Results
1707
+ 8.1
1708
+ Consensus and Clustering across Parameters
1709
+ Here we show how the consensus varies across different
1710
+ weights of the utility functions and the initial states.
1711
+ 8.1.1
1712
+ Varying Weights a and b
1713
+ We consider the 4-agents line/path graph 1–2–3–4 with
1714
+ initial states x0 = [1, 0.75, 0.75, −1]T. The parameters
1715
+ 12
1716
+
1717
+ 0
1718
+ 5
1719
+ 10
1720
+ 15
1721
+ 20
1722
+ 25
1723
+ 30
1724
+ Time
1725
+ -1
1726
+ -0.5
1727
+ 0
1728
+ 0.5
1729
+ 1
1730
+ State
1731
+ agent 1
1732
+ agent 2
1733
+ agent 3
1734
+ agent 4
1735
+ Fig. 5. Agent states with a = 0.1 and b = 0.9
1736
+ 0
1737
+ 5
1738
+ 10
1739
+ 15
1740
+ 20
1741
+ 25
1742
+ 30
1743
+ Time
1744
+ -1
1745
+ -0.5
1746
+ 0
1747
+ 0.5
1748
+ 1
1749
+ State
1750
+ agent 1
1751
+ agent 2
1752
+ agent 3
1753
+ agent 4
1754
+ Fig. 6. Agent states with a = 0.9 and b = 0.1
1755
+ 0
1756
+ 5
1757
+ 10
1758
+ 15
1759
+ 20
1760
+ 25
1761
+ 30
1762
+ Time
1763
+ Edges
1764
+ Fig. 7. Attacked and recovered edges with a = 0.1 and b = 0.9
1765
+ 0
1766
+ 5
1767
+ 10
1768
+ 15
1769
+ 20
1770
+ 25
1771
+ 30
1772
+ Time
1773
+ Edges
1774
+ Fig. 8. Attacked and recovered edges with a = 0.9 and b = 0.1
1775
+ are βA = βD = 1, h = β
1776
+ A = 2, κA = ρA = 2.6, ρD =
1777
+ 0.3, and κD = 0.8, which satisfy the necessary condition
1778
+ for preventing consensus in Proposition 3, but not the
1779
+ sufficient condition in Proposition 6. With b = 1 − a,
1780
+ Figs. 5 and 6 show the agent states with small a (at a =
1781
+ 0.1) and large a (at a = 0.9), respectively. Figs. 7 and 8
1782
+ illustrate the status of the edges in GD
1783
+ k over discrete time
1784
+ k. There, no line in the corresponding edge implies that
1785
+ the edge is strongly attacked; likewise, dashed red lines:
1786
+ normally attacked, dashed black lines: recovered, and
1787
+ solid black lines: not attacked.
1788
+ 0.1
1789
+ 0.2
1790
+ 0.3
1791
+ 0.4
1792
+ 0.5
1793
+ 0.6
1794
+ 0.7
1795
+ 0.8
1796
+ 0.9
1797
+ 0
1798
+ 2
1799
+ 4
1800
+ 6
1801
+ 8
1802
+ 10
1803
+ 12
1804
+ 170
1805
+ 180
1806
+ 190
1807
+ 200
1808
+ 210
1809
+ 220
1810
+ 230
1811
+ Fig. 9. Comparison of zk and − � c(GD
1812
+ k ) (k = 20) versus a
1813
+ 1
1814
+ 2
1815
+ 3
1816
+ 4
1817
+ 6
1818
+ 5
1819
+ 7
1820
+ 8
1821
+ 9
1822
+ 10
1823
+ Fig. 10. Graph used for simulation in Section 8.1.2
1824
+ We observe that for small a, the attacker more often
1825
+ divides the agents into more groups, indicated by more
1826
+ dashed red lines in Fig. 7. As a result, the attacker fails
1827
+ to prevent consensus among the agents (Fig. 5), despite
1828
+ the condition in Proposition 3 being satisfied. On the
1829
+ other hand, with large a, the attacker is more focused
1830
+ to make the difference among agents’ states larger while
1831
+ separating the agents into fewer groups compared to the
1832
+ case with small a. These features can be seen in Fig. 8,
1833
+ where there are no black lines in the edge e34, and thus
1834
+ no consensus among the agents in Fig. 6.
1835
+ We next present a comparison in the optimal state dif-
1836
+ ference zk(E
1837
+ A∗
1838
+ k , EA∗
1839
+ k , ED∗
1840
+ k ) and agent-group index c(GD
1841
+ k )
1842
+ across different a and b = 1 − a in Fig. 9. We observe
1843
+ that with larger a, the attacker successfully prevents con-
1844
+ sensus among agents (shown with larger value of zk) at
1845
+ time k = 20. On the other hand, with smaller a (corre-
1846
+ sponding to larger b), the attacker obtains higher c(GD
1847
+ k )
1848
+ at the cost of low zk, implying that the attacker fails to
1849
+ prevent consensus. It is interesting that the values of zk
1850
+ and � c(GD
1851
+ k ) remain almost constant for some different
1852
+ a, implying that there is a critical value of weights a and
1853
+ b that determine the consensus and the number of clus-
1854
+ ters at infinite time; in this case, the critical value of a
1855
+ is located in 0.4 < a < 0.5.
1856
+ 8.1.2
1857
+ Varying Initial States x0
1858
+ We also observe how the initial states x0 affect the agent-
1859
+ group index of the agents. We consider the graph shown
1860
+ in Fig. 10, which consists of 10 agents. All parameters
1861
+ other than the initial states are set to be the same and
1862
+ satisfy the conditions in Proposition 3. Specifically, we
1863
+ set βA = βD = 1, β
1864
+ A = 2, κA = ρA = 2.1, κD = ρD =
1865
+ 0.7, and a = 1 − b = 0.9. The state trajectories of the
1866
+ agents with varying x0 are shown in Figs. 11–13. Here
1867
+ we consider three cases of initial states x0:
1868
+ 13
1869
+
1870
+ (1) x0 = [1, 0.9, 0.8, 0.4, 0.44, 0.35, 0.48, 0.2, 0.19, 0.28]T,
1871
+ (2) x0 = [1, 0.9, 0.8, 0.4, 0.44, 0.35, 0.48, −0.5, −0.1, −0.2]T,
1872
+ (3) x0 = [0.6, 0.5, 0.8, 0.4, 0.44, 0.35, 0.48, 0.58, 0.8, 0.75]T.
1873
+ Note that in Case (1), agents 1–3 have closer initial states
1874
+ and are far from the other agents. Similarly, in Case (2),
1875
+ agents 8–10 have initial states that are different from
1876
+ the other agents. However, in Case (3), agent states are
1877
+ distributed approximately evenly in the range [0.35, 0.8]
1878
+ so that it is hard for the attacker to divide them into
1879
+ clusters.
1880
+ From Fig. 11, we can see that in Case (1), agents 1–3,
1881
+ which have weak connection to other agents (only con-
1882
+ nected by one edge), are grouped together and converge
1883
+ to the same state. This occurs by attacking the edge con-
1884
+ necting agents 3 and 5. On the other hand, in Fig. 12
1885
+ for Case (2), agents 8–10 are separated from the others
1886
+ because the edge connecting agents 5 and 8 is attacked
1887
+ continuously. Clearly, in Cases (1) and (2) it is easier for
1888
+ the attacker to separate agents since their initial states
1889
+ form clusters matching the network topology.
1890
+ In Case (3), however, the initial state values do not ex-
1891
+ hibit such properties and as a result, the states converge
1892
+ towards the same value as shown in Fig. 13. In this sim-
1893
+ ulation, the attacker is not able to effectively attack cer-
1894
+ tain edges at all times; as a consequence, the agents are
1895
+ not divided into clusters and thus consensus happens.
1896
+ The attacker may be able to prevent consensus with
1897
+ higher weight a, as discussed in Section 8.1.1 above.
1898
+ For obtaining Figs. 11–13, we solve combinatorial opti-
1899
+ mization problems to find optimal strategies of the play-
1900
+ ers. We remark that the computational complexity of
1901
+ this problem depends on the number of edges E of G. We
1902
+ have reduced the complexity by disregarding some com-
1903
+ binations of edges that are clearly not optimal; for ex-
1904
+ ample, attacking only the edge connecting agents 4 and
1905
+ 7 does not disconnect the graph, and thus cannot be the
1906
+ best move for the attacker.
1907
+ 8.1.3
1908
+ Varying Energy and Cost Parameters
1909
+ We continue by discussing the effect of the attacker’s
1910
+ recharge rate ρA and unit costs of attacks βA and β
1911
+ A
1912
+ on the consensus and cluster forming. Recall that in the
1913
+ theoretical results in Sections 5 and 6, the ratios of ρA
1914
+ to β
1915
+ A and ρA to βA are used to derive the necessary con-
1916
+ ditions and sufficient conditions for preventing consen-
1917
+ sus as well as the upper bound of the number of clusters
1918
+ formed at infinite time.
1919
+ Assuming that b = 0, the number of clusters is dictated
1920
+ by ρA/β
1921
+ A as discussed in Proposition 9. We show the
1922
+ number of clusters over different topologies of the un-
1923
+ derlying graph G in Fig. 14. We consider networks with
1924
+ 0
1925
+ 5
1926
+ 10
1927
+ 15
1928
+ 20
1929
+ 25
1930
+ 30
1931
+ Time
1932
+ 0
1933
+ 0.2
1934
+ 0.4
1935
+ 0.6
1936
+ 0.8
1937
+ 1
1938
+ State
1939
+ Fig. 11. Agent states in Case 1
1940
+ 0
1941
+ 5
1942
+ 10
1943
+ 15
1944
+ 20
1945
+ 25
1946
+ 30
1947
+ Time
1948
+ -0.5
1949
+ 0
1950
+ 0.5
1951
+ 1
1952
+ State
1953
+ Fig. 12. Agent states in Case 2
1954
+ 0
1955
+ 5
1956
+ 10
1957
+ 15
1958
+ 20
1959
+ 25
1960
+ 30
1961
+ Time
1962
+ 0.3
1963
+ 0.4
1964
+ 0.5
1965
+ 0.6
1966
+ 0.7
1967
+ 0.8
1968
+ State
1969
+ Fig. 13. Agent states in Case 3
1970
+ n = 5, with the edges positioned to yield the most con-
1971
+ nected topology, i.e., maximum λ, given the same num-
1972
+ ber of edges |E|. Note that, with n = 5, there are at
1973
+ most n(n−1)/2 = 10 number of edges in the underlying
1974
+ graph G (which happens for the complete graph G). We
1975
+ observe that with ρA/β
1976
+ A ≥ |E|, the agents are divided
1977
+ into 5 clusters (all agents are separated) as shown in the
1978
+ upper left area of the figure indicated by “5” as derived
1979
+ in Proposition 6 whereas in the lower right area indi-
1980
+ cated by “1” the agents converge to the same cluster. It
1981
+ is clear that in a more connected graph, the agents are
1982
+ more likely to converge to a fewer number of clusters.
1983
+ 8.2
1984
+ Players’ Performance Under Varying Horizon
1985
+ Length and Game Period
1986
+ In this subsection, we evaluate the players’ performance
1987
+ under varying horizon length h and game period T . To
1988
+ evaluate the performance of the players, we introduce
1989
+ the applied utilities ˆU A
1990
+ k := azk(E
1991
+ A∗
1992
+ k , EA∗
1993
+ k , ED∗
1994
+ k )−bc(GD∗
1995
+ k )
1996
+ and
1997
+ ˆU D
1998
+ k
1999
+ :=
2000
+ −azk(E
2001
+ A∗
2002
+ k , EA∗
2003
+ k , ED∗
2004
+ k ) + bc(GD∗
2005
+ k ), with
2006
+ GD∗
2007
+ k
2008
+ = (V, ((E \ (E
2009
+ A∗
2010
+ k
2011
+ ∪ EA∗
2012
+ k )) ∪ ED∗
2013
+ k ). These are el-
2014
+ 14
2015
+
2016
+ PSfrag replacements
2017
+ |E|
2018
+ ρA
2019
+ β
2020
+ A
2021
+ Fig. 14. Number of clusters at k = 50 with b = 0. The un-
2022
+ derlying graphs used are those with 5 agents with maximum
2023
+ 10 edges.
2024
+ 0
2025
+ 2
2026
+ 4
2027
+ 6
2028
+ 8
2029
+ 10
2030
+ 12
2031
+ 14
2032
+ 16
2033
+ 18
2034
+ Time
2035
+ 0
2036
+ 5
2037
+ 10
2038
+ 15
2039
+ 20
2040
+ 25
2041
+ 30
2042
+ Fig. 15. �
2043
+ k ˆU A
2044
+ k in the path graph (solid lines) and the com-
2045
+ plete graph (dashed lines) for varying value of h. The ap-
2046
+ plied utility for h = 2 and h = 3 in the path graph is almost
2047
+ identical.
2048
+ ements of utility functions U A
2049
+ l
2050
+ and U D
2051
+ l
2052
+ correspond-
2053
+ ing to the αth step, α
2054
+ =
2055
+ k mod T + 1, of the
2056
+ game with index l = ⌊k/T ⌋ + 1, where the obtained
2057
+ strategies (E
2058
+ A∗
2059
+ (l−1)T +α−1, EA∗
2060
+ (l−1)T +α−1, ED∗
2061
+ (l−1)T +α−1)
2062
+ =
2063
+ (E
2064
+ A∗
2065
+ l,α, EA∗
2066
+ l,α, ED∗
2067
+ l,α) are applied. Since U A
2068
+ l
2069
+ = −U D
2070
+ l , having
2071
+ higher applied utility for the attacker implies lower ap-
2072
+ plied utility for the defender. Note that the values of h
2073
+ and T are uniform among the players.
2074
+ In this subsection, we consider the weight aij = ˆa, ˆa <
2075
+ 1/n in (2) which implies that different agents have dif-
2076
+ ferent convergence speeds depending on the number of
2077
+ their neighbors. Furthermore, we consider various ini-
2078
+ tial states x0 for the agents in order to more accurately
2079
+ evaluate the attacker’s performance and the pattern of
2080
+ applied utilities ˆU A
2081
+ k . We use up to 1000 randomly gener-
2082
+ ated initial states in this simulation for each agent rang-
2083
+ ing from −1 to 1. Throughout this subsection, we use
2084
+ parameters n = 3, ρA = 1.1, κA = 7, β
2085
+ A = 2βA = 1.
2086
+ 8.2.1
2087
+ Players’ Performance Under Varying Horizon
2088
+ Length
2089
+ We now consider the case of varying value of horizon
2090
+ length h when the network is a path graph and a com-
2091
+ plete graph. Note that the value of h is still uniform
2092
+ among the attacker and the defender. The evolutions of
2093
+ the attacker’s applied utility ˆU A
2094
+ k with varying h (with
2095
+ T = 1 for every h) are shown in Fig. 15.
2096
+ Table 3
2097
+ Difference in the optimal actions and the resulting utilities
2098
+ in the path graph G between h = 2 and h = 3
2099
+ Initial states
2100
+ |E
2101
+ A∗
2102
+ 0 |
2103
+ �19
2104
+ k=0 ˆU A
2105
+ k
2106
+ h = 2
2107
+ h = 3
2108
+ h = 2
2109
+ h = 3
2110
+ [0.824, −0.798, −0.413]T
2111
+ 2
2112
+ 2
2113
+ 37.74
2114
+ [−0.983, 0.649, 0.535]T
2115
+ 2
2116
+ 2
2117
+ 39.89
2118
+ [−0.787, −0.786, −0.265]T
2119
+ 2
2120
+ 1
2121
+ 28.41
2122
+ 30.00
2123
+ [0.624, 0.629, −0.821]T
2124
+ 2
2125
+ 1
2126
+ 37.92
2127
+ 43.45
2128
+ 0
2129
+ 2
2130
+ 4
2131
+ 6
2132
+ 8
2133
+ 10
2134
+ 12
2135
+ 14
2136
+ 16
2137
+ 18
2138
+ Time
2139
+ 0
2140
+ 5
2141
+ 10
2142
+ 15
2143
+ 20
2144
+ 25
2145
+ 30
2146
+ Fig. 16. �
2147
+ k ˆU A
2148
+ k in the path graph (solid lines) and the com-
2149
+ plete graph (dashed lines) for varying T . The applied utility
2150
+ for T = 1 and T = 2 in the path graph is almost identical.
2151
+ Since the path graph is the least connected graph, the
2152
+ attacker will be able to make multiple groups of agents
2153
+ relatively easily compared to more connected graphs. As
2154
+ a result, the attacker may not need to have a very long
2155
+ horizon length h to improve its utility since it does not
2156
+ need to save energy as much compared to the case of
2157
+ the complete graph. This is shown with the overlapping
2158
+ red and yellow solid lines in the Fig. 15, implying that
2159
+ the horizon length h = 3 is already as good as the case
2160
+ of h = 2. On the other hand, the blue solid line is far
2161
+ below the red and the yellow ones, implying that having
2162
+ h being too short can result in a worse utility for the
2163
+ attacker over time.
2164
+ The differences of the attacker’s strategies for some no-
2165
+ table cases in the path graph G between h = 2 and
2166
+ h = 3 are shown in Table 3. Here, we see the difference
2167
+ in the optimal actions between the attacker with h = 2
2168
+ and h = 3 in the path graph G even though the plots
2169
+ of applied utilities in Fig. 15 are very similar. We ob-
2170
+ serve that when the initial states of some agents are suf-
2171
+ ficiently close, the attacker with h = 2 keeps attacking
2172
+ both edges at k = 0, whereas the attacker with h = 3
2173
+ chooses to save its energy by attacking fewer edges. At
2174
+ k = 19 the attacker with h = 3 obtains higher applied
2175
+ utility, indicating that it is able to better use its energy
2176
+ than the attacker with h = 2 by attacking later.
2177
+ On the other hand, since the complete graph is the most
2178
+ connected graph, here the attacker will need more energy
2179
+ to disconnect the graph and obtain some utility. Conse-
2180
+ quently, even with longer h, the difference of � ˆU A
2181
+ k is
2182
+ smaller compared to the path graph case. The difference
2183
+ 15
2184
+
2185
+ 5
2186
+ 5
2187
+ 5
2188
+ 5
2189
+ 5
2190
+ 4
2191
+ 5
2192
+ 4
2193
+ 3
2194
+ 4
2195
+ 3
2196
+ 310
2197
+ 5
2198
+ 5
2199
+ 5
2200
+ 5
2201
+ 5
2202
+ 5
2203
+ 5
2204
+ 9
2205
+ 5
2206
+ 5
2207
+ 5
2208
+ 5
2209
+ 5
2210
+ 5
2211
+ 5
2212
+ 8
2213
+ 5
2214
+ 5
2215
+ 5
2216
+ 5
2217
+ 5
2218
+ 5
2219
+ 5
2220
+ 7
2221
+ 5
2222
+ 5
2223
+ 5
2224
+ 5
2225
+ 5
2226
+ 5
2227
+ 53
2228
+ 3
2229
+ 2
2230
+ 3
2231
+ 2
2232
+ 2
2233
+ 2
2234
+ 2
2235
+ 2
2236
+ 2
2237
+ 2
2238
+ 1
2239
+ 1
2240
+ 1
2241
+ 1
2242
+ 1
2243
+ 1
2244
+ 1
2245
+ 8
2246
+ 6
2247
+ 109
2248
+ 5
2249
+ 5
2250
+ 5
2251
+ 5
2252
+ 5
2253
+ 5
2254
+ 4
2255
+ a
2256
+ 5
2257
+ 5
2258
+ 5
2259
+ 5
2260
+ 5
2261
+ 5
2262
+ 4
2263
+ 3
2264
+ 4
2265
+ 5
2266
+ 5
2267
+ 5
2268
+ 5
2269
+ 4
2270
+ 3
2271
+ 3
2272
+ 3
2273
+ 5
2274
+ 5
2275
+ 5
2276
+ 4
2277
+ 3
2278
+ 3
2279
+ 2
2280
+ 2
2281
+ 5
2282
+ 5
2283
+ 4
2284
+ 3
2285
+ 2
2286
+ 2
2287
+ 2
2288
+ 1
2289
+ 5
2290
+ 4
2291
+ 3
2292
+ 2
2293
+ 1
2294
+ 1
2295
+ 1
2296
+ 1
2297
+ 2
2298
+ 3
2299
+ 4
2300
+ 5
2301
+ 9
2302
+ 7
2303
+ ed6between the red and the yellow dashed lines is clearer
2304
+ however, suggesting that the attacker still benefits by
2305
+ having h = 3 (compared to the very little difference in
2306
+ the path graph case). The attacker’s different behavior
2307
+ for the path graph and the complete graph G suggests
2308
+ that in a less connected graph, the effectiveness of longer
2309
+ h may saturate from a lower value compared to the one
2310
+ in a more connected graph G, given the attacker’s energy
2311
+ parameters.
2312
+ In general, we observe that having a longer h may re-
2313
+ sult in a better applied utility for the attacker over time
2314
+ due to its role as a leader of the game, i.e., the attacker
2315
+ moves first and is able to choose its strategy that min-
2316
+ imizes the defender’s best response. Additionally, there
2317
+ is also a clear pattern on when � ˆU A
2318
+ k increases; this im-
2319
+ plies that the variation of initial states may not affect
2320
+ the attacker’s optimal strategy, except in some cases as
2321
+ explained above.
2322
+ We also remark that the effect of different values of h is
2323
+ also influenced by the underlying graph G. Specifically,
2324
+ in a less connected graph G, having a very short horizon
2325
+ may even be more harmful compared to the case with a
2326
+ more connected G. For example, in Fig. 16, the difference
2327
+ of � ˆU A
2328
+ k in the path graph between h = 1 and h = 2 is
2329
+ much more apparent than in the complete graph. The
2330
+ possible reason is that in the path graph, it is easier for
2331
+ the attacker to disconnect all agents and make n groups
2332
+ at some time steps. Thus, with large enough h, the at-
2333
+ tacker can save enough energy to make n groups more
2334
+ often. On the other hand, we also observe that increasing
2335
+ horizon length from h = 2 to h = 3 has minimal effect
2336
+ on the attacker’s utility for the path graph, indicating
2337
+ that increasing horizon length past a certain value may
2338
+ not be beneficial anymore. As we see later, the similar
2339
+ phenomenon also happens for varying values of T .
2340
+ 8.2.2
2341
+ Players’ Performance Under Varying Game Pe-
2342
+ riod
2343
+ We then continue by simulating the case of varying value
2344
+ of game period T (value of h is set to be h = 3 for both
2345
+ players so that the assumption T ≤ h is always satisfied).
2346
+ The average value of � ˆU A
2347
+ k over time is shown in Fig. 16,
2348
+ where in general, the attacker with shorter game period
2349
+ T has higher applied utility especially at later time for
2350
+ both the path graph and the complete graph G.
2351
+ The attacker with shorter T will be more adaptive to
2352
+ the changes of the agents’ and players’ conditions. In the
2353
+ context of this game, the attacker with shorter T may
2354
+ delay the attack further to maximize its utility later.
2355
+ This in turn increases the attacker’s utility at later time,
2356
+ similar to the case of longer h discussed above. Note that
2357
+ the yellow dashed and solid lines are the same as the
2358
+ yellow lines in Fig. 15, and we observe that the green
2359
+ and the purple lines do not differ as much as the red and
2360
+ Table 4
2361
+ Average total number of edges attacked in the path graph G
2362
+ h
2363
+ T
2364
+ �k
2365
+ m=0|E A∗
2366
+ m | (Normal)
2367
+ �k
2368
+ m=0|E
2369
+ A∗
2370
+ m | (Strong)
2371
+ k = 9
2372
+ k = 19
2373
+ k = 9
2374
+ k = 19
2375
+ 1
2376
+ 1
2377
+ 7
2378
+ 16
2379
+ 5
2380
+ 6
2381
+ 2
2382
+ 0
2383
+ 0
2384
+ 8
2385
+ 13.959
2386
+ 3
2387
+ 0
2388
+ 0
2389
+ 7.993
2390
+ 13.971
2391
+ 2
2392
+ 0
2393
+ 0
2394
+ 8
2395
+ 13.970
2396
+ 3
2397
+ 2.970
2398
+ 4.970
2399
+ 7.003
2400
+ 11.015
2401
+ the blue lines in Fig. 15, indicating that for the attacker,
2402
+ having a large value of T may not be as disadvantageous
2403
+ as having short h.
2404
+ Table 4 shows the average number of edges attacked by
2405
+ normal and strong jamming signals given different values
2406
+ of h and T . It is interesting to note that for h > T ,
2407
+ the attacker never attacks any edge with normal signals,
2408
+ indicating that it prefers to save its energy to use it later
2409
+ for more powerful attacks. Consequently, the number of
2410
+ edges attacked strongly with h > T becomes more than
2411
+ those in the case of h = T , which results in the larger
2412
+ applied utilities as described above. We can also observe
2413
+ that in the case of h = 3 and T = 1, the attacker is
2414
+ able to strongly attack more edges than the other cases
2415
+ in Table 4 in average at k = 19, even though at k = 9
2416
+ it attacks slightly fewer edges than the case of closer
2417
+ values of h and T . This suggests that the attacker tends
2418
+ to save its energy more in the case of larger value of h
2419
+ and smaller T .
2420
+ 9
2421
+ Conclusion
2422
+ We have formulated a two-player game in a cluster form-
2423
+ ing of resilient multiagent systems played over time. The
2424
+ players consider the impact of their actions on future
2425
+ communication topology and agent states, and adjust
2426
+ their strategies according to a rolling horizon approach.
2427
+ Necessary conditions and sufficient conditions for form-
2428
+ ing clusters among agents have been derived. We have
2429
+ discussed the effect of the weights of the utility func-
2430
+ tions and different initial states on cluster forming, and
2431
+ evaluated the effects of varying horizon length and game
2432
+ period on the players’ performance.
2433
+ Possible future extensions include the case where the
2434
+ players’ utility functions are not zero-sum, the case
2435
+ where the players do not have perfect knowledge, and
2436
+ the setting where each agent is capable to decide its own
2437
+ strategies in a decentralized way. We have also consid-
2438
+ ered in [22] the case where the players’ horizon lengths
2439
+ and game periods are not uniform. This case can be fur-
2440
+ ther generalized to decentralized settings where agents
2441
+ decide their own strategies in an asynchronous way.
2442
+ 16
2443
+
2444
+ Furthermore, it is also interesting to consider a case
2445
+ where the players may not have a complete knowledge of
2446
+ the other players. This incomplete version of the game
2447
+ is considered in [23].
2448
+ References
2449
+ [1]
2450
+ C.
2451
+ Altafini.
2452
+ Consensus
2453
+ problems
2454
+ on
2455
+ networks
2456
+ with
2457
+ antagonistic interactions.
2458
+ IEEE Trans. Autom. Control,
2459
+ 58(4):935–946, 2013.
2460
+ [2]
2461
+ F. Bullo.
2462
+ Lectures on Network Systems.
2463
+ Kindle Direct
2464
+ Publishing, 2019.
2465
+ [3]
2466
+ A. Cetinkaya, H. Ishii, and T. Hayakawa. Networked control
2467
+ under random and malicious packet losses.
2468
+ IEEE Trans.
2469
+ Autom. Control, 62:2434–2449, 2017.
2470
+ [4]
2471
+ A. Cetinkaya, H. Ishii, and T. Hayakawa. The effect of time-
2472
+ varying jamming interference on networked stabilization.
2473
+ SIAM J. Control Optim., 56:2398–2435, 2018.
2474
+ [5]
2475
+ A. Cetinkaya, K. Kikuchi, T. Hayakawa, and H. Ishii.
2476
+ Randomized transmission protocols for protection against
2477
+ jamming attacks in multi-agent consensus. Automatica, 117,
2478
+ 2020.
2479
+ [6]
2480
+ J. Chen, C. Touati, and Q. Zhu. A dynamic game approach to
2481
+ strategic design of secure and resilient infrastructure network.
2482
+ IEEE Trans. Inf. Forensics Security, 15:462–474, 2020.
2483
+ [7]
2484
+ G. De Pasquale and M. Elena Valcher. Consensus for clusters
2485
+ of agents with cooperative and antagonistic relationships.
2486
+ Automatica, page 110002, 2022.
2487
+ [8]
2488
+ S. M. Dibaji, H. Ishii, and R. Tempo. Resilient randomized
2489
+ quantized
2490
+ consensus.
2491
+ IEEE
2492
+ Trans.
2493
+ Autom.
2494
+ Control,
2495
+ 63(8):2508–2522, 2018.
2496
+ [9]
2497
+ D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
2498
+ [10] X. Gong, L. Duan, X. Chen, and J. Zhang.
2499
+ When social
2500
+ network effect meets congestion effect in wireless networks:
2501
+ Data usage equilibrium and optimal pricing. IEEE J. Sel.
2502
+ Areas Commun., 35(2):449–462, 2017.
2503
+ [11] H. Ishii and Q. Zhu.
2504
+ Security and Resilience of Control
2505
+ Systems: Theory and Applications, Lecture Notes in Control
2506
+ and Information Sciences, volume 489. Springer, 2022.
2507
+ [12] L.
2508
+ Jia,
2509
+ Y. Xu, Y.
2510
+ Sun,
2511
+ S. Feng,
2512
+ and A. Anpalagan.
2513
+ Stackelberg game approaches for anti-jamming defence in
2514
+ wireless networks.
2515
+ IEEE Wireless Commun., 25:120–128,
2516
+ 2018.
2517
+ [13] M. L. Katz and C. Shapiro. Systems competition and network
2518
+ effects. Journal of Economic Perspective, 8:93–115, 1994.
2519
+ [14] Y. Kuwata, T. Schouwenaars, A. Richards, and J. How.
2520
+ Robust constrained receding horizon control for trajectory
2521
+ planning. In Proc. AIAA Guidance, Navigation, and Control
2522
+ Conference and Exhibit, page 6079, 2005.
2523
+ [15] H. Li and W. Yan. Receding horizon control based consensus
2524
+ scheme in general linear multi-agent systems. Automatica,
2525
+ 56:12–18, 2015.
2526
+ [16] Y. Li, C. A. Courcoubetis, L. Duan, and R. Weber. Optimal
2527
+ pricing for peer-to-peer sharing with network externalities.
2528
+ IEEE/ACM Trans. Netw., 29(1):148–161, 2021.
2529
+ [17] Y. Li, D. E. Quevedo, S. Dey, and L. Shi.
2530
+ SINR-based
2531
+ DoS attack on remote state estimation: A game-theoretic
2532
+ approach. IEEE Trans. Control Netw. Syst., 4:632–642, 2017.
2533
+ [18] Y. Li, D. Shi, and T. Chen.
2534
+ False data injection attacks
2535
+ on networked control systems: A stackelberg game analysis.
2536
+ IEEE Trans. Autom. Control, 63:3503–3509, 2018.
2537
+ [19] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, and
2538
+ Q. Zhu.
2539
+ Cluster formation in multiagent consensus via
2540
+ dynamic resilient graph games. In Proc. IEEE Conf. Control
2541
+ Tech. App., pages 735–740, 2021.
2542
+ [20] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, and
2543
+ Q. Zhu. Dynamic resilient network games with applications
2544
+ to multiagent consensus. IEEE Trans. Control Netw. Syst.,
2545
+ 8:246–259, 2021.
2546
+ [21] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, and
2547
+ Q. Zhu.
2548
+ Rolling horizon games for cluster formation of
2549
+ resilient multiagent systems.
2550
+ In Proc. IEEE Conf. Dec.
2551
+ Contr., pages 4829–4834, 2021.
2552
+ [22] Y. Nugraha, A. Cetinkaya, T. Hayakawa, H. Ishii, and Q. Zhu.
2553
+ Rolling horizon games of resilient networks with non-uniform
2554
+ horizons. European Journal of Control, 68:100693, 2022.
2555
+ [23] Y. Nugraha, T. Hayakawa, H. Ishii, A. Cetinkaya, and Q. Zhu.
2556
+ Two-player incomplete games of resilient multiagent systems.
2557
+ arXiv:2212.01570.
2558
+ [24] M. Pirani, E. Nekouei, H. Sandberg, and K. H. Johansson.
2559
+ A graph-theoretic equilibrium analysis of attacker-defender
2560
+ game on consensus dynamics under H2 performance metric.
2561
+ IEEE Trans. Netw. Sci. Eng., 8:1991–2000, 2021.
2562
+ [25] H. Sandberg, S. Amin, and K. H. Johansson. Special issue on
2563
+ cyberphysical security in networked control systems. IEEE
2564
+ Control Syst. Mag., 35:20–23, 2015.
2565
+ [26] A. Sanjab and W. Saad. Data injection attacks on smart grids
2566
+ with multiple adversaries: A game-theoretic perspective.
2567
+ IEEE Trans. Smart Grid, 7:2038–2049, 2016.
2568
+ [27] T. Schouwenaars, J. How, and E. Feron. Receding horizon
2569
+ path planning with implicit safety guarantees.
2570
+ In Proc.
2571
+ American Control Conference, pages 5576–5581, 2004.
2572
+ [28] D. Senejohnny, P. Tesi, and C. De Persis. A jamming resilient
2573
+ algorithm for self-triggered network coordination.
2574
+ IEEE
2575
+ Trans. Control Netw. Syst., 5:981–990, 2018.
2576
+ [29] Y. Shang. Resilient cluster consensus of multiagent systems.
2577
+ IEEE Trans. Syst., Man, Cybern., Syst., 52:346–356, 2022.
2578
+ [30] E. Stefansson, J. F. Fisac, D. Sadigh, S. S. Sastry, and K. H.
2579
+ Johansson.
2580
+ Human-robot interaction for truck platooning
2581
+ using hierarchical dynamic games. In Proc. European Control
2582
+ Conference, pages 3165–3172, 2019.
2583
+ [31] W. Ren and R. W. Beard. Consensus seeking in multiagent
2584
+ systems under dynamically changing interaction topologies.
2585
+ IEEE Trans. Autom. Control, 50(5):655–661, 2005.
2586
+ [32] B. Wang, Y. Wu, K.J. Ray Liu, and T.C. Clancy. An anti-
2587
+ jamming stochastic game for cognitive radio networks. IEEE
2588
+ J. Sel. Areas Commun., 29(4):877–889, 2011.
2589
+ [33] D. Yang, G. Xue, J. Zhang, A. Richa, and X. Fang. Coping
2590
+ with a smart jammer in wireless networks: A Stackelberg
2591
+ game approach. IEEE Trans. Wireless Commun., 12:4038–
2592
+ 4047, 2013.
2593
+ [34] M. Zhu and S. Martinez.
2594
+ Stackelberg-game analysis of
2595
+ correlated attacks in cyber-physical systems.
2596
+ In Proc.
2597
+ American Control Conference, pages 4063–4068, 2011.
2598
+ [35] M. Zhu and S. Martinez.
2599
+ On the performance analysis of
2600
+ resilient networked control systems under replay attacks.
2601
+ IEEE Trans. Autom. Control, 59(3):804–808, 2014.
2602
+ 17
2603
+
6dE1T4oBgHgl3EQfmwTN/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAyT4oBgHgl3EQf2_mV/content/tmp_files/2301.00761v1.pdf.txt ADDED
@@ -0,0 +1,4133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The non-intrusive reduced basis two-grid method applied to
2
+ sensitivity analysis
3
+ January 3, 2023
4
+ Elise Grosjean 1, Bernd Simeon 1
5
+ Abstract
6
+ This paper deals with the derivation of Non-Intrusive Reduced Basis (NIRB) techniques for sensitivity anal-
7
+ ysis, more specifically the direct and adjoint state methods. For highly complex parametric problems, these
8
+ two approaches may become too costly.
9
+ To reduce computational times, Proper Orthogonal Decomposition
10
+ (POD) and Reduced Basis Methods (RBMs) have already been investigated. The majority of these algorithms
11
+ are however intrusive in the sense that the High-Fidelity (HF) code must be modified. To address this issue,
12
+ non-intrusive strategies are employed. The NIRB two-grid method uses the HF code solely as a “black-box”,
13
+ requiring no code modification. Like other RBMs, it is based on an offline-online decomposition. The offline
14
+ stage is time-consuming, but it is only executed once, whereas the online stage is significantly less expensive
15
+ than an HF evaluation.
16
+ In this paper, we propose new NIRB two-grid algorithms for both the direct and adjoint state methods.
17
+ On a classical model problem, the heat equation, we prove that HF evaluations of sensitivities reach an optimal
18
+ convergence rate in L∞(0, T; H1(Ω)), and then establish that these rates are recovered by the proposed NIRB
19
+ approximations. These results are supported by numerical simulations. We then numerically demonstrate that
20
+ a further deterministic post-treatment can be applied to the direct method. This further reduces computational
21
+ costs of the online step while only computing a coarse solution of the initial problem. All numerical results are
22
+ run with the model problem as well as a more complex problem, namely the Brusselator system.
23
+ 1
24
+ Introduction.
25
+ Sensitivity analysis is a critical step in optimizing the parameters of a parametric model. The goal is to see how
26
+ sensitive its results are to small changes of its input parameters. It is especially useful in the biomedical field
27
+ when experiments are extremely complex or prohibitively expensive. Indeed, conducting several experiments to
28
+ determine the impact of all parameters involved in biological processes may be difficult, if not impossible.
29
+ Several methods have been developed for computing sensitivities, see [4] for an overview. We focus here
30
+ on two differential-based sensitivity analysis approaches in connection with models given as reaction-diffusion
31
+ equations.
32
+ • “The direct method”, also known as the ”forward method”, which may be used when dealing with dis-
33
+ cretized solutions of parametric Partial Differential Equations (PDEs). The sensitivities (of the solution or
34
+ other outputs of interest) are computed directly from the original problem. One drawback is that it necessi-
35
+ tates solving a new system for each parameter of interest, i.e., for P parameters of interest, P + 1 problems
36
+ have to be solved.
37
+ • “The adjoint state method”, also known as the ”backward method”. It may be a viable option [44] when the
38
+ direct method becomes prohibitively expensive. In this setting, the goal is to compute the sensitivities of an
39
+ objective function that one aims at minimizing. The associated Lagrangian is formulated, and by choosing
40
+ appropriate multipliers, a new system known as ”the adjoint” is derived. This approach is preferred in
41
+ many situations since it avoids calculating the sensitivities with respect to the solutions. For example,
42
+ in the framework of inverse problems, one can determine the ”true” parameter from several measures
43
+ 1Felix-Klein-Institut f¨ur Mathematik, Kaiserslautern TU, 67657, Deutschland
44
+ 1
45
+ arXiv:2301.00761v1 [math.NA] 2 Jan 2023
46
+
47
+ (which are frequently provided by multiple sensors) while combining it with a gradient-type optimization
48
+ algorithm. As a result, we get the ”integrated effects” on the outputs over a time interval. The advantage is
49
+ that it only requires two systems to solve regardless of the number of parameters of interest.
50
+ Thus, the direct method is appealing when there are relatively few parameters or a large number of objective
51
+ functions, whereas the adjoint state method is preferred when there are many parameters and few objective
52
+ functions.
53
+ Earlier works.
54
+ For extremely complex simulations, both methods may still be impractical. Several reduction
55
+ techniques have thus been investigated in order to reduce the complexity of the sensitivity computation. Among
56
+ them, Reduced Basis Methods (RBMs) are a well-developed field [36, 40, 3]. They use an offline-online decompo-
57
+ sition, in which the offline step is time-consuming but is only performed once, and the online step is significantly
58
+ less expensive than a High-Fidelity (HF) evaluation. In the context of sensitivity analysis, the majority of these
59
+ studies rely on a Galerkin projection onto the adjoint state system in the online part. In what follows, we present
60
+ a brief review of previous works on RBMs combined with both sensitivity methods.
61
+ • Let us begin with the direct method. It has been employed and studied with RB spaces in various applica-
62
+ tions, e. g., [39, 47, 13]). The sensitivities may also be useful to enhance the reduced state approximation.
63
+ Unlike the other studies cited below, the sensitivities in [25] are computed to improve RB methods (see
64
+ also [24] with a Lagrangian formulation or [23] with a finite difference approach [23]). Still to improve an
65
+ approximation, in [31], a combined method is proposed (based on local and global approximations with
66
+ series expansion and a RB expression), which was first developed in [30].
67
+ Note also that variance-based sensitivity analysis has been investigated using RBMs [28] and non-intrusive
68
+ RB [34].
69
+ • The adjoint state formulation can be thought of as a PDE-constrained optimization. The first applications
70
+ of this method in conjunction with computational reduction approaches can be found in [27] in the context
71
+ of RBMs, where several RB sub-spaces are compared or in [42] with the POD method, with an affine
72
+ parameter dependence. Currently, particular emphasis is being placed on developing accurate a-posteriori
73
+ error estimates in order to improve basis generation [41, 46, 11, 12] with Proper Orthogonal Decomposition
74
+ (POD) and/or RBMs.
75
+ RBMs and POD have also been investigated in the context of optimal control under uncertainty [9]. In
76
+ recent studies, the case of infinite-dimensional control function is considered with RB approximations on
77
+ the state, adjoint, and control variables [29, 1]. Even if the adjoint state method is frequently preferred,
78
+ writing its associated reduced problem can be difficult when the adjoint formulation is not straightforward.
79
+ It may also be reformulated to take advantage of previously developed RB theory. For example, in [38], it
80
+ is rewritten as a saddle-point problem for Stokes-type problems.
81
+ To conclude this brief overview of RBMs applied to sensitivity analysis, we add that non-intrusive methods have
82
+ been developed, in the framework of the inverse problem, without computing the sensitivities (see the PBDW
83
+ method [37, 22, 10] with a direct formulation).
84
+ Motivation.
85
+ Even though the Galerkin projection is prevalent in the literature, its main disadvantage lies in its
86
+ intrusiveness. Indeed, in order to approximate the solution of a PDE, the matrices computed from its variational
87
+ formulation must be changed in the HF code. This may be difficult if the HF is very complex or even impossible
88
+ if it has been purchased, as is often the case in an industrial context. From an engineering standpoint, Non-
89
+ Intrusive Reduced Basis (NIRB) methods are more practical to implement than intrusive RBMs because they only
90
+ require the execution of the HF code as a ”black-box” solver. Apparently, NIRB methods have not yet been used
91
+ to approximate sensitivities except for statistical approaches such as variance-based sensitivity analysis.
92
+ In this paper, we aim at computing the sensitivities with respect to some parameters of interest µ ∈ G,
93
+ with the direct and adjoint methods combined with NIRB techniques. We focus on the NIRB two-grid method
94
+ [7, 17, 8, 43] (see also different NIRB methods [6, 2, 15] from the two-grid method). Like most RBMs, the NIRB
95
+ two-grid method relies on the assumption that the manifold of all solutions S = {u(µ), µ ∈ G} has a small
96
+ Kolmogorov width [33] (in what follows, uh(µ) will refer to the HF solution for the parameter µ).
97
+ The two-grid algorithm can be employed for a variety of PDEs and is simple to implement. It has been
98
+ studied with FEM in the context of elliptic equations [7] and parabolic equations [19] (see also [17] for finite
99
+ volume schemes). Furthermore, because it is non-intrusive, it is suitable for a wide range of problems. The
100
+ 2
101
+
102
+ effectiveness of this method relies on its offline/online decomposition (as most RBMs). The offline part is time-
103
+ consuming but it is only performed once. On the contrary, the specific feature of the NIRB approach is to solve
104
+ the parametric problem on a coarse mesh only during the online step, and then to rapidly improve the precision
105
+ of the coarse solution. It makes this portion of the algorithm much cheaper than a HF evaluation.
106
+ In this paper, we combine the two-grids framework with both sensitivity analysis methods. Then, drawing in-
107
+ spiration from recent works [18], we efficiently apply a deterministic process to further reduce the computational
108
+ cost of its online stage with the direct method, in the context of parabolic equations. During the online stage,
109
+ this additional step allows us to solve only the initial problem on the coarse mesh, regardless of the number of
110
+ parameters of interest, making this novel approach very appealing. We highlight the fact that because the direct
111
+ approach requires a new system to be solved for each parameter, the adjoint method is preferred in many studies
112
+ (as cited above), despite the fact that its formulation is more complex and yields integrated sensitivities over
113
+ time.
114
+ Outline of the paper.
115
+ This article is about extending the NIRB two-grid method to the computation of sensitiv-
116
+ ities and performing the associated numerical analysis. We present and illustrate the NIRB algorithms applied
117
+ to both sensitivity analysis methods with several numerical results. With the direct method, we have carried out
118
+ a thorough theoretical analysis of the heat equation as model problem. In this setting, we have optimal conver-
119
+ gence rates in L∞(0, T; H1(Ω)) for the spatial HF semi-discretized sensitivity solution and for its fully-discretized
120
+ form. It turns out that we obtain theoretically and numerically these optimal rates also for the NIRB sensitivity
121
+ approximations. Our main theoretical result is given by Theorem 4.1.
122
+ The rest paper is organized as follows. Section 2 describes both sensitivity methods along with established
123
+ convergence results and the NIRB two-grid algorithm for parabolic equations. In Section 3, we present the al-
124
+ gorithms for the direct and adjoint methods with the NIRB two-grid approach, as well as the new version of
125
+ the algorithm for the direct method. Section 4 is devoted to the theoretical results on the rate of convergence
126
+ for the NIRB sensitivity approximation. In the last section 5, several numerical results are presented and illus-
127
+ trate the theoretical ones. The implementation and the use of Automatic Differentiation (AD) is discussed as well.
128
+ 2
129
+ Mathematical Background.
130
+ Let Ω be a bounded domain in Rd, with d ≤ 3 and a smooth enough boundary ∂Ω, and consider a parametric
131
+ problem P on Ω. For the NIRB two-grid method, we consider two spatial ”grids” of Ω:
132
+ • one fine mesh, denoted Th, where its size h is defined as
133
+ h = max
134
+ K∈Mh
135
+ hK,
136
+ (1)
137
+ • and on coarse mesh, denoted TH, with its size defined as
138
+ H = max
139
+ K∈MH
140
+ HK >> h,
141
+ (2)
142
+ where the diameter hK (or HK) of any element K in a mesh is equal to sup
143
+ x,y∈K
144
+ |x − y|.
145
+ In this section, we first introduce our model problem, that of the heat equation, in a continuous setting, and then
146
+ its spatial (over the two meshes) and time discretizations. Then, we recall the NIRB algorithm in the context of
147
+ parabolic equations, and finally, we detail the sensitivity problems for this model problem.
148
+ In the next sections, C will denote various positive constants independent of the size of the meshes h and
149
+ H and of the parameter µ, and C(µ) will denote constants independent of the sizes of the meshes h and H but
150
+ dependent of µ.
151
+ 2.1
152
+ A model problem: The heat equation.
153
+ 2.1.1
154
+ The continuous problem.
155
+ We consider the following heat equation on the domain Ω with homogeneous Dirichlet conditions, which takes
156
+ the form
157
+ 3
158
+
159
+
160
+
161
+
162
+
163
+
164
+ ut − ∇ · (A(µ)∇u) = f, in Ω×]0, T],
165
+ u(·, 0) = u0(·), in Ω,
166
+ (3)
167
+ u(·, t) = 0, on ∂Ω×]0, T],
168
+ where
169
+ f ∈ L2(Ω × [0, T]), while u0 ∈ H1
170
+ 0(Ω) and µ = (µ1, · · · , µP) ∈ G ⊂ RP is the parameter, such that
171
+ A : Ω × G → Md(R) is measurable, bounded, and uniformly elliptic.
172
+ (4)
173
+ For any t > 0, the solution u(·, t) ∈ H1
174
+ 0(Ω), and ut(·, t) ∈ L2(Ω) stands for the derivative of u with respect to
175
+ time.
176
+ We use the conventional notations for space-time dependent Sobolev spaces [35]
177
+ Lp(0, T; V) := {u(x, t) | ∥u∥Lp(0,T;V) :=
178
+ � � T
179
+ 0
180
+ ��u(·, t)
181
+ ��p
182
+ V dt
183
+ �1/p
184
+ < ∞}, 1 ≤ p < ∞,
185
+ L∞(0, T; V) := {u(x, t) | ∥u∥L∞(0,T;V) := ess sup
186
+ 0≤t≤T
187
+ ��u(·, t)
188
+ ��
189
+ V < ∞},
190
+ where V is a real Banach space with norm∥·∥V . The variational form of (3) is given by:
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+ Find u ∈ L2(0, T; H1
199
+ 0(Ω)) with ut ∈ L2(0, T; H−1(Ω)) such that
200
+ (ut(t, ·), v) + a(u(t, ·), v; µ) = ( f (t, ·), v), ∀v ∈ H1
201
+ 0(Ω) and t ∈ (0, T),
202
+ (5)
203
+ u(·, 0) = u0(·), in Ω,
204
+ where a is given by
205
+ a(w, v; µ) =
206
+
207
+ Ω A(x; µ)∇w(x) · ∇v(x) dx,
208
+ ∀w, v ∈ H1
209
+ 0(Ω).
210
+ (6)
211
+ We remind that (5) is well posed (see [14] for the existence and the uniqueness of solutions to problem (5)) and
212
+ we refer to the notations of [14]. Note that we will use the notation (·, ·) to denote the classical L2-inner product
213
+ on Ω.
214
+ 2.1.2
215
+ The various discretizations.
216
+ For the NIRB algorithm, we use the two spatial grids on the variational formulation (5) of our problem (3). We
217
+ employed P1 finite elements to discretize in space. Thus, we introduce Vh and VH, the continuous piecewise
218
+ linear finite element functions (on fine and coarse meshes, respectively) that vanish on the boundary ∂Ω. We
219
+ consider the so-called Ritz projection operator P1
220
+ h : H1
221
+ 0(Ω) → Vh (P1
222
+ H on VH is defined similarly) which is given
223
+ by
224
+ (∇P1
225
+ hu, ∇v) = (∇u, ∇v),
226
+ ∀v ∈ Vh, for u ∈ H1
227
+ 0(Ω).
228
+ (7)
229
+ In the context of time-dependent problems, a time stepping method of finite difference type is used to get a fully
230
+ discrete approximation of the solution of (3). As for the spatial domain, we consider two different time grids:
231
+ • One time grid, denoted F, is associated to fine solutions (for the generation of the snapshots). To avoid
232
+ making notations more cumbersome, we will consider a uniform time step ∆tF. The time levels can be
233
+ written tn = n ∆tF, where n ∈ N∗.
234
+ • Another time grid, denoted G, is used for coarse solutions. By analogy with the fine grid, we consider a
235
+ uniform grid with time step ∆tG. Now, the time levels are written �tm = m ∆tG, where m ∈ N∗.
236
+ As in the elliptic context [7], the NIRB algorithm is designed to recover the optimal estimate in space. Yet,
237
+ since there is no such argument as the Aubin-Nitsche argument for time stepping methods, we must consider
238
+ time discretizations that provide the same precision with larger time steps. Thus, we consider a higher order
239
+ time scheme for the coarse solution. As in [19], we used an Euler scheme (first order approximation) for the
240
+ fine solution and a Crank-Nicolson scheme (second order approximation) for the coarse solution on our model
241
+ problem.
242
+ Thus, we deal with two kind of notations for the discretized solutions:
243
+ 4
244
+
245
+ • uh(x, t) and uH(x, t) that respectively denote the fine and coarse solutions of the spatially semi-discrete
246
+ solution, at time t ≥ 0.
247
+ • un
248
+ h(x) and um
249
+ H(x) that respectively denote the fine and coarse full-discretized solutions at time tn = n × ∆tF
250
+ and �tm = m × ∆tG.
251
+ Remark 2.1. To simplify the notations, we consider that both time grids end at time T here,
252
+ T = NT ∆tF = MT ∆tG.
253
+ The semi-discrete form of the variational problem (5) writes for the fine mesh (similarly for the coarse mesh):
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+ Find uh(t) = uh(·, t) ∈ Vh for t ∈ [0, T] such that
262
+ (uh,t(t), vh) + a(uh(t), vh; µ) = ( f (t), vh), ∀vh ∈ Vh and t ∈]0, T],
263
+ (8)
264
+ uh(·, 0) = u0
265
+ h(·) = P1
266
+ h(u0)(·).
267
+ From the definition of P1
268
+ h (7), the initial condition u0
269
+ h (and similarly for the coarse mesh) is such that
270
+ (∇u0
271
+ h, ∇vh) = (∇u0, ∇vh), ∀vh ∈ Vh,
272
+ (9)
273
+ and hence, it corresponds to the finite element solution of the corresponding elliptic problem of (3) with A(1) = Id
274
+ (that of the Poisson’s equation) and whose exact solution is u0.
275
+ The full discrete form of the variational problem (5) for the fine mesh with an implicit Euler scheme writes:
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+ Find un
284
+ h ∈ Vh for n = 0, . . . , NT such that
285
+ (∂un
286
+ h, vh) + a(un
287
+ h, vh; µ) = ( f (tn), vh), ∀vh ∈ Vh and n = 1, . . . , NT,
288
+ (10)
289
+ uh(·, 0) = u0
290
+ h(·),
291
+ where the time derivative in the variational form of the problem (8) has been replaced by a backward difference
292
+ quotient, ∂un
293
+ h =
294
+ un
295
+ h−un−1
296
+ h
297
+ ∆tF
298
+ .
299
+ For the coarse mesh with a Crank-Nicolson scheme, and with the notation ∂um
300
+ H = um
301
+ H−um−1
302
+ H
303
+ ∆tG
304
+ , it becomes:
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+ Find um
313
+ H ∈ VH for m = 0, . . . , MT, such that
314
+ (∂um
315
+ H, vH) + a( um
316
+ H+um−1
317
+ H
318
+ 2
319
+ , vH; µ) = ( f (�tm− 1
320
+ 2 ), vH), ∀vH ∈ VH and m = 1, . . . MT,
321
+ uH(·, 0) = u0
322
+ H(·),
323
+ (11)
324
+ where �tm− 1
325
+ 2 = �tm+�tm−1
326
+ 2
327
+ .
328
+ For the NIRB approximation, we will need to interpolate in space and in time the coarse solution. So let us
329
+ introduce the quadratic interpolation in time of a coarse solution at time tn ∈ Im = [�tm−1,�tm] defined on [�tm−2,�tm]
330
+ from the coarse approximations at times �tm−2,�tm−1, and �tm, for all m = 2, . . . , MT. To this purpose, we employ
331
+ the following parabola on [�tm−2,�tm]:
332
+ For m ≥ 2, ∀n ∈ Im = [�tm−1,�tm],
333
+ I2
334
+ n[um
335
+ H](µ) :=
336
+ um−2
337
+ H
338
+ (µ)
339
+ (�tm − �tm−2)(�tm−2 − �tm−1)
340
+
341
+ − (tn)2 + (�tm−1 + �tm)tn − tm−1tm�
342
+ +
343
+ um−1
344
+ H
345
+ (µ)
346
+ (�tm−2 − �tm−1)(�tm−1 − �tm)
347
+
348
+ − (tn)2 + (�tm + �tm−2)tn − tmtm−2�
349
+ +
350
+ um
351
+ H(µ)
352
+ (�tm−1 − �tm)(�tm − �tm−2)
353
+
354
+ − (tn)2 + (�tm−2 + �tm−1)tn − tm−2tm−1�
355
+ .
356
+ (12)
357
+ For tn ∈ I1 = [�t0,�t1], we use the same parabola defined by the coarse approximations at times �t0, �t1, �t2 as the
358
+ one used over [�t1,�t2]. We denote by �
359
+ uH
360
+ n(µ) = I2
361
+ n[um
362
+ H](µ) the quadratic interpolation of um
363
+ H at a time n. Note that
364
+ we choose this interpolation in order to keep an approximation of order 2 in time ∆tG (it works also with other
365
+ quadratic interpolations).
366
+ In the next section, we recall the NIRB algorithm in the context of parabolic equations.
367
+ 5
368
+
369
+ 2.2
370
+ Reminders on the Non-Intrusive Reduced Basis method (NIRB) in the context of
371
+ parabolic equations.
372
+ Let u(µ) be the exact solution of problem (3) for a parameter µ ∈ G. With the NIRB algorithm, we aim at
373
+ quickly approximating this solution by using a reduced space, denoted XN
374
+ h , constructed from N fully discretized
375
+ solutions of (10), namely the so-called snapshots. Since each snapshot is a HF finite element approximation in
376
+ space at a time tn, n = 0, ..., NT (NT being potentially very high), not all of the time steps may be required for the
377
+ construction of the reduced space. Here, for each parameter µi, i = 1, . . . , Nµ, selected for the basis construction,
378
+ the number of time steps employed (which depends on i) is denoted Ni. Thus, the reduced basis is defined as
379
+ XN
380
+ h := Span{u
381
+ (nj)i
382
+ h
383
+ (µi)| i = 1, . . . , Nµ, j = 1, . . . , Ni, (nj)i ⊂ {1, · · �� , NT}},
384
+ (13)
385
+ with N :=
386
+
387
+
388
+ i=1
389
+ Ni.
390
+ We recall the offline/online decomposition of the NIRB procedure with parabolic equations:
391
+ • “Offline step”
392
+ The offline part of the algorithm allows us to construct the reduced space XN
393
+ h .
394
+ 1. From training parameters (µi)i∈{1,...,Ntrain}, we define Gtrain =
395
+
396
+ i∈{1,...,Ntrain}µi. Then, we employ a greedy
397
+ procedure to adequately choose the parameters (µi)i=1,...,Nµ within Gtrain to construct the RB. For this
398
+ procedure, we refer to algorithm 1 (described for the setting Nµ = N in order to simplify notations).
399
+ Note that a POD-greedy algorithm may also be employed [19, 21, 20, 32].
400
+ Algorithm 1 Greedy algorithm
401
+ Input: tol, {un
402
+ h(µ1), · · · , un
403
+ h(µNtrain) with µi ∈ Gtrain, n = 0, . . . , NT}.
404
+ Output: Reduced basis {Φh
405
+ 1, · · · , Φh
406
+ N}.
407
+ Choose µ1, n1 =
408
+ arg max
409
+ µ∈Gtrain, n∈{0,...,NT}
410
+ ���un
411
+ h(µ)
412
+ ���
413
+ L2(Ω) ,
414
+ Set Φh
415
+ 1 =
416
+ un1
417
+ h (µ1)
418
+ ���un1
419
+ h (µ1)
420
+ ���
421
+ L2
422
+ Set G1 = {µ1, n1} and X1
423
+ h = span{Φh
424
+ 1}.
425
+ for k = 2 to N do:
426
+ µk, nk = arg
427
+ max
428
+ (µ, n)∈(Gtrain×{0,...,NT})\Gk−1
429
+ ���un
430
+ h(µ) − Pk−1(un
431
+ h(µ))
432
+ ���
433
+ L2, with Pk−1(un
434
+ h(µ)) :=
435
+ k−1
436
+
437
+ i=1
438
+ (un
439
+ h(µ), Φh
440
+ i ) Φk
441
+ i .
442
+ Compute �
443
+ Φh
444
+ k = unk
445
+ h (µk) − Pk−1(unk
446
+ h (µk)) and set Φh
447
+ k =
448
+
449
+ Φh
450
+ k
451
+ ����
452
+
453
+ Φh
454
+ k
455
+ ����
456
+ L2(Ω)
457
+ Set Gk = Gk−1 ∪ {µk} and Xk
458
+ h = Xk−1
459
+ h
460
+ ⊕ span{Φh
461
+ k}
462
+ Stop when
463
+ ���un
464
+ h(µ) − Pk−1(un
465
+ h(µ))
466
+ ���
467
+ L2 ≤ tol, ∀µ ∈ Gtrain, ∀n = 0, . . . , NT.
468
+ end for
469
+ The greedy algorithm is usually less expensive than the POD-greedy (thanks to a-posteriori error
470
+ estimates for stationary problems). Although for time dependent problems, the latter is more rea-
471
+ sonable when the snapshots are computed for all time steps, our choice of using a greedy procedure
472
+ is motivated by the fact that it is more efficient with the post-treatment introduced below. The RB
473
+ functions (time-independent), denoted (Φh
474
+ i )i=1,...,N, are generated at the end of this step, from fine
475
+ fully-discretized solutions {un
476
+ h(µi)}i∈{1,...,Nµ}, n={0,...,NT} (solving problem (10) with HF solver). Note
477
+ that even if all the time steps are computed, only Ni are used for each i ∈ {1, . . . , Nµ} in the RB
478
+ construction. Since at each step k, all sets added in the basis are in the orthogonal complement of
479
+ Xk−1
480
+ h
481
+ , it yields an L2 orthogonal basis without further processing.
482
+ Hence, XN
483
+ h
484
+ can be defined as
485
+ XN
486
+ h = Span{Φh
487
+ 1, . . . , Φh
488
+ N}.
489
+ 6
490
+
491
+ Remark 2.2. In practice, the algorithm is halted with a stopping criterion such as an error threshold or a
492
+ maximum number of basis functions to generate.
493
+ 2. Then, we solve the following eigenvalue problem:
494
+
495
+
496
+
497
+
498
+
499
+ Find Φh ∈ XN
500
+ h , and λ ∈ R such that:
501
+ ∀v ∈ XN
502
+ h ,
503
+
504
+ Ω ∇Φh · ∇v dx = λ
505
+
506
+ Ω Φh · v dx,
507
+ (14)
508
+ We get an increasing sequence of eigenvalues λi, and orthogonal eigenfunctions (Φh
509
+ i )i=1,··· ,N, which
510
+ do not depend on time, orthonormalized in L2(Ω) and orthogonalized in H1(Ω). Note that with
511
+ Gram-Schmidt procedure, we only obtain an L2-orthonormalized RB.
512
+ 3. For any parameter µk, k = 1, . . . , Nµ, the classical NIRB approximation differs from the HF uh(µk)
513
+ computed in the offline stage [19]. Thus, as proposed in [7], to improve NIRB accuracy, we use a
514
+ ”rectification post-processing”. To this purpose, we need a rectification matrix for each fine time step,
515
+ denoted Rn, and constructed from coarse snapshots, generated by solving (11) and whose parameters
516
+ are the same as for the fine snapshots.
517
+ Thus, for all n = 1, . . . , NT, we compute the vectors
518
+ Rn
519
+ u,i = ((An)TAn + δIN)−1(An)TBn
520
+ i ,
521
+ i = 1, · · · , N,
522
+ (15)
523
+ where
524
+ ∀i = 1, · · · , N,
525
+ and
526
+ ∀µk ∈ Gtrain,
527
+ An
528
+ k,i =
529
+
530
+
531
+
532
+ uH
533
+ n(µk) · Φh
534
+ i dx,
535
+ (16)
536
+ Bn
537
+ k,i =
538
+
539
+ Ω un
540
+ h(µk) · Φh
541
+ i dx,
542
+ (17)
543
+ and where IN refers to the identity matrix and δ is a regularization parameter.
544
+ Remark 2.3. Note that since every time step has its own rectification matrix, the matrix An is a “flat” rectan-
545
+ gular matrix (Ntrain ≤ N), and thus the parameter δ is required for the inversion of (An)TAn.
546
+ We also remark that with the rectification post-treatment, the standard greedy algorithm 1 may leads to more
547
+ accurate approximations, compared to the POD-greedy algorithm. It comes from the fact that the coefficients of
548
+ the matrix are directly derived from the snapshots in that case.
549
+ • “Online step”
550
+ The online part of the algorithm is much faster than a HF evaluation.
551
+ 4. We solve the problem (3) on the coarse mesh TH for a new parameter µ ∈ G at each time step
552
+ m = 0, . . . , MT.
553
+ 5. We quadratically interpolate in time the coarse solution on the fine time grid with (12).
554
+ 6. Then, we linearly interpolate �
555
+ uH
556
+ n(µ) on the fine mesh in order to compute the L2-inner product with
557
+ the RB functions. The approximation used in the two-grid method is
558
+ For n = 0, . . . , NT,
559
+ uN,n
560
+ Hh (µ) :=
561
+ N
562
+
563
+ i=1
564
+ ( �
565
+ uH
566
+ n(µ), Φh
567
+ i ) Φh
568
+ i ,
569
+ (18)
570
+ and with the rectification post-treatment step, it becomes
571
+ Rn
572
+ u[uN
573
+ Hh](µ) :=
574
+ N
575
+
576
+ i,j=1
577
+ Rn
578
+ u,ij ( �
579
+ uH
580
+ n(µ), Φh
581
+ j ) Φh
582
+ i ,
583
+ (19)
584
+ where Rn
585
+ u is the rectification matrix at time tn, given by (15).
586
+ 7
587
+
588
+ In [19], we have proven the following estimate on the heat equation
589
+ for n = 0, . . . , NT,
590
+ ���u(tn)(µ) − uN,n
591
+ Hh (µ)
592
+ ���
593
+ H1(Ω) ≤ ε(N) + C1(µ)h + C2(N)H2 + C3(µ)∆tF + C4(N)∆t2
594
+ G,
595
+ (20)
596
+ where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε(N) depends on a proper
597
+ choice of the RB space as a surrogate for the best approximation space associated to the Kolmogorov N-width.
598
+ It decreases when N increases and it is linked to the error between the fine solution and its projection on the
599
+ reduced space XN
600
+ h , given by
601
+ �����un
602
+ h(µ) −
603
+ N
604
+
605
+ i=1
606
+ (un
607
+ h(µ), Φh
608
+ i ) Φh
609
+ i
610
+ �����
611
+ H1(Ω)
612
+ .
613
+ (21)
614
+ The constant C2 increases with N and thus, a trade-off needs to be done between increasing N to obtain a more
615
+ accurate manifold, and keeping a constant C2 as low as possible.
616
+ If H is such as H2 ∼ h, ∆t2
617
+ G ∼ ∆tF, and ε(N) is small enough, with C2(N) and C4(N) not too large, the estimate
618
+ (20) entails an error estimate in O(h + ∆tF), and thus, we recover an optimal error estimate in L∞(0, T; H1(Ω)).
619
+ Before adapting NIRB to the sensitivity analysis context, we first recall how to derive the sensitivities functions
620
+ in the next section.
621
+ 2.3
622
+ Sensitivity analysis: The direct problem.
623
+ In this section, we recall the sensitivity systems (continuous and discretized versions) for P parameters of interest.
624
+ Then, we prove the numerical results of the direct method on the model problem. To not make the notations too
625
+ cumbersome, we will consider A(µ) = µ Id, with µ ∈ R+∗ for the analysis theorems.
626
+ 2.3.1
627
+ The continuous setting.
628
+ In this setting, we consider P parameters of interest, denoted µp = 1, . . . , µP, and we want to approximate the
629
+ exact derivatives
630
+ Ψp(t, x; µ) := ∂u
631
+ ∂µp
632
+ (t, x; µ).
633
+ (22)
634
+ In order to seek these sensitivities, we solve P new systems, which can directly be obtained by differentiating the
635
+ initial problem with respect to µp. The continuous initial problem (5) may be rewritten
636
+
637
+
638
+
639
+
640
+
641
+ Find u(t) ∈ V for t ∈ [0, T] such that
642
+ (ut(t), v) = F(u(t), v; µ) := −a(u(t), v; µ) + ( f (t), v), ∀v ∈ V, t > 0,
643
+ u(·, 0) = u0(·),
644
+ where the bilinear form a is defined by (6). Using the chain rule and since the time and the parameter derivatives
645
+ can commute,
646
+ (Ψp,t(t), v) = ∂F
647
+ ∂u (u(t), v; µ) · Ψp(t) + ∂F
648
+ ∂µ(u(t), v).
649
+ Since the initial condition here does not depend on µ, we obtain the following problem
650
+
651
+
652
+
653
+
654
+
655
+
656
+
657
+
658
+
659
+ Find Ψp(t) ∈ V for t ∈ [0, T] such that
660
+ (Ψp,t(t), v) + a(Ψp(t), v; µ) = −( ∂A
661
+ ∂µp (µ)∇u(t), ∇v), for v ∈ V, for t > 0,
662
+ Ψ0
663
+ p = 0,
664
+ (23)
665
+ which is well-posed since u ∈ L2(0, T; H1
666
+ 0(Ω)), and under the assumptions (4), the so-called ”parabolic regularity
667
+ estimate” implies that u ∈ L2(0, T; H2(Ω)) ∩ L∞(0, T; H1
668
+ 0(Ω)) [14, 45].
669
+ 8
670
+
671
+ 2.3.2
672
+ The spatially semi-discretized version.
673
+ As previously for the state solution, we discretize in space and in time the sensitivity problems (23).
674
+ The corresponding spatially semi-discretized formulations (on Th) read
675
+
676
+
677
+
678
+
679
+
680
+
681
+
682
+
683
+
684
+ Find Ψp,h(t) ∈ Vh for t ∈ [0, . . . , T] such that
685
+ (Ψp,h,t(t), vh) + a(Ψp,h(t), vh; µ) = −( ∂A
686
+ ∂µp (µ)∇uh(t; µ), ∇vh), for vh ∈ Vh, for t ∈]0, T],
687
+ Ψ0
688
+ p,h(·) = P1
689
+ h(Ψ0
690
+ p)(·),
691
+ (24)
692
+ where P1
693
+ h is given by (7). Before proceeding with the proof of Theorem (4.1), we need several results that can
694
+ be deduced from [45], but require some precisions. Indeed, first, in [45], the estimates are proven on the heat
695
+ equation with a non-varying diffusion coefficient. Secondly, the right-hand side function f vanishes when seek-
696
+ ing the error estimates, whereas in our case, the right-hand side function depends on u and necessitates precised
697
+ estimates.
698
+ On the semi-discretized formulation, the following estimate holds.
699
+ Theorem 2.4. Let Ω be a convex polyhedron. Let A(µ) = µ Id, with µ ∈ R+∗ . Consider u ∈ H1(0, T; H2(Ω)) be the
700
+ solution of (3) with u0 ∈ H2(Ω) and uh be the semi-discretized variational form (8). Let Ψ and Ψh be the corresponding
701
+ sensitivities , respectively given by (23) and (24). Then
702
+ ∀t ∈ [0, T],
703
+ ��Ψh(t) − Ψ(t)
704
+ ��
705
+ L2(Ω) ≤ Ch2����Ψ0���
706
+ H2(Ω) +
707
+ � T
708
+ 0 ∥Ψt∥H2(Ω) ds
709
+
710
+ + C(µ)h2� � T
711
+ 0 ∥ut∥2
712
+ H2(Ω) ds
713
+ �1/2
714
+ .
715
+ Proof. As in [45], we first decompose the error with two components θ and ρ such that
716
+ ∀t ∈ [0, T], e(t) := Ψh(t) − Ψ(t) = (Ψh(t) − P1
717
+ hΨ(t)) + (P1
718
+ hΨ(t) − Ψ(t)),
719
+ = θ(t) + ρ(t).
720
+ (25)
721
+ • For the estimate on ρ(t), a classical FEM estimate [45, 5] is
722
+ ���P1
723
+ hv − v
724
+ ���
725
+ L2(Ω) + h
726
+ ���∇(P1
727
+ hv − v)
728
+ ���
729
+ L2(Ω) ≤ Ch2∥v∥H2(Ω) ,
730
+ ∀v ��� H2 ∩ H1
731
+ 0,
732
+ (26)
733
+ which leads to
734
+ ��ρ(t)
735
+ ��
736
+ L2(Ω) ≤ Ch2��Ψ(t)
737
+ ��
738
+ H2(Ω) , ∀t ∈ [0, T],
739
+ ≤ Ch2����Ψ0���
740
+ H2(Ω) +
741
+ � T
742
+ 0 ∥Ψt∥H2(Ω) ds
743
+
744
+ , ∀t ∈ [0, T].
745
+ (27)
746
+ • For the estimate on θ(t), let us consider v ∈ Vh,
747
+ ∀t ∈]0, T], (θt(t), v) + µ(∇θ(t), ∇v) = (Ψh,t(t), v) + µ(∇Ψh(t), ∇v) − (P1
748
+ hΨt(t), v) − µ(∇P1
749
+ hΨ(t), ∇v).
750
+ Since v ∈ H1
751
+ 0, by definition of P1
752
+ h (7), the semi-discretized weak formulations (24) implies
753
+ (θt(t), v) + µ(∇θ(t), ∇v) = −(∇uh(t), ∇v) − (P1
754
+ hΨt(t), v) − µ(∇P1
755
+ hΨ(t), ∇v),
756
+ = −(∇uh(t), ∇v) − (P1
757
+ hΨt(t), v) − µ(∇Ψ(t), ∇v).
758
+ Thanks to the continuous weak formulation (23), and since the operator P1
759
+ h and the time derivative com-
760
+ mute, it can be rewritten
761
+ (θt(t), v) + µ(∇θ(t), ∇v) = (∇u(t) − ∇uh(t), ∇v) + (Ψt(t) − (P1
762
+ hΨ)t(t), v),
763
+ = (∇u(t) − ∇uh(t), ∇v) − (ρt(t), v).
764
+ Choosing v = θ(t), it yields
765
+ (θt(t), θ(t)) + µ
766
+ ��∇θ(t)
767
+ ��2
768
+ L2(Ω) = (∇u(t) − ∇uh(t), ∇θ(t)) − (ρt(t), θ(t)),
769
+ 9
770
+
771
+ and using the continuous and semi-discretized weak formulations on the state variable u(t) ((5) and (8)
772
+ respectively), we obtain
773
+ (θt(t), θ(t)) + µ
774
+ ��∇θ(t)
775
+ ��2
776
+ L2(Ω) = 1
777
+ µ(uh,t(t) − ut(t), θ(t)) − (ρt(t), θ(t)),
778
+ (28)
779
+ where the first term of the right-hand side is a new contribution (compared to the proof of Theorem 1.2
780
+ [45]). Since
781
+ (θt(t), θ(t)) = 1
782
+ 2
783
+ d
784
+ dt(
785
+ ��θ(t)
786
+ ��2
787
+ L2(Ω)) =
788
+ ��θ(t)
789
+ ��
790
+ L2(Ω)
791
+ d
792
+ dt
793
+ ��θ(t)
794
+ ��
795
+ L2(Ω) ,
796
+ (29)
797
+ and, since the second term in (28) is positive, it becomes with Cauchy-Schwarz inequality (the case where
798
+ θ(t) = 0 for some t may easily be handled)
799
+ d
800
+ dt
801
+ ��θ(t)
802
+ ��
803
+ L2(Ω) ≤ 1
804
+ µ
805
+ ��uh,t(t) − ut(t)
806
+ ��
807
+ L2(Ω) +
808
+ ��ρt(t)
809
+ ��
810
+ L2(Ω) .
811
+ Integrating over time, it follows that
812
+ ��θ(t)
813
+ ��
814
+ L2(Ω) ≤
815
+ ��θ(0)
816
+ ��
817
+ L2(Ω)
818
+
819
+ ��
820
+
821
+ T1
822
+ + 1
823
+ µ
824
+ � T
825
+ 0
826
+ ��uh,t − ut
827
+ ��
828
+ L2(Ω) ds
829
+
830
+ ��
831
+
832
+ T2
833
+ +
834
+ � T
835
+ 0
836
+ ��ρt
837
+ ��
838
+ L2(Ω) ds
839
+
840
+ ��
841
+
842
+ T3
843
+ .
844
+ (30)
845
+ – From the initial conditions, since u0
846
+ h = P1
847
+ hu0, T1 = 0.
848
+ Note that other optimal order choices of
849
+ discretized initial conditions (such as the L2 orthogonal projection onto Vh) lead to an estimate in
850
+ Ch2���Ψ0���
851
+ H2(Ω) for T1.
852
+ – To estimate T2, in analogy with θ and ρ, let us introduce θu and ρu, such that
853
+ ∀t ∈ [0, T], uh(t) − u(t) = (uh(t) − P1
854
+ hu(t)) + (P1
855
+ hu(t) − u(t)),
856
+ = θu(t) + ρu(t).
857
+ (31)
858
+ We remark that the term T2 can also be written
859
+ T2 = 1
860
+ µ
861
+ � T
862
+ 0
863
+ ��θu,t + ρu,t
864
+ ��
865
+ L2(Ω) ds ≤ 1
866
+ µ
867
+ � T
868
+ 0 ∥θu,t∥L2(Ω) +
869
+ ��ρu,t
870
+ ��
871
+ L2(Ω) ds.
872
+ Then, by Cauchy-Schwarz inequality,
873
+ T2 ≤
874
+
875
+ T
876
+ µ
877
+ �� � T
878
+ 0 ∥θu,t∥2
879
+ L2(Ω) ds
880
+ �1/2
881
+ +
882
+ � � T
883
+ 0
884
+ ��ρu,t
885
+ ��2
886
+ L2(Ω) ds
887
+ �1/2�
888
+ ,
889
+ (32)
890
+ We can bound � T
891
+ 0 ∥θu,t∥2
892
+ L2(Ω), using the variational formulations (5) and (8). We first write for t ∈]0, T]:
893
+ (θu,t(t), v) + µ(∇θu(t), ∇v) = (uh,t(t), v) + µ(∇uh(t), ∇v) − (P1
894
+ hut(t), v) − µ(∇P1
895
+ hu(t), ∇v),
896
+ = ( f (t), v) − (P1
897
+ hut(t), v) − µ(∇u(t), ∇v),
898
+ = −(ρu,t(t), v).
899
+ Formally by using v = θu,t(t) and (29), it entails
900
+ ��θu,t(t)
901
+ ��2
902
+ L2(Ω) + µ
903
+ 2
904
+ d
905
+ dt
906
+ ��∇θu(t)
907
+ ��2
908
+ L2(Ω) = −(ρu,t(t), θu,t(t)),
909
+ such that (with Young’s inequality)
910
+ ��θu,t(t)
911
+ ��2
912
+ L2(Ω) + µ d
913
+ dt
914
+ ��∇θu(t)
915
+ ��2
916
+ L2(Ω) ≤
917
+ ��ρu,t(t)
918
+ ��2
919
+ L2(Ω) .
920
+ Integrating over time, we obtain
921
+ � T
922
+ 0 ∥θu,t∥2
923
+ L2(Ω) ds + µ
924
+ ��∇θu(t)
925
+ ��2
926
+ L2(Ω) ≤ µ
927
+ ��∇θu(0)
928
+ ��2
929
+ L2(Ω) +
930
+ � T
931
+ 0
932
+ ��ρu,t
933
+ ��2
934
+ L2(Ω) ds,
935
+ 10
936
+
937
+ and since the second term is always positive and that we have chosen u0
938
+ h = P1
939
+ hu0, it yields
940
+ � T
941
+ 0 ∥θu,t∥2
942
+ L2(Ω) ≤
943
+ � T
944
+ 0
945
+ ��ρu,t
946
+ ��2
947
+ L2(Ω) .
948
+ (33)
949
+ Remark 2.5. Note that with another choice of discretized initial solution, we would have
950
+ ��∇θu(0)
951
+ ��2
952
+ L2(Ω) ≤
953
+ ���∇u0
954
+ h − ∇u0���
955
+ 2
956
+ L2(Ω) + Ch2���u0���
957
+ 2
958
+ H2(Ω) ,
959
+ which would have lead to an estimate in O(h) on the L2(Ω) error estimate of Ψ(t). In practice, this is not an
960
+ issue since the effect of the initial data exponentially decreases [45].
961
+ Therefore, from (32), we obtain
962
+ T2 ≤ 2
963
+
964
+ T
965
+ µ
966
+ � � T
967
+ 0
968
+ ��ρu,t
969
+ ��2
970
+ L2(Ω) ds
971
+ �1/2
972
+ .
973
+ (34)
974
+ By definition of P1
975
+ h (7), we have
976
+ ��ρu,t(t)
977
+ ��
978
+ L2(Ω) =
979
+ ���P1
980
+ hut(t) − ut(t)
981
+ ���
982
+ L2(Ω) ≤ Ch2��ut(t)
983
+ ��
984
+ H2(Ω) ,
985
+ (35)
986
+ and thus, (34) yields
987
+ T2 ≤ C2
988
+
989
+ T
990
+ µ
991
+ h2� � T
992
+ 0 ∥ut∥2
993
+ H2(Ω) ds
994
+ �1/2
995
+ .
996
+ (36)
997
+ – Finally, for T3, we only need to use (35) again, but with Ψ instead of u. Therefore
998
+ T3 =
999
+ � T
1000
+ 0
1001
+ ��ρt
1002
+ ��
1003
+ L2(Ω) ds ≤ Ch2
1004
+ � T
1005
+ 0 ∥Ψt∥H2(Ω) ds .
1006
+ (37)
1007
+ Combining (27), (30), (36), and (37) concludes the proof.
1008
+ We can derive a similar result for the H1
1009
+ 0 norm.
1010
+ Theorem 2.6. Let Ω be a convex polyhedron. Let A(µ) = µ Id, with µ ∈ R+∗ . Consider u ∈ H1(0, T; H2(Ω)) be the
1011
+ solution of (3) with u0 ∈ H2(Ω) and uh be the semi-discretized variational form (8). Let Ψ and Ψh be the corresponding
1012
+ sensitivities , respectively given by (23) and (24).
1013
+ ∀t ∈ [0, T],
1014
+ ��Ψ(t) − Ψh(t)
1015
+ ��
1016
+ H1(Ω) ≤ Ch
1017
+ ����Ψ0���
1018
+ H2(Ω) +
1019
+ � T
1020
+ 0 ∥Ψt∥H2(Ω) ds
1021
+
1022
+ + C(µ)h2
1023
+ �� � T
1024
+ 0 ∥ut∥2
1025
+ H2 ds
1026
+ �1/2
1027
+ +
1028
+ � � T
1029
+ 0 ∥Ψt∥2
1030
+ H2(Ω) ds
1031
+ �1/2�
1032
+ .
1033
+ Proof. Using the same notation as before (25), we first decompose the error with the two components θ and ρ
1034
+ such that
1035
+ ∀t ∈ [0, T], ∇Ψh(t) − ∇Ψ(t) = ∇θ(t) + ∇ρ(t).
1036
+ (38)
1037
+ • For the estimate on ρ(t), we use (26) to obtain
1038
+ ��∇ρ(t)
1039
+ ��
1040
+ L2(Ω) ≤ Ch
1041
+ ��Ψ(t)
1042
+ ��
1043
+ H2(Ω) , ∀t ∈ [0, T],
1044
+ which leads to
1045
+ ��∇ρ(t)
1046
+ ��
1047
+ L2(Ω) ≤ Ch
1048
+ ����Ψ0���
1049
+ H2(Ω) +
1050
+ � T
1051
+ 0 ∥Ψt∥H2(Ω)
1052
+ ds
1053
+
1054
+ , ∀t ∈ [0, T].
1055
+ (39)
1056
+ • For the estimate on θ(t), let us consider v ∈ Vh. As in the previous proof, ∀t ∈ [0, T], we write
1057
+ (θt(t), v) + µ(∇θ(t), ∇v) = (Ψh,t(t), v) + µ(∇Ψh(t), ∇v) − (P1
1058
+ hΨt(t), v) − µ(∇P1
1059
+ hΨ(t), ∇v).
1060
+ 11
1061
+
1062
+ Instead of replacing v by θ(t) as in the L2 estimate, here we formally replace v by θt(t), thus
1063
+ ∀t ∈]0, T],
1064
+ ��θt(t)
1065
+ ��2
1066
+ L2(Ω) + µ(∇θ(t), ∇θt(t)) = (∇u(t) − ∇uh(t), ∇θt(t)) − (ρt(t), θt(t)).
1067
+ Thanks to the variational formulations on the state solution u ((5) and (8) respectively)
1068
+ ��θt(t)
1069
+ ��2
1070
+ L2(Ω) + µ(∇θ(t), ∇θt(t)) = ( 1
1071
+ µ(uh,t(t) − ut(t)), θt(t)) − (ρt(t), θt(t)),
1072
+ and thus (with Young’s inequality),
1073
+ ��θt(t)
1074
+ ��2
1075
+ L2(Ω) + µ(∇θ(t), ∇θt(t)) ≤ 1
1076
+ 2
1077
+ �����
1078
+ 1
1079
+ µ(uh,t(t) − ut(t))
1080
+ �����
1081
+ 2
1082
+ L2(Ω)
1083
+ + 1
1084
+ 2
1085
+ ��θt(t)
1086
+ ��2
1087
+ L2(Ω) + 1
1088
+ 2
1089
+ ��ρt(t)
1090
+ ��2
1091
+ L2(Ω) + 1
1092
+ 2
1093
+ ��θt(t)
1094
+ ��2
1095
+ L2(Ω) ,
1096
+
1097
+ 1
1098
+ 2µ2
1099
+ ��uh,t(t) − ut(t)
1100
+ ��2
1101
+ L2(Ω) + 1
1102
+ 2
1103
+ ��ρt(t)
1104
+ ��2
1105
+ L2(Ω) +
1106
+ ��θt(t)
1107
+ ��2
1108
+ L2(Ω) .
1109
+ Thus,
1110
+ µ(∇θ(t), ∇θt(t)) ≤
1111
+ 1
1112
+ 2µ2
1113
+ ��uh,t(t) − ut(t)
1114
+ ��2
1115
+ L2(Ω) + 1
1116
+ 2
1117
+ ��ρt(t)
1118
+ ��2
1119
+ L2(Ω) ,
1120
+ (40)
1121
+ and by (29), we have
1122
+ d
1123
+ dt
1124
+ ��∇θ(t)
1125
+ ��2
1126
+ L2(Ω) ≤ 1
1127
+ µ3
1128
+ ��uh,t(t) − ut(t)
1129
+ ��2
1130
+ L2(Ω) + 1
1131
+ µ
1132
+ ��ρt(t)
1133
+ ��2
1134
+ L2(Ω) .
1135
+ Integrating over time, it entails
1136
+ ��∇θ(t)
1137
+ ��2
1138
+ L2(Ω) ≤
1139
+ ��∇θ(0)
1140
+ ��2
1141
+ L2(Ω)
1142
+
1143
+ ��
1144
+
1145
+ T′
1146
+ 1
1147
+ + 1
1148
+ µ3
1149
+ � T
1150
+ 0
1151
+ ��uh,t − ut
1152
+ ��2
1153
+ L2(Ω) ds
1154
+
1155
+ ��
1156
+
1157
+ T′
1158
+ 2
1159
+ + 1
1160
+ µ
1161
+ � T
1162
+ 0
1163
+ ��ρt
1164
+ ��2
1165
+ L2(Ω) ds
1166
+
1167
+ ��
1168
+
1169
+ T′
1170
+ 3
1171
+ .
1172
+ (41)
1173
+ – From the initial conditions, T′
1174
+ 1 = 0.
1175
+ – We can also write T′
1176
+ 2 as
1177
+ T′
1178
+ 2 = 1
1179
+ µ3
1180
+ � T
1181
+ 0
1182
+ ��θu,t + ρu,t
1183
+ ��2
1184
+ L2(Ω) ds .
1185
+ Therefore using (33),
1186
+ T′
1187
+ 2 ≤ 2
1188
+ µ3
1189
+ � T
1190
+ 0 ∥θu,t∥2
1191
+ L2(Ω) +
1192
+ ��ρu,t
1193
+ ��2
1194
+ L2(Ω) ds ≤ 4
1195
+ µ3
1196
+ � T
1197
+ 0
1198
+ ��ρu,t
1199
+ ��2
1200
+ L2(Ω) ds ≤ Ch4
1201
+ µ3
1202
+ � T
1203
+ 0 ∥ut∥2
1204
+ H2(Ω) ds .
1205
+ (42)
1206
+ – Similarly,
1207
+ T′
1208
+ 3 ≤ Ch4
1209
+ µ
1210
+ � T
1211
+ 0 ∥Ψt∥2
1212
+ H2(Ω) ds .
1213
+ (43)
1214
+ Hence, combining (38) with (39), (41), (42) and (43) concludes the proof.
1215
+ 2.3.3
1216
+ The fully-discretized versions.
1217
+ From (24), we can derive the fully-discretized systems for the fine and coarse grids.
1218
+ The direct sensitivity problems with respect to the parameter µp on the fine mesh Th with an Euler scheme read
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+ Find Ψn
1229
+ p,h ∈ Vh for n ∈ {0, . . . , NT} such that
1230
+ (∂Ψn
1231
+ p,h, vh) + a(Ψn
1232
+ p,h, vh; µ) = −( ∂A
1233
+ ∂µp (µ)∇un
1234
+ h(µ), ∇vh), for vh ∈ Vh, for n = {1, . . . , NT},
1235
+ (44)
1236
+ Ψ0
1237
+ p,h(·) = P1
1238
+ hΨ0
1239
+ p(·),
1240
+ where, as before, the time derivative in the variational form of the problem (23) has been replaced by a backward
1241
+ difference quotient, ∂Ψn
1242
+ h =
1243
+ Ψn
1244
+ h−Ψn−1
1245
+ h
1246
+ ∆tF
1247
+ .
1248
+ With the fully-discretized version (44), the following estimate holds.
1249
+ 12
1250
+
1251
+ Theorem 2.7. Let Ω be a convex polyhedron. Let A(µ) = µ Id, with µ ∈ R+∗ .
1252
+ Consider u ∈ H1(0, T; H2(Ω)) ∩ H2(0, T; L2(Ω)) be the solution of (3) with u0 ∈ H2(Ω) and un
1253
+ h be the fully-discretized
1254
+ variational form (10). Let Ψ and Ψn
1255
+ h be the corresponding sensitivities , respectively given by (23) and (44). Then
1256
+ ∀n = 0, . . . , NT,
1257
+ ��Ψn
1258
+ h − Ψ(t)
1259
+ ��
1260
+ L2(Ω) ≤ Ch2���Ψ0���
1261
+ H2(Ω) + h2�
1262
+ C
1263
+ � tn
1264
+ 0 ∥Ψt∥H2(Ω) ds + C(µ)
1265
+ � � tn
1266
+ 0 ∥ut∥2
1267
+ H2(Ω) ds
1268
+ �1/2�
1269
+ + ∆tF
1270
+
1271
+ C
1272
+ � tn
1273
+ 0 ∥Ψtt∥L2(Ω) ds + C(µ)
1274
+ � � tn
1275
+ 0 ∥utt∥2
1276
+ L2(Ω) ds
1277
+ �1/2�
1278
+ .
1279
+ Proof. Now, we define θn and ρn on the discretized time grid (tn)n=0,...,NT.
1280
+ ∀n = 0, . . . , NT, en := Ψn
1281
+ h − Ψ(tn) = (Ψn
1282
+ h − P1
1283
+ hΨ(tn)) + (P1
1284
+ hΨ(tn) − Ψ(tn)),
1285
+ = θn + ρn.
1286
+ (45)
1287
+ • In analogy with (26) the estimate on ρn is
1288
+ ��ρn��
1289
+ L2(Ω) ≤ Ch2��Ψ(tn)
1290
+ ��
1291
+ H2(Ω) ≤ Ch2����Ψ0���
1292
+ H2(Ω) +
1293
+ � tn
1294
+ 0 ∥Ψt∥H2(Ω) ds
1295
+
1296
+ , ∀n ∈ {0, . . . , NT}.
1297
+ (46)
1298
+ • For θn, the equation (28) becomes
1299
+ (∂θn, θn) + µ
1300
+ ��∇θn��2
1301
+ L2(Ω) = 1
1302
+ µ(∂un
1303
+ h − ut(tn), θn) − (wn
1304
+ 1 + wn
1305
+ 2, θn),
1306
+ = 1
1307
+ µ(∂un
1308
+ h − ut(tn), θn) − (wn, θn),
1309
+ (47)
1310
+ where wn
1311
+ 1 and wn
1312
+ 2 are defined by
1313
+ wn
1314
+ 1 := (P1
1315
+ h − I)∂Ψ(tn),
1316
+ wn
1317
+ 2 := ∂Ψ(tn) − Ψt(tn),
1318
+ and
1319
+ wn := wn
1320
+ 1 + wn
1321
+ 2.
1322
+ (48)
1323
+ By definition of ∂ and by Cauchy-Schwarz inequality (and since the second term of the left-hand side of
1324
+ (47) is always positive),
1325
+ ��θn��2
1326
+ L2(Ω) ≤
1327
+ ����θn−1���
1328
+ L2(Ω) + ∆tF
1329
+ � 1
1330
+ µ
1331
+ ���∂un
1332
+ h − ut(tn)
1333
+ ���
1334
+ L2(Ω) +
1335
+ ��wn��
1336
+ L2(Ω)
1337
+ ����θn��
1338
+ L2(Ω) ,
1339
+ and by repeated application, and since
1340
+ ���θ0���
1341
+ L2(Ω) = 0 (again, the case where some θn are equal to 0 can be
1342
+ easily handled), it entails
1343
+ ��θn��
1344
+ L2(Ω) ≤ ∆tF
1345
+ n
1346
+
1347
+ j=1
1348
+ 1
1349
+ µ
1350
+ ���∂uj
1351
+ h − ut(tj)
1352
+ ���
1353
+ L2(Ω)
1354
+
1355
+ ��
1356
+
1357
+ T2,n
1358
+ + ∆tF
1359
+ n
1360
+
1361
+ j=1
1362
+ ���wj���
1363
+ L2(Ω)
1364
+
1365
+ ��
1366
+
1367
+ T3,n
1368
+ ,
1369
+ (49)
1370
+ – We first decompose T2,n in two contributions
1371
+ ∆tF
1372
+ µ
1373
+ n
1374
+
1375
+ j=1
1376
+ ���∂uj
1377
+ h − ut(tj)
1378
+ ���
1379
+ L2(Ω) ≤ ∆tF
1380
+ µ
1381
+ n
1382
+
1383
+ j=1
1384
+ ����∂θj
1385
+ u
1386
+ ���
1387
+ L2(Ω) +
1388
+ ���wj
1389
+ u
1390
+ ���
1391
+ L2(Ω)
1392
+
1393
+ ,
1394
+ where
1395
+ wj
1396
+ u := wj
1397
+ 1,u + wj
1398
+ 2,u with wj
1399
+ 1,u := (P1
1400
+ h − I)∂u(tj),
1401
+ and
1402
+ wj
1403
+ 2,u := ∂u(tj) − ut(tj).
1404
+ (50)
1405
+ Then by using Cauchy-Schwarz inequality (as in the semi-discretized case (32)),
1406
+ ∆tF
1407
+ µ
1408
+ n
1409
+
1410
+ j=1
1411
+ ���∂uj
1412
+ h − ut(tj)
1413
+ ���
1414
+ L2(Ω) ≤
1415
+
1416
+ tn
1417
+ µ
1418
+ �� n
1419
+
1420
+ j=1
1421
+ ∆tF
1422
+ ���∂θj
1423
+ u
1424
+ ���
1425
+ 2
1426
+ L2(Ω)
1427
+
1428
+ ��
1429
+
1430
+
1431
+ �1/2
1432
+ +
1433
+ � n
1434
+
1435
+ j=1
1436
+ ∆tF
1437
+ ���wj
1438
+ u
1439
+ ���
1440
+ 2
1441
+ L2(Ω)
1442
+
1443
+ ��
1444
+
1445
+ Tw
1446
+ �1/2�
1447
+ .
1448
+ (51)
1449
+ 13
1450
+
1451
+ * Let us begin by the estimate on Tθ. On the state solution u, by choosing v = ∂θn
1452
+ u, from (10) (the
1453
+ operator ∂ and the spatial derivative can commute), we have
1454
+ ���∂θn
1455
+ u
1456
+ ���
1457
+ 2
1458
+ L2(Ω) + µ(∇θn
1459
+ u, ∂∇θn
1460
+ u) = −(wn
1461
+ u, ∂θn
1462
+ u),
1463
+ (52)
1464
+ where θn
1465
+ u is the discrete version of (31). By definition of ∂ (and with Young’s inequality),
1466
+ ���∂θn
1467
+ u
1468
+ ���
1469
+ 2
1470
+ L2(Ω) + µ
1471
+ ∆tF
1472
+ ��∇θn
1473
+ u
1474
+ ��2
1475
+ L2(Ω) ≤
1476
+ µ
1477
+ 2∆tF
1478
+ ���∇θn
1479
+ u
1480
+ ��2
1481
+ L2(Ω) +
1482
+ ���∇θn−1
1483
+ u
1484
+ ���
1485
+ 2
1486
+ L2(Ω)
1487
+
1488
+ + 1
1489
+ 2
1490
+ ���wn
1491
+ u
1492
+ ��2
1493
+ L2(Ω) +
1494
+ ���∂θn���
1495
+ 2
1496
+ L2(Ω)
1497
+
1498
+ ,
1499
+ which entails
1500
+ ���∂θn
1501
+ u
1502
+ ���
1503
+ 2
1504
+ L2(Ω) ≤
1505
+ µ
1506
+ ∆tF
1507
+ ���∇θn−1
1508
+ u
1509
+ ���
1510
+ 2
1511
+ L2(Ω) −
1512
+ µ
1513
+ ∆tF
1514
+ ��∇θn
1515
+ u
1516
+ ��2
1517
+ L2(Ω) +
1518
+ ��wn
1519
+ u
1520
+ ��2
1521
+ L2(Ω) , ∀n = 1, . . . , NT.
1522
+ (53)
1523
+ Summing over the time steps, we get
1524
+ n
1525
+
1526
+ j=1
1527
+ ���∂θj
1528
+ u
1529
+ ���
1530
+ 2
1531
+ L2(Ω) ≤
1532
+ ���
1533
+ n
1534
+
1535
+ j=1
1536
+ µ
1537
+ ∆tF
1538
+ ����∇θj−1
1539
+ u
1540
+ ���
1541
+ 2
1542
+ L2(Ω) −
1543
+ ���∇θj
1544
+ u
1545
+ ���
1546
+ 2
1547
+ L2(Ω)
1548
+
1549
+ +
1550
+ ���wj
1551
+ u
1552
+ ���
1553
+ 2
1554
+ L2(Ω)
1555
+ ���,
1556
+ and we obtain
1557
+ n
1558
+
1559
+ j=1
1560
+ ���∂θn
1561
+ u
1562
+ ���
1563
+ 2
1564
+ L2(Ω) ≤
1565
+ ��� µ
1566
+ ∆tF
1567
+ ����∇θ0
1568
+ u
1569
+ ���
1570
+ 2
1571
+ L2(Ω) −
1572
+ ��∇θn
1573
+ u
1574
+ ��2
1575
+ L2(Ω)
1576
+ ���� +
1577
+ n
1578
+
1579
+ j=1
1580
+ ���wj
1581
+ u
1582
+ ���
1583
+ 2
1584
+ L2(Ω) .
1585
+ From the initial condition, θ0
1586
+ u = 0,
1587
+ n
1588
+
1589
+ j=1
1590
+ ���∂θn
1591
+ u
1592
+ ���
1593
+ 2
1594
+ L2(Ω) ≤
1595
+ µ
1596
+ ∆tF
1597
+ ��∇θn
1598
+ u
1599
+ ��2
1600
+ L2(Ω) +
1601
+ n
1602
+
1603
+ j=1
1604
+ ���wj
1605
+ u
1606
+ ���
1607
+ 2
1608
+ L2(Ω) .
1609
+ (54)
1610
+ From (53) and by repeated application, we find for the first right-hand side term that
1611
+ ��∇θn
1612
+ u
1613
+ ��2
1614
+ L2(Ω) ≤ ∆tF
1615
+ µ
1616
+ n
1617
+
1618
+ j=1
1619
+ ���wj
1620
+ u
1621
+ ���
1622
+ 2
1623
+ L2(Ω) ,
1624
+ which gives for (54), multiplying by ∆tF to recover Tθ,
1625
+ n
1626
+
1627
+ j=1
1628
+ ∆tF
1629
+ ���∂θj
1630
+ u
1631
+ ���
1632
+ 2
1633
+ L2(Ω) ≤ 2
1634
+ n
1635
+
1636
+ j=1
1637
+ ∆tF
1638
+ ���wj
1639
+ u
1640
+ ���
1641
+ 2
1642
+ L2(Ω) .
1643
+ (55)
1644
+ Now, going back to (51), we obtain
1645
+ ∆tF
1646
+ µ
1647
+ n
1648
+
1649
+ j=1
1650
+ ���∂uj
1651
+ h − ut(tj)
1652
+ ���
1653
+ L2(Ω) ≤ C
1654
+ µ
1655
+ � n
1656
+
1657
+ j=1
1658
+ ∆tF
1659
+ ���wj
1660
+ u
1661
+ ���
1662
+ 2
1663
+ L2(Ω)
1664
+
1665
+ ��
1666
+
1667
+ Tw
1668
+ �1/2
1669
+ ≤ C
1670
+ µ
1671
+ � n
1672
+
1673
+ j=1
1674
+ ∆tF
1675
+ ����wj
1676
+ 1,u
1677
+ ���
1678
+ 2
1679
+ L2(Ω) +
1680
+ ���wj
1681
+ 2,u
1682
+ ���
1683
+ 2
1684
+ L2(Ω)
1685
+ ��1/2
1686
+ .
1687
+ (56)
1688
+ * It remains to estimate Tw.
1689
+ · Let us first consider the construction for w1,u
1690
+ wj
1691
+ 1,u = (P1
1692
+ h − I)∂u(tj) =
1693
+ 1
1694
+ ∆tF
1695
+ (P1
1696
+ h − I)
1697
+ � tj
1698
+ tj−1 ut ds =
1699
+ 1
1700
+ ∆tF
1701
+ � tj
1702
+ tj−1(P1
1703
+ h − I)ut ds ,
1704
+ 14
1705
+
1706
+ since P1
1707
+ h and the time integral commute. Thus, from Cauchy-Schwarz inequality,
1708
+ ∆tF
1709
+ n
1710
+
1711
+ j=1
1712
+ ���wj
1713
+ 1,u
1714
+ ���
1715
+ 2
1716
+ L2(Ω) ≤ ∆tF
1717
+ n
1718
+
1719
+ j=1
1720
+
1721
+
1722
+ � 1
1723
+ ∆t2
1724
+ F
1725
+ � tj
1726
+ tj−1((P1
1727
+ h − I)ut)2 ds ∆tF
1728
+
1729
+
1730
+ n
1731
+
1732
+ j=1
1733
+ � tj
1734
+ tj−1
1735
+ ���(P1
1736
+ h − I)ut
1737
+ ���
1738
+ 2
1739
+ L2(Ω)
1740
+ ds ,
1741
+ ≤ Ch4
1742
+ n
1743
+
1744
+ j=1
1745
+ � tj
1746
+ tj−1∥ut∥2
1747
+ H2(Ω) , by definition of P1
1748
+ h,
1749
+ ≤ Ch4
1750
+ � tn
1751
+ 0 ∥ut∥2
1752
+ H2(Ω)
1753
+ ds.
1754
+ (57)
1755
+ · To estimate the L2 norm of w2,u, we write
1756
+ wj
1757
+ 2,u =
1758
+ 1
1759
+ ∆tF
1760
+ (u(tj) − u(tj−1)) − ut(tj) = − 1
1761
+ ∆tF
1762
+ � tj
1763
+ tj−1(s − tj−1)utt(s) ds,
1764
+ such that we end up with
1765
+ ∆tF
1766
+ n
1767
+
1768
+ j=1
1769
+ ���wj
1770
+ 2,u
1771
+ ���
1772
+ 2
1773
+ L2(Ω) ≤
1774
+ n
1775
+
1776
+ j=1
1777
+ �����
1778
+ � tj
1779
+ tj−1(s − tj−1)utt(s) ds
1780
+ �����
1781
+ 2
1782
+ L2(Ω)
1783
+ ≤ ∆t2
1784
+ F
1785
+ � tn
1786
+ 0 ∥utt∥2
1787
+ L2(Ω) ds,
1788
+ (58)
1789
+ – We still have to find a bound for T3,n, defined in (49).
1790
+ * For the estimates on wj
1791
+ 1,
1792
+ wj
1793
+ 1 =
1794
+ 1
1795
+ ∆tF
1796
+ � tj
1797
+ tj−1(P1
1798
+ h − I)Ψt ds ,
1799
+ and thus,
1800
+ ∆tF
1801
+ n
1802
+
1803
+ j=1
1804
+ ���wj
1805
+ 1
1806
+ ���
1807
+ L2(Ω) ≤ Ch2
1808
+ � tn
1809
+ 0 ∥Ψt∥H2(Ω) ds .
1810
+ * For wj
1811
+ 2, we have
1812
+ ∆tFwj
1813
+ 2 = Ψ(tj) − Ψ(tj−1) − ∆tFΨt(tj) = −
1814
+ � tj
1815
+ tj−1(s − tj−1)Ψtt(s) ds ,
1816
+ and therefore
1817
+ ∆tF
1818
+ n
1819
+
1820
+ j=1
1821
+ ���wj
1822
+ 2
1823
+ ���
1824
+ L2(Ω) ≤
1825
+ n
1826
+
1827
+ j=1
1828
+ �����
1829
+ � tj
1830
+ tj−1(s − tj−1)Ψtt(s) ds
1831
+ �����
1832
+ L2(Ω)
1833
+ ≤ ∆tF
1834
+ � tn
1835
+ 0 ∥Ψtt∥L2(Ω) ds .
1836
+ Altogether,
1837
+ T3,n ≤ Ch2
1838
+ � tn
1839
+ 0 ∥Ψt∥H2(Ω) ds + ∆tF
1840
+ � tn
1841
+ 0 ∥Ψtt∥L2(Ω) ds ,
1842
+ (59)
1843
+ and the proof ends by using (46), (49), (56), (57), (58), and (59).
1844
+ With the fully-discretized version (44), the following estimate holds with H1 norm.
1845
+ Theorem 2.8. Let Ω be a convex polyhedron. Let A(µ) = µ Id, with µ ∈ R+∗ .
1846
+ Consider u ∈ H1(0, T; H2(Ω)) ∩ H2(0, T; L2(Ω)) be the solution of (3) with u0 ∈ H2(Ω) and un
1847
+ h be the fully-discretized
1848
+ variational form (10). Let Ψ and Ψn
1849
+ h be the corresponding sensitivities , respectively given by (23) and (44). Then
1850
+ ∀n = 0, . . . , NT,
1851
+ ��∇Ψn
1852
+ h − ∇Ψ(t)
1853
+ ��
1854
+ L2(Ω) ≤ h
1855
+
1856
+ C
1857
+ ���Ψ0���
1858
+ H2(Ω) + C(µ)
1859
+ � tn
1860
+ 0 ∥Ψt∥H2(Ω) ds + C(µ)
1861
+ � � tn
1862
+ 0 ∥ut∥2
1863
+ H2(Ω) ds
1864
+ �1/2�
1865
+ + C(µ)∆tF
1866
+ � � tn
1867
+ 0 ∥Ψtt∥L2(Ω) ds +
1868
+ � � tn
1869
+ 0 ∥utt∥2
1870
+ L2(Ω) ds
1871
+ �1/2��
1872
+ .
1873
+ 15
1874
+
1875
+ Proof. The proof combines the ideas of the two previous ones, since we seek the estimate in the H1 norm (as in
1876
+ the semi-discretized problem) but with the fully-discretized version.
1877
+ • In analogy with (26), the estimate on ρn is now given by
1878
+ ��∇ρn��
1879
+ L2(Ω) ≤ Ch
1880
+ ��Ψ(tn)
1881
+ ��
1882
+ H2(Ω) ≤ Ch
1883
+ ����Ψ0���
1884
+ H2(Ω) +
1885
+ � tn
1886
+ 0 ∥Ψt∥H2(Ω) ds
1887
+
1888
+ , ∀n = 0, . . . , NT.
1889
+ (60)
1890
+ • For θn, instead of choosing v = θn as in (47), we take v = ∂θn
1891
+ ���∂θn���
1892
+ 2
1893
+ L2(Ω) + µ(∇θn, ∇∂θn) = 1
1894
+ µ(∂un
1895
+ h − ut(tn), ∂θn) − (wn, ∂θn),
1896
+ (61)
1897
+ and we obtain (as before with the semi-discretized version (40))
1898
+ µ(∇θn, ∇∂θn) ≤
1899
+ 1
1900
+ 2µ2
1901
+ ���∂un
1902
+ h − ut(tn)
1903
+ ���
1904
+ 2
1905
+ L2(Ω) + 1
1906
+ 2
1907
+ ��wn��2
1908
+ L2(Ω) .
1909
+ By definition of ∂
1910
+ µ
1911
+ ��∇θn��2
1912
+ L2(Ω) ≤ (√µ∇θn, √µ∇θn−1) + ∆tF
1913
+ 2µ2
1914
+ ���∂un
1915
+ h − ut(tn)
1916
+ ���
1917
+ 2
1918
+ L2(Ω) + ∆tF
1919
+ 2
1920
+ ��wn��2
1921
+ L2(Ω) ,
1922
+ which entails (by Young’s inequality)
1923
+ µ
1924
+ ��∇θn��2
1925
+ L2(Ω) ≤ µ
1926
+ ���∇θn−1���
1927
+ 2
1928
+ L2(Ω) + ∆tF
1929
+ µ2
1930
+ ���∂un
1931
+ h − ut(tn)
1932
+ ���
1933
+ 2
1934
+ L2(Ω) + ∆tF
1935
+ ��wn��2
1936
+ L2(Ω) ,
1937
+ and, by recursion (as in (49))
1938
+ µ
1939
+ ��∇θn��2
1940
+ L2(Ω) ≤ ∆tF
1941
+ µ2
1942
+ n
1943
+
1944
+ j=1
1945
+ ���∂uj
1946
+ h − ut(tj)
1947
+ ���
1948
+ 2
1949
+ L2(Ω)
1950
+
1951
+ ��
1952
+
1953
+ T′
1954
+ 2,n
1955
+ + ∆tF
1956
+ n
1957
+
1958
+ j=1
1959
+ ���wj���
1960
+ 2
1961
+ L2(Ω)
1962
+
1963
+ ��
1964
+
1965
+ T′
1966
+ 3,n
1967
+ .
1968
+ (62)
1969
+ – To estimate T′
1970
+ 2,n, we write
1971
+ T′
1972
+ 2,n ≤ 2
1973
+ µ2
1974
+ � n
1975
+
1976
+ j=1
1977
+ ∆tF
1978
+ ���∂θj
1979
+ u
1980
+ ���
1981
+ 2
1982
+ L2(Ω)
1983
+
1984
+ ��
1985
+
1986
+
1987
+ +
1988
+ n
1989
+
1990
+ j=1
1991
+ ∆tF
1992
+ ���wj
1993
+ u
1994
+ ���
1995
+ 2
1996
+ L2(Ω)
1997
+
1998
+ ��
1999
+
2000
+ Tw
2001
+
2002
+ ,
2003
+ and thanks to the previous estimate on Tθ (55), we find that
2004
+ T′
2005
+ 2,n ≤ 6
2006
+ µ2
2007
+ � n
2008
+
2009
+ j=1
2010
+ ∆tF
2011
+ ���wj
2012
+ u
2013
+ ���
2014
+ 2
2015
+ L2(Ω)
2016
+
2017
+ ��
2018
+
2019
+ Tw
2020
+
2021
+ ,
2022
+ which, by (57) and (58), yields
2023
+ T′
2024
+ 2,n ≤ C
2025
+ µ2
2026
+
2027
+ h4
2028
+ � tn
2029
+ 0 ∥ut∥2
2030
+ H2(Ω) ds + ∆t2
2031
+ F
2032
+ � tn
2033
+ 0 ∥utt∥2
2034
+ L2(Ω) ds
2035
+
2036
+ .
2037
+ – To find a bound for T′
2038
+ 3,n, we simply use (57) and (58) again but with the sensitivity function Ψ instead
2039
+ of u.
2040
+ Combining the estimates on T′
2041
+ 2,n and T′
2042
+ 3,n with (62), and (60) concludes the proof.
2043
+ 16
2044
+
2045
+ With ∂Ψm
2046
+ H = Ψm
2047
+ H−Ψm−1
2048
+ H
2049
+ ∆tG
2050
+ , on the coarse mesh TH with the Crank-Nicolson scheme, the fully-discretized system
2051
+ (11) yields
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+
2058
+
2059
+
2060
+
2061
+
2062
+
2063
+ Find Ψm
2064
+ p,H ∈ VH for m ∈ {0, . . . , MT} such that
2065
+ (∂Ψm
2066
+ p,H, vH) + a(
2067
+ Ψm
2068
+ p,H+Ψm−1
2069
+ p,H
2070
+ 2
2071
+ , vH; µ) = −( ∂A
2072
+ ∂µp (µ) ∇um
2073
+ H(µ)+∇um−1
2074
+ H
2075
+ (µ)
2076
+ 2
2077
+ , ∇vH), for vH ∈ VH, for m = {1, . . . , MT}, (63)
2078
+ Ψ0
2079
+ p,H(·) = P1
2080
+ HΨ0
2081
+ p(·).
2082
+ We have the following result in the L2 norm with the Crank-Nicolson scheme on the coarse mesh TH.
2083
+ Theorem 2.9. Let Ω be a convex polyhedron. Let A(µ) = µ Id, with µ ∈ R+∗ .
2084
+ Consider u ∈ H2(0, T; H2(Ω)) ∩ H3(0, T; L2(Ω)) be the solution of (3) with u0 ∈ H2(Ω) and um
2085
+ H be the fully-discretized
2086
+ variational form (11) (on the coarse mesh TH). Let Ψ and Ψm
2087
+ H be the corresponding sensitivities , respectively given by (23)
2088
+ and (44). Then
2089
+ ∀m = 0, . . . , MT,
2090
+ ���Ψm
2091
+ h − Ψ(�tm)
2092
+ ���
2093
+ L2(Ω) ≤ CH2����Ψ0���
2094
+ H2(Ω) +
2095
+ � �tm
2096
+ 0
2097
+ ∥Ψt∥H2(Ω) ds + C(µ)
2098
+ � � �tm
2099
+ 0
2100
+ ∥ut∥2
2101
+ H2(Ω) ds
2102
+ ���1/2�
2103
+ + C∆t2
2104
+ G
2105
+ � � �tm
2106
+ 0
2107
+ ∥Ψttt∥L2(Ω) ds +
2108
+ � � �tm
2109
+ 0
2110
+ ∥∆utt∥2
2111
+ L2(Ω) ds
2112
+ �1/2
2113
+ + C(µ)
2114
+ �� � �tm
2115
+ 0
2116
+ ∥uttt∥2
2117
+ L2(Ω) ds]1/2 +
2118
+ � �tm
2119
+ 0
2120
+ ∥∆Ψtt∥L2(Ω) ds
2121
+ ��
2122
+ .
2123
+ Proof.
2124
+ • For ρm we have the same estimate as before (46) (but with the coarse size H).
2125
+ • We introduce the following notation
2126
+
2127
+ um
2128
+ H = 1
2129
+ 2(um
2130
+ H + um−1
2131
+ H
2132
+ ).
2133
+ (64)
2134
+ Thanks to the Crank-Nicolson formulation on Ψm
2135
+ H (63) and um
2136
+ H (11) on the coarse mesh TH (and on the weak
2137
+ formulation on u (5) and by definition of P1
2138
+ H (7)),
2139
+ (∂θm, v) + µ(∇�
2140
+ θm, ∇v) = (∂Ψm
2141
+ H, v) − (∂P1
2142
+ H(Ψ(�tm)), v) + µ(∇�
2143
+ Ψm
2144
+ H, ∇v) − µ
2145
+ 2
2146
+
2147
+ (∇P1
2148
+ HΨ(�tm), ∇v) + (∇P1
2149
+ HΨ(�tm−1), ∇v)
2150
+
2151
+ ,
2152
+ = −(∇ �
2153
+ um
2154
+ H, ∇v) − (∂P1
2155
+ H(Ψ(�tm)), v) − µ
2156
+ 2
2157
+
2158
+ (∇Ψ(�tm), ∇v) + (∇Ψ(�tm−1), ∇v)
2159
+
2160
+ ,
2161
+ = −(∇ �
2162
+ um
2163
+ H, ∇v) −(∂P1
2164
+ H(Ψ(�tm)), v) + (∂Ψ(�tm), v)
2165
+
2166
+ ��
2167
+
2168
+ −wm
2169
+ I
2170
+ −(∂Ψ(�tm), v) + (Ψt(�tm− 1
2171
+ 2 ), v)
2172
+
2173
+ ��
2174
+
2175
+ −wm
2176
+ II
2177
+ − (Ψt(�tm− 1
2178
+ 2 ), v) − µ
2179
+ 2
2180
+
2181
+ (∇Ψ(�tm), ∇v) + (∇Ψ(�tm−1), ∇v)
2182
+
2183
+ = −(∇ �
2184
+ um
2185
+ H, ∇v) − wm
2186
+ I − wm
2187
+ II + (∇u(�tm− 1
2188
+ 2 ), ∇v) + µ(∇Ψ(�tm− 1
2189
+ 2 ), ∇v)
2190
+ − µ
2191
+ 2
2192
+
2193
+ (∇Ψ(�tm), ∇v) + (∇Ψ(�tm−1), ∇v)
2194
+
2195
+ = (∇u(�tm− 1
2196
+ 2 ) − �
2197
+ ∇um
2198
+ H, ∇v) − (wm
2199
+ I + wm
2200
+ II + µwm
2201
+ III, v),
2202
+ where wm
2203
+ I , wm
2204
+ II and wm
2205
+ III are defined by
2206
+ wm
2207
+ I := (P1
2208
+ H − I)∂Ψ(�tm), wm
2209
+ II := ∂Ψ(�tm) − Ψt(�tm− 1
2210
+ 2 ), and wm
2211
+ III := ∆ψ(�tm− 1
2212
+ 2 ) − 1
2213
+ 2(∆Ψ(�tm) + ∆Ψ(�tm−1)). (65)
2214
+ Thus, (47) with a Crank-Nicolson scheme and with v = �
2215
+ θm becomes
2216
+ (∂θm, �
2217
+ θm) + µ(∇�
2218
+ θm, ∇�
2219
+ θm) = 1
2220
+ µ(∂um
2221
+ H − ut(�tm− 1
2222
+ 2 ), �
2223
+ θm) − (wm
2224
+ I + wm
2225
+ II + µwm
2226
+ III, �
2227
+ θm),
2228
+ = 1
2229
+ µ(∂um
2230
+ H − ut(�tm− 1
2231
+ 2 ), �
2232
+ θm) − (wm
2233
+ T , �
2234
+ θm),
2235
+ (66)
2236
+ where wm
2237
+ T = wm
2238
+ I + wm
2239
+ II + µwm
2240
+ III. By definition of ∂ (with the coarse time grid), and since the second term in
2241
+ (66) is always positive, we get
2242
+ (θm, �
2243
+ θm) − (θm−1, �
2244
+ θm) ≤ ∆tG
2245
+ � 1
2246
+ µ
2247
+ ���∂um
2248
+ H − ut(�tm− 1
2249
+ 2 )
2250
+ ���
2251
+ L2(Ω) +
2252
+ ��wm
2253
+ T
2254
+ ��
2255
+ L2(Ω)
2256
+ �����
2257
+ θm
2258
+ ���
2259
+ L2(Ω) ,
2260
+ 17
2261
+
2262
+ and by definition of �
2263
+ θm (64),
2264
+ ��θm��2
2265
+ L2(Ω) −
2266
+ ���θm−1���
2267
+ 2
2268
+ L2(Ω) ≤ ∆tG
2269
+ � 1
2270
+ µ
2271
+ ���∂um
2272
+ h − ut(�tm− 1
2273
+ 2 )
2274
+ ���
2275
+ L2(Ω) +
2276
+ ��wm
2277
+ T
2278
+ ��
2279
+ L2(Ω)
2280
+ ����θm + θm−1���
2281
+ L2(Ω) ,
2282
+ so that, after cancellation of a common factor,
2283
+ ��θm��
2284
+ L2(Ω) −
2285
+ ���θm−1���
2286
+ L2(Ω) ≤ ∆tG
2287
+ � 1
2288
+ µ
2289
+ ���∂um
2290
+ H − ut(�tm− 1
2291
+ 2 )
2292
+ ���
2293
+ L2(Ω) +
2294
+ ��wm
2295
+ T
2296
+ ��
2297
+ L2(Ω)
2298
+
2299
+ ,
2300
+ and by recursive application, it entails
2301
+ ��θm��
2302
+ L2(Ω) ≤ ∆tG
2303
+ µ
2304
+ m
2305
+
2306
+ j=1
2307
+ ���∂uj
2308
+ H − ut(�tj− 1
2309
+ 2 )
2310
+ ���
2311
+ L2(Ω)
2312
+
2313
+ ��
2314
+
2315
+ T′′
2316
+ 2,n
2317
+ + ∆tG
2318
+ m
2319
+
2320
+ j=1
2321
+ ���wj
2322
+ T
2323
+ ���
2324
+ L2(Ω)
2325
+
2326
+ ��
2327
+
2328
+ T′′
2329
+ 3,n
2330
+ .
2331
+ (67)
2332
+ – To estimate T′′
2333
+ 2,n, we use the same tricks as before (51). First, we can decompose T′′
2334
+ 2,n in 2 contributions,
2335
+ such that
2336
+ ∆tG
2337
+ µ
2338
+ m
2339
+
2340
+ j=1
2341
+ ���∂uj
2342
+ H − ut(�tj− 1
2343
+ 2 )
2344
+ ���
2345
+ L2(Ω) ≤ ∆tG
2346
+ µ
2347
+ m
2348
+
2349
+ j=1
2350
+ ���∂uj
2351
+ H − ∂Ph
2352
+ 1 u(�tj)
2353
+ ���
2354
+ L2(Ω)
2355
+
2356
+ ��
2357
+
2358
+ ���∂θj
2359
+ u
2360
+ ���
2361
+ L2(Ω)
2362
+ +
2363
+ ���∂Ph
2364
+ 1 u(�tj) − ut(�tj− 1
2365
+ 2 )
2366
+ ���
2367
+ L2(Ω)
2368
+
2369
+ ��
2370
+
2371
+ ���wj
2372
+ I,u+wj
2373
+ II,u
2374
+ ���
2375
+ L2(Ω)
2376
+ ,
2377
+ where we denote by wm
2378
+ I,u, wm
2379
+ II,u the same terms respectively defined by wm
2380
+ I , wm
2381
+ II (65) but with u instead
2382
+ of Ψ
2383
+ wm
2384
+ I,u := (P1
2385
+ h − I)∂u(�tm),
2386
+ wm
2387
+ II,u := ∂u(�tm) − ut(�tm− 1
2388
+ 2 ).
2389
+ (68)
2390
+ We now apply Cauchy-Schwarz inequality
2391
+ ∆tG
2392
+ µ
2393
+ m
2394
+
2395
+ j=1
2396
+ ���∂uj
2397
+ H − ut(�tj− 1
2398
+ 2 )
2399
+ ���
2400
+ L2(Ω) ≤
2401
+ √�tm
2402
+ µ
2403
+ �� m
2404
+
2405
+ j=1
2406
+ ∆tG
2407
+ ���∂θj���
2408
+ 2
2409
+ L2(Ω)
2410
+ �1/2
2411
+ +
2412
+ � m
2413
+
2414
+ j=1
2415
+ ∆tG
2416
+ ���wj
2417
+ I,u + wj
2418
+ II,u
2419
+ ���
2420
+ 2
2421
+ L2(Ω)
2422
+ �1/2�
2423
+ ,
2424
+ (69)
2425
+
2426
+ √�tm
2427
+ µ
2428
+ �� m
2429
+
2430
+ j=1
2431
+ ∆tG
2432
+ ���∂θj���
2433
+ 2
2434
+ L2(Ω)
2435
+ �1/2
2436
+ +
2437
+ � m
2438
+
2439
+ j=1
2440
+ ∆tG
2441
+ ���wj
2442
+ I,u + wj
2443
+ II,u
2444
+ ���
2445
+ 2
2446
+ L2(Ω) +
2447
+ ���wj
2448
+ III,u
2449
+ ���
2450
+ 2
2451
+ L2(Ω)
2452
+ �1/2�
2453
+ * To estimate the first term of (69), we use v = ∂θm
2454
+ u , and we now have (from the Crank-Nicolson
2455
+ scheme on u (11))
2456
+ ���∂θm
2457
+ u
2458
+ ���
2459
+ 2
2460
+ L2(Ω) + µ(∇�
2461
+ θm
2462
+ u , ∇∂θm
2463
+ u ) = −(wm
2464
+ I,u + wm
2465
+ II,u + µwm
2466
+ III,u, ∂θm
2467
+ u ),
2468
+ where
2469
+ wm
2470
+ III,u := ∆u(�tm− 1
2471
+ 2 ) − 1
2472
+ 2(∆u(�tm) + ∆u(�tm−1)),
2473
+ (70)
2474
+ and θm
2475
+ u is the discrete version of (31). By definitions of ∂ and �
2476
+ θm
2477
+ u , it can be rewritten
2478
+ ���∂θm
2479
+ u
2480
+ ���
2481
+ 2
2482
+ L2(Ω) +
2483
+ µ
2484
+ 2∆tG
2485
+ ��∇θm
2486
+ u
2487
+ ��2
2488
+ L2(Ω) −
2489
+ µ
2490
+ 2∆tF
2491
+ ���∇θm−1
2492
+ u
2493
+ ���
2494
+ 2
2495
+ L2(Ω) = −(wm
2496
+ I,u + wm
2497
+ II,u + µwm
2498
+ III,u, ∂θm
2499
+ u ),
2500
+ and it leads to (using Young’s inequality)
2501
+ ���∂��m
2502
+ u
2503
+ ���
2504
+ 2
2505
+ L2(Ω) +
2506
+ µ
2507
+ ∆tG
2508
+ ��∇θm
2509
+ u
2510
+ ��2
2511
+ L2(Ω) −
2512
+ µ
2513
+ ∆tG
2514
+ ���∇θm−1
2515
+ u
2516
+ ���
2517
+ 2
2518
+ L2(Ω) ≤
2519
+ ���wm
2520
+ I,u + wm
2521
+ II,u + µwm
2522
+ III,u
2523
+ ���
2524
+ 2
2525
+ L2(Ω) .
2526
+ (71)
2527
+ Now we find, as in (54) (by summing over all time steps in order to obtain a telescoping sum)
2528
+ m
2529
+
2530
+ j=1
2531
+ ���∂θj
2532
+ u
2533
+ ���
2534
+ 2
2535
+ L2(Ω) ≤
2536
+ µ
2537
+ ∆tG
2538
+ ���∇θj
2539
+ u
2540
+ ���
2541
+ 2
2542
+ L2(Ω) +
2543
+ m
2544
+
2545
+ j=1
2546
+ ���wj
2547
+ I,u + wj
2548
+ II,u + wj
2549
+ III,u
2550
+ ���
2551
+ 2
2552
+ L2(Ω) ,
2553
+ (72)
2554
+ 18
2555
+
2556
+ The term∥∇θm
2557
+ u ∥2
2558
+ L2(Ω) can easily be bounded by repeated application using (71). We find that (since
2559
+ the first term of (71) is positive)
2560
+ µ
2561
+ ∆tG
2562
+ ��∇θm
2563
+ u
2564
+ ��2
2565
+ L2(Ω) ≤
2566
+ m
2567
+
2568
+ j=1
2569
+ ���wj
2570
+ I,u + wj
2571
+ II,u + µwj
2572
+ III,u
2573
+ ���
2574
+ 2
2575
+ L2(Ω) ,
2576
+ and thus (72) gives
2577
+ m
2578
+
2579
+ j=1
2580
+ ���∂θj
2581
+ u
2582
+ ���
2583
+ 2
2584
+ L2(Ω) ≤ 2
2585
+ m
2586
+
2587
+ j=1
2588
+ ���wj
2589
+ I,u + wj
2590
+ II,u + µwj
2591
+ III,u
2592
+ ���
2593
+ 2
2594
+ L2(Ω) ≤ 4
2595
+ m
2596
+
2597
+ j=1
2598
+ ���wj
2599
+ I,u + wj
2600
+ II,u
2601
+ ���
2602
+ 2
2603
+ L2(Ω) +
2604
+ ���µwj
2605
+ III,u
2606
+ ���
2607
+ 2
2608
+ L2(Ω) ,
2609
+ (73)
2610
+ therefore we obtain for (69)
2611
+ ∆tG
2612
+ µ
2613
+ m
2614
+
2615
+ j=1
2616
+ ���∂uj
2617
+ H − ut(�tj− 1
2618
+ 2 )
2619
+ ���
2620
+ L2(Ω) ≤ 3
2621
+
2622
+ �tm
2623
+ ��∆tG
2624
+ µ2
2625
+ m
2626
+
2627
+ j=1
2628
+ ���wj
2629
+ I,u + wj
2630
+ II,u
2631
+ ���
2632
+ 2
2633
+ L2(Ω) +
2634
+ m
2635
+
2636
+ j=1
2637
+ ∆tG
2638
+ ���wj
2639
+ III,u
2640
+ ���
2641
+ 2
2642
+ L2(Ω)
2643
+ �1/2�
2644
+ ,
2645
+ which yields
2646
+ ∆tG
2647
+ µ
2648
+ m
2649
+
2650
+ j=1
2651
+ ���∂uj
2652
+ H − ut(�tj− 1
2653
+ 2 )
2654
+ ���
2655
+ L2(Ω) ≤ 3
2656
+
2657
+ �tm
2658
+ �� 2
2659
+ µ2
2660
+ m
2661
+
2662
+ j=1
2663
+ ∆tG
2664
+ ���wj
2665
+ I,u
2666
+ ���
2667
+ 2
2668
+ L2(Ω) + 2
2669
+ µ2
2670
+ m
2671
+
2672
+ j=1
2673
+ ∆tG
2674
+ ���wj
2675
+ II,u
2676
+ ���
2677
+ 2
2678
+ L2(Ω)
2679
+ +
2680
+ m
2681
+
2682
+ j=1
2683
+ ∆tG
2684
+ ���wj
2685
+ III,u
2686
+ ���
2687
+ 2
2688
+ L2(Ω)
2689
+ �1/2�
2690
+ .
2691
+ (74)
2692
+ * Now, we can estimate the right-hand side terms of (74) as done in [45]. We first remark that
2693
+ wj
2694
+ I,u = wj
2695
+ 1,u (and the estimate is given by (57) but with the coarse spatial and time grids), so it
2696
+ remains to seek bounds for wj
2697
+ II,u and wj
2698
+ III,u.
2699
+ · For wj
2700
+ II,u,
2701
+ ∆tG
2702
+ m
2703
+
2704
+ j=1
2705
+ ���wj
2706
+ II,u
2707
+ ���
2708
+ 2
2709
+ L2(Ω) =
2710
+ 1
2711
+ ∆tG
2712
+ m
2713
+
2714
+ j=1
2715
+ ���u(�tj) − u(�tj−1) − ∆tG ut(�tj− 1
2716
+ 2 )
2717
+ ���
2718
+ 2
2719
+ L2(Ω) ,
2720
+ =
2721
+ 1
2722
+ 4∆tG
2723
+ m
2724
+
2725
+ j=1
2726
+ ������
2727
+ � �tj− 1
2728
+ 2
2729
+ �tj−1 (s − �tj−1)2uttt(s) +
2730
+ � �tj
2731
+ �tj− 1
2732
+ 2 (s − �tj)2uttt(s) ds
2733
+ ������
2734
+ 2
2735
+ L2(Ω)
2736
+ ≤ C∆t3
2737
+ G
2738
+ m
2739
+
2740
+ j=1
2741
+ �����
2742
+ � �tj
2743
+ �tj−1 uttt(s) ds
2744
+ �����
2745
+ 2
2746
+ L2(Ω)
2747
+ ,
2748
+ ≤ C∆t4
2749
+ G
2750
+ m
2751
+
2752
+ j=1
2753
+ � �tj
2754
+ �tj−1∥uttt∥2
2755
+ L2(Ω) ds, with Cauchy-Schwarz inequality,
2756
+ ≤ C∆t4
2757
+ G
2758
+ � �tm
2759
+ �t0 ∥uttt∥2
2760
+ L2(Ω) ds.
2761
+ (75)
2762
+ · For wj
2763
+ III,u,
2764
+ ∆tG
2765
+ m
2766
+
2767
+ j=1
2768
+ ���wj
2769
+ III,u
2770
+ ���
2771
+ 2
2772
+ L2(Ω) = ∆tG
2773
+ m
2774
+
2775
+ j=1
2776
+ ����∆u(�tj− 1
2777
+ 2 ) − 1
2778
+ 2(∆u(�tj) + ∆u(�tj−1))
2779
+ ����
2780
+ 2
2781
+ L2(Ω)
2782
+ ,
2783
+ = ∆tG
2784
+ 4
2785
+ m
2786
+
2787
+ j=1
2788
+ ������
2789
+ � �tj− 1
2790
+ 2
2791
+ �tj−1 (tj−1 − s)∆utt(s) ds +
2792
+ � �tj
2793
+ �tj− 1
2794
+ 2 (s − �tj)∆utt(s) ds
2795
+ ������
2796
+ 2
2797
+ L2(Ω)
2798
+ ,
2799
+ ≤ C∆t3
2800
+ G
2801
+ m
2802
+
2803
+ j=1
2804
+ �����
2805
+ � �tj
2806
+ �tj−1 ∆utt ds
2807
+ �����
2808
+ 2
2809
+ L2(Ω)
2810
+ ,
2811
+ ≤ C∆t4
2812
+ G
2813
+ � �tm
2814
+ �t0 ∥∆utt∥2
2815
+ L2(Ω) ds, by Cauchy-Schwarz inequality.
2816
+ (76)
2817
+ 19
2818
+
2819
+ Altogether,
2820
+ T′′
2821
+ 2,n ≤ C
2822
+ � H2
2823
+ µ
2824
+ � � �tm
2825
+ 0
2826
+ ∥ut∥2
2827
+ H2(Ω) ds
2828
+ �1/2
2829
+ + ∆t2
2830
+ G
2831
+ �� 1
2832
+ µ
2833
+ � �tm
2834
+ 0
2835
+ ∥uttt∥2
2836
+ L2(Ω)
2837
+ �1/2
2838
+ +
2839
+ � � �tm
2840
+ 0
2841
+ ∥∆utt∥2
2842
+ L2(Ω)
2843
+ �1/2
2844
+ ds
2845
+ ��
2846
+ .
2847
+ (77)
2848
+ – To estimate T′′
2849
+ 3,n defined in (67), we remark that wj
2850
+ I = wj
2851
+ 1 (but with the coarse spatial and time grids),
2852
+ and
2853
+ * for wj
2854
+ II,
2855
+ ∆tG
2856
+ ���wj
2857
+ II
2858
+ ���
2859
+ L2(Ω) ≤
2860
+ ���Ψ(�tj) − Ψ(�tj−1) − ∆tGΨt(�tj− 1
2861
+ 2 )
2862
+ ���
2863
+ L2(Ω) ,
2864
+ = 1
2865
+ 2
2866
+ ������
2867
+ � �tj− 1
2868
+ 2
2869
+ �tj−1 (s − �tj−1)2Ψttt(s) +
2870
+ � �tj
2871
+ �tj− 1
2872
+ 2 (s − �tj)2Ψttt(s) ds
2873
+ ������
2874
+ L2(Ω)
2875
+ ≤ C∆t2
2876
+ G
2877
+ � �tj
2878
+ �tj−1∥Ψttt∥L2(Ω) ds.
2879
+ (78)
2880
+ * Finally, for wj
2881
+ III,
2882
+ ∆tG
2883
+ ���wj
2884
+ III
2885
+ ���
2886
+ L2(Ω) = ∆tG
2887
+ ����Ψ(�tj− 1
2888
+ 2 ) − 1
2889
+ 2(Ψ(�tj) + Ψ(�tj−1))
2890
+ ����
2891
+ L2(Ω)
2892
+ ≤ C∆t2
2893
+ G
2894
+ � �tj
2895
+ �tj−1∥∆Ψtt∥L2(Ω) ds.
2896
+ (79)
2897
+ Altogether,
2898
+ T′′
2899
+ 3,n ≤ CH2
2900
+ � �tm
2901
+ 0
2902
+ ∥Ψt∥H2(Ω) ds + C∆t2
2903
+ G
2904
+ � �tm
2905
+ 0
2906
+
2907
+ ∥Ψttt∥L2(Ω) + µ∥∆Ψtt∥L2(Ω)
2908
+
2909
+ ds,
2910
+ (80)
2911
+ which concludes the proof (combining (67), (77) and (80)).
2912
+ In analogy with the previous work on parabolic equations, we define
2913
+
2914
+ ΨH
2915
+ n = I2
2916
+ n[Ψm
2917
+ H](µ),
2918
+ for n = 1, . . . , NT,
2919
+ (81)
2920
+ with I2
2921
+ n defined by (12) as the quadratic interpolation in time of the coarse solution at time tn ∈ Im = [�tm−1,�tm]
2922
+ defined on [�tm−2,�tm] from the values Ψm−2
2923
+ H
2924
+ , Ψm−1
2925
+ H
2926
+ , and Ψm
2927
+ H, for all m = 2, . . . , MT. For tn ∈ I1 = [�t0,�t1], we use
2928
+ the same parabola defined by the values Ψ0
2929
+ H, Ψ1
2930
+ H, ψ2
2931
+ H as the one used over [�t1,�t2]. Note that, as before, we could
2932
+ have chosen another quadratic interpolation.
2933
+ Corollary 2.10 (of Theorem 2.9). Under the assumptions of Theorem 2.9, let um
2934
+ H be the fully-discretized solution (11) on
2935
+ the coarse mesh TH. Let Ψ and Ψm
2936
+ H be the corresponding sensitivities, respectively given by (23) and by (63). Let �
2937
+ ΨH
2938
+ n be
2939
+ the quadratic interpolation of the coarse solution Ψm
2940
+ H given by (81). Then,
2941
+ ∀n = 0, . . . , NT,
2942
+ ����
2943
+ Ψh
2944
+ n − Ψ(tn)
2945
+ ���
2946
+ L2(Ω) ≤ CH2����Ψ0���
2947
+ H2(Ω) +
2948
+ � tn
2949
+ 0 ∥Ψt∥H2(Ω) ds + C(µ)
2950
+ � � tn
2951
+ 0 ∥ut∥2
2952
+ H2(Ω) ds
2953
+ �1/2�
2954
+ + C∆t2
2955
+ G
2956
+ � � tn
2957
+ 0 ∥Ψttt∥L2(Ω) ds +
2958
+ � � tn
2959
+ 0 ∥∆utt∥2
2960
+ L2(Ω) ds
2961
+ �1/2
2962
+ + C(µ)
2963
+ �� � tn
2964
+ 0 ∥uttt∥2
2965
+ L2(Ω) ds ]1/2 +
2966
+ � tn
2967
+ 0 ∥∆Ψtt∥L2(Ω) ds
2968
+ ��
2969
+ .
2970
+ In the next section, we proceed with the adjoint state formulation.
2971
+ 2.4
2972
+ Sensitivity analysis: The adjoint problem.
2973
+ The adjoint method may be seen as an inverse method, where the goal is to retrieve the optimal parameter of
2974
+ an objective function F. The objective function will have a different meaning whether the goal is to retrieve the
2975
+ parameters from several measures (for parameter identification) or if we want to optimize a function depending
2976
+ 20
2977
+
2978
+ on the variables (PDE-constrained optimization). In the first case, F will have the following form (in its fully-
2979
+ discretized form)
2980
+ F(µ) = 1
2981
+ 2
2982
+ NT
2983
+
2984
+ n=1
2985
+ ��un
2986
+ h(µ) − un��2
2987
+ L2(Ω)
2988
+
2989
+ ��
2990
+
2991
+ ∥err(tn; µ)∥
2992
+ 2
2993
+ L2(Ω)
2994
+ ,
2995
+ (82)
2996
+ where un refer to the measures, which may be noisy (here for simplicity we consider the case of measures on the
2997
+ variables although it may be given by other outputs). In the second setting, it will be written
2998
+ F(µ) =
2999
+ NT
3000
+
3001
+ n=1
3002
+ gnun
3003
+ h(µ),
3004
+ (83)
3005
+ with gn some suitable weights. Note that by differentiating F with respect to the parameters µp, p = 1, . . . , P, we
3006
+ can observe the influence on the objective function of the input parameters through the normalized sensitivity
3007
+ coefficients (also called elasticity of P) [4]
3008
+ Sk = ∂F
3009
+ ∂µk
3010
+ (µ) ×
3011
+ µk
3012
+ F(µ), k = 1, . . . , P.
3013
+ (84)
3014
+ 2.4.1
3015
+ The continuous setting.
3016
+ • Let us for instance consider the first case outlined above, given in the continuous version by
3017
+ F(µ) = 1
3018
+ 2
3019
+ � T
3020
+ 0
3021
+ ��err(t; µ)
3022
+ ��2
3023
+ L2(Ω) .
3024
+ (85)
3025
+ • To minimize F under the constraint that u is the solution of our model problem (3), we consider the
3026
+ following Lagrangian with (χ, ϕ) the Lagrangian multipliers
3027
+ L(u, χ, ϕ; µ) = F(µ) +
3028
+ � T
3029
+ 0 (χ, (∇ · (A(µ)∇u) + f − ut)) ds +
3030
+ � T
3031
+ 0 (ϕ, u)L2(∂Ω) ds,
3032
+ (86)
3033
+ where
3034
+ – χ ∈ V is the multiplier associated to the constraint “u is a solution of (3)”,
3035
+ – ϕ ∈ R is the multiplier associated to the constraint of the Dirichlet boundary condition on ∂Ω. Since
3036
+ here we consider homogeneous condition, we just impose ϕ = 0.
3037
+ • Differentiating L with respect to the parameter µp, for p = 1, . . . , P, we obtain the following adjoint system
3038
+ in its variational form (see A for more details)
3039
+
3040
+
3041
+
3042
+
3043
+
3044
+ Find χ(t) ∈ V for t ∈ [0, T] such that
3045
+ (χt(t), v) = −( ∂err
3046
+ ∂u (t; µ), v) + (A(µ)∇χ(t), ∇v), ∀v ∈ V, t < T,
3047
+ χ(·, T) = 0, in Ω.
3048
+ (87)
3049
+ • After solving (89) with the parameter µ, one can compute dF
3050
+ dµp by noticing that
3051
+ dF
3052
+ dµp
3053
+ = dL
3054
+ dµp
3055
+ =
3056
+ � T
3057
+ 0
3058
+
3059
+ χ, ∇ · ( ∂A
3060
+ ∂µp
3061
+ (µ)∇u)
3062
+
3063
+ ds, from (124).
3064
+ (88)
3065
+ Remark 2.11. For a stable implementation, one may have to add a regularization term depending of the parameter to
3066
+ the cost function F(p).
3067
+ 21
3068
+
3069
+ 2.4.2
3070
+ Discretized setting.
3071
+ In analogy with the direct method, we first discretize the system in space, and then we apply an Euler scheme
3072
+ with the fine grids and a Crank-Nicolson scheme with the coarse ones. The semi-discretized version on Th writes
3073
+
3074
+
3075
+
3076
+
3077
+
3078
+
3079
+
3080
+ Find χh(t) ∈ Vh for t ∈ [0, T] such that
3081
+ (χh,t(t), vh) − a(χh, vh; µ) = −( ∂errh
3082
+ ∂uh (t; µ), vh), ∀vh ∈ Vh, t < T,
3083
+ χh(·, T) = 0, in Ω.
3084
+ (89)
3085
+ With the fully-discretized version, on the fine grids, the adjoint system becomes in its variational formulation
3086
+
3087
+
3088
+
3089
+
3090
+
3091
+
3092
+
3093
+ Find χn
3094
+ h ∈ Vh for n ∈ {0, . . . , NT} such that
3095
+ (∂χn
3096
+ h, vh) − a(χh, vh; µ) = −(un
3097
+ h − un, vh), ∀n = 0, . . . , NT − 1,
3098
+ χNT
3099
+ h (·) = 0.
3100
+ (90)
3101
+ Note that to compute ∂errn
3102
+ h
3103
+ ∂uh , we need the fine solutions un
3104
+ h and the measures. As for the state variable (11), we also
3105
+ compute the adjoint on the coarse mesh with the Crank-Nicolson scheme,
3106
+
3107
+
3108
+
3109
+
3110
+
3111
+
3112
+
3113
+
3114
+
3115
+ Find χm
3116
+ H ∈ VH for m ∈ {0, . . . , MT} such that
3117
+ (∂χm
3118
+ H, vH) − a( 1
3119
+ 2(χm
3120
+ H + χm−1
3121
+ H
3122
+ ), vH; µ) = − 1
3123
+ 2
3124
+
3125
+ (um
3126
+ H − um, vH) + (um−1
3127
+ H
3128
+ − um−1, vH)
3129
+
3130
+ ), ∀vH ∈ VH, ∀m = 0, . . . , MT − 1, (91)
3131
+ χMT
3132
+ H (·) = 0.
3133
+ Finally, note that the problems (90) and (92) are well-posed, since they are solved backward in time (see [16] for
3134
+ precisions in the general setting of time-dependent PDEs).
3135
+ The next section adapts the NIRB two-grid algorithm in the context of sensitivity analysis.
3136
+ 3
3137
+ NIRB algorithms applied to sensitivity analysis
3138
+ 3.1
3139
+ On the direct problem.
3140
+ 3.1.1
3141
+ NIRB algorithm.
3142
+ Let u(µ) be the exact solution of problem (3) for a parameter µ ∈ G and Ψp(µ) its sensitivity with respect to
3143
+ the parameter µp, p = 1, . . . , P. We consider P parameters of interest. In this context, we use the following
3144
+ offline/online decomposition for the NIRB procedure:
3145
+ • “Offline part”
3146
+ 1. For a set of training parameters (�µi)i=1,··· ,Np,train, we define Gp,train =
3147
+
3148
+ i∈{1,...,Np,train}�µi. Then, through
3149
+ a greedy algorithm 1, we adequately choose the parameters of the RB. During this procedure, we
3150
+ compute fine fully-discretized solutions {Ψn
3151
+ p,h(�µi)}i∈{1,...Nµ,p}, n={0,...,NT} (Nµ,p ≤ Np,train) with the HF
3152
+ solver, by solving either (44) or the following problem (where un
3153
+ h in (44) has been replaced by its NIRB
3154
+ approximation uN,n
3155
+ Hh or by its rectified version Rn
3156
+ u[uN,n
3157
+ Hh ] obtained from the algorithm of section 2.2)
3158
+
3159
+
3160
+
3161
+
3162
+
3163
+
3164
+
3165
+
3166
+
3167
+ Find Ψn
3168
+ p,h ∈ Vh for n ∈ {0, . . . , NT} such that
3169
+ (∂Ψn
3170
+ p,h, vh) + a(Ψn
3171
+ p,h, vh; �µ) = −( ∂A
3172
+ ∂µp (µ)∇uN,n
3173
+ Hh (µ), ∇vh) for n = {1, . . . , NT},
3174
+ (92)
3175
+ Ψ0
3176
+ p,h(·) = P1
3177
+ hΨ0
3178
+ p(·).
3179
+ The term −( ∂A
3180
+ ∂µp (µ)∇uN,n
3181
+ Hh (µ), ∇vh) in (92) is replaced by −( ∂A
3182
+ ∂µp (µ)∇Rn
3183
+ u[uN,n
3184
+ Hh ](µ), ∇vh) in case of the
3185
+ rectification post-treatment. Note that un
3186
+ h can directly be used (as in (44)) since this step belongs to the
3187
+ offline part of the NIRB algorithm. However, if the number of parameters required for the initial RB is
3188
+ 22
3189
+
3190
+ lower than the number of parameters needed for the sensitivities RB or if one combine the sensitivities
3191
+ with an optimization algorithm, it may be convenient to employ (92) instead of (44).
3192
+ In analogy to section 2.2, a few time steps may be selected for each parameter of the RB, and thus,
3193
+ we obtain Np L2 orthogonal RB (time-independent) functions, denoted (ζh
3194
+ p,i)i=1,...,Np, and the reduced
3195
+ spaces X
3196
+ Np
3197
+ p,h := Span{ζh
3198
+ p,1, . . . , ζh
3199
+ p,Np} for p = 1, . . . , P.
3200
+ 2. Then, for each p, we solve the eigenvalue problem (14) on X
3201
+ Np
3202
+ p,h:
3203
+
3204
+
3205
+
3206
+
3207
+
3208
+ Find ζh ∈ X
3209
+ Np
3210
+ p,h, and λ ∈ R such that:
3211
+ ∀v ∈ X
3212
+ Np
3213
+ p,h,
3214
+
3215
+ Ω ∇ζh · ∇v dx = λ
3216
+
3217
+ Ω ζh · v dx.
3218
+ (93)
3219
+ For each parameter p ∈ {1, . . . , P}, we get an increasing sequence of eigenvalues λp
3220
+ i , and eigenfunc-
3221
+ tions (ζh
3222
+ p,i)i=1,··· ,Np, orthonormalized in L2(Ω) and orthogonalized in H1(Ω).
3223
+ 3. As in the offline step 3 from section 2.2, we enhance the NIRB approximation with a rectification post-
3224
+ processing. Thus, we introduce the rectification matrices, denoted Rp,n
3225
+ Ψ . They are associated to the
3226
+ sensitivities problem (44), defined for each p ∈ {1, . . . , P} and each fine time step n ∈ {1, . . . , NT}, and
3227
+ constructed from coarse snapshots, generated by solving (63) and whose parameters are the same as
3228
+ for the fine snapshots.
3229
+ Thus, for all n = 1, . . . , NT and all p = 1, . . . , P, we compute the vectors
3230
+ Rp,n
3231
+ Ψ,i = ((Ap,n)TAp,n + δpINp)−1(Ap,n)TBp,n
3232
+ i
3233
+ ,
3234
+ i = 1, · · · , Np,
3235
+ (94)
3236
+ where
3237
+ ∀i = 1, · · · , Np,
3238
+ and
3239
+ ∀�µk ∈ Gp,
3240
+ Ap,n
3241
+ k,i =
3242
+
3243
+
3244
+
3245
+ Ψp,H
3246
+ n(�µk) · ζh
3247
+ p,i dx,
3248
+ (95)
3249
+ Bp,n
3250
+ k,i =
3251
+
3252
+ Ω Ψn
3253
+ p,h(�µk) · ζh
3254
+ p,i dx,
3255
+ (96)
3256
+ and where INp refers to the identity matrix and δp is a regularization term (note that we used (81) for
3257
+
3258
+ Ψp,H
3259
+ n(�µk)).
3260
+ Remark 3.1. In general, Np,train < Np and the parameter δp is required for the inversion of (Ap,n)TAp,n.
3261
+ • “Online part”
3262
+ The online part of the algorithm is much faster than a double HF evaluation (to seek the sensitivity Ψn
3263
+ p,h,
3264
+ we also need the solution un
3265
+ h with a HF evaluation).
3266
+ 4. Indeed, we first solve the problem (3) on the coarse mesh TH for a new parameter µ ∈ G at each time
3267
+ step m = 0, . . . , MT using (11).
3268
+ 5. Then, for each p = 1, . . . , P, we solve the coarse associated sensitivity problems (63) with the same
3269
+ parameter µ, at each time step m = 0, . . . , MT.
3270
+ 6. We quadratically interpolate in time the coarse solution Ψm
3271
+ p,H on the fine time grid with (81).
3272
+ 7. Then, we linearly interpolate �
3273
+ Ψp,H
3274
+ n(µ) on the fine mesh in order to compute the L2-inner product with
3275
+ the basis functions. The approximation used in the two-grid method is
3276
+ For n = 0, . . . , NT,
3277
+ Ψ
3278
+ Np,n
3279
+ p,Hh(µ) :=
3280
+ Np
3281
+
3282
+ i=1
3283
+ (�
3284
+ Ψp,H
3285
+ n(µ), ζh
3286
+ p,i) ζh
3287
+ p,i,
3288
+ (97)
3289
+ and with the rectification post-treatment step, it becomes
3290
+ Rp,n
3291
+ Ψ [ΨN
3292
+ p,Hh](µ) :=
3293
+ Np
3294
+
3295
+ i,j=1
3296
+ Rp,n
3297
+ ij
3298
+ (�
3299
+ Ψp,H
3300
+ n(µ), ζh
3301
+ p,j) ζh
3302
+ p,i,
3303
+ (98)
3304
+ where Rp,n
3305
+ Ψ
3306
+ is the rectification matrix at time tn, given by (94).
3307
+ 23
3308
+
3309
+ In the next section, we propose an adaptation of this algorithm with a new post-treatment which reduces the
3310
+ online computational time.
3311
+ 3.1.2
3312
+ New NIRB algorithm for the direct problem.
3313
+ The main drawback of the algorithm described in the previous section is that it requires 1 + P coarse systems in
3314
+ the online part (see the steps 4 and 5 in section 3.1.1). The online portion of the new algorithm described below
3315
+ only requires the resolution of two coarse problems, regardless the number of parameters of interest. We refer to
3316
+ the following offline/online decomposition:
3317
+ • “Offline part”
3318
+ 1. For a parameter training set Gtrain, we compute the RB functions of the initial problem, denoted
3319
+ (Φh
3320
+ i )i=1,...,N and generates XN
3321
+ h by the steps 1-2 of 2.2 (see algorithm 1).
3322
+ 2. As before, from the training sets Gp,train, we generate the reduced spaces X
3323
+ Np
3324
+ p,h, for p = 1, . . . , P using
3325
+ steps 1 and 2 of section 3.1.1, and at the end of this part, we obtain Np RB functions (time-independent),
3326
+ denoted (ζh
3327
+ p,i)i=1,...,Np for each p = 1, . . . , P. We introduce GT defined by
3328
+ GT := Gtrain ∩ Gp,train,
3329
+ (99)
3330
+ and Nµ,T the number of parameters in GT.
3331
+ 3. We use the fact that the sensitivities are directly derived from the initial solutions, and we consider
3332
+ new rectification matrices, denoted �Rp,n and defined for each p ∈ {1, . . . , P} and each fine time step
3333
+ n ∈ {1, . . . , NT}. In this new post-treatment, they are constructed from coarse snapshots of the initial
3334
+ solution, generated by solving (11) and whose parameters are the same as for the fine sensitivities,
3335
+ generated by solving (63).
3336
+ Thus, for all n = 1, . . . , NT and all p = 1, . . . , P, we compute the vectors
3337
+ �Rp,n
3338
+ i
3339
+ = ((An)TAn + δIN)−1(An)TBp,n
3340
+ i
3341
+ ,
3342
+ i = 1, · · · , Np,
3343
+ (100)
3344
+ where this time
3345
+ ∀�µk ∈ GT,
3346
+ An
3347
+ k,i =
3348
+
3349
+
3350
+
3351
+ uH
3352
+ n(�µk) · Φh
3353
+ i dx, ∀i = 1, · · · , N,
3354
+ (101)
3355
+ Bp,n
3356
+ k,i =
3357
+
3358
+ Ω Ψn
3359
+ p,h(�µk) · ζh
3360
+ p,i dx, ∀i = 1, · · · , Np,
3361
+ (102)
3362
+ and where IN refers to the identity matrix and δ is a regularization term (required for the inversion of
3363
+ (An)TAn). Note that �
3364
+ uH
3365
+ n(�µk) is the quadratic interpolation given by (12). We highlight the fact that
3366
+ this step requires that GT ̸= ∅ (99).
3367
+ • “Online step”
3368
+ 4. We solve the problem (3) on the coarse mesh TH for a new parameter µ ∈ G at each time step m =
3369
+ 0, . . . , MT using (11).
3370
+ 5. We quadratically interpolate in time the coarse solution um
3371
+ H on the fine time grid with (12).
3372
+ 6. Then, we linearly interpolate �
3373
+ uH
3374
+ n(µ) on the fine mesh in order to compute the L2-inner product with
3375
+ the basis functions. The new NIRB approximation is given by
3376
+ �Rp,n[ΨN
3377
+ p,Hh](µ) :=
3378
+ Np
3379
+
3380
+ i=1
3381
+ N
3382
+
3383
+ j=1
3384
+ �Rp,n
3385
+ ij
3386
+ ( �
3387
+ uH
3388
+ n(µ), Φh
3389
+ j ) ζh
3390
+ p,i,
3391
+ (103)
3392
+ where �Rp,n is the rectification matrix at time tn, given by (100).
3393
+ 24
3394
+
3395
+ 3.2
3396
+ On the adjoint formulation.
3397
+ The adjoint formulation requires some modifications of the NIRB algorithm compared to section 3.1.1. Since in
3398
+ (88), for all n ∈ {0, . . . , NT}, the fine solution un
3399
+ h(µ) is required to obtain the sensitivities on F, it follows that
3400
+ here we have to compute two reductions: one for the initial solution u and one for the adjoint χ. As a matter of
3401
+ fact, in (3.1.1), the RB generation for u was optional.
3402
+ So let u(µ) be the exact solution of problem (3) for a parameter µ ∈ G and χ(µ) its adjoint given by (89). In this
3403
+ setting, we use the following offline/online decomposition for the NIRB procedure:
3404
+ • “Offline part”
3405
+ 1. During the offline stage, we first construct the reduced space XN
3406
+ h and the RB function (Φh
3407
+ 1, . . . , Φh
3408
+ N)
3409
+ with the steps 1-2 of section 2.2.
3410
+ 2. Then, we use steps 1-2 of section 3.1.1, but instead of solving (44) on the sensitivities, we generate the
3411
+ reduced space XN1
3412
+ 1
3413
+ by solving the adjoint problem on the fine mesh (90).
3414
+ Thus, for a set of training parameters (�µi)i=1,··· ,N1,train, we define G1,train =
3415
+
3416
+ i∈{1,...,N1,train}�µi.
3417
+ Then,
3418
+ through a greedy procedure 1, we adequately choose the parameters of the RB. During this proce-
3419
+ dure, we compute fine fully-discretized solutions {χn
3420
+ h(�µi)}i∈{1,...Nµ,1}, n={0,...,NT} (Nµ,1 ≤ N1,train) with
3421
+ the HF solver, by solving either (90) or the following problem (where un
3422
+ h in (90) has been replaced by
3423
+ its NIRB approximation uN,n
3424
+ Hh or by its rectified version Rn
3425
+ u[uN,n
3426
+ Hh ] obtained from the algorithm of section
3427
+ 2.2)
3428
+
3429
+
3430
+
3431
+
3432
+
3433
+
3434
+
3435
+ Find χn
3436
+ h ∈ Vh for n ∈ {0, . . . , NT} such that
3437
+ (∂χn
3438
+ h, vh) − a(χh, vh; µ) = −(uN,n
3439
+ Hh − un, vh), ∀n = 0, . . . , NT − 1,
3440
+ χNT
3441
+ h (·) = 0.
3442
+ (104)
3443
+ The term −(uN,n
3444
+ Hh (µ) − un, vh) in (104) is replaced by −(Rn
3445
+ u[uN,n
3446
+ Hh ](µ) − un, vh) in case of the rectification
3447
+ post-treatment. In practice, since in step 1 a RB for un
3448
+ h has already been generated, it is more convenient
3449
+ to employ (104) instead of (90).
3450
+ In analogy to section 2.2, a few time steps may be selected for each parameter of the RB, and thus,
3451
+ we obtain N1 L2 orthogonal RB (time-independent) functions, denoted (ξh
3452
+ i )i=1,...,N1, and the reduced
3453
+ space XN1
3454
+ h
3455
+ := Span{ξh
3456
+ 1, . . . , ξh
3457
+ N1}.
3458
+ 3. Then, we solve the eigenvalue problem (14) on XN1
3459
+ h :
3460
+
3461
+
3462
+
3463
+
3464
+
3465
+ Find ξh ∈ XN1
3466
+ h , and λ ∈ R such that:
3467
+ ∀v ∈ XN1
3468
+ h ,
3469
+
3470
+ Ω ∇ξh · ∇v dx = λ
3471
+
3472
+ Ω ξh · v dx.
3473
+ (105)
3474
+ We get an increasing sequence of eigenvalues λi, and eigenfunctions (ξh
3475
+ i )i=1,··· ,N1, orthonormalized in
3476
+ L2(Ω) and orthogonalized in H1(Ω).
3477
+ 4. As in the offline step 3 from section 3.1.1, we enhance the NIRB approximation with a rectifica-
3478
+ tion post-processing. Thus, we introduce a rectification matrix, denoted Rn
3479
+ χ for each fine time step
3480
+ n ∈ {1, . . . , NT}. It is associated to the adjoint problem (90) and constructed from coarse snapshots,
3481
+ generated by solving (92) and whose parameters are the same as for the fine snapshots.
3482
+ Thus, for all n = 1, . . . , NT, we compute the vectors
3483
+ Rn
3484
+ χ,i = ((An)TAn + δIN1)−1(An)TBn
3485
+ i ,
3486
+ i = 1, · · · , N1,
3487
+ (106)
3488
+ where
3489
+ ∀i = 1, · · · , N1,
3490
+ and
3491
+ ∀�µk ∈ Gp,
3492
+ An
3493
+ k,i =
3494
+
3495
+
3496
+
3497
+ χH
3498
+ n(�µk) · ξh
3499
+ i dx,
3500
+ (107)
3501
+ Bn
3502
+ k,i =
3503
+
3504
+ Ω χn
3505
+ h(�µk) · ξh
3506
+ i dx,
3507
+ (108)
3508
+ 25
3509
+
3510
+ and where IN1 refers to the identity matrix and δp is a regularization term required for the inversion
3511
+ of (An)TAn (note that we used (81) for �
3512
+ χH
3513
+ n(�µk)).
3514
+ • “Online part”
3515
+ 4. We first solve the problem (3) on the coarse mesh TH for a new parameter µ ∈ G at each time step
3516
+ m = 0, . . . , MT using (11).
3517
+ 5. Then, we solve the coarse associated adjoint problem (92) with the same parameter µ, at each time
3518
+ step m = 0, . . . , MT.
3519
+ 6. We quadratically interpolate in time the coarse solution χm
3520
+ H on the fine time grid with (81).
3521
+ 7. Then, we linearly interpolate �
3522
+ χH
3523
+ n(µ) on the fine mesh in order to compute the L2-inner product with
3524
+ the basis functions. The approximation used for the adjoint in the two-grid method is
3525
+ For n = 0, . . . , NT,
3526
+ χN1,n
3527
+ Hh (µ) :=
3528
+ N1
3529
+
3530
+ i=1
3531
+ ( �
3532
+ χH
3533
+ n(µ), ξh
3534
+ i ) ξh
3535
+ i ,
3536
+ (109)
3537
+ and with the rectification post-treatment step, it becomes
3538
+ Rn
3539
+ χ[χN1
3540
+ Hh](µ) :=
3541
+ N1
3542
+
3543
+ i,j=1
3544
+ Rn
3545
+ χ,ij ( �
3546
+ χH
3547
+ n(µ), ξh
3548
+ j ) ξh
3549
+ i ,
3550
+ (110)
3551
+ where Rn
3552
+ χ is the rectification matrix at time tn, given by (106).
3553
+ 8. Then, we use the steps 5 and 6 of section 2.2 in order to obtain a NIRB approximation for u(µ) from
3554
+ the coarse solution um
3555
+ H given by step 4 of this online part.
3556
+ 9. Finally, the sensitivities NIRB approximations of F are given by
3557
+ for p = 1, . . . , P, [ ∂F
3558
+ ∂µp
3559
+ ]N1
3560
+ Hh(µ) :=
3561
+ tn
3562
+
3563
+ j=1
3564
+ ∆tF
3565
+
3566
+ χN1,j
3567
+ Hh , ∇ · ( ∂A
3568
+ ∂µp
3569
+ (µ)∇uN,j
3570
+ Hh)
3571
+
3572
+ , from (88),
3573
+ (111)
3574
+ and with the rectification post-treatment step, it becomes
3575
+ for p = 1, . . . , P, Rχ[[ ∂F
3576
+ ∂µp
3577
+ ]N1
3578
+ Hh](µ) :=
3579
+ tn
3580
+
3581
+ j=1
3582
+ ∆tF
3583
+
3584
+ Rj
3585
+ χ[χN1,j
3586
+ Hh ](µ), ∇ · ( ∂A
3587
+ ∂µp
3588
+ (µ)∇Rj
3589
+ u[uN,j
3590
+ Hh](µ))
3591
+
3592
+ .
3593
+ (112)
3594
+ The next section gives our main result on the NIRB two-grid method error estimate in the context of sensitivity
3595
+ analysis.
3596
+ 4
3597
+ NIRB error estimate on the sensitivities
3598
+ Main result
3599
+ Our main result is the following theorem.
3600
+ Theorem 4.1. (NIRB error estimate for the sensitivities.) Let A(µ) = µ Id, with µ ∈ R+∗ , and let us consider the problem
3601
+ 3 with its exact solution u(x, t; µ), and the full discretized solution un
3602
+ h(x; µ) to the problem 10. Let Ψ(x, t; µ) and Ψn
3603
+ h(x; µ)
3604
+ respectively by the corresponding sensitivities , given by (23) and (44). Let (ζh
3605
+ i )i=1,...,N1 be the L2-orthonormalized and
3606
+ H1-orthogonalized RB generated with the greedy algorithm 1 through the NIRB algorithm 3.1.1. Let us consider the NIRB
3607
+ approximation,
3608
+ For n = 0, . . . , NT,
3609
+ ΨN,n
3610
+ Hh (µ) :=
3611
+ N1
3612
+
3613
+ i=1
3614
+ (�
3615
+ ΨH
3616
+ n(µ), ζh
3617
+ i ) ζh
3618
+ i ,
3619
+ (113)
3620
+ where �
3621
+ ΨH
3622
+ n(µ) is given by (81). Then, the following estimate holds
3623
+ ∀n = 0, . . . , NT,
3624
+ ���Ψ(tn)(µ) − ΨN,n
3625
+ Hh (µ)
3626
+ ���
3627
+ H1(Ω) ≤ ε(N) + C1(µ)h + C2(µ, N)H2 + C3(µ)∆tF + C4(µ, N)∆t2
3628
+ G,
3629
+ (114)
3630
+ where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε depends on the Kolmogorov
3631
+ N-width and measures the error given by (21).
3632
+ 26
3633
+
3634
+ If H is such as H2 ∼ h, ∆t2
3635
+ G ∼ ∆tF, and ε(N) is small enough, with C2(µ, N) and C4(µ, N) not too large, it
3636
+ results in an error estimate in O(h + ∆tF). Theorem 4.1 then states that we recover optimal error estimates in
3637
+ L∞(0, T; H1(Ω)). We now go on with the proof of Theorem 4.1.
3638
+ Proof. The NIRB approximation at time step n = 0, . . . , NT, for a new parameter µ ∈ G is defined by (97). Thus,
3639
+ the triangle inequality gives
3640
+ ���Ψ(tn)(µ) − ΨN,n
3641
+ Hh (µ)
3642
+ ���
3643
+ H1(Ω) ≤
3644
+ ��Ψ(tn)(µ) − Ψn
3645
+ h(µ)
3646
+ ��
3647
+ H1(Ω) +
3648
+ ���Ψn
3649
+ h(µ) − ΨN,n
3650
+ hh (µ)
3651
+ ���
3652
+ H1(Ω) +
3653
+ ���ΨN,n
3654
+ hh (µ) − ΨN,n
3655
+ Hh (µ)
3656
+ ���
3657
+ H1(Ω)
3658
+ =: T1 + T2 + T3,
3659
+ (115)
3660
+ where ΨN1,n
3661
+ hh
3662
+ (µ) =
3663
+ N1
3664
+
3665
+ i=1
3666
+ (Ψn
3667
+ h(µ), ζh
3668
+ i ) ζh
3669
+ i .
3670
+ • The first term T1 may be estimated using the inequality given by Theorem 2.8, such that
3671
+ ��Ψ(tn)(µ) − Ψn
3672
+ h(µ)
3673
+ ��
3674
+ H1(Ω) ≤ C(µ) (h + ∆tF).
3675
+ (116)
3676
+ • We then denote by S′
3677
+ h = {Ψn
3678
+ h(µ, t), µ ∈ G, n = 0, . . . NT} the set of all the sensitivities . For our model
3679
+ problem, this manifold has a low complexity.
3680
+ It means that for an accuracy ε = ε(N) related to the
3681
+ Kolmogorov N-width of the manifold S′
3682
+ h, for any µ ∈ G, and any n ∈ 0, . . . , NT, T2 is bounded by ε which
3683
+ depends on the Kolmogorov N-width.
3684
+ T2 =
3685
+ ������
3686
+ Ψn
3687
+ h(µ) −
3688
+ N1
3689
+
3690
+ i=1
3691
+ (Ψn
3692
+ h(µ), ζh
3693
+ i ) ζh
3694
+ i
3695
+ ������
3696
+ H1(Ω)
3697
+ ≤ ε(N).
3698
+ (117)
3699
+ • Since (ζh
3700
+ i )i=1,...,N1 is a family of L2 and H1 orthogonalized RB functions (see [19] for only L2 orthonormalized
3701
+ RB functions)
3702
+ ���ΨN,n
3703
+ hh − ΨN,n
3704
+ Hh
3705
+ ���
3706
+ 2
3707
+ H1(Ω) =
3708
+ N1
3709
+
3710
+ i=1
3711
+ |(Ψn
3712
+ h(µ) − �
3713
+ ΨH
3714
+ n(µ), ζh
3715
+ i )|2���ζh
3716
+ i
3717
+ ���
3718
+ 2
3719
+ H1(Ω) ,
3720
+ (118)
3721
+ where �
3722
+ ΨH
3723
+ n(µ) is the quadratic interpolation of the coarse snapshots on time tn, ∀n = 0, . . . , NT, defined by
3724
+ (81). From the RB orthonormalization in L2, the equation (105) yields
3725
+ ���ζh
3726
+ i
3727
+ ���
3728
+ 2
3729
+ H1 :=
3730
+ ���∇ζh
3731
+ i
3732
+ ���
3733
+ 2
3734
+ L2(Ω) = λi
3735
+ ���ζh
3736
+ i
3737
+ ���
3738
+ 2
3739
+ L2(Ω) = λi ≤ max
3740
+ i=1,··· ,Nλi = λN,
3741
+ (119)
3742
+ such that the equation (118) leads to
3743
+ ���ΨN,n
3744
+ hh − ΨN,n
3745
+ Hh
3746
+ ���
3747
+ 2
3748
+ H1(Ω) ≤ CλN
3749
+ ���Ψn
3750
+ h(µ) − �
3751
+ ΨH
3752
+ n(µ)
3753
+ ���
3754
+ 2
3755
+ L2(Ω) .
3756
+ (120)
3757
+ Now by definition of �
3758
+ ΨH
3759
+ n(µ) and by corollary 2.10 and Theorem 2.7, for tn ∈ Im,
3760
+ ���Ψn
3761
+ h(µ) − �
3762
+ ΨH
3763
+ n(µ)
3764
+ ���
3765
+ L2(Ω) ≤ C(µ)(H2 + ∆t2
3766
+ G + h2 + ∆tF),
3767
+ (121)
3768
+ and we end up for equation (120) with
3769
+ ���ΨN,n
3770
+ hh − ΨN,n
3771
+ Hh
3772
+ ���
3773
+ H1(Ω) ≤ C(µ)
3774
+
3775
+ λN(H2 + ∆t2
3776
+ G + h2 + ∆tF),
3777
+ (122)
3778
+ where C(µ) does not depend on N. Combining these estimates (116), (117) and (122) concludes the proof
3779
+ and yields the estimate (114).
3780
+ 27
3781
+
3782
+ Figure 1: H1
3783
+ 0 NIRB errors
3784
+ 5
3785
+ Numerical results.
3786
+ In this section, we have applied the NIRB algorithms on several numerical tests. We have implemented both
3787
+ schemes (Euler and RK2) using FreeFem++ (version 4.9) [26] to compute the fine and coarse snapshots, and the
3788
+ solutions have been stored in VTK format.
3789
+ Then we have applied the plain NIRB and the NIRB rectified algorithms with python, in order to highlight
3790
+ the non-intrusive side of the two-grid method (as in [19]). After saving the NIRB approximations with Paraview
3791
+ module on Python, the errors have been computed with FreeFem++.
3792
+ 5.1
3793
+ On the heat equation.
3794
+ We have solved (3) and (23) on the parameter set G = [0.5, 9.5], with u0 solution of Poisson’s equation −∆u0 = f
3795
+ and Φ0 = 0. We have retrieved several snapshots on t = [0, 2] (note that the coarse time grid must belong to the
3796
+ interval of the fine one), and tried our algorithms on several size of meshes, always with ∆tF ≃ h and ∆tG ≃ H
3797
+ (both schemes are stables), and such that h = H2.
3798
+ • We have taken 18 parameters in G for the RB construction such that µi = 0.5i, i = 1, . . . , 19, i ̸= 2 and a
3799
+ reference solution to problem (92), with µ = 1 and its mesh and time step such that hre f ≃ ∆tF,re f = 0.001.
3800
+ In figure Figure 1, we present the errors of the FEM solutions and compare them to the one obtained with
3801
+ the NIRB algorithm with the rectification to observe the convergence rate.
3802
+ A
3803
+ Derivation of the adjoint for the heat equation.
3804
+ In this appendix, we recall the main steps to derive the adjoint of our model problem, in order to compute
3805
+ ( ∂F
3806
+ ∂µk )k=1,...,P. For a more general problem, we refer to [44] in case of FEM.
3807
+ 28
3808
+
3809
+ FEM H relative errors
3810
+ NIRB H relative error with H = V h
3811
+ 0.80-
3812
+ 0.80-
3813
+ h
3814
+ h
3815
+ FEM coarse error
3816
+ NiRB+rectification
3817
+ 0.50 -
3818
+ 0.50-
3819
+ FEM fine error
3820
+ 0.20 -
3821
+ 0.20
3822
+ Error (log
3823
+ Error (log
3824
+ 0.05-
3825
+ 0.05
3826
+ 10-2
3827
+ 10-1
3828
+ 10-2
3829
+ 10-1
3830
+ h (size of the fine mesh)
3831
+ h (size of the fine mesh)• We consider the Lagrangian formulation (86), denoted by L.
3832
+ • Differentiating L with respect to the parameter µp, for p = 1, . . . , P, we obtain
3833
+ dL
3834
+ dµp
3835
+ (u, χ, ζ; µ) =
3836
+ � T
3837
+ 0
3838
+ � �
3839
+
3840
+ derr
3841
+ dµp
3842
+ (µ) dx +
3843
+
3844
+ χ, d[∇ · (A(µ)∇u) + f − ut]
3845
+ dµp
3846
+ ��
3847
+ ds.
3848
+ (123)
3849
+ In our setting, the objective does not depend directly on the parameter µp. The time and the parameter
3850
+ derivatives can commute ( d
3851
+ dt
3852
+
3853
+ du
3854
+ dµp
3855
+
3856
+ =
3857
+ d
3858
+ dµp
3859
+
3860
+ du
3861
+ dt
3862
+
3863
+ ), and since f is independent of µ, the term linked to f
3864
+ vanishes. Therefore, using the chain rule, it may be rewritten
3865
+ dL
3866
+ dµp
3867
+ (u, χ, ζ; µ) =
3868
+ � T
3869
+ 0
3870
+ ��∂err
3871
+ ∂u , Ψp
3872
+
3873
+ +
3874
+
3875
+ χ, ∇ · ( ∂A
3876
+ ∂µp
3877
+ (µ)∇u)
3878
+
3879
+ +
3880
+
3881
+ χ, ∂[∇ · (A(µ)∇u)]
3882
+ ∂u
3883
+ Ψp
3884
+
3885
+
3886
+
3887
+ χ, Ψp,t
3888
+
3889
+
3890
+ ��
3891
+
3892
+ TIBP
3893
+
3894
+ ds,
3895
+ (124)
3896
+ where
3897
+ Ψp(t, x; µ) := ∂u
3898
+ ∂µp
3899
+ (t, x; µ).
3900
+ As we saw before, a classical forward sensitivity computation would require P + 1 systems of PDEs to
3901
+ solve. Here, we want to avoid calculating the sensitivities of the state variables. To do so, the strategy of the
3902
+ adjoint method is to factorize all the terms depending on Ψp, and to impose them to vanish by adequately
3903
+ choosing χ (which is arbitrary). By IBP on TIBP,
3904
+ � T
3905
+ 0
3906
+
3907
+ Ω χ · Ψp,t dx ds =
3908
+
3909
+
3910
+
3911
+ χ(T) · Ψp(T) − χ(0) · Ψp(0)
3912
+
3913
+ dx −
3914
+ � T
3915
+ 0
3916
+
3917
+ Ω χt · Ψp dx ds ,
3918
+ and choosing χ(T) = 0, and since in our example, u0 does not depend on µ, it yields
3919
+ dL
3920
+ dµp
3921
+ (u, χ, ζ; µ) =
3922
+ � T
3923
+ 0
3924
+ ��∂err
3925
+ ∂u , Ψp
3926
+
3927
+ +
3928
+
3929
+ χ, ∇ · ( ∂A
3930
+ ∂µp
3931
+ (µ)∇u)
3932
+
3933
+ +
3934
+
3935
+ χ, ∂[∇ · (A(µ)∇u)]
3936
+ ∂u
3937
+ Ψp
3938
+
3939
+ +
3940
+
3941
+ χt, Ψp
3942
+ ����
3943
+ ds.
3944
+ Thus, we want the following term to vanish
3945
+ � T
3946
+ 0
3947
+
3948
+
3949
+ �∂err
3950
+ ∂u · Ψp + χ∂[∇ · (A(µ)∇u)]
3951
+ ∂u
3952
+ · Ψp
3953
+
3954
+ ��
3955
+
3956
+ TGF
3957
+ +χt · Ψp
3958
+
3959
+ dx ds.
3960
+ (125)
3961
+ Now, applying Green’s formula twice, we have
3962
+ � T
3963
+ 0
3964
+
3965
+ Ω TGF dx ds =
3966
+ � T
3967
+ 0
3968
+
3969
+ Ω χ∇ · (A(µ)∇Ψp) dxds =
3970
+ � T
3971
+ 0
3972
+
3973
+
3974
+
3975
+ Ω A(µ)∇χ · ∇Ψp dx +
3976
+
3977
+ ∂Ω A(µ)χ · ∇nΨp dσ
3978
+
3979
+ ds ,
3980
+ =
3981
+ � T
3982
+ 0
3983
+ � �
3984
+ Ω ∇ · (A(µ)∇χ) · Ψp dx −
3985
+
3986
+ ∂Ω A(µ)∇nχ · Ψp dσ +
3987
+
3988
+ ∂Ω A(µ)χ · ∇nΨp dσ
3989
+
3990
+ ds ,
3991
+ with ∇n(·) the normal derivative. Therefore, from the initial boundary conditions, since ∀t ≥ 0, ∀µ ∈ G,
3992
+ u(t) = 0 on ∂Ω, we also have Ψp(t) = 0 on ∂Ω and by imposing χ = 0 on ∂Ω, (125) becomes
3993
+ � T
3994
+ 0
3995
+
3996
+
3997
+ ��∂err
3998
+ ∂u + ∇ · (A(µ)∇χ) + χt
3999
+
4000
+ · Ψp
4001
+
4002
+ dxds = 0,
4003
+ and this equation leads us to the following adjoint state problem
4004
+
4005
+
4006
+
4007
+
4008
+
4009
+
4010
+
4011
+
4012
+
4013
+
4014
+
4015
+ Find χ ∈ V such that
4016
+ χt = − ∂err
4017
+ ∂u − ∇ · (A(µ)∇χ), in Ω × [0, T[,
4018
+ χ(x, T) = 0, in Ω,
4019
+ χ(x, t) = 0, on ∂Ω × [0, T[.
4020
+ (126)
4021
+ 29
4022
+
4023
+ Acknowledgment
4024
+ This work is supported by the SPP2311 program. We would like to give special thanks to Ole Burghardt for his
4025
+ precious help on Automatic Differentiation.
4026
+ References
4027
+ [1] E. Bader, M. K¨archer, M. A Grepl, and K. Veroy. Certified reduced basis methods for parametrized dis-
4028
+ tributed elliptic optimal control problems with control constraints. SIAM Journal on Scientific Computing,
4029
+ 38(6):A3921–A3946, 2016.
4030
+ [2] M. Barrault, C. Nguyen, A. Patera, and Y. Maday. An ’empirical interpolation’ method: application to effi-
4031
+ cient reduced-basis discretization of partial differential equations. Comptes rendus de l’Acad´emie des sciences.
4032
+ S´erie I, Math´ematique, 339-9:667–672, 2004.
4033
+ [3] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy
4034
+ algorithms in reduced basis methods. SIAM journal on mathematical analysis, 43(3):1457–1472, 2011.
4035
+ [4] E. Borgonovo and E. Plischke. Sensitivity analysis: a review of recent advances. European Journal of Opera-
4036
+ tional Research, 248(3):869–887, 2016.
4037
+ [5] S. Brenner and R. Scott. The mathematical theory of finite element methods, volume 15. Springer Science &
4038
+ Business Media, 2007.
4039
+ [6] F. Casenave, A. Ern, and T. Leli`evre. A nonintrusive reduced basis method applied to aeroacoustic simula-
4040
+ tions. Advances in Computational Mathematics, 41(5):961–986, Jun 2014.
4041
+ [7] R. Chakir and Y. Maday. A two-grid finite-element/reduced basis scheme for the approximation of the
4042
+ solution of parametric dependent p.d.e. In 9e Colloque national en calcul des structures, 2009.
4043
+ [8] R. Chakir, B. Streichenberger, and P. Chatellier.
4044
+ A non-intrusive reduced basis method for urban flows
4045
+ simulation. 01 2021.
4046
+ [9] P. Chen, A. Quarteroni, and G. Rozza. Reduced basis methods for uncertainty quantification. SIAM/ASA
4047
+ Journal on Uncertainty Quantification, 5(1):813–869, 2017.
4048
+ [10] A. Cohen, M. Dolbeault, O. Mula, and A. Somacal. Nonlinear approximation spaces for inverse problems.
4049
+ arXiv preprint arXiv:2209.09314, 2022.
4050
+ [11] L. Dede. Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal
4051
+ control problems. SIAM Journal on Scientific Computing, 32(2):997–1019, 2010.
4052
+ [12] L. Ded`e. Reduced basis method and error estimation for parametrized optimal control problems with control
4053
+ constraints. Journal of Scientific Computing, 50(2):287–305, 2012.
4054
+ [13] Z. Ding, J. Shi, Q. Gao, Q. Huang, and W-H. Liao. Design sensitivity analysis for transient responses of
4055
+ viscoelastically damped systems using model order reduction techniques. Structural and Multidisciplinary
4056
+ Optimization, 64(3):1501–1526, 2021.
4057
+ [14] L. C. Evans. Partial differential equations. American Mathematical Society, Providence, R.I., 2010.
4058
+ [15] R. Geelen, S. Wright, and K. Willcox. Operator inference for non-intrusive model reduction with nonlinear
4059
+ manifolds. arXiv preprint arXiv:2205.02304, 2022.
4060
+ [16] D. Givoli. A tutorial on the adjoint method for inverse problems. Computer Methods in Applied Mechanics and
4061
+ Engineering, 380:113810, 2021.
4062
+ [17] E. Grosjean and Y. Maday. Error estimate of the non-intrusive reduced basis method with finite volume
4063
+ schemes. ESAIM: M2AN, 55(5):1941–1961, 2021.
4064
+ [18] E. Grosjean and Y. Maday. A doubly reduced approximation for the solution to PDE’s based on a domain
4065
+ truncation and a reduced basis method: Application to Navier-Stokes equations. working paper or preprint,
4066
+ February 2022.
4067
+ 30
4068
+
4069
+ [19] E. Grosjean and Y. Maday. Error estimate of the non-intrusive reduced basis (nirb) two-grid method with
4070
+ parabolic equations. arXiv preprint arXiv:2211.08897, 2022.
4071
+ [20] B. Haasdonk. Convergence rates of the pod–greedy method. ESAIM: Mathematical modelling and numerical
4072
+ Analysis, 47(3):859–873, 2013.
4073
+ [21] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrized
4074
+ linear evolution equations. ESAIM: Mathematical Modelling and Numerical Analysis-Mod´elisation Math´ematique
4075
+ et Analyse Num´erique, 42(2):277–302, 2008.
4076
+ [22] J. K. Hammond, R. Chakir, F. Bourquin, and Y. Maday. Pbdw: A non-intrusive reduced basis data assimila-
4077
+ tion method and its application to an urban dispersion modeling framework. Applied Mathematical Modelling,
4078
+ 76:1–25, 2019.
4079
+ [23] A. Hay, I. Akhtar, and J. T Borggaard. On the use of sensitivity analysis in model reduction to predict flows
4080
+ for varying inflow conditions. International Journal for Numerical Methods in Fluids, 68(1):122–134, 2012.
4081
+ [24] A. Hay, J. Borggaard, I. Akhtar, and D. Pelletier. Reduced-order models for parameter dependent geometries
4082
+ based on shape sensitivity analysis. Journal of computational Physics, 229(4):1327–1352, 2010.
4083
+ [25] A. Hay, J. T. Borggaard, and D. Pelletier. Local improvements to reduced-order models using sensitivity
4084
+ analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics, 629:41–72, 2009.
4085
+ [26] F. Hecht. New development in freefem++. Journal of numerical mathematics, 20(3-4):251–266, 2012.
4086
+ [27] K Ito and S. S Ravindran. A reduced basis method for control problems governed by pdes. In Control and
4087
+ estimation of distributed parameter systems, pages 153–168. Springer, 1998.
4088
+ [28] A. Janon, Ma. Nodet, and C. Prieur. Goal-oriented error estimation for the reduced basis method, with
4089
+ application to sensitivity analysis. Journal of Scientific Computing, 68(1):21–41, 2016.
4090
+ [29] M. K¨archer, Z. Tokoutsi, M. A Grepl, and K. Veroy. Certified reduced basis methods for parametrized elliptic
4091
+ optimal control problems with distributed controls. Journal of Scientific Computing, 75(1):276–307, 2018.
4092
+ [30] U. Kirsch. Reduced basis approximations of structural displacements for optimal design. AIAA journal,
4093
+ 29(10):1751–1758, 1991.
4094
+ [31] U. Kirsch. Efficient sensitivity analysis for structural optimization. Computer Methods in Applied Mechanics
4095
+ and Engineering, 117(1):143–156, 1994.
4096
+ [32] D J. Knezevic and A T. Patera. A certified reduced basis method for the fokker–planck equation of dilute
4097
+ polymeric fluids: Fene dumbbells in extensional flow. SIAM Journal on Scientific Computing, 32(2):793–817,
4098
+ 2010.
4099
+ [33] A. Kolmogoroff.
4100
+ ¨Uber die beste annaherung von funktionen einer gegebenen funktionenklasse. Annals of
4101
+ Mathematics, pages 107–110, 1936.
4102
+ [34] D. Kumar, M. Raisee, and C. Lacor. An efficient non-intrusive reduced basis model for high dimensional
4103
+ stochastic problems in cfd. Computers & Fluids, 138:67–82, 2016.
4104
+ [35] J-L Lions and E Magenes. Problemes aux limites non homogenes. ii. 11:137–178, 1961.
4105
+ [36] Y. Maday. Reduced basis method for the rapid and reliable solution of partial differential equations. 2006.
4106
+ [37] Y. Maday, T Anthony, J. D Penn, and M. Yano. Pbdw state estimation: Noisy observations; configuration-
4107
+ adaptive background spaces; physical interpretations. ESAIM: Proceedings and Surveys, 50:144–168, 2015.
4108
+ [38] F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni. Reduced basis method for parametrized elliptic optimal
4109
+ control problems. SIAM Journal on Scientific Computing, 35(5):A2316–A2340, 2013.
4110
+ [39] AK Noor, JA Tanner, and JM Peters. Reduced basis technique for evaluating sensitivity derivatives of the
4111
+ nonlinear response of the space shuttle orbiter nose-gear tire. Tire Science and Technology, 21(4):232–259, 1993.
4112
+ 31
4113
+
4114
+ [40] J. S Peterson. The reduced basis method for incompressible viscous flow calculations. SIAM Journal on
4115
+ Scientific and Statistical Computing, 10(4):777–786, 1989.
4116
+ [41] A. Quarteroni, G. Rozza, and A. Quaini. Reduced basis methods for optimal control of advection-diffusion
4117
+ problems. Technical report, RAS and University of Houston, 2007.
4118
+ [42] S. S Ravindran. A reduced-order approach for optimal control of fluids using proper orthogonal decompo-
4119
+ sition. International journal for numerical methods in fluids, 34(5):425–448, 2000.
4120
+ [43] B. Streichenberger. Approches multi-fid´elit´es pour la simulation rapide d’´ecoulements d’air en milieu urbain. PhD
4121
+ thesis, 2021. Th`ese de doctorat, Universit´e Gustave Eiffel.
4122
+ [44] JF Sykes and JL Wilson. Adjoint sensitivity theory for the finite element method. In Finite Elements in Water
4123
+ Resources, pages 3–12. Springer, 1984.
4124
+ [45] V. Thom´ee. Galerkin finite element methods for parabolic problems, volume 25. Springer Science & Business
4125
+ Media, 2007.
4126
+ [46] T. Tonn, K. Urban, and S. Volkwein. Comparison of the reduced-basis and pod a posteriori error estimators
4127
+ for an elliptic linear-quadratic optimal control problem. Mathematical and Computer Modelling of Dynamical
4128
+ Systems, 17(4):355–369, 2011.
4129
+ [47] B. C Watson and A. K Noor.
4130
+ Sensitivity analysis for large-deflection and postbuckling responses on
4131
+ distributed-memory computers. Computer methods in applied mechanics and engineering, 129(4):393–409, 1996.
4132
+ 32
4133
+
8NAyT4oBgHgl3EQf2_mV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dAzT4oBgHgl3EQf-_6e/content/tmp_files/2301.01942v1.pdf.txt ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Compact and scalable polarimetric self-
2
+ coherent receiver using dielectric metasurface
3
+ GO SOMA,1,4 YOSHIRO NOMOTO,2 TOSHIMASA UMEZAWA,3 YUKI YOSHIDA,3
4
+ YOSHIAKI NAKANO,1 AND TAKUO TANEMURA1,5
5
+ 1School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
6
+ 2Central Research Laboratory, Hamamatsu Photonics K.K. 5000 Hirakuchi, Hamakita-ku, Hamamatsu
7
+ City, Shizuoka, Japan
8
+ 3National Institute of Information and Communications Technologies (NICT), 4-2-1 Nukui-Kitamachi,
9
+ Koganei, Tokyo, Japan
10
+ 4soma@hotaka.t.u-tokyo.ac.jp, 5tanemura@ee.t.u-tokyo.ac.jp
11
+ Abstract: The polarimetric self-coherent system using a direct-detection-based Stokes-vector
12
+ receiver (SVR) is a promising technology to meet both the cost and capacity requirements of
13
+ the short-reach optical interconnects. However, conventional SVRs require a number of optical
14
+ components to detect the state of polarization at high speed, resulting in substantially more
15
+ complicated receiver configurations compared with the current intensity-modulation-direct-
16
+ detection (IMDD) counterparts. Here, we demonstrate a simple and compact polarimetric self-
17
+ coherent receiver based on a thin dielectric metasurface and a photodetector array (PDA). With
18
+ a single 1.05-m-thick metasurface device fabricated on a compact silicon-on-quartz chip, we
19
+ implement functionalities of all the necessary passive components: a 1×3 splitter, three
20
+ polarization beam splitters with different polarization bases, and six focusing lenses. Combined
21
+ with a high-speed PDA, we demonstrate self-coherent transmission of 20-GBd 16-ary
22
+ quadrature amplitude modulation (16QAM) and 50-GBd quadrature phase-shift keying
23
+ (QPSK) signals over a 25-km single-mode fiber. Owing to the surface-normal configuration, it
24
+ can easily be scaled to receive spatially multiplexed channels from a multicore fiber or a fiber
25
+ bundle, enabling compact and low-cost receiver modules for the future highly parallelized self-
26
+ coherent systems.
27
+
28
+ 1. Introduction
29
+ Rapid spread of cloud computing, high-vision video streaming, and 5G mobile services has led
30
+ to a steady increase in information traffic in the datacenter interconnects and access networks
31
+ [1]. While intensity-modulation direct-detection (IMDD) formats such as 4-level pulse
32
+ amplitude modulation (PAM4) are employed in the current short-reach optical links, scaling
33
+ these IMDD-based transceivers beyond Tb/s is challenging due to the limited spectral
34
+ efficiency and severe signal distortion caused by the chromatic dispersion of fibers. On the
35
+ other hand, the digital coherent systems used in metro and long-haul networks can easily
36
+ expand the capacity by utilizing the full four-dimensional signal space of light and complete
37
+ compensation of linear impairments through digital signal processing (DSP). However,
38
+ substantially higher cost, complexity, and power consumption of coherent transceivers have
39
+ hindered their deployment in short-reach optical interconnects and access networks.
40
+ To address these issues, the self-coherent transmission scheme has emerged as a promising
41
+ approach that bridges the gap between the conventional IMDD and coherent systems [2-7]. In
42
+ this scheme, a continuous-wave (CW) tone is transmitted together with a high-capacity
43
+ coherent signal, which are mixed at a direct-detection-based receiver to recover the complex
44
+ optical field of the signal. Unlike the full coherent systems, this scheme eliminates the need for
45
+ a local oscillator (LO) laser at the receiver side as well as the stringent requirement of using
46
+ wavelength-tuned narrow-linewidth laser sources, suggesting that substantially low-cost broad-
47
+
48
+ linewidth uncooled lasers can be used [4]. In addition, since the impacts of laser phase noise
49
+ and frequency offsets are mitigated, the computational cost of DSP can be reduced significantly
50
+ [7, 8]. The self-coherent systems thus enable low-cost, low-power-consumption, yet high-
51
+ capacity data transmission, required in the future datacenter interconnects and access networks.
52
+ Among several variations of implementing self-coherent systems, the polarimetric scheme
53
+ using a Stokes-vector receiver (SVR) [9-11] has an advantage in terms of simplicity. In this
54
+ scheme, the coherent signal is transmitted on a single polarization state, together with a CW
55
+ tone on the orthogonal polarization state. By retrieving the Stokes parameters 𝐒 = [𝑆1, 𝑆2, 𝑆3]
56
+ at the receiver side, the in-phase-and-quadrature (IQ) signal is demodulated through the DSP
57
+ after compensating for the effects of polarization rotation, chromatic dispersion, and other
58
+ signal distortions. To date, a number of high-speed polarimetric self-coherent transmission
59
+ experiments have been reported, where the SVRs were implemented using off-the-shelf
60
+ discrete components [3, 10-12]. Toward practical use, integrated waveguide-based SVRs were
61
+ also realized on Si [13, 14] and InP [15-18]. More recently, surface-normal SVRs were
62
+ demonstrated using nanophotonic circuits [19, 20] and liquid crystal gratings [21] with external
63
+ photodetectors (PDs). Compared with the conventional low-cost IMDD receivers, however,
64
+ these devices still suffer from a large fiber-to-chip coupling loss and/or need for external lenses
65
+ to focus light to PDs.
66
+ In this paper, we demonstrate high-speed polarimetric self-coherent signal detection using
67
+ a compact surface-normal SVR, composed of a metasurface-based polarization-sorting device
68
+ and a high-speed two-dimensional photodetector array (2D-PDA). A metasurface is a two-
69
+ dimensional array of subwavelength structures that can locally change the intensity, phase, and
70
+ polarization of input light [22]. Unlike the previous works on metasurface-based polarimeters
71
+ for imaging and sensing applications [23-27], our device enables efficient coupling of a self-
72
+ coherent optical signal from a single-mode fiber (SMF) and lens-less focusing to six high-speed
73
+ PDs. More specifically, by superimposing three types of meta-atom arrays, it implements the
74
+ functionalities of all the necessary passive components, namely a 1×3 splitter, three polarization
75
+ beam splitters (PBSs) with different polarization bases, and six lenses, inside a single ultrathin
76
+ device. Combined with an InP/InGaAs-based 2D-PDA chip, we demonstrate penalty-free
77
+ transmission of polarimetric self-coherent signals over a 25-km SMF in various formats such
78
+ as 20-GBd 16-ary quadrature amplitude modulation (16QAM) and 50-GBd quadrature phase-
79
+ shift keying (QPSK). Owing to the surface-normal configuration with the embedded focusing
80
+ functionality, highly efficient lens-free coupling to the 2D-PDA is achieved. The demonstrated
81
+ SVR, therefore, has a comparable complexity as a conventional low-cost IMDD receiver that
82
+ fits in a compact receiver optical subassembly (ROSA). Moreover, it can readily be extended
83
+ to receive spatially multiplexed channels from a multicore fiber (MCF) or a fiber bundle, which
84
+ are expected in the future >Tb/s highly parallelized optical interconnects [28-31].
85
+
86
+ 2. Device concept
87
+ The schematic of the proposed surface-normal SVR is illustrated in Fig. 1(a). The light from
88
+ an SMF is incident to a thin metasurface-based polarization-sorting device, which is designed
89
+ to provide the same functionality as a conventional polarimeter shown in the inset. Namely, it
90
+ splits the light into three paths, resolves each of them to the orthogonal components in three
91
+ different polarization bases, and focuses them to six PDs integrated on a 2D-PDA chip. Unlike
92
+ previously demonstrated metasurface-based polarimeters [23-27], our proposed SVR
93
+ implements the 13 splitter and six metalenses as well to enable direct coupling from an SMF
94
+ to a high-speed 2D-PDA. As a result, the entire device can fit inside a compact ROSA module,
95
+ comparable to the current IMDD receivers. Moreover, owing to the surface-normal
96
+ configuration, this scheme can easily be scaled to receive multiple spatial channels without
97
+ increasing the number of components by simply replacing the input SMF to a MCF or a fiber
98
+ bundle and using a larger-scale PDA [32] as shown in Fig. 1(b).
99
+
100
+ To enable three operations in parallel using a single metasurface layer, we adopt the spatial
101
+ multiplexing method [33, 34]; three independently designed meta-atom arrays are
102
+ superimposed as shown by MA1 (red), MA2 (blue), and MA3 (green) in Fig. 1(c). The phase
103
+ profile 𝜑(𝑥, 𝑦) of MA1 is designed to focus the x-polarized component of light to PDx and the
104
+ y-polarized component to PDy at the focal plane as shown in the inset. Similarly, MA2 and
105
+ MA3 function as PBSs with embedded metalenses for the ±45° polarization basis (a/b) and the
106
+ right/left-handed circular (RHC/LHC) polarization basis (r/l), respectively, and focus
107
+ respective components to PDa,b and PDr,l. The Stokes vector 𝐒 ≡ (𝑆1, 𝑆2, 𝑆3)𝑇 can then be
108
+ derived by taking the difference of the photocurrent signals as 𝑆1 = 𝐼x − 𝐼y, 𝑆2 = 𝐼a − 𝐼b, and
109
+ 𝑆3 = 𝐼r − 𝐼l, where 𝐼p is the photocurrent at PDp. We should note that this scheme with three
110
+ balanced PDs without polarizers offers the maximum receiver sensitivity among various SVR
111
+ configurations [35] and is advantageous compared with the previous demonstrations that
112
+ employ a non-optimal polarization basis [19-21].
113
+
114
+
115
+
116
+ Fig. 1. Surface-normal SVR based on superimposed meta-atom arrays. (a) Schematic illustration
117
+ of the receiver module. A single metasurface device implements all the necessary passive optical
118
+ components of the equivalent circuit as shown in the inset. MS: metasurface. PDA:
119
+ photodetector array. IC: integrated circuit. HWP: half-wave plate. QWP: quarter-wave plate.
120
+ PBS: polarization beam splitter. (b) Scalable configuration to receive multiple input channels
121
+ from a MCF or fiber bundle. (c) Functionality and configuration of the designed metasurface.
122
+ The incident light from the SMF is split into three paths and focused to six PDs located at
123
+ different positions according to the input state of polarization. The superimposed meta-atom
124
+ arrays (MA1, 2, and 3) operate as PBSs and metalenses for x/y linear, ±45° linear, and RHC/LHC
125
+ polarization bases, respectively.
126
+
127
+
128
+
129
+ ROSA
130
+ MS
131
+ 2D-PDA
132
+ Atfocal plane
133
+ 2D-PDA
134
+ PDr
135
+ PD,
136
+ S
137
+ PDp
138
+ PDx
139
+ PDa
140
+ PDy
141
+ Si
142
+ K
143
+ K
144
+ Quartz
145
+ MS
146
+ K
147
+ MA1
148
+ PMA2
149
+ MA3
150
+ ROSA
151
+ MS
152
+ 2D-PDA
153
+ ICF
154
+ r
155
+ ber
156
+ ndle
157
+ a3. Metasurface design and fabrication
158
+ As the dielectric metasurface, we employ 1050-nm-high elliptical Si nanoposts on a quartz
159
+ layer. The phase of the transmitted light and its polarization dependence can be controlled by
160
+ changing the lengths of two principal axes (𝐷𝑢, 𝐷𝑣) and the in-plane rotation angle θ of each
161
+ nanopost as defined in Fig. 2(a) [22]. Here, in each meta-atom array, MA1-3, we adopt the
162
+ triangular lattice with a sub-wavelength lattice constant of Λ = 700√3 nm, so that the non-
163
+ zero-order diffraction is prohibited. Then, three meta-atom arrays are superimposed by shifting
164
+ their positions by 𝑎 = 700 nm to form the overall metasurface, as shown in Fig. 1(c).
165
+ First, we set θ to 0 and simulate the transmission characteristics of uniform nanopost array
166
+ for the x- and y-polarized light at a wavelength of 1550 nm by the rigorous coupled-wave
167
+ analysis (RCWA) method [36]. From the simulated results, we first derive 𝑡𝑢(𝐷𝑢, 𝐷𝑣) and
168
+ 𝑡𝑣(𝐷𝑢, 𝐷𝑣), which denote the complex transmittance for the x- and y-polarized light as a function
169
+ of 𝐷𝑢 and 𝐷𝑣. Then, we derive the required (𝐷𝑢, 𝐷𝑣) that provides a phase shift of (𝜑𝑢, 𝜑𝑣) for
170
+ each polarization component. The results are plotted in Fig. 2(b) (see Section S1 of Supplement 1
171
+ for details). The amplitude of transmittance for each case is also shown in Fig. 2(c). We can confirm
172
+ that by setting the dimensions of the ellipse appropriately, arbitrary phase shifts for x- and y-
173
+ polarized components can be achieved with high transmittance.
174
+ By rotating the elliptical nanoposts by θ as shown in Fig. 2(a), such birefringence can be applied
175
+ to any linear polarization basis oriented at an arbitrary angle [37]. We should note that the phase
176
+ shifts and amplitudes of transmission are nearly insensitive to θ [22] and similar results as
177
+ shown in Fig. 2(b) and 2(c) are obtained for all θ. This is because the light is strongly confined
178
+ inside each Si nanopost, so that the optical coupling among neighboring meta-atoms has only
179
+ minor influence on the transmission.
180
+ We can also provide arbitrary phase shifts to orthogonal circular-polarization states by using the
181
+ geometric phase shift of meta-atoms [38]. First, we judiciously select 𝐷𝑢 and 𝐷𝑣 to satisfy 𝜑𝑣 =
182
+ 𝜑𝑢 + 𝜋, so that each nanopost operates as a half-wave plate. In this case, input RHC and LHC states
183
+ are converted to LHC and RHC, respectively. In addition, their phases after transmission are written
184
+ as (𝜑𝑟, 𝜑𝑙) = (𝜑𝑢 + 2𝜃, 𝜑𝑢 − 2𝜃) (see Section S2 of Supplement 1 for the derivation). Therefore,
185
+ 𝐷𝑢 and 𝐷𝑣 of each nanopost are selected to obtain desired 𝜑𝑢 (=(𝜑𝑟 + 𝜑𝑙)/2) while satisfying the
186
+ condition 𝜑𝑣 = 𝜑𝑢 + 𝜋. The angle 𝜃 is also determined to be (𝜑𝑟 − 𝜑𝑙)/4.
187
+ To realize the function of a metalens, each meta-atom array needs to impart a spatially
188
+ dependent phase profile given as [39]
189
+
190
+ 𝜑(𝑥, 𝑦) = −
191
+ 2𝜋
192
+ 𝜆 (√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝑓2 − 𝑓),
193
+ (1)
194
+ where (𝑥0, 𝑦0) is the in-plane position of the focal point, 𝑓 is the focal length, and 𝜆 is the
195
+ operating wavelength. In this work, we set 𝜆 = 1550 nm, 𝑓 = 10 mm, and the diameter of the
196
+ entire metasurface area to be 2 mm, corresponding to the numerical aperture (NA) of ~0.10.
197
+ The six focal points are arranged on a regular hexagon with a spacing of 60 µm, which are
198
+ matched to the positions of the high-speed 2D-PDA used in our self-coherent experiments.
199
+ Under these conditions, the phase profiles required for MA1, 2, and 3 are determined as shown
200
+ in Fig. 2(d). Note that a rather large (2 mm) metasurface is used in this work due to the limitation
201
+ in reducing the focal length 𝑓 in the current optical setup. In a fully packaged module as shown
202
+ in Fig. 1(a), we can readily shrink the entire area of the metasurface to a few tens of micrometers
203
+ by reducing 𝑓 and designing the geometrical parameters of each nanopost to satisfy the required
204
+ phase profiles given by Eq. (1).
205
+ The designed metasurface was fabricated using a silicon-on-quartz (SOQ) substrate with a
206
+ 1050-nm-thick Si layer. The nanopost patterns were defined by electron-beam lithography with
207
+ ZEP520A resist. Then, the patterns were transferred to the Si layer by inductively-coupled-
208
+ plasma reactive-ion etching (ICP-RIE) using SF6, C4F8, and O2. An optical microscope image
209
+ and scanning electron microscopy (SEM) images of the fabricated metasurface are shown in
210
+ Fig. 2(e)-(g).
211
+
212
+
213
+
214
+ Fig. 2. Metasurface design and fabrication. (a) Schematic of a periodic array of Si nano-posts
215
+ placed at the vertices of a triangular lattice with a lattice constant 𝑎 of 700 nm. The transmission
216
+ of x- and y-polarized light is simulated for various axes lengths (𝐷𝑢, 𝐷𝑣) of the elliptical posts.
217
+ (b) Required (𝐷𝑢, 𝐷𝑣) to obtain phase shifts (𝜑𝑢, 𝜑𝑣) for x- and y-polarized light. For ease of
218
+ fabrication, the ranges of 𝐷𝑢 and 𝐷𝑣 are limited from 100 nm to 650 nm. (c) The amplitude of
219
+ transmittance for each case in (b) as a function of (𝜑𝑢, 𝜑𝑣). (d) Required phase profiles for MA1,
220
+ 2, and 3. (e) Optical microscope image and (f, g) SEM images of the fabricated device. In (g),
221
+ the image is false-colored to distinguish MA1, 2, and 3.
222
+
223
+ 4. Static characterization of the fabricated metasurface
224
+ We first characterized the fabricated metasurface by observing the intensity distribution at the
225
+ focal plane for various input states of polarization (SOPs). The experimental setup is shown in
226
+ Fig. 3(a). A CW light with a wavelength of 1550 nm was incident to the metasurface. The SOP
227
+ was modified by rotating a half-wave plate (HWP) and a quarter-wave plate (QWP). The image
228
+ at the focal plane was magnified at 50 times by a 4-f lens system and captured by an InGaAs
229
+ camera. From the detected intensity values at the six focal positions, the Stokes vector was
230
+ retrieved as described in Section 2. To enable quantitative measurement of the focused power,
231
+ we inserted a flip mirror and detected the total power by a bucket PD after spatially filtering
232
+ the focused beam at each target position using an iris.
233
+ Figure 3(b) shows the observed intensity distributions when the input Stokes vector is set
234
+ to (±1, 0, 0), (0, ±1, 0), and (0, 0, ±1). We can confirm that the incident light is focused to the
235
+ six well-defined points by transmitting through the metasurface. Moreover, its intensity
236
+ distribution changes with the SOP; x/y linear, 45 linear, and RHC/LHC components of light
237
+ are focused to the designed positions as expected. Figure 3(c) shows the retrieved Stokes
238
+
239
+
240
+ = 0 0
241
+ = 700
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+ 2
289
+ 2
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+ ,
308
+ ,
309
+ ,
310
+ ,
311
+ ,
312
+ ,
313
+
314
+
315
+
316
+
317
+
318
+
319
+ Raith
320
+ Mag-20.00KX
321
+ SE2
322
+ EHT = 10.00KV
323
+ WD-17.$mmRaith
324
+ Mag
325
+ EHT = 10.00 KV
326
+ 0=20.2mmvectors on the Poincaré sphere. The average error 〈|Δ𝐒|〉 is as small as 0.028. Figure 3(d) shows
327
+ the measured focusing efficiencies to the six positions. Subtracting the 4.8-dB intrinsic loss due
328
+ to the 13 splitter [see Fig. 1(a)], the excess loss is around 6.1 dB, whereas the crosstalk to the
329
+ orthogonal PD position is suppressed by 13-20 dB. While this excess loss is already comparable
330
+ to the coupling and propagation losses of the previously reported waveguide-based SVRs [13-
331
+ 18], we expect further improvement by applying anti-reflection coating at the silica surface,
332
+ improving the fabrication processes to minimize the errors, and by adopting advanced
333
+ algorithms in designing the metasurface that take into account the nonzero interactions between
334
+ adjacent meta-atoms [40, 41].
335
+
336
+
337
+
338
+ Fig. 3. Experimental characterization of the fabricated metasurface. (a) Schematic of the optical
339
+ setup. The flip mirror is used to switch between capturing the intensity distribution at the focal
340
+ plane and measuring the power of each focused beam. TLS: tunable laser source. PC:
341
+ polarization controller. VOA: variable optical attenuator. FC: fiber collimator. Pol.: polarizer.
342
+ HWP: half-wave plate. QWP: quarter-wave plate. MS: metasurface. M: flip mirror. PD:
343
+ photodetector. (b) Measured intensity distributions at the focal plane for different input SOPs.
344
+ (c) Retrieved and input Stokes vectors on the Poincaré sphere. (d) Measured focusing efficiency
345
+ to each PD. The intrinsic loss due to splitting into three paths is shown by a green line. The input
346
+ polarization is labeled on the top of each bar.
347
+
348
+ 5. Self-coherent signal transmission experiment
349
+ We then performed the polarimetric self-coherent signal transmission experiment using the
350
+ fabricated metasurface. The experimental setup is shown in Fig. 4. We employed a 19-pixel
351
+ 2D-PDA with InP/InGaAs-based p-i-n structure [42], from which six PDs were used as shown
352
+ in Fig. 4(b). Each PD had a diameter of 30 µm, the measured bandwidth above 10 GHz, and
353
+ the responsivity of 0.3 A/W. The 2D-PDA chip was packaged with the radio-frequency (RF)
354
+ coaxial connectors connected to each PD. The 2D-PDA was placed at the focal distance of 10
355
+ mm from the metasurface as shown in Fig. 4(c). This distance was merely limited by the current
356
+ setup and should be reduced to a sub-millimeter scale in a practical fully packaged module,
357
+ which can be comparable to current IMDD receiver modules.
358
+ A CW light at a wavelength of 1550 nm was generated from a tunable laser source (TLS)
359
+ and split into two ports, which served as the signal and the pilot tone ports. At the signal port,
360
+ a LiNbO3 IQ modulator was used to generate a high-speed coherent optical signal. The Nyquist
361
+ filter was applied to the driving electrical signals from an arbitrary waveform generator (AWG).
362
+ The modulated optical signal was then combined with the pilot tone by a polarization beam
363
+ combiner (PBC). The optical power of the pilot tone was adjusted by a variable optical
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+
375
+
376
+
377
+
378
+
379
+
380
+
381
+
382
+
383
+ 2
384
+ 3
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
+
396
+
397
+
398
+
399
+
400
+
401
+
402
+
403
+
404
+
405
+ |
406
+ |
407
+ |
408
+ |
409
+ |
410
+ |
411
+ |
412
+ |
413
+ |
414
+ |
415
+ |
416
+ |
417
+
418
+
419
+ attenuator (VOA), so that their powers were nearly balanced. The self-coherent signal was then
420
+ transmitted over a 25-km SMF. At the receiver side, the optical signal-to-noise ratio (OSNR)
421
+ was controlled using another VOA, followed by an erbium-doped fiber amplifier (EDFA) and
422
+ an optical bandpass filter (OBPF). The electrical signals from the six PDs of the PDA were
423
+ amplified by differential RF amplifiers and then captured by a real-time oscilloscope (OSC).
424
+ At a baudrate beyond 20 GBd, we could not use the balanced PD (B-PD) configuration due to
425
+ the residual skew inside the PDA module. In these cases, we employed four single-ended PDs
426
+ (S-PDs), where the electrical signals from PDx, PDy, PDa, and PDl were independently captured
427
+ by a four-channel real-time oscilloscope, so that the skew could be calibrated during DSP. By
428
+ comparing the results using two configurations, the use of four S-PDs was validated (see
429
+ Section S3 of Supplement 1 for details). To equalize and reconstruct the original IQ signal, we
430
+ employed offline DSP with the 2×3 and 2×4 real-valued multi-input-multi-output (MIMO)
431
+ equalizers [43, 44] for three-B-PD and four-S-PD configurations, respectively.
432
+ Figures 5(a)-(c) show the BER curves and the constellations for 15-GBd 16QAM signals,
433
+ measured using the three-B-PD configuration. We can confirm that BERs well below the hard-
434
+ decision forward error correction (HD-FEC) threshold are obtained with a negligible penalty
435
+ even after 25-km transmission. Figures 5(d)-(f) show the results for 20-GBd 16QAM and 50-
436
+ GBd QPSK signals, measured by the four-S-PD configuration. Once again, BERs below the
437
+ HD-FEC threshold are obtained. Finally, Fig. 6 shows the measured BER curves and
438
+ constellation diagrams of 15-GBd 16QAM signal at 1540-nm and 1565-nm wavelengths,
439
+ demonstrating the wideband operation of our designed metasurface. While the baudrate in this
440
+ work was limited by the bandwidth of the 2D-PDA, beyond-100-GBd transmission should be
441
+ possible by using higher-speed surface-normal PDs with bandwidth exceeding 50 GHz [45, 46].
442
+
443
+
444
+
445
+ Fig. 4. Self-coherent transmission experiment using the fabricated metasurface and 2D-PDA. (a)
446
+ Experimental setup. AWG: arbitrary waveform generator. PBC: polarization beam combiner.
447
+ EDFA: erbium-doped fiber amplifier. OBPF: optical bandpass filter. Osc: oscilloscope. In the
448
+ insets, three-B-PD and four-S-PD configurations are depicted. (b) Optical microscope image of
449
+ the fabricated 19-pixel 2D-PDA. The six circled PDs were used in this experiment. (c)
450
+ Photograph of the receiver.
451
+
452
+
453
+ MS
454
+ 2D-PDA
455
+ (a)
456
+ TLS
457
+ IQ mod.
458
+ PBC
459
+ AWG
460
+ FC
461
+ 1:9
462
+ coupler
463
+ EDFA OBPF
464
+ VOA
465
+ VOA
466
+ Real-time Osc
467
+ MS
468
+ 2D-PDA
469
+ (c)
470
+ diff. Amp.
471
+ Real-time Osc
472
+ 4 S-PDs
473
+ 3 B-PDs
474
+ 25 km
475
+ PDa
476
+ PDb
477
+ PDr
478
+ PDl
479
+ PDx
480
+ PDy
481
+ 100 μ
482
+ (b)
483
+
484
+
485
+ Fig. 5. Experimental results of self-coherent signal transmission at a wavelength of 1550 nm.
486
+ (a)-(c) Measured BER curves and constellation diagrams of 15-GBd 16QAM signals before
487
+ (b2b) and after 25-km transmission using the three-B-PD configuration. (d)-(f) Measured BER
488
+ curves and constellation diagrams of 20-GBd 16QAM and 50-GBd QPSK signals after 25-km
489
+ transmission using the four-S-PD configuration.
490
+
491
+
492
+ Fig. 6. Experimental results of self-coherent signal transmission at wavelengths of (a) 1540 nm
493
+ and (b) 1565 nm. (a, b) Measured BER curves of 15-GBd 16QAM signals before (b2b) and after
494
+ 25-km transmission using the three-B-PD configuration. The insets represent the retrieved
495
+ constellation diagrams.
496
+
497
+ 6. Conclusion
498
+ We have proposed and demonstrated a surface-normal SVR using a dielectric metasurface and
499
+ 2D-PDA for the high-speed polarimetric self-coherent systems. Three independently designed
500
+ meta-atom arrays based on Si nanoposts were superimposed onto a single thin metasurface
501
+ layer to implement both the polarization-sorting and focusing functions simultaneously. Using
502
+ a compact metasurface chip fabricated on a SOQ substrate, we demonstrated 25-km
503
+ transmission of 20-GBd 16QAM and 50-GBd QPSK self-coherent signals. The operating
504
+ baudrate was merely limited by the 2D-PDA, so that higher-capacity transmission should be
505
+ possible by using a PDA with a broader bandwidth. Owing to the unique surface-normal
506
+ configuration with the embedded lens array functionality, a compact receiver module with
507
+ comparable size and complexity as the conventional IMDD receivers can be realized. Moreover,
508
+ it can easily be extended to receive spatially multiplexed channels by simply replacing the SMF
509
+ 16
510
+ 18
511
+ 20
512
+ 22
513
+ 24
514
+ 26
515
+ 28
516
+ 10-5
517
+ 10-4
518
+ 10-3
519
+ 10-2
520
+ 10-1
521
+ OSNR (dB)
522
+ BER
523
+ 10-5
524
+ 10-4
525
+ 10-3
526
+ 10-2
527
+ 10-1
528
+ BER
529
+ 16
530
+ 18
531
+ 20
532
+ 22
533
+ 24
534
+ 26
535
+ 28
536
+ OSNR (dB)
537
+ 50-GBd QPSK
538
+ 20-GBd 16QAM
539
+ 15-GBd 16QAM
540
+ (a)
541
+ (d)
542
+ 25km
543
+ b2b
544
+ 25 km
545
+ 25 km
546
+ (b)
547
+ (c)
548
+ (e)
549
+ (f)
550
+ 7% HD-FEC
551
+ 7% HD-FEC
552
+ 25 km
553
+ b2b
554
+ 25 km
555
+ b2b
556
+ 22
557
+ 24
558
+ 26
559
+ 28
560
+ 30
561
+ 10-5
562
+ 10-4
563
+ 10-3
564
+ 10-2
565
+ 10-1
566
+ OSNR (dB)
567
+ BER
568
+ 14
569
+ 16
570
+ 18
571
+ 20
572
+ 22
573
+ 10-3
574
+ 10-2
575
+ 10-1
576
+ OSNR (dB)
577
+ BER
578
+ (a)
579
+ (b)
580
+ 1540 nm
581
+ 1565 nm
582
+ 25 km
583
+ b2b
584
+ 25 km
585
+ b2b
586
+
587
+ to a MCF and employing a larger-scale integrated PDA technology [32]. This work would,
588
+ therefore, pave the way toward realizing cost-effective receivers for the future >Tb/s spatially
589
+ multiplexed optical interconnects.
590
+ Funding. National Institute of Information and Communications Technology (NICT).
591
+ Acknowledgments. This work was obtained from the commissioned research 03601 by National Institute of
592
+ Information and Communications Technology (NICT), Japan. Portions of this work were presented at the Optical Fiber
593
+ Communications Conference (OFC) in 2022, M4J.5. A part of the device fabrication was conducted at the cleanroom
594
+ facilities of d.lab in the University of Tokyo, supported by MEXT Nanotechnology Platform, Japan. The authors also
595
+ thank all the technical staff at Advanced ICT device laboratory in NICT for supporting the PDA device fabrication.
596
+ G.S. acknowledges the financial support from Optics and Advanced Laser Science by Innovative Funds for Students
597
+ (OASIS) and World-leading Innovative Graduate Study Program - Quantum Science and Technology Fellowship
598
+ Program (WINGS-QSTEP).
599
+ References
600
+ 1.
601
+ Cisco annual internet report (2018-2023), Cisco white paper. (2020).
602
+ 2.
603
+ W. Shieh and H. Ji, “Advanced direct detection schemes,” in Proc. Opt. Fiber Commun. Conf. (OFC) 2021,
604
+ paper Th4D.5.
605
+ 3.
606
+ D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, "Stokes vector direct detection for linear complex
607
+ optical channels," J. Lightwave Technol. 33, 678–684 (2015).
608
+ 4.
609
+ T. Gui, X. Wang, M. Tang, Y. Yu, Y. Lu, and L. Li, "Real-time demonstration of homodyne coherent
610
+ bidirectional transmission for next-generation data center interconnects," J. Lightwave Technol. 39, 1231–1238
611
+ (2021).
612
+ 5.
613
+ T. Gui, H. Du, K. Zheng, J. Cao, S. Yuan, C. Yang, M. Tang, and L. Li, "Real time 6.4 Tbps (8×800G) SHCD
614
+ transmission through 1+8 multicore fiber for co-packaged optical-IO switch applications," in Proc. Opt. Fiber
615
+ Commun. Conf. (OFC) 2022, paper Th4C.1.
616
+ 6.
617
+ M. Mazur, A. Lorences-Riesgo, J. Schröder, P. A. Andrekson, and M. Karlsson, "High spectral efficiency PM-
618
+ 128QAM comb-based superchannel transmission enabled by a single shared optical pilot tone," J. Lightwave
619
+ Technol. 36, 1318–1325 (2018).
620
+ 7.
621
+ S. Ishimura, Y. Nakano, and T. Tanemura, "Impact of laser phase noise on self-coherent transceivers employing
622
+ high-order QAM formats," J. Lightwave Technol. 39, 6150–6158 (2021).
623
+ 8.
624
+ R. S. Luís, B. J. Puttnam, G. Rademacher, S. Shinada, and N. Wada, "Impact of GVD on polarization-
625
+ insensitive self-homodyne detection receiver," IEEE Photonics Technol. Lett. 29, 631–634 (2017).
626
+ 9.
627
+ K. Kikuchi, and S. Kawakami, "Multi-level signaling in the Stokes space and its application to large-capacity
628
+ optical communications," Opt. Express 22, 7374 (2014).
629
+ 10. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, "Stokes vector direct detection for short-reach optical
630
+ communication," Opt. Lett. 39, 3110 (2014).
631
+ 11. T. Hoang, M. Sowailem, Q. Zhuge, M. Osman, A. Samani, C. Paquet, S. Paquet, I. Woods, and D. Plant,
632
+ “Enabling high-capacity long-reach direct detection transmission with QAM-PAM Stokes vector modulation,”
633
+ J. Lightwave Technol. 36, 460-467 (2018).
634
+ 12. H. Ji, D. Che, C. Sun, J. Fang, G. Milione, R. R. Unnithan, and W. Shieh, “High-dimensional Stokes vector
635
+ direct detection over few-mode fibers,” Opt. Lett. 44, 2065 (2019).
636
+ 13. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y.-K. Chen, and J. H. Sinsky, "128-Gb/s 100-km transmission
637
+ with direct detection using silicon photonic Stokes vector receiver and I/Q modulator," Opt. Express 24, 14208–
638
+ 14214 (2016).
639
+ 14. S. Ishimura, T. Fukui, R. Tanomura, G. Soma, Y. Nakano, and T. Tanemura, “64-QAM self-coherent
640
+ transmission using symmetric silicon photonic Stokes-vector receiver,” in Proc. Opt. Fiber Commun. Conf.
641
+ (OFC) 2022, paper M4J.6.
642
+ 15. S. Ghosh, T. Tanemura, Y. Kawabata, K. Katoh, K. Kikuchi, and Y. Nakano, “Decoding of multi-level Stokes-
643
+ vector modulated signal by polarization-analyzing circuit on InP,” J. Lightwave Technol. 36, 187-194 (2018).
644
+ 16. T. Suganuma, S. Ghosh, M. Kazi, R. Kobayashi, Y. Nakano, and T. Tanemura, “Monolithic InP Stokes vector
645
+ receiver with multiple-quantum-well photodetectors,” J. Lightwave Technol. 36, 1268-1274 (2018).
646
+ 17. S. Ghosh, T. Suganuma, S. Ishimura, Y. Nakano, and T. Tanemura, "Complete retrieval of multi-level Stokes
647
+ vector signal by an InP-based photonic integrated circuit," Opt. Express 27, 36449–36458 (2019).
648
+ 18. M. Baier, F. M. Soares, A. Schoenau, Y. D. Gupta, D. Melzer, M. Moehrle, and M. Schell, “Fully integrated
649
+ Stokes vector receiver for 400 Gbit/s,” in Proc. Opt. Fiber Commun. Conf. (OFC) 2019, paper Tu3E.2.
650
+ 19. T. Lei, C. Zhou, D. Wang, Z. Xie, B. Cai, S. Gao, Y. Xie, L. Du, Z. Li, A. V. Zayats, and X. Yuan, "On‐chip
651
+ high‐speed coherent optical signal detection based on photonic spin‐hall effect," Laser Photon. Rev. 16,
652
+ 2100669 (2022).
653
+ 20. C. Zhou, Y. Xie, J. Ren, Z. Wei, L. Du, Q. Zhang, Z. Xie, B. Liu, T. Lei, and X. Yuan, "Spin separation based
654
+ on-chip optical polarimeter via inverse design," Nanophotonics 11, 813–819 (2022).
655
+ 21. Y. Xie, T. Lei, D. Wang, J. Ren, Y. Dai, Y. Chen, L. Du, B. Liu, Z. Li, and X. Yuan, "High-speed Stokes vector
656
+ receiver enabled by a spin-dependent optical grating," Photon. Res. 9, 1470–1476 (2021).
657
+
658
+ 22. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and
659
+ polarization with subwavelength spatial resolution and high transmission," Nat. Nanotechnol. 10, 937–943
660
+ (2015).
661
+ 23. E. Arbabi, S. M. Kamali, A. Arbabi, and A. Faraon, "Full-stokes imaging polarimetry using dielectric
662
+ metasurfaces," ACS Photonics 5, 3132–3140 (2018).
663
+ 24. J. P. B. Mueller, K. Leosson, and F. Capasso, "Ultracompact metasurface in-line polarimeter," Optica 3, 42–47
664
+ (2016).
665
+ 25. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, "Plasmonic metagratings for simultaneous determination of
666
+ Stokes parameters," Optica 2, 716–723 (2015).
667
+ 26. Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, and M. Wegener,
668
+ "Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling," Nat.
669
+ Commun. 9, 4607 (2018).
670
+ 27. L. Li, J. Wang, L. Kang, W. Liu, L. Yu, B. Zheng, M. L. Brongersma, D. H. Werner, S. Lan, Y. Shi, Y. Xu, and
671
+ X. Wang, "Monolithic full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated
672
+ graphene-silicon photodetector," ACS Nano 14, 16634–16642 (2020).
673
+ 28. P. J. Winzer and D. T. Neilson, "From scaling disparities to integrated parallelism: A decathlon for a decade," J.
674
+ Lightwave Technol. 35, 1099–1115 (2017).
675
+ 29. D. A. B. Miller, "Attojoule optoelectronics for low-energy information processing and communications," J.
676
+ Lightwave Technol. 35, 346–396 (2017).
677
+ 30. U. Koch, A. Messner, C. Hoessbacher, W. Heni, A. Josten, B. Baeuerle, M. Ayata, Y. Fedoryshyn, D. L. Elder,
678
+ L. R. Dalton, and J. Leuthold, "Ultra-compact terabit plasmonic modulator array," J. Lightwave Technol. 37,
679
+ 1484-1491 (2019).
680
+ 31. G. Soma, W. Yanwachirakul, T. Miyazaki, E. Kato, B. Onodera, R. Tanomura, T. Fukui, S. Ishimura, M.
681
+ Sugiyama, Y. Nakano, and T. Tanemura, "Ultra-broadband surface-normal coherent optical receiver with
682
+ nanometallic polarizers," ACS Photonics 9, 2842–2849 (2022).
683
+ 32. T. Umezawa, A. Matsumoto, K. Akahane, A. Kanno, and N. Yamamoto, "400-pixel high-speed photodetector
684
+ for high optical alignment robustness FSO receiver," in Proc. Opt. Fiber Commun. Conf. (OFC) 2022, paper
685
+ M4I.3.
686
+ 33. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, "Photonic spin-controlled
687
+ multifunctional shared-aperture antenna array," Science 352, 1202–1206 (2016).
688
+ 34. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength metasurfaces through spatial
689
+ multiplexing," Sci. Rep. 6, 32803 (2016).
690
+ 35. T. Tanemura, T. Suganuma, and Y. Nakano, "Sensitivity analysis of photonic integrated direct-detection
691
+ Stokes-vector receiver," J. Lightwave Technol. 38, 447–456 (2020).
692
+ 36. V. Liu and S. Fan, "S4: A free electromagnetic solver for layered periodic structures," Comput. Phys. Commun.
693
+ 183, 2233–2244 (2012).
694
+ 37. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization
695
+ optics: Independent phase control of arbitrary orthogonal states of polarization," Phys. Rev. Lett. 118, 113901
696
+ (2017).
697
+ 38. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible
698
+ wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190–1194
699
+ (2016).
700
+ 39. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso,
701
+ "Polarization-insensitive metalenses at visible wavelengths," Nano Lett. 16, 7229–7234 (2016).
702
+ 40. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, "Inverse design in
703
+ nanophotonics," Nat. Photonics 12, 659–670 (2018).
704
+ 41. M. Mansouree, A. McClung, S. Samudrala, and A. Arbabi, "Large-scale parametrized metasurface design using
705
+ adjoint optimization," ACS Photonics 8, 455–463 (2021).
706
+ 42. T. Umezawa, T. Sakamoto, A. Kanno, S. Nakajima, A. Matsumoto, N. Yamamoto, and T. Kawanishi, "400-
707
+ Gbps space division multiplexing optical wireless communication using two-dimensional photodetector array,"
708
+ in Proc. Eur. Conf. Opt. Commun. (ECOC) 2018, paper Th2.31.
709
+ 43. Y. Mori, C. Zhang, and K. Kikuchi, "Novel configuration of finite-impulse-response filters tolerant to carrier-
710
+ phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation
711
+ signals," Opt. Express 20, 26236–26251 (2012).
712
+ 44. M. S. Faruk and K. Kikuchi, "Compensation for in-phase/quadrature imbalance in coherent-receiver front end
713
+ for optical quadrature amplitude modulation," IEEE Photonics J. 5, 7800110 (2013).
714
+ 45. Y. Yi, T. Umezawa, A. Kanno, and T. Kawanishi, "50 GHz high photocurrent PIN-PD and its thermal effect,"
715
+ in Proc. OptoElectron. and Commun. Conf. (OECC) and Int. Conf. on Photon. in Switching and Computing
716
+ (PSC) 2022, paper WD2-2.
717
+ 46. T. Umezawa, A. Kanno, K. Kashima, A. Matsumoto, K. Akahane, N. Yamamoto, and T. Kawanishi, “Bias-free
718
+ operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-
719
+ band photonic wireless communication,” J. Lightwave Technol. 34, 3138–3147 (2016).
720
+
721
+ Compact and scalable polarimetric self-
722
+ coherent receiver using dielectric
723
+ metasurface: Supplementary Information
724
+ GO SOMA,1,4 YOSHIRO NOMOTO,2 TOSHIMASA UMEZAWA,3 YUKI YOSHIDA,3
725
+ YOSHIAKI NAKANO,1 AND TAKUO TANEMURA1,5
726
+ 1School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
727
+ 2Central Research Laboratory, Hamamatsu Photonics K.K. 5000 Hirakuchi, Hamakita-ku, Hamamatsu
728
+ City, Shizuoka, Japan
729
+ 3National Institute of Information and Communications Technologies (NICT), 4-2-1 Nukui-Kitamachi,
730
+ Koganei, Tokyo, Japan
731
+ 4soma@hotaka.t.u-tokyo.ac.jp, 5tanemura@ee.t.u-tokyo.ac.jp
732
+
733
+ S1. Derivation of 𝑫𝒖(𝝋𝒖, 𝝋𝒗) and 𝑫𝒗(𝝋𝒖, 𝝋𝒗)
734
+ From RCWA simulation, we obtain 𝑡𝑢(𝐷𝑢, 𝐷𝑣) and 𝑡𝑣(𝐷𝑢, 𝐷𝑣), which describe the complex
735
+ transmittance through an array of elliptical Si nanoposts with the principal axis lengths of 𝐷𝑢
736
+ and 𝐷𝑣 for the linearly polarized light along 𝑢 and 𝑣 axes, respectively. The simulated intensity
737
+ |𝑡𝑢|2 and |𝑡𝑣|2 and the phase arg(𝑡𝑢) and arg(𝑡𝑣) are shown in Fig. S1(a) and (b). From these
738
+ results, we derive the required 𝐷𝑢(𝜑𝑢, 𝜑𝑣) and 𝐷𝑣(𝜑𝑢, 𝜑𝑣) to obtain desired phase shifts
739
+ (𝜑𝑢, 𝜑𝑣), by using the following the equation [1]:
740
+ (𝐷𝑢(𝜑𝑢, 𝜑𝑣), 𝐷𝑣(𝜑𝑢, 𝜑𝑣)) = arg min
741
+ (𝐷𝑢, 𝐷𝑣)
742
+ [|𝑡𝑢(𝐷𝑢, 𝐷𝑣) − 𝑒𝑖𝜑𝑢|
743
+ 2 + |𝑡𝑣(𝐷𝑢, 𝐷𝑣) − 𝑒𝑖𝜑𝑣|
744
+ 2].
745
+
746
+
747
+ Fig. S1. Simulated intensity (a) and phase (b) of transmission coefficients as a function of 𝐷𝑢
748
+ and 𝐷𝑣.
749
+ 0
750
+ 0.7
751
+ (μm)
752
+ 0
753
+ 0.7
754
+ (μm)
755
+ 0
756
+ 1
757
+ 0
758
+ 0.7
759
+ 0
760
+ 0.7
761
+ 0
762
+ 0.7
763
+ 0
764
+ 0.7
765
+ 0
766
+ 0.7
767
+ 0
768
+ 0.7
769
+ (μm)
770
+ (μm)
771
+ (μm)
772
+ (μm)
773
+ (μm)
774
+ (μm)
775
+ Transmittance
776
+ Phase (rad)
777
+ (a)
778
+ (b)
779
+
780
+ S2. Derivation of phase shift by a meta-atom array for circularly polarized light
781
+ The Jones matrix, describing the transmittance through a lossless Si nanopost array can be
782
+ written as
783
+ 𝐉 = 𝐑(𝜃) (𝑒𝑖𝜑𝑢
784
+ 0
785
+ 0
786
+ 𝑒𝑖𝜑𝑣) 𝐑(−𝜃) = (𝑒𝑖𝜑𝑢 cos2 𝜃 + 𝑒𝑖𝜑𝑣 sin2 𝜃
787
+ (𝑒𝑖𝜑𝑢 − 𝑒𝑖𝜑𝑣) sin 𝜃 cos 𝜃
788
+ (𝑒𝑖𝜑𝑢 − 𝑒𝑖𝜑𝑣) sin 𝜃 cos 𝜃
789
+ 𝑒𝑖𝜑𝑢 sin2 𝜃 + 𝑒𝑖𝜑𝑣 cos2 𝜃).
790
+ Here, 𝜑𝑢 and 𝜑𝑣 represent the phase shifts for the polarization components along the principal
791
+ axes of the elliptical nanoposts and 𝐑(𝜃) is a rotation matrix with a rotation angle of 𝜃. Here
792
+ we assume that the input lightwave is circularly-polarized and its Jones vector is written as
793
+ 𝑬𝑟,𝑙 = 1/√2(1, ±𝑖)𝑇. Then, the output Jones vector is written as
794
+ 𝐉𝑬𝑟,𝑙 = 𝑒𝑖𝜑𝑢 + 𝑒𝑖𝜑𝑣
795
+ 2
796
+ 𝑬𝑟,𝑙 + 𝑒𝑖𝜑𝑢 − 𝑒𝑖𝜑𝑣
797
+ 2
798
+ 𝑒±𝑖2𝜃𝑬𝑙,𝑟.
799
+ Therefore, when the meta-atom functions as a half-wave plate, i.e., 𝜑𝑣 = 𝜑𝑢 + 𝜋, the output
800
+ Jones vector becomes 𝑒𝑖(𝜑𝑢±2𝜃)𝑬𝑙,𝑟. In other words, the phase shifts given to the right-handed
801
+ and left-handed circularly-polarized waves are (𝜑𝑟, 𝜑𝑙) = (𝜑𝑢 + 2𝜃, 𝜑𝑢 − 2𝜃) , while the
802
+ output polarization handedness is reversed.
803
+
804
+ S3. Comparison between three-B-PD and four-S-PD configurations
805
+ To compare the results obtained by three-B-PD and four-S-PD configurations, we performed
806
+ the self-coherent transmission experiment with 15-GBd 16QAM signals using the two
807
+ experimental setups shown in Fig. 4(a). The measured BER curves are shown in Fig. S2. Since
808
+ the BER was limited by the optical signal-to-noise ratio (OSNR), identical results were
809
+ obtained in two cases.
810
+
811
+
812
+ Fig. S2. Measured BER curves of 15-GBd 16QAM signals using the setup with three-B-PD and
813
+ four-S-PD configurations.
814
+
815
+ References
816
+ 1.
817
+ A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and
818
+ polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943
819
+ (2015).
820
+
821
+
822
+
823
+
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+
835
+
9dAzT4oBgHgl3EQf-_6e/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BNE0T4oBgHgl3EQfxwK1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6172fa1d687fc2c9ebb7bf1f83835a269396e27c1b704c2110718470db90d99
3
+ size 4915245
CtE2T4oBgHgl3EQf9Ant/content/tmp_files/2301.04225v1.pdf.txt ADDED
@@ -0,0 +1,2539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Inferring Gene Regulatory Neural Networks for
3
+ Bacterial Decision Making in Biofilms
4
+ Samitha Somathilaka, Student, IEEE, Daniel P. Martins, Member, IEEE, Xu Li, Yusong Li,
5
+ Sasitharan Balasubramaniam, Senior Member, IEEE,
6
+ Abstract—Bacterial cells are sensitive to a range of external sig-
7
+ nals used to learn the environment. These incoming external sig-
8
+ nals are then processed using a Gene Regulatory Network (GRN),
9
+ exhibiting similarities to modern computing algorithms. An in-
10
+ depth analysis of gene expression dynamics suggests an inherited
11
+ Gene Regulatory Neural Network (GRNN) behavior within the
12
+ GRN that enables the cellular decision-making based on received
13
+ signals from the environment and neighbor cells. In this study,
14
+ we extract a sub-network of Pseudomonas aeruginosa GRN that
15
+ is associated with one virulence factor: pyocyanin production as a
16
+ use case to investigate the GRNN behaviors. Further, using Graph
17
+ Neural Network (GNN) architecture, we model a single species
18
+ biofilm to reveal the role of GRNN dynamics on ecosystem-wide
19
+ decision-making. Varying environmental conditions, we prove
20
+ that the extracted GRNN computes input signals similar to
21
+ natural decision-making process of the cell. Identifying of neural
22
+ network behaviors in GRNs may lead to more accurate bacterial
23
+ cell activity predictive models for many applications, including
24
+ human health-related problems and agricultural applications.
25
+ Further, this model can produce data on causal relationships
26
+ throughout the network, enabling the possibility of designing
27
+ tailor-made infection-controlling mechanisms. More interestingly,
28
+ these GRNNs can perform computational tasks for bio-hybrid
29
+ computing systems.
30
+ Index Terms—Gene Regulatory Networks, Graph Neural Net-
31
+ work, Biofilm, Neural Network.
32
+ I. INTRODUCTION
33
+ B
34
+ ACTERIA are well-known for their capability to sense
35
+ external stimuli, for complex information computations
36
+ and for a wide range of responses [1]. The microbes can sense
37
+ numerous external signals, including a plethora of molecules,
38
+ temperatures, pH levels, and the presence of other microorgan-
39
+ isms [2]. The sensed signals then go through the Gene Regu-
40
+ latory Network (GRN), where a large number of parallel and
41
+ sequential molecular signals are collectively processed. The
42
+ GRN is identified as the main computational component of the
43
+ cell [3], which contains about 100 to more than 11000 genes
44
+ Samitha Somathilaka is with VistaMilk Research Centre, Walton Institute
45
+ for Information and Communication Systems Science, Waterford Institute
46
+ of Technology, Waterford, X91 P20H, Ireland and School of Computing,
47
+ University of Nebraska-Lincoln, 104 Schorr Center, 1100 T Street, Lincoln,
48
+ NE, 68588-0150, USA. E-mail: samitha.somathilaka@waltoninstitute.ie.
49
+ Daniel P. Martins are with VistaMilk Research Centre and the Wal-
50
+ ton Institute for Information and Communication Systems Science, Wa-
51
+ terford Institute of Technology, Waterford, X91 P20H, Ireland. E-mail:
52
+ daniel.martins@waltoninstitute.ie.
53
+ Xu Li and Yusong Li are with Department of Civil and Environmental
54
+ Engineering University of Nebraska-Lincoln 900 N. 16th Street Nebraska Hall
55
+ W181, Lincoln, NE 68588-0531 E-mail:xuli,yli7@unl.edu.
56
+ S. Balasubramaniam is with School of Computing, University of Nebraska-
57
+ Lincoln, 104 Schorr Center, 1100 T Street, Lincoln, NE, 68588-0150, USA.
58
+ E-mail:sasi@unl.edu
59
+ Full GNN
60
+ ...
61
+ ...
62
+ ...
63
+ Extracted
64
+ NN
65
+ GRN
66
+ Biofilm
67
+ ...
68
+ Fig. 1: Illustration of the Gene Regulatory Neural Networks
69
+ (GRNN) extraction and the implementation of the GNN to
70
+ model the biofilm. The diffusion of molecules from one cell
71
+ to another is modeled as a vector, where mq represents the
72
+ concentration of the qth molecular signal.
73
+ (the largest genome identified so far belongs to Sorangium
74
+ cellulosum strain So0157-2) [4]. Despite the absence of neural
75
+ components, the computational process through GRN allows
76
+ the bacteria to actuate through various mechanisms, such as
77
+ molecular production, motility, physiological state changes and
78
+ even sophisticated social behaviors. Understanding the natural
79
+ computing mechanism of cells can lead to progression of
80
+ key areas of machine learning in bioinformatics, including
81
+ prediction of biological processes, prevention of diseases and
82
+ personalized treatment [5].
83
+ Bacterial cells are equipped with various regulatory sys-
84
+ tems, such as single/two/multi-component systems including
85
+ Quorum sensing (QS), to respond to environmental stimuli.
86
+ The receptors and transporters on cell membranes can react
87
+ and transport extracellular molecules, which subsequently in-
88
+ teract with respective genes. In turn, the GRN is triggered
89
+ to go through a complex non-linear computational process in
90
+ response to the input signals. In the literature, it has been
91
+ suggested that the computational process through the GRN of
92
+ a bacterial cell comprises a hidden neural network (NN)-like
93
+ architecture [6], [7]. This indicates that, even though bacterial
94
+ cells can be categorized as non-neural organisms, they perform
95
+ neural decision-making processes through the GRN. This re-
96
+ sults in recent attention towards Molecular Machine Learning
97
+ systems, where AI and ML are developed using molecular
98
+ systems [8]. In these systems, several neural components can
99
+ be identified in GRNs, in which genes may be regarded as
100
+ arXiv:2301.04225v1 [q-bio.MN] 10 Jan 2023
101
+
102
+ 2
103
+ C4-
104
+ RhlR
105
+ rhlI
106
+ 3OC-
107
+ LasR
108
+ Phosphate
109
+ Fe(II)
110
+ BqsR
111
+ pqsABCDE
112
+ phz2
113
+ phz1
114
+ PQS-
115
+ PQSR
116
+ PhoB
117
+ pqsR
118
+ rhlR
119
+ lasR
120
+ LasI
121
+ pqsH
122
+ HHQ-
123
+ PQSR
124
+ ?
125
+ 3OC
126
+ C4
127
+ PqsH
128
+ HHQ
129
+ PqsR
130
+ LasR
131
+ RhlR
132
+ PQS
133
+ AlgR
134
+ czcR
135
+ PhZ2 PhZ1
136
+ 3OC
137
+ C4
138
+ PqsH
139
+ HHQ
140
+ PqsR LasR
141
+ RhlR
142
+ (a)
143
+ hn11
144
+ hn12
145
+ PhoB
146
+ hn13
147
+ BqSR
148
+ hn14
149
+ AlgR
150
+ hn21
151
+ hn22
152
+ hn23
153
+ pqsABCDE
154
+ czcR
155
+ rhlI
156
+ pqsR lasR
157
+ lasI
158
+ rhlR
159
+ hn31
160
+ phz2
161
+ phz1
162
+ hn24
163
+ pqsH
164
+ (b)
165
+ GNN model
166
+ Inter-cellular diffusion
167
+ GRN
168
+ NN
169
+ ...
170
+ ...
171
+ ...
172
+ ...
173
+ (c)
174
+ Fig. 2: Extraction of a GRNN considering a specific sub-network of the GRN where a) is the two-component systems (TCSs)
175
+ and QS network that is associated with the pyocyanin production, b) is the derived GRNN that is equipped with hypothetical
176
+ nodes (hns) without affecting its computation process to form a symmetric network structure and c) is the conversion of real
177
+ biofilm to the suggested in-silico model.
178
+ computational units or neurons, transcription regulatory factors
179
+ as weights/biases and proteins/second messenger Molecular
180
+ Communications (MC) as neuron-to-neuron interactions. Ow-
181
+ ing to a large number of genes and the interactions in a GRN,
182
+ it is possible to infer sub-networks with NN behaviors that
183
+ we term Gene Regulatory Neural Networks (GRNN). The
184
+ non-linear computing of genes results from various factors
185
+ that expand through multi-omics layers, including proteomic,
186
+ transcriptomic and metabolomic data (further explained in
187
+ Section II-A). In contrast, the GRNN is a pure NN of genes
188
+ with summarized non-linearity stemmed from multi-omics
189
+ layers with weights/biases.
190
+ Identification of GRNNs can be used to model the decision-
191
+ making process of the cell precisely, especially considering
192
+ simultaneous multiple MC inputs or outputs. However, due
193
+ to the limited understanding and data availability, it is still
194
+ impossible to model the complete GRN with its NN-like
195
+ behaviors. Therefore, this study uses a GRNN of Pseudomonas
196
+ aeruginosa that is associated with PhoR-PhoB and BqsS-
197
+ BqsR two-component systems (TCSs) and three QS systems
198
+ related to pyocyanin production as a use case to explore the
199
+ NN-like behaviors. Although a single bacterium can do a
200
+ massive amount of computing, they prefer living in biofilms.
201
+ Hence, in order to understand the biofilm decision-making
202
+ mechanism, we extend this single-cell computational model
203
+ to an ecosystem level by designing an in-silico single species
204
+ biofilm with inter-cellular MC signaling as shown in Fig. 1.
205
+ The contributions of this study are as follows:
206
+ • Extracting a GRNN: Due to the complexity and insuf-
207
+ ficient understanding of the gene expression dynamics of
208
+ the full GRN, we only focus on a sub-network associated
209
+ with pyocyanin production (shown in Fig. 2a) to inves-
210
+ tigate the NN-like computational behavior of the GRN.
211
+ Further, the genes of extracted sub-network are arranged
212
+ following a NN structure that comprises input, hidden
213
+ and output layers, as shown in Fig. 2b.
214
+ • Modeling a biofilm as a GNN: The GRNN only repre-
215
+ sents the single-cell activities. To model the biofilm-wide
216
+ decision-making process, we use a Graph Neural Network
217
+ (GNN). First, we create a graph network of the bacterial
218
+ cell and convert it to a GNN by embedding each node
219
+ with the extracted GRNN as the update function. Second,
220
+ the diffusion-based MCs between bacterial cells in the
221
+ biofilm are encoded as the message-passing protocol of
222
+ the GNN, as shown in Fig. 2c.
223
+ • Exploring the behaviors of the GRNN and intra-
224
+ cellular MC dynamics to predict cell decisions: The
225
+ output of the GRNN is evaluated by comparing it with
226
+ the transcriptomic and pyocyanin production data from
227
+ the literature. Finally, an edge-level analysis of the GRNN
228
+ is conducted to explore the causal relationships between
229
+ gene expression and pyocyanin production.
230
+ This paper is organized as follows: Section II explains
231
+ the background of bacterial decision-making in two levels:
232
+ cellular-level in Section II-A and population-level in Section
233
+ II-B, while the background on the P. aeruginosa is introduced
234
+ in Section II-C. Section III is dedicated to explaining the model
235
+ design of cellular and population levels. The results related
236
+ to model validation and the intergenic intra-cellular signaling
237
+ pattern analysis are presented in Section IV and the study is
238
+ concluded in Section V.
239
+ II. BACKGROUND
240
+ As the model expands through single cellular and biofilm-
241
+ wide decision-making layers, this section provides the back-
242
+ ground of how a bacterium uses the GRN to make decisions
243
+ and how bacterial cells make decisions in biofilms. Moreover,
244
+ we briefly discuss the cellular activities of the Pseudomonas
245
+ aeruginosa as it is the use case species of this study.
246
+ A. Decision-Making Process of an Individual Cell
247
+ Prokaryotic cells are capable of sensing the environment
248
+ through multiple mechanisms, including TCSs that have been
249
+ widely studied and it is one of the focal points of this
250
+ study. The concentrations of molecular-input signals from
251
+ the extracellular environment influence the bacterial activities
252
+ at the cellular and ecosystem levels [9]. Apart from the
253
+ extracellular signals of nutrients, it is evident that the QS
254
+ input signals have a diverse set of regulative mechanisms in
255
+ biofilm-wide characteristics, including size and shape [10].
256
+ These input signals undergo a computational process through
257
+ the GRN, exhibiting a complex decision-making mechanism.
258
+ Past studies have explored and suggested this underpinning
259
+ computational mechanism in a plethora of directions, such
260
+
261
+ 3
262
+ Prom
263
+ Op
264
+ Enh
265
+ GeneA
266
+ ...
267
+ Sil
268
+ GeneB
269
+ ...
270
+ Fig. 3: Illustration of gene expression regulators that are
271
+ considered the weight influencers of the edges of GRNN.
272
+ Here, the α(σ), α(∼σ), α(T F ), α(Rep), α(eT F ) and α(sT F )
273
+ are relative concentrations of sigma factors, anti-sigma factors,
274
+ transcription factors (TFs), repressors, enhancer-binding TFs
275
+ and silencer-binding TFs respectively. Moreover, β(P rom),
276
+ β(Op), β(Enh), and β(Sil) are the binding affinities of the pro-
277
+ moter, operator, enhancer and silencers regions respectively.
278
+ as using differential equations [11] and probabilistic Boolean
279
+ networks [12] and logic circuit [13]. All of these models
280
+ mainly infer that the bacterial cells can make decisions not
281
+ just based on the single input-output combinations, but they
282
+ can integrate several incoming signals non-linearly to produce
283
+ outputs.
284
+ The studies that focus on differences in gene expression
285
+ levels suggest that a hidden weight behavior controls the
286
+ impact of one gene on another [6]. This weight behavior
287
+ emerges through several elements, such as the number of
288
+ transcription factors that induce the expression, the affinity
289
+ of the transcription factor binding site, and machinery such
290
+ as thermoregulators and enhancers/silencers [14], [15]. Fig.
291
+ 3 depicts a set of factors influencing the weight between
292
+ genes. The weight of an edge between two genes has a
293
+ higher dynamicity as it is combinedly determined by several
294
+ of these factors. Based on environmental conditions, the GRN
295
+ of the bacterial cell adapts various weights to increase the
296
+ survivability and repress unnecessary cellular functions to
297
+ preserve energy. An example of such regulation is shown in
298
+ Fig. 4 where a P. aeruginosa cell uses a thermoregulator to
299
+ regulate the QS behaviors. Fig. 4a has a set of relative weights
300
+ based on cellar activities in an environment at 37 ◦C, while
301
+ Fig. 4b represents weights at 30 ◦C. The weights between the
302
+ hn21 and rhlR are different in two conditions, and these cellar
303
+ activities are further explained in [14].
304
+ B. Biofilm Decision-Making
305
+ Even though an individual cell is capable of sensing,
306
+ computing, and actuating, the majority of bacterial cells live
307
+ in biofilms, where the survivability is significantly increased
308
+ compared to their planktonic state. Biofilm formation can
309
+ cause biofouling and corrosion in water supply and industrial
310
+ systems [16]. However, biofilms formation can be desirable
311
+ in many situations, for example, bioreactors in wastewater
312
+ treatment [17], bioremediation of contaminated groundwater
313
+ [18], [19], where biofilms serve as platforms for biogeochem-
314
+ ical reactions. A massive number of factors can influence
315
+ biofilm formation, including substratum surface geometrical
316
+ characteristics, diversity of species constituting the biofilm,
317
+ hydrodynamic conditions, nutrient availability, and especially
318
+ communication patterns [20] where the TCS and QS play
319
+ rhlI
320
+ BqsR
321
+ pqsABCDE
322
+ phz2
323
+ phz1
324
+ PhoB
325
+ hn11
326
+ pqsR
327
+ rhlR
328
+ lasR
329
+ LasI
330
+ pqsH
331
+ hn31
332
+ hn12
333
+ hn13
334
+ hn14
335
+ hn23
336
+ hn24
337
+ hn21
338
+ hn22
339
+ AlgR
340
+ czcR
341
+ 1
342
+ -1
343
+ 0
344
+ (a)
345
+ rhlI
346
+ BqsR
347
+ pqsABCDE
348
+ phz2
349
+ phz1
350
+ PhoB
351
+ hn11
352
+ pqsR
353
+ rhlR
354
+ lasR
355
+ LasI
356
+ pqsH
357
+ hn31
358
+ hn12
359
+ hn13
360
+ hn14
361
+ hn23
362
+ hn24
363
+ hn21
364
+ hn22
365
+ AlgR
366
+ czcR
367
+ 1
368
+ -1
369
+ 0
370
+ (b)
371
+ Fig. 4: Two GRNN setups with different weights associated
372
+ with two environmental conditions. a) is the relative weight
373
+ setup of P. aeruginosa cell in 37 ◦C and b) is in 30 ◦C.
374
+ significant roles. A TCS comprises a histidine kinase that
375
+ is the sensor for specific stimulus and a cognate response
376
+ regulator that initiates expressions of a set of genes [21].
377
+ Hence, in each stage, essential functions can be traced back
378
+ to their gene expression upon a response to the input signals
379
+ detected by bacterial cells. For instance, in the first stage
380
+ of biofilm formation, the attachment of bacteria to a surface
381
+ is associated with sensing a suitable surface and altering
382
+ the activities of the flagella. In the next stage, rhamnolipids
383
+ production is associated with ferric iron Fe3+ availability in
384
+ the environment, mostly sensed through BqsS-BqsR TCSs.
385
+ Further, Fe3+ was identified as a regulator of pqsA, pqsR, and
386
+ pqsE gene expressions that are associated with the production
387
+ of two critical components for the formation of microcolonies:
388
+ eDNA and EPS [22]. Similarly, in the final stage, the dis-
389
+ persion process can also be traced back to a specific set
390
+ of gene regulations, including bdlA an rbdA [23], [24]. An
391
+ understanding of the underlying decision-making process of
392
+ bacteria may enable us to control their cellular activities.
393
+ C. Pseudomonas Aeruginosa
394
+ The main reason for selecting P. aeruginosa in this work
395
+ lies in its alarming role in human health. For example, this
396
+ species is the main cause of death in cystic fibrosis patients
397
+ [25]. P. aeruginosa is a gram-negative opportunistic pathogen
398
+ with a range of virulence factors, including pyocyanin and
399
+ cytotoxin secretion [26]. These secreted molecules can lead to
400
+ complications such as respiratory tract ciliary dysfunction and
401
+ induce proinflammatory and oxidative effects damaging the
402
+ host cells [27]. The biofilms are being formed on more than
403
+ 90% endotracheal tubes implanted in patients who are getting
404
+ assisted ventilation, causing upper respiratory tract infections
405
+ [28]. In addition, another important reason for targeting P.
406
+ aeruginosa is the data availability for the GRN structure [29],
407
+ pathways [30], genome [31], transcriptome [32] and data from
408
+ mutagenesis studies [33], [34]. Compared to the complexity of
409
+ the GRN, the amount of data and information available on the
410
+
411
+ 4
412
+ C4-
413
+ RhlR
414
+ 3OC-
415
+ LasR
416
+ PQS-
417
+ PQSR
418
+ HHQ-
419
+ PQSR
420
+ 3OC
421
+ C4
422
+ PqsH
423
+ HHQ
424
+ PqsR
425
+ LasR
426
+ RhlR
427
+ PQS
428
+ Fig. 5: Illustrations of intra-cellular metabolite interaction.
429
+ gene-to-gene interactions and expression patterns is insuffi-
430
+ cient to develop an accurate full in-silico model. Therefore,
431
+ we chose a set of specific genes that are associated with QS,
432
+ TCS, and pyocyanin production.
433
+ III. SYSTEM DESIGN
434
+ This section explains the system design in two main phases,
435
+ extracting a NN-like architecture from the GRN targeting the
436
+ set of genes and creating a model of the biofilm ecosystem.
437
+ A. Extracting Natural Neural Network from GRN
438
+ We first fetch the structure of the GRN graph from Reg-
439
+ ulomePA [29] database that contains only the existence of
440
+ interactions and their types (positive or negative). As the next
441
+ step, using information from the past studies [35]–[38], we
442
+ identified the genes involved in the Las, Rhl and PQS QS
443
+ systems, PhoR-PhoB and BqsS-BqsR TCSs, and pyocyanin
444
+ production to derive the sub-network of GRN as shown in
445
+ Fig 2a. We further explored the expression dynamics using
446
+ transcriptomic data [39], [40] where we observed the non-
447
+ linearity in computations that are difficult to capture with
448
+ existing approaches such as logic circuits, etc. [6], making
449
+ the NN approach more suitable. However, a NN model with a
450
+ black box that is trained on a large amount of transcriptomic
451
+ data records to do computations similar to the GRN has a
452
+ number of limitations, especially in understanding the core
453
+ of the computational process [41]. Our model does not use a
454
+ conventional NN model; instead, we extract a NN from the in-
455
+ teraction patterns of the GRN, which we consider a pre-trained
456
+ GRNN. In this sub-network, we observed that the lengths of
457
+ expression pathways are not equal. For example, the path from
458
+ PhoR-PhoB to the phz2 gene has two hops, but the path from
459
+ the BqsS-BqsR system to the rhlR gene only has one hop. The
460
+ extracted network has the structure of a random NN. Hence,
461
+ we transform this GRNN to Gene Regulatory Feedforward
462
+ Neural Network by introducing hypothetical nodes (hns) that
463
+ do not affect the behaviors of the GRNN as shown in Fig 2b.
464
+ In this transformation, we decide the number of hidden layers
465
+ based on the maximum number of hops in gene expression
466
+ pathways. In our network, the maximum number of hops is
467
+ two, which determines the number of hidden layers as one,
468
+ and then the number of hops of all the pathways is leveled
469
+ by introducing hns. If a hn is introduced between a source
470
+ and target genes, the edge weights from the source node to
471
+ the hn and from hn to the target node are made “1” so that
472
+ the hn does not have an influence on the regulation of genes.
473
+ Moreover, if a gene does not induce another in the network,
474
+ the weight of the edge between that pair is made “0”.
475
+ Here, we summarize multiple factors of interaction into
476
+ a weight that determines the transcriptional regulation of
477
+ a particular gene. This regulation process occurs when the
478
+ gene products get bound to the promoter region of another,
479
+ influencing the transcriptional machinery. Hence, we observe
480
+ this regulation process of a target gene as a multi-layered
481
+ model that relies on the products of a set of source genes, the
482
+ interaction between gene products, and the diffusion dynamics
483
+ within the cell. Creating a framework to infer an absolute
484
+ weight value using all the above factors is a highly complex
485
+ task. In order to infer weight, one method is to train a NN
486
+ model with the same structure as the GRN using a series of
487
+ transcriptomic data. However, this approach also has numerous
488
+ challenges, such as the lack of a sufficient amount of data in
489
+ similar environments.
490
+ Therefore, we estimate a set of relative weights based on
491
+ genomic, transcriptomic, and proteomic explanations of each
492
+ interaction from the literature. The weights were further fine-
493
+ tuned using the transcriptomics data. A relative weight value
494
+ of an edge can be considered a summarizing of multi-layer
495
+ transcriptional-translation to represent the impact of the source
496
+ gene on a target gene.
497
+ In this computational process, we identify another layer of
498
+ interactions that occur within the cell. The produced molecules
499
+ by the considered TCs network go through a set of metabolic
500
+ interactions that are crucial for the functionality of the cell.
501
+ Since our primary goal is to explore the NN behaviors of
502
+ GRN, we model these inter-cellular chemical reactions as a
503
+ separate process, keeping the gene-to-gene interactions and
504
+ metabolic interactions in two different layers. To model the
505
+ complete pyocyanin production functionality of the cell, we
506
+ use the inter-cellular molecular interactions shown in Fig 5.
507
+ Here, RhlR is a transcriptional regulator of P. aeruginosa that
508
+ forms a complex by getting attached to its cognate inducer
509
+ C4-HSL and then binds to the promoter regions of relevant
510
+ genes [42]. Similarly, LasR transcriptional regulator protein
511
+ and 3-oxo-C12-HSL (3OC), and PqsR with PQS and HHQ
512
+ form complexes and get involved in the regulation of a range
513
+ of genes [43], [44]. Further, C10H10O6 in the environment are
514
+ converted by the P. aeruginosa cells in multiple steps using
515
+ the products of the GRNN we consider. First, C10H10O6
516
+ is converted into phenazine-1-carboxylic using the enzymes
517
+ of pqsABCDEFG genes. Later, phenazine-1-carboxylic was
518
+ converted into 5-Methylphenazine-1-carboxylate, and finally,
519
+ 5-Methylphenazine-1-carboxylate into Pyocyanin by PhzM
520
+ and PhzS, respectively [45].
521
+ Molecular accumulation within a bacterial cell can be
522
+ considered its memory module where certain intra-cellular
523
+ interactions occurs. Therefore, we define an internal memory
524
+ matrix IM as,
525
+ IM(t) =
526
+ im1
527
+ im2
528
+ ...
529
+ imJ
530
+
531
+
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+
540
+
541
+
542
+ B1
543
+ C(t)
544
+ (1,im1)
545
+ C(t)
546
+ (1,im2)
547
+ ...
548
+ C(t)
549
+ (1,imJ)
550
+ B2
551
+ C(t)
552
+ (2,im1)
553
+ C(t)
554
+ (2,im2)
555
+ ...
556
+ C(t)
557
+ (2,imJ)
558
+ ...
559
+ ...
560
+ ...
561
+ ...
562
+ ...
563
+ BP
564
+ C(t)
565
+ (P,im1)
566
+ C(t)
567
+ (P,im2)
568
+ ...
569
+ C(t)
570
+ (P,imJ)
571
+ ,
572
+ (1)
573
+ where the concentration of the internal molecule imj is
574
+
575
+ 5
576
+ C(t)
577
+ (i,imj).
578
+ GRNN process molecular signals from the environment and
579
+ other cells. Hence, we used the approach of GNN as a scalable
580
+ mechanism to model the MCs and biofilm wide decision-
581
+ making process. The extreme computational power demand of
582
+ modeling the diffusion-based MCs of each cell is also avoided
583
+ by using this approach.
584
+ B. Graph Neural Network Modeling of Biofilm
585
+ First, the biofilm is created as a graph network of bacterial
586
+ cells where each node is a representation of a cell, and an edge
587
+ between two nodes is a MC channel. We convert the graph
588
+ network into a Graph Neural Network (GNN) in three steps: 1)
589
+ embedding the extracted GRNN of pyocyanin production into
590
+ each node as the update function, 2) encoding the diffusion-
591
+ based cell-to-cell MC channels as the message passing scheme,
592
+ and 3) creating an aggregation function at the reception of
593
+ molecular messages by a node as shown in Fig. 6. Next, we
594
+ define feature vectors of each node of the GNN to represent
595
+ the gene expression profile of the individual cell at a given
596
+ time. Subsequently, considering L is the number of genes in
597
+ the GRNN, P is the number of bacterial cells in the biofilm
598
+ and b(t)
599
+ (i,gl) is the expression of gene gl by the bacteria Bi,
600
+ we derive the following matrix FV(t) that represents all the
601
+ feature vectors of the GNN at time t.
602
+ FV(t) =
603
+ g1
604
+ g2
605
+ ...
606
+ gL
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+
619
+ B1
620
+ b(t)
621
+ (1,g1)
622
+ b(t)
623
+ (1,g2)
624
+ ...
625
+ b(t)
626
+ (1,gL)
627
+ B2
628
+ b(t)
629
+ (2,g1)
630
+ b(t)
631
+ (2,g2)
632
+ ...
633
+ b(t)
634
+ (2,gL)
635
+ ...
636
+ ...
637
+ ...
638
+ ...
639
+ ...
640
+ BP
641
+ b(t)
642
+ (P,g1)
643
+ b(t)
644
+ (P,g2)
645
+ ...
646
+ b(t)
647
+ (P,gL)
648
+ (2)
649
+ The computational output of the GRNN of each node results
650
+ in the secretion of a set of molecules that are considered
651
+ messages in our GNN model as illustrated in the Fig. 7.
652
+ When the number of molecular species considered in the
653
+ network is Q and output mq molecular message from bacterial
654
+ cell Bi at TS t is msg(t)
655
+ (i,mq), we derive the matrix
656
+ MSG(t) =
657
+ m1
658
+ m2
659
+ ...
660
+ mQ
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+
670
+
671
+
672
+
673
+ B1
674
+ msg(t)
675
+ (1,m1)
676
+ msg(t)
677
+ (1,m2)
678
+ ...
679
+ msg(t)
680
+ (1,mQ)
681
+ B2
682
+ msg(t)
683
+ (2,m1)
684
+ msg(t)
685
+ (2,m2)
686
+ ...
687
+ msg(t)
688
+ (2,mQ)
689
+ ...
690
+ ...
691
+ ...
692
+ ...
693
+ ...
694
+ BP
695
+ msg(t)
696
+ (P,m1)
697
+ msg(t)
698
+ (P,m2)
699
+ ...
700
+ msg(t)
701
+ (P,mQ)
702
+ .
703
+ (3)
704
+ Further, we use a static diffusion coefficients vector
705
+ D = {Dm1, Dm2, ..., DmQ},
706
+ (4)
707
+ where Dmq is diffusion coefficient of molecular species mq.
708
+ Gene expression profile of bacterial cell b1 at time step t
709
+ (a)
710
+ B2
711
+ B5
712
+ B6
713
+ B1
714
+ B3
715
+ B7
716
+ B2
717
+ B5
718
+ B6
719
+ B1
720
+ B3
721
+ B7
722
+ B2
723
+ B5
724
+ B6
725
+ B1
726
+ B3
727
+ B7
728
+ B2
729
+ B5
730
+ B6
731
+ B1
732
+ B3
733
+ B7
734
+ t=0
735
+ t=1
736
+ t=2
737
+ t=T
738
+ ...
739
+ (b)
740
+ Fig. 6: Illustration of the GNN components where a) is a
741
+ snapshot of the bacterial network that has the gene expression
742
+ profile as the feature vector. Further, this gene expression
743
+ pattern of a cell is encoded to a message of secreted molecules
744
+ where MC plays a crucial role. Moreover, b) shows the
745
+ temporal behavior of the GNN, that the output of one graph
746
+ snapshot influences the next.
747
+ ...
748
+ ...
749
+ Fig. 7: The process of one GRNN outputs reaching another
750
+ GRNN as molecular messages.
751
+ We define another matrix ED that contains the euclidean
752
+ distances between bacterial cells in the biofilm as follows
753
+ ED =
754
+ B1
755
+ B2
756
+ ...
757
+ BP
758
+
759
+
760
+
761
+
762
+
763
+
764
+
765
+
766
+ B1
767
+ d(1,1)
768
+ d(1,2)
769
+ ...
770
+ d(1,P )
771
+ B2
772
+ d(2,1)
773
+ d(2,2)
774
+ ...
775
+ d(2,P )
776
+ ...
777
+ ...
778
+ ...
779
+ ...
780
+ ...
781
+ BP
782
+ d(P,1)
783
+ d(P,2)
784
+ ...
785
+ d(P,P )
786
+ (5)
787
+ where di,j is the euclidean distance between the ith and jth
788
+ cells.
789
+
790
+ 6
791
+ TABLE I: Parameters utilised in the system development
792
+ Parameter
793
+ Value
794
+ Description
795
+ No. of cells
796
+ 2000
797
+ The number of cells is limited due to the memory availability of the server.
798
+ No. of genes
799
+ 13
800
+ The network only consists of the gene that are directly associated with QS, PhoR-PhoB and BqsS-BqsR
801
+ TCSs, and pyocyanin production.
802
+ No. internal memory molecules
803
+ 16
804
+ The set of molecules that involved in QS, PhoR-PhoB and BqsS-BqsR TCSs,and pyocyanin production.
805
+ No. messenger molecules
806
+ 4
807
+ The number of molecules that were exchanged between cells in the sub network.
808
+ Dimensions of the environment
809
+ 20x20x20µm
810
+ The dimensions were fixed considering the average sizes of P. aeruginosa biofilms and computational
811
+ demand of the model.
812
+ Duration
813
+ 150 TSs
814
+ The number of TSs can be modified to explore the cellular and ecosystem level activities. For this
815
+ experiment we fixed a TS to represent 30mins.
816
+ No. iterations per setup
817
+ 10
818
+ Considering the stochasticity ranging from the gene expression to ecosystem-wide communications, the
819
+ experiments were iterated 10 times.
820
+ The feature vector of ith bacterial cell at the TS t + 1 is
821
+ then modeled as,
822
+ FV(t+1)
823
+ i
824
+ = GRNNi(MSG(t)
825
+ i
826
+ + S(t)
827
+ i )
828
+ (6)
829
+ where MSG(t)
830
+ i
831
+ is the message generated by the same cell
832
+ in the previous TS. The GRNNi is the extracted GRNN
833
+ that is the update function in the GNN learning process
834
+ and S(t)
835
+ i
836
+ = R(t)
837
+ i
838
+ + K(t)
839
+ i , is the aggregate function. In the
840
+ aggregation component, the R(t)
841
+ i
842
+ is the incoming signals from
843
+ peer bacterial cells and K(t+1)
844
+ (i:mq) is the external molecule input
845
+ vector at the location of Bi and the TS t that is expressed as
846
+ K(t+1)
847
+ i
848
+ =
849
+
850
+ K(t+1)
851
+ i:m1 , K(t+1)
852
+ i:m2 , ..., K(t+1)
853
+ i:mQ
854
+
855
+ .
856
+ (7)
857
+ In order to compute R(t+1)
858
+ i
859
+ , we use a matrix Yi;
860
+ Yi =
861
+
862
+ 1 [Q×1] ×EDi, where
863
+
864
+ 1 [Q×1] is an all-ones matrix of
865
+ dimension Q × 1. The ˆg matrix is then defined as follows,
866
+ ˆg(D⊺, Y, t) =
867
+
868
+ ����
869
+ g(Dm1, d(i,1), t)
870
+ g(Dm1, d(i,2), t)
871
+ ...
872
+ g(Dm1, d(i,P ), t)
873
+ g(Dm2, d(i,1), t)
874
+ g(Dm2, d(i,2), t)
875
+ ...
876
+ g(Dm2, d(i,P ), t)
877
+ ...
878
+ ...
879
+ ...
880
+ ...
881
+ g(DmQ, d(i,1), t)
882
+ g(DmQ, d(i,2), t)
883
+ ...
884
+ g(DmQ, d(i,P ), t)
885
+
886
+ ���� .
887
+ (8)
888
+ In the above matrix, g(Dml, d(i,j), t) is the Green’s function
889
+ of the diffusion equation as shown below,
890
+ ˆG(Dml, d(i,j), t) =
891
+ 1
892
+ (4πDmlt)
893
+ 3
894
+ 2 exp
895
+
896
+
897
+ d2
898
+ (i,j)
899
+ 4Dmlt
900
+
901
+ .
902
+ (9)
903
+ Further, the incoming signal vector R(t+1)
904
+ i
905
+ is denoted as
906
+ below,
907
+ R(t+1)
908
+ i
909
+ = diag
910
+
911
+ ˆg(D⊺, Y, t) × MSG(t)�
912
+ .
913
+ (10)
914
+ Further, we equip our model with a 3-D environment
915
+ to compensate for the noise element and external molecule
916
+ inputs. Environment-layer is designed as a 3-D grid of voxels
917
+ that can store precise information on external nutrients (simi-
918
+ larly to our previous model in [46]). The diffusion of nutrient
919
+ molecules through the medium is modeled as a random-walk
920
+ process. This layer allows us to enrich the model with the
921
+ dynamics of nutrient accessibility of bacterial cells due to
922
+ diffusion variations between the medium and the Extracellular
923
+ Polymeric Substance (EPS).
924
+ The bacterial cells in the ecosystem also perform their
925
+ own computing tasks individually, resulting in a massively
926
+ parallel processing framework. Hence, we use the python-cuda
927
+ platform to make our model closer to the parallel processing
928
+ architecture of the biofilm, where we dedicate a GPU block for
929
+ each bacterial cell and the threads of each block for the matrix
930
+ multiplication of the GRNN computation associated with the
931
+ particular cell. Additionally, due to the massive number of
932
+ iterative components in the model, the computational power
933
+ demand faces significant challenges with serial programming
934
+ making parallelization the best match for the model.
935
+ IV. SIMULATIONS
936
+ In this section, we first explain the simulation setup and
937
+ then discuss the results of gene expression and molecular
938
+ production dynamics to prove the accuracy of the extracted
939
+ GRNN, emphasizing that it works similarly to the real GRN.
940
+ Later, we use computing through the GRNN to explain certain
941
+ activities of the biofilm.
942
+ A. Simulation Setup
943
+ As our interest is to investigate the NN-like computational
944
+ process, we do not model the formation process of the biofilm,
945
+ but we only remodel a completely formed biofilm and disre-
946
+ garding the maturation and dispersion stages. In this model, we
947
+ consider the biofilm as a static 3-D structure of bacterial cells.
948
+ Hence, we first place bacterial cells randomly in the model in a
949
+ paraboloid shape using the equation, z < x2
950
+ 5 + y2
951
+ 5 +20 where x,
952
+ y and z are the components of 3-D Cartesian coordinates. This
953
+ paraboloid shape is chosen to make the spacial arrangement of
954
+ the cells close to real biofilm while keeping the cell placement
955
+ process mathematically simple. Within this 3-D biofilm region,
956
+ we model the diffusivity according to DB/Daq = 0.4, which
957
+ is the mean relative diffusion [47] where DB and Daq are
958
+ the average molecular diffusion coefficients of the biofilm
959
+ and pure water, respectively. Further, to start the simulation
960
+ at a stage where the biofilm is fully formed and the MC is
961
+ already taking place, we filled the internal memory vector
962
+ of each cell with the average molecular level at the initial
963
+ TS. Each bacterial cell will use the initial signals from the
964
+ internal memory and use its GRNN to process and update the
965
+ feature vector for the next TS. Table I presents the parameter
966
+ descriptions and values used for the simulation. As shown in
967
+ Table I, the model runs for 150 TSs, generating data on a
968
+ range of functions for the system. For instance, this model can
969
+ produce data on feature vector of each cell, MC between cells,
970
+
971
+ 7
972
+ Cell count %
973
+ 0
974
+ 20
975
+ Phos. Concentration %
976
+ 40
977
+ 60
978
+ 0
979
+ 20
980
+ 40
981
+ 60
982
+ 80
983
+ 100
984
+ 80
985
+ 60
986
+ 40
987
+ 20
988
+ 0
989
+ Time steps
990
+ (a)
991
+ Cell count %
992
+ 0
993
+ 20
994
+ Phos. Concentration %
995
+ 40
996
+ 60
997
+ 0
998
+ 20
999
+ 40
1000
+ 60
1001
+ 80
1002
+ 100
1003
+ 80
1004
+ 60
1005
+ 40
1006
+ 20
1007
+ 0
1008
+ Time steps
1009
+ (b)
1010
+ Fig. 8: The nutrient accessibility variations of cells is ex-
1011
+ pressed in two different environment conditions: a) low phos-
1012
+ phate and b) high phosphate concentrations.
1013
+ LP_WD
1014
+ HP_WD
1015
+ 0
1016
+ 25 50 75 100 125 150
1017
+ 100
1018
+ 80
1019
+ 60
1020
+ 40
1021
+ 20
1022
+ 0
1023
+ TS
1024
+ Rel. pyocyanin acc.
1025
+ (a)
1026
+ 0
1027
+ 25 50 75 100125150
1028
+ 100
1029
+ 80
1030
+ 60
1031
+ 40
1032
+ 20
1033
+ 0
1034
+ TS
1035
+ Rel. pyocyanin acc.
1036
+ LP_lasR
1037
+ HP_lasR
1038
+ (b)
1039
+ LP_phoB
1040
+ HP_phoB
1041
+ 0
1042
+ 25 50 75 100 125 150
1043
+ 100
1044
+ 80
1045
+ 60
1046
+ 40
1047
+ 20
1048
+ 0
1049
+ TS
1050
+ Rel. pyocyanin acc.
1051
+ (c)
1052
+ LP_lasRphoB
1053
+ HP_lasRphoB
1054
+ 0
1055
+ 25 50 75 100 125 150
1056
+ 100
1057
+ 80
1058
+ 60
1059
+ 40
1060
+ 20
1061
+ 0
1062
+ TS
1063
+ Rel. pyocyanin acc.
1064
+ (d)
1065
+ Fig. 9: Relative Pyocyanin accumulation of four different
1066
+ biofilms of a) WD, b) lasR∆, c) phob∆ and d) lasR∆phob∆
1067
+ in both low and high phosphate levels.
1068
+ molecular consumption by cells, secretion to the environment,
1069
+ and nutrient accessibility of cells for each TS.
1070
+ In order to prove that our GRNN computes similarly to
1071
+ the natural bacterial cell and collective behaviors of the cells
1072
+ are the same as the natural biofilm, we conduct a series of
1073
+ experiments. We explore the GRNN computation and biofilm
1074
+ activities under High Phosphate (HP) and Low Phosphate (LP)
1075
+ levels using eight experimental setups as follows, 1) wild-
1076
+ type bacteria (WD) in LP, 2) lasR mutant (lasR∆) in LP, 3)
1077
+ phoB mutant (phoB∆) in LP, 4) lasR & PhoB double mutant
1078
+ (LasR∆PhoB∆) in LP, 5) WD in HP, 6) lasR∆ in HP, 7)
1079
+ PhoB∆ in HP and LasR∆PhoB∆ in HP. While the WD uses
1080
+ the full GRNN, lasR∆ is created by making the weight of
1081
+ the link between hn22 and lasR as “0”. Further, the GRNN of
1082
+ phoB∆ is created by making the weights of links from PhoB
1083
+ to hn23 and PhoB to pqsABCDE also “0”.
1084
+ B. Model Validation
1085
+ First, we show the nutrient accessibility variation in the
1086
+ biofilm through Fig 8. The cells in the biofilm core have
1087
+ less accessibility while the cells closer to the periphery have
1088
+ more access to nutrients due to variations in diffusion between
1089
+ 100
1090
+ 80
1091
+ 60
1092
+ 40
1093
+ 20
1094
+ 0
1095
+ WD
1096
+ lasR
1097
+ phoB
1098
+ lasRphoB
1099
+ Model
1100
+ Wet-lab
1101
+ HP to LP Pyocyanin
1102
+ production ratio (%)
1103
+ Fig. 10: Evaluation of the model accuracy by comparing HP
1104
+ to LP pyocyanin production ratio with wet-lab data from [48].
1105
+ the environment and the EPS. Fig 8a shows that when a low
1106
+ phosphate concentration is introduced to the environment, the
1107
+ direct access to the nutrient by the cells is limited. After the
1108
+ TS = 10, around 60% of cells have access to 20% of the
1109
+ nutrient concentration. Further, Fig 8b shows that the increased
1110
+ nutrient introduction to the environment positively reflects on
1111
+ the accessibility. This accessibility plays a role mainly in the
1112
+ deviation of gene expression patterns resulting in phenotypic
1113
+ differentiations that is further analyzed in Section IV-C.
1114
+ Comparing the predictions of molecular production through
1115
+ GRNN computing with the wet-lab experimental data from
1116
+ the literature, we are able to prove that the components of
1117
+ the GRN work similarly to a NN. Fig. 9 shows the pyocyanin
1118
+ accumulation variations of the environment in the eight setups
1119
+ mentioned earlier as results of decision-making of the GRNN.
1120
+ Production of pyocyanin of the WD P. aeruginosa biofilms
1121
+ is high in LP, compared to the HP environments as shown
1122
+ in Fig: 9a. Further, the same pattern can be observed in the
1123
+ lasR∆ biofilms, but with a significantly increased pyocyanin
1124
+ production in LP as shown in Fig. 9b. The phob∆ and
1125
+ LasR∆phob∆ biofilms produce a reduced level of pyocyanin
1126
+ compared to WD and LasR∆ that are shown in Fig. 9c and
1127
+ Fig. 9d respectively. We then present a comparison between
1128
+ GRNN prediction and wet-lab experimental data [48] as ratios
1129
+ of HP to LP in Fig. 10. The differences between pyocyanin
1130
+ production through GRNN in HP and LP condition for all the
1131
+ four setups in Fig. 10 are fairly close to the wet-lab data. In
1132
+ the WD setup, the difference between the GRNN model and
1133
+ wet-lab data only has around 5% difference, while deviations
1134
+ around 10% can be observed in lasR∆ and phoB∆. The most
1135
+ significant deviation around 20% of pyocyanin production
1136
+ difference is visible in lasR∆phoB∆ that is caused by the lack
1137
+ of interaction from other gene expression pathways, as we only
1138
+ extracted a sub-network portion of the GRN. Therefore, these
1139
+ results prove that the extracted GRNN behaves similarly to
1140
+ the GRN dynamics.
1141
+ We further prove that the GRNN computing process per-
1142
+ forms similarly to the GRN by comparing the gene expression
1143
+ behaviors of the model with the wet-lab data [48] as shown in
1144
+ Fig. 11. First, we show the expression dynamics of genes lasI,
1145
+ pqsA and rhlR of WD in LP in Fig. 11a, Fig. 11b and Fig. 11c
1146
+ respectively. All the figures depict that gene expression levels
1147
+ are higher in LP compared to HP until around TS = 100.
1148
+ Beyond that point, relative gene expression levels are close to
1149
+ zero as the the environment run out of nutrients. Moreover, the
1150
+ differences in gene expression levels predicted by the GRNN
1151
+
1152
+ 12
1153
+ 10
1154
+ 8
1155
+ 6
1156
+ 4
1157
+ 2
1158
+ 0
1159
+ 120
1160
+ 100
1161
+ 80
1162
+ 0
1163
+ 10
1164
+ 60
1165
+ 20
1166
+ 30
1167
+ 40
1168
+ 40
1169
+ 50
1170
+ 20
1171
+ 60
1172
+ 70
1173
+ 0100
1174
+ Relative Pyocyanin Accumulation
1175
+ LP WD
1176
+ HP WD
1177
+ 80
1178
+ 60
1179
+ 40
1180
+ 20
1181
+ 0
1182
+ 0
1183
+ 25
1184
+ 50
1185
+ 75
1186
+ 100
1187
+ 125
1188
+ 150
1189
+ Timesteps(Hrs)100
1190
+ Relative Pyocyanin Accumulation
1191
+ 80
1192
+ 60
1193
+ 40
1194
+ 20
1195
+ LP lasR△
1196
+ HP lasR△
1197
+ 0
1198
+ 0
1199
+ 25
1200
+ 50
1201
+ 75
1202
+ 100
1203
+ 125
1204
+ 150
1205
+ Timesteps(Hrs)100
1206
+ LP PhoB△
1207
+ HP PhoB△
1208
+ 80
1209
+ 60
1210
+ 40
1211
+ 20
1212
+ 0
1213
+ 0
1214
+ 25
1215
+ 50
1216
+ 75
1217
+ 100
1218
+ 125
1219
+ 150
1220
+ Timesteps(Hrs)100
1221
+ LP LASR△ PHOB△
1222
+ HP LASRA PHOBA
1223
+ 80
1224
+ 60
1225
+ 40
1226
+ 20
1227
+ 0
1228
+ 0
1229
+ 25
1230
+ 50
1231
+ 75
1232
+ 100
1233
+ 125
1234
+ 150
1235
+ Timesteps(Hrs)100
1236
+ Model
1237
+ 80
1238
+ Real
1239
+ 60
1240
+ 40
1241
+ 20
1242
+ 0
1243
+ WD
1244
+ lasRA
1245
+ PHOBAlasRA PHOBA8
1246
+ 7
1247
+ 6
1248
+ 5
1249
+ 4
1250
+ 3
1251
+ 2
1252
+ 1
1253
+ 0
1254
+ 120
1255
+ 100
1256
+ 80
1257
+ 0
1258
+ 10
1259
+ 60
1260
+ 20
1261
+ 30
1262
+ 40
1263
+ 40
1264
+ 50
1265
+ 20
1266
+ 60
1267
+ 70
1268
+ 08
1269
+ 0
1270
+ 25
1271
+ 50
1272
+ 75
1273
+ 100
1274
+ 125
1275
+ 150
1276
+ 8
1277
+ 7
1278
+ 6
1279
+ 5
1280
+ 4
1281
+ 3
1282
+ 2
1283
+ Relative lasI expression
1284
+ POA1_LP
1285
+ POA1_HP
1286
+ TS
1287
+ (a)
1288
+ 0
1289
+ 25
1290
+ 50
1291
+ 75
1292
+ 100
1293
+ 125
1294
+ 150
1295
+ POA1_LP
1296
+ POA1_HP
1297
+ TS
1298
+ 12
1299
+ 10
1300
+ 8
1301
+ 6
1302
+ 4
1303
+ 2
1304
+ 0
1305
+ Relative pqsA expression
1306
+ (b)
1307
+ 0
1308
+ 25
1309
+ 50
1310
+ 75
1311
+ 100
1312
+ 125
1313
+ 150
1314
+ 6
1315
+ 5
1316
+ 4
1317
+ 3
1318
+ 2
1319
+ 1
1320
+ 0
1321
+ Relative rhlR expression
1322
+ POA1_LP
1323
+ POA1_HP
1324
+ TS
1325
+ (c)
1326
+ 100
1327
+ 80
1328
+ 60
1329
+ 40
1330
+ 20
1331
+ 0
1332
+ Model
1333
+ Wet-lab
1334
+ lasI
1335
+ pqsA
1336
+ rhlR
1337
+ HP to LP gene
1338
+ expression ratio (%)
1339
+ (d)
1340
+ Fig. 11: Expression levels of three different genes to that were used to prove the accuracy of the GRNN: a) lasI, b) pqsA, c)
1341
+ rhlR expression levels in LP and HP and d) comparison between GRNN computing results and wet-lab data.
1342
+ rhlI
1343
+ BqsR
1344
+ pqsABCDE
1345
+ phz2 phz1
1346
+ PhoB
1347
+ hn11
1348
+ pqsR
1349
+ rhlR
1350
+ lasR
1351
+ lasI
1352
+ pqsH
1353
+ hn31
1354
+ hn12
1355
+ hn13
1356
+ hn14
1357
+ hn23
1358
+ hn24
1359
+ hn21
1360
+ hn22
1361
+ AlgR
1362
+ czcR
1363
+ TS
1364
+ Genes
1365
+ pqsABCDE
1366
+ czcR
1367
+ rhlI
1368
+ pqsR
1369
+ lasR
1370
+ lasI
1371
+ lasR
1372
+ pqsH
1373
+ phz2
1374
+ phz1
1375
+ 0 3 6 9 12151821242730333639424548
1376
+ (a)
1377
+ rhlI
1378
+ BqsR
1379
+ pqsABCDE
1380
+ phz2 phz1
1381
+ PhoB
1382
+ hn11
1383
+ pqsR
1384
+ rhlR
1385
+ lasR
1386
+ lasI
1387
+ pqsH
1388
+ hn31
1389
+ hn12
1390
+ hn13
1391
+ hn14
1392
+ hn23
1393
+ hn24
1394
+ hn21
1395
+ hn22
1396
+ AlgR
1397
+ czcR
1398
+ TS
1399
+ 0 3 6 9 12151821242730333639424548
1400
+ (b)
1401
+ rhlI
1402
+ BqsR
1403
+ pqsABCDE
1404
+ phz2 phz1
1405
+ PhoB
1406
+ hn11
1407
+ pqsR
1408
+ rhlR
1409
+ lasR
1410
+ lasI
1411
+ pqsH
1412
+ hn31
1413
+ hn12
1414
+ hn13
1415
+ hn14
1416
+ hn23
1417
+ hn24
1418
+ hn21
1419
+ hn22
1420
+ AlgR
1421
+ czcR
1422
+ TS
1423
+ 0 3 6 9 12151821242730333639424548
1424
+ (c)
1425
+ Fig. 12: Gene expression and associated information flow variations in GRNNs of a) WD b) lasR∆ and c) phoB∆ in LP.
1426
+ rhlI
1427
+ BqsR
1428
+ pqsABCDE
1429
+ phz2 phz1
1430
+ PhoB
1431
+ hn11
1432
+ pqsR
1433
+ rhlR
1434
+ lasR
1435
+ lasI
1436
+ pqsH
1437
+ hn31
1438
+ hn12
1439
+ hn13
1440
+ hn14
1441
+ hn23
1442
+ hn24
1443
+ hn21
1444
+ hn22
1445
+ AlgR
1446
+ czcR
1447
+ TS
1448
+ Genes
1449
+ pqsABCDE
1450
+ czcR
1451
+ rhlI
1452
+ pqsR
1453
+ lasR
1454
+ lasI
1455
+ lasR
1456
+ pqsH
1457
+ phz2
1458
+ phz1
1459
+ 0 3 6 9 12151821242730333639424548
1460
+ (a)
1461
+ TS
1462
+ rhlI
1463
+ BqsR
1464
+ pqsABCDE
1465
+ phz2 phz1
1466
+ PhoB
1467
+ hn11
1468
+ pqsR
1469
+ rhlR
1470
+ lasR
1471
+ lasI
1472
+ pqsH
1473
+ hn31
1474
+ hn12
1475
+ hn13
1476
+ hn14
1477
+ hn23
1478
+ hn24
1479
+ hn21
1480
+ hn22
1481
+ AlgR
1482
+ czcR
1483
+ 0 3 6 9 12151821242730333639424548
1484
+ (b)
1485
+ rhlI
1486
+ BqsR
1487
+ pqsABCDE
1488
+ phz2 phz1
1489
+ PhoB
1490
+ hn11
1491
+ pqsR
1492
+ rhlR
1493
+ lasR
1494
+ lasI
1495
+ pqsH
1496
+ hn31
1497
+ hn12
1498
+ hn13
1499
+ hn14
1500
+ hn23
1501
+ hn24
1502
+ hn21
1503
+ AlgR
1504
+ czcR
1505
+ hn22
1506
+ TS
1507
+ 0 3 6 9 12151821242730333639424548
1508
+ (c)
1509
+ Fig. 13: Gene expression and associated information flow variations in GRNNs of a) WD b) lasR∆ and c) phoB∆ in HP.
1510
+ computing for LP and HP are also compared with the wet-
1511
+ lab data in Fig. 11d. In this comparison, it is evident that
1512
+ the predicted gene expression differences of all three genes
1513
+ are close to the wet-lab data with only around 10% variation.
1514
+ The performance similarities between the GRNN and real cell
1515
+ activities once again prove that the GRN has underpinning
1516
+ NN-like behaviors.
1517
+ C. Analysis of GRNN Computing
1518
+ Fig. 12 and Fig. 13 are used to show the diverse information
1519
+ flow of the GRNN that cause the variations in pyocyanin
1520
+
1521
+ Lasl
1522
+ 8
1523
+ POA1 LP
1524
+ Relative Gene expression
1525
+ ¥7
1526
+ POA1 HP
1527
+ 2
1528
+ 0
1529
+ 25
1530
+ 50
1531
+ 75
1532
+ 100
1533
+ 125
1534
+ 150
1535
+ Timesteps(Hrs)PqsA
1536
+ 12
1537
+ POA1 LP
1538
+ Relative Gene expression
1539
+ POA1 HP
1540
+ 10
1541
+ 8
1542
+ 6
1543
+ 4
1544
+ 2
1545
+ 0
1546
+ 0
1547
+ 25
1548
+ 50
1549
+ 75
1550
+ 100
1551
+ 125
1552
+ 150
1553
+ Timesteps(Hrs)RhiR
1554
+ 6
1555
+ POA1 LP
1556
+ Relative Gene expression
1557
+ ¥5
1558
+ POA1 HP
1559
+ ¥32
1560
+ 1
1561
+ 0
1562
+ 0
1563
+ 25
1564
+ 50
1565
+ 75
1566
+ 100
1567
+ 125
1568
+ 150
1569
+ Timesteps(Hrs)100
1570
+ Model
1571
+ 80
1572
+ Wet-lab
1573
+ 60
1574
+ 40
1575
+ 20
1576
+ 0
1577
+ WD
1578
+ lasRA
1579
+ PHOBApqSABCDE
1580
+ 10
1581
+ CZCR
1582
+ rhll
1583
+ 8
1584
+ pqsR
1585
+ lasR-
1586
+ 6
1587
+ Lasl
1588
+ rhIR -
1589
+ 4
1590
+ pqsH
1591
+ phz2
1592
+ 2
1593
+ phz1
1594
+ 0
1595
+ 912151821242730333639424548
1596
+ TSPqSABCDE
1597
+ 10
1598
+ CZCR
1599
+ hll -
1600
+ 8
1601
+ pqsR -
1602
+ lasR
1603
+ 6
1604
+ Lasl -
1605
+ rhIR -
1606
+ 4
1607
+ pqsH
1608
+ phz2 -
1609
+ 2
1610
+ phz1
1611
+ 0
1612
+ J
1613
+ 9 12151821242730333639424548
1614
+ TSpqSABCDE
1615
+ 5
1616
+ CZCR
1617
+ rhll :
1618
+ pqsR
1619
+ lasR -
1620
+ 3
1621
+ Lasl -
1622
+ mIR -
1623
+ 2
1624
+ pqsH -
1625
+ phz2
1626
+ phzl
1627
+ 0
1628
+ 9 12151821242730333639424548
1629
+ TS8
1630
+ PqSABCDE
1631
+ CZCR
1632
+ rhli
1633
+ 6
1634
+ pqsR -
1635
+ lasR-
1636
+ Lasl -
1637
+ 4
1638
+ rhIR -
1639
+ pqsH -
1640
+ 2
1641
+ phz2
1642
+ phz1
1643
+ 0
1644
+ 9 12151821242730333639424548
1645
+ TSPqSABCDE
1646
+ CZCR
1647
+ 6
1648
+ rhll -
1649
+ 5
1650
+ pqsR -
1651
+ lasR-
1652
+ 4
1653
+ Lasl-
1654
+ 3
1655
+ mIR -
1656
+ pqsH -
1657
+ 2
1658
+ phz2-
1659
+ 1
1660
+ phz1
1661
+ 0
1662
+ 9 12151821242730333639424548
1663
+ TSPqSABCDE
1664
+ CZCR
1665
+ 6
1666
+ rhll -
1667
+ 5
1668
+ pqsR -
1669
+ lasR-
1670
+ 4
1671
+ Lasl-
1672
+ 3
1673
+ mIR -
1674
+ pqsH -
1675
+ 2
1676
+ phz2-
1677
+ 1
1678
+ phz1
1679
+ 0
1680
+ 9 12151821242730333639424548
1681
+ TS9
1682
+ 5
1683
+ 4
1684
+ 3
1685
+ 2
1686
+ 1
1687
+ 0
1688
+ 5
1689
+ 4
1690
+ 3
1691
+ 2
1692
+ 1
1693
+ 0
1694
+ 5
1695
+ 4
1696
+ 3
1697
+ 2
1698
+ 1
1699
+ 0
1700
+ X
1701
+ rhlI
1702
+ BqsR
1703
+ pqsABCDE
1704
+ phz2 phz1
1705
+ PhoB
1706
+ hn11
1707
+ pqsR
1708
+ rhlR
1709
+ lasR
1710
+ lasI
1711
+ pqsH
1712
+ hn31
1713
+ hn12
1714
+ hn13
1715
+ hn14
1716
+ hn23
1717
+ hn24
1718
+ hn21
1719
+ hn22
1720
+ AlgR
1721
+ czcR
1722
+ rhlI
1723
+ BqsR
1724
+ pqsABCDE
1725
+ phz2 phz1
1726
+ PhoB
1727
+ hn11
1728
+ pqsR
1729
+ rhlR
1730
+ lasR
1731
+ lasI
1732
+ pqsH
1733
+ hn31
1734
+ hn12
1735
+ hn13
1736
+ hn14
1737
+ hn23
1738
+ hn24
1739
+ hn21
1740
+ hn22
1741
+ AlgR
1742
+ czcR
1743
+ rhlI
1744
+ BqsR
1745
+ pqsABCDE
1746
+ phz2 phz1
1747
+ PhoB
1748
+ hn11
1749
+ pqsR
1750
+ rhlR
1751
+ lasR
1752
+ lasI
1753
+ pqsH
1754
+ hn31
1755
+ hn12
1756
+ hn13
1757
+ hn14
1758
+ hn23
1759
+ hn24
1760
+ hn21
1761
+ AlgR
1762
+ czcR
1763
+ hn22
1764
+ rhlI
1765
+ BqsR
1766
+ pqsABCDE
1767
+ phz2 phz1
1768
+ PhoB
1769
+ hn11
1770
+ pqsR
1771
+ rhlR
1772
+ lasR
1773
+ lasI
1774
+ pqsH
1775
+ hn31
1776
+ hn12
1777
+ hn13
1778
+ hn14
1779
+ hn23
1780
+ hn24
1781
+ hn21
1782
+ AlgR
1783
+ czcR
1784
+ hn22
1785
+ 20.0
1786
+ 20.0
1787
+ 15.0
1788
+ 10.0
1789
+ 5.0
1790
+ 0.0
1791
+ 15.0
1792
+ 10.0
1793
+ 5.0
1794
+ 0.0
1795
+ 20.0
1796
+ 15.0
1797
+ 10.0
1798
+ 5.0
1799
+ 0.0
1800
+ Y
1801
+ Z
1802
+ TS
1803
+ pqsABCDE
1804
+ czcR
1805
+ rhlI
1806
+ pqsR
1807
+ lasR
1808
+ lasI
1809
+ lasR
1810
+ phz2
1811
+ phz1
1812
+ 0 3 6 9 12 1518 21 24 2730 33 3639 42 45 48
1813
+ pqsH
1814
+ TS
1815
+ pqsABCDE
1816
+ czcR
1817
+ rhlI
1818
+ pqsR
1819
+ lasR
1820
+ lasI
1821
+ lasR
1822
+ phz2
1823
+ phz1
1824
+ 0 3 6 9 12151821 24 273033 3639 42 4548
1825
+ pqsH
1826
+ TS
1827
+ pqsABCDE
1828
+ czcR
1829
+ rhlI
1830
+ pqsR
1831
+ lasR
1832
+ lasI
1833
+ lasR
1834
+ phz2
1835
+ phz1
1836
+ 0 3 6 9 12 1518 21 24 2730 33 3639 42 45 48
1837
+ pqsH
1838
+ TS
1839
+ pqsABCDE
1840
+ czcR
1841
+ rhlI
1842
+ pqsR
1843
+ lasR
1844
+ lasI
1845
+ lasR
1846
+ phz2
1847
+ phz1
1848
+ 0 3 6 9 12 1518 21 24 2730 33 3639 42 45 48
1849
+ pqsH
1850
+ 5
1851
+ 4
1852
+ 3
1853
+ 2
1854
+ 1
1855
+ 0
1856
+ (a)
1857
+ (b)
1858
+ (c)
1859
+ (d)
1860
+ Fig. 14: Illustration of GRNN information flow variations concerning the particular positions of cells within the biofilm. We
1861
+ selected four cells at a) [10, 10, 0] – close to the attached surface, b) [10, 10, 5]- close to the periphery, c) [7, 10, 13] – at
1862
+ the center and d) [3, 15, 0] – close to the attached surface and the periphery of the biofilm.
1863
+ production in LP and HP conditions, respectively. Here, we
1864
+ use gene expression profiles extracted from one bacterial cell
1865
+ located at (7, 9, 2)µm in the Cartesian coordinates that is in
1866
+ the middle region of the biofilm with limited access to the
1867
+ nutrients. First, the gene expression variations of WD, lasR∆,
1868
+ and phob∆ bacterial cells in LP (Fig. 12) and HP (Fig. 13)
1869
+ are shown for TS < 50. Next, the information flow through
1870
+ the GRNN is illustrated above each expression profile at time
1871
+ TS = 20, where the variations will be discussed. In Fig. 12a,
1872
+ impact of the inputs 3OC-LasR and phosphate cause higher
1873
+ expression levels of the nodes hn12 and phoB in the input
1874
+ layer that cascade the nodes phZ1, phZ2, pqsR, lasR, 3OC,
1875
+ rhlR and PqsH in the output layer at TS = 20. Fig. 12b has
1876
+ significantly higher pqsA operon expression levels compared
1877
+ to HP conditions (Fig. 13b), reflecting higher pyocyanin pro-
1878
+ duction that can be seen in Fig. 9b. Nevertheless, the reduced
1879
+ gene expression levels, except pqsA operon, of lasR∆ biofilm
1880
+ in both LP (Fig. 12b) and HP (Fig. 13b) conditions compared
1881
+ to the other setups emphasize that the inputs via inter-cellular
1882
+ MC significantly alter GRNN computing outputs. In contrast,
1883
+ only a smaller gene expression difference can be observed
1884
+ between the two setups of phob∆ in LP (Fig. 12c and phob∆
1885
+ in HP (Fig. 13c) resulting in minimized pyocyanin production
1886
+ differences as shown earlier in Fig. 9c.
1887
+ The GRNN model supports the understanding of the gene
1888
+ expression variations due to factors such as nutrient acces-
1889
+ sibility, where in our case is a single species biofilm. Fig.
1890
+ 14 depicts the variability in the gene expression levels for
1891
+ four different locations of the biofilm at TS = 3. Fig. 14a
1892
+ and Fig. 14b are the gene expression profiles and the signal
1893
+ flow through GRNN pairs of two cells located close to the
1894
+ attached surface and the center of the biofilm. The phosphate
1895
+ accessibility for these two locations is limited. Hence, edges
1896
+ from phob have a higher information flow compared to the
1897
+ other two cells near the periphery of the biofilm, which can be
1898
+ observed in Fig. 14c and Fig. 14d. The microbes in the center
1899
+ (Fig. 14a) and the bottom (Fig. 14b) mainly have access to the
1900
+ inter-cellular MCs, while the other two bacteria have direct
1901
+ access to the extracellular phosphate.
1902
+ This GRNN produced data can further be used to understand
1903
+ the spatial and temporal dynamics of phenotypic clustering
1904
+ of gene expressions which is important in predicting and
1905
+ diagnosis of diseases [49]. Fig. 15 shows the phenotypic
1906
+ variation of WD biofilm in LP. Fig. 15a shows the number of
1907
+ cluster variations over the first 30 TSs when the significant
1908
+ phenotypic changes of the biofilm is evident. At around
1909
+ TS = 9 and TS = 10, the bacterial cells have the most diverse
1910
+ expression patterns due to the highest extracellular nutrient
1911
+ penetration (can be seen in Fig. 8a) to the biofilm and inter-
1912
+ cellular communications. Here we use four TSs (TS = 5 - Fig.
1913
+ 15b, TS = 15 - Fig. 15c, TS = 23 - Fig. 15d and TS = 30 -
1914
+ Fig. 15e) to analyze this phenotypic differentiation. Each pair
1915
+ of Uniform Manifold Approximation and Projection (UMAP)
1916
+ plot and diagram of cell locations of each cluster explain how
1917
+ nutrient accessibility contribute to the phenotypic clustering.
1918
+ Although at TS = 5 (Fig. 15) the average number of clusters
1919
+ is over four, there are only two major clusters that can be
1920
+ observed with higher proportions, as shown in the pie chart.
1921
+ Among the two major clusters (blue and green) of Fig. 15b,
1922
+ the bacteria in the blue cluster can mostly be found in the
1923
+
1924
+ 8
1925
+ PqSABCDE
1926
+ CZCR
1927
+ rhli
1928
+ 6
1929
+ pqsR -
1930
+ lasR-
1931
+ Lasl -
1932
+ 4
1933
+ rhIR -
1934
+ pqsH -
1935
+ 2
1936
+ phz2
1937
+ phz1
1938
+ 0
1939
+ 912151821242730333639424548
1940
+ TS8
1941
+ pqsABCDE
1942
+ CZCR
1943
+ rhll -
1944
+ 6
1945
+ pqsR -
1946
+ lasR -
1947
+ Lasl -
1948
+ 4
1949
+ rhIR -
1950
+ pqsH -
1951
+ 2
1952
+ phz2-
1953
+ phzl
1954
+ -0
1955
+ 0
1956
+ 6
1957
+ 912151821242730333639424548
1958
+ TSpqsABCDE
1959
+ 5
1960
+ CZCR
1961
+ rhll -
1962
+ 4
1963
+ pqsR
1964
+ lasR -
1965
+ 3
1966
+ Lasl -
1967
+ mIR -
1968
+ 2
1969
+ pqsH -
1970
+ phz2
1971
+ phzl
1972
+ 0
1973
+ 9 12151821242730333639424548
1974
+ TS17.5
1975
+ 15.0
1976
+ 12.5
1977
+ 10.0
1978
+ 7.5
1979
+ 5.0
1980
+ 2.5
1981
+ 0.0
1982
+ 20.0 17.5 15.0 12.5 10.0
1983
+ 7.5
1984
+ 5.0
1985
+ 2.5
1986
+ X Label
1987
+ YLabel
1988
+ 0.0PqSABCDE
1989
+ 5
1990
+ CZCR
1991
+ rhll :
1992
+ pqsR
1993
+ lasR -
1994
+ 3
1995
+ Lasl -
1996
+ mIR -
1997
+ 2
1998
+ pqsH -
1999
+ phz2
2000
+ phzl
2001
+ 0
2002
+ 9 12151821242730333639424548
2003
+ TS10
2004
+ 5
2005
+ 15
2006
+ TS = 5
2007
+ TS = 15
2008
+ TS = 25
2009
+ TS = 30
2010
+ 30
2011
+ 20
2012
+ 10
2013
+ 0
2014
+ -10
2015
+ -20
2016
+ -30
2017
+ -20
2018
+ -10
2019
+ 0
2020
+ 10
2021
+ 20
2022
+ 30
2023
+ 30
2024
+ 20
2025
+ 10
2026
+ 0
2027
+ -10
2028
+ -20
2029
+ -30
2030
+ -20
2031
+ -10
2032
+ 0
2033
+ 10
2034
+ 20
2035
+ 30
2036
+ 30
2037
+ 20
2038
+ 10
2039
+ 0
2040
+ -10
2041
+ -20
2042
+ -30
2043
+ -20
2044
+ -10
2045
+ 0
2046
+ 10
2047
+ 20
2048
+ 30
2049
+ 30
2050
+ 20
2051
+ 10
2052
+ 0
2053
+ -10
2054
+ -20
2055
+ -30
2056
+ -20
2057
+ -10
2058
+ 0
2059
+ 10
2060
+ 20
2061
+ 30
2062
+ 20
2063
+ 15
2064
+ 10
2065
+ 5
2066
+ 0
2067
+ 20
2068
+ 15
2069
+ 10
2070
+ 5
2071
+ 0
2072
+ 0
2073
+ 5
2074
+ 10
2075
+ 15
2076
+ 20
2077
+ X
2078
+ Y
2079
+ Z
2080
+ 20
2081
+ 15
2082
+ 10
2083
+ 5
2084
+ 0
2085
+ 20
2086
+ 15
2087
+ 10
2088
+ 5
2089
+ 0
2090
+ 0
2091
+ 5
2092
+ 10
2093
+ 15
2094
+ 20
2095
+ X
2096
+ Y
2097
+ Z
2098
+ 20
2099
+ 15
2100
+ 10
2101
+ 5
2102
+ 0
2103
+ 20
2104
+ 15
2105
+ 10
2106
+ 5
2107
+ 0
2108
+ 0
2109
+ 5
2110
+ 10
2111
+ 15
2112
+ 20
2113
+ X
2114
+ Y
2115
+ Z
2116
+ 20
2117
+ 15
2118
+ 10
2119
+ 5
2120
+ 0
2121
+ 20
2122
+ 15
2123
+ 10
2124
+ 5
2125
+ 0
2126
+ 0
2127
+ 5
2128
+ 10
2129
+ 15
2130
+ 20
2131
+ X
2132
+ Y
2133
+ Z
2134
+ 0
2135
+ 1
2136
+ 2
2137
+ 3
2138
+ 4
2139
+ 5
2140
+ 6
2141
+ 7
2142
+ 8
2143
+ 9
2144
+ 10
2145
+ 11
2146
+ 12
2147
+ 13
2148
+ 14
2149
+ 15
2150
+ 16
2151
+ 17
2152
+ 18
2153
+ 19
2154
+ 20
2155
+ 21
2156
+ 22
2157
+ 23
2158
+ 24
2159
+ 25
2160
+ 26
2161
+ 27
2162
+ 28
2163
+ 29
2164
+ 30
2165
+ 20
2166
+ 16
2167
+ 12
2168
+ 8
2169
+ 4
2170
+ 0
2171
+ No. of cluster
2172
+ (b)
2173
+ (c)
2174
+ (d)
2175
+ (e)
2176
+ (a)
2177
+ UMAP2
2178
+ UMAP2
2179
+ UMAP2
2180
+ UMAP2
2181
+ UMAP1
2182
+ UMAP1
2183
+ UMAP1
2184
+ UMAP 1
2185
+ TS
2186
+ Fig. 15: Illustration of GRNN-driven phenotypic cluster formation behaviors. a) shows the number of clusters (with their
2187
+ proportions via pie charts) for TS < 30, b), c), d) and e) are pairs of the UMAP clustering based on gene expressions of cells
2188
+ and their locations in the biofilm at TS = 5, TS = 15, TS = 23 and TS = 30, respectively.
2189
+ center of the biofilm, while the green cluster cells are close
2190
+ to the periphery. Fig. 15c and Fig. 15d have more clusters
2191
+ as the nutrient accessibility among cells is high. In contrast,
2192
+ due to the lack of nutrients in the biofilm, a limited number
2193
+ of clusters can be seen in the biofilm after around TS = 30,
2194
+ which can be observed Fig. 15e.
2195
+ V. CONCLUSION
2196
+ The past literature has captured the non-linear signal com-
2197
+ puting mechanisms of Bacterial GRNs, suggesting under-
2198
+ pinning NN behaviors. This study extracts a GRNN with
2199
+ summarized multi-omics gene expression regulation mecha-
2200
+ nisms as weights that can further analyze gene expression
2201
+ dynamics, design predictive models, or even conduct in-vivo
2202
+ computational tasks. We used P. aeruginosa single species
2203
+ biofilm as a use case and extracted relevant gene expression
2204
+ data from databases such as RegulomePA and transcriptomic
2205
+ data from databases including GEO. Due to the complexity
2206
+ of the GRN and expression dynamics, we only considered a
2207
+ smaller sub-network of the GRN as a GRNN that is associated
2208
+ with QS, iron and phosphate inputs, and pyocyanin produc-
2209
+ tion. Considering this GRNN, we modeled the computation
2210
+ process that drives cellular decision-making mechanism. As
2211
+ bacteria live in ecosystems in general where intra-cellular
2212
+ communication play a significant role in cellular activities,
2213
+ an in-silico biofilm is modeled using GNN to further analyze
2214
+ the biofilm-wide decision-making. A comparison between
2215
+ the GRNN generated data and the transcriptomic data from
2216
+ the literature exhibits that the GRN behaves similarly to a
2217
+ NN. Hence, this model can explore the causal relationships
2218
+ between gene regulation and cellular activities, predict the
2219
+ future behaviors of the biofilm as well as conduct bio-hybrid
2220
+ computing tasks. Further, in the GRNN extraction phase, we
2221
+ were able to identify the possibility of modeling more network
2222
+ structures with various number of input nodes, hidden layers,
2223
+ and output nodes. In addition, GRN components including
2224
+ auto regulated genes and bidirectional intergenic interactions
2225
+ hints the possibility of extracting more sophisticated types of
2226
+ GRNNs such as Recurrent NN and Residual NN in the future.
2227
+ The idea of extracting sub-networks as NNs can lead to more
2228
+ intriguing intra-cellular distributed computing. Further, this
2229
+ model can be extended to multi-species ecosystems for more
2230
+ advanced predictive models as well as distributed computing
2231
+ architectures combining various NNs.
2232
+ REFERENCES
2233
+ [1] E. Alm, K. Huang, and A. Arkin, “The evolution of two-component
2234
+ systems in bacteria reveals different strategies for niche adaptation,”
2235
+ PLoS Computational Biology, vol. 2, no. 11, p. e143, 2006.
2236
+ [2] D. F. Blair, “HOW BACTERIA SENSE AND SWIM,” Annual Review
2237
+ of Microbiology, vol. 49, pp. 489–520, Oct. 1995.
2238
+ [3] C. Wang, S. Xu, and Z.-P. Liu, “Evaluating gene regulatory net-
2239
+ work activity from dynamic expression data by regularized constraint
2240
+ programming,” IEEE Journal of Biomedical and Health Informatics,
2241
+ vol. 26, no. 11, pp. 5738–5749, 2022.
2242
+
2243
+ 17.5
2244
+ 15.0
2245
+ 12.5
2246
+ 10.0
2247
+ 7.5
2248
+ 5.0
2249
+ 2.5
2250
+ 0.0
2251
+ 17.5 15.0 12.5 10.0
2252
+ 7.5
2253
+ 5.0
2254
+ 2.5
2255
+ X Label
2256
+ YLabelUMAP/DBSCAN
2257
+ 30
2258
+ 20
2259
+ 10
2260
+ 0
2261
+ -10
2262
+ -20
2263
+ -30
2264
+ -20
2265
+ 10
2266
+ 0
2267
+ 10
2268
+ 20
2269
+ 30UMAP/DBSCAN
2270
+ 30
2271
+ 20
2272
+ 10
2273
+ 0
2274
+ -10
2275
+ -20
2276
+ -30
2277
+ -20
2278
+ 10
2279
+ 0
2280
+ 10
2281
+ 20
2282
+ 3012
2283
+ 13
2284
+ 15
2285
+ 16
2286
+ 17
2287
+ 18
2288
+ 19
2289
+ 20
2290
+ 21
2291
+ 22
2292
+ 23
2293
+ 24
2294
+ 25
2295
+ 2
2296
+ 27
2297
+ 29
2298
+ Timesteps(Hrs)Timestep: 5
2299
+ 0
2300
+ 431
2301
+ 5
2302
+ 2Timestep: 15
2303
+ 5
2304
+ 3
2305
+ 2
2306
+ 0Timestep: 23
2307
+ 2
2308
+ 10
2309
+ 3Timestep: 30
2310
+ 1
2311
+ 0
2312
+ 217.5
2313
+ 15.0
2314
+ 12.5
2315
+ 10.0
2316
+ 7.5
2317
+ 5.0
2318
+ 2.5
2319
+ 0.0
2320
+ 17.5 15.0 12.5 10.0
2321
+ 7.5
2322
+ 5.0
2323
+ 2.5
2324
+ X Label
2325
+ YLabelUMAP/DBSCAN
2326
+ 30
2327
+ 20
2328
+ 10
2329
+ 0
2330
+ 10
2331
+ -20
2332
+ -30
2333
+ -20
2334
+ 10
2335
+ 0
2336
+ 10
2337
+ 20
2338
+ 3017.5
2339
+ 15.0
2340
+ 12.5
2341
+ 10.0
2342
+ 7.5
2343
+ 5.0
2344
+ 2.5
2345
+ 0.0
2346
+ 17.515.0
2347
+ 012.510.0
2348
+ 7.5
2349
+ 5.0
2350
+ 2.5
2351
+ X Label
2352
+ Y Label17.5
2353
+ 15.0
2354
+ 12.5
2355
+ 10.0
2356
+ 7.5
2357
+ 5.0
2358
+ 2.5
2359
+ 0.0
2360
+ 17.5 15.0 12.5 10.0
2361
+ 7.5
2362
+ 5.0
2363
+ 2.5
2364
+ X Label
2365
+ Y LabelUMAP/DBSCAN
2366
+ 30
2367
+ 20
2368
+ 10
2369
+ .
2370
+ 0
2371
+ -10
2372
+ -20
2373
+ -30
2374
+ -20
2375
+ 10
2376
+ 0
2377
+ 10
2378
+ 20
2379
+ 3011
2380
+ [4] M. Land, L. Hauser, S.-R. Jun, I. Nookaew, M. R. Leuze, T.-H.
2381
+ Ahn, T. Karpinets, O. Lund, G. Kora, T. Wassenaar, S. Poudel, and
2382
+ D. W. Ussery, “Insights from 20 years of bacterial genome sequencing,”
2383
+ Functional & Integrative Genomics, vol. 15, pp. 141–161, Feb. 2015.
2384
+ [5] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo,
2385
+ and G.-Z. Yang, “Deep learning for health informatics,” IEEE journal
2386
+ of biomedical and health informatics, vol. 21, no. 1, pp. 4–21, 2016.
2387
+ [6] J. VOHRADSKY, “Neural network model of gene expression,” the
2388
+ FASEB journal, vol. 15, no. 3, pp. 846–854, 2001.
2389
+ [7] D. C. Weaver, C. T. Workman, and G. D. Stormo, “Modeling regulatory
2390
+ networks with weight matrices,” in Biocomputing’99, pp. 112–123,
2391
+ World Scientific, 1999.
2392
+ [8] S. Balasubramaniam, S. Somathilaka, S. Sun, A. Ratwatte, and M. Pier-
2393
+ obon, “Realizing molecular machine learning through communications
2394
+ for biological ai: Future directions and challenges,” arXiv preprint
2395
+ arXiv:2212.11910, 2022.
2396
+ [9] B. D. Unluturk, S. Balasubramaniam, and I. F. Akyildiz, “The impact of
2397
+ social behavior on the attenuation and delay of bacterial nanonetworks,”
2398
+ IEEE transactions on nanobioscience, vol. 15, no. 8, pp. 959–969, 2016.
2399
+ [10] T. De Kievit, “Quorum sensing in pseudomonas aeruginosa biofilms,”
2400
+ Environmental microbiology, vol. 11, no. 2, pp. 279–288, 2009.
2401
+ [11] T. Chen, H. L. He, and G. M. Church, “Modeling gene expression with
2402
+ differential equations,” in Biocomputing’99, World Scientific, 1999.
2403
+ [12] I. Shmulevich, E. Dougherty, and W. Zhang, “From boolean to prob-
2404
+ abilistic boolean networks as models of genetic regulatory networks,”
2405
+ Proceedings of the IEEE, vol. 90, no. 11, pp. 1778–1792, 2002.
2406
+ [13] D. Wang, K.-K. Yan, C. Sisu, C. Cheng, J. Rozowsky, W. Meyerson,
2407
+ and M. B. Gerstein, “Loregic: a method to characterize the cooperative
2408
+ logic of regulatory factors,” PLoS computational biology, vol. 11, no. 4,
2409
+ p. e1004132, 2015.
2410
+ [14] M. V. Grosso-Becerra, G. Croda-García, E. Merino, L. Servín-González,
2411
+ R. Mojica-Espinosa, and G. Soberón-Chávez, “Regulation of pseu-
2412
+ domonas aeruginosa virulence factors by two novel rna thermometers,”
2413
+ Proceedings of the National Academy of Sciences, vol. 111, no. 43,
2414
+ pp. 15562–15567, 2014.
2415
+ [15] A.
2416
+ Ishihama,
2417
+ “Prokaryotic
2418
+ genome
2419
+ regulation:
2420
+ a
2421
+ revolutionary
2422
+ paradigm,” Proceedings of the Japan Academy, Series B, vol. 88, no. 9,
2423
+ pp. 485–508, 2012.
2424
+ [16] M. Fletcher, “Bacterial biofilms and biofouling,” Current opinion in
2425
+ biotechnology, vol. 5, no. 3, pp. 302–306, 1994.
2426
+ [17] N. Qureshi, B. A. Annous, T. C. Ezeji, P. Karcher, and I. S. Maddox,
2427
+ “Biofilm reactors for industrial bioconversion processes: employing
2428
+ potential of enhanced reaction rates,” Microbial cell factories, vol. 4,
2429
+ no. 1, pp. 1–21, 2005.
2430
+ [18] C. Kao, S. Chen, and J. Liu, “Development of a biobarrier for the
2431
+ remediation of pce-contaminated aquifer,” Chemosphere, vol. 43, no. 8,
2432
+ pp. 1071–1078, 2001.
2433
+ [19] D. P. Martins, K. Leetanasaksakul, M. T. Barros, A. Thamchaipenet,
2434
+ W. Donnelly, and S. Balasubramaniam, “Molecular communications
2435
+ pulse-based jamming model for bacterial biofilm suppression,” IEEE
2436
+ Transactions on NanoBioscience, vol. 17, no. 4, pp. 533–542, 2018.
2437
+ [20] C. C. Goller and T. Romeo, “Environmental influences on biofilm
2438
+ development,” in Current Topics in Microbiology and Immunology,
2439
+ pp. 37–66, Springer Berlin Heidelberg, 2008.
2440
+ [21] T. Mascher, J. D. Helmann, and G. Unden, “Stimulus perception in bac-
2441
+ terial signal-transducing histidine kinases,” Microbiology and molecular
2442
+ biology reviews, vol. 70, no. 4, pp. 910–938, 2006.
2443
+ [22] D. Passos da Silva, M. C. Schofield, M. R. Parsek, and B. S. Tseng, “An
2444
+ update on the sociomicrobiology of quorum sensing in gram-negative
2445
+ biofilm development,” Pathogens, vol. 6, no. 4, p. 51, 2017.
2446
+ [23] M. Toyofuku, T. Inaba, T. Kiyokawa, N. Obana, Y. Yawata, and N. No-
2447
+ mura, “Environmental factors that shape biofilm formation,” Bioscience,
2448
+ biotechnology, and biochemistry, vol. 80, no. 1, pp. 7–12, 2016.
2449
+ [24] K. P. Rumbaugh and K. Sauer, “Biofilm dispersion,” Nature Reviews
2450
+ Microbiology, vol. 18, pp. 571–586, June 2020.
2451
+ [25] J. A. Driscoll, S. L. Brody, and M. H. Kollef, “The epidemiology,
2452
+ pathogenesis and treatment of pseudomonas aeruginosa infections,”
2453
+ Drugs, vol. 67, no. 3, pp. 351–368, 2007.
2454
+ [26] T. Strateva and I. Mitov, “Contribution of an arsenal of virulence
2455
+ factors to pathogenesis of pseudomonas aeruginosa infections,” Annals
2456
+ of Microbiology, vol. 61, pp. 717–732, May 2011.
2457
+ [27] G. W. Lau, D. J. Hassett, and B. E. Britigan, “Modulation of lung ep-
2458
+ ithelial functions by pseudomonas aeruginosa,” Trends in microbiology,
2459
+ vol. 13, no. 8, pp. 389–397, 2005.
2460
+ [28] E. Pericolini, B. Colombari, G. Ferretti, R. Iseppi, A. Ardizzoni,
2461
+ M. Girardis, A. Sala, S. Peppoloni, and E. Blasi, “Real-time monitoring
2462
+ of pseudomonas aeruginosa biofilm formation on endotracheal tubes in
2463
+ vitro,” BMC Microbiology, vol. 18, Aug. 2018.
2464
+ [29] E. Galán-Vásquez, B. C. Luna-Olivera, M. Ramírez-Ibáñez, and
2465
+ A. Martínez-Antonio, “RegulomePA:a database of transcriptional reg-
2466
+ ulatory interactions in pseudomonas aeruginosa pao1,” Database, 2020.
2467
+ [30] R. Caspi, R. Billington, I. M. Keseler, A. Kothari, M. Krummenacker,
2468
+ P. E. Midford, W. K. Ong, S. Paley, P. Subhraveti, and P. D. Karp, “The
2469
+ MetaCyc database of metabolic pathways and enzymes - a 2019 update,”
2470
+ Nucleic Acids Research, vol. 48, pp. D445–D453, Oct. 2019.
2471
+ [31] G. L. Winsor, E. J. Griffiths, R. Lo, B. K. Dhillon, J. A. Shay, and F. S. L.
2472
+ Brinkman, “Enhanced annotations and features for comparing thousands
2473
+ of pseudomonas genomes in the pseudomonas genome database,” Nu-
2474
+ cleic Acids Research, vol. 44, pp. D646–D653, Nov. 2015.
2475
+ [32] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Toma-
2476
+ shevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko,
2477
+ A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis,
2478
+ and A. Soboleva, “NCBI GEO: archive for functional genomics data
2479
+ sets—update,” Nucleic Acids Research, vol. 41, Nov. 2012.
2480
+ [33] H. D. Kulasekara, I. Ventre, B. R. Kulasekara, A. Lazdunski, A. Filloux,
2481
+ and S. Lory, “A novel two-component system controls the expression of
2482
+ pseudomonas aeruginosa fimbrial cup genes,” Molecular Microbiology,
2483
+ vol. 55, pp. 368–380, Nov. 2004.
2484
+ [34] S. L. N. Kilmury and L. L. Burrows, “The pseudomonas aeruginosa
2485
+ PilSR two-component system regulates both twitching and swimming
2486
+ motilities,” mBio, vol. 9, Sept. 2018.
2487
+ [35] V. Venturi, “Regulation of quorum sensing in pseudomonas,” FEMS
2488
+ microbiology reviews, vol. 30, no. 2, pp. 274–291, 2006.
2489
+ [36] V. I. Francis, E. C. Stevenson, and S. L. Porter, “Two-component systems
2490
+ required for virulence in pseudomonas aeruginosa,” FEMS microbiology
2491
+ letters, vol. 364, no. 11, 2017.
2492
+ [37] M. Sultan, R. Arya, and K. K. Kim, “Roles of two-component systems in
2493
+ pseudomonas aeruginosa virulence,” International Journal of Molecular
2494
+ Sciences, vol. 22, no. 22, p. 12152, 2021.
2495
+ [38] G. Chambonnier, L. Roux, D. Redelberger, F. Fadel, A. Filloux,
2496
+ M. Sivaneson, S. De Bentzmann, and C. Bordi, “The hybrid histidine
2497
+ kinase lads forms a multicomponent signal transduction system with the
2498
+ gacs/gaca two-component system in pseudomonas aeruginosa,” PLoS
2499
+ genetics, vol. 12, no. 5, p. e1006032, 2016.
2500
+ [39] N. N. Kreamer, J. C. Wilks, J. J. Marlow, M. L. Coleman, and D. K.
2501
+ Newman, “Bqsr/bqss constitute a two-component system that senses
2502
+ extracellular fe (ii) in pseudomonas aeruginosa,” Journal of bacteriology,
2503
+ vol. 194, no. 5, pp. 1195–1204, 2012.
2504
+ [40] H. Huang, X. Shao, Y. Xie, T. Wang, Y. Zhang, X. Wang, and X. Deng,
2505
+ “An integrated genomic regulatory network of virulence-related tran-
2506
+ scriptional factors in pseudomonas aeruginosa,” Nature communications,
2507
+ vol. 10, no. 1, pp. 1–13, 2019.
2508
+ [41] A. Akay and H. Hess, “Deep learning: current and emerging applications
2509
+ in medicine and technology,” IEEE journal of biomedical and health
2510
+ informatics, vol. 23, no. 3, pp. 906–920, 2019.
2511
+ [42] J. R. Lamb, H. Patel, T. Montminy, V. E. Wagner, and B. H. Iglewski,
2512
+ “Functionaldomains of the rhlr transcriptional regulator of pseudomonas
2513
+ aeruginosa,” Journal of bacteriology, vol. 185, no. 24, 2003.
2514
+ [43] J. P. Pearson, E. C. Pesci, and B. H. Iglewski, “Roles of pseudomonas
2515
+ aeruginosa las and rhl quorum-sensing systems in control of elastase
2516
+ and rhamnolipid biosynthesis genes,” Journal of bacteriology, vol. 179,
2517
+ no. 18, pp. 5756–5767, 1997.
2518
+ [44] D. S. Wade, M. W. Calfee, E. R. Rocha, E. A. Ling, E. Engstrom,
2519
+ J. P. Coleman, and E. C. Pesci, “Regulation of pseudomonas quinolone
2520
+ signal synthesis in pseudomonas aeruginosa,” Journal of bacteriology,
2521
+ vol. 187, no. 13, pp. 4372–4380, 2005.
2522
+ [45] P. Nadal Jimenez, G. Koch, J. A. Thompson, K. B. Xavier, R. H.
2523
+ Cool, and W. J. Quax, “The multiple signaling systems regulating
2524
+ virulence in pseudomonas aeruginosa,” Microbiology and Molecular
2525
+ Biology Reviews, vol. 76, no. 1, pp. 46–65, 2012.
2526
+ [46] S. S. Somathilaka, D. P. Martins, W. Barton, O. O’Sullivan, P. D. Cotter,
2527
+ and S. Balasubramaniam, “A graph-based molecular communications
2528
+ model analysis of the human gut bacteriome,” IEEE Journal of Biomed-
2529
+ ical and Health Informatics, vol. 26, no. 7, pp. 3567–3577, 2022.
2530
+ [47] P. S. Stewart, “Diffusion in biofilms,” Journal of Bacteriology, vol. 185,
2531
+ no. 5, pp. 1485–1491, 2003.
2532
+ [48] X. Meng, S. D. Ahator, and L.-H. Zhang, “Molecular mechanisms of
2533
+ phosphate stress activation of pseudomonas aeruginosa quorum sensing
2534
+ systems,” MSphere, vol. 5, no. 2, pp. e00119–20, 2020.
2535
+ [49] P. Dutta, S. Saha, and S. Gulati, “Graph-based hub gene selection
2536
+ technique using protein interaction information: Application to sample
2537
+ classification,” IEEE journal of biomedical and health informatics,
2538
+ vol. 23, no. 6, pp. 2670–2676, 2019.
2539
+
CtE2T4oBgHgl3EQf9Ant/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9FRT4oBgHgl3EQfAjeU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9e99dde28bfa1de231742d3de741ee9074513fce4c34f8d8c1ee2a6268ec01
3
+ size 221268
E9E0T4oBgHgl3EQfhAEU/content/tmp_files/2301.02424v1.pdf.txt ADDED
@@ -0,0 +1,1455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
2
+ 1
3
+ Conformal Loss-Controlling Prediction
4
+ Di Wang, Ping Wang, Zhong Ji, Xiaojun Yang, Hongyue Li
5
+ Abstract—Conformal prediction is a learning framework con-
6
+ trolling prediction coverage of prediction sets, which can be
7
+ built on any learning algorithm for point prediction. This work
8
+ proposes a learning framework named conformal loss-controlling
9
+ prediction, which extends conformal prediction to the situation
10
+ where the value of a loss function needs to be controlled.
11
+ Different from existing works about risk-controlling prediction
12
+ sets and conformal risk control with the purpose of controlling
13
+ the expected values of loss functions, the proposed approach
14
+ in this paper focuses on the loss for any test object, which is
15
+ an extension of conformal prediction from miscoverage loss to
16
+ some general loss. The controlling guarantee is proved under the
17
+ assumption of exchangeability of data in finite-sample cases and
18
+ the framework is tested empirically for classification with a class-
19
+ varying loss and statistical postprocessing of numerical weather
20
+ forecasting applications, which are introduced as point-wise
21
+ classification and point-wise regression problems. All theoretical
22
+ analysis and experimental results confirm the effectiveness of our
23
+ loss-controlling approach.
24
+ Index Terms—Conformal prediction, Loss-controlling predic-
25
+ tion, Finite-sample guarantee, Weather forecasting.
26
+ I. INTRODUCTION
27
+ Prediction sets convey uncertainty or confidence information
28
+ for users, which is more preferred than prediction points,
29
+ especially for sensitive applications such as medicine, finance
30
+ and weather forecasting [1] [2] [3]. Conformal prediction
31
+ (CP) is a learning framework providing prediction sets for
32
+ test labels, which guarantees the finite-sample coverage at a
33
+ user-preset level under the assumption of exchangeability of
34
+ data samples [4]. This property of validity has been proved
35
+ both theoretically and empirically in many works and applied
36
+ to many areas [5] [6]. Besides, many researches extend CP
37
+ to more general cases, such as conformal prediction for
38
+ multi-label learning [7] [8], functional data [9] [10], few-shot
39
+ learning [11] and distribution shift [12] [13].
40
+ However, existing CP methods mainly make promise about
41
+ the coverage of prediction sets, which limits its use to other
42
+ broad applications concerning controlling general losses. To
43
+ tackle this issue, two works have been proposed recently.
44
+ [14] employs DeepSets to estimate the expected value or
45
+ This work has been submitted to the IEEE for possible publication.
46
+ Copyright may be transferred without notice, after which this version may
47
+ no longer be accessible.
48
+ This work was supported by the National Natural Science Foundation of
49
+ China under Grant 62106169. (Corresponding author: Hongyue Li)
50
+ Di Wang and Zhong Ji are with School of Electrical and Information Engi-
51
+ neering, Tianjin University, Tianjin 300072, China, and also with Tianjin Key
52
+ Laboratory of Brain-inspired Intelligence Technology, School of Electrical and
53
+ Information Engineering, Tianjin University, Tianjin 300072, China. (email:
54
+ wangdi2015@tju.edu.cn; jizhong@tju.edu.cn;).
55
+ Ping Wang and Hongyue Li are with School of Electrical and In-
56
+ formation Engineering, Tianjin University, Tianjin 300072, China. (email:
57
+ wangps@tju.edu.cn; lihongyue@tju.edu.cn).
58
+ Xiaojun Yang is with Tianjin Meteorological Observatory, Tianjin 300074,
59
+ China. (email: boluo0127@yeah.net)
60
+ the cumulative distribution function of the number of false
61
+ positives, and then use calibration data to control the number
62
+ of false positives of prediction sets. Conformal risk control
63
+ (CRC) [15] extends CP to prediction tasks of controlling
64
+ the expected value of a general loss based on finding the
65
+ optimal parameter for nested prediction sets. The spirit is to
66
+ employ calibration data to obtain the information of the upper
67
+ bound of the expected value of the loss function at hand and
68
+ control the expected value for the test object, whose main idea
69
+ was originally proposed from their pioneer work named risk-
70
+ controlling prediction sets [16].
71
+ This paper extends CP to the situation where the value of a
72
+ general loss function needs to be controlled, which has been
73
+ not considered in the literature to our best knowledge. This
74
+ situation is reasonable and practical since one may only care
75
+ about the loss value for a specific test object, just like the
76
+ coverage guarantee made by CP. Our approach is similar to
77
+ CRC with the main difference being that we focus on finding
78
+ the optimal parameter for nested prediction sets to control the
79
+ loss. Therefore, we also concentrate on inductive conformal
80
+ prediction [17] or split conformal prediction [18] process like
81
+ CRC.
82
+ Recall that inductive conformal prediction makes the cov-
83
+ erage guarantee as follows,
84
+ P
85
+
86
+ Yn+1 ∈ C(n)
87
+ 1−δ(Xn+1)
88
+
89
+ ≥ 1 − δ,
90
+ where δ is the significance level preset by users, C(n)
91
+ 1−δ
92
+ is the set predictor made by CP based on n calibration
93
+ data {(Xi, Yi)}n
94
+ i=1, (Xn+1, Yn+1) is the test feature-response
95
+ pair, and the randomness is from both {(Xi, Yi)}n
96
+ i=1 and
97
+ (Xn+1, Yn+1). By comparison, conformal loss-controlling
98
+ prediction (CLCP), the learning framework proposed in this
99
+ paper, provides the controlling guarantee as follows,
100
+ P
101
+
102
+ L
103
+
104
+ Yn+1, Cλ∗(Xn+1)
105
+
106
+ ≤ α
107
+
108
+ ≥ 1 − δ,
109
+ where L is a loss function satisfying some monotonic con-
110
+ ditions as in [15], α is the preset level of loss, Cλ(·) is the
111
+ prediction set usually constructed by an underlying algorithm
112
+ and a parameter λ. The optimal λ∗ is obtained based on α,
113
+ δ and calibration data. The controlling guarantee needs two
114
+ levels α and δ to be chosen by users, which is similar with
115
+ that in [16], i.e., CLCP guarantees that the prediction loss
116
+ is not greater than α with high probability 1 − δ when δ is
117
+ small such as 0.1. If L is replaced by false positive for multi-
118
+ label classification, the controlling guarantee above is also the
119
+ (α, δ)-FP validity defined in Definition 4.2 in [14].
120
+ We prove the controlling guarantee for distribution-free and
121
+ finite-sample settings with the assumption of exchangeability
122
+ arXiv:2301.02424v1 [cs.LG] 6 Jan 2023
123
+
124
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
125
+ 2
126
+ of data samples. The main idea is that we find the λ∗ to make
127
+ the 1 − δ quantile of the loss values on calibration data not
128
+ greater than α, which is inspired by CRC focusing on making
129
+ the mean of the loss values not greater than α. Furthermore,
130
+ we test our approach in classification with a class-varying loss
131
+ introduced in [16], and postprocessing of numerical weather
132
+ forecasts, which we consider as point-wise classification and
133
+ point-wise regression problems. The experimental results em-
134
+ pirically confirm the theoretical guarantee we prove in this
135
+ paper.
136
+ In summary, the main contributions of this paper are:
137
+ • A learning framework named conformal loss-controlling
138
+ prediction (CLCP) is proposed for controlling the pre-
139
+ diction loss for the test object. The approach is simple
140
+ to implement and can be built on any machine learning
141
+ algorithm for point prediction.
142
+ • The controlling guarantee is proved mathematically for
143
+ finite-sample cases with the exchangeability assumption,
144
+ without any further assumption for data distribution.
145
+ • The controlling guarantee is empirically verified by clas-
146
+ sification with a class-varying loss and weather forecast-
147
+ ing problems, which confirms the effectiveness of CLCP.
148
+ The rest of this paper is organized as follows. Section II
149
+ reviews inductive conformal prediction and conformal risk
150
+ control. Section III introduces conformal loss-controlling pre-
151
+ diction and its theoretical guarantee. Section IV conducts
152
+ experiments to test the proposed method and the conclusions
153
+ are drawn in Section V.
154
+ II. INDUCTIVE CONFORMAL PREDICTION AND
155
+ CONFORMAL RISK CONTROL
156
+ This section reviews inductive conformal prediction and
157
+ conformal risk control. Throughout this paper, {(Xi, Yi)}n+1
158
+ i=1
159
+ denotes n + 1 data drawn exchangeably from PXY
160
+ on
161
+ X × Y, where {(Xi, Yi)}n
162
+ i=1 is the calibration dataset and
163
+ (Xn+1, Yn+1) is the test object-response pair. We use lower-
164
+ case letter (xi, yi) to represent the realization of (Xi, Yi).
165
+ The set-valued function and loss function considered in
166
+ this paper are the same as those in [15] and [16], which we
167
+ formally introduce as follows. Let Cλ : X → Y′ be a set-
168
+ valued function with a parameter λ ∈ R, where Y′ represents
169
+ some space of sets and R is the set of real numbers. Taking
170
+ single-label classification for example, Y′ can be the power
171
+ set of Y. For binary image segmentation, Y′ can be equal to
172
+ Y as the space of all possible results of image segmentation,
173
+ where the sets here stand for all of the pixels of positive class
174
+ for the image.
175
+ We also introduce the nesting property for prediction sets
176
+ and losses as in [16] as follows. For each realization of input
177
+ object x, we assume that Cλ(x) satisfies the following nesting
178
+ property:
179
+ λ1 < λ2 =⇒ Cλ1(x) ⊆ Cλ2(x).
180
+ (1)
181
+ Let L : Y × Y′ → R be a loss function respecting the nesting
182
+ property for each realization of response y:
183
+ C1 ⊆ C2 ⊆ Y′ =⇒ L(y, C2) ≤ L(y, C1) ≤ B,
184
+ (2)
185
+ where B is the upper bound of the loss function.
186
+ A. Inductive Conformal Prediction
187
+ Inductive conformal prediction (ICP) is a computationally
188
+ efficient version of the original conformal prediction approach.
189
+ It starts with any measurable function named nonconformity
190
+ measure A : X × Y → R and obtain n nonconformity scores
191
+ as
192
+ Ai = A(Xi, Yi),
193
+ for i = 1, · · · , n. Then, with the exchangeable assumption and
194
+ a preset δ ∈ (0, 1), one can conclude that
195
+ P
196
+
197
+ A(Xn+1, Yn+1) ≤ Q(n)
198
+ 1−δ
199
+
200
+ ≥ 1 − δ,
201
+ where Q(n)
202
+ 1−δ is the 1 − δ quantile of {Ai}n
203
+ i=1 ∪ {∞} [12].
204
+ Therefore, the prediction set made by ICP is
205
+ C(n)
206
+ 1−δ(Xn+1) = {y : A(Xn+1, y) ≤ Q(n)
207
+ 1−δ},
208
+ which satisfies
209
+ P
210
+
211
+ Yn+1 ∈ C(n)
212
+ 1−δ(Xn+1)
213
+
214
+ ≥ 1 − δ.
215
+ The nonconformity measure A is often defined based on
216
+ a point prediction model ˆf learned from some other training
217
+ samples, each of which is also drawn from PXY .
218
+ Here is an example of constructing prediction sets with CP.
219
+ For a classification problem with K classes, one can first train
220
+ a classifier ˆf : X → [0, 1]K with the ith output being the
221
+ estimation of the probability of the ith class, and calculate the
222
+ nonconformity scores as
223
+ A(x, y) = 1 − ˆfk(x),
224
+ where ˆfk is the kth output of ˆf(x), if y stands for the kth
225
+ class. Therefore, the corresponding prediction set for an input
226
+ object x is
227
+ C(n)
228
+ 1−δ(x) = {k : ˆfk(x) ≥ 1 − Q(n)
229
+ 1−δ},
230
+ which indicates that k ∈ C(n)
231
+ 1−δ(x) if the estimated probability
232
+ of kth class is not less than 1 − Q(n)
233
+ 1−δ.
234
+ B. Conformal Risk Control
235
+ Different from conformal prediction, CRC starts with a set-
236
+ valued function with the nesting property, whose approach is
237
+ inspired by nested conformal prediction [19] and was first
238
+ proposed in the researches about risk-controlling prediction
239
+ sets.
240
+ Assume one has a way of constructing a set-valued function
241
+ Cλ with the nesting property of formula (1). Given a loss
242
+ function L with the nesting property of formula (2), the
243
+ purpose of CRC is to find λ∗ such that
244
+ E
245
+
246
+ L(Yn+1, Cλ∗(Xn+1))
247
+
248
+ ≤ α,
249
+ (3)
250
+ i.e., the expected loss or the risk is not greater than α.
251
+ To do so, CRC first calculates Li as
252
+ Li(λ) = L(Yi, Cλ(Xi)),
253
+ (4)
254
+
255
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
256
+ 3
257
+ with the fact that Li(λ) is a monotone decreasing function of
258
+ λ based on the nesting properties. Then, CRC searches for λ∗
259
+ using the following equation,
260
+ λ∗ = inf
261
+
262
+ λ :
263
+ n
264
+ n + 1
265
+ ˆRn(λ) +
266
+ B
267
+ n + 1 ≤ α
268
+
269
+ ,
270
+ where ˆRn(λ) = (L1(λ) + · · · + Ln(λ))/n is an estimation of
271
+ the risk on calibration data and B is introduced to make the
272
+ estimation not overconfident. Also, to make λ∗ well defined,
273
+ one should assume that ˆRn(λ) is right continuous.
274
+ These two steps of CRC are too simple that one may
275
+ surprise about its theoretical conclusion that with the assump-
276
+ tion of exchangeability of data samples, the prediction set
277
+ Cλ∗(Xn+1) obtained by CRC satisfies formula (3), which has
278
+ been also proved empirically in [15]. CRC extends CP from
279
+ controlling the expected value of miscoverage loss to some
280
+ general loss, which can be applied to the cases where Y is
281
+ beyond real numbers or vectors, such as images, fields and
282
+ even graphs.
283
+ After tackling the theoretical issue, the problem for CRC
284
+ is how to construct Cλ. Here, we also give an example of a
285
+ classification problem with K classes. In fact, with the same
286
+ notations of the example in Section II-A, CRC can construct
287
+ the prediction set as
288
+ Cλ(x) = {k : ˆfk(x) ≥ 1 − λ}.
289
+ Therefore, as long as L satisfies formula (2), such as L is the
290
+ indicator of miscoverage, CRC guarantees to control the risk
291
+ as formula (3).
292
+ III. CONFORMAL LOSS-CONTROLLING PREDICTION AND
293
+ ITS THEORETICAL ANALYSIS
294
+ This section introduces the approach of CLCP and its
295
+ theoretical analysis. CLCP also has two steps like CRC, and
296
+ the main difference between them is that CLCP focuses on
297
+ whether the estimation of the 1 − δ quantile of the losses is
298
+ not greater than α while CRC concentrates on whether the
299
+ mean of the losses not greater than α. The controlling of the
300
+ 1−δ quantile of the losses makes CLCP be able to control the
301
+ value of a general loss by employing the probability inequation
302
+ derived from the exchangeability assumption, which is also
303
+ employed by ICP if the loss is seen as the nonconformity
304
+ score.
305
+ Suppose one has a way of constructing a set-valued function
306
+ Cλ with the nesting property of formula (1), which can be the
307
+ same as that used in CRC. Here, we assume that the parameter
308
+ λ is selected from a discrete set Λ, such as from 0 to 1 with a
309
+ step size 0.01, which avoids us from the assumption of right
310
+ continuous for the loss function in theoretical analysis, and
311
+ is also reasonable since we actually search for λ∗ with some
312
+ step size in practice [15] [16]. Besides, the latest paper about
313
+ risk-controlling prediction also makes this discrete assumption
314
+ for general cases [20]. After determining Cλ(·) and Λ, CLCP
315
+ first calculates Li(λ) on calibration data as formula (4). Then,
316
+ for any preset α ∈ R and δ ∈ (0, 1), CLCP searches for λ∗
317
+ such that
318
+ λ∗ = min
319
+
320
+ λ ∈ Λ : Q(n)
321
+ 1−δ(λ) ≤ α
322
+
323
+ ,
324
+ (5)
325
+ with Q(n)
326
+ 1−δ(λ) being the 1 − δ quantile of {Li(λ)}n
327
+ i=1 ∪ {B}.
328
+ The approach of CLCP is summarised in Algorithm 1, which
329
+ is easy to implement.
330
+ Algorithm 1 Conformal Loss-Controlling Prediction
331
+ Input:
332
+ Calibration dataset {(xi, yi)}n
333
+ i=1, test input object xn+1,
334
+ the set predictor Cλ satisfies formula (1), the loss function
335
+ L satisfies formula (2), preset α ∈ R and δ ∈ (0, 1).
336
+ Output:
337
+ Predictive set for yn+1.
338
+ 1: Based on formula (4), calculate {Li(λ)}n
339
+ i=1.
340
+ 2: Search for λ∗ satisfying formula (5).
341
+ 3: return Cλ∗(xn+1)
342
+ Next, we introduce the definition of (α, δ)-loss-controlling
343
+ set predictors and then prove our theoretical conclusion about
344
+ CLCP.
345
+ Definition 1. Given a loss function L : Y × Y′ → R and a
346
+ random sample (X, Y ) ∈ X ×Y, a random set-valued function
347
+ C whose realization is in the space of functions X → Y′ is a
348
+ (α, δ)-loss-controlling set predictor if it satisfies that
349
+ P
350
+
351
+ L
352
+
353
+ Y, C(X)
354
+
355
+ ≤ α
356
+
357
+ ≥ 1 − δ,
358
+ where the randomness is both from C and (X, Y ).
359
+ After all these preparations, we can prove in Theorem 1
360
+ that Cλ∗ constructed by CLCP is a (α, δ)-loss-controlling set
361
+ predictor.
362
+ Theorem 1. Suppose {(Xi, Yi)}n+1
363
+ i=1 are n + 1 data drawn
364
+ exchangeably from PXY on X × Y, Cλ : X → Y′ is a set-
365
+ valued function satisfying formula (1) with the parameter λ
366
+ taking values from a discrete set Λ ⊂ R , L : Y × Y′ → R
367
+ is a loss function satisfying formula (2) and Li(λ) is defined
368
+ as formula (4). For any preset α ∈ R, if L also satisfies the
369
+ following conditions,
370
+ min
371
+ λ max
372
+ i
373
+ Li(λ) < α,
374
+ max
375
+ λ
376
+ min
377
+ i
378
+ Li(λ) > α,
379
+ (6)
380
+ then for any δ ∈ (0, 1), we have
381
+ P
382
+
383
+ L
384
+
385
+ Yn+1, Cλ∗(Xn+1)
386
+
387
+ ≤ α
388
+
389
+ ≥ 1 − δ,
390
+ (7)
391
+ where λ∗ is defined as formula (5).
392
+ Proof. Let Q(n+1)
393
+ 1−δ (λ) be the 1 − δ quantile of {Li(λ)}n+1
394
+ i=1 ,
395
+ and define ˜λ as
396
+ ˜λ = min
397
+
398
+ λ ∈ Λ : Q(n+1)
399
+ 1−δ (λ) ≤ α
400
+
401
+ .
402
+
403
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
404
+ 4
405
+ Similarly, let Q(n)
406
+ 1−δ(λ) be the 1 − δ quantile of {Li(λ)}n
407
+ i=1 ∪
408
+ {B}, and we have
409
+ λ∗ = min
410
+
411
+ λ ∈ Λ : Q(n)
412
+ 1−δ(λ) ≤ α
413
+
414
+ .
415
+ Since B is the upper bound of Ln+1(λ), by definition, we
416
+ have
417
+ ˜λ ≤ λ∗,
418
+ and the conditions introduced in formula (6) is to make ˜λ and
419
+ ˆλ well defined. This leads to
420
+ Ln+1(λ∗) ≤ Ln+1(˜λ),
421
+ (8)
422
+ as Cλ and L satisfy the nesting properties of formula (1) and
423
+ (2).
424
+ Since ˜λ is dependent on the whole dataset {(Xi, Yi)}n+1
425
+ i=1 ,
426
+ {Li(˜λ)}n+1
427
+ i=1 are exchangeable variables, which leads to
428
+ P
429
+
430
+ Ln+1(˜λ) ≤ Q(n+1)
431
+ 1−δ (˜λ)
432
+
433
+ ≥ 1 − δ,
434
+ (9)
435
+ as Q(n+1)
436
+ 1−δ (˜λ) is just the corresponding 1−δ quantile (See the
437
+ proof of Lemma 1 in [12]).
438
+ Combining the definition of ˜λ, formula (8) and (9), we have
439
+ P
440
+
441
+ Ln+1(λ∗) ≤ α
442
+
443
+ ≥ 1 − δ,
444
+ which completes the proof.
445
+ At the end of this section, we show that CP can be seen
446
+ as a special case of CLCP from the following viewpoint.
447
+ Suppose Cλ is constructed by a nonconformity score A, which
448
+ is defined as
449
+ Cλ(x) = {y : A(x, y) ≤ λ},
450
+ and L is the miscoverage loss such that
451
+ Li(λ) = L(yi, Cλ(xi)) = I{yi /∈ Cλ(xi)},
452
+ where I is the indicator function. In this case, Q(n)
453
+ 1−δ(λ) can
454
+ only be 0 or 1 as the loss can only be these two numbers.
455
+ Besides, only α ∈ [0, 1) is meaningful, which means that
456
+ one wants to control the miscoverage. For CLCP, let Λ be
457
+ an arithmetic sequence whose common difference, minimum
458
+ and maximum are ∆, λmin and λmax respectively and set
459
+ α = 0. By definition, λ∗ can be written as
460
+ λ∗ = min
461
+
462
+ λ ∈ Λ :
463
+ 1
464
+ n + 1
465
+ n
466
+
467
+ i=1
468
+ I{ai ≤ λ} ≥ 1 − δ
469
+
470
+ = min
471
+
472
+ λ ∈ Λ : 1
473
+ n
474
+ n
475
+
476
+ i=1
477
+ I{ai ≤ λ} ≥ ⌈(1 − δ)(n + 1)⌉
478
+ n
479
+
480
+ ,
481
+ where ai = A(xi, yi) is the nonconformity score of the ith
482
+ calibration data for CP. In comparison, referring to [15], the
483
+ optimal ˆλ for CP is
484
+ ˆλ = inf
485
+
486
+ λ ∈ R : 1
487
+ n
488
+ n
489
+
490
+ i=1
491
+ I{ai ≤ λ} ≥ ⌈(1 − δ)(n + 1)⌉
492
+ n
493
+
494
+ .
495
+ Therefore, if λmin < ai < λmax for each i, we have
496
+ |λ∗ − ˆλ| ≤ ∆,
497
+ which implies that the prediction sets of CP and CLCP are
498
+ nearly the same if ∆ is small enough. In summary, if Cλ
499
+ and L have special forms and Λ includes the upper and lower
500
+ bounds of nonconformity scores with ∆ being small enough
501
+ to be ignored, CP can be seen as a special case of CLCP.
502
+ IV. EXPERIMENTS
503
+ This section conducts the experiments to empirically test the
504
+ approach of CLCP. First, we built CLCP for the classification
505
+ problem with a class-varying loss introduced in [16]. Then,
506
+ we focus on two types of weather forecasting applications,
507
+ which can be seen as point-wise classification and point-
508
+ wise regression problems respectively. All experiments were
509
+ coded in Python [21]. The statistical learning methods used in
510
+ Section IV-A were implemented using Scikit-learn [22] and
511
+ the deep learning methods used in Section IV-B and Section
512
+ IV-C were implemented with Pytorch [23].
513
+ A. CLCP for classification with a class-varying loss
514
+ We collected 20 binary or multiclass classification datasets
515
+ from UCI repositories [24] whose information is summarized
516
+ in Table I. The problem is to make the prediction sets of labels
517
+ controlling the following loss
518
+ L(y, C) = LyI{y /∈ C},
519
+ where Ly is the loss for y being not in the prediction set.
520
+ The loss for each label is generated uniformly on (0, 1) like
521
+ [16]. Support vector machine (SVM) [25], neural network
522
+ (NN) [26] and random forests (RF) [27] were employed as
523
+ the underlying algorithms separately to construct prediction
524
+ sets based on CLCP. The prediction set Cλ is constructed as
525
+ Cλ(x) = {k : ˆfk(x) ≥ 1 − λ},
526
+ where ˆfk is the estimated probability of the observation being
527
+ kth class by the corresponding underlying algorithm. For each
528
+ dataset, we used 20% of the data for testing and 80% and 20%
529
+ of the remaining data for training and calibration respectively.
530
+ Based on the training data, we selected the meta-parameters
531
+ with three-fold cross-validation and used the optimal meta-
532
+ parameters to train the classifiers. The regularization parameter
533
+ of SVM was selected from {0.001, 0.01, 0.1, 1, 10, 100}, and
534
+ the learning rate and the epochs of NN were selected from
535
+ {0.001, 0.0001} and {200, 500, 1000}. The number of trees
536
+ of RF were selected from {100, 300, 500} and the partition
537
+ criterion was either gini or entropy. After training, we used the
538
+ trained classifiers and the calibration data to search for λ∗ with
539
+ Algorithm 1 and construct the final set predictors. All of the
540
+ features were normalized to [0, 1] by min–max normalization
541
+ and for each dataset, the experiments were conducted 10 times
542
+ and the average results were recorded.
543
+ The bar plots in Fig. 1 and Fig. 2 show the experimental
544
+ results for 20 public datasets with δ ∈ {0.05, 0.1, 0.15, 0.2}
545
+ and α ∈ {0.1, 0.2}. The results in Fig. 1 concern about the
546
+
547
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
548
+ 5
549
+ TABLE I
550
+ DATASETS FROM UCI REPOSITORIES
551
+ Dataset
552
+ Examples
553
+ Dimensionality
554
+ Classes
555
+ bc-wisc-diag
556
+ 569
557
+ 30
558
+ 2
559
+ car
560
+ 1728
561
+ 6
562
+ 4
563
+ chess-kr-kp
564
+ 3196
565
+ 36
566
+ 2
567
+ contrac
568
+ 1473
569
+ 9
570
+ 3
571
+ credit-a
572
+ 690
573
+ 15
574
+ 2
575
+ credit-g
576
+ 1000
577
+ 20
578
+ 2
579
+ ctg-10classes
580
+ 2126
581
+ 21
582
+ 10
583
+ ctg-3classes
584
+ 2126
585
+ 21
586
+ 3
587
+ haberman
588
+ 306
589
+ 3
590
+ 2
591
+ optical
592
+ 5620
593
+ 62
594
+ 10
595
+ phishing-web
596
+ 11055
597
+ 30
598
+ 2
599
+ st-image
600
+ 2310
601
+ 18
602
+ 7
603
+ st-landsat
604
+ 6435
605
+ 36
606
+ 6
607
+ tic-tac-toe
608
+ 958
609
+ 9
610
+ 2
611
+ wall-following
612
+ 5456
613
+ 24
614
+ 4
615
+ waveform
616
+ 5000
617
+ 21
618
+ 3
619
+ waveform-noise
620
+ 5000
621
+ 40
622
+ 3
623
+ wilt
624
+ 4839
625
+ 5
626
+ 2
627
+ wine-quality-red
628
+ 1599
629
+ 11
630
+ 6
631
+ wine-quality-white
632
+ 4898
633
+ 11
634
+ 7
635
+ frequency of the prediction losses being more than α on test
636
+ set, which is the estimated probability of
637
+ P
638
+
639
+ L
640
+
641
+ Yn+1, Cλ∗(Xn+1)
642
+
643
+ > α
644
+
645
+ ,
646
+ which should be near or lower than δ empirically due to
647
+ formula (7). The bar plots of Fig. 1 demonstrate that the
648
+ frequency of the prediction losses is near or below δ, which
649
+ verifies the conclusion of Theorem 1.
650
+ The bar plots of Fig. 2 show the average sizes of prediction
651
+ sets for different δ, describing the informational efficiency of
652
+ the prediction sets. Changing δ can effectively change the
653
+ average size of prediction sets and changing α may slightly
654
+ change average size (such as the results for wine-quality-red).
655
+ Although many prediction sets are meaningful with average
656
+ sizes being near 1, the prediction sets for the dataset contrac
657
+ may be not usefull, since no matter how to change δ and α,
658
+ the average sizes of the prediction sets are all near or above
659
+ 2, whereas the number of classes of contrac is 3. Thus, how
660
+ to construct efficient prediction sets in the learning framework
661
+ of CLCP is worth exploring for further researches.
662
+ Combining Fig. 1 and Fig. 2, we observe that different
663
+ classifiers can perform differently for different datasets, which
664
+ indicates that the underlying algorithm affects the performance
665
+ and the model selection approach is necessary for CLCP.
666
+ B. CLCP for high-impact weather forecasting
667
+ The remaining experiments apply CLCP to weather fore-
668
+ casting problems. Here we concentrate on postprocessing of
669
+ the forecasts made by numerical weather prediction (NWP)
670
+ models [28] [29]. NWP models use equations of atmospheric
671
+ dynamics and estimations of current weather conditions to do
672
+ weather forecasting, which is the mainstream weather fore-
673
+ casting technique nowadays especially for forecasting beyond
674
+ 12 hours. Many errors affect the performance of NWP models,
675
+ such as the estimation errors of initial conditions and the
676
+ approximation errors of NWP models, leading to the research
677
+ topic about postprocessing the forecasts of NWP models. Most
678
+ postprocessing methods are built on some learning process,
679
+ which takes the forecasts of NWP models as inputs and the
680
+ observations of weather elements or events as outputs.
681
+ In this paper, we use CLCP to postprocess the ensemble
682
+ forecasts with the control forecast and 50 perturbed forecasts
683
+ issued by the NWP model from European Centre for Medium-
684
+ Range Weather Forecasts (ECMWF) [30], which are obtained
685
+ from the THORPEX Interactive Grand Global Ensemble
686
+ (TIGGE) dataset [31]. We focus on 2-m maximum temperature
687
+ and minimum temperature between the forecast lead times
688
+ of 12nd hour and 36th hour with the forecasts initialized at
689
+ 0000 UTC. The forecast fields are grided with the resolution
690
+ of 0.5◦ × 0.5◦ and the corresponding label fields with the
691
+ same resolution are extracted from the ERA5 reanalysis data
692
+ [32]. The area ranges from 109◦E to 122◦E in longitude and
693
+ from 29◦N to 42◦N in latitude, covering the main parts of
694
+ North China, East China and Central China, whose grid size
695
+ is 27 × 27. The ECMWF forecast data and ERA5 reanalysis
696
+ data are collected from 2007 to 2020 (14 years).
697
+ We first consider high-impact weather forecasting, which
698
+ is to forecast whether a high-impact weather exists for each
699
+ grid and can be seen as a point-wise classification problem or
700
+ image segmentation problem for computer vision. The high-
701
+ impact weather we consider is whether the 2-m maximum
702
+ temperature is above 35 °C or the 2-m minimum temperature
703
+ is below −15 °C for each grid. These two cases are treated
704
+ as high temperature weather or low temperature weather in
705
+ China, which make meteorological observatories issue high
706
+ temperature warning or low temperature warning respectively.
707
+ The prediction sets and the loss function used for high-
708
+ impact weather forecasting are the same as those for image
709
+ segmentation in [15]. Taking the ensemble forecast fields of
710
+ the NWP model as input x, the corresponding label y is a set
711
+ of grids having high-impact weather, which can be seen as
712
+ a segmentation problem for high-impact weather. Therefore,
713
+ we first train a segmentation neural network f(x), where
714
+ f(p,q)(x) is the estimated probability of the grid (p, q) having
715
+ high-impact weather. Then the set-valued function Cλ can be
716
+ constructed as
717
+ Cλ(x) = {(p, q) : f(p,q)(x) ≥ 1 − λ},
718
+ (10)
719
+ and the loss function is
720
+ L(y, C) = 1 − |y ∩ C|
721
+ |y|
722
+ ,
723
+ (11)
724
+ which measures the ratio of the prediction sets failing to do the
725
+ warning. We use CLCP with the prediction set and the loss
726
+ function above to do high temperature and low temperature
727
+ forecasting respectively.
728
+ 1) Dataset for high temperature forecasting: The reanalysis
729
+ fields of 2-m maximum temperature were collected from
730
+ ERA5 and the label fields were calculated based on weather
731
+ the 2-m maximum temperature is above 35 °C. To make the
732
+ loss function take finite values, we only collected the data
733
+ whose label fields have at least one high temperature grid
734
+ to do this empirical study, which resulted in 1200 samples
735
+ in total, i.e., 1200 ensemble forecasts from the NWP model
736
+ of ECMWF and corresponding label fields calculated from
737
+
738
+ THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
739
+ 6
740
+ Fig. 1. Bar plots of the frequencies of the prediction losses being more than α vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for classification with a class-varying
741
+ loss. The first row corresponds to α = 0.1 and the second row corresponds to α = 0.2. Different columns represent different classifiers. All bars are near or
742
+ below the preset δ, which confirms the controlling guarantee of CLCP empirically.
743
+ Fig. 2. Bar plots of the average sizes of prediction sets vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for classification with a class-varying loss. The first row
744
+ corresponds to α = 0.1 and the second row corresponds to α = 0.2. Different columns represent different classifiers. The plots demonstrate the information
745
+ in prediction sets. In general, large δ leads to small average size and different classifiers have different informational efficiency.
746
+ ERA5. We name this dataset as HighTemp.
747
+ 2) Dataset for low temperature forecasting: The dataset
748
+ for testing CLCP for low temperature weather forecasting
749
+ was constructed in a similar way. The reanalysis fields of
750
+ 2-m minimum temperature were collected from ERA5 and
751
+ the label fields were calculated based on weather the 2-m
752
+ minimum temperature is below −15 °C. We only collected
753
+ the data whose label fields have at least one low temperature
754
+ grid to do this empirical study, which resulted in 1233 samples
755
+ in total. We name this dataset as LowTemp.
756
+ For each dataset, the same process was used to conduct the
757
+ experiment as Section IV-A , i.e., all forecasts from the NWP
758
+ model were normalized to [0, 1] by min–max normalization,
759
+ and we used 20% of the data for testing and 80% and 20%
760
+ of the remaining data for training and calibration respectively.
761
+ We employed two fully convolutional neural networks [33]
762
+ for binary image segmentation as our underlying algorithms.
763
+ One was U-Net [34] with the same structure as that in [35],
764
+ whose numbers of hidden feature maps were all set to 32. The
765
+ other was the naive deep neural network (nDNN) with the
766
+ same encoder-decoder structure as the U-Net without skip-
767
+ connections, i.e., the U-Net removing skip-connections. We
768
+
769
+ α = 0.1 I Classifier = SVM
770
+ α = 0.1 I Classifier = NN
771
+ α = 0.1 Classifier = RF
772
+ 0.30
773
+ 0.25
774
+ 0.20
775
+ Dataset
776
+ bc-wisc-diag
777
+ car
778
+ chess-kr-kp
779
+ contrac
780
+ credit-a
781
+ 0.05
782
+ credit-g
783
+ ctg-10classes
784
+ ctg-3classes
785
+ 0.00
786
+ haberman
787
+ α = 0.2 I Classifier = SVM
788
+ α = 0.2 I Classifier = NN
789
+ α = 0.2 I Classifier = RF
790
+ optical
791
+ 0.30
792
+ phishing-web
793
+ st-image
794
+ st-landsat
795
+ 0.25
796
+ tic-tac-toe
797
+ α
798
+ wall-following
799
+ waveform
800
+ waveform-noise
801
+ wilt
802
+ wine-quality-red
803
+ wine-quality-white
804
+ 0.05
805
+ 0.00
806
+ 0.15
807
+ 0.15
808
+ 0.2
809
+ 0.1
810
+ 0.15
811
+ 0.05
812
+ 0.1
813
+ 0.05
814
+ 0.2
815
+ 0.05
816
+ 0.1
817
+ 0.2
818
+ 6
819
+ 6
820
+ 6α = 0.1 I Classifier = SVM
821
+ α = 0.1 I Classifier = NN
822
+ α = 0.1 I Classifier = RF
823
+ 3.0
824
+ 2.5
825
+ Dataset
826
+ 1.5
827
+ bc-wisc-diag
828
+ car
829
+ chess-kr-kp
830
+ 1.0
831
+ contrac
832
+ credit-a
833
+ 0.5
834
+ credit-g
835
+ ctg-10classes
836
+ ctg-3classes
837
+ 0.0
838
+ haberman
839
+ α = 0.2 I Classifier = SVM
840
+ α = 0.2 I Classifier = NN
841
+ α = 0.2 I Classifier = RF
842
+ optical
843
+ phishing-web
844
+ 3.0
845
+ st-image
846
+ st-landsat
847
+ tic-tac-toe
848
+ 2.5
849
+ wall-following
850
+ waveform
851
+ 2.0
852
+ waveform-noise
853
+ Average s
854
+ wilt
855
+ wine-quality-red
856
+ 1.5
857
+ wine-quality-white
858
+ 1.0
859
+ 0.5
860
+ 0.0
861
+ 0.05
862
+ 0.1
863
+ 0.15
864
+ 0.2
865
+ 0.05
866
+ 0.1
867
+ 0.15
868
+ 0.2
869
+ 0.05
870
+ 0.1
871
+ 0.15
872
+ 0.2
873
+ 6
874
+ 6
875
+ 6THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
876
+ 7
877
+ Fig. 3. Bar plots of the frequencies of the prediction losses being more than α vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for high-impact weather forecasting.
878
+ The first row corresponds to HighTemp and the second row corresponds to LowTemp. Different columns represent different α. All bars are near or below
879
+ the preset δ, which confirms the controlling guarantee of CLCP empirically.
880
+ Fig. 4.
881
+ Boxen plots of the prediction losses vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for high-impact weather forecasting. The first row corresponds to
882
+ HighTemp and the second row corresponds to LowTemp. Different columns represent different α. The loss distributions are controlled by α and δ properly
883
+ to obtain the empirical validity in Fig. 3.
884
+ use these two neural networks to show that the designation of
885
+ the underlying algorithm is necessary for better performance,
886
+ as U-Net fuses multi-scale features and nDNN does not. The
887
+ data for training U-Net and DNN were further partitioned
888
+ to the validation part (10%) for model selection and proper
889
+ training part (90%) for updating the parameters. Adam op-
890
+ timization [36] was used for training. The learning rate was
891
+ set to 0.0001 and the number of epochs was set to 50. After
892
+ training 50 epochs, the model with lowest binary cross entropy
893
+ on validation data was used for formula (10) to construct
894
+ prediction sets, where λ is search from 1 to 0 with step size
895
+ 0.01. The experiments of using CLCP for the loss function
896
+ as formula (11) were conducted 10 times and the prediction
897
+ results on test set are shown in Fig. 3, Fig. 4 and Fig. 5.
898
+ Fig. 3 also shows the bar plots of the frequencies of the
899
+ prediction losses being more than α for δ = 0.05, 0.1, 0.15
900
+ and 0.2. Four column stands for the cases where α
901
+ =
902
+ 0.05, 0.1, 0.15 and 0.2 respectively. It can be seen that for
903
+ the two datasets HighTemp and LowTemp, all bars are near
904
+ or below the preset δ, which verifies formula (7) empirically.
905
+ Fig. 4 further shows the distributions of the losses for different
906
+ δ and different α using boxen plots, which contain more
907
+ information than box plots by drawing narrow boxes for tails.
908
+ It can be seen that larger α and δ lead to larger losses, which
909
+ is reasonable since large α and δ relax the constraint on
910
+ prediction losses. We measure the informational efficiency of
911
+ the prediction set Cλ∗(x) using its normalized size defined
912
+ as |Cλ∗(x)|/PQ, where P and Q are the numbers of the
913
+ vertical and the horizontal grids respectively. The distributions
914
+ of normalized sizes in Fig. 5 show that U-Net is more
915
+ informationally efficient than nDNN, which indicates that
916
+ designation of the underlying algorithm is important for CLCP.
917
+ Different α and δ lead to different normalized sizes, implying
918
+ the trade-off among the preset loss bound α, confidence level
919
+ 1 − δ and informational efficiency of the prediction sets.
920
+ By choosing α and δ properly, the prediction sets of CLCP
921
+
922
+ Dataset = HighTemp | α = 0.05
923
+ Dataset = HighTemp | α = 0.15
924
+ Dataset = HighTemp I α = 0.2
925
+ Dataset = HighTemp I α = 0.1
926
+ 0.30
927
+ 0.25
928
+ 0.05
929
+ 0.00
930
+ Model
931
+ Dataset = LowTemp I α = 0.05
932
+ Dataset = LowTemp I α = 0.1
933
+ Dataset = LowTemp I α = 0.15
934
+ Dataset = LowTemp I α = 0.2
935
+ nDNN
936
+ 0.30
937
+ U-Net
938
+ 0.25
939
+ 0.05
940
+ 0.00
941
+ 0.05
942
+ 0.1
943
+ 0.15
944
+ 0.2
945
+ 0.05
946
+ 0.1
947
+ 0.15
948
+ 0.2
949
+ 0.05
950
+ 0.1
951
+ 0.15
952
+ 0.05
953
+ 0.1
954
+ 0.15
955
+ 0.2
956
+ 0.2
957
+ 6
958
+ 6
959
+ 6Dataset = HighTemp I α = 0.05
960
+ Dataset = HighTemp I α = 0.1
961
+ Dataset = HighTemp I α = 0.15
962
+ Dataset = HighTemp I α = 0.2
963
+ 1.0
964
+ 0.8
965
+ 0.6
966
+ Loss
967
+ 0.4
968
+ 0.2
969
+ 0.0
970
+ Model
971
+ Dataset = LowTemp I α = 0.05
972
+ Dataset = LowTemp I α = 0.1
973
+ Dataset = LowTemp I α = 0.15
974
+ Dataset = LowTemp I α = 0.2
975
+ nDNN
976
+ 1.0
977
+ U-Net
978
+ 0.8
979
+ 0.6
980
+ Loss
981
+ 0.4
982
+ 0.2
983
+ 0.0
984
+ 0.05
985
+ 0.1
986
+ 0.15
987
+ 0.2
988
+ 0.05
989
+ 0.1
990
+ 0.15
991
+ 0.2
992
+ 0.05
993
+ 0.1
994
+ 0.15
995
+ 0.2
996
+ 0.05
997
+ 0.1
998
+ 0.15
999
+ 0.2
1000
+ 6
1001
+ 6
1002
+ 6THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
1003
+ 8
1004
+ Fig. 5. Boxen plots for the distributions of normalized sizes of prediction sets vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for high-impact weather forecasting..
1005
+ The first row corresponds to HighTemp and the second row corresponds to LowTemp. Different columns represent different α. U-Net performs better than
1006
+ nDNN, which indicates the importance of careful designation of the underlying algorithm.
1007
+ can have reasonable sizes. Also, we can see that forecasting
1008
+ low temperature is somehow easier than high temperature
1009
+ with the fact that for the same α and δ, the normalized
1010
+ sizes of forecasting low temperature are distributed lower
1011
+ than the ones of forecasting high temperature, indicating the
1012
+ need of designation of the underlying algorithms to improve
1013
+ performance for forecasting high temperature.
1014
+ C. CLCP for maximum temperature and minimum tempera-
1015
+ ture forecasting
1016
+ This section focuses on using CLCP to forecast the 2-m
1017
+ maximum temperature or minimum temperature value for each
1018
+ grid, which is a point-wise regression problem or image-to-
1019
+ image regression problem. To construct the prediction sets,
1020
+ we follow the procedure proposed in [37] and train the neural
1021
+ network with 3 output channels jointly predicting the point-
1022
+ wise 0.05, 0.5 and 0.95 quantiles of the fields using quantile
1023
+ regression [38] [37], which are denoted by f 0.05(x), f 0.5(x)
1024
+ and f 0.95(x). Then the prediction set Cλ(x) is equal to
1025
+
1026
+ y : y(p,q) ∈ [f 0.5
1027
+ (p,q)(x)−λ∆−
1028
+ (p,q)(x), f 0.5
1029
+ (p,q)(x)+λ∆+
1030
+ (p,q)(x)]
1031
+
1032
+ ,
1033
+ where
1034
+ ∆−(x) = max{f 0.5(x) − f 0.05(x), 10−6},
1035
+ ∆+(x) = max{f 0.95(x) − f 0.5(x), 10−6},
1036
+ and max is a point-wise operator making ∆− and ∆+ at least
1037
+ 10−6. This prediction set is a prediction band for the output
1038
+ field, whose prediction interval at grid (p, q) is
1039
+ [f 0.5
1040
+ (p,q)(x) − λ∆−
1041
+ (p,q)(x), f 0.5
1042
+ (p,q)(x) + λ∆+
1043
+ (p,q)(x)]
1044
+ (12)
1045
+ with the point-wise width being an increasing function of λ.
1046
+ This construction was proposed in [37] for image-to-image
1047
+ regression and we use the same loss function in [37] measuring
1048
+ miscoverage rate of a prediction band C for a field y, which
1049
+ can be formalized as
1050
+ L(y, C) =
1051
+ 1
1052
+ PQ
1053
+ ���
1054
+
1055
+ (p, q) : y(p,q) /∈ C(p,q)
1056
+ ����,
1057
+ (13)
1058
+ where C(p,q) is the prediction interval at grid (p, q) for
1059
+ prediction band C.
1060
+ All of the data collected from 2007 to 2020 were used, lead-
1061
+ ing to 4945 samples for each forecasting application and the
1062
+ datasets are named as MaxTemp and MinTemp respectively.
1063
+ The experimental designation is the same as that in Section
1064
+ IV-B, except that we also normalized the label for each grid to
1065
+ [0, 1] by min–max normalization, used quantile loss for model
1066
+ selection and we searched for λ∗ with two steps. First we
1067
+ found two values λ1 and λ2 from {100, 10, 1, 0.1, 0.01, ...}
1068
+ such that Q(n)
1069
+ 1−δ(λ1) ≤ α and Q(n)
1070
+ 1−δ(λ2) > α. Then we
1071
+ searched for λ∗ from 100 values starting with λ1 and ending
1072
+ with λ2 using a common step size. The experimental results
1073
+ are recorded in Fig. 6, Fig 7 and Fig 8.
1074
+ Although the set predictors and the loss function used in
1075
+ this section are different from those in Section IV-B, the
1076
+ experimental results and conclusions are similar. From Fig. 6,
1077
+ we can see that the frequencies of the prediction losses being
1078
+ more than α are controlled by δ, which also verifies formula
1079
+ (7) empirically. Larger α and δ lead to larger losses, which is
1080
+ shown in Fig. 7. Here we use the following average interval
1081
+ length
1082
+ 1
1083
+ PQ
1084
+ P
1085
+
1086
+ p=1
1087
+ Q
1088
+
1089
+ q=1
1090
+ λ∗(∆+
1091
+ (p,q)(x) − ∆−
1092
+ (p,q)(x))
1093
+ (14)
1094
+ to measure the informational efficiency of the prediction set
1095
+ Cλ∗(x) and Fig. 8 also depicts the trade-off among the
1096
+ preset loss bound α, confidence level 1 − δ and informational
1097
+ efficiency of the prediction sets and indicates that better des-
1098
+ ignation of underlying algorithms lead to better performance.
1099
+ V. CONCLUSION
1100
+ This paper extends conformal prediction to the situation
1101
+ where the value of a loss function needs to be controlled,
1102
+
1103
+ Dataset = HighTemp I α = 0.05
1104
+ Dataset = HighTemp I α = 0.1
1105
+ Dataset = HighTemp I α = 0.15
1106
+ Dataset = HighTemp I α = 0.2
1107
+ 1.0
1108
+ 0.8
1109
+ I Size
1110
+ Normalized
1111
+ 0.6
1112
+ 0.4
1113
+ 0.2
1114
+ 0.0
1115
+ Model
1116
+ Dataset = LowTemp I α = 0.05
1117
+ Dataset = LowTemp I α = 0.1
1118
+ Dataset = LowTemp I α = 0.15
1119
+ Dataset = LowTemp I α = 0.2
1120
+ nDNN
1121
+ 1.0
1122
+ U-Net
1123
+ 0.8
1124
+ 0.6
1125
+ 0.4
1126
+ 0.2
1127
+ 0.0
1128
+ 0.05
1129
+ 0.1
1130
+ 0.15
1131
+ 0.2
1132
+ 0.05
1133
+ 0.1
1134
+ 0.15
1135
+ 0.2
1136
+ 0.05
1137
+ 0.1
1138
+ 0.15
1139
+ 0.2
1140
+ 0.1
1141
+ 0.15
1142
+ 0.2
1143
+ 0.05
1144
+ 6
1145
+ 6THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
1146
+ 9
1147
+ Fig. 6.
1148
+ Bar plots of the frequencies of the prediction losses being more than α vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for maximum temperature and
1149
+ minimum temperature forecasting. The first row corresponds to MaxTemp and the second row corresponds to MinTemp. Different columns represent different
1150
+ α. All bars are near or below the preset δ, which confirms the controlling guarantee of CLCP empirically.
1151
+ Fig. 7. Boxen plots of the prediction losses vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for maximum temperature and minimum temperature forecasting. The
1152
+ first row corresponds to MaxTemp and the second row corresponds to MinTemp. Different columns represent different α. The loss distributions are controlled
1153
+ by α and δ properly to obtain the empirical validity in Fig. 6.
1154
+ which is inspired by risk-controlling prediction sets and con-
1155
+ formal risk control approaches. The loss-controlling guarantee
1156
+ is proved in theory with the assumption of exchangeability
1157
+ and is empirically verified for different kinds of applications
1158
+ including classification with a class-varying loss and weather
1159
+ forecasting. Different from conformal prediction, conformal
1160
+ loss-controlling prediction approach proposed in this paper
1161
+ has two preset parameters α and δ, which guarantees that the
1162
+ prediction loss is not greater than α with confidence 1−δ. Both
1163
+ parameters impose restrictions on prediction sets and should
1164
+ be set based on specific applications. Despite loss-controlling
1165
+ guarantee, informational efficiency of the prediction sets built
1166
+ by conformal loss-controlling prediction is highly related to
1167
+ underlying algorithms, which has been shown in empirical
1168
+ studies. Since this is a rather new topic, the underlying
1169
+ algorithms and the way of constructing set predictors are
1170
+ inherited from conformal risk control. This leaves the im-
1171
+ portant question on how to build informationally efficient set
1172
+ predictors in an optimal way, which is one of our further
1173
+ researches in the future.
1174
+ REFERENCES
1175
+ [1] V. Balasubramanian, S.-S. Ho, and V. Vovk, Conformal prediction
1176
+ for reliable machine learning: theory, adaptations and applications.
1177
+ Newnes, 2014.
1178
+ [2] C. Li, G. Tang, X. Xue, A. Saeed, and X. Hu, “Short-term wind speed
1179
+ interval prediction based on ensemble gru model,” IEEE Transactions
1180
+ on Sustainable Energy, vol. 11, no. 3, pp. 1370–1380, 2019.
1181
+ [3] P. Wang, P. Wang, D. Wang, and B. Xue, “A conformal regressor
1182
+ with random forests for tropical cyclone intensity estimation,” IEEE
1183
+ Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14,
1184
+ 2021.
1185
+ [4] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic learning in a
1186
+ random world.
1187
+ Springer Science & Business Media, 2005.
1188
+ [5] A. N. Angelopoulos and S. Bates, “A gentle introduction to confor-
1189
+ mal prediction and distribution-free uncertainty quantification,” arXiv
1190
+ preprint arXiv:2107.07511, 2021.
1191
+ [6] M. Fontana, G. Zeni, and S. Vantini, “Conformal prediction: a unified
1192
+ review of theory and new challenges,” Bernoulli, vol. 29, no. 1, pp.
1193
+ 1–23, 2023.
1194
+
1195
+ Dataset = MaxTemp I α = 0.05
1196
+ Dataset = MaxTemp I α = 0.1
1197
+ Dataset = MaxTemp I α = 0.15
1198
+ Dataset = MaxTemp I α = 0.2
1199
+ 0.30
1200
+ 0.25
1201
+ 0.05
1202
+ 0.00
1203
+ Model
1204
+ Dataset = MinTemp I α = 0.15
1205
+ Dataset = MinTemp I α = 0.2
1206
+ Dataset = MinTemp I α = 0.05
1207
+ Dataset = MinTemp I α = 0.1
1208
+ nDNN
1209
+ 0.30
1210
+ U-Net
1211
+ 0.25
1212
+ 0.05
1213
+ 0.00
1214
+ 0.1
1215
+ 0.15
1216
+ 0.2
1217
+ 0.05
1218
+ 0.15
1219
+ 0.2
1220
+ 0.05
1221
+ 0.1
1222
+ 0.15
1223
+ 0.2
1224
+ 0.05
1225
+ 0.1
1226
+ 0.05
1227
+ 0.1
1228
+ 0.15
1229
+ 0.2
1230
+ 6
1231
+ 6
1232
+ 9Dataset = MaxTemp I α = 0.05
1233
+ Dataset = MaxTemp I α = 0.1
1234
+ Dataset = MaxTemp I α = 0.15
1235
+ Dataset = MaxTemp I α = 0.2
1236
+ 0.5
1237
+ 0.4
1238
+ 0.2
1239
+ 0.1
1240
+ 0.0
1241
+ Model
1242
+ Dataset = MinTemp I α = 0.05
1243
+ Dataset = MinTemp I α = 0.1
1244
+ Dataset = MinTemp I α = 0.15
1245
+ Dataset = MinTemp I α = 0.2
1246
+ nDNN
1247
+ U-Net
1248
+ 0.5
1249
+ 0.4
1250
+ 0.2
1251
+ 0.1
1252
+ 0.0
1253
+ 0.05
1254
+ 0.1
1255
+ 0.15
1256
+ 0.2
1257
+ 0.05
1258
+ 0.1
1259
+ 0.15
1260
+ 0.2
1261
+ 0.05
1262
+ 0.1
1263
+ 0.15
1264
+ 0.2
1265
+ 0.05
1266
+ 0.1
1267
+ 0.15
1268
+ 0.2
1269
+ 6
1270
+ 6THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
1271
+ 10
1272
+ Fig. 8. Boxen plots for the distributions of average interval length vs. δ = 0.05, 0.1, 0.15, 0.2 on test data for maximum temperature and minimum temperature
1273
+ forecasting. The first row corresponds to MaxTemp and the second row corresponds to MinTemp. Different columns represent different α. U-Net performs
1274
+ better than nDNN, which indicates the importance of careful designation of the underlying algorithm.
1275
+ [7] H. Wang, X. Liu, I. Nouretdinov, and Z. Luo, “A comparison of three
1276
+ implementations of multi-label conformal prediction,” in International
1277
+ Symposium on Statistical Learning and Data Sciences.
1278
+ Springer, 2015,
1279
+ pp. 241–250.
1280
+ [8] S. Messoudi, S. Destercke, and S. Rousseau, “Copula-based conformal
1281
+ prediction for multi-target regression,” Pattern Recognition, vol. 120, p.
1282
+ 108101, 2021.
1283
+ [9] J. Lei, A. Rinaldo, and L. Wasserman, “A conformal prediction approach
1284
+ to explore functional data,” Annals of Mathematics and Artificial Intel-
1285
+ ligence, vol. 74, no. 1, pp. 29–43, 2015.
1286
+ [10] J. Diquigiovanni, M. Fontana, and S. Vantini, “Conformal prediction
1287
+ bands for multivariate functional data,” Journal of Multivariate Analysis,
1288
+ vol. 189, p. 104879, 2022.
1289
+ [11] A. Fisch, T. Schuster, T. Jaakkola, and R. Barzilay, “Few-shot conformal
1290
+ prediction with auxiliary tasks,” in International Conference on Machine
1291
+ Learning.
1292
+ PMLR, 2021, pp. 3329–3339.
1293
+ [12] R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Confor-
1294
+ mal prediction under covariate shift,” Advances in Neural Information
1295
+ Processing Systems, vol. 32, 2019.
1296
+ [13] R. F. Barber, E. J. Candes, A. Ramdas, and R. J. Tibshirani, “Conformal
1297
+ prediction beyond exchangeability,” arXiv preprint arXiv:2202.13415,
1298
+ 2022.
1299
+ [14] A. Fisch, T. Schuster, T. Jaakkola, and R. Barzilay, “Conformal predic-
1300
+ tion sets with limited false positives,” arXiv preprint arXiv:2202.07650,
1301
+ 2022.
1302
+ [15] A. N. Angelopoulos, S. Bates, A. Fisch, L. Lei, and T. Schuster,
1303
+ “Conformal risk control,” arXiv preprint arXiv:2208.02814, 2022.
1304
+ [16] S. Bates, A. Angelopoulos, L. Lei, J. Malik, and M. Jordan,
1305
+ “Distribution-free, risk-controlling prediction sets,” Journal of the ACM
1306
+ (JACM), vol. 68, no. 6, pp. 1–34, 2021.
1307
+ [17] H. Papadopoulos, “Inductive conformal prediction: Theory and applica-
1308
+ tion to neural networks,” in Tools in artificial intelligence.
1309
+ IntechOpen,
1310
+ 2008.
1311
+ [18] J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman,
1312
+ “Distribution-free predictive inference for regression,” Journal of the
1313
+ American Statistical Association, vol. 113, no. 523, pp. 1094–1111,
1314
+ 2018.
1315
+ [19] C. Gupta, A. K. Kuchibhotla, and A. Ramdas, “Nested conformal pre-
1316
+ diction and quantile out-of-bag ensemble methods,” Pattern Recognition,
1317
+ vol. 127, p. 108496, 2022.
1318
+ [20] A. N. Angelopoulos, S. Bates, E. J. Cand`es, M. I. Jordan, and L. Lei,
1319
+ “Learn then test: Calibrating predictive algorithms to achieve risk
1320
+ control,” arXiv preprint arXiv:2110.01052, 2021.
1321
+ [21] G. Van Rossum and F. L. Drake, Python 3 Reference Manual.
1322
+ Scotts
1323
+ Valley, CA: CreateSpace, 2009.
1324
+ [22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
1325
+ O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
1326
+ plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
1327
+ esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
1328
+ Learning Research, vol. 12, pp. 2825–2830, 2011.
1329
+ [23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
1330
+ T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
1331
+ E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
1332
+ L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
1333
+ high-performance deep learning library,” in Advances in Neural
1334
+ Information Processing Systems 32.
1335
+ Curran Associates, Inc., 2019,
1336
+ pp.
1337
+ 8024–8035.
1338
+ [Online].
1339
+ Available:
1340
+ http://papers.neurips.cc/paper/
1341
+ 9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
1342
+ pdf
1343
+ [24] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
1344
+ [25] J. Platt, “Probabilistic outputs for support vector machines and com-
1345
+ parisons to regularized likelihood methods,” Advances in Large Margin
1346
+ Classifiers, vol. 10, no. 3, pp. 61–74, 1999.
1347
+ [26] J. Schmidhuber, “Deep learning in neural networks: An overview,”
1348
+ Neural Networks, vol. 61, pp. 85–117, 2015.
1349
+ [27] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
1350
+ 5–32, 2001.
1351
+ [28] S. Vannitsem, D. S. Wilks, and J. Messner, Statistical postprocessing of
1352
+ ensemble forecasts.
1353
+ Elsevier, 2018.
1354
+ [29] S. Vannitsem, J. B. Bremnes, J. Demaeyer, G. R. Evans, J. Flowerdew,
1355
+ S. Hemri, S. Lerch, N. Roberts, S. Theis, A. Atencia et al., “Statistical
1356
+ postprocessing for weather forecasts: Review, challenges, and avenues
1357
+ in a big data world,” Bulletin of the American Meteorological Society,
1358
+ vol. 102, no. 3, pp. E681–E699, 2021.
1359
+ [30] T. Palmer, “The ecmwf ensemble prediction system: Looking back (more
1360
+ than) 25 years and projecting forward 25 years,” Quarterly Journal of
1361
+ the Royal Meteorological Society, vol. 145, pp. 12–24, 2019.
1362
+ [31] National Centers for Environmental Prediction, National Weather
1363
+ Service, NOAA, U.S. Department of Commerce, Japan Meteorological
1364
+ Agency, Japan, Met Office, Ministry of Defence, United Kingdom,
1365
+ China Meteorological Administration, China, Meteorological Service
1366
+ of Canada, Environment Canada, Korea Meteorological Administration,
1367
+ Republic
1368
+ of
1369
+ Korea,
1370
+ Meteo-France,
1371
+ France,
1372
+ European
1373
+ Centre
1374
+ for
1375
+ Medium-Range
1376
+ Weather
1377
+ Forecasts,
1378
+ and
1379
+ Bureau
1380
+ of
1381
+ Meteorology,
1382
+ Australia, “Thorpex interactive grand global ensemble (tigge) model
1383
+ tropical cyclone track data,” Boulder CO, 2008. [Online]. Available:
1384
+ https://doi.org/10.5065/D6GH9GSZ
1385
+ [32] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Hor´anyi, J. Mu˜noz-
1386
+ Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers et al., “The
1387
+ era5 global reanalysis,” Quarterly Journal of the Royal Meteorological
1388
+ Society, vol. 146, no. 730, pp. 1999–2049, 2020.
1389
+ [33] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
1390
+ neural networks: analysis, applications, and prospects,” IEEE Transac-
1391
+ tions on Neural Networks and Learning Systems, 2021.
1392
+ [34] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
1393
+ works for biomedical image segmentation,” in International Conference
1394
+ on Medical Image Computing and Computer-Assisted Intervention.
1395
+ Springer, 2015, pp. 234–241.
1396
+ [35] P. Gr¨onquist, C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li,
1397
+ and T. Hoefler, “Deep learning for post-processing ensemble weather
1398
+
1399
+ Dataset = MaxTemp I α = 0.05
1400
+ Dataset = MaxTemp I α = 0.1
1401
+ Dataset = MaxTemp I α = 0.15
1402
+ Dataset = MaxTemp I α = 0.2
1403
+ 0.40
1404
+ 0.35
1405
+ 0.20
1406
+ 0.10
1407
+ 0.05
1408
+ Model
1409
+ Dataset = MinTemp I α = 0.05
1410
+ Dataset = MinTemp I α = 0.1
1411
+ Dataset = MinTemp I α = 0.15
1412
+ Dataset = MinTemp I α = 0.2
1413
+ nDNN
1414
+ 0.40
1415
+ U-Net
1416
+ 0.35
1417
+ 0.30
1418
+ 0.25
1419
+ 0.20
1420
+ 0.10
1421
+ 0.05
1422
+ 0.05
1423
+ 0.1
1424
+ 0.15
1425
+ 0.2
1426
+ 0.05
1427
+ 0.1
1428
+ 0.15
1429
+ 0.2
1430
+ 0.05
1431
+ 0.1
1432
+ 0.15
1433
+ 0.2
1434
+ 0.05
1435
+ 0.1
1436
+ 0.15
1437
+ 0.2
1438
+ 6
1439
+ 6
1440
+ 6
1441
+ 9THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION.
1442
+ 11
1443
+ forecasts,” Philosophical Transactions of the Royal Society A, vol. 379,
1444
+ no. 2194, p. 20200092, 2021.
1445
+ [36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
1446
+ arXiv preprint arXiv:1412.6980, 2014.
1447
+ [37] A. N. Angelopoulos, A. P. Kohli, S. Bates, M. Jordan, J. Malik,
1448
+ T. Alshaabi, S. Upadhyayula, and Y. Romano, “Image-to-image regres-
1449
+ sion with distribution-free uncertainty quantification and applications in
1450
+ imaging,” in International Conference on Machine Learning.
1451
+ PMLR,
1452
+ 2022, pp. 717–730.
1453
+ [38] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica:
1454
+ Journal of the Econometric Society, pp. 33–50, 1978.
1455
+
E9E0T4oBgHgl3EQfhAEU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EtE0T4oBgHgl3EQfQwBZ/content/2301.02197v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b09547cf51fdf1f28894fca82d541a1990bc262df16ad6e542134e46136ce7fb
3
+ size 20675465
EtE0T4oBgHgl3EQfQwBZ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d3025a514fc3048fc6ce98439d9044d930485439ef75217bb62d11c3021777d
3
+ size 7929901
EtE1T4oBgHgl3EQfWwQ3/content/2301.03117v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:840ea97b113fa1e2fbe9c4e85130600b5eb63cd42bc6e916e632ceb38daaed0c
3
+ size 713558
EtE1T4oBgHgl3EQfWwQ3/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:598bbafad75ac1f7e6e3e25f375c7c601f7eaa744fdd1a6ca987695d04d088d0
3
+ size 5308461
EtE1T4oBgHgl3EQfWwQ3/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a8c5f3ff0a28149ab36b72ffcd3546f40399dcceaeb991300016b239ab26cc6
3
+ size 159677
FtE5T4oBgHgl3EQfVg81/content/2301.05551v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05730ac2b9c7b082d52d03923ed11741fcc1bf284674c05068d504d5834f57c2
3
+ size 1402659
FtE5T4oBgHgl3EQfVg81/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90516899cbc6441fcb102ae2784b0c541b2be66ca18e9dc1385c9d1c815c578e
3
+ size 1376301
FtE5T4oBgHgl3EQfVg81/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c726b0e063fd0d5ec5b32718e8a70f93ac333b82fec76e30be56a190f2b5c079
3
+ size 63210
G9AzT4oBgHgl3EQfHfuN/content/2301.01046v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ae1b380f720da70485bc87fe4f720316fe266199bb4ad166080ddbdcf0630b7
3
+ size 5705428
G9AzT4oBgHgl3EQfHfuN/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aecdc8c31b1849ca23843310f8bd897126dd5870ab307f9fd5eab4cb6ae517d0
3
+ size 104592
GNE5T4oBgHgl3EQfVw9O/content/2301.05553v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d810a4dd1862376719e7607c7e0c9211f43933d66fa1d800efd9e0c3f2b9641
3
+ size 692560
GNE5T4oBgHgl3EQfVw9O/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575d2b3ce25a8cc580f763c0f8e53c8f1a62a788a8c749582e0557fca211dc9e
3
+ size 2621485
GNE5T4oBgHgl3EQfVw9O/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ec5cc9498b59f3ad501454b9184002f9f8d215d9c33ad931735f49c6c6400d3
3
+ size 96769
ItFLT4oBgHgl3EQfJS9D/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23c34d4bdaa5d59ea857acb2b1c3e18288a06429ec4cb7669008a3364fa3b1b0
3
+ size 3801133
LNE1T4oBgHgl3EQfswVe/content/tmp_files/2301.03369v1.pdf.txt ADDED
@@ -0,0 +1,1216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03369v1 [physics.data-an] 6 Jan 2023
2
+ NOLTA, IEICE
3
+ Paper
4
+ Time series analysis using persistent
5
+ homology of distance matrix
6
+ Takashi Ichinomiya 1,2a)
7
+ 1 Gifu University School of Medicine,
8
+ Yanagido 1-1, Gifu, Gifu 501-1194, Japan
9
+ 2 The United Graduate School of Drug Discovery and Medical Informatic
10
+ Science, Gifu University,
11
+ Yanagido 1-1, Gifu 501-1194, Japan
12
+ a) tk1miya@gifu-u.ac.jp
13
+ Received December 06, 2022
14
+ Abstract: The analysis of nonlinear dynamics is an important issue in numerous fields of
15
+ science. In this study, we propose a new method to analyze the time series data using persistent
16
+ homology (PH). The key idea is the application of PH to the distance matrix. Using this
17
+ method, we can obtain the topological features embedded in the trajectories. We apply this
18
+ method to the logistic map, R¨ossler system, and electrocardiogram data. The results reveal
19
+ that our method can effectively identify nonlocal characteristics of the attractor and can classify
20
+ data based on the amount of noise.
21
+ Key Words: time-series analysis, persistent homology, dynamical system
22
+ 1. Introduction
23
+ The analysis of the nonlinear dynamics is a challenging problem in physics, engineering, and data
24
+ science. Numerous methods for time series analysis, such as Fourier transformation or Kalman fil-
25
+ tering, are based on the theory of linear dynamics, and the performance of these methods is limited.
26
+ To overcome their limitations, several methods, such as Koopman’s mode decomposition[1], phase
27
+ reduction[2], deep learning[3], and reservoir computing[4, 5], have been proposed. However, we often
28
+ meet the situations where these methods are not available. In Koopman’s mode decomposition we
29
+ map the finite-dimensional nonlinear dynamical system into an infinite-dimensional linear dynamical
30
+ system, and investigate the eigenvalues and eigenfunctions in this space. However, the determination
31
+ of these eigenfunctions is often difficult. Phase reduction is a powerful method to investigate the
32
+ oscillatory dynamics, but the application to non-oscillatory systems is limited. Deep learning and
33
+ reservoir computing help us to predict the state in the future, but they do not provide a rationale for
34
+ their prediction.
35
+ In this study, we propose a new method to analyze the dynamics using distance matrix.
36
+ The
37
+ distance matrix D(t, s), defined as the distance between states at time t and s, reveals considerable
38
+ information regarding the dynamics of the system. For example, if D(t, t+T) = 0 for all t, the system
39
+ exhibits a periodic motion with period T. Recurrence plot (RP) is the most useful method for the
40
+ 1
41
+ Nonlinear Theory and Its Applications, IEICE, vol. X, no. 0, pp. 1–14
42
+ ©IEICE 2023
43
+ DOI: 10.1587/nolta.X.1
44
+
45
+ time-series analysis using a distance matrix [6]. In this method, the distance matrix is visualized using
46
+ R(t, s) = Θ(ǫ − D(t, s)), where Θ(x) is the Heaviside step function and ǫ is a parameter. Using this
47
+ method, periodic motion can be distinguished from chaotic trajectories. Based on an RP, recurrence
48
+ quantification analysis (RQA), wherein the dynamics are characterized by several quantities, such as
49
+ recurrence rate and determinism, was proposed.
50
+ However, an RP uses only the limited information embedded in the distance matrix. First, an RP
51
+ does not provide information on the nonlocal properties of the trajectory. An RP lists the points that
52
+ are close to each other in phase space and is useful to investigate local properties such as Lyapunov
53
+ exponents. In contrast, it is unsuitable for investigating the global structure of the trajectory. For
54
+ example, determining whether the attractor has a double scroll structure like the Lorenz system or
55
+ an oscillation-like structure similar to the R¨ossler system by RP is difficult. Another problem with
56
+ the use of an RP is that there is no clear rule to select the value of ǫ, and studies have reported that
57
+ the result of the RP is often sensitive to this choice [7].
58
+ In this study, we propose the application of persistent homology (PH)[8], an emerging technique of
59
+ data analysis, to the analysis of the distance matrix. PH is the one of the most popular techniques
60
+ in topological data analysis (TDA). In TDA, we investigate the topological characteristics such as
61
+ number of connected components or holes embedded in the dataset. The theory of PH is still being
62
+ developed and has been successfully applied in various fields, including biophysics[9–11], material
63
+ science[12–14], and image processing[15, 16].
64
+ There have been several proposals to apply PH to time series datasets. The favored approach for
65
+ the time-series analysis using PH is based on delay embedding [17, 18]. In this approach, we first
66
+ create the point clouds in n-dimensional space using Takens’ delay embedding [19] and subsequently
67
+ characterize the state using PH. However, this approach has several difficulties.
68
+ First, we must
69
+ determine how to embed the dataset. There is no general rule to determine the way of embedding,
70
+ though several ideas have been proposed [20–22]. Second, the computational cost increases rapidly
71
+ as the embedding dimension and the size of point cloud increases. It is known that the computation
72
+ time for PH is O(N⌈D/2⌉), where N and D represent the size of the point cloud and dimension of
73
+ the space, respectively [23]. Therefore, the computational cost increases exponentially as D increases.
74
+ In our approach, we can avoid the latter difficulty. Because the distance matrix is represented in
75
+ two-dimensional space, the computation cost of PH is considerably reduced.
76
+ The results of this
77
+ study reveal that using PH, the essential information of a dataset, such as the non-local structure of
78
+ attractors and the amount of noise, can be easily determined.
79
+ The remainder of this study is structured as follows. In Section
80
+ 2, we explain our method to
81
+ investigate the distance matrix. In Section 3, we present the results of application of our method to
82
+ three different datasets. First, we present the results of the analysis of the logistic map as a typical
83
+ example of discrete time dynamics. Second, we present the results on the R¨ossler system as an example
84
+ of continuous time dynamics. Third, we discuss the results on the analysis of electrocardiogram (ECG)
85
+ data, as an example of real-world time series data. Finally, we discuss on the possible improvements
86
+ to our method in future and conclude this study.
87
+ 2. Method
88
+ The general definition of PH requires further background knowledge of algebraic topology. In this
89
+ section, we explain the PH of filtered cubical complexes of degree 0, which is used in the latter part
90
+ of this study. The readers who want to know the general definition of PH can consult textbooks on
91
+ PH and TDA[24, 25].
92
+ We consider a real-valued filtration function f : Z2 → R. The sublevel set M(θ) is defined by
93
+ M(θ) = {(x, y) ∈ Z2|f(x, y) ≤ θ}.
94
+ (1)
95
+ For example, assume that f(x, y) is given by the table shown in Fig. 1(a). In this case, M(0) is given
96
+ by the gray blocks. When we increase θ, M(θ) also grows, as shown in Fig. 1(b) and (c).
97
+ PH with degree 0 using a sublevel set of f represents the change in connected components in M(θ)
98
+ when θ is varied from −∞ to ∞. Here we say two blocks are “connected” if they share an edge. For
99
+ 2
100
+
101
+ !
102
+ !
103
+ !
104
+ !
105
+ "
106
+ "
107
+ "
108
+ #
109
+ #
110
+ "
111
+ "
112
+ #
113
+ $
114
+ "
115
+ #
116
+ "
117
+ "
118
+ "
119
+ #
120
+ #
121
+ "
122
+ #
123
+ !
124
+ "
125
+ $
126
+ !
127
+ !
128
+ !
129
+ !
130
+ "
131
+ "
132
+ "
133
+ #
134
+ #
135
+ "
136
+ "
137
+ #
138
+ $
139
+ "
140
+ #
141
+ "
142
+ "
143
+ "
144
+ #
145
+ #
146
+ "
147
+ #
148
+ !
149
+ "
150
+ $
151
+ !
152
+ !
153
+ !
154
+ !
155
+ "
156
+ "
157
+ "
158
+ #
159
+ #
160
+ "
161
+ "
162
+ #
163
+ $
164
+ "
165
+ #
166
+ "
167
+ "
168
+ "
169
+ #
170
+ "
171
+ "
172
+ #
173
+ !
174
+ "
175
+ $
176
+ %&'()!"#$
177
+ %*'()!"%$
178
+ %+'()!"&$
179
+ '
180
+ #
181
+ %
182
+ &
183
+ (
184
+ )
185
+ #
186
+ %
187
+ &
188
+ (
189
+ )
190
+ *
191
+ !
192
+ "
193
+ #
194
+ $
195
+ +
196
+ ,
197
+ !
198
+ "
199
+ #
200
+ $
201
+ !
202
+ "
203
+ #
204
+ $
205
+ %,'
206
+ %-'
207
+ #
208
+ %
209
+ &
210
+ (
211
+ )
212
+ #
213
+ %
214
+ &
215
+ (
216
+ )
217
+ Fig. 1.
218
+ Example of persistent homology using sublevel sets, (a)–(c) represent
219
+ the M(θ) for θ = 0, 1, and 2, respectively.
220
+ The corresponding persistence
221
+ barcode and persistence diagram are shown in (d) and (e).
222
+ example, we have two components in Fig. 1(a): there is one isolated component at (x, y) = (2, 0)
223
+ and one connected component at y = 4, 0 ≤ x ≤ 3. By increasing θ to 1, these two components are
224
+ merged into one large component, and another component appears at (x, y) = (3, 2), as shown in
225
+ Fig. 1(b). Here, we do not say these two components are connected, because although they share two
226
+ corners, they do not share an edge. In this case, we say these two components are “disconnected.”
227
+ When we increase θ to 2, all three components are merged into one large component, as shown
228
+ in Fig. 1(c).
229
+ The theory of PH guarantees that we can define the “birth” and “death” of each
230
+ component. In this example, at θ = 0, two disconnected components are “born.” At θ = 1, these
231
+ components merged into one large component. Hence, we say that one of the components “dies” and
232
+ the other disconnected component at (x, y) = (3, 2) is born. Finally, at θ = 2, these components are
233
+ connected. Further increase in θ does not change the number of disconnected components. Therefore,
234
+ we have three “connected components,” often called “generators,” whose births b and deaths d are
235
+ (b, d) = (0, ∞), (0, 1), (1, 2), respectively.
236
+ There are two major visualization techniques to represent the distribution of generators. One is
237
+ “persistence barcode,” wherein we represent each generator as a “bar” from birth to death, as shown
238
+ in Fig. 1(d). This representation is intuitive when the number of generators is small. For example,
239
+ when the dataset has a periodic structure, we will obtain numerous generators that have the same
240
+ birth and death, and we can easily identify them by persistence barcode. However, when we have
241
+ more than a hundred of generators, the number of bars becomes too large, and gaining any insight
242
+ from the barcode becomes difficult. In this case, a persistence diagram (PD) is better visualization
243
+ method; herein, we make a scatter plot of birth and death, as shown in Fig. 1(e). In a PD, generators
244
+ with infinite death are generally omitted. When the number of generators becomes large, we also use
245
+ a density heatmap of generators, which is also called a PD. In the rest of this study, we use PDs to
246
+ represent the results of our PH analysis.
247
+ The PH allows us to study the local minimum and saddle points of f. For example, we consider
248
+ the case of Fig. 2. In the case of Fig. 2(a), f is a smooth function with two minima. In this case, we
249
+ can define the sublevel set M(θ) as M(θ) = {x ∈ R|f(x) ≤ θ}. If θ is smaller than the saddle value of
250
+ 3
251
+
252
+ !"#$%
253
+ &'($%
254
+ )(*
255
+ )!*
256
+ )+*
257
+ !
258
+ !
259
+ !
260
+ Fig. 2.
261
+ Relation between the form of the filtering function f (upper) and
262
+ corresponding persistence diagram(lower). (a) When f has two local minima,
263
+ we obtain two generators, and only one has finite death. (b) When f is more
264
+ complex and has more local minima, the number of generators increases. (c)
265
+ If the “saddles” between local minima are low, the lifetime of generators de-
266
+ creases. The dashed line in the persistence diagrams indicates the line birth =
267
+ death.
268
+ f, M(θ) has two connected components, and for larger θ, M(θ) has only one connected component.
269
+ Therefore, in this case, there are two generators, and one of these generators has finite death. In
270
+ contrast, if D has numerous local minima as described in Fig. 2(b), we obtain numerous generators
271
+ with finite deaths. Therefore, the number of generators indicates the number of local minima of f.
272
+ Moreover, PH provides information about the height of the saddles. For example, we consider the
273
+ case in Fig. 2(c). Here, f has numerous local minima, but the height of the saddle is lower than in
274
+ Fig. 2(b). In this case, the connected components of M(θ) merge after only a slight increase of θ.
275
+ Therefore, the lifetime, defined as the difference between death and birth, decreases as the height of
276
+ the corresponding saddle decreases.
277
+ In this study, we used a distance matrix D for filtration. We suppose that we have time series data
278
+ xi, i = 1, 2, . . . , K, where i represents the discretized time. From this dataset, we define the distance
279
+ matrix D(i, j) as
280
+ D(i, j) = ||xi − xj||,
281
+ (2)
282
+ where ||· · · || represents L2-norm. D(i, j) is a real-valued function from (i, j) ∈ Z2, and we can apply
283
+ PH using the distance matrix.
284
+ There are several software for PH analysis, which include Gudhi [26], Phat [27], and Javaplex [28].
285
+ In this study, we used Homcloud developed by Obayashi et al [29]. One of the advantages of Homcloud
286
+ compared with other software is that it can provide the “birth position” and “death position” of each
287
+ generator. Using this function, we can obtain the positions of the local minima and the saddles of
288
+ D(i, j). These values are useful for interpreting the result obtained by PH.
289
+ 3. Results
290
+ We applied our method to three different datasets. The first example is time-series data obtained
291
+ from the logistic map, and the second one is that obtained from the R¨ossler equations. Finally, we
292
+ analyzed the dataset ECG200, as an example of a real-world dataset.
293
+ 3.1 Analysis of the logistic map
294
+ In this subsection, we investigated the distance matrix of the logistic map defined by
295
+ xi+1 = axi(1 − xi),
296
+ (3)
297
+ where 0 < a < 4 is a parameter.
298
+ We calculated xi for i = 1, 2, . . . , 1000 with initial condition
299
+ x0 = 0.832 and performed a PH analysis using data at i = 801, 802, . . . , 1000.
300
+ First, we investigated the case a = 3.4, wherein xi is periodic, shown in Fig. 3(a). In this case, all
301
+ generators had birth 0 and death 0.3901. This result indicated that xi takes only two values, and
302
+ 4
303
+
304
+ !"#
305
+ !$#
306
+ !%#
307
+ !&#
308
+ Fig. 3.
309
+ Persistence diagram for logistic maps: (a) a = 3.4, (b) a = 3.5, (c)
310
+ a = 3.6, and (d) a = 3.7.
311
+ the difference between these two is 0.3901. This is consistent with the fact that the attractor of this
312
+ system is a cycle with period 2: x2i+1 = 0.4520 and x2i = 0.8421. The death time is given by the
313
+ difference between these two values. As the period increases, the number of values that generators
314
+ can take also increases. For example, at a = 3.5, the distribution had 6 peaks, corresponding to the
315
+ fact that the period of the logistic map was 4. We show M(θ) for several θ in Fig.4 in the case of
316
+ a = 3.5. The number of peaks represents the topological information of the attractors.
317
+ Furthermore, the PD in a chaotic region provides topological information of the attractor. In the
318
+ case of a = 3.6, where the logistic map becomes chaotic, the births and deaths of generators are widely
319
+ distributed, as shown in Fig. 3(c). Herein, we found that the distribution had several characteristic
320
+ properties. First, all deaths were larger than 0.188. This property could be explained by the existence
321
+ of a gap in the attractor. At a = 3.6, x takes values from 0.3 to 0.6 and from 0.788 to 0.900, but
322
+ does not take values between 0.601 to 0.787. This property generates a the gap in the distribution of
323
+ deaths. To confirm this suggestion, we show the “death point” of generators whose death is smaller
324
+ than 0.19 as a red line in Fig. 5. In this figure, the points connected by lines give the saddles of
325
+ D(i, j). Evidently, the red lines connect the top point of the lower band and the bottom points of the
326
+ upper band, which supports our claim.
327
+ Additionally, Fig. 3(c) reveals that birth + death < 0.4695. Unfortunately, we have no theory to
328
+ explain this property. Notably, we have an upper limit on birth + death when xmin ≤ xi ≤ xmax
329
+ for all i, because birth ≥ 0 and death ≤ xmax − xmin. However, the fact that the death corresponds
330
+ to the saddle makes the problem difficult. For example, the green line in Fig. 3(e) shows the death
331
+ point pairs with the largest birth + death, 0.4694. This figure shows that one terminal of this line
332
+ is at the upper limit of the upper band, whereas the other terminal stays in the middle of the lower
333
+ band. We have no theoretical explanation why there is no saddle pair of states that provides larger
334
+ birth + death. This is a problem that should be solved in the future.
335
+ In the case of a = 3.7 shown in Fig. 3(d), the upper limit of death+birth appears to remain with
336
+ several exceptional generators, whereas the lower limit disappears.
337
+ The absence of a lower limit
338
+ indicates the elimination of the gap in x found in the case a = 3.6. Summarizing these results, the
339
+ PD gives the topological structure of the attractor, in the cases of both the periodic trajectory and
340
+ chaotic attractor.
341
+ 5
342
+
343
+ Logistic, a=3.5
344
+ 0.8
345
+ 0.7
346
+ 0.6
347
+ 103
348
+ 0.5
349
+ Death
350
+ 0.4
351
+ Value
352
+ 102
353
+ 0.3
354
+ 0.2
355
+ 0.1
356
+ 101
357
+ 0.0
358
+ -0.1
359
+ 0.0
360
+ 0.2
361
+ 0.4
362
+ 0.6
363
+ 0.8
364
+ BirthLogistic, a=3.4
365
+ 0.8
366
+ 105
367
+ 0.7
368
+ 0.6
369
+ 0.5
370
+ 104
371
+ Death
372
+ 0.4
373
+ Value
374
+ 0.3
375
+ 0.2
376
+ 103
377
+ 0.1
378
+ 0.0
379
+ -0.1
380
+ 102
381
+ 0.0
382
+ 0.2
383
+ 0.4
384
+ 0.6
385
+ 0.8
386
+ BirthLogistic, a=3.6
387
+ 0.8
388
+ 0.7
389
+ 0.6
390
+ 0.5
391
+ 102
392
+ Death
393
+ 0.4
394
+ Value
395
+ 0.3
396
+ 0.2
397
+ 101
398
+ 0.1
399
+ 0.0
400
+ -0.1
401
+ 0.0
402
+ 0.2
403
+ 0.4
404
+ 0.6
405
+ 0.8
406
+ BirthLogistic, a=3.7
407
+ 0.8
408
+ 0.7
409
+ 102
410
+ 0.6
411
+ 0.5
412
+ Death
413
+ 0.4
414
+ 0.3
415
+ 0.2
416
+ 0.1
417
+ 0.0
418
+ -0.1
419
+ 100
420
+ 0.0
421
+ 0.2
422
+ 0.4
423
+ 0.6
424
+ 0.8
425
+ Birth(a)
426
+ (b)
427
+ (c)
428
+ (d)
429
+ (e)
430
+ Fig. 4.
431
+ Sublevel set M(θ) represented as black areas in the case of a = 3.5.
432
+ (a) θ = 0.01, (b) θ = 0.05, (c) θ = 0.20, (d) θ = 0.35, and (e) θ = 0.40,
433
+ respectively.
434
+ Fig. 5.
435
+ Time series xi for the case of a = 3.6. Red lines indicate the death
436
+ position of generators whose lifetime is smaller than 0.19.
437
+ The green line
438
+ indicates the death position of the generators with the largest birth+death,
439
+ birth = 0.0104 and death = 0.4590.
440
+ 6
441
+
442
+ 0.9
443
+ 0.8
444
+ 0.7
445
+ × 0.6
446
+ 0.5
447
+ 0.4
448
+ 0.3
449
+ 800
450
+ 825
451
+ 850
452
+ 875
453
+ 900
454
+ 925
455
+ 950
456
+ 975
457
+ 1000
458
+ timeM(0.40)
459
+ 980
460
+ 985
461
+ 990
462
+ 995
463
+ 980
464
+ 985
465
+ 990
466
+ 995M(0.35)
467
+ 980
468
+ 985
469
+ 990
470
+ 995
471
+ 980
472
+ 985
473
+ 990
474
+ 995M(0.20)
475
+ 980
476
+ 985
477
+ 990
478
+ 995
479
+ 980
480
+ 985
481
+ 990
482
+ 995
483
+ :M(0.05)
484
+ 980
485
+ 985
486
+ 990
487
+ 995
488
+ 980
489
+ 985
490
+ 990
491
+ 995M(0.01)
492
+ 980
493
+ 985
494
+ 990
495
+ 995
496
+ 980
497
+ 985
498
+ 990
499
+ 995!"#
500
+ !$#
501
+ Fig. 6.
502
+ (a) Persistence diagram, and (b) trajectory of R¨ossler system, with
503
+ a = 0.2, b = 1.6, c = 5.7. Red lines in (b) represent the death positions of
504
+ generators whose deaths are larger than 10.0.
505
+ 3.2 Analysis of the R¨ossler system
506
+ Next, we investigated the dynamics of the R¨ossler system described by the equations
507
+ dx
508
+ dt = −y − z
509
+ (4)
510
+ dy
511
+ dt = x + ay
512
+ (5)
513
+ dz
514
+ dt = b + xz − cz.
515
+ (6)
516
+ In this study, we set a = 0.2, c = 5.7, and investigated the change in the PD by varying b between
517
+ 0.1 and 1.7.
518
+ We calculated (x(t), y(t), z(t)) for 0 ≤ t ≤ 500, and used (x(t), y(t), z(t)) for t =
519
+ 400, 400.1, . . . , 499.9 for the calculation of the distance matrix.
520
+ First, we began from the case with b = 1.6. In this case, the PD shown in Fig. 6(a) shows that
521
+ there are two classes of generators: generators in the first group have deaths smaller than 1.0 and
522
+ those in the second group have deaths larger than 10.0. To study the origin of the generators with
523
+ large death, we investigated the “death position” of these generators, which are indicated by the red
524
+ lines in Fig. 6(b). At this parameter, the attractor was the orbit with period 1, and the large death
525
+ value indicated the “diameter” of this orbit.
526
+ Next, we demonstrated the PD for b = 1.2 in Fig. 7(a). The PD was similar to the case of b = 1.6,
527
+ but new generators whose deaths are approximately 4.0 appeared. These generators represent the
528
+ period doubling of the attractor. To reveal the relation between period doubling and the generators,
529
+ we show the trajectories of the system with the birth and death positions of these generators in Fig. 7.
530
+ Evidently, the birth positions of these generators, which are represented by green lines, connect the
531
+ parallel part of the trajectory. These generators dies at the red lines, where these two lines diverge
532
+ along the z axis. This example suggests that the generators with large births and deaths imply the
533
+ existence of a parallel separated trajectory in the attractor. This claim holds true in the chaotic region.
534
+ For example, we show the PD at b = 0.7 in Fig. 8(a); herein, the system had a chaotic attractor.
535
+ The PD shows several clusters of generators with large lifetimes, and these generators represent the
536
+ parallel trajectories. For example, the birth of the generators surrounded by black and green ellipses
537
+ in Fig. 8(a) correspond with the black and green lines in Fig. 8(b), respectively. These birth points
538
+ are the pairs between parallel trajectories in the phase space. These examples suggest that we can
539
+ identify the nonlocal structure of the attractors using PH.
540
+ In the analysis above, we analyzed the dynamics using the snapshots of the system with an interval
541
+ ∆t = 0.1. It is natural to ask whether our results are robust against the change of the interval.
542
+ We calculated the PDs for several ∆t, using the trajectory with b = 0.7, 400 ≤ t ≤ 500. Here, we
543
+ notice that the number of snapshots decreases as ∆t increases. The result is shown in Fig. 9. When
544
+ 7
545
+
546
+ Rossler,b=1.60
547
+ 12
548
+ 103
549
+ 10
550
+ 8
551
+ Death
552
+ 6
553
+ 102
554
+ 4
555
+ 2
556
+ 0
557
+ 101
558
+ 0.0
559
+ 2.5
560
+ 5.0
561
+ 7.5
562
+ 10.0
563
+ BirthRossler, b=1.60
564
+ 3
565
+ 2
566
+ Z
567
+ 1
568
+ 0
569
+ 5.0
570
+ 2.5
571
+ -5.02.50.0
572
+ 0.0
573
+ -2.5y
574
+ 2.5
575
+ 5.0
576
+ X
577
+ 5.0!"#
578
+ !$#
579
+ Fig. 7.
580
+ (a):
581
+ Persistence diagram, and (b) trajectory of R¨ossler system,
582
+ a = 0.2, b = 1.2, c = 5.7.
583
+ Green and red lines in Fig.
584
+ (b) represent the
585
+ birth and death positions of generators whose deaths are between 3.0 and 4.0,
586
+ respectively.
587
+ !"#
588
+ !$#
589
+ Fig. 8.
590
+ (a) Persistence diagram, and (b) trajectory of R¨ossler system, a =
591
+ 0.2, b = 0.7, c = 5.7. The birth positions of generators surrounded by black and
592
+ green ellipses in (a) correspond to the black and green lines in (b), respectively.
593
+ 8
594
+
595
+ Rossler,b=0.70
596
+ 12
597
+ 10
598
+ 102
599
+ 8
600
+ Death
601
+ 6
602
+ 4
603
+ 101
604
+ 2
605
+ 0
606
+ 0.0
607
+ 2.5
608
+ 5.0
609
+ 7.5
610
+ 10.0
611
+ BirthRosslerb=0.70
612
+ 10
613
+ 8
614
+ 6
615
+ Z
616
+ 4
617
+ 2
618
+ 0
619
+ 5
620
+ 5
621
+ 0 x
622
+ 0
623
+ -5
624
+ y
625
+ -5Rossler, b=1.20
626
+ 12
627
+ 103
628
+ 10
629
+ 8
630
+ 102
631
+ Death
632
+ 6
633
+ 4
634
+ 101
635
+ 2
636
+ 0
637
+ 0.0
638
+ 2.5
639
+ 5.0
640
+ 7.5
641
+ 10.0
642
+ BirthRossler, b=1.20
643
+ 6
644
+ 4
645
+ Z
646
+ 2
647
+ 5
648
+ 0
649
+ 0 x
650
+ 5.0
651
+ 2.5
652
+ 0.0
653
+ 5.0
654
+ -7.5!"#
655
+ !$#
656
+ !%#
657
+ Fig. 9.
658
+ Persistence diagrams for several interval of snapshots ∆t. (a) ∆t =
659
+ 0.2, (b) ∆t = 0.5, and (c)∆t = 1.0, respectively.
660
+ The pararmeters of the
661
+ R¨ossler system are a = 0.2, b = 0.7, c = 5.7
662
+ !"#
663
+ !$#
664
+ Fig. 10.
665
+ Persistence diagrams obtained using the trajectory (a) 300 ≤ t ≤
666
+ 500, and (b) 100 ≤ t ≤ 500. The parameters of the R¨ossler system are a =
667
+ 0.2, = 0.7, c = 5.7, and the interval of snapshots ∆t = 0.5.
668
+ ∆t = 0.2, we obtained the PD shown in Fig. 9(a), which is qualitatively consistent with the case of
669
+ ∆t = 0.1 in Fig. 8(a). Further increase of ∆t produced the many “noisy” generators, which made
670
+ the structure of generators unclear. Fig. 9 (b) and (c) represent the PDs where ∆t = 0.5 and 1.0,
671
+ respectively. In the case of ∆t = 0.5, the PD has many noisy generators, but it seems similar to the
672
+ PD with ∆t = 0.1 and 0.2. In the case of ∆t = 1.0, we find no clear cluster of generators. These
673
+ “noisy” generators cannot be removed even if we use a longer time series. Fig. 10 shows the PDs
674
+ when we take longer sequences for ∆t = 0.5. Fig. 10(a) and (b) use two times and four times longer
675
+ sequences than the case of Fig. 9(b), but the “noisy” generators remain. These results suggests that
676
+ a small ∆t is required to apply our method.
677
+ 3.3 Analysis of the ECG200 dataset
678
+ In this subsection, we present the analysis of the real time-series dataset ECG200, provided by Ol-
679
+ szewski et al[30]. This dataset includes the 200 ECGs of a heartbeat, which are classified into two
680
+ classes: healthy patients and patients with a myocardial infarction (MI). The dataset is divided into
681
+ 100 training samples and 100 test samples. In this study, we only used the dataset for training. The
682
+ dataset was downloaded from the Time Series Classification Repository[31].
683
+ First, we present the examples of ECG data of a healthy patient and a patient with an MI in
684
+ Figs. 11 (a) and (d). In this figure, the ECG signal of an MI patient appears flat, whereas that of
685
+ the healthy patient contains considerable noise. The corresponding PDs are shown in Figs. 11(b)
686
+ and (e).
687
+ In the case of an MI patient shown in Fig. 11 (e), the lifetime of most generators was
688
+ smaller than 0.5. In contrast, the lifetimes in Fig. 11(e) had a large variation, which suggested the
689
+ existence of noise in the data from a healthy patient. In this case, the PH gives more intuition to
690
+ us than the standard technique such as Fourier transformation. For example, we present the results
691
+ of Fourier transformation cn = �
692
+ m x(m) exp
693
+ � 2πimn
694
+ N
695
+
696
+ in Fig. 11(c) and (f), where N represents the
697
+ 9
698
+
699
+ Rossler,b=0.70, 100 ≤ t ≤500
700
+ 12
701
+ 102
702
+ 10
703
+ 8
704
+ Death
705
+ 6
706
+ 101
707
+ 4
708
+ 2
709
+ 0
710
+ 100
711
+ 0.0
712
+ 2.5
713
+ 5.0
714
+ 7.5
715
+ 10.0
716
+ BirthRossler,b=0.70,300 ≤ t ≤500
717
+ 12
718
+ 102
719
+ 10
720
+ 8
721
+ Death
722
+ 6
723
+ 101
724
+ 4
725
+ 2
726
+ 0
727
+ 100
728
+ 0.0
729
+ 2.5
730
+ 5.0
731
+ 7.5
732
+ 10.0
733
+ BirthRossler,b=0.70,△t=1.0
734
+ 12
735
+ 102
736
+ 10
737
+ 8
738
+ Death
739
+ 6
740
+ 101
741
+ 4
742
+ 2
743
+ 0
744
+ 100
745
+ 0.0
746
+ 2.5
747
+ 5.0
748
+ 7.5
749
+ 10.0
750
+ BirthRossler,b=0.70.△t=0.5
751
+ 12
752
+ 10
753
+ 101
754
+ 8
755
+ Death
756
+ 6
757
+ 2
758
+ 0
759
+ 100
760
+ 0.0
761
+ 2.5
762
+ 5.0
763
+ 7.5
764
+ 10.0
765
+ BirthRossler,b=0.70,△t=0.2
766
+ 12
767
+ 10
768
+ 8
769
+ Death
770
+ 6
771
+ 101
772
+ 4
773
+ 2
774
+ 0
775
+ 100
776
+ 0.0
777
+ 2.5
778
+ 5.0
779
+ 7.5
780
+ 10.0
781
+ Birth!"#
782
+ !$#
783
+ !%#
784
+ !&#
785
+ !'#
786
+ !(#
787
+ Fig. 11.
788
+ Examples of electrocardiogram data and corresponding persistence
789
+ diagrams and Fourier components.
790
+ Upper: (a) electrocardiogram data, (b)
791
+ persistence diagram, and (c) Fourier components obtained from a healthy pa-
792
+ tients. Lower: (d) electrocardiogram data, (e) persisntence diagram, and (f)
793
+ Fourier components obtained from a patient with myocardial infarction.
794
+ length of sequence. The difference of the coefficients between the healthy patient and the patient with
795
+ MI seems clear, but it is difficult to define a single variable that classify these two classes. Fourier
796
+ transformation is a powerful tool when the time series has some characteristic frequencies, but in this
797
+ case, there is no typical frequency that distinguishes patients with MI from healthy patients. To apply
798
+ Fourier transformation in this problem, we require more complicated methods such as the analysis
799
+ using Bag-of-SFA-Symbols[32].
800
+ Based on this observation, we investigated whether we can use the variance in the lifetimes of the
801
+ generators as an indicator for an MI. First, we studied the distribution of the variance of lifetimes
802
+ for patients with MI and healthy patients. The result is shown in Fig. 12(a). In the case of an MI,
803
+ the distribution peaked around 0.01, whereas in the case of the healthy patients, it peaked around
804
+ 0.04 for normal persons. This figure suggests that low variance in lifetimes is the signal of an MI. To
805
+ estimate the performance of the variance of lifetimes as the marker of an MI, we calculated the receiver
806
+ operating characteristic (ROC) curve and the area under the curve (AUC). The ROC curve represents
807
+ the relation between false positive rate (FPR) and true positive rate (TPR). Suppose that we judge
808
+ the ECG whose variance of lifetimes is smaller than p is positive. Then, number of true positive
809
+ (TP), false negative (FN), true negative (TN), and false positive (FP) are defined as the number of
810
+ correctly identified MI patients, misidentified MI patients, correctly identified healthy patients, and
811
+ misidentified healthy patients, respectively. TPR and FPR are defined by
812
+ TPR =
813
+ TP
814
+ TP + FN ,
815
+ (7)
816
+ and
817
+ FPR =
818
+ FP
819
+ FP + TN .
820
+ (8)
821
+ The ROC curve is the plot of (FPR, TPR). AUC, defined as the area under the ROC curve, is
822
+ the standard characteristic of the performance of a quantitative diagnostic test. If AUC = 1.0, we
823
+ have no incorrect identification, whereas if AUC=0.5, the identification is equivalent to a random
824
+ identification.
825
+ In our case, the AUC was 0.811, which implies that the variance has a moderate
826
+ accuracy as an indicator of MI [33]. Compared with this result, Kirchenko et al. classified the same
827
+ dataset using the deep learning of RQA and the RP image, with AUC=0.76 and 0.92, respectively
828
+ [34]. Therefore, our method is better than analysis using RQA, but it does not improve upon the
829
+ analysis of the RP using deep learning. However, we note that the interpretation of our result is
830
+ 10
831
+
832
+ #2: Healthy
833
+ 30
834
+ Re(Cn)
835
+ Im(Cn)
836
+ 20
837
+ 10
838
+ G
839
+ 0
840
+ -10
841
+ -20
842
+ -30
843
+ 0
844
+ 10
845
+ 20
846
+ 30
847
+ 40
848
+ 50
849
+ n#1: MI
850
+ Re(Cn)
851
+ 40
852
+ Im(Cn)
853
+ 20
854
+ 0
855
+ -20
856
+ 0
857
+ 10
858
+ 20
859
+ 30
860
+ 40
861
+ 50
862
+ n#1: MI
863
+ 2.5
864
+ 2.0
865
+ 1.5
866
+ 101
867
+ Death
868
+ Value
869
+ 1.0
870
+ 0.5
871
+ 0.0
872
+ 100
873
+ 0.0
874
+ 0.5
875
+ 1.0
876
+ 1.5
877
+ 2.0
878
+ 2.5
879
+ Birth#2:healthy
880
+ 1
881
+ -2
882
+ 0
883
+ 25
884
+ 50
885
+ 75#1: MI
886
+ 2
887
+ 1
888
+ 0
889
+ -1
890
+ -2
891
+ 0
892
+ 25
893
+ 50
894
+ 75#2: healthy
895
+ 2.5
896
+ 101
897
+ 2.0
898
+ 1.5
899
+ Death
900
+ Value
901
+ 1.0
902
+ 0.5
903
+ 0.0
904
+ 100
905
+ 0.0
906
+ 0.5
907
+ 1.0
908
+ 1.5
909
+ 2.0
910
+ 2.5
911
+ Birth!"#
912
+ !$#
913
+ Fig. 12.
914
+ (a) Distribution of variance of lifetimes for MI patients and healthy
915
+ patients. (b) Receiver operating curve when we use variance of lifetime as the
916
+ indicator of MI. Area under curve = 0.811.
917
+ much easier than that obtained by deep learning. In summary, our example shows that the variance
918
+ of lifetimes is a promising signal to diagnose MI.
919
+ 4. Discussion and Conclusion
920
+ In this study, we proposed a new method for time-series analysis, using PH analysis of the distance
921
+ matrix. We demonstrated the efficacy of our method to understand the structure of attractors in the
922
+ logistic map and the R¨ossler systems; additionally, we demonstrated that this method is applicable
923
+ to real-world datasets such as ECG200. Our method uses the distance matrix, which is represented
924
+ in two-dimensional space, thereby saving computational cost compared with other methods. Thus,
925
+ our method is useful for analyzing dynamics in high-dimensional systems.
926
+ However, PH is not a developed method for data analysis, and there remains room for improvement
927
+ in our method. To conclude this study, we discuss several directions for future studies.
928
+ First, combining this technique with machine learning is a promising approach. To analyze a large
929
+ real-world dataset, machine learning techniques, such as deep learning, must be used. In machine
930
+ learning, vectorizing the characteristic features is essential. However, the number of generators pro-
931
+ duced by PH is not constant, thereby rendering difficulty in the application of standard machine
932
+ learning techniques such as principal component analysis. Moreover, the generators with small life-
933
+ time are often disregarded as meaningless because they are produced by small noise, and the “sig-
934
+ nificance” of each generator must be estimated. To overcome these difficulties, numerous researchers
935
+ have proposed a variety of techniques such as persistence landscape [35], persistence images [36], and
936
+ persistence weighted Gaussian kernel [37]. These techniques combined with our proposed method will
937
+ enable the application of our method to numerous problems.
938
+ Second, investigating the information embedded in different PDs is interesting. In this study, we
939
+ did not use the PDs of degree 1, which provide characteristics of “holes” surrounded by M(θ). The
940
+ generators with degree 1 provide insights on the peaks of the distance matrix, which may give us
941
+ essential insights on the dynamics. Additionally, we can also calculate PDs using dilation-erosion
942
+ filtration [38]. In this approach, first, we make a recurrence plot, and subsequently calculate the
943
+ distance to the “boundary,” the places where black and white cells contact, for each cell. PH analysis
944
+ using this “distance to the boundary” as a filtration function provides a new quantification of the
945
+ recurrence plot. However, to generate a PD with dilation-erosion, we must determine the threshold
946
+ for the recurrence plot. The multi-parameter PH, which is currently studied intensively [39, 40], is
947
+ the PH method with several filtration functions. The application of this method will provide a way
948
+ to combine our method and dilation-erosion based PH analysis.
949
+ Finally, another future task is to mathematically investigate the relation between PD and dynamics.
950
+ In the case of RQA, it is known that the determinism has relation to the positive Lyapunov exponents.
951
+ It would be an interesting to seek the mathematical relation between the PDs and the characteristics
952
+ of the dynamical systems.
953
+ 11
954
+
955
+ 1.0
956
+ 0.8
957
+ Rate
958
+ Positive
959
+ 0.6
960
+ 0.4
961
+ True
962
+ 0.2
963
+ 0.0
964
+ 0.0
965
+ 0.2
966
+ 0.4
967
+ 0.6
968
+ 0.8
969
+ 1.0
970
+ FalsePositiveRate0.06
971
+ lifetime
972
+ 0.05
973
+ 0.04
974
+ of
975
+ variance
976
+ 0.03
977
+ 0.02
978
+ 0.01
979
+ 0.00
980
+ MI
981
+ healthy
982
+ target5. Acknowledgemens
983
+ This work is financially supported by JSPS KAKENHI Grant Number JP22K19816.
984
+ References
985
+ [1] M. Budiˇsi´c, R. Mohr, and I. Mezi´c, “Applied Koopmanism,” Chaos:
986
+ An Interdisciplinary
987
+ Journal of Nonlinear Science, vol. 22, no. 4, p. 047510, 12 2012. [Online]. Available:
988
+ http://aip.scitation.org/doi/10.1063/1.4772195
989
+ [2] H.
990
+ Nakao,
991
+ “Phase
992
+ reduction
993
+ approach
994
+ to
995
+ synchronisation
996
+ of
997
+ nonlinear
998
+ oscillators,”
999
+ Contemporary
1000
+ Physics,
1001
+ vol.
1002
+ 57,
1003
+ no.
1004
+ 2,
1005
+ pp.
1006
+ 188–214,
1007
+ 4
1008
+ 2016.
1009
+ [Online].
1010
+ Available:
1011
+ http://www.tandfonline.com/doi/full/10.1080/00107514.2015.1094987
1012
+ [3] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for
1013
+ time series classification: a review,” Data Mining and Knowledge Discovery, vol. 33, no. 4, pp.
1014
+ 917–963, 2019. [Online]. Available: https://doi.org/10.1007/s10618-019-00619-1
1015
+ [4] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
1016
+ Energy in Wireless Communication,” Science, vol. 304, no. 5667, pp. 78–80, 2004. [Online].
1017
+ Available: https://www.science.org/doi/abs/10.1126/science.1091277
1018
+ [5] W. Maass, T. Natschl¨ager, and H. Markram, “Real-Time Computing Without Stable States: A
1019
+ New Framework for Neural Computation Based on Perturbations,” Neural Computation, vol. 14,
1020
+ no. 11, pp. 2531–2560, 8 2002. [Online]. Available: https://doi.org/10.1162/089976602760407955
1021
+ [6] J. Eckmann, S. Kamphorst, and D. Ruelle, “Recurrence plots of dynamical systems,” EPL
1022
+ (Europhysics Letters), vol. 4, p. 973, 1987. [Online]. Available:
1023
+ http://iopscience.iop.org/
1024
+ 0295-5075/4/9/004/pdf/0295-5075 4 9 004.pdf
1025
+ [7] N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis
1026
+ of complex systems,” Physics Reports, vol. 438, no. 5-6, pp. 237–329, 2007.
1027
+ [8] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological Persistence and Simplification,”
1028
+ Discrete and Computational Geometry, vol. 28, no. 4, pp. 511–533, 2002. [Online]. Available:
1029
+ http://dx.doi.org/10.1007/s00454-002-2885-2
1030
+ [9] K. Xia and G.-W. Wei, “Persistent homology analysis of protein structure, flexibility and
1031
+ folding,” International Journal for Numerical Methods in Biomedical Engineering, vol. 30,
1032
+ no. 8,
1033
+ pp. 814–844,
1034
+ 12 2014. [Online]. Available:
1035
+ http://arxiv.org/abs/1412.2779http:
1036
+ //dx.doi.org/10.1002/cnm.2655
1037
+ [10] ——,
1038
+ “Multidimensional persistence
1039
+ in
1040
+ biomolecular data,”
1041
+ Journal
1042
+ of Computational
1043
+ Chemistry,
1044
+ vol.
1045
+ 36,
1046
+ no.
1047
+ 20,
1048
+ pp.
1049
+ 1502–1520,
1050
+ 7
1051
+ 2015.
1052
+ [Online].
1053
+ Available:
1054
+ http:
1055
+ //doi.wiley.com/10.1002/jcc.23953
1056
+ [11] T. Ichinomiya, I. Obayashi, and Y. Hiraoka, “Protein-Folding Analysis Using Features
1057
+ Obtained by Persistent Homology,” Biophysical Journal, vol. 118, no. 12, pp. 2926–2937, 6
1058
+ 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0006349520303763
1059
+ [12] M. Kimura, I. Obayashi, Y. Takeichi, R. Murao, and Y. Hiraoka, “Non-empirical identification
1060
+ of trigger sites in heterogeneous processes using persistent homology,” Scientific Reports,
1061
+ vol. 8, no. 1, p. 3553, 12 2018. [Online]. Available: https://doi.org/10.1038/s41598-018-21867-z
1062
+ [13] T. Ichinomiya,
1063
+ I. Obayashi,
1064
+ and Y. Hiraoka,
1065
+ “Persistent homology analysis of craze
1066
+ formation,” Physical Review E, vol. 95, no. 1, p. 012504, 1 2017. [Online]. Available:
1067
+ https://link.aps.org/doi/10.1103/PhysRevE.95.012504
1068
+ [14] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura, “Hierarchical
1069
+ structures of amorphous solids characterized by persistent homology,” Proceedings of the
1070
+ National Academy of Sciences, vol. 113, no. 26, pp. 7035–7040, 6 2016. [Online]. Available:
1071
+ http://www.pnas.org/content/113/26/7035.abstract
1072
+ [15] D. Letscher and J. Fritts, “Image segmentation using topological persistence,” in International
1073
+ Conference on Computer Analysis of Images and Patterns, 2007, pp. 587–595.
1074
+ [16] T. Qaiser, Y.-W. Tsang, D. Taniyama, N. Sakamoto, K. Nakane, D. Epstein, and N. Rajpoot,
1075
+ “Fast and accurate tumor segmentation of histology images using persistent homology and
1076
+ 12
1077
+
1078
+ deep convolutional features,” Medical Image Analysis, vol. 55, pp. 1–14, 2019. [Online].
1079
+ Available: https://www.sciencedirect.com/science/article/pii/S1361841518302688
1080
+ [17] J. A. Perea and J. Harer, “Sliding Windows and Persistence: An Application of Topological
1081
+ Methods to Signal Analysis,” Foundations of Computational Mathematics, vol. 15, no. 3, pp.
1082
+ 799–838, 6 2015. [Online]. Available: http://link.springer.com/10.1007/s10208-014-9206-z
1083
+ [18] S. Maleti´c, Y. Zhao, and M. Rajkovi´c, “Persistent topological features of dynamical systems,”
1084
+ Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, no. 5, p. 053105, 5 2016.
1085
+ [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4949472
1086
+ [19] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence,
1087
+ Warwick 1980.
1088
+ Springer, 1981, pp. 366–381.
1089
+ [20] C. J. Cellucci,
1090
+ A. M. Albano,
1091
+ and P. E. Rapp,
1092
+ “Comparative study of embedding
1093
+ methods,” Physical Review E, vol. 67, no. 6, p. 066210, 6 2003. [Online]. Available:
1094
+ https://link.aps.org/doi/10.1103/PhysRevE.67.066210
1095
+ [21] E.
1096
+ R.
1097
+ Deyle
1098
+ and
1099
+ G.
1100
+ Sugihara,
1101
+ “Generalized
1102
+ Theorems
1103
+ for
1104
+ Nonlinear
1105
+ State
1106
+ Space
1107
+ Reconstruction,”
1108
+ PLoS ONE, vol. 6,
1109
+ no. 3,
1110
+ p. e18295,
1111
+ 3 2011. [Online]. Available:
1112
+ https://dx.plos.org/10.1371/journal.pone.0018295
1113
+ [22] Z. Jia, Y. Lin, Y. Liu, Z. Jiao, and J. Wang, “Refined nonuniform embedding for coupling
1114
+ detection in multivariate time series,” Physical Review E, vol. 101, no. 6, p. 062113, 6 2020.
1115
+ [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.101.062113
1116
+ [23] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington, “A roadmap for the
1117
+ computation of persistent homology,” EPJ Data Science, vol. 6, no. 1, p. 17, 2017.
1118
+ [24] H. Edelsbrunner and J. Harer, Computational topology: an introduction.
1119
+ American Mathemat-
1120
+ ical Soc., 2010.
1121
+ [25] G. Carlsson and M. Vejdemo-Johansson, Topological Data Analysis with Applications.
1122
+ Cam-
1123
+ bridge University Press, 2021.
1124
+ [26] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The Gudhi Library: Simplicial Com-
1125
+ plexes and Persistent Homology,” in International congress on mathematical software, 2014, pp.
1126
+ 167–174.
1127
+ [27] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat – Persistent Homology Algorithms
1128
+ Toolbox,” Journal of Symbolic Computation, vol. 78, pp. 76–90, 1 2017.
1129
+ [28] A. Henry and A. V.-J. M. Tausz, “javaPlex:
1130
+ A Research Software Package for Persistent
1131
+ (Co)Homology,” in Mathematical Software – ICMS 2014, H. Hoon and C. Yap, Eds.
1132
+ Berlin,
1133
+ Heidelberg: Springer Berlin Heidelberg, 2014, pp. 129–136.
1134
+ [29] I.
1135
+ Obayashi,
1136
+ T.
1137
+ Nakamura,
1138
+ and
1139
+ Y.
1140
+ Hiraoka,
1141
+ “Persistent
1142
+ Homology
1143
+ Analysis
1144
+ for
1145
+ Materials
1146
+ Research
1147
+ and
1148
+ Persistent
1149
+ Homology
1150
+ Software:
1151
+ HomCloud,”
1152
+ Journal
1153
+ of
1154
+ the
1155
+ Physical
1156
+ Society
1157
+ of
1158
+ Japan,
1159
+ vol.
1160
+ 91,
1161
+ no.
1162
+ 9,
1163
+ 9
1164
+ 2022.
1165
+ [Online].
1166
+ Available:
1167
+ https:
1168
+ //journals.jps.jp/doi/10.7566/JPSJ.91.091013
1169
+ [30] R. T. Olszewski, R. Maxion, and D. Siewiorek, “Generalized Feature Extraction for Structural
1170
+ Pattern Recognition in Time-Series Data,” Ph.D. dissertation, Carnegie Mellon University, USA,
1171
+ 2001.
1172
+ [31] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series classification
1173
+ bake off:
1174
+ a review and experimental evaluation of recent algorithmic advances,” Data
1175
+ Mining and Knowledge Discovery, vol. 31, no. 3, pp. 606–660, 2017. [Online]. Available:
1176
+ https://doi.org/10.1007/s10618-016-0483-9
1177
+ [32] P. Sch¨afer, “The BOSS is concerned with time series classification in the presence of noise,”
1178
+ Data Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1505–1530, 2015. [Online]. Available:
1179
+ https://doi.org/10.1007/s10618-014-0377-7
1180
+ [33] A. J. Bowers and X. Zhou, “Receiver Operating Characteristic (ROC) Area Under the
1181
+ Curve (AUC): A Diagnostic Measure for Evaluating the Accuracy of Predictors of Education
1182
+ Outcomes,” Journal of Education for Students Placed at Risk (JESPAR), vol. 24, no. 1, pp.
1183
+ 20–46, 2019. [Online]. Available: https://doi.org/10.1080/10824669.2018.1523734
1184
+ [34] L. Kirichenko, T. Radivilova, and J. Stepanenko, “Applying recurrence plots to classify time
1185
+ 13
1186
+
1187
+ series,” in Computational Linguistics and Intelligent Systems, 2021.
1188
+ [35] P. Bubenik, “Statistical topological data analysis using persistence landscapes,” Journal of
1189
+ Machine Learning Research, vol. 16, 2015.
1190
+ [36] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova,
1191
+ E. Hanson, F. Motta, and L. Ziegelmeier, “Persistence images: A stable vector representation
1192
+ of persistent homology,” Journal of Machine Learning Research, vol. 18, 2017.
1193
+ [37] G. Kusano, K. Fukumizu, and Y. Hiraoka, “Persistence weighted Gaussian kernel for
1194
+ topological data analysis,” in Proceedings of The 33rd International Conference on Machine
1195
+ Learning, 2016, pp. 1–24. [Online]. Available: http://arxiv.org/abs/1601.01741
1196
+ [38] A. Garin and G. Tauzin, “A Topological “Reading” Lesson: Classification of MNIST using
1197
+ TDA,” in 2019 18th IEEE International Conference On Machine Learning And Applications
1198
+ (ICMLA), 2019, pp. 1551–1556.
1199
+ [39] G. Carlsson and A. Zomorodian, “The Theory of Multidimensional Persistence,” Discrete
1200
+ and
1201
+ Computational
1202
+ Geometry,
1203
+ vol.
1204
+ 42,
1205
+ no.
1206
+ 1,
1207
+ pp.
1208
+ 71–93,
1209
+ 2009.
1210
+ [Online].
1211
+ Available:
1212
+ https://doi.org/10.1007/s00454-009-9176-0
1213
+ [40] O. Vipond, “Multiparameter Persistence Landscapes.” Journal of Machine Learning Research,
1214
+ vol. 21, no. 61, pp. 1–38, 2020.
1215
+ 14
1216
+
LNE1T4oBgHgl3EQfswVe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE2T4oBgHgl3EQfBQa7/content/tmp_files/2301.03601v1.pdf.txt ADDED
@@ -0,0 +1,2972 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quark-lepton Yukawa ratios and nucleon decay in
2
+ SU(5) GUTs with type-III seesaw
3
+ Stefan Antusch, Kevin Hinze, and Shaikh Saad
4
+ Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
5
+ E-mail: stefan.antusch@unibas.ch, kevin.hinze@unibas.ch,
6
+ shaikh.saad@unibas.ch
7
+ Abstract:
8
+ We consider an extension of the Georgi-Glashow SU(5) GUT model by a
9
+ 45-dimensional scalar and a 24-dimensional fermionic representation, where the latter leads
10
+ to the generation of the observed light neutrino masses via a combination of a type I and a
11
+ type III seesaw mechanism. Within this scenario, we investigate the viability of predictions
12
+ for the ratios between the charged lepton and down-type quark Yukawa couplings, focusing
13
+ on the second and third family. Such predictions can emerge when the relevant entries of the
14
+ Yukawa matrices are generated from single joint GUT operators (i.e. under the condition of
15
+ single operator dominance). We show that three combinations are viable, (i) yτ/yb = 3/2,
16
+ yµ/ys = 9/2, (ii) yτ/yb = 2, yµ/ys = 9/2, and (iii) yτ/yb = 2, yµ/ys = 6. We extend these
17
+ possibilities to three toy models, accounting also for the first family masses, and calculate
18
+ their predictions for various nucleon decay rates. We also analyse how the requirement of
19
+ gauge coupling unification constrains the masses of potentially light relic states testable at
20
+ colliders.
21
+ arXiv:2301.03601v1 [hep-ph] 9 Jan 2023
22
+
23
+ Contents
24
+ 1
25
+ Introduction
26
+ 1
27
+ 2
28
+ GUT scenario
29
+ 3
30
+ 2.1
31
+ Particle content
32
+ 3
33
+ 2.2
34
+ Neutrino masses
35
+ 4
36
+ 2.3
37
+ Quark-lepton Yukawa ratios
38
+ 5
39
+ 2.4
40
+ Toy models
41
+ 5
42
+ 3
43
+ Numerical procedure
44
+ 6
45
+ 3.1
46
+ Implementation of the charged fermion Yukawa sector
47
+ 6
48
+ 3.2
49
+ Implementation of the neutrino sector
50
+ 6
51
+ 3.3
52
+ GUT scale parameters and low energy observables
53
+ 6
54
+ 3.4
55
+ Fitting procedure
56
+ 7
57
+ 4
58
+ Results
59
+ 7
60
+ 4.1
61
+ Benchmark points
62
+ 8
63
+ 4.2
64
+ Highest posterior densities
65
+ 9
66
+ 4.2.1
67
+ Quark-lepton mass ratios
68
+ 10
69
+ 4.2.2
70
+ Intermediate-scale particle masses
71
+ 10
72
+ 4.2.3
73
+ Nucleon decay width and GUT scale
74
+ 12
75
+ 5
76
+ Conclusion
77
+ 12
78
+ Appendices
79
+ 12
80
+ A Definition of new Yukawa couplings
81
+ 12
82
+ B Renormalization group equations
83
+ 14
84
+ B.1
85
+ Gauge couplings
86
+ 14
87
+ B.2
88
+ Yukawa matrices
89
+ 16
90
+ B.3
91
+ Effective neutrino mass operator
92
+ 20
93
+ 1
94
+ Introduction
95
+ Grand Unified Theories (GUTs) [1–6] are arguably one of the most appealing extensions of
96
+ the Standard Model (SM) of particle physics. In 1974, a simple and elegant GUT based on
97
+ the unifying gauge group SU(5) was proposed by H. Georgi and S. Glashow (GG model)
98
+ [3].
99
+ However, this model is incompatible with the current experimental data for three
100
+ main reasons. Firstly, the GG model does not allow for gauge coupling unification, which
101
+ – 1 –
102
+
103
+ is a necessary condition for a GUT. Secondly, it predicts massless neutrinos, which is in
104
+ conflict with neutrino oscillation experiments requiring that at least two neutrino should
105
+ be massive [7].
106
+ Thirdly, since the SM Higgs doublet is embedded into a 5-dimensional
107
+ Higgs representation of SU(5), the GG model predicts the GUT scale relation between the
108
+ charged lepton and down-type quark Yukawa matrices
109
+ Ye = Y T
110
+ d .
111
+ (1.1)
112
+ This relation in particular implies a GUT scale unification of the tau and bottom Yukawa
113
+ couplings yτ = yb, as well as a unification of the muon and strange Yukawa couplings
114
+ yµ = ys, which disagrees with the low energy data.
115
+ The first shortcoming requires extending the particle content of the minimal model by
116
+ additional GUT representations and suitably splitting the masses of their component fields
117
+ such that the running gauge couplings meet. The second shortcoming can be addressed
118
+ by introducing SU(5) representations that allow neutrino mass generation at the tree level
119
+ [8–14] or at the loop level [15–20].
120
+ Finally, the third shortcoming can for instance be
121
+ resolved by generating the Yukawa couplings from linear combinations of the renormalisable
122
+ and higher dimensional non-renormalisable operators [21], or at the renormalizable level
123
+ by either introducing a 45-dimensional Higgs field and considering linear combinations of
124
+ couplings between the SM fermions and both the 5- as well as the 45-dimensional Higgs
125
+ field [22], or by introducing vector-like fermions which mix with the SM fermions [23–25].
126
+ However, historically a first and very aesthetic solution for the third problem was
127
+ proposed by H. Georgi and C. Jarlskog (GJ model) in 1979 [26].
128
+ In their model, the
129
+ particle content of the GG model is extended by a 45-dimensional Higgs field (as well as
130
+ by two 5-dimensional Higgs fields). If the 45-dimensional Higgs field couples to the SM
131
+ fermions this gives rise to the GUT scale relation
132
+ Ye = −3Y T
133
+ d .
134
+ (1.2)
135
+ Considering a linear combination of the operators giving the relations (1.1) and (1.2) would,
136
+ on the one hand, solve the shortcoming (as already mentioned above), but, on the other
137
+ hand, predictivity in the Yukawa sector would be lost. Predictivity is however maintained
138
+ if it is ensured that different generations of charged leptons and down-type quarks couple
139
+ to different Higgs fields (which can, for example, be achieved when a family symmetry is
140
+ introduced on top of the gauge symmetry). To achieve predictivity, without referring to
141
+ any particular family symmetry, the GJ model hypothesizes the following textures of the
142
+ Yukawa coupling matrices,
143
+ Yd =
144
+
145
+
146
+
147
+ 0
148
+ B
149
+ 0
150
+ A C
151
+ 0
152
+ 0
153
+ 0
154
+ D
155
+
156
+
157
+ � ,
158
+ Y T
159
+ e =
160
+
161
+
162
+
163
+ 0
164
+ B
165
+ 0
166
+ A −3C
167
+ 0
168
+ 0
169
+ 0
170
+ D
171
+
172
+
173
+ � ,
174
+ (1.3)
175
+ implying the GUT scale relations yτ/yb = 1, yµ/ys = −3, ye/yd = −1/3 which were at that
176
+ time compatible with the experimental data. However, the current data suggests (taking
177
+ – 2 –
178
+
179
+ only the known SM particles into account in the renormalization group (RG) evolution)
180
+ that other ratios such as yτ/yb = 3/2, yµ/ys = 9/2 are better suited (see e.g. [27]).
181
+ Interestingly, these latter ratios can be obtained from higher dimensional operators
182
+ [28, 29]. With these higher dimensional operators at hand, models similar to the GJ model
183
+ can be build if the following two conditions are satisfied: (i) the Yukawa matrices should
184
+ be hierarchical, (ii) the 22- and 33- entry should be dominated by a single GUT operator,
185
+ a concept which is referred to as single operator dominance [28–30].1
186
+ Following this approach, non-SUSY GUT scenarios in which neutrino masses are gen-
187
+ erated by a type I or a type II seesaw have been investigated in [27], respectively [45]. For
188
+ GUT scenarios with a type I seesaw it was shown that the GUT scale ratios yτ/yb = 3/2
189
+ and yµ/ys = 9/2 are compatible with the experimental data. Moreover, for GUT scenarios
190
+ in which neutrino masses are generated by a type II seesaw it was found, that two combi-
191
+ nations of GUT scale relations are viable, namely (i) yτ/yb = 3/2 and yµ/ys = 9/2 and (ii)
192
+ yτ/yb = 2 and yµ/ys = 6.
193
+ In this paper we will investigate the viability of such GUT scale ratios for the case
194
+ that neutrino masses stem from a combination of a type I [46–50] and a type III [51]
195
+ seesaw mechanism. In this regard, we will consider a GUT scenario in which the particle
196
+ content of the GG model is extended by a fermionic adjoint representation as well as by
197
+ a 45-dimensional Higgs field.2 The former representation is needed to generate neutrino
198
+ masses, while the latter gives rise to operators yielding potentially viable GUT scale Yukawa
199
+ ratios. Moreover, both of these representations help to allow for gauge coupling unification.
200
+ Using the Mathematica package ProtonDecay [52] and extending the above scenario to “toy
201
+ models” we also compute the nucleon decay widths for various decay channels. Finally, we
202
+ compute the masses of the added fermion and scalar fields.
203
+ The paper is organized as follows: While the GUT scenario as well as the toy models
204
+ are introduced in Section 2, the procedure for the numerical analysis is explained in Section
205
+ 3. In Section 4 the results are presented and discussed, before concluding in Section 5.
206
+ In Appendix A, definitions of the newly introduced Yukawa couplings are given, while all
207
+ relevant RGEs that we have derived are listed in Appendix B.
208
+ 2
209
+ GUT scenario
210
+ 2.1
211
+ Particle content
212
+ The SM fermions are embedded as usual into three generations of 5F i and 10F i
213
+ 5F i = dc
214
+ i(3, 1, 1
215
+ 3) ⊕ ℓi(1, 2, −1
216
+ 2),
217
+ (2.1)
218
+ 10F i = qi(3, 2, 1
219
+ 6) ⊕ uc
220
+ i(3, 1, −2
221
+ 3) ⊕ ec
222
+ i(1, 1, 1).
223
+ (2.2)
224
+ In the considered scenario, neutrino masses are generated via a combination of a type I and
225
+ a type III seesaw mechanism. The corresponding fermionic singlet Σc and triplet Σb (under
226
+ 1For models in which the concept of single operator dominance has been applied, see e.g. [31–44].
227
+ 2A non-supersymmetric SU(5) GUT with this particle content was first considered in [13]. However, so
228
+ far it has not been studied under the assumption of single operator dominance.
229
+ – 3 –
230
+
231
+ SU(2)L) are contained in an adjoint fermionic representation
232
+ 24F = Σa(8, 1, 0) ⊕ Σb(1, 3, 0) ⊕ Σc(1, 1, 0) ⊕ Σd(3, 2, −5
233
+ 6) ⊕ Σe(3, 2, 5
234
+ 6).
235
+ (2.3)
236
+ Moreover, the GUT Higgs fields decompose under the SM gauge group as
237
+ 24H = Φa(8, 1, 0) ⊕ Φb(1, 3, 0) ⊕ Φc(1, 1, 0) ⊕ Φd(3, 2, −5
238
+ 6) ⊕ Φe(3, 2, 5
239
+ 6),
240
+ (2.4)
241
+ 5H = Ta(3, 1, −1
242
+ 3) ⊕ Ha(1, 2, 1
243
+ 2),
244
+ (2.5)
245
+ 45H = φa(8, 2, 1
246
+ 2) ⊕ φb(6, 1, −1
247
+ 3) ⊕ φc(3, 3, −1
248
+ 3) ⊕ φd(3, 2, −7
249
+ 6) ⊕ φe(3, 1, −4
250
+ 3)
251
+ ⊕ Tb(3, 1, −1
252
+ 3) ⊕ Hb(1, 2, 1
253
+ 2).
254
+ (2.6)
255
+ After the SU(5) breaking, the color triplets Ta and Tb mix to yield the mass eigenstates
256
+ t1 = cos(α)Ta +sin(α)Tb and t2 = − sin(α)Ta +cos(α)Tb. Similarly, Ha and Hb mix to form
257
+ the mass eigenstates h1 = cos(β)Ha + sin(β)Hb and h⊥
258
+ 2 = − sin(β)Ha + cos(β)Hb, where
259
+ h1 is the SM Higgs doublet.
260
+ 2.2
261
+ Neutrino masses
262
+ At tree-level the relevant GUT operators for neutrino mass generation read3
263
+ L ⊃ YA 5F 24F 5H + YB 5F 24F 45H.
264
+ (2.7)
265
+ After the GUT symmetry breaking the following relevant terms emerge
266
+ L ⊃ −Y2ℓΣbHa − Y8ℓΣbHb − Y4ℓΣcHa − Y13ℓΣcHb − mΣbΣbΣb − mΣcΣcΣc,
267
+ (2.8)
268
+ where mΣb and mΣb are the respective masses of Σb and Σc, and where the GUT scale
269
+ relations
270
+ Y2 = −
271
+
272
+ 3
273
+ 10 YA,
274
+ Y4 = YA,
275
+ Y8 =
276
+
277
+ 5
278
+ 4 YB,
279
+ and
280
+ Y13 =
281
+
282
+ 3
283
+ 4 YB
284
+ (2.9)
285
+ hold. After the SU(2) triplet Σb and SU(2) singlet Σc have been integrated out and the
286
+ two Higgs fields Ha and Hb have taken their vacuum expectation values (vevs) va and vb,
287
+ where v2
288
+ a + v2
289
+ b = v2 = (246 GeV)2, and where va = v cos(β) and vb = v sin(β), the neutrino
290
+ mass matrix mν reads
291
+ mij
292
+ ν = −(Y i
293
+ 2 va + Y i
294
+ 8 vb)(Y j
295
+ 2 va + Y j
296
+ 8 vb)
297
+ 4mΣb
298
+ − (Y i
299
+ 4 va + Y i
300
+ 13 vb)(Y j
301
+ 4 va + Y j
302
+ 13 vb)
303
+ 4mΣc
304
+ .
305
+ (2.10)
306
+ Since the neutrino mass matrix mν is of rank two, two massive and one massless neutrino
307
+ are predicted.
308
+ 3After the GUT symmetry breaking these two GUT operators decompose into 19 SM Yukawa interac-
309
+ tions. For details see Appendix A.
310
+ – 4 –
311
+
312
+ 2.3
313
+ Quark-lepton Yukawa ratios
314
+ With X and Y representing one or multiple Higgs fields, the charged fermion masses stem
315
+ from GUT operators of the form
316
+ Y ij
317
+ 5
318
+ :
319
+ 10F i5F jX
320
+
321
+ Y ij
322
+ d , Y ij
323
+ e
324
+ (2.11)
325
+ Y ij
326
+ 10 :
327
+ 10F i10F jY
328
+
329
+ Y ij
330
+ u ,
331
+ (2.12)
332
+ where Yu, Yd and Ye denote the usual SM charged fermion Yukawa matrices. Assuming
333
+ in the charged fermion Yukawa sector the concept of single operator dominance, i.e. that
334
+ each Yukawa entry is dominated by a singlet GUT operator, allows to connect the down-
335
+ type with the charged lepton Yukawa matrix via group theoretical Clebsch-Gordan (CG)
336
+ factors cij. In SU(5) GUTs, and considering up to dimension five operators, the potentially
337
+ viable CG factors are |cij| ∈ {1/6, 1/2, 2/3, 1, 3/2, 2, 3, 9/2, 6, 9, 18}. The possible GUT
338
+ operators yielding these ratios are given in [28, 29]. Moreover, if the matrix Y5 is assumed
339
+ to be of hierarchical nature and dominated by its diagonal entries, then the second and
340
+ third family down-type quark and charged lepton masses stem dominantly from the GUT
341
+ operators O2 and O3 dominating the 22 and 33 positions in Y5.
342
+ Depending on which
343
+ operators are chosen for O2 and O3, different GUT scale Yukawa ratios yτ/yb and yµ/ys
344
+ are predicted. Our numerical analysis (cf. Section 4) shows that there are only two possible
345
+ choices for the GUT scale ratio yτ/yb, namely 3/2 or 2. The former CG factor can be
346
+ complemented by a factor 9/2 for the second family, while for the latter CG factor two
347
+ different completions, yµ/ys = 6 or yµ/ys = 9/2, are possible.
348
+ 2.4
349
+ Toy models
350
+ We now extend the above motivated scenarios to three toy models which also include the first
351
+ family. For simplicity, we chose the matrix Y5 to be of diagonal nature. The double ratio
352
+ (yµyd)/(yeys) = 10.7+1.6
353
+ −0.9, which is nearly constant under renormalization group running
354
+ (see e.g. [53]), suggests, that the the ratio yµ/ys = 9/2 is best complemented by a ratio
355
+ ye/yd = 4/9, while the best completion of the ratio yµ/ys = 6 is given by ye/yd = 1/2.
356
+ Utilizing these ratios, our three toy models relate the down-type with the charged lepton
357
+ Yukawa matrix via
358
+ Model 1:
359
+ Ye = diag
360
+ �4
361
+ 9, 9
362
+ 2, 3
363
+ 2
364
+
365
+ · Y T
366
+ d ,
367
+ (2.13)
368
+ Model 2:
369
+ Ye = diag
370
+ �4
371
+ 9, 9
372
+ 2, 2
373
+
374
+ · Y T
375
+ d ,
376
+ (2.14)
377
+ Model 3:
378
+ Ye = diag
379
+ �1
380
+ 2, 6, 2
381
+
382
+ · Y T
383
+ d .
384
+ (2.15)
385
+ Moreover, for simplicity4 we assume in each toy model that Y10 is dominated by the
386
+ operator 10F 10F 5H in all entries, yielding a symmetric up-type Yukawa matrix, i.e. Yu =
387
+ 4We might consider higher-dimensional operators also for Y10, for example to explain the mass hierarchy,
388
+ however since no Yukawa ratio predictions arise from this sector, we stick to the simplest case in our toy
389
+ models.
390
+ – 5 –
391
+
392
+ Y T
393
+ u .
394
+ Finally, in all toy models neutrino masses stem from a linear combination of the
395
+ operators 5F 24F 5H and 5F 24F 45H.
396
+ 3
397
+ Numerical procedure
398
+ 3.1
399
+ Implementation of the charged fermion Yukawa sector
400
+ We implement all three toy models at the GUT scale as described in Section 2.4. In all
401
+ three models the down-type Yukawa matrix Yd is simply implemented as
402
+ Yd = diag(yd
403
+ 1, yd
404
+ 2, yd
405
+ 3),
406
+ (3.1)
407
+ while the charged lepton Yukawa matrix Ye is implemented according to Eq. (2.13), (2.14),
408
+ and (2.15), respectively. Since Yu is symmetric we use a Takagi decomposition and imple-
409
+ ment it as
410
+ Yu = U †
411
+ uY diag
412
+ u
413
+ U ∗
414
+ u,
415
+ (3.2)
416
+ where5
417
+ Uu =
418
+
419
+
420
+
421
+ 1
422
+ 0
423
+ 0
424
+ 0 cu
425
+ 23
426
+ su
427
+ 23
428
+ 0 −su
429
+ 23 cu
430
+ 23
431
+
432
+
433
+
434
+
435
+
436
+
437
+ cu
438
+ 13
439
+ 0 su
440
+ 13e−iδu
441
+ 0
442
+ 1
443
+ 0
444
+ −su
445
+ 13eiδu 0
446
+ cu
447
+ 13
448
+
449
+
450
+
451
+
452
+
453
+
454
+ cu
455
+ 12
456
+ su
457
+ 12 0
458
+ −su
459
+ 12 cu
460
+ 12 0
461
+ 0
462
+ 0 1
463
+
464
+
465
+
466
+
467
+
468
+
469
+ eiβu
470
+ 1
471
+ 0
472
+ 0
473
+ 0
474
+ eiβu
475
+ 2 0
476
+ 0
477
+ 0
478
+ 1
479
+
480
+
481
+ � ,
482
+ (3.3)
483
+ and where Y diag
484
+ u
485
+ = diag(yu
486
+ 1, yu
487
+ 2, yu
488
+ 3).
489
+ 3.2
490
+ Implementation of the neutrino sector
491
+ In order to simplify the analysis we assume in the neutrino sector that the Yukawa matrices
492
+ Y5 and Y6 (for the definitions of these couplings, see Appendix A) are of the form
493
+ Y5 = z1
494
+
495
+
496
+
497
+ 0
498
+ 1
499
+ 1
500
+
501
+
502
+ � ,
503
+ Y6 = z2
504
+
505
+
506
+
507
+ 1
508
+ 1
509
+ 3
510
+
511
+
512
+ � ,
513
+ (3.4)
514
+ where z1 and z2 are real parameters. Furthermore, we denote the relative phase difference
515
+ between mΣb and mΣc by γ (i.e. γ = arg(mΣb/mΣc)). This structure is motivated by CSD3
516
+ [56] which in the case of type I seesaw has been shown to correctly describe the low-scale
517
+ neutrino observables together with a normal neutrino mass hierarchy (see e.g. [27] for a
518
+ recent work).
519
+ 3.3
520
+ GUT scale parameters and low energy observables
521
+ Each toy model contains 33 input parameters which decompose into the GUT scale MGUT,
522
+ the SU(5) gauge coupling gGUT, the masses of the added particles,6 mΦa, mΦb, mφa, mφb,
523
+ 5Here we have dropped three unphysical parameters but kept the GUT phases βu
524
+ 1 and βu
525
+ 2 which effect
526
+ the nucleon decay widths [54, 55].
527
+ 6Note that mΣd = mΣe.
528
+ – 6 –
529
+
530
+ mφc, mφd, mφe, mΣa, mΣb, mΣc, mΣd, mt1, mt2, mh2, the singular values yu
531
+ 1, yu
532
+ 2, yu
533
+ 3, yd
534
+ 1,
535
+ yd
536
+ 2, yd
537
+ 3 and angles θu
538
+ 12, θu
539
+ 13, θu
540
+ 23 as well as phases δu, βu
541
+ 1 , βu
542
+ 2 of the charged fermion Yukawa
543
+ matrices, the parameters of the neutrino Yukawa couplings z1, z2, and γ, and the eigenstate
544
+ mixing angles α and β. The respective ranges of these input parameters are given by7
545
+ MGUT < MPl,
546
+ mΦa, mΦb, mφa, mφb, mφc, mφd, mφe, mΣa, mΣb, mΣc, mΣd, mh2 ∈ [1 TeV, MGUT],
547
+ mt1, mt2 ∈ [1011 GeV, MGUT],
548
+ gGUT, yu
549
+ 1, yu
550
+ 2, yu
551
+ 3, yd
552
+ 1, yd
553
+ 2, yd
554
+ 3 ∈ [0, 1],
555
+ (3.5)
556
+ θu
557
+ 12, θu
558
+ 13, θu
559
+ 23, α, β ∈ [0, π/2],
560
+ δu, βu
561
+ 1 , βu
562
+ 2 , γ ∈ [−π, π),
563
+ z1, z2 > 0.
564
+ These input parameters are fitted to the 22 low-scale observables (listed in Eq. (3.6)) and
565
+ the nucleon decay widths of thirteen decay channels (listed in Table I).
566
+ g1, g2, g3,
567
+ yu, yc, yt, yd, ys, yb, θCKM
568
+ 12
569
+ , θCKM
570
+ 13
571
+ , θCKM
572
+ 23
573
+ , δCKM, ye, yµ, yτ,
574
+ (3.6)
575
+ ∆m2
576
+ 21, ∆m2
577
+ 31, θPMNS
578
+ 12
579
+ , θPMNS
580
+ 13
581
+ , θPMNS
582
+ 23
583
+ , δPMNS.
584
+ For the SM gauge couplings and Yukawa observables we take the experimental values from
585
+ [53], while the values for the neutrino sector are taken from NuFIT 5.1 [57].
586
+ 3.4
587
+ Fitting procedure
588
+ After implementing the input parameters given in Eq. (3.5) at the GUT scale we compute
589
+ the RG evolution to the Z scale. For the gauge couplings we use a 2-loop running, while
590
+ we compute the running of the Yukawa matrices and the effective neutrino mass operator
591
+ at 1-loop. The nucleon decay widths are computed using the Mathematica package Proton
592
+ Decay [52] (for a description of the calculation see e.g. [27]). Taking into account all observ-
593
+ ables we compute at the low scale the χ2-function which we minimize using a differential
594
+ evolution algorithm giving us a benchmark point. With a flat prior distribution we calcu-
595
+ late 4 × 106 data points performing a Markov-chain-Monte-Carlo (MCMC) analysis using
596
+ an adaptive Metropolis-Hastings algorithm [65] which we start from this benchmark point.
597
+ These data points are finally used to compute the highest posterior density (HPD) ranges
598
+ of various quantities.
599
+ 4
600
+ Results
601
+ The results of our numerical analysis are presented in this section. We are in particular
602
+ interested in the nucleon decay predictions, the intermediate-scale particle masses as well
603
+ 7Note that although we do not put any perturbativity constraints on the neutrino Yukawa couplings z1
604
+ and z2 the fit automatically choses them to be below 1 (cf. Section 4).
605
+ – 7 –
606
+
607
+ decay channel
608
+ τ/B [year]
609
+ Γpartial [GeV]
610
+ Reference
611
+ Proton:
612
+ p → π0 e+
613
+ > 2.4 · 1034
614
+ < 8.7 · 10−67
615
+ [58]
616
+ p → π0 µ+
617
+ > 1.6 · 1034
618
+ < 1.3 · 10−66
619
+ [58]
620
+ p → η0 e+
621
+ > 1.0 · 1034
622
+ < 2.0 · 10−66
623
+ [59]
624
+ p → η0 µ+
625
+ > 4.7 · 1033
626
+ < 4.4 · 10−66
627
+ [59]
628
+ p → K0 e+
629
+ > 1.1 · 1033
630
+ < 1.9 · 10−65
631
+ [60]
632
+ p → K0 µ+
633
+ > 3.6 · 1033
634
+ < 5.8 · 10−66
635
+ [61]
636
+ p → π+ ν
637
+ > 3.9 · 1032
638
+ < 5.3 · 10−65
639
+ [62]
640
+ p → K+ ν
641
+ > 6.6 · 1033
642
+ < 3.2 · 10−66
643
+ [63]
644
+ Neutron:
645
+ n → π− e+
646
+ > 5.3 · 1033
647
+ < 3.9 · 10−66
648
+ [59]
649
+ n → π− µ+
650
+ > 3.5 · 1033
651
+ < 5.9 · 10−66
652
+ [59]
653
+ n → π0 ν
654
+ > 1.1 · 1033
655
+ < 1.9 · 10−65
656
+ [62]
657
+ n → η0 ν
658
+ > 5.6 · 1032
659
+ < 3.7 · 10−65
660
+ [60]
661
+ n → K0 ν
662
+ > 1.2 · 1032
663
+ < 1.7 · 10−64
664
+ [60]
665
+ Table I: Current experimental bounds on the decay widths Γpartial, respectively lifetime
666
+ τ/B at 90 % confidence level, where B is the branching ratio for the decay channel. See
667
+ also [64] for future projections and sensitivities of various upcoming detectors.
668
+ as the low scale predictions for the charged lepton and down-type quark mass ratios. In
669
+ Section 4.1 we show the results of our minimization procedure. Starting an MCMC analysis
670
+ from these benchmark points allows us to obtain the HPD ranges of various quantities. The
671
+ results of this analysis is presented in Section 4.2.
672
+ 4.1
673
+ Benchmark points
674
+ We obtain for all three models benchmark points through a minimization of the χ2-function
675
+ as described in Section 3. In Table II the input parameters for the respective benchmark
676
+ points are listed. Moreover, the dominant pulls χ2
677
+ i are presented in Table III. All three
678
+ models can be very well fitted to the data. The strongest (though quite small) pull is given
679
+ by the first and second family down-type quark masses. The biggest difference between the
680
+ three models is the respectively favored GUT scale. For Models 2 and 3 a GUT scale above
681
+ 1017 GeV is favored, while for the benchmark point of Model 1 a GUT scale below 1016 GeV
682
+ is obtained. This also results in different results for the predicted nucleon decay rates (cf.
683
+ Section 4.2). Another difference is the preferred choice of some of the intermediate-scale
684
+ particle masses. In the presented benchmark point the mass of the fermionic field Σa is
685
+ obtained to be at the GUT scale for Model 1, at the intermediate scale for Model 2 and at
686
+ the relatively low scale (23 TeV) for Model 3. Moreover, a mass of the leptoquark φc of 1
687
+ – 8 –
688
+
689
+ TeV, respectively 4 TeV is obtained for Model 3, respectively Model 2, whereas for Model 1
690
+ the mass of this field is above 106 TeV. For the HPD results of these particle masses confer
691
+ the subsequent section.
692
+ Model 1
693
+ Model 2
694
+ Model 3
695
+ gGUT / 10−1
696
+ 5.94
697
+ 6.17
698
+ 6.33
699
+ log10(MGUT / GeV)
700
+ 15.6
701
+ 17.2
702
+ 17.3
703
+ log10(mφa / GeV)
704
+ 9.43
705
+ 14.0
706
+ 16.7
707
+ log10(mφc / GeV)
708
+ 9.02
709
+ 3.63
710
+ 3.00
711
+ log10(mΣa / GeV)
712
+ 15.6
713
+ 7.53
714
+ 4.36
715
+ log10(mΣb / GeV)
716
+ 14.2
717
+ 14.9
718
+ 14.7
719
+ log10(mΣc / GeV)
720
+ 13.8
721
+ 12.8
722
+ 13.2
723
+ log10(mΣd / GeV)
724
+ 14.2
725
+ 15.9
726
+ 14.1
727
+ yu
728
+ 1 / 10−6
729
+ 2.63
730
+ 2.11
731
+ 1.99
732
+ yu
733
+ 2 / 10−3
734
+ 1.46
735
+ 1.37
736
+ 1.18
737
+ yu
738
+ 3 / 10−1
739
+ 4.54
740
+ 4.26
741
+ 3.65
742
+ yd
743
+ 1 / 10−6
744
+ 6.21
745
+ 6.30
746
+ 5.46
747
+ yd
748
+ 2 / 10−4
749
+ 1.31
750
+ 1.21
751
+ 0.99
752
+ yd
753
+ 3 / 10−3
754
+ 6.64
755
+ 6.01
756
+ 5.36
757
+ z1 / 10−1
758
+ 3.50
759
+ 9.42
760
+ 6.86
761
+ z2 / 10−1
762
+ 1.12
763
+ 0.32
764
+ 0.50
765
+ γ
766
+ 1.85
767
+ 1.48
768
+ 1.68
769
+ α
770
+ 0.50
771
+ 1.00
772
+ 0.50
773
+ Table II: The GUT scale input parameters of the benchmark points for all three models.
774
+ χ2
775
+ χ2
776
+ yd
777
+ χ2
778
+ ys
779
+ χ2
780
+ yb
781
+ χ2
782
+
783
+ χ2
784
+
785
+ χ2
786
+ Γ(p→π0e+)
787
+ Model 1
788
+ 1.36
789
+ 0.27
790
+ 0.41
791
+ 0.06
792
+ 0.04
793
+ 0.14
794
+ 0.44
795
+ Model 2
796
+ 0.31
797
+ 0.23
798
+ 0.02
799
+ 0.01
800
+ 0.00
801
+ 0.05
802
+ 0.00
803
+ Model 3
804
+ 0.33
805
+ 0.17
806
+ 0.03
807
+ 0.00
808
+ 0.06
809
+ 0.07
810
+ 0.00
811
+ Table III: The total χ2 as well as the dominant pulls χ2
812
+ i for the benchmark points of all
813
+ three models.
814
+ 4.2
815
+ Highest posterior densities
816
+ As described in Section 3.4 we vary the input parameters listed in Eq. 3.5 around their
817
+ benchmark points (cf. Table II) using an MCMC analysis. From these generated points we
818
+ then compute the HPD intervals of various parameters and observables.
819
+ – 9 –
820
+
821
+ Model 1
822
+ Model 2
823
+ Model 3
824
+ 0.14
825
+ 0.15
826
+ 0.16
827
+ 0.17
828
+ 0.18
829
+ 0.19
830
+ ye/yd
831
+ HPD intervals for ye/yd
832
+ Model 1
833
+ Model 2
834
+ Model 3
835
+ 1.7
836
+ 1.8
837
+ 1.9
838
+ 2.0
839
+ 2.1
840
+ yμ/ys
841
+ HPD intervals for yμ/ys
842
+ Model 1
843
+ Model 2
844
+ Model 3
845
+ 0.59
846
+ 0.60
847
+ 0.61
848
+ 0.62
849
+ 0.63
850
+ yτ/yb
851
+ HPD intervals for yτ/yb
852
+ Figure 1: Low scale (MZ) HPD intervals for charged lepton and down-type quark Yukawa
853
+ ratios of all three families. The 1σ (2σ) HDP intervals are colored dark (light).
854
+ In Figures 1 – 4 we use the following color coding: For Model 1, 2, and 3 the HPD
855
+ intervals of various quantities are colored red, green, and blue, respectively, while the 1σ
856
+ (2σ) HPD intervals are colored dark (light).
857
+ 4.2.1
858
+ Quark-lepton mass ratios
859
+ The HPD results for the low scale charged lepton and down-type quark mass ratios are
860
+ presented in Figure 1.
861
+ The horizontal dashed line represents the current experimental
862
+ central value, whereas the white region shows the current experimental 1σ range. Clearly,
863
+ all three models are capable of reproducing viable mass ratios. This strengthens the results
864
+ of the benchmark points in the previous subsection (cf. Tables II and III). Compared to
865
+ Model 2 and 3, Model 1 gives a bit smaller predictions for the mass ratios for all three
866
+ generations.
867
+ 4.2.2
868
+ Intermediate-scale particle masses
869
+ Figure 2 shows the predicted HPD intervals of the intermediate-scale particle masses. Most
870
+ of the masses are predicted to be out of the reach of current and future colliders, because
871
+ they would either produce too much proton decay, spoil gauge coupling unification or be-
872
+ cause of the fit of the fermion masses. But interestingly, the fields Φb, φc and Σa are not
873
+ only potentially within the reach of future searches, but can also be used to distinguish be-
874
+ tween the different models: An observation of the one of the fields Φb or Σa would strongly
875
+ hint towards Model 3, while an observation of the field φc would disfavor Model 1. In fact,
876
+ the most promising lookout could be for the leptoquark φc. The upper bound of the HPD
877
+ 1σ range is predicted to be 23 TeV (2.8 TeV) in Model 2 (3), whereas the upper bound of
878
+ the 2σ intervals is 175 TeV (17 TeV). In the following, we briefly state the current collider
879
+ bounds on these particles.
880
+ The scalar triplet, Φb, with zero hypercharge, residing in the 24H multiplet is expected
881
+ to be light in Model 3. Note that Φb contains a neutral Φ0
882
+ b and a pair of singly charged
883
+ Φ±
884
+ b states. In the low-energy effective theory, a term of the form h†
885
+ 1Φ2
886
+ bh1 is allowed, where
887
+ – 10 –
888
+
889
+ mΦa
890
+ mΦb
891
+ mTa
892
+ mTb
893
+ m ϕa
894
+ m ϕb
895
+ m ϕc
896
+ m ϕd
897
+ m ϕe
898
+ mΣa
899
+ mΣb
900
+ mΣc
901
+ mΣd
902
+ Model 1
903
+ Model 2
904
+ Model 3
905
+ 2
906
+ 4
907
+ 6
908
+ 8
909
+ 10
910
+ 12
911
+ 14
912
+ 16
913
+ 18
914
+ log10(μ/GeV)
915
+ HPD intervals for intermediate-scale particle masses
916
+ Figure 2: HPD intervals of the intermediate-scale particle masses. The 1σ (2σ) HDP
917
+ intervals are colored dark (light).
918
+ h1 is the SM Higgs doublet. As a result of this coupling, the SM Higgs can decay into two
919
+ photons h0 → γγ via a one-loop diagram mediated by the Φ±
920
+ b states. Consistency with the
921
+ LHC data requires these charged states to have masses above 250 GeV [66].
922
+ The scalar leptoquark φc, which is a triplet of SU(2)L, resides around the TeV scale
923
+ in Models 2 and 3.
924
+ In both models, its coupling to the SM fermions is dominated by
925
+ the third-generation quark and lepton. Hence, within our scenarios, its decay branching
926
+ fraction is dominated by a bτ final state. Since leptoquarks carry color, they are efficiently
927
+ produced at the LHC through gluon-initiated as well as quark-initiated processes [67]. LHC
928
+ searches of pp → bbττ from pair-produced leptoquarks rule out leptoquark masses below
929
+ 1400 GeV [68, 69].
930
+ As can be seen from Eq. (A.2), the color octet fermion Σa, which is expected to be
931
+ light in Model 3, couples, for example, to a singlet down-quark (lepton doublet) and a
932
+ super-heavy colored triplet (octet) scalar. Consequently, the lifetime of a TeV scale Σa is
933
+ expected to be large, and it behaves like a long-lived gluino that typically arises in split-
934
+ supersymmetric scenarios [70, 71]. Long-lived colored particles would hadronize, forming
935
+ so-called R-hadrons [72]. These bound states are comprised of the long-lived state and
936
+ light SM quarks or gluons, and interact with the detector material, typically inside the
937
+ calorimeters, via hadronic interactions of the light-quark constituents. Motivated by split-
938
+ supersymmetric models, R-hadrons are extensively searched for at the LHC [73, 74]. Non-
939
+ observation of any deviations of the signal from the expected background puts to a lower
940
+ – 11 –
941
+
942
+ limit on the mass of the long-lived Σa fermion of 2000 GeV [73].
943
+ 4.2.3
944
+ Nucleon decay width and GUT scale
945
+ Figure 3 shows the predictions for the HPD intervals of the GUT scale MGUT. Moreover,
946
+ the predicted HPD ranges for the nucleon decay widths of the various decay channels
947
+ are presented in Figure 4. The blue line segments in the latter picture indicate the current
948
+ experimental bounds at 90 % confidence level (cf. Table I). Moreover, the future constraints
949
+ on the decay widths for the decay channels p → π0e+ and n → π−e+ which will be provided
950
+ by Hyper-Kamiokande [75] are presented by orange line segments.
951
+ In Figure 3 it can be seen that Model 1 clearly predicts the GUT scale to be below 1016
952
+ GeV. On the other hand, a much larger GUT scale is preferred by the Models 2 and 3. Since
953
+ the nucleon decay width is inversely proportional to the forth power of the GUT scale in the
954
+ case of gauge boson mediated nucleon decay, this also results in strongly different prediction
955
+ for the nucleon decay widths of the various channels as it can be seen in Figure 4. The
956
+ nucleon decay predictions for Model 1 are very close to the current bounds, the 1σ HPD
957
+ interval of the proton decay channel p → π0e+ will be fully probed by Hyper-Kamiokande.
958
+ Moreover, Hyper-Kamiokande will probe most of the 1σ HPD interval of the neutron decay
959
+ channel n → π−e+. On the other hand, the gauge boson mediated nucleon decay is highly
960
+ suppressed in Models 2 and 3 and cannot be probed by any planed experiments. Therefore,
961
+ observation of nucleon decay in the decay channels p → π0e+ and n → π−e+ would clearly
962
+ favour Model 1 over the Models 2 and 3.
963
+ 5
964
+ Conclusion
965
+ In this paper we considered an extension of the Georgi-Glashow SU(5) GUT scenario by
966
+ a 45-dimensional scalar and a 24-dimensional fermionic representation. Neutrino masses
967
+ in this scenario are generated by a combination of a type I and a type III seesaw mech-
968
+ anism. Assuming the concept of single operator dominance we investigated which GUT
969
+ scale charged lepton and down-type quark Yukawa ratios can be viable for the second and
970
+ third family and found that three combinations work: (i) yτ/yb = 3/2, yµ/ys = 9/2, (ii)
971
+ yτ/yb = 2, yµ/ys = 9/2, and (iii) yτ/yb = 2, yµ/ys = 6. Also taking into account the origin
972
+ of the first family masses we extended these possibilities to three toy models and analyzed
973
+ various of their predictions. We showed that experimental discrimination between these
974
+ models could be possible since they predict different nucleon decay rates as well as distinct
975
+ light relics.
976
+ Appendices
977
+ A
978
+ Definition of new Yukawa couplings
979
+ The Lagrangian density contains the two terms
980
+ L ⊃ YA 5i
981
+ F 24F 5H + YB 5i
982
+ F 24F 45H.
983
+ (A.1)
984
+ – 12 –
985
+
986
+ Model 1
987
+ Model 2
988
+ Model 3
989
+ 15.5
990
+ 16.0
991
+ 16.5
992
+ 17.0
993
+ 17.5
994
+ 18.0
995
+ 18.5
996
+ MGUT
997
+ HPD intervals for MGUT
998
+ Figure 3: Predicted HPD intervals of the GUT scale. The 1σ (2σ) HDP intervals are
999
+ colored dark (light).
1000
+ p → π0e+
1001
+ p → π0 μ+
1002
+ p → η0e+
1003
+ p → η0 μ+
1004
+ p → K0e+
1005
+ p → K0 μ+ p → π+ν
1006
+ p → K+ν
1007
+ n → π-e+
1008
+ n → π- μ+
1009
+ n → π0ν
1010
+ n → η0ν
1011
+ n → K0ν
1012
+ Model 1
1013
+ Model 2
1014
+ Model 3
1015
+ -85
1016
+ -80
1017
+ -75
1018
+ -70
1019
+ -65
1020
+ log10(Γ/GeV)
1021
+ HPD intervals for decay widths Γ of different nucleon decay channels
1022
+ Figure 4:
1023
+ Predicted HPD intervals of the nucleon decay widths.
1024
+ The 1σ (2σ) HDP
1025
+ intervals are colored dark (light). For each decay channel the blue line segments represent
1026
+ the current experimental constraints. The future Hyper-Kamiokande constraints for the
1027
+ decay channels p → π0e+ and n → π−e+ are indicated by orange line segments.
1028
+ – 13 –
1029
+
1030
+ After the GUT symmetry breaking they decompose into
1031
+ L =
1032
+
1033
+ 2
1034
+ 15YA dcΣcTa −
1035
+
1036
+ 3
1037
+ 10YA ℓΣcHa + YA dcΣaTa + YA ℓΣbHa+
1038
+ YA dcΣdHa + YA ℓΣeTa +
1039
+
1040
+ 5
1041
+ 12YB dcΣcTb +
1042
+
1043
+ 5
1044
+ 4 YB ℓΣcHb+
1045
+ 1
1046
+ 2
1047
+
1048
+ 2YB dcΣaTb + 1
1049
+
1050
+ 2YB dcΣaφb + 1
1051
+
1052
+ 2YB ℓΣaφa + 1
1053
+
1054
+ 2YB dcΣbφc+
1055
+
1056
+ 3
1057
+ 4 YB ℓΣbHb − 1
1058
+
1059
+ 2YB dcΣdφa −
1060
+ 1
1061
+ 2
1062
+
1063
+ 6YB dcΣdHb + 1
1064
+
1065
+ 2YB ℓΣdφe−
1066
+ 1
1067
+
1068
+ 2YB dcΣeφd +
1069
+ 1
1070
+ 2
1071
+
1072
+ 2YB ℓΣeTb − 1
1073
+
1074
+ 2YB ℓΣeφc
1075
+ ≡ Y1 dcΣcTa + Y2 ℓΣcHa + Y3 dcΣaTa + Y4 ℓΣbHa+
1076
+ Y5 dcΣdHa + Y6 ℓΣeTa + Y7 dcΣcTb + Y8 ℓΣcHb+
1077
+ Y9 dcΣaTb + Y10 dcΣaφb + Y11 ℓΣaφa + Y12 dcΣbφc+
1078
+ Y13 ℓΣbHb + Y14 dcΣdφa + Y15 dcΣdHb + Y16 ℓΣdφe+
1079
+ Y17 dcΣeφd + Y18 ℓΣeTb + Y19 ℓΣeφc ,
1080
+ (A.2)
1081
+ where we defined the Yukawa matrices YN, with N = 1, . . . , 19.
1082
+ B
1083
+ Renormalization group equations
1084
+ Here the RGEs for the gauge and Yukawa couplings as well as for the effective neutrino
1085
+ mass operator are listed. We have used the Mathematica package SARAH [76, 77] to obtain
1086
+ the RGEs for the gauge and Yukawa couplings. The SM contribution for the RGE of the
1087
+ effective neutrino mass operator is taken from [78]. In order to compute the new contribution
1088
+ for this RGE we have used the method described therein. We use the following definition
1089
+ for the Heaviside-Theta function
1090
+ H(µ, m) =
1091
+
1092
+ 1, for µ ≥ m,
1093
+ 0, for µ < m.
1094
+ (B.1)
1095
+ B.1
1096
+ Gauge couplings
1097
+ The RGEs for gauge couplings (i, k = 1 − 3) are given by
1098
+ µdgi
1099
+ dµ =
1100
+ βgi
1101
+ 1−loop
1102
+ 16π2
1103
+ +
1104
+ βgi
1105
+ 2−loop
1106
+ (16π2)2 ,
1107
+ (B.2)
1108
+ where βgi
1109
+ 1−loop is the 1-loop and βgi
1110
+ 2−loop is the 2-loop contribution given by
1111
+ βgi
1112
+ 1−loop =
1113
+
1114
+ aSM
1115
+ i
1116
+ + H(µ, m)∆ai
1117
+
1118
+ g3
1119
+ i
1120
+ (B.3)
1121
+ βgi
1122
+ 2−loop =
1123
+
1124
+ k
1125
+ bSM
1126
+ ik g2
1127
+ k +
1128
+
1129
+ k
1130
+ ∆bikg2
1131
+ k H(µ, m) + βY,SM
1132
+ i
1133
+ + ∆βY
1134
+ i .
1135
+ (B.4)
1136
+ – 14 –
1137
+
1138
+ Here, aSM
1139
+ i
1140
+ , bSM
1141
+ ik
1142
+ and βY,SM
1143
+ i
1144
+ are the well known SM 1-loop and 2-loop coefficients as well as
1145
+ Yukawa contributions [79, 80]. Moreover, the ∆βY
1146
+ i are given by
1147
+ ∆βY
1148
+ i = g3
1149
+ i
1150
+
1151
+ k
1152
+ cikY T
1153
+ k Y ∗
1154
+ k H2
1155
+ k,
1156
+ (B.5)
1157
+ where we introduced the abbreviation H2
1158
+ k = H(µ, mF )H(µ, mH) associated to each of the
1159
+ Yukawa interactions, where, F and H refer to the BSM fermion and scalar appearing in
1160
+ that interaction, respectively, and where the cik are given by
1161
+ c1k = −
1162
+ �1
1163
+ 5, 3
1164
+ 10, 8
1165
+ 15, 9
1166
+ 20, 29
1167
+ 10, 17
1168
+ 5 , 1
1169
+ 5, 3
1170
+ 10, 8
1171
+ 15, 8
1172
+ 15, 12
1173
+ 5 , 3
1174
+ 5, 9
1175
+ 20, 116
1176
+ 15 , 29
1177
+ 10, 17
1178
+ 5 , 29
1179
+ 5 , 17
1180
+ 5 , 51
1181
+ 10
1182
+
1183
+ ,
1184
+ (B.6)
1185
+ c2k = −
1186
+
1187
+ 0, 1
1188
+ 2, 0, 11
1189
+ 4 , 3
1190
+ 2, 3, 0, 1
1191
+ 2, 0, 0, 4, 6, 11
1192
+ 4 , 4, 3
1193
+ 2, 3, 3, 3, 9
1194
+ 2
1195
+
1196
+ ,
1197
+ (B.7)
1198
+ c3k = −
1199
+ �1
1200
+ 2, 0, 13
1201
+ 3 , 0, 2, 1, 1
1202
+ 2, 0, 13
1203
+ 3 , 13
1204
+ 3 , 6, 3
1205
+ 2, 0, 16
1206
+ 3 , 2, 1, 4, 1, 3
1207
+ 2
1208
+
1209
+ .
1210
+ (B.8)
1211
+ Finally, the ∆ai and ∆bi are given as a sum over the 1-loop and 2-loop coefficients of the
1212
+ BSM fermions and scalars, i.e.
1213
+ ∆ai =
1214
+
1215
+ I
1216
+ ∆aI
1217
+ i ,
1218
+ ∆bi =
1219
+
1220
+ I
1221
+ ∆bI
1222
+ i ,
1223
+ (B.9)
1224
+ where I runs over all BSM particles. The 1-loop coefficients are then given by
1225
+ ∆aφa
1226
+ i
1227
+ =
1228
+ �4
1229
+ 5, 4
1230
+ 3, 2
1231
+
1232
+ ,
1233
+ ∆aφb
1234
+ i
1235
+ =
1236
+ � 2
1237
+ 15, 0, 5
1238
+ 6
1239
+
1240
+ ,
1241
+ ∆aφc
1242
+ i
1243
+ =
1244
+ �1
1245
+ 5, 2, 1
1246
+ 2
1247
+
1248
+ ,
1249
+ ∆aφd
1250
+ i
1251
+ =
1252
+ �49
1253
+ 30, 1
1254
+ 2, 1
1255
+ 3
1256
+
1257
+ ,
1258
+ ∆aφe
1259
+ i
1260
+ =
1261
+ �16
1262
+ 15, 0, 1
1263
+ 6
1264
+
1265
+ ,
1266
+ ∆aΦa
1267
+ i
1268
+ = {0, 0, 1
1269
+ 2},
1270
+ ∆aΦb
1271
+ i
1272
+ =
1273
+
1274
+ 0, 1
1275
+ 3, 0
1276
+
1277
+ ,
1278
+ ∆aΣa
1279
+ i
1280
+ = {0, 0, 2},
1281
+ ∆aΣb
1282
+ i
1283
+ =
1284
+
1285
+ 0, 4
1286
+ 3, 0
1287
+
1288
+ ,
1289
+ ∆aΣd,e
1290
+ i
1291
+ =
1292
+ �5
1293
+ 3, 1, 2
1294
+ 3
1295
+
1296
+ ,
1297
+ ∆ah⊥
1298
+ i
1299
+ =
1300
+ � 1
1301
+ 10, 1
1302
+ 6, 0
1303
+
1304
+ ,
1305
+ ∆at,t⊥
1306
+ i
1307
+ =
1308
+ � 1
1309
+ 15, 0, 1
1310
+ 6
1311
+
1312
+ ,
1313
+ (B.10)
1314
+ whereas the 2-loop coefficients read
1315
+ ∆bφa
1316
+ ik =
1317
+
1318
+
1319
+
1320
+ 36
1321
+ 25
1322
+ 36
1323
+ 5
1324
+ 144
1325
+ 5
1326
+ 12
1327
+ 5
1328
+ 52
1329
+ 3
1330
+ 48
1331
+ 18
1332
+ 5 18 84
1333
+
1334
+
1335
+ � ,
1336
+ ∆bφb
1337
+ ik =
1338
+
1339
+
1340
+
1341
+ 8
1342
+ 75 0
1343
+ 16
1344
+ 3
1345
+ 0 0
1346
+ 0
1347
+ 2
1348
+ 3 0 115
1349
+ 3
1350
+
1351
+
1352
+ � ,
1353
+ ∆bφc
1354
+ ik =
1355
+
1356
+
1357
+
1358
+ 4
1359
+ 25
1360
+ 24
1361
+ 5
1362
+ 16
1363
+ 5
1364
+ 8
1365
+ 5 56 32
1366
+ 2
1367
+ 5 12 11
1368
+
1369
+
1370
+ � ,
1371
+ ∆bφd
1372
+ ik =
1373
+
1374
+
1375
+
1376
+ 2401
1377
+ 150
1378
+ 147
1379
+ 10
1380
+ 392
1381
+ 15
1382
+ 49
1383
+ 10
1384
+ 13
1385
+ 2
1386
+ 8
1387
+ 49
1388
+ 15
1389
+ 3
1390
+ 22
1391
+ 3
1392
+
1393
+
1394
+ � ,
1395
+ ∆bφe
1396
+ ik =
1397
+
1398
+
1399
+
1400
+ 1024
1401
+ 75
1402
+ 0 256
1403
+ 15
1404
+ 0
1405
+ 0
1406
+ 0
1407
+ 32
1408
+ 15
1409
+ 0
1410
+ 11
1411
+ 3
1412
+
1413
+
1414
+ � ,
1415
+ ∆bΦa
1416
+ ik =
1417
+
1418
+
1419
+
1420
+ 0 0 0
1421
+ 0 0 0
1422
+ 0 0 21
1423
+
1424
+
1425
+ � ,
1426
+ ∆bΦb
1427
+ ik =
1428
+
1429
+
1430
+
1431
+ 0 0 0
1432
+ 0 28
1433
+ 3 0
1434
+ 0 0 0
1435
+
1436
+
1437
+ � ,
1438
+ ∆bΣa
1439
+ ik =
1440
+
1441
+
1442
+
1443
+ 0 0 0
1444
+ 0 0 0
1445
+ 0 0 48
1446
+
1447
+
1448
+ � ,
1449
+ ∆bΣb
1450
+ ik =
1451
+
1452
+
1453
+
1454
+ 0 0 0
1455
+ 0 64
1456
+ 3 0
1457
+ 0 0 0
1458
+
1459
+
1460
+ � ,
1461
+ ∆bΣd,e
1462
+ ik
1463
+ =
1464
+
1465
+
1466
+
1467
+ 25
1468
+ 12
1469
+ 15
1470
+ 4
1471
+ 20
1472
+ 3
1473
+ 5
1474
+ 4
1475
+ 49
1476
+ 4
1477
+ 4
1478
+ 5
1479
+ 6
1480
+ 3
1481
+ 2
1482
+ 38
1483
+ 3
1484
+
1485
+
1486
+ � ,
1487
+ ∆bh⊥
1488
+ ik =
1489
+
1490
+
1491
+
1492
+ 9
1493
+ 50
1494
+ 9
1495
+ 10 0
1496
+ 3
1497
+ 10
1498
+ 13
1499
+ 6 0
1500
+ 0
1501
+ 0 0
1502
+
1503
+
1504
+ � ,
1505
+ ∆bt,t⊥
1506
+ ik
1507
+ =
1508
+
1509
+
1510
+
1511
+ 4
1512
+ 75 0 16
1513
+ 15
1514
+ 0 0 0
1515
+ 2
1516
+ 15 0 11
1517
+ 3
1518
+
1519
+
1520
+ � .
1521
+ (B.11)
1522
+ – 15 –
1523
+
1524
+ B.2
1525
+ Yukawa matrices
1526
+ The RGEs of the Yukawa matrices read
1527
+ µdYf
1528
+ dµ =
1529
+ βf
1530
+ 16π2 ,
1531
+ (B.12)
1532
+ where f = {u, d, e, k} and (k = 1, . . . , 19). For the SM Yukawa matrices Yu, Yd and Ye (i.e.
1533
+ f = u, d, e) the beta functions are given by
1534
+ βf = βSM
1535
+ f
1536
+ + δβf,
1537
+ (B.13)
1538
+ where βSM
1539
+ f
1540
+ is the SM beta function [79, 80], and where
1541
+ δβf = YfT1 +
1542
+
1543
+ k
1544
+ af
1545
+ k(Yk)j(Y T
1546
+ d Y ∗
1547
+ k )i H2
1548
+ k .
1549
+ (B.14)
1550
+ Here, we have defined T1 as
1551
+ T1 = Y T
1552
+ 2 Y ∗
1553
+ 2 H2
1554
+ 2 + 3
1555
+ 2Y T
1556
+ 4 Y ∗
1557
+ 4 H2
1558
+ 4 + 3Y T
1559
+ 5 Y ∗
1560
+ 5 H2
1561
+ 5.
1562
+ (B.15)
1563
+ while the af
1564
+ k are given by
1565
+ au
1566
+ k =
1567
+
1568
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1569
+
1570
+ ,
1571
+ (B.16)
1572
+ ad
1573
+ k =
1574
+ �1
1575
+ 2, 0, 4
1576
+ 3, 0, 3, 0, 1
1577
+ 2, 0, 4
1578
+ 3, 4
1579
+ 3, 0, 3
1580
+ 2, 0, 8
1581
+ 3, 1, 0, 2, 0, 0
1582
+
1583
+ ,
1584
+ (B.17)
1585
+ ae
1586
+ k =
1587
+
1588
+ 0, −3
1589
+ 2, 0, 15
1590
+ 4 , 0, 3
1591
+ 2, 0, 1
1592
+ 2, 0, 0, 4, 0, 3
1593
+ 4, 0, 0, 3
1594
+ 2, 0, 3
1595
+ 2, 9
1596
+ 4
1597
+
1598
+ .
1599
+ (B.18)
1600
+ In order to simplify the notation, from hereon, associated to each Yukawa Yi → Yi H2
1601
+ i must
1602
+ be understood. The beta function of the Yukawa matrices Y1, . . . , Y19 then read
1603
+ β1 = Y1
1604
+
1605
+ −1
1606
+ 5g2
1607
+ 1 − 4g2
1608
+ 3 +
1609
+
1610
+ k
1611
+ a1
1612
+ kY T
1613
+ k Y ∗
1614
+ k
1615
+
1616
+ +
1617
+
1618
+ YdY †
1619
+ d
1620
+
1621
+ Y1 +
1622
+
1623
+ w
1624
+ b1
1625
+ w
1626
+
1627
+ Y T
1628
+ 1 Y ∗
1629
+ w
1630
+
1631
+ Yw
1632
+ + 8
1633
+ 3
1634
+
1635
+ Y T
1636
+ 3 Y ∗
1637
+ 9
1638
+
1639
+ Y7 + 2
1640
+
1641
+ Y T
1642
+ 6 Y ∗
1643
+ 18
1644
+
1645
+ Y7,
1646
+ (B.19)
1647
+ β2 = Y2
1648
+
1649
+ − 9
1650
+ 20g2
1651
+ 1 − 9
1652
+ 4g2
1653
+ 2 +
1654
+
1655
+ k
1656
+ a2
1657
+ kY T
1658
+ k Y ∗
1659
+ k + T
1660
+
1661
+ +
1662
+
1663
+ −3
1664
+ 2Y T
1665
+ e Y ∗
1666
+ e
1667
+
1668
+ Y2 +
1669
+
1670
+ w
1671
+ b2
1672
+ w
1673
+
1674
+ Y T
1675
+ 2 Y ∗
1676
+ w
1677
+
1678
+ Yw
1679
+ + 3
1680
+ 2
1681
+
1682
+ Y T
1683
+ 4 Y ∗
1684
+ 13
1685
+
1686
+ Y8 + 3
1687
+
1688
+ Y T
1689
+ 5 Y ∗
1690
+ 15
1691
+
1692
+ Y8,
1693
+ (B.20)
1694
+ β3 = Y3
1695
+
1696
+ −1
1697
+ 5g2
1698
+ 1 − 13g2
1699
+ 3 +
1700
+
1701
+ k
1702
+ a3
1703
+ kY T
1704
+ k Y ∗
1705
+ k
1706
+
1707
+ +
1708
+
1709
+ YdY †
1710
+ d
1711
+
1712
+ Y3 +
1713
+
1714
+ w
1715
+ b3
1716
+ w
1717
+
1718
+ Y T
1719
+ 3 Y ∗
1720
+ w
1721
+
1722
+ Yw
1723
+ +
1724
+
1725
+ Y T
1726
+ 1 Y ∗
1727
+ 7
1728
+
1729
+ Y9 + 2
1730
+
1731
+ Y T
1732
+ 6 Y ∗
1733
+ 18
1734
+
1735
+ Y9,
1736
+ (B.21)
1737
+ β4 = Y4
1738
+
1739
+ − 9
1740
+ 20g2
1741
+ 1 − 33
1742
+ 4 g2
1743
+ 2 +
1744
+
1745
+ k
1746
+ a4
1747
+ kY T
1748
+ k Y ∗
1749
+ k + T
1750
+
1751
+ +
1752
+ �5
1753
+ 2Y T
1754
+ e Y ∗
1755
+ e
1756
+
1757
+ Y4 +
1758
+
1759
+ w
1760
+ b4
1761
+ w
1762
+
1763
+ Y T
1764
+ 4 Y ∗
1765
+ w
1766
+
1767
+ Yw
1768
+ – 16 –
1769
+
1770
+ +
1771
+
1772
+ Y T
1773
+ 2 Y ∗
1774
+ 8
1775
+
1776
+ Y13 + 3
1777
+
1778
+ Y T
1779
+ 5 Y ∗
1780
+ 15
1781
+
1782
+ Y13,
1783
+ (B.22)
1784
+ β5 = Y5
1785
+
1786
+ −29
1787
+ 20g2
1788
+ 1 − 9
1789
+ 4g2
1790
+ 2 − 8g2
1791
+ 3 +
1792
+
1793
+ k
1794
+ a5
1795
+ kY T
1796
+ k Y ∗
1797
+ k + T
1798
+
1799
+ +
1800
+
1801
+ 3YdY †
1802
+ d
1803
+
1804
+ Y5 +
1805
+
1806
+ w
1807
+ b5
1808
+ w
1809
+
1810
+ Y T
1811
+ 5 Y ∗
1812
+ w
1813
+
1814
+ Yw
1815
+ +
1816
+
1817
+ Y T
1818
+ 2 Y ∗
1819
+ 8
1820
+
1821
+ Y15 + 3
1822
+ 2
1823
+
1824
+ Y T
1825
+ 4 Y ∗
1826
+ 13
1827
+
1828
+ Y15,
1829
+ (B.23)
1830
+ β6 = Y6
1831
+
1832
+ −17
1833
+ 10g2
1834
+ 1 − 9
1835
+ 2g2
1836
+ 2 − 4g2
1837
+ 3 +
1838
+
1839
+ k
1840
+ a6
1841
+ kY T
1842
+ k Y ∗
1843
+ k
1844
+
1845
+ +
1846
+ �1
1847
+ 2Y T
1848
+ e Y ∗
1849
+ e
1850
+
1851
+ Y6 +
1852
+
1853
+ w
1854
+ b6
1855
+ w
1856
+
1857
+ Y T
1858
+ 6 Y ∗
1859
+ w
1860
+
1861
+ Yw
1862
+ +
1863
+
1864
+ Y T
1865
+ 1 Y ∗
1866
+ 7
1867
+
1868
+ Y18 + 8
1869
+ 3
1870
+
1871
+ Y T
1872
+ 3 Y ∗
1873
+ 9
1874
+
1875
+ Y18,
1876
+ (B.24)
1877
+ β7 = Y7
1878
+
1879
+ −1
1880
+ 5g2
1881
+ 1 − 4g2
1882
+ 3 +
1883
+
1884
+ k
1885
+ a7
1886
+ kY T
1887
+ k Y ∗
1888
+ k
1889
+
1890
+ +
1891
+
1892
+ YdY †
1893
+ d
1894
+
1895
+ Y7 +
1896
+
1897
+ w
1898
+ b7
1899
+ w
1900
+
1901
+ Y T
1902
+ 7 Y ∗
1903
+ w
1904
+
1905
+ Yw
1906
+ +
1907
+
1908
+ 2Y T
1909
+ 18Y ∗
1910
+ 6
1911
+
1912
+ Y1 + 8
1913
+ 3
1914
+
1915
+ Y T
1916
+ 9 Y ∗
1917
+ 3
1918
+
1919
+ Y1,
1920
+ (B.25)
1921
+ β8 = Y8
1922
+
1923
+ − 9
1924
+ 20g2
1925
+ 1 − 9
1926
+ 4g2
1927
+ 2 +
1928
+
1929
+ k
1930
+ a8
1931
+ kY T
1932
+ k Y ∗
1933
+ k
1934
+
1935
+ +
1936
+
1937
+ Y T
1938
+ e Y ∗
1939
+ e
1940
+
1941
+ Y8 +
1942
+
1943
+ w
1944
+ b8
1945
+ w
1946
+
1947
+ Y T
1948
+ 8 Y ∗
1949
+ w
1950
+
1951
+ Yw
1952
+ + 3
1953
+ 2
1954
+
1955
+ Y T
1956
+ 13Y ∗
1957
+ 4
1958
+
1959
+ Y2 + 3
1960
+
1961
+ Y T
1962
+ 15Y ∗
1963
+ 5
1964
+
1965
+ Y2,
1966
+ (B.26)
1967
+ β9 = Y9
1968
+
1969
+ −1
1970
+ 5g2
1971
+ 1 − 13g2
1972
+ 3 +
1973
+
1974
+ k
1975
+ a9
1976
+ kY T
1977
+ k Y ∗
1978
+ k
1979
+
1980
+ +
1981
+
1982
+ YdY †
1983
+ d
1984
+
1985
+ Y9 +
1986
+
1987
+ w
1988
+ b9
1989
+ w
1990
+
1991
+ Y T
1992
+ 9 Y ∗
1993
+ w
1994
+
1995
+ Yw
1996
+ + 2
1997
+
1998
+ Y T
1999
+ 18Y ∗
2000
+ 6
2001
+
2002
+ Y3 +
2003
+
2004
+ Y T
2005
+ 7 Y ∗
2006
+ 1
2007
+
2008
+ Y3,
2009
+ (B.27)
2010
+ β10 = Y10
2011
+
2012
+ −1
2013
+ 5g2
2014
+ 1 − 13g2
2015
+ 3 +
2016
+
2017
+ k
2018
+ a10
2019
+ k Y T
2020
+ k10Y ∗
2021
+ k
2022
+
2023
+ +
2024
+
2025
+ YdY †
2026
+ d
2027
+
2028
+ Y10 +
2029
+
2030
+ w
2031
+ b10
2032
+ w
2033
+
2034
+ Y T
2035
+ 10Y ∗
2036
+ w
2037
+
2038
+ Yw,
2039
+ (B.28)
2040
+ β11 = Y11
2041
+
2042
+ − 9
2043
+ 20g2
2044
+ 1 − 9
2045
+ 4g2
2046
+ 2 − 9g2
2047
+ 3 +
2048
+
2049
+ k
2050
+ a11
2051
+ k Y T
2052
+ k Y ∗
2053
+ k
2054
+
2055
+ +
2056
+
2057
+ Y T
2058
+ e Y ∗
2059
+ e
2060
+
2061
+ Y11 +
2062
+
2063
+ w
2064
+ b11
2065
+ w
2066
+
2067
+ Y T
2068
+ 11Y ∗
2069
+ w
2070
+
2071
+ Yw,
2072
+ (B.29)
2073
+ β12 = Y12
2074
+
2075
+ −1
2076
+ 5g2
2077
+ 1 − 6g2
2078
+ 2 − 4g2
2079
+ 3 +
2080
+
2081
+ k
2082
+ a12
2083
+ k Y T
2084
+ k Y ∗
2085
+ k
2086
+
2087
+ +
2088
+
2089
+ YdY †
2090
+ d
2091
+
2092
+ Y12 +
2093
+
2094
+ w
2095
+ b12
2096
+ w
2097
+
2098
+ Y T
2099
+ 12Y ∗
2100
+ w
2101
+
2102
+ Yw,
2103
+ (B.30)
2104
+ β13 = Y13
2105
+
2106
+ − 9
2107
+ 20g2
2108
+ 1 − 33
2109
+ 4 g2
2110
+ 2 +
2111
+
2112
+ k
2113
+ a13
2114
+ k Y T
2115
+ k Y ∗
2116
+ k
2117
+
2118
+ +
2119
+ �1
2120
+ 2Y T
2121
+ e Y ∗
2122
+ e
2123
+
2124
+ Y13 +
2125
+
2126
+ w
2127
+ b13
2128
+ w
2129
+
2130
+ Y T
2131
+ 13Y ∗
2132
+ w
2133
+
2134
+ Yw
2135
+ + 3
2136
+
2137
+ Y T
2138
+ 15Y ∗
2139
+ 5
2140
+
2141
+ Y4 +
2142
+
2143
+ Y T
2144
+ 8 Y ∗
2145
+ 2
2146
+
2147
+ Y4,
2148
+ (B.31)
2149
+ β14 = Y14
2150
+
2151
+ −29
2152
+ 20g2
2153
+ 1 − 9
2154
+ 4g2
2155
+ 2 − 8g2
2156
+ 3 +
2157
+
2158
+ k
2159
+ a14
2160
+ k Y T
2161
+ k Y ∗
2162
+ k
2163
+
2164
+ +
2165
+
2166
+ YdY †
2167
+ d
2168
+
2169
+ Y14 +
2170
+
2171
+ w
2172
+ b14
2173
+ w
2174
+
2175
+ Y T
2176
+ 14Y ∗
2177
+ w
2178
+
2179
+ Yw,
2180
+ (B.32)
2181
+ β15 = Y15
2182
+
2183
+ −29
2184
+ 20g2
2185
+ 1 − 9
2186
+ 4g2
2187
+ 2 − 8g2
2188
+ 3 +
2189
+
2190
+ k
2191
+ a15
2192
+ k Y T
2193
+ k Y ∗
2194
+ k
2195
+
2196
+ +
2197
+
2198
+ YdY †
2199
+ d
2200
+
2201
+ Y15 +
2202
+
2203
+ w
2204
+ b15
2205
+ w
2206
+
2207
+ Y T
2208
+ 15Y ∗
2209
+ w
2210
+
2211
+ Yw
2212
+ – 17 –
2213
+
2214
+ + 3
2215
+ 2
2216
+
2217
+ Y T
2218
+ 13Y ∗
2219
+ 4
2220
+
2221
+ Y5 +
2222
+
2223
+ Y T
2224
+ 8 Y ∗
2225
+ 2
2226
+
2227
+ Y5,
2228
+ (B.33)
2229
+ β16 = Y16
2230
+
2231
+ −17
2232
+ 10g2
2233
+ 1 − 9
2234
+ 2g2
2235
+ 2 − 4g2
2236
+ 3 +
2237
+
2238
+ k
2239
+ a16
2240
+ k Y T
2241
+ k Y ∗
2242
+ k
2243
+
2244
+ +
2245
+ �1
2246
+ 2Y T
2247
+ e Y ∗
2248
+ e
2249
+
2250
+ Y16 +
2251
+
2252
+ w
2253
+ b16
2254
+ w
2255
+
2256
+ Y T
2257
+ 16Y ∗
2258
+ w
2259
+
2260
+ Yw,
2261
+ (B.34)
2262
+ β17 = Y17
2263
+
2264
+ −29
2265
+ 20g2
2266
+ 1 − 9
2267
+ 4g2
2268
+ 2 − 8g2
2269
+ 3 +
2270
+
2271
+ k
2272
+ a17
2273
+ k Y T
2274
+ k Y ∗
2275
+ k
2276
+
2277
+ +
2278
+
2279
+ YdY †
2280
+ d
2281
+
2282
+ Y17 +
2283
+
2284
+ w
2285
+ b17
2286
+ w
2287
+
2288
+ Y T
2289
+ 17Y ∗
2290
+ w
2291
+
2292
+ Yw,
2293
+ (B.35)
2294
+ β18 = Y18
2295
+
2296
+ −17
2297
+ 10g2
2298
+ 1 − 9
2299
+ 2g2
2300
+ 2 − 4g2
2301
+ 3 +
2302
+
2303
+ k
2304
+ a18
2305
+ k Y T
2306
+ k Y ∗
2307
+ k
2308
+
2309
+ +
2310
+ �1
2311
+ 2Y T
2312
+ e Y ∗
2313
+ e
2314
+
2315
+ Y18 +
2316
+
2317
+ w
2318
+ b18
2319
+ w
2320
+
2321
+ Y T
2322
+ 18Y ∗
2323
+ w
2324
+
2325
+ Yw
2326
+ +
2327
+
2328
+ Y T
2329
+ 7 Y ∗
2330
+ 1
2331
+
2332
+ Y6 + 8
2333
+ 3
2334
+
2335
+ Y T
2336
+ 9 Y ∗
2337
+ 3
2338
+
2339
+ Y6,
2340
+ (B.36)
2341
+ β19 = Y19
2342
+
2343
+ −17
2344
+ 20g2
2345
+ 1 − 9
2346
+ 2g2
2347
+ 2 − 4g2
2348
+ 3 +
2349
+
2350
+ k
2351
+ a19
2352
+ k Y T
2353
+ k Y ∗
2354
+ k
2355
+
2356
+ +
2357
+ �1
2358
+ 2Y T
2359
+ e Y ∗
2360
+ e
2361
+
2362
+ Y19 +
2363
+
2364
+ w
2365
+ b19
2366
+ w
2367
+
2368
+ Y T
2369
+ 19Y ∗
2370
+ w
2371
+
2372
+ Yw,
2373
+ (B.37)
2374
+ where the coefficients af
2375
+ k are given by
2376
+ a1
2377
+ k = {3, 1, 8
2378
+ 3, 0, 0, 2, 3
2379
+ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2380
+ (B.38)
2381
+ a2
2382
+ k = {3
2383
+ 2, 5
2384
+ 2, 0, 3
2385
+ 2, 3, 0, 3
2386
+ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2387
+ (B.39)
2388
+ a3
2389
+ k = {1, 0, 9
2390
+ 2, 0, 0, 2, 0, 0, 1
2391
+ 2, 1
2392
+ 2, 1, 0, 0, 0, 0, 0, 0, 0, 0},
2393
+ (B.40)
2394
+ a4
2395
+ k = {0, 1, 0, 11
2396
+ 4 , 3, 0, 0, 0, 0, 0, 0, 3
2397
+ 2, 1
2398
+ 2, 0, 0, 0, 0, 0, 0},
2399
+ (B.41)
2400
+ a5
2401
+ k = {0, 1, 0, 3
2402
+ 2, 9
2403
+ 2, 0, 0, 0, 0, 0, 0, 0, 0, 4
2404
+ 3, 1
2405
+ 2, 1
2406
+ 2, 0, 0, 0},
2407
+ (B.42)
2408
+ a6
2409
+ k = {1, 0, 8
2410
+ 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
2411
+ 2, 3
2412
+ 4},
2413
+ (B.43)
2414
+ a7
2415
+ k = {3
2416
+ 2, 1, 0, 0, 0, 0, 3, 1, 8
2417
+ 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0},
2418
+ (B.44)
2419
+ a8
2420
+ k = {3
2421
+ 2, 1, 0, 0, 0, 0, 3
2422
+ 2, 5
2423
+ 2, 0, 0, 0, 0, 3
2424
+ 2, 0, 3, 0, 0, 0, 0},
2425
+ (B.45)
2426
+ a9
2427
+ k = {0, 0, 1
2428
+ 2, 0, 0, 0, 1, 0, 9
2429
+ 2, 1
2430
+ 2, 1, 0, 0, 0, 0, 0, 0, 2, 0},
2431
+ (B.46)
2432
+ a10
2433
+ k = {0, 0, 1
2434
+ 2, 0, 0, 0, 0, 0, 1
2435
+ 2, 19
2436
+ 6 , 1, 0, 0, 0, 0, 0, 0, 0, 0},
2437
+ (B.47)
2438
+ a11
2439
+ k = {0, 0, 1
2440
+ 2, 0, 0, 0, 0, 0, 1
2441
+ 2, 1
2442
+ 2, 6, 0, 0, 1, 0, 0, 0, 0, 0},
2443
+ (B.48)
2444
+ a12
2445
+ k = {0, 0, 0, 1
2446
+ 2, 0, 0, 0, 0, 0, 0, 0, 4, 1
2447
+ 2, 0, 0, 0, 0, 0, 1},
2448
+ (B.49)
2449
+ a13
2450
+ k = {0, 0, 0, 1
2451
+ 2, 0, 0, 0, 1, 0, 0, 0, 3
2452
+ 2, 11
2453
+ 4 , 0, 3, 0, 0, 0, 0},
2454
+ (B.50)
2455
+ a14
2456
+ k = {0, 0, 0, 0, 1
2457
+ 2, 0, 0, 0, 0, 0, 1, 0, 0, 5, 1
2458
+ 2, 1
2459
+ 2, 0, 0, 0},
2460
+ (B.51)
2461
+ – 18 –
2462
+
2463
+ a15
2464
+ k = {0, 0, 0, 0, 1
2465
+ 2, 0, 0, 1, 0, 0, 0, 0, 3
2466
+ 2, 4
2467
+ 3, 9
2468
+ 2, 1
2469
+ 2, 0, 0, 0},
2470
+ (B.52)
2471
+ a16
2472
+ k = {0, 0, 0, 0, 1
2473
+ 2, 0, 0, 0, 0, 0, 0, 0, 0, 4
2474
+ 3, 1
2475
+ 2, 4, 0, 0, 0},
2476
+ (B.53)
2477
+ a17
2478
+ k = {0, 0, 0, 0, 0, 1
2479
+ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 1
2480
+ 2, 3
2481
+ 4},
2482
+ (B.54)
2483
+ a18
2484
+ k = {0, 0, 0, 0, 0, 1
2485
+ 2, 1, 0, 8
2486
+ 3, 0, 0, 0, 0, 0, 0, 0, 1, 4, 3
2487
+ 4},
2488
+ (B.55)
2489
+ a19
2490
+ k = {0, 0, 0, 0, 0, 1
2491
+ 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1
2492
+ 2, 4},
2493
+ (B.56)
2494
+ while the coefficients bf
2495
+ k read
2496
+ b1
2497
+ w = {0, 0, 4
2498
+ 3, 0, 1, 0, 3
2499
+ 2, 0, 0, 4
2500
+ 3, 0, 3
2501
+ 2, 0, 8
2502
+ 3, 1, 0, 2, 0, 0},
2503
+ (B.57)
2504
+ b2
2505
+ w = {0, 0, 0, 3
2506
+ 4, 0, 3
2507
+ 2, 0, 3
2508
+ 2, 0, 0, 4, 0, 3
2509
+ 4, 0, 0, 3
2510
+ 2, 0, 3
2511
+ 2, 9
2512
+ 4},
2513
+ (B.58)
2514
+ b3
2515
+ w = {1
2516
+ 2, 0, 0, 0, 1, 0, 1
2517
+ 2, 0, 0, 4
2518
+ 3, 0, 3
2519
+ 2, 0, 8
2520
+ 3, 1, 0, 2, 0},
2521
+ (B.59)
2522
+ b4
2523
+ w = {0, 1
2524
+ 2, 0, 0, 0, 3
2525
+ 2, 0, 1
2526
+ 2, 0, 0, 4, 0, 9
2527
+ 4, 0, 0, 3
2528
+ 2, 0, 3
2529
+ 2, 9
2530
+ 4},
2531
+ (B.60)
2532
+ b5
2533
+ w = {1
2534
+ 2, 0, 4
2535
+ 3, 0, 0, 0, 1
2536
+ 2, 0, 4
2537
+ 3, 4
2538
+ 3, 0, 3
2539
+ 2, 0, 8
2540
+ 3, 4, 0, 2, 0, 0},
2541
+ (B.61)
2542
+ b6
2543
+ w = {0, 1
2544
+ 2, 0, 3
2545
+ 4, 0, 0, 0, 1
2546
+ 2, 0, 0, 4, 0, 3
2547
+ 4, 0, 0, 3
2548
+ 2, 0, 7
2549
+ 2, 9
2550
+ 4},
2551
+ (B.62)
2552
+ b7
2553
+ w = {3
2554
+ 2, 0, 4
2555
+ 3, 0, 1, 0, 0, 0, 4
2556
+ 3, 4
2557
+ 3, 0, 3
2558
+ 2, 0, 8
2559
+ 3, 1, 0, 2, 0, 0},
2560
+ (B.63)
2561
+ b8
2562
+ w = {0, 3
2563
+ 2, 0, 3
2564
+ 4, 0, 3
2565
+ 2, 0, 0, 0, 0, 4, 0, 3
2566
+ 4, 0, 0, 3
2567
+ 2, 0, 3
2568
+ 2, 9
2569
+ 4},
2570
+ (B.64)
2571
+ b9
2572
+ w = {1
2573
+ 2, 0, 4, 0, 1, 0, 1
2574
+ 2, 0, 0, 4
2575
+ 3, 0, 3
2576
+ 2, 0, 8
2577
+ 3, 1, 0, 2, 0, 0},
2578
+ (B.65)
2579
+ b10
2580
+ w = {1
2581
+ 2, 0, 4
2582
+ 3, 0, 1, 0, 1
2583
+ 2, 0, 4
2584
+ 3, 0, 0, 3
2585
+ 2, 0, 8
2586
+ 3, 1, 0, 2, 0, 0},
2587
+ (B.66)
2588
+ b11
2589
+ w = {0, 1
2590
+ 2, 0, 3
2591
+ 4, 0, 3
2592
+ 2, 0, 1
2593
+ 2, 0, 0, 0, 0, 3
2594
+ 4, 0, 0, 3
2595
+ 2, 0, 3
2596
+ 2, 9
2597
+ 4},
2598
+ (B.67)
2599
+ b12
2600
+ w = {1
2601
+ 2, 0, 4
2602
+ 3, 0, 1, 0, 1
2603
+ 2, 0, 4
2604
+ 3, 4
2605
+ 3, 0, 0, 0, 8
2606
+ 3, 1, 0, 2, 0, 0},
2607
+ (B.68)
2608
+ b13
2609
+ w = {0, 1
2610
+ 2, 0, 9
2611
+ 4, 0, 3
2612
+ 2, 0, 1
2613
+ 2, 0, 0, 4, 0, 0, 0, 0, 3
2614
+ 2, 0, 3
2615
+ 2, 9
2616
+ 4},
2617
+ (B.69)
2618
+ b14
2619
+ w = {1
2620
+ 2, 0, 4
2621
+ 3, 0, 1, 0, 1
2622
+ 2, 0, 4
2623
+ 3, 4
2624
+ 3, 0, 3
2625
+ 2, 0, 0, 1, 0, 2, 0, 0},
2626
+ (B.70)
2627
+ b15
2628
+ w = {1
2629
+ 2, 0, 4
2630
+ 3, 0, 4, 0, 1
2631
+ 2, 0, 4
2632
+ 3, 4
2633
+ 3, 0, 3
2634
+ 2, 0, 8
2635
+ 3, 0, 0, 2, 0, 0},
2636
+ (B.71)
2637
+ b16
2638
+ w = {0, 1
2639
+ 2, 0, 3
2640
+ 4, 0, 3
2641
+ 2, 0, 1
2642
+ 2, 0, 0, 4, 0, 3
2643
+ 4, 0, 0, 0, 0, 3
2644
+ 2, 9
2645
+ 4},
2646
+ (B.72)
2647
+ b17
2648
+ w = {1
2649
+ 2, 0, 4
2650
+ 3, 0, 1, 0, 1
2651
+ 2, 0, 4
2652
+ 3, 4
2653
+ 3, 0, 3
2654
+ 2, 0, 8
2655
+ 3, 1, 0, 0, 0, 0},
2656
+ (B.73)
2657
+ b18
2658
+ w = {0, 1
2659
+ 2, 0, 3
2660
+ 4, 0, 7
2661
+ 2, 0, 1
2662
+ 2, 0, 0, 4, 0, 3
2663
+ 4, 0, 0, 3
2664
+ 2, 0, 0, 9
2665
+ 4},
2666
+ (B.74)
2667
+ b19
2668
+ w = {0, 1
2669
+ 2, 0, 3
2670
+ 4, 0, 3
2671
+ 2, 0, 1
2672
+ 2, 0, 0, 4, 0, 3
2673
+ 4, 0, 0, 3
2674
+ 2, 0, 3
2675
+ 2, 0}.
2676
+ (B.75)
2677
+ – 19 –
2678
+
2679
+ B.3
2680
+ Effective neutrino mass operator
2681
+ The RGE for the effective neutrino mass operator reads
2682
+ 16π2µdκ
2683
+ dµ = βSM
2684
+ κ
2685
+ + ∆βκ,
2686
+ (B.76)
2687
+ where βSM
2688
+ κ
2689
+ is the SM contribution as given in [78] and ∆βκ is the correction due to the
2690
+ added BSM particles. For ∆βκ we find8
2691
+ ∆βκ = κ
2692
+ �1
2693
+ 2Y ∗
2694
+ 2 Y T
2695
+ 2 + 3
2696
+ 4Y ∗
2697
+ 4 Y T
2698
+ 4 + 3
2699
+ 2Y ∗
2700
+ 6 Y T
2701
+ 6 + 1
2702
+ 2Y ∗
2703
+ 8 Y T
2704
+ 8 + 4Y ∗
2705
+ 11Y T
2706
+ 11 + 3
2707
+ 4Y ∗
2708
+ 13Y T
2709
+ 13 + 3
2710
+ 2Y ∗
2711
+ 16Y T
2712
+ 16
2713
+ + 3
2714
+ 2Y ∗
2715
+ 18Y T
2716
+ 18 + 9
2717
+ 4Y ∗
2718
+ 19Y T
2719
+ 19
2720
+
2721
+ +
2722
+ �1
2723
+ 2Y ∗
2724
+ 2 Y T
2725
+ 2 + 3
2726
+ 4Y ∗
2727
+ 4 Y T
2728
+ 4 + 3
2729
+ 2Y ∗
2730
+ 6 Y T
2731
+ 6 + 1
2732
+ 2Y ∗
2733
+ 8 Y T
2734
+ 8
2735
+ + 4Y ∗
2736
+ 11Y T
2737
+ 11 + 3
2738
+ 4Y ∗
2739
+ 13Y T
2740
+ 13 + 3
2741
+ 2Y ∗
2742
+ 16Y T
2743
+ 16 + 3
2744
+ 2Y ∗
2745
+ 18Y T
2746
+ 18 + 9
2747
+ 4Y ∗
2748
+ 19Y T
2749
+ 19
2750
+ �T
2751
+ κ
2752
+ +
2753
+
2754
+ 2Y T
2755
+ 2 Y ∗
2756
+ 2 + 3Y T
2757
+ 4 Y ∗
2758
+ 4 + 6Y T
2759
+ 5 Y ∗
2760
+ 5 + 2Y T
2761
+ 8 Y ∗
2762
+ 8 + 3Y T
2763
+ 13Y ∗
2764
+ 13 + 6Y T
2765
+ 15Y ∗
2766
+ 15
2767
+
2768
+ κ .
2769
+ (B.77)
2770
+ References
2771
+ [1] J. C. Pati and A. Salam, “Is Baryon Number Conserved?,” Phys. Rev. Lett. 31 (1973)
2772
+ 661–664.
2773
+ [2] J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974)
2774
+ 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
2775
+ [3] H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys. Rev. Lett. 32
2776
+ (1974) 438–441.
2777
+ [4] H. Georgi, H. R. Quinn, and S. Weinberg, “Hierarchy of Interactions in Unified Gauge
2778
+ Theories,” Phys. Rev. Lett. 33 (1974) 451–454.
2779
+ [5] H. Georgi, “The State of the Art—Gauge Theories,” AIP Conf. Proc. 23 (1975) 575–582.
2780
+ [6] H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” Annals Phys.
2781
+ 93 (1975) 193–266.
2782
+ [7] SNO Collaboration, Q. R. Ahmad et al., “Direct evidence for neutrino flavor transformation
2783
+ from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89
2784
+ (2002) 011301, arXiv:nucl-ex/0204008.
2785
+ [8] I. Dorsner and P. Fileviez Perez, “Unification without supersymmetry: Neutrino mass, proton
2786
+ decay and light leptoquarks,” Nucl. Phys. B 723 (2005) 53–76, arXiv:hep-ph/0504276.
2787
+ [9] I. Dorsner, P. Fileviez Perez, and R. Gonzalez Felipe, “Phenomenological and cosmological
2788
+ aspects of a minimal GUT scenario,” Nucl. Phys. B 747 (2006) 312–327,
2789
+ arXiv:hep-ph/0512068.
2790
+ [10] I. Dorsner, P. Fileviez Perez, and G. Rodrigo, “Fermion masses and the UV cutoff of the
2791
+ minimal realistic SU(5),” Phys. Rev. D 75 (2007) 125007, arXiv:hep-ph/0607208.
2792
+ [11] B. Bajc and G. Senjanovic, “Seesaw at LHC,” JHEP 08 (2007) 014, arXiv:hep-ph/0612029.
2793
+ 8To simplify the analysis we ignore RG induced mixings between different dimension five operators.
2794
+ – 20 –
2795
+
2796
+ [12] B. Bajc, M. Nemevsek, and G. Senjanovic, “Probing seesaw at LHC,” Phys. Rev. D 76
2797
+ (2007) 055011, arXiv:hep-ph/0703080.
2798
+ [13] P. Fileviez Perez, “Renormalizable adjoint SU(5),” Phys. Lett. B 654 (2007) 189–193,
2799
+ arXiv:hep-ph/0702287.
2800
+ [14] I. Dorsner and P. Fileviez Perez, “Upper Bound on the Mass of the Type III Seesaw Triplet
2801
+ in an SU(5) Model,” JHEP 06 (2007) 029, arXiv:hep-ph/0612216.
2802
+ [15] P. Fileviez Perez and C. Murgui, “Renormalizable SU(5) Unification,” Phys. Rev. D 94 no. 7,
2803
+ (2016) 075014, arXiv:1604.03377 [hep-ph].
2804
+ [16] K. Kumericki, T. Mede, and I. Picek, “Renormalizable SU(5) Completions of a Zee-type
2805
+ Neutrino Mass Model,” Phys. Rev. D 97 no. 5, (2018) 055012, arXiv:1712.05246 [hep-ph].
2806
+ [17] S. Saad, “Origin of a two-loop neutrino mass from SU(5) grand unification,” Phys. Rev. D 99
2807
+ no. 11, (2019) 115016, arXiv:1902.11254 [hep-ph].
2808
+ [18] I. Doršner and S. Saad, “Towards Minimal SU(5),” Phys. Rev. D 101 no. 1, (2020) 015009,
2809
+ arXiv:1910.09008 [hep-ph].
2810
+ [19] I. Doršner, E. Džaferović-Mašić, and S. Saad, “Parameter space exploration of the minimal
2811
+ SU(5) unification,” Phys. Rev. D 104 no. 1, (2021) 015023, arXiv:2105.01678 [hep-ph].
2812
+ [20] S. Antusch, I. Doršner, K. Hinze, and S. Saad, “Fully Testable Axion Dark Matter within a
2813
+ Minimal SU(5) GUT,” arXiv:2301.00809 [hep-ph].
2814
+ [21] J. R. Ellis and M. K. Gaillard, “Fermion Masses and Higgs Representations in SU(5),” Phys.
2815
+ Lett. B 88 (1979) 315–319.
2816
+ [22] I. Dorsner and P. Fileviez Perez, “Unification versus proton decay in SU(5),” Phys. Lett. B
2817
+ 642 (2006) 248–252, arXiv:hep-ph/0606062.
2818
+ [23] K. S. Babu, B. Bajc, and Z. Tavartkiladze, “Realistic Fermion Masses and Nucleon Decay
2819
+ Rates in SUSY SU(5) with Vector-Like Matter,” Phys. Rev. D 86 (2012) 075005,
2820
+ arXiv:1207.6388 [hep-ph].
2821
+ [24] I. Dorsner, S. Fajfer, and I. Mustac, “Light vector-like fermions in a minimal SU(5) setup,”
2822
+ Phys. Rev. D 89 no. 11, (2014) 115004, arXiv:1401.6870 [hep-ph].
2823
+ [25] P. Fileviez Pérez, A. Gross, and C. Murgui, “Seesaw scale, unification, and proton decay,”
2824
+ Phys. Rev. D 98 no. 3, (2018) 035032, arXiv:1804.07831 [hep-ph].
2825
+ [26] H. Georgi and C. Jarlskog, “A New Lepton - Quark Mass Relation in a Unified Theory,”
2826
+ Phys. Lett. B 86 (1979) 297–300.
2827
+ [27] S. Antusch and K. Hinze, “Nucleon decay in a minimal non-SUSY GUT with predicted
2828
+ quark-lepton Yukawa ratios,” Nucl. Phys. B 976 (2022) 115719, arXiv:2108.08080
2829
+ [hep-ph].
2830
+ [28] S. Antusch and M. Spinrath, “New GUT predictions for quark and lepton mass ratios
2831
+ confronted with phenomenology,” Phys. Rev. D 79 (2009) 095004, arXiv:0902.4644
2832
+ [hep-ph].
2833
+ [29] S. Antusch, S. F. King, and M. Spinrath, “GUT predictions for quark-lepton Yukawa
2834
+ coupling ratios with messenger masses from non-singlets,” Phys. Rev. D 89 no. 5, (2014)
2835
+ 055027, arXiv:1311.0877 [hep-ph].
2836
+ [30] S. Antusch, C. Hohl, and V. Susič, “Yukawa ratio predictions in non-renormalizable SO(10)
2837
+ GUT models,” JHEP 02 (2020) 086, arXiv:1911.12807 [hep-ph].
2838
+ – 21 –
2839
+
2840
+ [31] S. Antusch, L. Calibbi, V. Maurer, and M. Spinrath, “From Flavour to SUSY Flavour
2841
+ Models,” Nucl. Phys. B 852 (2011) 108–148, arXiv:1104.3040 [hep-ph].
2842
+ [32] S. Antusch and V. Maurer, “Large neutrino mixing angle θ13^MNS and quark-lepton mass
2843
+ ratios in unified flavour models,” Phys. Rev. D 84 (2011) 117301, arXiv:1107.3728
2844
+ [hep-ph].
2845
+ [33] S. Antusch, L. Calibbi, V. Maurer, M. Monaco, and M. Spinrath, “Naturalness and GUT
2846
+ Scale Yukawa Coupling Ratios in the CMSSM,” Phys. Rev. D 85 (2012) 035025,
2847
+ arXiv:1111.6547 [hep-ph].
2848
+ [34] S. Antusch, C. Gross, V. Maurer, and C. Sluka, “θP MNS
2849
+ 1
2850
+ 3 = θC/
2851
+
2852
+ 2 from GUTs,” Nucl.
2853
+ Phys. B 866 (2013) 255–269, arXiv:1205.1051 [hep-ph].
2854
+ [35] S. Antusch, L. Calibbi, V. Maurer, M. Monaco, and M. Spinrath, “Naturalness of the
2855
+ Non-Universal MSSM in the Light of the Recent Higgs Results,” JHEP 01 (2013) 187,
2856
+ arXiv:1207.7236 [hep-ph].
2857
+ [36] S. Antusch, S. F. King, and M. Spinrath, “Spontaneous CP violation in A4 × SU(5) with
2858
+ Constrained Sequential Dominance 2,” Phys. Rev. D 87 no. 9, (2013) 096018,
2859
+ arXiv:1301.6764 [hep-ph].
2860
+ [37] S. Antusch, C. Gross, V. Maurer, and C. Sluka, “A flavour GUT model with
2861
+ θP MNS
2862
+ 13
2863
+ ≃ θC/
2864
+
2865
+ 2,” Nucl. Phys. B 877 (2013) 772–791, arXiv:1305.6612 [hep-ph].
2866
+ [38] S. Antusch, C. Gross, V. Maurer, and C. Sluka, “Inverse neutrino mass hierarchy in a flavour
2867
+ GUT model,” Nucl. Phys. B 879 (2014) 19–36, arXiv:1306.3984 [hep-ph].
2868
+ [39] S. Antusch and F. Cefalà, “SUGRA New Inflation with Heisenberg Symmetry,” JCAP 10
2869
+ (2013) 055, arXiv:1306.6825 [hep-ph].
2870
+ [40] S. Antusch, I. de Medeiros Varzielas, V. Maurer, C. Sluka, and M. Spinrath, “Towards
2871
+ predictive flavour models in SUSY SU(5) GUTs with doublet-triplet splitting,” JHEP 09
2872
+ (2014) 141, arXiv:1405.6962 [hep-ph].
2873
+ [41] S. Antusch and C. Hohl, “Predictions from a flavour GUT model combined with a SUSY
2874
+ breaking sector,” JHEP 10 (2017) 155, arXiv:1706.04274 [hep-ph].
2875
+ [42] S. Antusch, C. Hohl, S. F. King, and V. Susic, “Non-universal Z’ from SO(10) GUTs with
2876
+ vector-like family and the origin of neutrino masses,” Nucl. Phys. B 934 (2018) 578–605,
2877
+ arXiv:1712.05366 [hep-ph].
2878
+ [43] S. Antusch, C. Hohl, C. K. Khosa, and V. Susic, “Predicting δPMNS, θPMNS
2879
+ 23
2880
+ and fermion mass
2881
+ ratios from flavour GUTs with CSD2,” JHEP 12 (2018) 025, arXiv:1808.09364 [hep-ph].
2882
+ [44] S. Antusch, K. Hinze, and S. Saad, “Implications of the zero 1-3 flavour mixing hypothesis:
2883
+ predictions for θPMNS
2884
+ 23
2885
+ and δP MNS,” JHEP 08 (2022) 045, arXiv:2205.11531 [hep-ph].
2886
+ [45] S. Antusch, K. Hinze, and S. Saad, “Viable quark-lepton Yukawa ratios and nucleon decay
2887
+ predictions in SU(5) GUTs with type-II seesaw,” arXiv:2205.01120 [hep-ph].
2888
+ [46] P. Minkowski, “µ → eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B 67 (1977)
2889
+ 421–428.
2890
+ [47] T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131
2891
+ (1979) 95–99.
2892
+ [48] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf.
2893
+ Proc. C 790927 (1979) 315–321, arXiv:1306.4669 [hep-th].
2894
+ – 22 –
2895
+
2896
+ [49] S. L. Glashow, “The Future of Elementary Particle Physics,” NATO Sci. Ser. B 61 (1980)
2897
+ 687.
2898
+ [50] R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with
2899
+ Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.
2900
+ [51] R. Foot, H. Lew, X. G. He, and G. C. Joshi, “Seesaw Neutrino Masses Induced by a Triplet
2901
+ of Leptons,” Z. Phys. C 44 (1989) 441.
2902
+ [52] S. Antusch, C. Hohl, and V. Susič, “Employing nucleon decay as a fingerprint of SUSY GUT
2903
+ models using SusyTCProton,” JHEP 06 (2021) 022, arXiv:2011.15026 [hep-ph].
2904
+ [53] S. Antusch and V. Maurer, “Running quark and lepton parameters at various scales,” JHEP
2905
+ 11 (2013) 115, arXiv:1306.6879 [hep-ph].
2906
+ [54] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, “On the Effective Lagrangian for Baryon
2907
+ Decay,” Phys. Lett. B 88 (1979) 320–324.
2908
+ [55] J. Ellis, J. L. Evans, N. Nagata, K. A. Olive, and L. Velasco-Sevilla, “Supersymmetric proton
2909
+ decay revisited,” Eur. Phys. J. C 80 no. 4, (2020) 332, arXiv:1912.04888 [hep-ph].
2910
+ [56] S. F. King, “Minimal predictive see-saw model with normal neutrino mass hierarchy,” JHEP
2911
+ 07 (2013) 137, arXiv:1304.6264 [hep-ph].
2912
+ [57] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints:
2913
+ updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178,
2914
+ arXiv:2007.14792 [hep-ph].
2915
+ [58] Super-Kamiokande Collaboration, A. Takenaka et al., “Search for proton decay via
2916
+ p → e+π0 and p → µ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV,” Phys.
2917
+ Rev. D 102 no. 11, (2020) 112011, arXiv:2010.16098 [hep-ex].
2918
+ [59] Super-Kamiokande Collaboration, K. Abe et al., “Search for nucleon decay into charged
2919
+ antilepton plus meson in 0.316 megaton·years exposure of the Super-Kamiokande water
2920
+ Cherenkov detector,” Phys. Rev. D 96 no. 1, (2017) 012003, arXiv:1705.07221 [hep-ex].
2921
+ [60] R. Brock et al., “Proton Decay,” in Workshop on Fundamental Physics at the Intensity
2922
+ Frontier, pp. 111–130. 5, 2012.
2923
+ [61] Super-Kamiokande Collaboration, R. Matsumoto et al., “Search for proton decay via
2924
+ p→µ+K0 in 0.37 megaton-years exposure of Super-Kamiokande,” Phys. Rev. D 106 no. 7,
2925
+ (2022) 072003, arXiv:2208.13188 [hep-ex].
2926
+ [62] Super-Kamiokande Collaboration, K. Abe et al., “Search for Nucleon Decay via n → ¯νπ0
2927
+ and p → ¯νπ+ in Super-Kamiokande,” Phys. Rev. Lett. 113 no. 12, (2014) 121802,
2928
+ arXiv:1305.4391 [hep-ex].
2929
+ [63] Super-Kamiokande Collaboration, V. Takhistov, “Review of Nucleon Decay Searches at
2930
+ Super-Kamiokande,” in 51st Rencontres de Moriond on EW Interactions and Unified
2931
+ Theories, pp. 437–444. 2016. arXiv:1605.03235 [hep-ex].
2932
+ [64] P. S. B. Dev et al., “Searches for Baryon Number Violation in Neutrino Experiments: A
2933
+ White Paper,” arXiv:2203.08771 [hep-ex].
2934
+ [65] G. Roberts and J. Rosenthal, “Examples of Adaptive MCMC,” Journal of Computational
2935
+ and Graphical Statistics 18:2 (2009) 349–367.
2936
+ [66] M. Chabab, M. C. Peyranère, and L. Rahili, “Probing the Higgs sector of Y = 0 Higgs Triplet
2937
+ Model at LHC,” Eur. Phys. J. C 78 no. 10, (2018) 873, arXiv:1805.00286 [hep-ph].
2938
+ – 23 –
2939
+
2940
+ [67] B. Diaz, M. Schmaltz, and Y.-M. Zhong, “The leptoquark Hunter’s guide: Pair production,”
2941
+ JHEP 10 (2017) 097, arXiv:1706.05033 [hep-ph].
2942
+ [68] ATLAS Collaboration, M. Aaboud et al., “Searches for third-generation scalar leptoquarks
2943
+ in √s = 13 TeV pp collisions with the ATLAS detector,” JHEP 06 (2019) 144,
2944
+ arXiv:1902.08103 [hep-ex].
2945
+ [69] ATLAS Collaboration, G. Aad et al., “Search for pair production of third-generation scalar
2946
+ leptoquarks decaying into a top quark and a τ-lepton in pp collisions at √s = 13 TeV with
2947
+ the ATLAS detector,” JHEP 06 (2021) 179, arXiv:2101.11582 [hep-ex].
2948
+ [70] G. F. Giudice and A. Romanino, “Split supersymmetry,” Nucl. Phys. B 699 (2004) 65–89,
2949
+ arXiv:hep-ph/0406088. [Erratum: Nucl.Phys.B 706, 487–487 (2005)].
2950
+ [71] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino, “Aspects of split
2951
+ supersymmetry,” Nucl. Phys. B 709 (2005) 3–46, arXiv:hep-ph/0409232.
2952
+ [72] G. R. Farrar and P. Fayet, “Phenomenology of the Production, Decay, and Detection of New
2953
+ Hadronic States Associated with Supersymmetry,” Phys. Lett. B 76 (1978) 575–579.
2954
+ [73] ATLAS Collaboration, M. Aaboud et al., “Search for heavy charged long-lived particles in
2955
+ the ATLAS detector in 36.1 fb−1 of proton-proton collision data at √s = 13 TeV,” Phys.
2956
+ Rev. D 99 no. 9, (2019) 092007, arXiv:1902.01636 [hep-ex].
2957
+ [74] CMS Collaboration, A. M. Sirunyan et al., “Search for long-lived particles using displaced
2958
+ jets in proton-proton collisions at √s = 13 TeV,” Phys. Rev. D 104 no. 1, (2021) 012015,
2959
+ arXiv:2012.01581 [hep-ex].
2960
+ [75] Hyper-Kamiokande Collaboration, K. Abe et al., “Hyper-Kamiokande Design Report,”
2961
+ arXiv:1805.04163 [physics.ins-det].
2962
+ [76] F. Staub, “SARAH,” arXiv:0806.0538 [hep-ph].
2963
+ [77] F. Staub, “SARAH 4 : A tool for (not only SUSY) model builders,” Comput. Phys.
2964
+ Commun. 185 (2014) 1773–1790, arXiv:1309.7223 [hep-ph].
2965
+ [78] S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz, “Neutrino mass operator
2966
+ renormalization revisited,” Phys. Lett. B 519 (2001) 238–242, arXiv:hep-ph/0108005.
2967
+ [79] T. P. Cheng, E. Eichten, and L.-F. Li, “Higgs Phenomena in Asymptotically Free Gauge
2968
+ Theories,” Phys. Rev. D 9 (1974) 2259.
2969
+ [80] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a
2970
+ General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B 236 (1984) 221–232.
2971
+ – 24 –
2972
+
MtE2T4oBgHgl3EQfBQa7/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PdAzT4oBgHgl3EQfzv5V/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8df995e7078a7d1f1edf9a262365349a784850eb5cfd86a3aaa2393fd0ee84db
3
+ size 3735597