diff --git a/.gitattributes b/.gitattributes index 93037fb15d59d0ac669635522bf9f3ef8d94f795..ba420ebf6cbbe85f3a34b8a0ef906a990a8ebaf7 100644 --- a/.gitattributes +++ b/.gitattributes @@ -5687,3 +5687,63 @@ NtE0T4oBgHgl3EQfjgEx/content/2301.02459v1.pdf filter=lfs diff=lfs merge=lfs -tex AdFLT4oBgHgl3EQfxDCd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text h9FJT4oBgHgl3EQfWSwL/content/2301.11516v1.pdf filter=lfs diff=lfs merge=lfs -text o9AyT4oBgHgl3EQfzPm_/content/2301.00699v1.pdf filter=lfs diff=lfs merge=lfs -text +htE0T4oBgHgl3EQf6gL5/content/2301.02766v1.pdf filter=lfs diff=lfs merge=lfs -text +6tE4T4oBgHgl3EQf1w38/content/2301.05294v1.pdf filter=lfs diff=lfs merge=lfs -text +WtA0T4oBgHgl3EQfFP8E/content/2301.02028v1.pdf filter=lfs diff=lfs merge=lfs -text +jNFLT4oBgHgl3EQfbi-Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HdE4T4oBgHgl3EQfgg3J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +O9AyT4oBgHgl3EQf7Prc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +KtFRT4oBgHgl3EQf1Dhl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bNFPT4oBgHgl3EQfwTX3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +udE3T4oBgHgl3EQfkQqh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bNFPT4oBgHgl3EQfwTX3/content/2301.13163v1.pdf filter=lfs diff=lfs merge=lfs -text +vNFJT4oBgHgl3EQfeyyW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +NtE1T4oBgHgl3EQfZwQu/content/2301.03153v1.pdf filter=lfs diff=lfs merge=lfs -text +_9E1T4oBgHgl3EQfVAPl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ndFRT4oBgHgl3EQfbDfe/content/2301.13559v1.pdf filter=lfs diff=lfs merge=lfs -text +wNAzT4oBgHgl3EQfsv0o/content/2301.01663v1.pdf filter=lfs diff=lfs merge=lfs -text +wdFIT4oBgHgl3EQfzCuL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf filter=lfs diff=lfs merge=lfs -text +vNFJT4oBgHgl3EQfeyyW/content/2301.11554v1.pdf filter=lfs diff=lfs merge=lfs -text +LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf filter=lfs diff=lfs merge=lfs -text +tNE0T4oBgHgl3EQfbADw/content/2301.02344v1.pdf filter=lfs diff=lfs merge=lfs -text +1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf filter=lfs diff=lfs merge=lfs -text +gdE0T4oBgHgl3EQfpAGk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +NtE1T4oBgHgl3EQfZwQu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +LdE0T4oBgHgl3EQfSgCx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +tNE0T4oBgHgl3EQfbADw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +6tFAT4oBgHgl3EQfnx0W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +wdFIT4oBgHgl3EQfzCuL/content/2301.11363v1.pdf filter=lfs diff=lfs merge=lfs -text +JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf filter=lfs diff=lfs merge=lfs -text +rNFIT4oBgHgl3EQfxivv/content/2301.11357v1.pdf filter=lfs diff=lfs merge=lfs -text +rNFIT4oBgHgl3EQfxivv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +79E2T4oBgHgl3EQfPgaW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +1dAzT4oBgHgl3EQft_1-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +VtFLT4oBgHgl3EQfSS81/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +g9AyT4oBgHgl3EQfxfly/content/2301.00667v1.pdf filter=lfs diff=lfs merge=lfs -text +atAyT4oBgHgl3EQfW_e5/content/2301.00175v1.pdf filter=lfs diff=lfs merge=lfs -text +C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf filter=lfs diff=lfs merge=lfs -text +EtE5T4oBgHgl3EQfUw_x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +h9FJT4oBgHgl3EQfWSwL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +OtAzT4oBgHgl3EQflP1e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +JtE1T4oBgHgl3EQfGQNW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf filter=lfs diff=lfs merge=lfs -text +itAzT4oBgHgl3EQf4v7P/content/2301.01850v1.pdf filter=lfs diff=lfs merge=lfs -text +cdE4T4oBgHgl3EQfPwyZ/content/2301.04976v1.pdf filter=lfs diff=lfs merge=lfs -text +bNE1T4oBgHgl3EQfxAXP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +3NFKT4oBgHgl3EQf8S4-/content/2301.11948v1.pdf filter=lfs diff=lfs merge=lfs -text +itAzT4oBgHgl3EQf4v7P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +cNFJT4oBgHgl3EQf9y04/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +WtE0T4oBgHgl3EQfmQEQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +m9E2T4oBgHgl3EQfJgYM/content/2301.03691v1.pdf filter=lfs diff=lfs merge=lfs -text +o9AyT4oBgHgl3EQfzPm_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +j9AyT4oBgHgl3EQf_Pqt/content/2301.00906v1.pdf filter=lfs diff=lfs merge=lfs -text +wNAzT4oBgHgl3EQfsv0o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ndFRT4oBgHgl3EQfbDfe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4NE4T4oBgHgl3EQfbQzc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +nNE1T4oBgHgl3EQf1QWH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ytAyT4oBgHgl3EQfn_gd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf filter=lfs diff=lfs merge=lfs -text +ldE1T4oBgHgl3EQfgwR3/content/2301.03233v1.pdf filter=lfs diff=lfs merge=lfs -text +8NFLT4oBgHgl3EQfsy_c/content/2301.12149v1.pdf filter=lfs diff=lfs merge=lfs -text +TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf b/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..460cb45a567701a1ff985d9cff859db66a3433f2 --- /dev/null +++ b/1dAzT4oBgHgl3EQft_1-/content/2301.01684v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f2c9c6f128061622ab58f57d059711b1a004e3efe27c6dcdc12e7717b718a5c +size 11649280 diff --git a/1dAzT4oBgHgl3EQft_1-/vector_store/index.faiss b/1dAzT4oBgHgl3EQft_1-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9dd2d51d647f0fa9a29dddf1f0639905c8d7142c --- /dev/null +++ b/1dAzT4oBgHgl3EQft_1-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1781c63f34ffaf02150e6a348637098c8e7873b6dd039c40085d821b3a661f98 +size 5308461 diff --git a/3NFKT4oBgHgl3EQf8S4-/content/2301.11948v1.pdf b/3NFKT4oBgHgl3EQf8S4-/content/2301.11948v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ca582c9275cfd046453d19afb4c74f714f503692 --- /dev/null +++ b/3NFKT4oBgHgl3EQf8S4-/content/2301.11948v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a75265cf5e4b614ab555ca7f50ae914df5532b0964f0b964a37998f4d7b79be6 +size 591206 diff --git a/3NFKT4oBgHgl3EQf8S4-/vector_store/index.pkl b/3NFKT4oBgHgl3EQf8S4-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d7107ffaed58536568ba25611896a6a1c5981690 --- /dev/null +++ b/3NFKT4oBgHgl3EQf8S4-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4e9bfdcd14c3f4d120781706a2b84f83cdaa1027b174a5adf4ec5d33b0f3cf9 +size 192766 diff --git a/3tE0T4oBgHgl3EQfeADx/content/tmp_files/2301.02386v1.pdf.txt b/3tE0T4oBgHgl3EQfeADx/content/tmp_files/2301.02386v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f3569f54fdc86102ba258b4a6354597c06193976 --- /dev/null +++ b/3tE0T4oBgHgl3EQfeADx/content/tmp_files/2301.02386v1.pdf.txt @@ -0,0 +1,3166 @@ +A Stochastic ADMM Algorithm for Large-Scale Ptychography with Weighted +Difference of Anisotropic and Isotropic Total Variation∗ +Kevin Bui† and Zichao (Wendy) Di ‡ +Abstract. Ptychography is an imaging technique that has various scientific applications, ranging from biology to +optics. The method scans the object of interest in a series of overlapping positions, thereby generating +a set of multiple Fourier magnitude measurements that are potentially corrupted by noise. From +these measurements, an image of the object can be reconstructed depending on how the related +inverse problem is formulated and solved. In this paper, we propose a class of variational models +that incorporate the weighted anisotropic–isotropic total variation (AITV), an effective regularizer +for image recovery. This class of models is applicable to measurements corrupted by either Gaussian +or Poisson noise. In order to have the models applicable for large number of ptychographic scans, +we design an efficient stochastic alternating direction method of multipliers algorithm and establish +its convergence. +Numerical experiments demonstrate that from a large set of highly corrupted +Fourier measurements, the proposed stochastic algorithm with AITV regularization can reconstruct +complex-valued images with satisfactory quality, especially for the phase components. +AMS subject classifications. 65F22, 65K10, 68U10, 90C06, 90C15, 90C26 +Key words. phase retrieval, total variation, ptychography, ADMM, Poisson/Gaussian noise, nonconvex opti- +mization, stochastic optimization +1. Introduction. Ptychography is a popular imaging technique that combines both co- +herent diffractive imaging and scanning transmission microscopy. It has been used in various +industrial and scientific applications, including biology [34, 45, 58], crystallography [14], and +optics [44, 48]. To perform a ptychographic experiment (see Figure 1), a coherent beam is +scanned across the object of interest, where each scan may have overlapping positions with +another. The scanning procedure provides a set of phaseless measurements that can be used +to reconstruct an image of the object of interest. +We describe the 2D ptychography in the discrete setting. Let z ∈ Cn2 be the object of +interest with n × n pixels and ω ∈ Cm2 be the localized 2D probe with m × m pixels, where +m < n. Both the object z and the probe ω are expressed as vectors in lexiographical order. +We denote the set of N masks by {Sj}N +j=1, where each Sj ∈ Rm2×n2 is a binary matrix that +represents a (m×m)-size window over the image z. The set of phaseless measurements {dj}N +j=1 +is obtained by dj = |F(Pjz)|2 = |F(ω◦Sjz)|2, where Pj := ω◦Sj is the jth probe, F ∈ Cm2×m2 +is the 2D discrete Fourier operator, the operation ◦ is elementwise multiplication, and the +operation | · | is the elementwise absolute value of a vector. We aim to solve the following +ptychographic phase retrieval problems. When the probe is unknown, the blind ptychographic +∗Submitted to the editors DATE. +Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, +under contract number DE-AC02-06CH11357. +†Department of Mathematics, University of California at Irvine, Irvine, CA 92697 USA (kevinb3@uci.edu). +‡Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL (wendydi@anl.gov). +1 +arXiv:2301.02386v1 [math.NA] 6 Jan 2023 + +2 +KEVIN BUI AND ZICHAO (WENDY) DI +Probe +Beam +Object +Measurements +Figure 1: Schematic of a ptychography experiment. +phase retrieval problem is expressed by +BP-PR: +To find ω ∈ Cm2 and z ∈ Cn2 such that |F(ω ◦ Sjz)|2 = dj, j = 1, . . . , N. +(1.1) +When the probe ω is known, (1.1) reduces to the non-blind case where we only find z ∈ Cn2. +Multiple algorithms have been developed to solve the non-blind and blind phase retrieval +problems. One of the most popular methods is the ptychographical iterative engine (PIE) [42], +where later refinements led to ePIE [33] and rPIE [32]. The PIE methods are based on gradient +descent applied to each measurement sequentially. Other gradient-based methods for phase +retrieval include Wirtinger flow [6] and its variants [13, 56, 57], which use careful initialization +by a spectral method and adaptive step sizes. PIE is also one class of projection algorithms +for phase retrieval. +Other projection-based algorithms are hybrid projection-reflection [1], +Douglas-Rachford splitting [39, 46], and the relaxed averaged alternating reflections [31]. The +phase retrieval problem can be formulated as a semidefinite optimization problem. For exam- +ple, PhaseLift [7] solves the phase retrieval problem as a trace (nuclear) norm minimization +problem. A nonconvex variant called PhaseLiftOff subtracts the trace norm by the Frobenius +norm in the objective function [55]. PhaseCut proposes a different semidefinite formulation +of the phase retrieval problem by explicitly separating the amplitude and phase variables and +optimize only the values of the phase variables [47]. The phase retrieval problem can alter- +natively be written as a saddle point problem [51], solved by alternating direction method +of multipliers (ADMM) [4]. A globally convergent ADMM algorithm has recently been de- +veloped to solve the BP-PR problem [8]. Another globally convergent algorithm is proximal +alternating linearized minimization (PALM) [2], which has also been adapted to solve the +BP-PR problem [12, 21]. For a detailed survey of numerical algorithms for phase retrieval, +please refer to [17]. +For large-scale ptychography, when a huge number of scans are collected, many of the +aforementioned algorithms may be inapplicable or may need to be adapted because of the + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +3 +demanding memory footprint and computational cost. Various parallel algorithms have been +developed. For example, an asynchronous parallel version of ePIE has been implemented on +GPUs, where each partition of a measurement set is asynchronously processed to obtain a sub- +image and the sub-images are later fused together to form the entire image [35]. A parallel +version of relaxed averaged alternating reflections has recently been developed for GPU impl- +mentation [15]. Unfortunately, some of these parallel algorithms require a GPU, which many +computers do not have. However, there are efficient algorithms for large-scale ptychography +without the need for a GPU, although having one could speed up the processing time. A +multigrid optimization framework has been proposed to accelerate large-scale gradient-based +methods for phase retrieval [52]. An overlapping domain decomposition method combined +with ADMM leads to a highly parallel algorithm with good load balance [9]. To the best +of our knowledge, there does not yet exist a stochastic optimization algorithm for large-scale +ptychography that iteratively processes a batch of measurements. Such an algorithm would be +useful for practitioners who do not have access to multiple cores to perform parallel computing. +To improve the image reconstruction quality in phase retrieval, total variation (TV) [43] +has been incorporated for the cases when the measurements are corrupted with Gaussian noise +[11] or with Poisson noise [10]. Both cases consider the isotropic TV approximation: +∥∇z∥2,1 = +n2 +� +i=1 +� +|(∇xz)i|2 + |(∇yz)i|2, +(1.2) +where ∇x and ∇y are the horizontal and vertical difference operators, respectively, and (∇xz)i +and (∇yz)i are the ith entries of the vectors ∇xz and ∇yz, respectively. However, it has been +known that isotropic TV tends to blur oblique edges. +An alternative approximation that +preserves sharper edges is the anisotropic TV [16]: +∥∇z∥1 = +n2 +� +i=1 +(|(∇xz)i| + |(∇yz)i|) . +(1.3) +Overall, TV is meant to approximate the ℓ0 “norm” of the image gradient, i.e., ∥∇z∥0, be- +cause TV is based on the ℓ1 norm, a convex relaxation of ℓ0. A nonconvex alternative to ℓ1 is +ℓ1 − αℓ2, 0 < α ≤ 1, which performs well in recovering sparse solutions in various compressed +sensing problems [27, 28, 29, 54]. The superior performance of ℓ1 − αℓ2 in sparse recovery has +motivated the development of the weighted difference of anisotropic and isotropic total varia- +tion (AITV) [30], which applies ℓ1 −αℓ2 on each gradient vector of an image. Mathematically, +AITV is formulated by +∥∇z∥1 − α∥∇z∥2,1 = +n2 +� +i=1 +� +|(∇xz)i| + |(∇yz)i| − α +� +|(∇xz)i|2 + |(∇yz)i|2 +� +. +(1.4) +AITV has demonstrated better performance than TV in image denoising, image deconvolution, +image segmentation, and MRI reconstruction [5, 30, 38], especially in preserving sharper edges. +In this work, we consider the large-scale ptychography problem where the measurements +are corrupted by either Gaussian or Poisson noise. +To improve the image reconstruction + +4 +KEVIN BUI AND ZICHAO (WENDY) DI +quality, the AITV regularization is incorporated. The overall problem is formulated as a gen- +eral variational problem, where we develop an ADMM algorithm to solve it. The ADMM +algorithm has subproblems that can be approximately solved by stochastic gradient descent +(SGD) [40]. Although SGD is a generic and popular algorithm for unconstrained optimization +problems whose objective functions have a finite-sum structure, it may not be directly appli- +cable to the subproblem being solved in the case of ptychography. Hence, we show how to +appropriately apply SGD in order to develop our specialized stochastic ADMM algorithm. To +further modify the algorithm, we incorporate adaptive step size based on the PIE algorithms +[32, 33, 42]. Instead of using all measurements per iteration, this stochastic ADMM algorithm +can iteratively process a batch of measurements to accurately perform image reconstruction. +The paper is organized as follows. In Section 2, we review notations and definitions that +will be used throughout the paper. +Next in Section 3 we describe the AITV-regularized +variational models to solve the image ptychography problem. Within this section, we design +the stochastic ADMM algorithms to solve these models. Convergence analysis of the stochatsic +ADMM algorithm follows in Section 4. In Section 5, we illustrate the performance of our +proposed stochastic ADMM algorithms and compare them with other competing algorithms. +Lastly, in Section 6, we conclude the paper with summary and future works. +2. Preliminaries. In this section, we describe basic notations used throughout the paper. +Let z ∈ Cn2. The ith entry of z is denoted by (z)i. The vector 1 is a vector whose entries +are all ones. The vector 0 is also defined similarly. The real transpose and conjugate transpose +of z are denoted by z⊤ and z∗, respectively. The same superscript notations are used for the +real transpose and conjugate transpose of matrices. The sign of a complex value z′ ∈ C is +given by +sgn(z′) = +� +� +� +z′ +|z′| +if z′ ̸= 0, +c ∈ {c′ ∈ C : |c′| = 1} +if z′ = 0. +The sign of a vector z ∈ Cn2 is denoted by sgn(z) and is defined elementwise by sgn(z)i = +sgn(zi), i = 1, . . . , n2. The standard basis vectors of Cn2 are denoted by {ei}n2 +i=1, where ei is +a vector whose ith component is 1 while all other components are zeros. The diagonal matrix +of a vector z ∈ Cn2 is denoted by Dz = Diag(z) = z1⊤ ◦ In2×n2. +For p = (px, py) ∈ Cn2 × Cn2, its ith entry is pi = +�(px)i +(py)i +� +∈ C2. We define the following +norms on Cn2 × Cn2: +∥p∥1 = +n2 +� +i=1 +|(px)i| + |(py)i|, +∥p∥2 = +� +� +� +� +n2 +� +i=1 +|(px)i|2 + |(py)i|2, +∥p∥2,1 = +n2 +� +i=1 +� +|(px)i|2 + |(py)i|2 = +n2 +� +i=1 +∥pi∥2. +The discrete gradient operator ∇ : Cn2 → Cn2 × Cn2 when specifically applied to the image + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +5 +z is given by ∇z = (∇xz, ∇yz), where ∇x and ∇y are the forward horizontal and vertical +difference operators. +We also define the proximal operator of a function f : Cn2 → R ∪ {+∞} as +proxf(·)(z′) = arg min +z +f(z) + 1 +2∥z − z′∥2 +2, ∀z′ ∈ Cn2. +3. Proposed Model. Throughout the paper, we assume that among the mask set {Sj}N +j=1, +there exists j′ such that ∥Sj′ei∥1 = 1 for each i = 1, . . . , n2. This assumption ensures that +each pixel of an image z ∈ Cn2 is sampled at least once. +Suppose that the measurements {dj}N +j=1 are corrupted by independent and identically +distributed (iid) noise, i.e., dj +iid +∼ Noise(|F(ω ◦ Sjz)|2) for j = 1, . . . , N. We assume that the +noise is either Gaussian or Poisson, both of which are common in phase retrieval. Given an +unknown probe ω, the blind variational model [8] is +min +ω∈Cm2,z∈Cn2 +N +� +j=1 +B(|F(ω ◦ Sjz)|2, dj), +(3.1) +where +B(g, f) = +� +� +� +� +� +� +� +� +� +1 +2∥√g − +� +f∥2 +2, +amplitude Gaussian metric (AGM) [51], +1 +2⟨g − f ◦ log(g), 1⟩, +intensity Poisson metric (IPM) [10]. +(3.2) +Note that √· is elementwise square root. When the probe ω is known, (3.1) simplifies to the +non-blind case as a special case where we only need to find z ∈ Cn2. Hence, throughout the +rest of this section, we will focus on the blind case. To improve image recovery, we propose a +class of AITV-regularized variants of (3.1). +3.1. AITV model. For image ptychography, we propose the following AITV-regularized +model: +min +ω∈Cm2,z∈Cn2 +N +� +j=1 +B(|F(ω ◦ Sjz)|2, dj) + λ (∥∇z∥1 − α∥∇z∥2,1) , λ > 0, α ∈ [0, 1]. +(3.3) +To develop an ADMM algorithm of (3.3), we introduce auxiliary variables u = (u1, . . . , uN) ∈ +Cm2×N and v = (vx, vy) ∈ Cn2 ×Cn2 so that we obtain an equivalent constrained optimization +problem +min +u,v,z +N +� +j=1 +B(|uj|2, dj) + λ (∥v∥1 − α∥v∥2,1) s.t. +uj = F(ω ◦ Sjz), j = 1, . . . , N, and v = ∇z. +(3.4) + +6 +KEVIN BUI AND ZICHAO (WENDY) DI +The augmented Lagrangian of (3.4) is +L(u, ω, v, z, Λ, y) = +N +� +j=1 +� +B(|uj|2, dj) + R (⟨Λj, uj − F(ω ◦ Sjz)⟩) + β1 +2 ∥uj − F(ω ◦ Sjz)∥2 +2 +� ++ λ (∥v∥1 − α∥v∥2,1) + R (⟨y, v − ∇z⟩) + β2 +2 ∥v − ∇z∥2 +2, +(3.5) +where R(·) denotes the real component of a complex number; ⟨·, ·⟩ denotes the complex inner +product between two vectors; Λ = (Λ1, . . . , ΛN) ∈ Cm2×N and y = (yx, yy) ∈ Cn2×n2 are +Lagrange multipliers; and β1, β2 > 0 are penalty parameters. The ADMM algorithm iterates +as follows: +ut+1 ∈ arg min +u +L(u, ωt, vt, zt, Λt, yt), +(3.6a) +ωt+1 ∈ arg min +ω +L(ut+1, ω, vt, zt, Λt, yt), +(3.6b) +vt+1 ∈ arg min +v +L(ut+1, ωt+1, v, zt, Λt, yt), +(3.6c) +zt+1 ∈ arg min +z +L(ut+1, ωt+1, vt+1, z, Λt, yt), +(3.6d) +Λt+1 +j += Λt +j + β1 +� +ut+1 +j +− F(ωt+1 ◦ Sjzt+1) +� +, +j = 1, . . . , N, +(3.6e) +yt+1 = yt + β2 +� +vt+1 − ∇zt+1� +. +(3.6f) +Next we explain how to solve each subproblem. +3.1.1. u-subproblem. In (3.6a), we solve uj independently of each other. For each j = +1, . . . , N, we have +ut+1 +j +∈ arg min +uj +B(|uj|2, dj) + R +� +⟨Λt +j, uj − F(P t +j zt)⟩ +� ++ β1 +2 ∥uj − F(P t +j zt)∥2 +2 += arg min +uj +1 +β1 +B(|uj|2, dj) + 1 +2 +����uj − F(P t +j zt) + 1 +β1 +Λt +j +���� +2 +2 += prox 1 +β1 B(|·|2,dj) +� +F(P t +j zt) − 1 +β1 +Λt +j +� +, +(3.7) +where P t +j = ωt ◦ Sj. The proximal operator for each fidelity term in (3.2) has a closed-form +solution provided in [10, 11], so we have +ut+1 +j += +� +� +� +� +� +� +� +√ +dj+β1 +���F(P t +j zt)− 1 +β1 Λt +j +��� +1+β1 +◦ sgn +� +F(P t +j zt) − 1 +β1 Λt +j +� +, +AGM, +β1|F(P t +j zt)− 1 +β1 Λt +j|+ +�� +β1|F(P t +j zt)− 1 +β1 Λt +j| +�2 ++4(1+β1)dj +2(1+β1) +◦ sgn +� +F(P t +j zt) − 1 +β1 Λt +j +� +, +IPM. +(3.8) + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +7 +3.1.2. ω-subproblem. The ω-subproblem (3.6b) can be rewritten as +ωt+1 ∈ arg min +ω +N +� +j=1 +� +�β1 +2 +�����F−1 +� +ut+1 +j ++ +Λt +j +β1 +� +− ω ◦ Sjzt +����� +2 +2 +� +� , +(3.9) +which shows that updating ω requires access to all N probes. Hence, we develop an alternative +update scheme that uses only b ≤ N probes. Instead of solving (3.6b) exactly, we linearize it +as done in [26, 37] to obtain +ωt+1 ∈ arg min +ω +⟨∇ωL(ut+1, ωt, zt, Λt, yt), ω − ωt⟩ + +1 +2δtω +∥ω − ωt∥2 +2 +(3.10) +for some constant δt +ω > 0 at iteration t. Then (3.10) is equivalent to performing gradient +descent with step size δt +ω: +ωt+1 = ωt − δt +ω∇ωL(ut+1, ωt, vt, zt, Λt, yt). +(3.11) +Next we approximate ∇Lω by its stochastic estimator ˜∇ωL. thereby updating ωt+1 by SGD +with step size δt +ω > 0: +ωt+1 = ωt − δt +ω ˜∇ωL(ut+1, ωt, vt, zt, Λt, yt). +(3.12) +We derive some candidates for ˜∇ωL. Let Gt +j(ω) = β1 +2 +���F−1 � +ut+1 +j ++ +Λt +j +β1 +� +− ω ◦ Sjzt��� +2 +2, which +means that ∇Gt +j(ω) = −β1(Sjzt)∗ ◦ +� +F−1 � +ut+1 +j ++ +Λt +j +β1 +� +− ω ◦ Sjzt� +. (3.11) can be rewritten as +a gradient descent step with Nδt +ω: +ωt+1 = ωt − Nδt +ω +� +� 1 +N +N +� +j=1 +∇Gt +j(ωt) +� +� . +(3.13) +The SGD estimator [3, 40] of 1 +N +�N +j=1 ∇Gt +j(ωt) is 1 +b +� +j∈nt ∇Gt +j(ωt), where nt ⊂ {1, . . . , N} is +a sub-batch of N masks such that |nt| = b. Then the SGD variant (after scaling δt +ω) of (3.11) +is +ωt+1 = ωt − δt +ω +� +�1 +b +� +j∈nt +∇Gt +j(ωt) +� +� . +(3.14) +This implies that one candidate stochastic estimator for ∇ωL is +˜∇SGD +ω +L(ut+1, ωt, vt, zt, Λt, yt) = 1 +b +� +j∈nt +∇Gt +j(ωt) += −β1 +b +� +j∈nt +(Sjzt)∗ ◦ +� +F−1 +� +ut+1 +j ++ +Λt +j +β1 +� +− ωt ◦ Sjzt +� +. +(3.15) + +8 +KEVIN BUI AND ZICHAO (WENDY) DI +We can further modify (3.15) by incorporating spatially varying step sizes inspired by the PIE +algorithms [32, 33, 42]. Let +Φt +j = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +∥Sjzt∥2∞ +, +ePIE [33], +∥Sjzt∥11 +∥Sjzt∥∞ (|Sjzt|2 + γω∥Sjzt∥2∞1), +PIE [42], +1 +(1 − γω)|Sjzt|2 + γω∥Sjzt∥2∞1, +rPIE [32], +(3.16) +where γω ∈ [0, 1] for PIE and rPIE and division is elementwise. Incorporating Φt +j into (3.15), +we have another class of stochastic estimators +˜∇PIE +ω +L(ut+1, ωt, vt, zt, Λt, yt) = −β1 +b +� +j∈nt +Φt +j ◦ (Sjzt)∗ ◦ +� +F−1 +� +ut+1 +j ++ +Λt +j +β1 +� +− ωt ◦ Sjzt +� +. +(3.17) +3.1.3. v-subproblem. Expanding (3.6c) gives +vt+1 ∈ arg min +v +λ +β2 +(∥v∥1 − α∥v∥2,1) + 1 +2 +����v − ∇zt + yt +β2 +���� +2 +2 += arg min +v +n2 +� +i=1 +λ +β2 +(∥vi∥1 − α∥vi∥2) + 1 +2 +����vi − (∇zt)i + (yt)i +β2 +���� +2 +2 +, +(3.18) +which means that the solution vt+1 can be solved elementwise. As a result, the subproblem +simplifies to +(vt+1)i = prox λ +β2 (∥·∥1−α∥·∥2) +� +(∇zt)i − (yt)i +β2 +� +. +(3.19) +A closed-form solution for the proximal operator of ℓ1 − αℓ2 is provided in [27] but only for +real-valued vectors. We generalize it to the complex case in Lemma 3.1, whose proof is delayed +to Appendix A. +Lemma 3.1. Given x′ ∈ Cn, λ > 0. and α ≥ 0, we have the following cases: +1. When ∥x′∥∞ > λ, we have +x∗ = (∥ξ∥2 + αλ) +ξ +∥ξ∥2 +, where ξ = sgn(x′) ◦ max(|x′| − λ, 0). +2. When (1 − α)λ < ∥x′∥∞ ≤ λ, we have x∗ as a 1-sparse vector such that one chooses +an index i ∈ arg maxj(|(x′)j|) and have +(x∗)j = +� +(|(x′)j| + (α − 1)λ) sgn((x′)j) +if j = i, +0 +if j ̸= i. +3. When ∥x′∥∞ ≤ (1 − α)λ, we have x∗ = 0. +Then x∗ is an optimal solution to +proxλ(∥·∥1−α∥·∥2)(x′) = arg min +x +∥x∥1 − α∥x∥2 + 1 +2λ∥x − x′∥2 +2. +(3.20) + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +9 +3.1.4. z-subproblem. (3.6d) can be rewritten as +zt+1 ∈ arg min +z +N +� +j=1 +� +�β1 +2 +�����ut+1 +j +− F(P t+1 +j +z) + +Λt +j +β1 +����� +2 +2 +� +� + β2 +2 +����vt+1 − ∇z + yt +β2 +���� +2 +2 +, +(3.21) +which implies that zt+1 must satisfy the first-order optimality condition +� +�β1 +N +� +j=1 +(P t+1 +j +)∗P t+1 +j +− β2∆ +� +� zt+1 = +N +� +j=1 +β1(P t+1 +j +)∗F−1 +� +ut+1 +j ++ +Λt +j +β1 +� ++ β2∇⊤ +� +vt+1 + yt +β2 +� +, +(3.22) +where the Laplacian ∆ = −∇⊤∇. Since the coefficient matrix of zt+1 is invertible, solving +(3.22) can be performed exactly, but it could be computationally expensive if the matrix +system is extremely large because of the image size of z. Since the coefficient matrix tends +to be sparse, conjugate gradient [22] can be used to solve (3.22) like in [10, 11], but it needs +access to all N probes and requires at most n2 iterations to attain an exact solution, assuming +exact arithmetic. Moreover, it is sensitive to roundoff error [19]. +Alternatively, like in Section 3.1.2 we linearize (3.21) to obtain the gradient descent step +with step size δt +z > 0: +zt+1 = zt − δt +z∇zL(ut+1, ωt+1, vt+1, zt, Λt, yt). +(3.23) +We approximate ∇zL by its stochastic estimator ˜∇zL that only has access to b ≤ N probes. +Replacing ∇zL with ˜∇zL in (3.23) gives +zt+1 = zt − δt +z ˜∇zL(ut+1, ωt+1, vt+1, zt, Λt, yt). +(3.24) +To design candidates for ˜∇zL, we will use the following lemma: +Lemma 3.2. Let S ∈ Rm2×n2. If ei ∈ ker(S) for some index i, then for any x ∈ Cm2, we +have (S⊤x)i = 0. +Proof. We have (S⊤x)i = ⟨S⊤x, ei⟩ = ⟨x, Sei⟩ = ⟨x, 0⟩ = 0. +For brevity, we denote the vectors +At +j = −β1 +� +(P t+1 +j +)∗F−1 +� +ut+1 +j ++ +Λt +j +β1 +� +− (P t+1 +j +)∗P t+1 +j +zt +� +, +Bt = −β2 +� +∇⊤ +� +vt+1 + yt +β2 +� ++ ∆zt +� +. +(3.25) +At each element i = 1, . . . , n2, (3.23) becomes +(zt+1)i = (zt)i − δt +z(∇zL(ut+1, ωt+1, vt+1, zt, Λt, yt))i = (zt)i − δt +z +� +� +N +� +j=1 +(At +j)i + (Bt)i +� +� . +(3.26) + +10 +KEVIN BUI AND ZICHAO (WENDY) DI +By Lemma 3.2, since (P t+1 +j +)∗ = (ωt+1 ◦ Sj)∗ = S⊤ +j D(ωt+1)∗, we have (At +j)i = 0 if ei ∈ ker(Sj), +which means that element i is not scanned by the mask matrix Sj. For each i = 1, . . . , n2, +we define Ni = {j : ei ̸∈ ker(Sj)} to be the set of indices corresponding to the mask matrices +that scan element i. As a result, (3.26) reduces to and can be rewritten as +(zt+1)i = (zt)i − δt +z +� +� � +j∈Ni +(At +j)i + (Bt)i +� +� = (zt)i − |Ni|δt +z +� +� 1 +|Ni| +� +j∈Ni +� +(At +j)i + +1 +|Ni|(Bt)i +�� +� . +(3.27) +Comparing (3.26) and (3.27), we observe that +1 +|Ni| +� +j∈Ni +� +(At +j)i + +1 +|Ni|(Bt)i +� +∝ (∇zL(ut+1, ωt+1, vt+1, zt, Λt, yt))i. +Thus, a candidate for the stochastic estimator ˜∇zL is the SGD estimator ˜∇SGD +z +L given by +� +˜∇SGD +z +L(ut+1, ωt+1, vt+1, zt, Λt, yt) +� +i = +1 +|nt +i| +� +j∈nt +i +� +(At +j)i + +1 +|Ni|(Bt)i +� +, +(3.28) +where nt +i ⊂ Ni is a mini-batch sampled from Ni at iteration t [3, 40]. +We can further modify (3.28) by incorporating spatially varying step sizes inspired by the +PIE algorithms [32, 33, 42]. We define +Ψi,j = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +∥ωt+1∥2∞ +ePIE [33], +∥P t+1 +j +ei∥1 +∥ωt+1∥∞ +� +∥P t+1 +j +ei∥2 +1 + γz∥ωt+1∥2∞ +� +PIE [42], +1 +(1 − γz)∥P t+1 +j +ei∥2 +1 + γz∥ωt+1∥2∞ +rPIE [32], +(3.29) +with γz ∈ [0, 1] for PIE and rPIE. A class of PIE candidates for the stochastic estimator is +� +˜∇PIE +z +L(ut+1, ωt+1, vt+1, zt, Λt, yt) +� +i = +1 +|nt +i| +� +j∈nt +i +Ψi,j +� +(At +j)i + +1 +|Ni|(Bt)i +� +. +(3.30) +The overall stochastic ADMM algorithm that solves (3.3) is provided by Algorithm 3.1. +Notice that the non-blind problem is just a special case with the probe ω fixed. +4. Convergence Analysis. We discuss the convergence of Algorithm 3.1. Although global +convergence for ADMM can be established using Kurdyka-�Lojasiewicz assumptions [49], the +result does not apply for our models because our models contain the gradient operator, which +does not satisfy the necessary surjectivity assumption. Hence, we will prove up to subse- +quential convergence. The convergence analysis is based on the analyses done in [10, 11, 51], +where under certain assumptions, they showed that the iterate subsequences of the ADMM + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +11 +Algorithm 3.1 Stochastic ADMM to solve (3.3) +Input: +set of masks {Sj}N +j=1; model parameters λ > 0, α ∈ [0, 1]; penalty parameters β1, β2 > 0; sequence of step sizes +{(δt +ω, δt +z)}∞ +t=1; batch size b ≤ N; PIE factors γz, γω ∈ [0, 1]. +1: Initialize ω0, z0, {u0 +j}N +j=1 = {Λ0 +j}N +j=1, y0 = ∇z0. +2: for t = 0 to T − 1 do +3: +Uniformly sample without replacement the subset nt ⊂ {1, . . . , N} of batch size b. +4: +Compute nt +i from nt, i.e., nt +i = +� +j∈nt +∥Sjei∥1. +5: +Update ut+1 +j +according to (3.8) for each j ∈ nt. +6: +if ω is unknown then +7: +Update ωt+1 = ωt − δt +ω ˜∇ωL(ut+1, ωt, vt, zt, Λt, yt). See (3.15) and (3.17) for a candidate ˜∇ωL. +8: +else +9: +ωt+1 = ωt. +10: +end if +11: +Compute +(vt+1)i = prox λ +β2 (∥·∥1−α∥·∥2) +� +(∇zt)i − (yt)i +β2 +� +for all i = 1, . . . , n2; see Lemma 3.1. +12: +Update (zt+1)i = (zt)i − δt +z +� +˜∇zL(ut+1, ωt+1, vt+1, zt, Λt, yt) +� +i for all i such that nt +i ̸= 0. See (3.28) and (3.30) +for a candidate ˜∇zL. +13: +Compute +Λt+1 +j += Λt +j + β1 +� +ut+1 +j +− F(ωt+1 ◦ Sjzt+1) +� +, ∀j ∈ nt, +yt+1 = yt + β2 +� +vt+1 − ∇zt+1� +. +14: end for +Output: ω∗ = ωT , z∗ = zT +algorithms converge to Karush-Kuhn-Tucker (KKT) points. To simplify notation, let Z = +(u, ω, v, z) and Ω = (Λ, y). We also write L(ω), for example, to represent the Lagrangian with +respect to ω with all other variables fixed at their most recent values. A KKT point (Z⋆, Ω⋆) +of the Lagrangian (3.5) satisfies the KKT conditions given by +0 ∈ +� +� +� +� +� +∂|u⋆ +j|(|u⋆ +j| − +� +dj) + Λ⋆ +j, +if AGM, +∂|u⋆ +j| +� +|u⋆ +j| − +� +dj +|u⋆ +j| +� ++ Λ⋆ +j, +if IPM, +for j = 1, . . . , N, +(4.1a) +−y⋆ +λ ∈ ∂(∥v⋆∥1 − α∥v⋆∥2,1), +(4.1b) +u⋆ +j = F(ω⋆ ◦ Sjz⋆) +for j = 1, . . . , N, +(4.1c) +v⋆ = ∇z⋆, +(4.1d) +∇ωL(Z⋆, Ω⋆) = 0, +(4.1e) +∇zL(Z⋆, Ω⋆) = 0. +(4.1f) + +12 +KEVIN BUI AND ZICHAO (WENDY) DI +Because we implement SGD to solve for the probe ω and the image z in the ADMM algorithm, +we replace (4.1e) and (4.1f) with the following conditions, respectively: +E +� +∥∇ωL(Z⋆, Ω⋆)∥2 +2 +� += 0 +(4.1e′) +E +� +∥∇zL(Z⋆, Ω⋆)∥2 +2 +� += 0. +(4.1f′) +We say a point (Z⋆, Ω⋆) is a stochastic KKT point if it satisfies (4.1a)-(4.1d) and (4.1e′)-(4.1f′). +Where Et denotes the expectation conditioned on the first t iterations of the stochastic +ADMM algorithm, we impose the following assumption adapted from [3, Assumption 4.3] +relating to the stochastic gradient estimators ˜∇ωL and ˜∇zL. +Assumption 4.1. Let {(Zt, Ωt)}∞ +t=1 be a sequence of iterates generated by Algorithm 3.1. +Suppose that at each iteration t, the stochastic gradient estimators +˜∇ωL(ωt) := ˜∇ωL(ut+1, ωt, vt, zt, Λt, yt) and ˜∇zL(zt) := ˜∇ωL(ut+1, ωt+1, vt+1, zt, Λt, yt) sat- +isfy the following: +(a) There exist constants KU ≥ KL > 0 such that +R +� +Et +� +⟨∇ωL(ωt), ˜∇ωL(ωt)⟩ +�� +≥ KLEt +� +∥∇ωL(ωt)∥2 +2 +� +(4.3) +���Et[ ˜∇ωL(ωt)] +��� +2 +2 ≤ KUEt +� +∥∇ωL(ωt)∥2 +2 +� +(4.4) +R +� +Et +� +⟨∇zL(zt)), ˜∇zL(zt)⟩ +�� +≥ KLEt +� +∥∇zL(zt)∥2 +2 +� +(4.5) +���Et[ ˜∇zL(zt)] +��� +2 +2 ≤ KUEt +� +∥∇zL(zt)∥2 +2 +� +. +(4.6) +(b) There exists constant M, MV ≥ 0 such that +Et +� +∥ ˜∇ωL(ωt)∥2 +2 +� +− +���Et[ ˜∇ωL(ωt)] +��� +2 +2 ≤ M + MV Et +���∇ωL(ωt) +��2 +2 +� +(4.7) +Et +� +∥ ˜∇zL(zt)∥2 +2 +� +− +���Et[ ˜∇zL(zt)] +��� +2 +2 ≤ M + MV Et +���∇zL(zt) +��2 +2 +� +. +(4.8) +To prove the convergence of Algorithm 3.1, we require the following preliminary results. +Lemma 4.2 provides useful inequalities while Proposition 4.3 bounds the iterates {(Zt, Ωt)}∞ +t=1 +and establishes some bounded property of the gradients {(∇ωL(ωt), ∇zL(zt))}∞ +t=1. +Lemma 4.2. Let {(Zt, Ωt)}∞ +t=1 be a sequence of iterates generated by Algorithm 3.1 that +satisfies Assumption 4.1. Suppose that {(ωt, zt)}∞ +t=1 is bounded. For each iteration t, we have +Et[L(ωt+1)] − Et[L(ωt)] ≤ − +� +KL − δt +ωLω(MV + KU) +2 +� +δt +ωEt +���∇ωL(ωt) +��2 +2 +� ++ (δt +ω)2LωM +2 +(4.9) +Et[L(zt+1)] − Et[L(zt)] ≤ − +� +KL − δt +zLz(MV + KU) +2 +� +δt +zEt +���∇zL(zt) +��2 +2 +� ++ (δt +z)2LzM +2 +(4.10) +for some constants Lω, Lz > 0. + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +13 +Proposition 4.3. Let {(Zt, Ωt)}∞ +t=1 be a sequence of iterates generated by Algorithm 3.1 that +satisfies Assumption 4.1. Suppose {(ωt, zt)}∞ +t=1 is bounded, �∞ +t=1 ∥Ωt+1 − Ωt∥2 +2 < ∞, and +∞ +� +t=1 +δt +ω = ∞, +∞ +� +t=1 +(δt +ω)2 < ∞, +∞ +� +t=1 +δt +z = ∞, +∞ +� +t=1 +(δt +z)2 < ∞. +(4.11) +Then {(Zt, Ωt)}∞ +t=1 is bounded and +∞ +� +t=1 +E +� +δt +ω∥∇ωL(ωt)∥2 +2 + δt +z∥∇zL(zt)∥2 +2 +� +< ∞. +(4.12) +The convergence of Algorithm 3.1 is finally established below (see proofs in Appendix B). +Theorem 4.4. Let {(Zt, Ωt)}∞ +t=1 be generated by Algorithm 3.1. Under the same assump- +tion as Proposition 4.3, there exists a subsequence of {(Zt, Ωt)}∞ +t=1 whose accumulation point +(Z⋆, Ω⋆) is a stochastic KKT point almost surely (a.s.) of (3.5). +We note that the requirement �∞ +t=1 ∥Ωt+1 − Ωt∥2 +2 < ∞ is rather strong, but similar +assumption was made in other nonconvex ADMM algorithms [24, 25, 53] that do not satisfy +the necessary assumptions for global convergence [49]. +5. Numerical Results. In this section, we evaluate the performance of Algorithm 3.1 on +two complex images presented in Figure 2. The probe size used for both images is 256 × 256, +and the probe is scanned across an image from left to right and top to bottom, giving us +N = 100 measurements. The measurements {dj}N +j=1 are either corrupted by Gaussian noise +or Poisson noise. More specifically, when the measurements are corrupted by Gaussian noise, +we have +dj = (|F(Pjz)| + ϵ)2, +(5.1) +where ϵ is an i.i.d. Gaussian random vector. When the measurements are corrupted by Poisson +noise, we have +dj = Poisson(|F(Pjzζ)|), +(5.2) +where zζ = ζz for some constant ζ > 0. Note that Poisson noise is stronger when ζ is smaller. +For numerical evaluation, we compute the SSIMs [50] of the magnitudes and phases be- +tween the reconstructed image z∗∗ and the ground-truth image zg, where z∗∗ +i += ζ∗z∗ +i+t∗ is +adjusted for scaling by ζ∗ and translation by t∗ and (ζ∗, t∗) = arg min +ζ∈C,t∈Z +n2 +� +i=1 +|ζz∗ +i+t − zg +i |2. We +compare the proposed stochastic ADMM algorithms with its deterministic, full-batch coun- +terparts (i.e., (3.22) and (3.9) are solved exactly) and its isotropic TV counterparts based on + +14 +KEVIN BUI AND ZICHAO (WENDY) DI +0.5 +0.55 +0.6 +0.65 +0.7 +0.75 +0.8 +0.85 +0.9 +0.95 +(a) +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +0.35 +(b) +5 +10 +15 +20 +25 +30 +(c) +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +(d) +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +0.35 +(e) +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +(f) +Figure 2: Two complex sample images and their probes examined in the experiments. Left +column: sample magnitude; middle column: sample phase with inserted proportionally sized +probe magnitude; left column: the magnitude differences between the ground-truth probe and +the initial probe ω0. +Table 1: Parameter settings for each method. Note that b refers to the batch size. +Total +Epochs +β1 = β2 +δt +z +Ψi,j +δt +ω +Φi,j +AGM +600 +0.25 +� +� +� +� +� +2 +√ +b +1 ≤ t ≤ 300 +1 +5 +√ +b +300 < t ≤ 450 +1 +50 +√ +b +450 < t ≤ 600 +rPIE +(γz = 0.1) +� +� +� +� +� +√ +b × 10−3 +1 ≤ t ≤ 300 +√ +b × 10−4 +300 < t ≤ 450 +√ +b × 10−5 +450 ≤ t ≤ 600 +rPIE +(γω = 0.025) +IPM +300 +0.25 +� +� +� +� +� +15 +√ +b +1 ≤ t ≤ 150 +3 +2 +√ +b +150 < t ≤ 225 +3 +20 +√ +b +225 < t ≤ 300 +ePIE +� +� +� +� +� +2 +√ +b × 10−3 +1 ≤ t ≤ 300 +2 +√ +b × 10−4 +300 < t ≤ 450 +2 +√ +b × 10−5 +450 ≤ t ≤ 600 +ePIE +[10, 11]. The results are also compared with Douglas-Rachford splitting [46], rPIE [33], and +PHeBIE [21]. We follow the implementation of Douglas-Rachford from [8]. +We initialize z0 = +1 +√ +2(1+i1) when using AGM for Gaussian-corrupted measurements and +z0 = +ζ +√ +2(1 + i1) when using IPM for Poisson-corrupted measurements. When performing the +blind experiments using Algorithm 3.1, ω0 is initialized as the perturbation of the ground- +truth probe. The magnitude differences between the initial probe and the ground-truth probe +are shown in Figure 2. The selected parameters, except for λ, are summarized in Table 1. +The initial step sizes for δt +z and δt +ω are determined empirically, and motivated by (4.11), we +decrease them by a factor of 10 at the 1/2 and 3/4 of the total epochs. Decreasing the step +size in this way is a popular technique, especially in the deep learning community [18, 20]. +Inspired from [18], the step sizes are multiplied by a factor of +√ +b so that they are scaled +accordingly to the batch size b. For AITV regularization, we examine α ∈ {0.2, 0.4, 0.6, 0.8} + +- +- +- +- +- +- +-STOCHASTIC ADMM FOR PTYCHOGRAPHY +15 +Table 2: SSIM results of the algorithms applied to the Gaussian corrupted measurements +with SNR = 40. The stochastic algorithms (e.g., AITV and isoTV, b ∈ {5, 10, 20, 50}) are ran +three times to obtain the average SSIM values. Bold indicates best value; underline indicates +second best value. +Non-blind +Blind +Chip +Cameraman/Baboon +Chip +Cameraman/Baboon +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +DR +0.8130 +0.8089 +0.8701 +0.5191 +0.8008 +0.7642 +0.8009 +0.3207 +rPIE +0.8886 +0.9073 +0.8930 +0.6055 +0.9070 +0.9120 +0.8890 +0.6145 +PHeBIE +0.8004 +0.8019 +0.8725 +0.5718 +0.8612 +0.8438 +0.8846 +0.5756 +isoTV (b = 5) +0.9501 +0.9027 +0.9393 +0.7578 +0.9426 +0.8919 +0.9324 +0.7547 +isoTV (b = 10) +0.9498 +0.9004 +0.9387 +0.7475 +0.9429 +0.8891 +0.9326 +0.7477 +isoTV (b = 20) +0.9514 +0.8981 +0.9385 +0.7302 +0.9447 +0.8850 +0.9298 +0.7289 +isoTV (b = 50) +0.9355 +0.9193 +0.9294 +0.7050 +0.9322 +0.9047 +0.9153 +0.7025 +isoTV (full batch) +0.9578 +0.9145 +0.9769 +0.7338 +0.9527 +0.8698 +0.9589 +0.5774 +AITV (b = 5) +0.9585 +0.9556 +0.9438 +0.7720 +0.9490 +0.9477 +0.9373 +0.7775 +AITV (b = 10) +0.9620 +0.9579 +0.9515 +0.7747 +0.9534 +0.9481 +0.9450 +0.7772 +AITV (b = 20) +0.9629 +0.9583 +0.9538 +0.7707 +0.9547 +0.9470 +0.9468 +0.7690 +AITV (b = 50) +0.9585 +0.9550 +0.9490 +0.7358 +0.9514 +0.9432 +0.9391 +0.7342 +AITV (full batch) +0.9674 +0.9513 +0.9814 +0.7463 +0.9676 +0.9296 +0.9725 +0.5956 +and determine that α = 0.8 yields the best results across all of our numerical examples. The +batch sizes we examine are b ∈ {5, 10, 20, 50} for Gaussian noise and b ∈ {5, 10, 20, 25} for +Poisson noise. For each parameter setting and image, we run three trials to obtain the mean +SSIM values. +The code for the experiments is available at https://github.com/kbui1993/Stochastic +ADMM Ptycho. +5.1. Gaussian noise. The SNR of the noisy measurements [10] is given by +SNR +� +{ +� +dj}N +j=1, {|F(Pjz)|}N +j=1 +� += −10 log10 +� +� +� +� +� +� +� +N +� +j=1 +∥ +� +dj − |F(Pjz)|∥2 +2 +N +� +j=1 +∥F(Pjz)∥2 +2 +� +� +� +� +� +� +� +, +so determined by the SNR value, the noise level ϵ in (5.1) can be calculated by +ϵ = +� +� +� +� +� +� +10−SNR/10 +N +� +j=1 +∥F(Pjz)∥2 +2 +Nm2 +. +For both the non-blind and blind case, we examine the case when SNR = 40 for the +noisy measurements. We set λ = 10.0. The numerical results are recorded in Table 2. For + +16 +KEVIN BUI AND ZICHAO (WENDY) DI +(a) isoTV (b = 50) +(b) AITV (b = 20) +(c) AITV (full) +(d) DR +(e) rPIE +(f) PHeBIE +(g) isoTV (b = 50) +(h) AITV (b = 20) +(i) AITV (full) +(j) DR +(k) rPIE +(l) PHeBIE +(m) isoTV (b = 5) +(n) AITV (b = 10) +(o) AITV (full) +(p) DR +(q) rPIE +(r) PHeBIE +(s) isoTV (b = 5) +(t) AITV (b = 10) +(u) AITV (full) +(v) DR +(w) rPIE +(x) PHeBIE +Figure 3: Reconstructions of the non-blind case for the Gaussian noise. Top two rows: recon- +structions of Figures 2a-2b; bottom two rows: reconstructions of Figs. 2d-2e. +both the non-blind and blind cases, DR, rPIE, and PHeBIE yield magnitude images with +the worst SSIM values, and AITV outperforms its corresponding isotropic TV counterpart by +having better SSIM values for both the magnitude and phase images. The stochastic AITV, +particularly b = 10 or b = 20, has slightly lower magnitude SSIM values by at most 0.04 than +the best results obtained from the deterministic, full-batch AITV. In fact, stochastic AITV +attains the second best magnitude SSIM values in three out of the four cases considered. +On the other hand, stochastic AITV with either b = 10 or b = 20 has the best phase SSIM +values, outperforming its deterministic version by up to 0.19. +For the blind case of the +cameraman/baboon image, the deterministic AITV and isotropic TV have worse phase SSIM +values than their stochastic counterparts. In general, the stochastic algorithm does best in +recovering phase images with superior SSIM values while recovering the magnitude images +with comparable SSIM values as the deterministic algorithm. +The reconstructed images for the non-blind experiments are presented in Figure 3. DR, +rPIE, PHeBIE, and the stochastic algorithms have artifacts in all four corners of the magnitude +images because the corners are scanned significantly less than in the middle of the image. + +-STOCHASTIC ADMM FOR PTYCHOGRAPHY +17 +(a) isoTV (b = 5) +(b) AITV (b = 20) +(c) AITV (full) +(d) DR +(e) rPIE +(f) PHeBIE +(g) isoTV (b = 5) +(h) AITV (b = 20) +(i) AITV (full) +(j) DR +(k) rPIE +(l) PHeBIE +(m) isoTV (b = 10) (n) AITV (b = 10) +(o) AITV (full) +(p) DR +(q) rPIE +(r) PHeBIE +(s) isoTV (b = 10) +(t) AITV (b = 10) +(u) AITV (full) +(v) DR +(w) rPIE +(x) PHeBIE +Figure 4: Reconstructions of the blind case for Gaussian noise. +100 +101 +102 +103 +epoch +105 +106 +107 +108 +Figure 5: Amplitude Gaussian metric plotted across 600 epochs for the blind algorithms on +the complex image given by Figure 2d-2e. + +-18 +KEVIN BUI AND ZICHAO (WENDY) DI +20 +30 +40 +50 +60 +70 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Phase SSIM +20 +30 +40 +50 +60 +70 +0.5 +0.55 +0.6 +0.65 +0.7 +0.75 +0.8 +0.85 +0.9 +0.95 +1 +Magnitude SSIM +Figure 6: Magnitude and phase SSIMs over different Gaussian noise level for the complex +image given by Figure 2d-2e for the blind case. +However, the deterministic AITV has no artifacts because (3.22) is solved exactly for the +image solution z. As a result, it has higher magnitude SSIM values than their stochastic +counterparts. Nevertheless, the stochastic algorithms yield better phase images with less noise +artifacts than any other algorithms. For example, the phase images of Figure 2e reconstructed +from stochastic isoTV and AITV have the least amount of cameraman remnants. +Figure 4 shows the results of the blind algorithms. The phase images reconstructed by +the deterministic AITV, DR, ePIE and PHeBIE are significantly worse than the stochastic +algorithms. +For example in Figure 2b, the contrasts of the reconstructed images by the +deterministic AITV, DR, and PHeBIE are inconsistent as they become darker from left to +right while the contrasts are more consistent with the stochastic algorithms. For Figure 2e, +the stochastic algorithms perform the best in recovering the phase image while deterministic +AITV is unable to recover the left half of the image and DR, rPIE, and PHeBIE have strong +remnants of the cameraman present. Like in the non-blind case, stochastic AITV reconstructs +the phase image the best. +In Figure 5, we examine the convergence of the blind algorithms applied to the Camera- +man/Baboon image by recording their AGM values for each epoch. We omit the convergence +curves for isoTV since their curves are similar to their AITV counterparts. Overall, the curves +for our proposed stochastic algorithms are decreasing, validating the numerical convergence +of Algorithm 3.1 with AGM fidelity. However, their curves are slightly above the determinis- +tic ADMM algorithm and rPIE. The reason why rPIE outperforms the AITV algorithms is +because it seeks to only minimize AGM while the AITV algorithms minimize a larger objec- +tive function given by (3.5). Overall, after several hundred epochs, our proposed stochastic +algorithms can give comparable AGM values as the deterministic AITV and rPIE algorithms. + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +19 +Table 3: SSIM results of the algorithms applied to the Poisson corrupted measurements with +η = 0.01. The stochastic algorithms (e.g., AITV and isoTV, b ∈ {5, 10, 20, 25}) are ran three +times to obtain the average SSIM values. Bold indicates best value; underline indicates second +best value. +Non-blind +Blind +Chip +Cameraman/Baboon +Chip +Cameraman/Baboon +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +mag. +SSIM +phase +SSIM +DR +0.8523 +0.8455 +0.8704 +0.5043 +0.8431 +0.7387 +0.7630 +0.2529 +PHeBIE +0.9404 +0.9398 +0.9271 +0.6791 +0.9280 +0.9082 +0.8678 +0.5470 +isoTV (b = 5) +0.9460 +0.9151 +0.9301 +0.7193 +0.9394 +0.9001 +0.9238 +0.7105 +isoTV (b = 10) +0.9365 +0.9212 +0.9250 +0.7085 +0.9342 +0.9064 +0.9188 +0.6979 +isoTV (b = 20) +0.9335 +0.9397 +0.9224 +0.7008 +0.9355 +0.9248 +0.9153 +0.6905 +isoTV (b = 25) +0.9353 +0.9465 +0.9220 +0.6992 +0.9376 +0.9315 +0.9150 +0.6907 +isoTV (full batch) +0.9767 +0.9590 +0.9773 +0.7093 +0.9655 +0.9192 +0.9588 +0.4920 +AITV (b = 5) +0.9526 +0.9680 +0.9319 +0.7477 +0.9409 +0.9530 +0.9242 +0.7418 +AITV (b = 10) +0.9590 +0.9685 +0.9375 +0.7366 +0.9472 +0.9533 +0.9321 +0.7318 +AITV (b = 20) +0.9598 +0.9682 +0.9383 +0.7171 +0.9494 +0.9526 +0.9322 +0.7114 +AITV (b = 25) +0.9585 +0.9676 +0.9373 +0.7112 +0.9492 +0.9525 +0.9307 +0.7055 +AITV (full batch) +0.9803 +0.9644 +0.9782 +0.7084 +0.9741 +0.9354 +0.9671 +0.4975 +Lastly, we analyze the robustness of the blind algorithms applied to Figures 2d-2e cor- +rupted by different levels of Gaussian noise, from SNR 25 to 65. The fidelity parameter λ +varies for different noise level of the image: λ = 100 for SNR = 25; λ = 50 for SNR = 30, +35; λ = 10 for SNR =40, 45; λ = 5 for SNR = 50, 55, 60; and λ = 3 for SNR = 65. The +SSIMs for the magnitude and phase images across different SNRs are plotted in Figure 6. +For SNR ≥ 40, the deterministic algorithms have the best magnitude SSIMs than the other +algorithms while their stochastic counterparts have slightly lower SSIMs. When SNR < 40, +the stochastic algorithms perform the best. In fact, stochastic AITV has magnitude SSIM at +least 0.90 across different noise levels. For the phase image, the stochastic algorithms have +the highest SSIMs up to SNR = 55. For SNR ≥ 60, the rPIE algorithm has the best phase +SSIM while stochastic AITV has the second best. Overall, stochastic AITV is the most stable +across different levels of Gaussian noise. +5.2. Poisson noise. For both the non-blind and blind case, we examine the measurements +corrupted with Poisson noise with η = 0.01 according to (5.2). We set λ = 0.15. The numeri- +cal results are recorded in Table 3. Note that rPIE results are excluded because the algorithm +is tailored towards measurements corrupted with Gaussian noise [32]. Across all cases, de- +terministic AITV attains the highest magnitude SSIM values and stochastic AITV attains +the highest phase SSIM values while DR performs the worst in reconstructing images from +Poisson-corrupted measurements. We observe general improvement in SSIM values for both +magnitude and phase images by using AITV over isoTV. Although the stochastic algorithms +have lower SSIM values than their deterministic counterparts for the magnitude images, the +difference is at most 0.047 for AITV and at most 0.056 for isoTV. Moreover, the SSIM val- +ues of the magnitude images from the stochastic algorithms are at least 0.91. Similar to the + +20 +KEVIN BUI AND ZICHAO (WENDY) DI +Gaussian noise case, stochastic AITV reconstructs the phase image well while recovering the +magnitude image with satisfactory quality. +We examine the robustness of the blind algorithms on Figures 2d-2e with different level of +Poisson noise. The noise levels we examine are η ∈ {0.005k}9 +k=1. We set the fidelity parameter +to be λ = 15 × η. The SSIMs for the magnitude and phase images across different Poisson +noise levels are plotted in Figure 7. We observe that the deterministic algorithms yield the +best magnitude SSIMs while the stochastic algorithms yield the best phase SSIMs. DR yields +the worst results for both magnitude and phase components. Although stochastic AITV yields +the third best SSIMs for the magnitude image, its SSIMs are at least 0.90. Moreover, it has +the best phase SSIMs, significantly more than its deterministic counterpart by at about 0.20. +In summary, stochastic AITV is a robust method across different levels of Poisson noise. +6. Conclusion. In this work, we propose AITV-regularized variational models for image +ptychography, where the measurements are corrupted by either Gaussian or Poisson noise. +To adapt the algorithm for large number of measurements, we design a stochastic ADMM +algorithm that incorporates adaptive step sizes based on the PIE algorithms. Overall, us- +ing both AITV regularization and stochastic ADMM, we are able to reconstruct an image +of satisfactory quality from heavily corrupted measurements as demonstrated in our numer- +ical experiments. In fact, the phase component of the image is best recovered through our +proposed algorithms. Lastly, we prove theoretical convergence for the proposed stochastic +ADMM algorithm under certain conditions and demonstrate numerical convergence in our +experiments. +Future directions include the design of a globally convergent algorithm for the AITV- +regularized ptychography model, and incorporation of variance-reduced stochastic gradient +estimators, such as SVRG [23] and SARAH [36], to accelerate convergence and improve re- +construction quality. +Appendix A. Proof of Lemma 3.1. +Proof. If x′ = 0, then it is trivial, so for the rest of the proof, we assume that x′ ̸= 0. +Suppose x∗ is the optimal solution to (3.20). We show that sgn(x∗) = sgn(x′). If x∗ = 0, +then we can choose ci ∈ {c′ ∈ C : |c′| = 1} such that sgn(x∗)i = ci = sgn(x′)i for each +i = 1, . . . , n2, giving the desired result. Suppose that x∗ ̸= 0. Because ∥ · ∥1 − α∥ · ∥2,1 is +rotation invariant, we only need to examine and expand the quadratic term in (3.20). We see +that +∥x∗ − x′∥2 +2 = +n2 +� +i=1 +|(x∗)i − (x′)i|2 = +n2 +� +i=1 +� +|(x∗)i|2 + |(x′)i|2 − 2|(x∗)i||(x′)i| cos θi +� +, +where θi is the angle between the components (x∗)i and (x′)i. This term is minimized when +θi = 0 for all i. This means that sgn(x∗)i = sgn(x′)i for all i, or otherwise x∗ would not be an +optimal solution to (3.20). Hence, sgn(x∗) = sgn(x′). +After establishing that sgn(x∗) = sgn(x′), we simplify (3.20) to an optimization problem +with respect to |x| given by +|x∗| = +arg min +ρ∈Rn, (ρ)i≥0 +∥ρ∥1 − α∥ρ∥2 + 1 +2λ∥ρ − |x′|∥2 +2. + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +21 +0 +0.01 +0.02 +0.03 +0.04 +0.05 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +Phase SSIM +0 +0.01 +0.02 +0.03 +0.04 +0.05 +0.5 +0.55 +0.6 +0.65 +0.7 +0.75 +0.8 +0.85 +0.9 +0.95 +1 +Magnitude SSIM +Figure 7: Magnitude and phase SSIMs over different Poisson noise level for the complex image +given by Figure 2d-2e for the blind case. +Therefore, by applying [27, Lemma 1] to the optimization problem followed by multiplying +the solution |x∗| by sgn(x∗), we obtain the desired results. +Appendix B. Proofs of Section 4. +Before proving our main results, we present prelimi- +nary tools necessary for the convergence analysis. +Definition B.1 ([41]). Let h : Rn2 → (−∞, +∞] be a proper and lower semicontinuouous +function and dom h := {x ∈ Rn2 : h(x) < ∞}. +(a) The Fr´echet subdifferential of h at the point x ∈ dom h is the set +ˆ∂h(x) = +� +v ∈ Rn2 : lim inf +y̸=x,y→x +h(y) − h(x) − ⟨v, y − x⟩ +∥y − x∥ +≥ 0 +� +. +(b) The limiting subdifferential of h at the point x ∈ dom h is the set +∂h(x) = +� +v ∈ Rn2 : ∃{(xt, yt)}∞ +t=1 s.t. xt → x, h(xt) → h(x), ˆ∂h(xt) ∋ yt → y +� +. +We note that the limiting subdifferential is closed [41]: +(xt, yt) → (x, y), h(xt) → h(x), yt ∈ ∂h(xt) =⇒ y ∈ ∂h(x). +After establishing the definitions of subdifferentials in the real case, we extend them to the +complex case. If z = z1 + z2i, where z1, z2 ∈ Rn2, then the limiting subdifferential of a proper +and lower semicontinuous function f : Cn2 → (−∞, +∞] is defined by +∂f(z) := ∂z1f(z) + ∂z2f(z)i. +(B.1) +If the function f is continuously differentiable at the point z, then with slight abuse of notation, +we denote its gradient by ∇f(z), and ∂f(z) = {∇f(z)} [41]. + +22 +KEVIN BUI AND ZICHAO (WENDY) DI +B.1. Proof of Lemma 4.2. +Proof. If {(ωt, zt)}∞ +t=1 is bounded, then there exists a constant C such that ∥ωt∥∞, ∥zt∥∞ ≤ +C for all t ∈ N. We establish that L(ω) has a Lipschitz continuous gradient with respect to +ω. For any ω1, ω2 ∈ Cm2 at iteration t, we have +∥∇ωL(ω2) − ∇ωL(ω1)∥2 ≤ +������ +N +� +j=1 +β1(Sjzt)∗ ◦ (ω2 − ω1) ◦ (Sjzt) +������ +2 +≤ +� +� +N +� +j=1 +β1 +��(Sjzt)∗ ◦ (Sjzt) +�� +∞ +� +� ∥ω2 − ω1∥2 ≤ β1NC2∥ω2 − ω1∥2. +Hence, we observe that L(ω) has a Lipschitz continuous gradient with Lipschitz constant +Lω := β1NC2. By the descent property [8, Definition 1], at iteration t we have +L(ωt+1) − L(ωt) ≤ R(⟨∇ωL(ωt), ωt+1 − ωt⟩) + Lω +2 ∥ωt+1 − ωt∥2 +2 += −δt +ωR(⟨∇ωL(ωt), ˜∇ωL(ωt)⟩) + Lω(δt +ω)2 +2 +∥ ˜∇ωL(ωt)∥2 +2, +where the last equality is due to (3.12). Taking the expectation with respect to the first t +iterations, we obtain +Et[L(ωt+1)] − Et[L(ωt)] = −δt +ωR +� +Et +� +⟨∇ωL(ωt), ˜∇ωL(ωt)⟩ +�� ++ Lω(δt +ω)2 +2 +Et +� +∥ ˜∇ωL(ωt)∥2 +2 +� +≤ − +� +KL − δt +ωLω(MV + KU) +2 +� +δt +ωEt +���∇ωL(ωt) +��2 +2 +� ++ (δt +ω)2LωM +2 +, +where the last inequality is due to combining (4.3), (4.4). and (4.7). Similarly, we can estimate +(4.10) because we can compute that L(z) has a Lipschitz continuous gradient with Lipschitz +constant Lz := β1NC2 + β2∥∆∥ and follow the same steps as above. +B.2. Proof of Proposition 4.3. +Proof. Because �∞ +t=1 ∥Ωt+1 −Ωt∥2 +2 < ∞, we have lim +t→∞ Λt+1 +j +−Λt +j = 0 for each j = 1, . . . , N +and lim +t→∞ yt+1 − yt = 0, which implies from (3.6e)-(3.6f) that +lim +t→∞ ut +j − F(ωt ◦ Sjzt) = 0 +∀j = 1, . . . , N, +(B.2) +lim +t→∞ vt − ∇zt = 0. +(B.3) +It follows that {(ut, vt)}∞ +t=1 is bounded since {(ωt, zt)}∞ +t=1 is bounded. By (3.8), when B(·, ·) +is AGM, we have +∥ut+1 +j +∥2 = +������ +� +dj + β1 +���F(ωt ◦ Sjzt) − 1 +β1 Λt +j +��� +1 + β1 +������ +2 +≥ +β1 +1 + β1 +� 1 +β1 +��Λt +j +�� +2 − ∥F(ωt ◦ Sjzt)∥2 +� +, + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +23 +or equivalently, +(1 + β1)∥ut+1 +j +∥2 + β1∥F(ωt ◦ Sjzt)∥2 ≥ ∥Λt +j∥2. +(B.4) +Similarly, when B(·, ·) is IPM, we have the same inequality as (B.4). As a result, {Λt}∞ +t=1 is +bounded. Finally, we show that {yt}∞ +t=1 is bounded. By Lemma 3.1, we have two cases. When +����(∇zt)i − (yt)i +β2 +���� +∞ +≤ λ +β2 +, +we have +λ +β2 +≥ +����(∇zt)i − (yt)i +β2 +���� +∞ +≥ 1 +β2 +��(yt)i +�� +∞ − +��(∇zt)i +�� +∞ , +or λ + β2∥(∇zt)i∥∞ ≥ ∥(yt)i∥∞. Otherwise, we have +∥(vt+1)i∥∞ ≥ +���� +����(∇zt)i − (yt)i +β2 +���� − λ +β2 +���� +∞ +≥ +����(∇zt)i − (yt)i +β2 +���� +∞ +− λ +β2 +≥ 1 +β2 +��(yt)i +�� +∞ − +��(∇zt)i +�� +∞ − λ +β2 +, +or β2 +� +∥(vt+1)i∥∞ + +��(∇zt)i +�� +∞ +� ++ λ ≥ +��(yt)i +�� +∞. Altogether, {yt}∞ +t=1 is bounded since +{(vt, zt)}∞ +t=1 is bounded. Therefore, we establish that {(Zt, Ωt)}∞ +t=1 is bounded. +We see that +L(Z, Ω) = +N +� +j=1 +� +B(|uj|2, dj) + β1 +2 +����uj − F(ω ◦ Sjz) + Λj +β1 +���� +2 +2 +− +1 +2β1 +∥Λj∥2 +2 +� ++ λ(∥v∥1 − α∥v∥2,1) + β2 +2 +����v − ∇z + y +β2 +���� +2 +2 +− +1 +2β2 +∥y∥2 +2 +≥ +N +� +j=1 +� +B(|uj|2, dj) − +1 +2β1 +∥Λj∥2 +2 +� +− +1 +2β2 +∥y∥2 +2. +Because B(·, ·) is bounded below according to (3.2) and {Ωt}∞ +t=1 is bounded, {L(Zt, Ωt)}∞ +t=1 +is bounded below by some constant Linf. By (3.6a) and (3.6c), we have L(ut+1) ≤ L(ut) and +L(vt+1) ≤ L(vt), respectively, so taking expectation with respect to the first t iterations, we +obtain +Et[L(ωt)] = Et[L(ut+1)] ≤ Et[L(ut)], +(B.5) +Et[L(zt)] = Et[L(vt+1)] ≤ Et[L(vt)] = Et[L(ωt+1)]. +(B.6) +In addition, we have +L(Λt+1) − L(Λt) = +N +� +j=1 +R(⟨Λt+1 +j +− Λt +j, ut+1 +j +− F(ωt+1 ◦ Sjzt+1)⟩) + +24 +KEVIN BUI AND ZICHAO (WENDY) DI += 1 +β1 +N +� +j=1 +���Λt+1 +j +− Λt +j +��� +2 +2 = 1 +β1 +∥Λt+1 − Λt∥2 +2, +where the second to last equality is due to (3.6e). Taking expectation with respect to the first +t iterations gives +Et[L(Λt+1)] − Et[L(Λt)] = 1 +β1 +Et +���Λt+1 − Λt��2 +2 +� +. +(B.7) +Similarly, we obtain +Et[L(yt+1)] − Et[L(yt)] = 1 +β2 +Et[∥yt+1 − yt∥2 +2]. +(B.8) +Summing up (4.9)-(4.10), (B.5)-(B.8) and taking total expectation, we have +E[L(Zt+1, Ωt+1)] − E[L(Zt, Ωt)] ≤ 1 +β1 +Et +���Λt+1 − Λt��2 +2 +� ++ 1 +β2 +E[∥yt+1 − yt∥2 +2] +− +� +KL − δt +ωLω(MV + KU) +2 +� +δt +ωE +���∇ωL(ωt) +��2 +2 +� ++ (δt +ω)2LωM +2 +− +� +KL − δt +zLz(MV + KU) +2 +� +δt +zE +���∇zL(zt) +��2 +2 +� ++ (δt +z)2LzM +2 +. +(B.9) +By (4.11), lim +t→∞ δt +ω = 0 and lim +t→∞ δt +z = 0, which means that we can assume without generality +that δt +ωLω, δt +zLz < +KL +MV +KU for all t ∈ N. Hence, summing up t = 1, . . . , T, we obtain +Linf − E[L(Z0, Ω0)] ≤ E[L(ZT+1, ΩT+1)] − E[L(Z0, Ω0)] +≤ +T +� +t=1 +� +C∥Ωt+1 − Ωt∥2 +2 − KLδt +ω +2 +E +���∇ωL(ωt) +��2 +2 +� +− KLδt +z +2 +E +���∇zL(zt) +��2 +2 +� ++ (δt +ω)2LωM +2 ++ (δt +z)2LzM +2 +� +, +where C = max{ 1 +β1 , 1 +β2 }. Rearranging the inequality and letting T → ∞ give us +0 ≤KL +2 +∞ +� +t=1 +� +δt +ωE +���∇ωL(ωt) +��2 +2 +� ++ δt +zE +���∇zL(zt) +��2 +2 +�� +≤ +E[L(Z0, Ω0)] − Linf + +∞ +� +t=1 +� +C∥Ωt+1 − Ωt∥2 +2 + (δt +ω)2LωM +2 ++ (δt +z)2LzM +2 +� +. +By the assumption, the right-hand side is bounded, so therefore it implies (4.12). + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +25 +B.3. Proof of Theorem 4.4. +Proof. If {(wt, zt)}∞ +t=1 is bounded, then ∥wt∥2, ∥zt∥2 ≤ C for all t ∈ N for some constant +C > 0. At a given iteration t, we have ∇ωL(ωt+1) = 0 by the first-order optimality condition +of (3.6b) and ∇ωL(ω) to be Lipschitz. It follows that +∥∇ωL(ωt)∥2 = ∥∇ωL(ωt+1) − ∇ωL(ωt)∥2 ≤ Lω∥ωt+1 − ωt∥2 ≤ 2CLω. +Similarly, we have ∥∇zL(zt)∥2 ≤ 2CLz. As a result, by squaring the inequalities and tak- +ing their expectation, +�� +E +���∇ωL(ωt) +��2 +2 +� +, E +���∇zL(zt) +��2 +2 +���∞ +t=1 is bounded. The step size +condition (4.11) implies that lim +t→∞ δt +ω = 0 and lim +t→∞ δt +z = 0. Since the SGD steps for ω and z +are +ωt+1 = ωt − δt +ω ˜∇L(ωt), zt+1 = zt − δt +z ˜∇L(zt), +it follows that by taking expectation with respect to the first t iterations and using Assumption +4.1, +Et[ +��ωt+1 − ωt��2 +2] = (δt +ω)2Et[∥ ˜∇ωL(ωt)∥2 +2] ≤ (δt +ω)2 � +M + (MV + KU)Et +���∇ωL(ωt) +��2 +2 +�� +, +Et[ +��zt+1 − zt��2 +2] = (δt +z)2Et[∥ ˜∇zL(zt)∥2 +2] ≤ (δt +z)2 � +M + (MV + KU)Et +���∇zL(zt) +��2 +2 +�� +. +Because +�� +E +���∇ωL(ωt) +��2 +2 +� +, E +���∇zL(zt) +��2 +2 +���∞ +t=1 is bounded, we apply total expectation and +take the limit to obtain +lim +t→∞ E[ +��ωt+1 − ωt��2 +2] ≤ lim +t→∞(δt +ω)2 � +M + (MV + KU)E +���∇ωL(ωt) +��2 +2 +�� += 0, +(B.10) +lim +t→∞ E[ +��zt+1 − zt��2 +2] ≤ lim +t→∞(δt +z)2 � +M + (MV + KU)E +���∇zL(zt) +��2 +2 +�� += 0. +(B.11) +Earlier, in the proof of Proposition 4.3, we obtain +lim +t→∞ ut +j − F(ωt ◦ Sjzt) = 0, +∀j = 1, . . . , N, +(B.12) +lim +t→∞ vt − ∇zt = 0. +(B.13) +By Proposition 4.3, we have {(Zt, Ωt)}∞ +t=1 to be bounded and (4.12) to be true. +Because {Zt}∞ +t=1 is bounded, there exists a convergent subsequence {(Ztk, Ωtk)}∞ +k=1 and +a point (Z⋆, Ω⋆) such that lim +k→∞(Ztk, Ωtk) = (Z⋆, Ω⋆). In addition, (4.12) and (B.10)-(B.13) +hold for the subsequence and its further subsequences. (B.10)-(B.11) imply that there is a +further subsequence {(Ztkℓ, Ωtkℓ)}∞ +ℓ=1 such that +lim +ℓ→∞ ωtkℓ+1 − ωtkℓ = 0 a.s., +(B.14) +lim +ℓ→∞ ztkℓ+1 − ztkℓ = 0 a.s. +(B.15) + +26 +KEVIN BUI AND ZICHAO (WENDY) DI +From (4.12), we obtain lim +ℓ→∞ E +� +δ +tkℓ +ω ∥∇ωL(ωtkℓ)∥2 +2 + δ +tkℓ +z ∥∇zL(ztkℓ)∥2 +2 +� += 0, so we obtain +lim inf +ℓ→∞ E[∥∇ωL(ωtkℓ)∥2 +2] = 0 +(B.16) +lim inf +ℓ→∞ E[∥∇zL(ztkℓ)∥2 +2] = 0. +(B.17) +Now we show that (Z⋆, Ω⋆) is a stochastic KKT point a.s. From (B.12)-(B.13), we have +u⋆ +j = lim +ℓ→∞ u +tkℓ +j += lim +ℓ→∞ F(ωtkℓ ◦ Sjztkℓ) = F(ω⋆ ◦ Sjz⋆), +(B.18) +v⋆ = lim +ℓ→∞ vtkℓ = lim +ℓ→∞ ∇ztkℓ = ∇z⋆. +(B.19) +By (B.12) and (B.14)-(B.15), we have +lim +ℓ→∞ utkℓ+1 = lim +ℓ→∞ F +� +ωtkℓ+1 ◦ Sjztkℓ+1� += F +� +lim +ℓ→∞ ωtkℓ+1 ◦ Sj +� +lim +ℓ→∞ ztkℓ+1 +�� += F +� +lim +ℓ→∞ ωtkℓ ◦ Sj +� +lim +ℓ→∞ ztkℓ +�� += lim +ℓ→∞ F +� +ωtkℓ ◦ Sjztkℓ� += lim +ℓ→∞ utkℓ a.s. +As a result, we have +lim +ℓ→∞ utkℓ+1 − utkℓ = 0 a.s. +(B.20) +Similarly, by (B.13) and (B.15), we have +lim +ℓ→∞ vtkℓ+1 − vtkℓ = 0 a.s. +(B.21) +For the sake of brevity, we will omit “a.s.” henceforth. +Next we prove (4.1a). Suppose that B(·, ·) is AGM. At iteration tkℓ, the first-order opti- +mality condition of (3.6a) is +0 ∈ ∂ +���u +tkℓ+1 +j +��� +� +|u +tkℓ+1 +j +| − +� +dj +� ++ Λ +tkℓ +j ++ β1 +� +u +tkℓ+1 +j +− F(ωtkℓ ◦ Sjzkℓ) +� +, +(B.22) +where +� +∂ +���u +tkℓ+1 +j +��� +� +i = +� +� +� +� +� +� +� +(u +tkℓ+1 +j +)i +|(u +tkℓ+1 +j +)i| +, +if (u +tkℓ+1 +j +)i ̸= 0 +{u ∈ C : |u| ≤ 1} +if (u +tkℓ+1 +j +)i = 0. +If (u⋆ +j)i ̸= 0 for some i ∈ {1, . . . , n2}, then there exists a neighborhood Br((u⋆ +j)i) = {u ∈ C : +|u − (u⋆ +j)i| ≤ r} such that all points in Br((u⋆ +j)i) are nonzero. By (B.20) and the fact that +lim +ℓ→∞ utkℓ = u⋆, we have (u +tkℓ+1 +j +)i ̸= 0 for all tkℓ sufficiently large. As a result, (B.22) becomes +0 = +(u +tkℓ+1 +j +)i +|(u +tkℓ+1 +j +)i| +� +|(u +tkℓ+1 +j +)i| − ( +� +dj)i +� ++ (Λ +tkℓ +j )i + β1 +� +(u +tkℓ+1 +j +)i − (F(ωtkℓ ◦ Sjzkℓ))i +� +, +(B.23) + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +27 +By (B.12) and (B.20), we take the limit to obtain +0 = +(u⋆ +j)i +|(u⋆ +j)i| +� +|(u⋆ +j)i| − ( +� +dj)i +� ++ (Λ⋆ +j)i. +(B.24) +On the other hand, when (u⋆ +j)i = 0 for some index i, we have (u +tkℓ +j )i ∈ Br((u⋆ +j)i) \ {(u⋆ +j)i} to +be nonzero. Taking the absolute value of (B.23) gives us +���(Λ +tkℓ +j )i + β1 +� +(u +tkℓ+1 +j +)i − (F(ωtkℓ ◦ Sjzkℓ))i +���� = +���|(u +tkℓ+1 +j +)i| − ( +� +dj)i +��� . +Again, by (B.12) and (B.20), taking the limit yields +��(Λ⋆ +j)i +�� = +���( +� +dj)i +��� , +which implies that there exists u′ ∈ {u ∈ C : |u| ≤ 1} such that −u′( +� +dj)i + (Λ⋆ +j)i = 0. +This result and (B.24) give us (4.1a) for the AGM case. +As for the IPM case, because +lim +x→0+ x − d log x = +∞, it follows that (u⋆ +j)i ̸= 0 for all i, so we only need to worry about the +nonzero case. Hence, verifying (4.1a) for IPM requires computation similar to the nonzero +case for AGM, so it is omitted for brevity. +At iteration tkℓ, the first-order optimality condition of (3.6c) is +−ytkℓ +λ +− β2 +λ +� +vtkℓ − ∇ztkℓ� +∈ ∂ +� +∥vtkℓ+1∥1 − α∥vtkℓ+1∥2,1 +� +. +(B.25) +By (B.13) and (B.21), we have +lim +ℓ→∞ −ytkℓ +λ +− β2 +λ +� +vtkℓ − ∇ztkℓ� += −y⋆ +λ , +lim +ℓ→∞ vtkℓ+1 = lim +ℓ→∞ vtkℓ = v⋆. +By continuity, lim +ℓ→∞ ∥vtkℓ+1∥1 − α∥vtkℓ+1∥2,1 = ∥v⋆∥1 − α∥v⋆∥2,1. Altogether, by closedness of +limiting subdifferential, we establish (4.1b). +Lastly, we prove (4.1e′)-(4.1f′). At iteration tkℓ, we have +∇ωL(ωtkℓ) = − +N +� +j=1 +� +� +�β1(Sjztkℓ)∗ ◦ +� +�F−1 +� +�u +tkℓ+1 +j ++ +Λ +tkℓ +j +β1 +� +� − ωtkℓ ◦ Sjztkℓ +� +� +� +� +� . +Taking the limit, we see that +∇ωL(Z⋆, Ω⋆) = − +N +� +j=1 +� +β1(Sjz⋆)∗ ◦ +� +F−1 +� +u⋆ +j + +Λ⋆ +j +β1 +� +− ω⋆ ◦ Sjz⋆ +�� += lim +ℓ→∞ ∇ωL(ωtkℓ). +Applying Fatou’s Lemma to (B.16), we have E +� +∥∇ωL(Z⋆, Ω⋆)∥2 +2 +� +≤ lim inf +ℓ→∞ E[∥∇ωL(ωtkℓ)∥2 +2] = +0. Proving (4.1f′) is similar to proving (4.1e′), so we omit the proof. Altogether, (Z⋆, Ω⋆) is a +stochastic KKT point a.s. + +28 +KEVIN BUI AND ZICHAO (WENDY) DI +REFERENCES +[1] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Hybrid projection–reflection method for phase +retrieval, Journal of the Optical Society of America A, 20 (2003), pp. 1025–1034. +[2] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex +and nonsmooth problems, Mathematical Programming, 146 (2014), pp. 459–494. +[3] L. Bottou, F. E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning, +SIAM Review, 60 (2018), pp. 223–311. +[4] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating +direction method of multipliers, Now Publishers Inc, 2011. +[5] K. Bui, F. Park, Y. Lou, and J. Xin, A weighted difference of anisotropic and isotropic total varia- +tion for relaxed Mumford–Shah color and multiphase image segmentation, SIAM Journal on Imaging +Sciences, 14 (2021), pp. 1078–1113. +[6] E. J. Candes, X. Li, and M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algo- +rithms, IEEE Transactions on Information Theory, 61 (2015), pp. 1985–2007. +[7] E. J. Candes, T. Strohmer, and V. Voroninski, PhaseLift: Exact and stable signal recovery from +magnitude measurements via convex programming, Communications on Pure and Applied Mathemat- +ics, 66 (2013), pp. 1241–1274. +[8] H. Chang, P. Enfedaque, and S. Marchesini, Blind ptychographic phase retrieval via convergent +alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 12 (2019), pp. 153– +185. +[9] H. Chang, R. Glowinski, S. Marchesini, X.-C. Tai, Y. Wang, and T. Zeng, Overlapping domain +decomposition methods for ptychographic imaging, SIAM Journal on Scientific Computing, 43 (2021), +pp. B570–B597. +[10] H. Chang, Y. Lou, Y. Duan, and S. Marchesini, Total variation–based phase retrieval for Poisson +noise removal, SIAM Journal on Imaging Sciences, 11 (2018), pp. 24–55. +[11] H. Chang, Y. Lou, M. K. Ng, and T. Zeng, Phase retrieval from incomplete magnitude information via +total variation regularization, SIAM Journal on Scientific Computing, 38 (2016), pp. A3672–A3695. +[12] H. Chang, S. Marchesini, Y. Lou, and T. Zeng, Variational phase retrieval with globally convergent +preconditioned proximal algorithm, SIAM Journal on Imaging Sciences, 11 (2018), pp. 56–93. +[13] Y. Chen and E. J. Cand`es, Solving random quadratic systems of equations is nearly as easy as solving +linear systems, Communications on Pure and Applied Mathematics, 70 (2017), pp. 822–883. +[14] L. De Caro, D. Altamura, M. Arciniegas, D. Siliqi, M. R. Kim, T. Sibillano, L. Manna, and +C. Giannini, Ptychographic imaging of branched colloidal nanocrystals embedded in free-standing +thick polystyrene films, Scientific Reports, 6 (2016), pp. 1–8. +[15] P. Enfedaque, H. Chang, B. Enders, D. Shapiro, and S. Marchesini, High performance partial +coherent x-ray ptychography, in International Conference on Computational Science, Springer, 2019, +pp. 46–59. +[16] S. Esedo¯glu and S. J. Osher, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, +Communications on Pure and Applied Mathematics, 57 (2004), pp. 1609–1626. +[17] A. Fannjiang and T. Strohmer, The numerics of phase retrieval, Acta Numerica, 29 (2020), pp. 125– +228. +[18] P. Goyal, P. Doll´ar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, +Y. Jia, and K. He, Accurate, large minibatch SGD: Training Imagenet in 1 hour, arXiv preprint +arXiv:1706.02677, (2017). +[19] A. Greenbaum, Behavior of slightly perturbed lanczos and conjugate-gradient recurrences, Linear Algebra +and its Applications, 113 (1989), pp. 7–63. +[20] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of +the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. +[21] R. Hesse, D. R. Luke, S. Sabach, and M. K. Tam, Proximal heterogeneous block implicit-explicit +method and application to blind ptychographic diffraction imaging, SIAM Journal on Imaging Sciences, +8 (2015), pp. 426–457. +[22] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving, Journal of research of the +National Bureau of Standards, 49 (1952), p. 409. + +STOCHASTIC ADMM FOR PTYCHOGRAPHY +29 +[23] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, +Advances in neural information processing systems, 26 (2013), pp. 315–323. +[24] Y.-F. Ke and C.-F. Ma, Alternating direction methods for solving a class of sylvester-like matrix equa- +tions, Linear and Multilinear Algebra, 65 (2017), pp. 2268–2292. +[25] H. Liu, K. Deng, H. Liu, and Z. Wen, An entropy-regularized admm for binary quadratic programming, +Journal of Global Optimization, (2022), pp. 1–33. +[26] Q. Liu, X. Shen, and Y. Gu, Linearized admm for nonconvex nonsmooth optimization with convergence +analysis, IEEE Access, 7 (2019), pp. 76131–76144. +[27] Y. Lou and M. Yan, Fast L1–L2 minimization via a proximal operator, Journal of Scientific Computing, +74 (2018), pp. 767–785. +[28] Y. Lou, P. Yin, Q. He, and J. Xin, Computing sparse representation in a highly coherent dictionary +based on difference of L1 and L2, Journal of Scientific Computing, 64 (2015), pp. 178–196. +[29] Y. Lou, P. Yin, and J. Xin, Point source super-resolution via non-convex L1 based methods, Journal of +Scientific Computing, 68 (2016), pp. 1082–1100. +[30] Y. Lou, T. Zeng, S. Osher, and J. Xin, A weighted difference of anisotropic and isotropic total +variation model for image processing, SIAM Journal on Imaging Sciences, 8 (2015), pp. 1798–1823. +[31] D. R. Luke, Relaxed averaged alternating reflections for diffraction imaging, Inverse Problems, 21 (2004), +p. 37. +[32] A. Maiden, D. Johnson, and P. Li, Further improvements to the ptychographical iterative engine, +Optica, 4 (2017), pp. 736–745. +[33] A. M. Maiden and J. M. Rodenburg, An improved ptychographical phase retrieval algorithm for diffrac- +tive imaging, Ultramicroscopy, 109 (2009), pp. 1256–1262. +[34] J. Marrison, L. R¨aty, P. Marriott, and P. O’Toole, Ptychography–a label free, high-contrast +imaging technique for live cells using quantitative phase information, Scientific Reports, 3 (2013), +pp. 1–7. +[35] Y. S. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross, and C. Jacobsen, Parallel ptychographic +reconstruction, Optics Express, 22 (2014), pp. 32082–32097. +[36] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Tak´aˇc, Sarah: A novel method for machine learning +problems using stochastic recursive gradient, in International Conference on Machine Learning, PMLR, +2017, pp. 2613–2621. +[37] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr, An accelerated linearized alternating direction +method of multipliers, SIAM Journal on Imaging Sciences, 8 (2015), pp. 644–681. +[38] F. Park, Y. Lou, and J. Xin, A weighted difference of anisotropic and isotropic total variation for re- +laxed mumford-shah image segmentation, in 2016 IEEE International Conference on Image Processing +(ICIP), IEEE, 2016, pp. 4314–4318. +[39] M. Pham, A. Rana, J. Miao, and S. Osher, Semi-implicit relaxed Douglas-Rachford algorithm (sDR) +for ptychography, Optics Express, 27 (2019), pp. 31246–31260. +[40] H. Robbins and S. Monro, A stochastic approximation method, The annals of mathematical statistics, +(1951), pp. 400–407. +[41] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317, Springer Science & Business +Media, 2009. +[42] J. M. Rodenburg and H. M. Faulkner, A phase retrieval algorithm for shifting illumination, Applied +Physics Letters, 85 (2004), pp. 4795–4797. +[43] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica +D: nonlinear phenomena, 60 (1992), pp. 259–268. +[44] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, Phase retrieval +with application to optical imaging: a contemporary overview, IEEE signal processing magazine, 32 +(2015), pp. 87–109. +[45] A. Suzuki, K. Shimomura, M. Hirose, N. Burdet, and Y. Takahashi, Dark-field x-ray ptychography: +Towards high-resolution imaging of thick and unstained biological specimens, Scientific Reports, 6 +(2016), pp. 1–9. +[46] P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, Probe retrieval in ptychographic +coherent diffractive imaging, Ultramicroscopy, 109 (2009), pp. 338–343. +[47] I. Waldspurger, A. d’Aspremont, and S. Mallat, Phase recovery, maxcut and complex semidefinite + +30 +KEVIN BUI AND ZICHAO (WENDY) DI +programming, Mathematical Programming, 149 (2015), pp. 47–81. +[48] A. Walther, The question of phase retrieval in optics, Optica Acta: International Journal of Optics, 10 +(1963), pp. 41–49. +[49] Y. Wang, W. Yin, and J. Zeng, Global convergence of admm in nonconvex nonsmooth optimization, +Journal of Scientific Computing, 78 (2019), pp. 29–63. +[50] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error +visibility to structural similarity, IEEE transactions on image processing, 13 (2004), pp. 600–612. +[51] Z. Wen, C. Yang, X. Liu, and S. Marchesini, Alternating direction methods for classical and ptycho- +graphic phase retrieval, Inverse Problems, 28 (2012), p. 115010. +[52] S. Wu Fung and Z. Di, Multigrid optimization for large-scale ptychographic phase retrieval, SIAM +Journal on Imaging Sciences, 13 (2020), pp. 214–233. +[53] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with +nonnegative factors, Frontiers of Mathematics in China, 7 (2012), pp. 365–384. +[54] P. Yin, Y. Lou, Q. He, and J. Xin, Minimization of ℓ1−2 for compressed sensing, SIAM Journal on +Scientific Computing, 37 (2015), pp. A536–A563. +[55] P. Yin and J. Xin, PhaseLiftOff: an accurate and stable phase retrieval method based on difference of +trace and frobenius norms, Communications in Mathematical Sciences, 13 (2014), pp. 1033–1049. +[56] Z. Yuan, H. Wang, and Q. Wang, Phase retrieval via sparse Wirtinger flow, Journal of Computational +and Applied Mathematics, 355 (2019), pp. 162–173. +[57] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, A nonconvex approach for phase retrieval: Reshaped +Wirtinger flow and incremental algorithms, Journal of Machine Learning Research, 18 (2017). +[58] L. Zhou, J. Song, J. S. Kim, X. Pei, C. Huang, M. Boyce, L. Mendonc¸a, D. Clare, A. Siebert, +C. S. Allen, et al., Low-dose phase retrieval of biological specimens using cryo-electron ptychogra- +phy, Nature Communications, 11 (2020), pp. 1–9. + diff --git a/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf b/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2eb0b1d93c4be66dfac4f0504a170d5dfcfd6892 --- /dev/null +++ b/4NE4T4oBgHgl3EQfbQzc/content/2301.05072v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d0c14dfa338a6b80b3c47cf735407553623941fa53b1994b16ba7e229d410ee +size 459192 diff --git a/4NE4T4oBgHgl3EQfbQzc/vector_store/index.faiss b/4NE4T4oBgHgl3EQfbQzc/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..c60a09ccdc00b121e8cdcb3bb9857609fd50d484 --- /dev/null +++ b/4NE4T4oBgHgl3EQfbQzc/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1cf69465bcfbe01a05409835ee46a354730722c252c65baeb499109bb0cf3179 +size 1376301 diff --git a/4NE4T4oBgHgl3EQfbQzc/vector_store/index.pkl b/4NE4T4oBgHgl3EQfbQzc/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..515eb322fb2492083ec1e402232c0f79a87fca57 --- /dev/null +++ b/4NE4T4oBgHgl3EQfbQzc/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d8760f97456fe44e7ff1611821163cc05e71f981d88924152100ae5b3accb733 +size 59611 diff --git a/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/2301.00988v1.pdf.txt b/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/2301.00988v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2616523b97d7b617c88b2991e209b267e6bc0feb --- /dev/null +++ b/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/2301.00988v1.pdf.txt @@ -0,0 +1,1682 @@ +Under consideration for publication in J. Plasma Phys. +1 +Energetic bounds on gyrokinetic instabilities. +Part III. Generalized free energy. +G. G. Plunk1†, and P. Helander1 +1Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany +(Received xx; revised xx; accepted xx) +Free energy, widely used as a measure of turbulence intensity in weakly collisional +plasmas, has been recently found to be a suitable basis to describe both linear and +nonlinear growth in a wide class gyrokinetic systems. The simplicity afforded by this +approach is accompanied by some drawbacks, notably the lack of any explicit treatment +of wave-particle effects, which makes the theory unable to describe things like stability +thresholds or dependence on the geometry of the background magnetic field. As a step +toward overcoming these limitations, we propose an extension of the theory based on +a generalization of free energy. With this it is demonstrated that resonance effects +are recovered, and the bounds on growth are significantly reduced. The simplicity +and efficient computation of the associated “optimal” growth rates makes the theory +potentially applicable to stellarator optimization. +1. Introduction +This is the third paper in a series (Helander and Plunk 2022; Plunk and Helander 2022), +in which we develop a linear and nonlinear stability theory based on gyrokinetic energy +balance. The last two papers used Helmholtz free energy, and introduced the concept of +optimal mode growth for fully electromagnetic gyrokinetic. The present paper proposes +a generalized energetic measure of fluctuations, allowing the inclusion of additional +instability mechanisms. We do this first for a simple case, namely the electrostatic limit +(low plasma β) with only one kinetic species (ions), with the electrons being treated +adiabatically. These simplifications limit the application to ion-temperature-gradient +(ITG) driven turbulence, though the central result of the paper is capable of treating +completely general details of the magnetic geometry. +Free energy is a useful concept for understanding nonlinear and linear aspects of +plasma turbulence. At the level of linear instabilities it is common to speak of a source +of free energy that drives modes. Indeed, without a source of free energy, provided +by background plasma gradients (density, temperature, flows), there can be no linear +instabilities (nor can there be subcritical turbulence Landreman et al. (2015); Plunk and +Helander (2022)). However, there is usually another ingredient that arises in the detailed +analysis of normal linear instabilities, namely the wave-particle resonance. In gyrokinetic +theory, this involves parallel motion (along the magnetic field) and magnetic drift, and +the resonance is physically linked to the work that the electrostatic field performs on +gyrocenter motion. However, the terms needed to capture this do not contribute to free +energy balance, and the influence of resonance therefore cannot be accounted for by the +optimal modes that we introduced in our previous works. +In this work we propose a new measure of gyrokinetic fluctuations, a generalization +of the concept of free energy, that incorporates the resonance mechanism, and, via the +† Email address for correspondence: gplunk@ipp.mpg.de +arXiv:2301.00988v1 [physics.plasm-ph] 3 Jan 2023 + +2 +G. G. Plunk and P. Helander +magnetic drift, the full details of the background magnetic geometry. We demonstrate +the existence of a class of quadratic measures closely related to Helmholtz free energy +that behave as positive-definite norms for fluctuations in the distribution function. The +corresponding energy balance equation is then used to derive a theory of optimal modes +that most efficiently extract this energy from its source. The growth rate of these optimal +modes provides a rigorous upper bound on the growth rate of linear instabilities, and this +bound is shown to be lower than that obtained previously from Helmholtz free energy. +By studying some simple limits, we show that we recover some expected behavior of both +the slab and toroidal branches of the ITG mode. +2. Definitions and gyrokinetic energy balance +The ion gyrokinetic equation in the electrostatic limit is written +∂gk +∂t + v∥ +∂gk +∂l + i˜ωdgk + 1 +B2 +� +k′ +B · (k × k′)δφk′gk−k′ = eiF0 +Ti +� ∂ +∂t + iωT +∗ +� +δφk, +(2.1) +where g is the gyro-center dependent part of the perturbed ion distribution function, i.e. +fi = (1 − eiδφ(r)/Ti) Fi0 + g(R, Ei, µi, t). Its phase space variables are the energy Ea = +mav2/2 + eaΦ(ψ) and the magnetic moment µa = mav2 +⊥/(2B), and the perpendicular +wavenumber is k = k⊥ = kψ∇ψ + kα∇α with kψ and kα independent of the arc length +l along the magnetic field, and ψ and α defined via B = Bb = ∇ψ × ∇α. We neglect +collisions here†, and used the simplified notation gk = gi,k, and ω∗ = ω∗i, etc because the +adiabatic approximation ge,k = 0 is assumed throughout‡. We will also assume kρi ∼ 1, +implying kρe ≪ 1. The gyrokinetic free energy balance equation obtained in this limit +reads +d +dt +� +k +H = 2 +� +k +D, +(2.2) +where the drive term D is +D(k, t) = Im ei +�� +gkωT +∗ δφ +∗ +kd3v +� +, +(2.3) +and the free energy, expressed in terms of the gyrocenter distribution function +H(k, t) = +� +Ti +� |gk|2 +Fi0 +d3v − +� +a +nae2 +a +Ta +|δφk|2 +� +, +(2.4) +where the space average is defined as (see also Helander and Plunk (2022) for general- +izations) +⟨· · ·⟩ = lim +L→∞ +� L +−L +(· · · )dl +B +� � L +−L +dl +B . +(2.5) +The diamagnetic frequencies are +† We do not retain collisions, since we will not be able to fix the sign of its contribution in +our later analysis. +‡ Here we do not include the customary correction for the zonal component (Dorland and +Hammett 1993), but it does not affect the subsequent analysis, as the growth of this component +is always zero because it has no free energy source (D = 0 for kα = 0). + +Energetic bounds. Part III +3 +ω∗a = kαTa +ea +d ln na +dψ +, +ωT +∗a = ω∗a +� +1 + ηa +�mav2 +2Ta +− 3 +2 +�� +, +and the magnetic drift frequency is +˜ωd = k · vd, +where the magnetic drift velocity is vd = ˆb × ((v2 +⊥/2)∇ ln B + v2 +∥κ)/Ωi, κ = ˆb · ∇ˆb, and +Ωa = eaB/ma is gyrofrequency. Assuming ∇ ln B ≈ κ (low plasma β), we can separate +the drift frequency into velocity-dependent and space-dependent factors following Plunk +et al. (2014)†: +˜ωd = ωd(l) +� +v2 +⊥ +2v2 +th ++ +v2 +∥ +v2 +th +� +. +(2.6) +The gyro-averaged electrostatic potential is denoted +δφk = J0 +�k⊥v⊥ +Ωi +� +δφk, +and the quasi-neutrality condition is +� +a +nae2 +a +Ta +δφk = ei +� +gkJ0d3v, , +(2.7) +where Jn = Jn(k⊥v⊥/Ωi). Following our previous convention, we define the free energy +as twice that which appears in some other publications. Henceforth, we suppress the +k-subscripts. +2.1. Electrostatic energy and positive-definiteness of free energy +It is useful to decompose the free energy into a part associated with a perturbed +distribution function and a part associated with fluctuations in the electrostatic field, +i.e. +H = G + E, +(2.8) +where +G = −TiSi = +� +Ti +� |δF|2 +Fi0 +d3v +� +(2.9) +E = +� +(τ + 1 − Γ0) nie2 +i +Ti +|δφ|2 +� +. +(2.10) +Recall the conventional definitions Γn(b) = exp(−b)In(b) and b = k2 +⊥ρ2 +i = k2 +⊥Ti/(miΩ2 +i ), +and τ = (eTi)/(eiTe). Note that δF = g−(eiδφ/Ti)F0 is the gyro-averaged perturbed dis- +† Actually, there is spatial dependence in both v⊥ and v∥, since these are not the proper +gyrokinetic phase-space variables, but a separation like this is useful to make contact with +known limits from gyrokinetic theory of the ITG mode. + +4 +G. G. Plunk and P. Helander +tribution function, and these two contributions to H can be identified as the gyrokinetic +perturbed entropy and the gyrokinetic field energy. +Although the general electromagnetic free energy admits a similar form as Eqn. 2.8 +(see for instance Helander and Plunk (2022)), we note that the electrostatic limit is +distinguished by the fact that the field contribution E is itself a nonlinear invariant of +the gyrokinetic system (Schekochihin et al. 2009), and its conservation may be viewed +as an additional constraint on the nonlinear dynamics, with consequences e.g. for the +cascade and production of large-scale E × B flows (PLUNK et al. 2010). +For what follows, we need the electrostatic energy balance equation. This is obtained +by multiplying the ion gyrokinetic equation by eiδφ +∗ integrate over velocity, average over +the parallel coordinate l, and sum over perpendicular wavenumber k, yielding (Helander +et al. 2013) +d +dt +� +k +E = 2 +� +k +K, +(2.11) +where the drive term K is +K = −Re ei +�� +δφ +∗ � +v∥ +∂ +∂l + iωd +� +gd3v +� +. +(2.12) +This is composed to two contributions, one coming from the parallel streaming term, +and the other coming from the magnetic drift term. The first contribution has a simple +physical interpretation, as the rate of energy exchanged between particles and the parallel +electric field (i.e. the volume average of the parallel current multiplied by the parallel +electric field), while the second term describes an analogous process in the perpendicular +direction associated with the drift motion of gyrocenters. +Eqn. 2.8 is a physically transparent form that makes it clear that the free energy H is +a positive-definite norm for the distribution function g†, i.e. +H ⩾ 0, and H = 0 iff g = 0 +(2.13) +over all of phase space, ℓ and v. To see this, note that the quantities G and E are both +positive, i.e. G ⩾ 0, obviously, and E ⩾ 0 because Γ0 ⩽ 1. Therefore if H = 0 then both +E = 0 and G = 0. The first implies δφ = 0 everywhere, while the second implies δF = 0 +over all of phase space; δφ = 0 and δF = 0 obviously implies g = 0. +We note that positive-definiteness is a desirable property of an energetic measure +that can be useful for setting bounds on the growth rate of fluctuations; if a non- +zero fluctuation (g ̸= 0) has zero measure M then the rate of growth d ln M/dt can +be unbounded. +Although we mainly consider a plasma with a single kinetic ion species and adiabatic +electrons, the concepts and the formalism carry over to the more general case of a plasma +with an arbitrary number of kinetic species, as shown in Appendix A. An important +limitation, however, is that magnetic fluctuations and collisions are neglected. +2.2. Generalized Free Energy +The positive definiteness of H suggests a family of related quadratic energetic measures +that are also positive definite. In particular it is clear that something of the form +† By extension, using Eqn. 2.7, H can be shown to also be a positive-definite norm for the total +deviation of the distribution function δf = g − (eiφ/Ti)F0 from the zeroth-order Maxwellian. + +Energetic bounds. Part III +5 +˜H = H − ∆E, +(2.14) +will be positive-definite, by the same arguments of the previous section, for particular +values of the parameter ∆. For instance the choice ∆ < 1 allows trivial generalization of +the arguments, but we will see that the value can be extended beyond this. +To find a range of permissible values of ∆, we will consider a diagonalization of ˜H, +meaning that we will define a distribution function ˜g, which allows the energy to be +expressed using to the Euclidean norm, +˜H = ||˜g||2 = (˜g, ˜g), +(2.15) +where we have introduced the inner product +(˜g1, ˜g2) = +� +Ti +� ˜g∗ +1˜g2 +F0 +d3v +� +. +(2.16) +To find the relationship between ˜g and g, we introduce the Ansatz ˜g = g −νJ0F0eiδφ/Ti, +substitute this into Eqn. 2.15, using also Eqn. 2.10, and solve for the free parameter ν, +yielding +ν = 1 +Γ0 +� +1 + τ − +� +(1 + τ − Γ0)(1 + τ − ∆Γ0) +� +, +(2.17) +where we have taken the negative root for convenience. Observe that in order for ν to be +real, we must have +∆ ⩽ (1 + τ)/Γ0. +(2.18) +The parameter ∆ can of course be negative, in which case its magnitude is unbounded. +Noting that Γ0 generally depends on k, we may also assume the more restrictive ∆ ⩽ +(1 + τ) to ensure that ˜H remains a nonlinear invariant. +We pause to note that the choice ∆ = 0 yields a novel form of the conventional +(Helmholtz) free energy, immediately suggesting what can be considered as the phase- +space density of free energy, namely the quantity Ti|˜g|2/F0, for which there has not yet +been an expression available.† +It is useful now to write quasi-neutrality in terms of ˜g, +ei +Ti +δφ = α +ni +� +˜gJ0d3v, +(2.19) +where +α = +1 +� +(1 + τ − Γ0)(1 + τ − ∆Γ0) +. +(2.20) +Finally, we can show that ˜H is positive-definite. First, positivity follows from Eqn. 2.15, +and it is obvious from Eqn. 2.7 that if g = 0 then δφ = 0 so that E and H both vanish, +implying ˜H = 0. On the other hand, if we assume that ˜H = 0, then Eqn. 2.15 implies that +˜g = 0, and Eqn. 2.19 implies that δφ = 0, from which we conclude g = 0. In summary, +˜H ⩾ 0 and ˜H = 0 iff g = 0. +† The idea for a phase-space density of free energy (i.e. a quantity that can be directly +integrated over phase space to yield the total free energy) was suggested by Teaca. + +6 +G. G. Plunk and P. Helander +3. Modes of optimal growth +A key point in introducing the generalization of free energy ˜H is that this quantity +introduces wave-particle effects (parallel resonance and drift resonance) that enter the +electrostatic energy balance equation, Eqn. 2.11. Note that the case ∆ = 0 (i.e. the +“conventional” Helmholtz free energy) is included as a limit ∆ = 0 and so the most +stringent bound on growth obtained from the generalized free energy will be at least as +good as the known bound obtained from the Helmholtz free energy. +Note that, as long as the parameter ∆ is independent of k, the quantity ˜H is conserved +by the nonlinearity, i.e. under summation over k. This is because it is a linear combination +of two nonlinear invariants. One simply combines Eqns. 2.2 and 2.11 to obtain +d +dt +� +k +˜H = 2 +� +k +(D − ∆K), +for ∆ independent of k, +(3.1) +i.e. the change of this measure is due to the drive terms of electrostatic and free energy, +and is otherwise conserved by the turbulent interactions. It is potentially useful to also +consider ∆ that does depend on k, for the purpose of obtaining bounds on linear growth, +but the nonlinear implications will be less clear in that case. +In direct analogy to how modes of optimal free energy growth were defined, we +introduce a rate Λ +Λ = (D − ∆K)/ ˜H +(3.2) +to be optimized over the space of ion distribution functions g. We note the bound on +conventional gyrokinetic instability growth rates, +γL ⩽ max +g +Λ. +(3.3) +Having already found a diagonal form of the generalized free energy, Eqn. 2.15, we +need not use a variational approach to find the states of extremal Λ. We simply identify +the Hermitian linear operators associated with the input of free energy and electrostatic +energy, i.e. +D = (˜g, D˜g), +(3.4) +K = (˜g, K˜g) +(3.5) +Using Eqn. 2.19 and Eqns. 2.3 and 2.12, and some straightforward algebra (see Appendix +B), we obtain +D˜g = iα +2ni +J0F0ηω∗ +� +d3v′J′ +0˜g′ +�� v +vth +�2 +− +� v′ +vth +�2� +, +(3.6) +where primes denote evaluation at v′ and vth = +� +2Ti/mi. For convenience, the operator +K can be split into its parallel and perpendicular components as K = K∥ + Kd, for which +we obtain +Kd˜g = iα +2ni +ωd(ℓ)F0J0 +� +d3v′J′ +0˜g′ +� +� +� +v⊥ +√ +2vth +�2 ++ +� v∥ +vth +�2 +− +� +v′ +⊥ +√ +2vth +�2 +− +� +v′ +∥ +vth +�2� +� , +(3.7) + +Energetic bounds. Part III +7 +and +K∥˜g = α +2ni +F0 +� +J0 +� +−B ∂ +∂l +� 1 +B +� +d3v′v′ +∥J′ +0˜g′ +� ++ +� +d3v′v′ +∥ +∂J′ +0 +∂l ˜g′ +� ++v∥ +∂ +∂l +� +J0 +� +d3v′J′ +0˜g′ +�� +. +(3.8) +In deriving Eqn. 3.8, it is important to note that the parallel derivative is taken at fixed +magnetic moment and particle energy, and that the velocity-space volume element d3v +is proportional to B/v∥ in these variables. More details are given in Appendix A. The +kinetic eigenvalue problem can be stated now as +Λ˜g = (D − ∆K) ˜g, +(3.9) +where solutions (Λ, g(l, v)) realize modes of optimal growth of ˜H. The analysis of this +eigenproblem is greatly simplified by adopting a moment form. +3.1. Moment form of eigenproblem +As found in the preceding papers, there are natural moments that appear in the +energy input terms that can be identified to reduce the dimensionality of the problem +substantially. Upon inspecting the energy balance equations one finds the following key +dimensionless integrals: +κ1 = +� +d3vJ0˜g/ni, +(3.10) +κ2 = +� +d3v +� v2 +v2 +th +� +J0˜g/ni, +(3.11) +κ3 = +� +d3v +� +v2 +⊥ +2v2 +th ++ +v2 +∥ +v2 +th +� +J0˜g/ni, +(3.12) +κ4 = +� +d3v +� v∥ +vth +� +J0˜g/ni, +(3.13) +κ5 = +� +d3v +� v∥ +vth +� ∂J0 +∂l ˜g/ni, +(3.14) +where κ1 is a density-like moment, κ2 and κ3 are pressure-like, κ4 is parallel ion flow, +while κ5 is more abstract. +It is easy to recognize these integrals on the right hand side of Eqns. 3.6, 3.7 and +3.8, and straightforward to rewrite those equations in moment form. The dimensional +reduction is achieved by taking moments of the these equations to obtain a coupled set +of five fluid equations. These, which are given in Appendix C, can be combined, leading, +after lengthy algebra, to a relatively simple second order ordinary differential equation, +the main result of this paper: +�4Λ2 +α2 + (∆ωdG3 − ηω∗G1)2 − G0 +� +(ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 +dG5 +�� +κ1 += ∆2v2 +thG0B +� +− ∂ +∂l +�G0,2 +B +∂κ1 +∂l +� ++ G′′ +0,2 +B κ1 − ∂ +∂l +�G′ +0,2 +B +� +κ1 +� +, +(3.15) + +8 +G. G. Plunk and P. Helander +The functions Gm,n, G′ +m,n, and G′′ +m,n, which depend on arc length via b(l) and B(l), are +defined in terms of integrals involving Bessel functions, and are evaluated in Appendix +D. The other b-dependent factors (G0-G5) can be expressed in terms of Gm,n, and are +evaluated in terms of more elementary Bessel functions in Appendix D.1. +In Eqn. 3.15 we see the eigenvalue Λ entering quadratically, reflecting the fact that +there will be two real roots, one positive and one negative, owing to Hermiticity and +time-reversal symmetriy of the full eigenproblem, Eqn. 3.9. Note that the terms arising +from the parallel drive of electrostatic energy are placed on the right hand side. In the +following section, we will consider some simple limits of this equation, and leave its more +general solution for a future publication. +4. Simple limits +In this section we will consider some simple limits applied to Eqn. 3.15, and draw some +comparison to linear theory of the main instability targeted by limit of this paper, the +ion temperature gradient (ITG) mode (see for instance Plunk et al. (2014)). To start, +we note that taking ∆ = 0, so that ˜H becomes the conventional Helmholtz free energy, +yields +Λ2 = +(ηω∗)2 +4(1 + τ − Γ0)(1 + τ) +� +G0G2 − G2 +1 +� +, +(4.1) +which matches Eqn. 6.20 of Helander and Plunk (2022). +In considering other simplifications, we first should note that the adiabatic electron ap- +proximation already neglects a trapped particle population, which is not really consistent +unless we take the magnetic field strength to be independent of arc length +∂B +∂l = 0. +(4.2) +We have avoided making this approximation explicitly, since the present paper lays the +foundation for extensions, in which it will be useful to include variation in B. Making +the approximation now leads to minor simplifications of Eqn. 3.15, where all the explicit +factors of B drop out of the right-hand side. A more significant simplification is achieved +by assuming unsheared and uniform magnetic geometry, in particular +∂b +∂l = 0, +(4.3) +∂ωd +∂l += 0, +(4.4) +In this limit, all of the coefficients of Eqn. 3.15 are constants, and a simple dispersion +relation is the obtained by taking ∂κ1/∂l = ik∥κ1. We find +4Λ2 +α2 + (∆ωdG3 − ηω∗G1)2 − G0 +� +(ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 +dG5 +� += ∆2k2 +∥v2 +thG2 +0/2. +(4.5) +were we have used G0,2 = G0/2. As noted in Section 2.2, the quantity ∆ is a free +parameter, over which we can optimize Λ to improve the bounds on the growth rate of +fluctuations. + +Energetic bounds. Part III +9 +4.1. Slab ITG mode +Setting ωd = 0 leaves only the slab branch of the ITG mode, driven by the temperature +gradient, and involving ion parallel resonance. Eqn. 4.5 reduces to +4Λ2 +(ηω∗)2α2 = G0G2 − G2 +1 + ∆2κ−2 +∥ G2 +0/2, +(4.6) +where κ∥ = ηω∗/(k∥vth). Because G0G2−G2 +1 ⩾ 0, the two contributions on the right hand +side are both positive but the solution for which Λ is minimal is actually not obtained +for ∆ = 0, due to the implicit dependence of α on ∆ given by Eqn. 2.20. +To obtain the value of ∆ which yields an optimal bound, we can look for extrema of +Λ2/(ηω∗)2, i.e. +d +d∆ +� +G0G2 − G2 +1 + ∆2κ−2 +∥ G2 +0/2 +(1 + τ − Γ0)(1 + τ − ∆Γ0) +� += 0. +(4.7) +This results in a quadratic equation for ∆ that is still rather complicated so we will +consider the limit b → 0; see Appendix D.2 for the relevant limits of Gm,n, etc. Applying +the limit to Eqn. 4.6 yields +Λ2 +(ηω∗)2 = +3 + ∆2/κ2 +∥ +8τ(1 + τ − ∆) +(4.8) +This solution diverges as ∆ approaches 1+τ; recall that this is the upper limit allowed +by Eqn. 2.18. It also grows in an unbounded fashion as ∆ → −∞. There is an optimal +value giving minimal |Λ|, obtained by solving Eqn. 4.7 in this limit. This solution, denoted +as ∆min, is +∆min = 1 + τ − +� +(1 + τ)2 + 3κ2 +∥ +(4.9) +where the negative root has been selected to be consistent with Eqn. 2.18. Substituting +this solution into Eqn. 4.8 gives +Λ2 +min = +(ηω∗)2 +4¯κ2 +∥τ(1 + τ) +�� +1 + 3¯κ2 +∥ − 1 +� +, +(4.10) +where we define ¯κ∥ = κ∥/(1 + τ). This reaches its maximum value in the limit ¯κ∥ → 0, +and is a decreasing function of |¯κ∥|, i.e. +Λ2 +min = +� +3 +8τ(τ+1)(ηω∗)2, +for ¯κ∥ → 0, +√ +3 +4τ |ηω∗k∥vth|, +for |¯κ∥| ≫ 1, +(4.11) +Physically, the first result implies that when drive (ηω∗) is much smaller than the parallel +transit frequency (k∥vth), the best bound is equal to that obtained by free energy (∆ = 0). +In this case, the bound is consistent from expectations of the growth rate of a resonant +slab ITG mode, i.e. γL ∼ ηω∗. +In the opposite limit (¯κ∥ ≫ 1), however, when the drive large, i.e. in the so-called +non-resonant or “fluid” limit, we obtain a much lower bound, essentially the geometric +mean of the drive and the parallel transit frequency k∥vth. We note that this bound is +not as low as what is obtained from the non-resonant solution of the dispersion relation +(without density gradient), i.e. γL ∼ ηω1/3 +∗ +(k∥vth)2/3 (Plunk et al. 2014), but nevertheless +captures the expected weakening (relative to the resonant result) qualitatively. + +10 +G. G. Plunk and P. Helander +It is interesting to observe that this latter limit corresponds to ∆min → −∞, making +˜H in some sense dominated by the electrostatic component. +4.2. Toroidal ITG mode +Now taking k∥vth to be small, we can neglect the right-hand side of Eqn. 4.5, leaving +4Λ2 +α2 = G0 +� +(ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 +dG5 +� +− (∆ωdG3 − ηω∗G1)2 . +(4.12) +To derive the optimal choice of ∆, we again take the b → 0 limit and obtain from +Eqn. 4.12 +Λ2 +(ηω∗)2 = 3∆2 − 8∆κd + 6κ2 +d +16κ2 +dτ(τ + 1 − ∆) , +(4.13) +where we define κd = ηω∗/ωd. Note the similar qualitative behavior with ∆ as Eqn. 4.6, +namely its divergence at the ∆ → 1 + τ, and unbounded growth as ∆ → −∞. The key +difference here arises in the linear term in the drive parameter κ; this is expected from +the theory of the toroidal ITG mode since the sign of the drift frequency (associated with +so-called ‘good’ and ’bad’ magnetic curvature) is important for the resonance. +We now find the value of ∆ that minimizes Λ: +∆min = (1 + τ) +� +1 − +� +2¯κ2 +d − 8¯κd/3 + 1 +� +, +(4.14) +where we define the parameter ¯κd = κd/(1 + τ). Substituting this into Eqn. 4.13 yields +Λ2 +min = (ηω∗)2 +� +8¯κd (ζ (¯κd) − 1) + 3 (ζ (¯κd) − 1)2 + 6¯κ2 +d +16τ(τ + 1)¯κ2 +dζ (¯κd) +� +, +(4.15) +with ζ = +� +2¯κ2 +d − 8¯κd/3 + 1. This expression for Λmin is naturally separated into a +factor that depends only on the instability parameter ¯κd, from which we can derive +the asymptotic behavior. To show the behavior of this factor we plot the quantity +τ(1 + τ)Λ2 +min/(ηω∗)2 in Fig. 1. The overall behavior of Λmin is captured by the following +limits +Λ2 +min = +� +� +� +� +� +� +� +|ηω∗ωd| +� +3 +√ +2+4σ +8τ +� +, +for |¯κd| ≫ 1, +(ηω∗)2 +24τ(1+τ), +for ¯κd → 0, +3(ηω∗)2 +8τ(1+τ), +for ¯κd → 4/3 +(4.16) +where we denote σ = ±1 as the sign of κd. At large drive (|¯κd| ≫ 1; |ηω∗| ≫ |ωd|(1 + τ)) +we recover the expected non-resonant (“fluid”) behavior of the toroidal ITG mode with no +density gradient, namely γL ∼ √ηω∗ωd. Note that this growth rate is much smaller than +the bound found by merely considering the Helmholtz free energy (Helander and Plunk +2022). Although we do not see the complete stabilization (Λ = 0) at negative values of +¯κd (opposite sign of ωd and ηω∗) expected from theory, there is a strong asymmetry, +with |Λ| having its larger values at positive ¯κd and being comparatively much smaller for +negative ¯κd. +The value ¯κd = 4/3 (i.e. ηω∗ = 4(1 + τ)ωd/3) achieves the maximal value of Λmin +at fixed ηω∗, and therefore is evocative of the resonance condition for the toroidal ITG +modes ηω∗ ∼ ωd (Biglari et al. 1989). This value of ¯κd is obtained by solving for ∆min = 0, + +Energetic bounds. Part III +11 +-1 +1 +2 +4/3 +3 +4 +0.1 +0.2 +0.3 +Figure 1. Bound of the growth rate of the toroidal ITG mode, obtained from the optimal +growth of generalized free energy, plotted versus the instability parameter +¯κd = ηω∗/[ωd(1 + τ)]. +explaining why it produces the worst bound, i.e. that given by optimal growth of Helmoltz +free energy. +It is noteworthy that for the limit ¯κd → 0 (ωd ≫ ηω∗/(1 + τ)) our method yields a +value of |Λ| that is a factor of 1/3 reduced as compared to the resonant case, again at +least qualitatively reproducing the expected stabilization of the toroidal ITG mode in +this limit. +5. Conclusion +We have demonstrated that the use of a generalized form of free energy ˜H introduces +some of the physics of wave-particle resonance that is missing in the theory of optimal +mode growth of Helmholtz free energy (Helander and Plunk 2021, 2022; Plunk and +Helander 2022). The growth rates of optimal modes of generalized free energy provide +a rigorous upper bound on the growth of conventional gyrokinetic instabilities (“normal +modes”), which is always below the Helmholtz bound, as it must be, given that the +Helmholtz free energy is a special case of the generalized measure. Moreover, optimal +modes of generalized free energy depend on the magnetic-field geometry to a greater +extent than those associated with Helmholtz free energy. The difference in growth rates +can be very large. For instance, in the important case of a strongly driven toroidal ITG +mode, the Helmholtz bound is larger by a factor of order ηω∗/ωd ≫ 1. +A single ordinary differential equation has been derived for optimal modes, allowing +general magnetic geometry. We found solutions of this equation in some simple limits to +demonstrate that it indeed recovers, at least qualitatively, some of the physical effects +expected from the theory of linear ITG modes, including sensitivity to the ratio of the +frequencies associated with drive and resonance, and transition of the instability when +this ratio is near one. Density gradient dependence of ITG mode is absent from both +electrostatic and free energy input terms, assuming adiabatic electrons, so its effect is +not accounted for by the theory presented here. +The results of this work have possible implications for “turbulence optimization”, +i.e. the endeavor to shape the equilibrium magnetic geometry for low turbulence in + +12 +G. G. Plunk and P. Helander +stellarators. The general result, Eqn. 3.15, allows in principle for the inclusion of the +complete geometric information contained in gyrokinetics, that is needed to run gyroki- +netic simulations. However, the solution of this equation should be far simpler and more +efficient, due to the reduction of velocity space to a single moment. The results found for +the toroidal branch of the ITG hint at a possible optimization strategy. Consider fixed +plasma conditions, i.e. a given temperature gradient (ηω∗) and temperature ratio (τ): At +high drive (ηω∗/(1+τ) > 4ωd/3), minimization of the optimal growth rate |Λ| is achieved +by minimization of the magnetic drift ωd (i.e. magnetic curvature), corresponding to +minimization of the strongly-driven (non-resonant) toroidal ITG mode. On the other +hand, at low drive (ηω∗/(1 + τ) < 4ωd/3) the increase of ωd is favored, corresponding to +a weakening of the marginally unstable ITG mode, i.e. an increase of the threshold of +instability. The latter case corresponds to “critical gradient” optimization, an idea which +has recently been developed (Roberg-Clark et al. 2022a,b). +More general solutions of the optimal mode equation, and the application to optimiza- +tion will be pursued in future works. Other special limits can also be explored including, +adiabatic ion limits, appropriate for studying trapped electron and universal instabilities. +Electromagnetic generalizations are also possible: although it is not clear how to construct +an electromagnetic form of generalized free energy ˜H that is a nonlinear invariant, it is +certainly possible to consider related measures that focus on linear bounds. +Funding. This work has been carried out within the framework of the EUROfusion +Consortium, funded by the European Union via the Euratom Research and Training +Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions +expressed are however those of the author(s) only and do not necessarily reflect those of +the European Union or the European Commission. Neither the European Union nor the +European Commission can be held responsible for them. This work was partly supported +by a grant from the Simons Foundation (560651, PH). +Declaration of Interests. The authors report no conflict of interest. +Author ORCID. G. G. Plunk, https://orcid.org/0000-0002-4012-4038; P. Helander, +https://orcid.org/0000-0002-0460-590X. +Appendix A. Several kinetic species +For a plasma with an arbitrary number of particle species, we multiply each gyrokinetic +equation +∂ga,k +∂t ++ v∥ +∂ga,k +∂l ++ iωdaga,k + 1 +B2 +� +k′ +B · (k × k′)δφk′ga,k−k′ +(A 1) += eaFa0 +Ta +� ∂ +∂t + iωT +∗a +� +δφk , +(A 2) +by eaδφ +∗ +k, integrate over velocity space, take the real part and the average ⟨· · · ⟩ over the +flux tube, and sum over all species a and wave vectors k. In other words, we apply the +operator +Re +� +a,k +ea +�� +δφ +∗ +k (· · · ) d3v +� +. +(A 3) +Since the expression +Re (k × k′)δφ +∗ +k′δφkga,k−k′ = 1 +2(k × k′) +� +δφ +∗ +k′δφkga,k−k′ + δφk′δφ +∗ +kg∗ +a,k−k′ +� +(A 4) + +Energetic bounds. Part III +13 += 1 +2(k × k′) +� +δφ−k′δφkga,k−k′ + δφk′δφ−kga,−k+k′� +(A 5) +changes sign under an exchange of k and k′, the nonlinear terms cancel upon summation +over k and k′, and we obtain +Re +� +a,k +ea +�� +δφ +∗ +k +�∂ga,k +∂t ++ v∥ +∂ga,k +∂l ++ iωdaga,k − eaFa0 +Ta +∂δφk +∂t +� +d3v +� += 0. +(A 6) +The quasineutrality equation (2.7) can be used to write the first term as +Re +� +a,k +ea +� +δφ +∗ +k +∂ga,k +∂t d3v = d +dt +� +k +nae2 +a +2Ta +|δφk|2 . +(A 7) +We thus arrive at the electrostatic energy balance equation +d +dt +� +k +nae2 +a +2Ta +� +[1 − Γ0(bak)] |δφk|2� +(A 8) += −Re +� +a,k +� +ea +� +δφ +∗ +k +� +v∥ +∂ga,k +∂l ++ iωdaga,k +� +d3v +� +, +(A 9) +which is the generalization of Eqn. 2.11 to several species. The right-hand side can be +interpreted as minus the work done by the electric field on the various particle species. +The first term in this expression contains +� +J0av∥ +∂ga,k +∂l +d3v = +� +σ +2πσB +m2a +� ∞ +0 +dEa +� Ea/B +0 +J0a +∂ga,k +∂l +dµa +(A 10) += B ∂ +∂l +� 1 +B +� +J0av∥ga,kd3v +� +− +� ∂J0a +∂l v∥ga,kd3v, +(A 11) +which we used in Eqn. 3.8, with σ = v∥/|v∥|, Ea = mav2/2 and µa = mav2 +⊥/(2B). +Appendix B. Derivation of operators D and K +We first write forms of D and K explicit in ˜g, noting that the contribution to D +proportional to the density gradient is zero by use of quasi-neutrality with the adiabatic +electron approximation (the factor ηω∗ ∝ dTi/dψ appears in what follows, but never +ω∗ ∝ dni/dψ alone). For the same reason, the terms proportional to ν, involved in the +transformation from g to ˜g, do not contribute, so expressing energy input in terms of ˜g +merely has the consequence of introducing the overall factor α. The expressions are +D = −Ti +iα +ni +�� +˜g(v)˜g∗(v′) ηω∗ +� v2 +v2 +th +� +J0J′ +0d3vd3v′ +� ++ c.c., +(B 1) +K∥ = −Ti +α +2ni +�� +˜g∗(v′) +� +v∥ +∂˜g(v) +∂l +� +J0J′ +0d3vd3v′ +� ++ c.c., +(B 2) +Kd = −Ti +iα +2ni +�� +˜g∗(v′)ωd˜g(v)J0J′ +0d3vd3v′ +� ++ c.c., +(B 3) + +14 +G. G. Plunk and P. Helander +where we separate K = K∥ + Kd and ‘c.c.’ denotes complex conjutage. These can be +re-expressed in terms of linear operators by writing them in the form +D = (˜g, D˜g) = +� +Ti +� +d3v ˜g∗ +F0 +D˜g +� +, +(B 4) +K∥ = (˜g, K∥˜g) = +� +Ti +� +d3v ˜g∗ +F0 +K∥˜g +� +, +(B 5) +Kd = (˜g, Kd˜g) = +� +Ti +� +d3v ˜g∗ +F0 +Kd˜g +� +. +(B 6) +Identifying D and Kd is simply a matter of exchanging labels of dummy variables of +integration (v for v′, etc.). Manipulating the expression for K∥ to reveal K∥ is more +involved. We also need to integrate by parts in l and will need to use the fact that ∂/∂l +is performed at fixed phase space variables Ei and µ = miv2 +⊥/(2B). The velocity space +volume element contains an important factor of 1/v∥, which generally depends on l and +does not itself commute with ∂/∂l: +d3v = 2πv⊥dv⊥v∥ = +� +σ +2πBdEidµi +m2 +i |v∥| +(B 7) +where σ denotes the sign of v∥. +Appendix C. Moment form of eigenproblem +The three terms of Eqn. 3.9 can be rewritten in terms of the moments of ˜g (Eqn. 3.10): +D˜g = iα +2 ηω∗J0F0 +� v2 +v2 +th +κ1 − κ2 +� +, +(C 1) +K∥˜g = α +2 F0 +� +vthJ0 +� +−B ∂ +∂l +�κ4 +B +� ++ κ5 +� ++ v∥ +∂ +∂l (J0κ1) +� +, +(C 2) +Kd˜g = iα +2 ωdJ0F0 +�� +v2 +⊥ +2v2 +th ++ +v2 +∥ +v2 +th +� +κ1 − κ3 +� +, +(C 3) +(C 4) +Then, taking moments of Eqn. 3.9 yields the following five equations +2Λ +α κ1 = iηω∗ (G1κ1 − G0κ2) − i∆ωd (G3κ1 − G0κ3) − ∆G0vth +� +κ5 − B ∂ +∂l +�κ4 +B +�� +,(C 5) +2Λ +α κ2 = iηω∗ (G2κ1 − G1κ2) − i∆ωd (G2κ1 − G1κ3) − ∆G1vth +� +κ5 − B ∂ +∂l +�κ4 +B +�� +,(C 6) +2Λ +α κ3 = iηω∗ (G4κ1 − G3κ2) − i∆ωd (G5κ1 − G3κ3) − ∆G3vth +� +κ5 − B ∂ +∂l +�κ4 +B +�� +,(C 7) +2Λ +α κ4 = −∆vth +� +G′ +0,2κ1 + G0,2 +∂κ1 +∂l +� +,(C 8) +2Λ +α κ5 = −∆vth +� +G′′ +0,2κ1 + G′ +0,2 +∂κ1 +∂l +� +. +(C 9) +See the next section where the integrals Gm,n, etc., are defined and evaluated. Note that +the final two equations can be immediately used to eliminate κ4 and κ5, leaving a system + +Energetic bounds. Part III +15 +of three equations. The second and third equations are used together to find forms for κ2 +and κ3 in terms of κ1, and these forms are substituted into the first equation to obtain +the final form, in terms of κ1 only, given by Eqn. 3.15. +Appendix D. Bessel-type integrals +The following definitions, mostly copied from Plunk and Helander (2022), are needed to +perform the various integrals that appear in the moment equations for our eiegenproblem. +First we need a general form of Weber’s integral, +In(p, a1, a2) = +� ∞ +0 +exp(−pt2)Jn(a1t)Jn(a2t)tdt += 1 +2p exp +�−a2 +1 − a2 +2 +4p +� +In +�a1a2 +2p +� +(D 1) +where In is the modified Bessel function of order n. The integrals we need to evaluate +can be conveniently found in terms of In. We define +G⊥m(b) = 2 +� ∞ +0 +xm+1 +⊥ +exp(−x2 +⊥)J2 +0( +√ +2bx2 +⊥)dx⊥, +(D 2a) +G(1) +⊥m(b) = 2 +� ∞ +0 +xm+2 +⊥ +exp(−x2 +⊥)J0( +√ +2bx2 +⊥)J1( +√ +2bx2 +⊥)dx⊥, +(D 2b) +G(2) +⊥m(b) = 2 +� ∞ +0 +xm+3 +⊥ +exp(−x2 +⊥)J2 +1( +√ +2bx2 +⊥)dx⊥, +(D 2c) +where m is assumed to be even. Now we note that these integrals can be evaluated in +terms of Weber’s integral: +G⊥m(b) = 2 +�� +− d +dp +�m/2 +I0(p, +√ +2b, +√ +2b) +� +p=1 +, +(D 3a) +G(1) +⊥m(b) = 2 +�� +− d +dp +�m/2 � +− d +dλ +� +I0(p, λ, +√ +2b) +� +p=1,λ= +√ +2b +, +(D 3b) +G(2) +⊥m(b) = 2 +�� +− d +dp +�m/2 � +− d +dλ1 +� � +− d +dλ2 +� +I0(p, λ1, λ2) +� +p=1,λ1=λ2= +√ +2b +. (D 3c) +The above relations allows us to evaluate the functions +Gm,n(b) = G⊥m(b)G∥n, +(D 4a) +G(1) +m,n(b) = G(1) +⊥m(b)G∥n, +(D 4b) +G(2) +m,n(b) = G(2) +⊥m(b)G∥n. +(D 4c) +where +G∥n = +1 +√π +� ∞ +−∞ +exp(−x2 +∥)xn +∥dx∥ = 1 + (−1)n +2√π +ΓE +�1 + n +2 +� +, +(D 5) + +16 +G. G. Plunk and P. Helander +and ΓE is the Euler gamma function. Finally, we can evaluate the integrals G′ +m,n, and +G′ +m,n. We define +G′ +⊥m(b) = 2 +� ∞ +0 +xm+1 +⊥ +exp(−x2 +⊥)J0 +∂J0 +∂l dx⊥, +(D 6) +G′′ +⊥m(b) = 2 +� ∞ +0 +xm+1 +⊥ +exp(−x2 +⊥) +�∂J0 +∂l +�2 +dx⊥, +(D 7) +Relating x⊥ to the proper gyrokinetic phase space variable µ, that is x2 +⊥ = µB/Ti allows +the derivatives to be evaluated +∂J0 +∂l = − +� +2/B ∂ +∂l(B +√ +b)x2 +⊥J1 +(D 8) +so that we can write +G′ +⊥m(b) = − +� +2 +B +∂ +∂l +� +B +√ +b +� +G(1) +⊥m(b), +(D 9) +G′′ +⊥m(b) = 2 +B +� ∂ +∂l +� +B +√ +b +��2 +G(2) +⊥m(b). +(D 10) +These expressions allow us to evaluate +G′ +m,n = G′ +⊥mG∥n, +(D 11) +G′′ +m,n = G′′ +⊥mG∥n. +(D 12) +D.1. Explicit expressions for some Bessel integrals +The b(l)-dependent factors in Eqn. 3.15 can be written as +G0 = G0,0, +(D 13) +G1 = G2,0 + G0,2, +(D 14) +G2 = G4,0 + 2G2,2 + G0,4, +(D 15) +G3 = 1 +2G2,0 + G0,2, +(D 16) +G4 = 1 +2G4,0 + 3 +2G2,2 + G0,4, +(D 17) +G5 = 1 +4G4,0 + G2,2 + G0,4, +(D 18) +which can be evaluated using the identities of the previous section in terms of the familiar +Γn(b) of gyrokinetic theory (suppressing its argument for succinctness): + +Energetic bounds. Part III +17 +G0 = Γ0, +(D 19) +G1 = +�3 +2 − b +� +Γ0 + bΓ1, +(D 20) +G2 = 1 +4 +�� +6b2 − 20b + 15 +� +Γ0 + 2b ((10 − 4b)Γ1 + bΓ2) +� +, +(D 21) +G3 = 1 +2 (bΓ1 − (b − 2)Γ0) , +(D 22) +G4 = 1 +4 +�� +3b2 − 11b + 10 +� +Γ0 + b ((11 − 4b)Γ1 + bΓ2) +� +, +(D 23) +G5 = 1 +8 +�� +3b2 − 12b + 14 +� +Γ0 + b (bΓ2 − 4(b − 3)Γ1) +� +. +(D 24) +where we recall +Γn(b) = exp(−b)In(b) +(D 25) +For completeness, we evaluate the few remaining factors that enter Eqn. 3.15. +G0,2 = Γ0 +2 , +(D 26) +G(1) +0,2 = +√ +b (Γ0 − Γ1) +2 +√ +2 +, +(D 27) +G(2) +0,2 = 1 +8 (3bΓ0 + (2 − 4b)Γ1 + bΓ2) , +(D 28) +and using Eqn. D 11 +G′ +0,2 = − +� +2 +B +∂ +∂l +� +B +√ +b +� +G(1) +0,2, +(D 29) +G′′ +0,2 = 2 +B +� ∂ +∂l +� +B +√ +b +��2 +G(2) +0,2. +(D 30) +D.2. Limit b → 0 +In the limit b → 0 we obtain +G0 = 1, +(D 31) +G1 = 3 +2, +(D 32) +G2 = 15 +4 , +(D 33) +G3 = 1, +(D 34) +G4 = 5 +2, +(D 35) +G5 = 7 +4. +(D 36) +and + +18 +G. G. Plunk and P. Helander +G0,2 = 1 +2, +(D 37) +G(1) +0,2 = 0, +(D 38) +G(2) +0,2 = 0, +(D 39) +REFERENCES +P. Helander and G.G. Plunk. +Energetic bounds on gyrokinetic instabilities. Part 1. +Fundamentals. Journal of Plasma Physics, 88(2):905880207, 2022. . +G.G. Plunk and P. Helander. Energetic bounds on gyrokinetic instabilities. Part 2. Modes of +optimal growth. Journal of Plasma Physics, 88(3):905880313, 2022. . +Matt Landreman, Gabriel G. Plunk, and William Dorland. Generalized universal instability: +transient linear amplification and subcritical turbulence. Journal of Plasma Physics, 81 +(5):905810501, 2015. . +W. Dorland and G. W. Hammett. Gyrofluid turbulence models with kinetic effects. Physics +of Fluids B: Plasma Physics, 5(3):812–835, 1993. . URL https://doi.org/10.1063/1. +860934. +G. G. Plunk, P. Helander, P. Xanthopoulos, and J. W. Connor. Collisionless microinstabilities +in stellarators. III. the ion-temperature-gradient mode. Physics of Plasmas, 21(3):032112, +2014. . URL https://doi.org/10.1063/1.4868412. +A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes, E. Quataert, and +T. Tatsuno. Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized +weakly collisional plasmas. The Astrophysical Journal Supplement Series, 182(1):310, may +2009. . URL https://dx.doi.org/10.1088/0067-0049/182/1/310. +G. G. PLUNK, S. C. COWLEY, A. A. SCHEKOCHIHIN, and T. TATSUNO. Two-dimensional +gyrokinetic turbulence. Journal of Fluid Mechanics, 664:407‚Äì435, 2010. . +P. Helander, J. H. E. Proll, and G. G. Plunk. Collisionless microinstabilities in stellarators. i. +analytical theory of trapped-particle modes. Physics of Plasmas, 20(12):122505, 2013. . +URL https://doi.org/10.1063/1.4846818. +Bogdan Teaca. private communication. +H. Biglari, P. H. Diamond, and M. N. Rosenbluth. Toroidal ion-pressure-gradient-driven drift +instabilities and transport revisited. Physics of Fluids B: Plasma Physics, 1(1):109–118, +1989. . URL http://link.aip.org/link/?PFB/1/109/1. +P. Helander and G. G. Plunk. Upper bounds on gyrokinetic instabilities in magnetized plasmas. +Phys. Rev. Lett., 127:155001, Oct 2021. . URL https://link.aps.org/doi/10.1103/ +PhysRevLett.127.155001. +G. T. Roberg-Clark, G. G. Plunk, and P. Xanthopoulos. Coarse-grained gyrokinetics for the +critical ion temperature gradient in stellarators. Phys. Rev. Research, 4:L032028, Aug +2022a. . URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.L032028. +G. T. Roberg-Clark, P. Xanthopoulos, and G. G. Plunk. Reduction of electrostatic turbulence +in a quasi-helically symmetric stellarator via critical gradient optimization, 2022b. URL +https://arxiv.org/abs/2210.16030. + diff --git a/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/load_file.txt b/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..afbf1a5e2e7e5a0ff220bb17f50e695387a6624a --- /dev/null +++ b/4dAzT4oBgHgl3EQfEPoC/content/tmp_files/load_file.txt @@ -0,0 +1,642 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf,len=641 +page_content='Under consideration for publication in J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plasma Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 1 Energetic bounds on gyrokinetic instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Generalized free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk1†, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander1 1Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany (Received xx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' revised xx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' accepted xx) Free energy, widely used as a measure of turbulence intensity in weakly collisional plasmas, has been recently found to be a suitable basis to describe both linear and nonlinear growth in a wide class gyrokinetic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The simplicity afforded by this approach is accompanied by some drawbacks, notably the lack of any explicit treatment of wave-particle effects, which makes the theory unable to describe things like stability thresholds or dependence on the geometry of the background magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' As a step toward overcoming these limitations, we propose an extension of the theory based on a generalization of free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' With this it is demonstrated that resonance effects are recovered, and the bounds on growth are significantly reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The simplicity and efficient computation of the associated “optimal” growth rates makes the theory potentially applicable to stellarator optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Introduction This is the third paper in a series (Helander and Plunk 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and Helander 2022), in which we develop a linear and nonlinear stability theory based on gyrokinetic energy balance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The last two papers used Helmholtz free energy, and introduced the concept of optimal mode growth for fully electromagnetic gyrokinetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The present paper proposes a generalized energetic measure of fluctuations, allowing the inclusion of additional instability mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We do this first for a simple case, namely the electrostatic limit (low plasma β) with only one kinetic species (ions), with the electrons being treated adiabatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' These simplifications limit the application to ion-temperature-gradient (ITG) driven turbulence, though the central result of the paper is capable of treating completely general details of the magnetic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Free energy is a useful concept for understanding nonlinear and linear aspects of plasma turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' At the level of linear instabilities it is common to speak of a source of free energy that drives modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Indeed, without a source of free energy, provided by background plasma gradients (density, temperature, flows), there can be no linear instabilities (nor can there be subcritical turbulence Landreman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and Helander (2022)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' However, there is usually another ingredient that arises in the detailed analysis of normal linear instabilities, namely the wave-particle resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In gyrokinetic theory, this involves parallel motion (along the magnetic field) and magnetic drift, and the resonance is physically linked to the work that the electrostatic field performs on gyrocenter motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' However, the terms needed to capture this do not contribute to free energy balance, and the influence of resonance therefore cannot be accounted for by the optimal modes that we introduced in our previous works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In this work we propose a new measure of gyrokinetic fluctuations, a generalization of the concept of free energy, that incorporates the resonance mechanism, and, via the † Email address for correspondence: gplunk@ipp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='de arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='00988v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='plasm-ph] 3 Jan 2023 2 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander magnetic drift, the full details of the background magnetic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We demonstrate the existence of a class of quadratic measures closely related to Helmholtz free energy that behave as positive-definite norms for fluctuations in the distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The corresponding energy balance equation is then used to derive a theory of optimal modes that most efficiently extract this energy from its source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The growth rate of these optimal modes provides a rigorous upper bound on the growth rate of linear instabilities, and this bound is shown to be lower than that obtained previously from Helmholtz free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' By studying some simple limits, we show that we recover some expected behavior of both the slab and toroidal branches of the ITG mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Definitions and gyrokinetic energy balance The ion gyrokinetic equation in the electrostatic limit is written ∂gk ∂t + v∥ ∂gk ∂l + i˜ωdgk + 1 B2 � k′ B · (k × k′)δφk′gk−k′ = eiF0 Ti � ∂ ∂t + iωT ∗ � δφk, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1) where g is the gyro-center dependent part of the perturbed ion distribution function, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' fi = (1 − eiδφ(r)/Ti) Fi0 + g(R, Ei, µi, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Its phase space variables are the energy Ea = mav2/2 + eaΦ(ψ) and the magnetic moment µa = mav2 ⊥/(2B), and the perpendicular wavenumber is k = k⊥ = kψ∇ψ + kα∇α with kψ and kα independent of the arc length l along the magnetic field, and ψ and α defined via B = Bb = ∇ψ × ∇α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We neglect collisions here†, and used the simplified notation gk = gi,k, and ω∗ = ω∗i, etc because the adiabatic approximation ge,k = 0 is assumed throughout‡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We will also assume kρi ∼ 1, implying kρe ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The gyrokinetic free energy balance equation obtained in this limit reads d dt � k H = 2 � k D, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2) where the drive term D is D(k, t) = Im ei �� gkωT ∗ δφ ∗ kd3v � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='3) and the free energy, expressed in terms of the gyrocenter distribution function H(k, t) = � Ti � |gk|2 Fi0 d3v − � a nae2 a Ta |δφk|2 � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4) where the space average is defined as (see also Helander and Plunk (2022) for general- izations) ⟨· · ·⟩ = lim L→∞ � L −L (· · · )dl B � � L −L dl B .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='5) The diamagnetic frequencies are † We do not retain collisions, since we will not be able to fix the sign of its contribution in our later analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' ‡ Here we do not include the customary correction for the zonal component (Dorland and Hammett 1993), but it does not affect the subsequent analysis, as the growth of this component is always zero because it has no free energy source (D = 0 for kα = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 3 ω∗a = kαTa ea d ln na dψ , ωT ∗a = ω∗a � 1 + ηa �mav2 2Ta − 3 2 �� , and the magnetic drift frequency is ˜ωd = k · vd, where the magnetic drift velocity is vd = ˆb × ((v2 ⊥/2)∇ ln B + v2 ∥κ)/Ωi, κ = ˆb · ∇ˆb, and Ωa = eaB/ma is gyrofrequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Assuming ∇ ln B ≈ κ (low plasma β), we can separate the drift frequency into velocity-dependent and space-dependent factors following Plunk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2014)†: ˜ωd = ωd(l) � v2 ⊥ 2v2 th + v2 ∥ v2 th � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6) The gyro-averaged electrostatic potential is denoted δφk = J0 �k⊥v⊥ Ωi � δφk, and the quasi-neutrality condition is � a nae2 a Ta δφk = ei � gkJ0d3v, , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7) where Jn = Jn(k⊥v⊥/Ωi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Following our previous convention, we define the free energy as twice that which appears in some other publications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Henceforth, we suppress the k-subscripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Electrostatic energy and positive-definiteness of free energy It is useful to decompose the free energy into a part associated with a perturbed distribution function and a part associated with fluctuations in the electrostatic field, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' H = G + E, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8) where G = −TiSi = � Ti � |δF|2 Fi0 d3v � (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9) E = � (τ + 1 − Γ0) nie2 i Ti |δφ|2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='10) Recall the conventional definitions Γn(b) = exp(−b)In(b) and b = k2 ⊥ρ2 i = k2 ⊥Ti/(miΩ2 i ), and τ = (eTi)/(eiTe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that δF = g−(eiδφ/Ti)F0 is the gyro-averaged perturbed dis- † Actually, there is spatial dependence in both v⊥ and v∥, since these are not the proper gyrokinetic phase-space variables, but a separation like this is useful to make contact with known limits from gyrokinetic theory of the ITG mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander tribution function, and these two contributions to H can be identified as the gyrokinetic perturbed entropy and the gyrokinetic field energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Although the general electromagnetic free energy admits a similar form as Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8 (see for instance Helander and Plunk (2022)), we note that the electrostatic limit is distinguished by the fact that the field contribution E is itself a nonlinear invariant of the gyrokinetic system (Schekochihin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2009), and its conservation may be viewed as an additional constraint on the nonlinear dynamics, with consequences e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' for the cascade and production of large-scale E × B flows (PLUNK et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' For what follows, we need the electrostatic energy balance equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This is obtained by multiplying the ion gyrokinetic equation by eiδφ ∗ integrate over velocity, average over the parallel coordinate l, and sum over perpendicular wavenumber k, yielding (Helander et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2013) d dt � k E = 2 � k K, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11) where the drive term K is K = −Re ei �� δφ ∗ � v∥ ∂ ∂l + iωd � gd3v � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='12) This is composed to two contributions, one coming from the parallel streaming term, and the other coming from the magnetic drift term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The first contribution has a simple physical interpretation, as the rate of energy exchanged between particles and the parallel electric field (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' the volume average of the parallel current multiplied by the parallel electric field), while the second term describes an analogous process in the perpendicular direction associated with the drift motion of gyrocenters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8 is a physically transparent form that makes it clear that the free energy H is a positive-definite norm for the distribution function g†, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' H ⩾ 0, and H = 0 iff g = 0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='13) over all of phase space, ℓ and v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' To see this, note that the quantities G and E are both positive, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G ⩾ 0, obviously, and E ⩾ 0 because Γ0 ⩽ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Therefore if H = 0 then both E = 0 and G = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The first implies δφ = 0 everywhere, while the second implies δF = 0 over all of phase space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' δφ = 0 and δF = 0 obviously implies g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We note that positive-definiteness is a desirable property of an energetic measure that can be useful for setting bounds on the growth rate of fluctuations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' if a non- zero fluctuation (g ̸= 0) has zero measure M then the rate of growth d ln M/dt can be unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Although we mainly consider a plasma with a single kinetic ion species and adiabatic electrons, the concepts and the formalism carry over to the more general case of a plasma with an arbitrary number of kinetic species, as shown in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' An important limitation, however, is that magnetic fluctuations and collisions are neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Generalized Free Energy The positive definiteness of H suggests a family of related quadratic energetic measures that are also positive definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In particular it is clear that something of the form † By extension, using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7, H can be shown to also be a positive-definite norm for the total deviation of the distribution function δf = g − (eiφ/Ti)F0 from the zeroth-order Maxwellian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 5 ˜H = H − ∆E, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='14) will be positive-definite, by the same arguments of the previous section, for particular values of the parameter ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' For instance the choice ∆ < 1 allows trivial generalization of the arguments, but we will see that the value can be extended beyond this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' To find a range of permissible values of ∆, we will consider a diagonalization of ˜H, meaning that we will define a distribution function ˜g, which allows the energy to be expressed using to the Euclidean norm, ˜H = ||˜g||2 = (˜g, ˜g), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15) where we have introduced the inner product (˜g1, ˜g2) = � Ti � ˜g∗ 1˜g2 F0 d3v � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='16) To find the relationship between ˜g and g, we introduce the Ansatz ˜g = g −νJ0F0eiδφ/Ti, substitute this into Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, using also Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='10, and solve for the free parameter ν, yielding ν = 1 Γ0 � 1 + τ − � (1 + τ − Γ0)(1 + τ − ∆Γ0) � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='17) where we have taken the negative root for convenience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Observe that in order for ν to be real, we must have ∆ ⩽ (1 + τ)/Γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='18) The parameter ∆ can of course be negative, in which case its magnitude is unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Noting that Γ0 generally depends on k, we may also assume the more restrictive ∆ ⩽ (1 + τ) to ensure that ˜H remains a nonlinear invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We pause to note that the choice ∆ = 0 yields a novel form of the conventional (Helmholtz) free energy, immediately suggesting what can be considered as the phase- space density of free energy, namely the quantity Ti|˜g|2/F0, for which there has not yet been an expression available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='† It is useful now to write quasi-neutrality in terms of ˜g, ei Ti δφ = α ni � ˜gJ0d3v, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='19) where α = 1 � (1 + τ − Γ0)(1 + τ − ∆Γ0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='20) Finally, we can show that ˜H is positive-definite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' First, positivity follows from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, and it is obvious from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7 that if g = 0 then δφ = 0 so that E and H both vanish, implying ˜H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' On the other hand, if we assume that ˜H = 0, then Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15 implies that ˜g = 0, and Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='19 implies that δφ = 0, from which we conclude g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In summary, ˜H ⩾ 0 and ˜H = 0 iff g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' † The idea for a phase-space density of free energy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' a quantity that can be directly integrated over phase space to yield the total free energy) was suggested by Teaca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 6 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Modes of optimal growth A key point in introducing the generalization of free energy ˜H is that this quantity introduces wave-particle effects (parallel resonance and drift resonance) that enter the electrostatic energy balance equation, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that the case ∆ = 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' the “conventional” Helmholtz free energy) is included as a limit ∆ = 0 and so the most stringent bound on growth obtained from the generalized free energy will be at least as good as the known bound obtained from the Helmholtz free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that, as long as the parameter ∆ is independent of k, the quantity ˜H is conserved by the nonlinearity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' under summation over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This is because it is a linear combination of two nonlinear invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' One simply combines Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11 to obtain d dt � k ˜H = 2 � k (D − ∆K), for ∆ independent of k, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' the change of this measure is due to the drive terms of electrostatic and free energy, and is otherwise conserved by the turbulent interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' It is potentially useful to also consider ∆ that does depend on k, for the purpose of obtaining bounds on linear growth, but the nonlinear implications will be less clear in that case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In direct analogy to how modes of optimal free energy growth were defined, we introduce a rate Λ Λ = (D − ∆K)/ ˜H (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2) to be optimized over the space of ion distribution functions g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We note the bound on conventional gyrokinetic instability growth rates, γL ⩽ max g Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='3) Having already found a diagonal form of the generalized free energy, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, we need not use a variational approach to find the states of extremal Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We simply identify the Hermitian linear operators associated with the input of free energy and electrostatic energy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' D = (˜g, D˜g), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4) K = (˜g, K˜g) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='5) Using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='19 and Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='3 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='12, and some straightforward algebra (see Appendix B), we obtain D˜g = iα 2ni J0F0ηω∗ � d3v′J′ 0˜g′ �� v vth �2 − � v′ vth �2� , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6) where primes denote evaluation at v′ and vth = � 2Ti/mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' For convenience, the operator K can be split into its parallel and perpendicular components as K = K∥ + Kd, for which we obtain Kd˜g = iα 2ni ωd(ℓ)F0J0 � d3v′J′ 0˜g′ � � � v⊥ √ 2vth �2 + � v∥ vth �2 − � v′ ⊥ √ 2vth �2 − � v′ ∥ vth �2� � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7) Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 7 and K∥˜g = α 2ni F0 � J0 � −B ∂ ∂l � 1 B � d3v′v′ ∥J′ 0˜g′ � + � d3v′v′ ∥ ∂J′ 0 ∂l ˜g′ � +v∥ ∂ ∂l � J0 � d3v′J′ 0˜g′ �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8) In deriving Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8, it is important to note that the parallel derivative is taken at fixed magnetic moment and particle energy, and that the velocity-space volume element d3v is proportional to B/v∥ in these variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' More details are given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The kinetic eigenvalue problem can be stated now as Λ˜g = (D − ∆K) ˜g, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9) where solutions (Λ, g(l, v)) realize modes of optimal growth of ˜H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The analysis of this eigenproblem is greatly simplified by adopting a moment form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Moment form of eigenproblem As found in the preceding papers, there are natural moments that appear in the energy input terms that can be identified to reduce the dimensionality of the problem substantially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Upon inspecting the energy balance equations one finds the following key dimensionless integrals: κ1 = � d3vJ0˜g/ni, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='10) κ2 = � d3v � v2 v2 th � J0˜g/ni, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11) κ3 = � d3v � v2 ⊥ 2v2 th + v2 ∥ v2 th � J0˜g/ni, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='12) κ4 = � d3v � v∥ vth � J0˜g/ni, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='13) κ5 = � d3v � v∥ vth � ∂J0 ∂l ˜g/ni, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='14) where κ1 is a density-like moment, κ2 and κ3 are pressure-like, κ4 is parallel ion flow, while κ5 is more abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' It is easy to recognize these integrals on the right hand side of Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8, and straightforward to rewrite those equations in moment form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The dimensional reduction is achieved by taking moments of the these equations to obtain a coupled set of five fluid equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' These, which are given in Appendix C, can be combined, leading, after lengthy algebra, to a relatively simple second order ordinary differential equation, the main result of this paper: �4Λ2 α2 + (∆ωdG3 − ηω∗G1)2 − G0 � (ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 dG5 �� κ1 = ∆2v2 thG0B � − ∂ ∂l �G0,2 B ∂κ1 ∂l � + G′′ 0,2 B κ1 − ∂ ∂l �G′ 0,2 B � κ1 � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15) 8 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander The functions Gm,n, G′ m,n, and G′′ m,n, which depend on arc length via b(l) and B(l), are defined in terms of integrals involving Bessel functions, and are evaluated in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The other b-dependent factors (G0-G5) can be expressed in terms of Gm,n, and are evaluated in terms of more elementary Bessel functions in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15 we see the eigenvalue Λ entering quadratically, reflecting the fact that there will be two real roots, one positive and one negative, owing to Hermiticity and time-reversal symmetriy of the full eigenproblem, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that the terms arising from the parallel drive of electrostatic energy are placed on the right hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In the following section, we will consider some simple limits of this equation, and leave its more general solution for a future publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Simple limits In this section we will consider some simple limits applied to Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, and draw some comparison to linear theory of the main instability targeted by limit of this paper, the ion temperature gradient (ITG) mode (see for instance Plunk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (2014)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' To start, we note that taking ∆ = 0, so that ˜H becomes the conventional Helmholtz free energy, yields Λ2 = (ηω∗)2 4(1 + τ − Γ0)(1 + τ) � G0G2 − G2 1 � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1) which matches Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='20 of Helander and Plunk (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In considering other simplifications, we first should note that the adiabatic electron ap- proximation already neglects a trapped particle population, which is not really consistent unless we take the magnetic field strength to be independent of arc length ∂B ∂l = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2) We have avoided making this approximation explicitly, since the present paper lays the foundation for extensions, in which it will be useful to include variation in B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Making the approximation now leads to minor simplifications of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, where all the explicit factors of B drop out of the right-hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' A more significant simplification is achieved by assuming unsheared and uniform magnetic geometry, in particular ∂b ∂l = 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='3) ∂ωd ∂l = 0, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4) In this limit, all of the coefficients of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15 are constants, and a simple dispersion relation is the obtained by taking ∂κ1/∂l = ik∥κ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We find 4Λ2 α2 + (∆ωdG3 − ηω∗G1)2 − G0 � (ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 dG5 � = ∆2k2 ∥v2 thG2 0/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='5) were we have used G0,2 = G0/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' As noted in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2, the quantity ∆ is a free parameter, over which we can optimize Λ to improve the bounds on the growth rate of fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Slab ITG mode Setting ωd = 0 leaves only the slab branch of the ITG mode, driven by the temperature gradient, and involving ion parallel resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='5 reduces to 4Λ2 (ηω∗)2α2 = G0G2 − G2 1 + ∆2κ−2 ∥ G2 0/2, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6) where κ∥ = ηω∗/(k∥vth).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Because G0G2−G2 1 ⩾ 0, the two contributions on the right hand side are both positive but the solution for which Λ is minimal is actually not obtained for ∆ = 0, due to the implicit dependence of α on ∆ given by Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' To obtain the value of ∆ which yields an optimal bound, we can look for extrema of Λ2/(ηω∗)2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' d d∆ � G0G2 − G2 1 + ∆2κ−2 ∥ G2 0/2 (1 + τ − Γ0)(1 + τ − ∆Γ0) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7) This results in a quadratic equation for ∆ that is still rather complicated so we will consider the limit b → 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' see Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2 for the relevant limits of Gm,n, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Applying the limit to Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6 yields Λ2 (ηω∗)2 = 3 + ∆2/κ2 ∥ 8τ(1 + τ − ∆) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8) This solution diverges as ∆ approaches 1+τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' recall that this is the upper limit allowed by Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' It also grows in an unbounded fashion as ∆ → −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' There is an optimal value giving minimal |Λ|, obtained by solving Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7 in this limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This solution, denoted as ∆min, is ∆min = 1 + τ − � (1 + τ)2 + 3κ2 ∥ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9) where the negative root has been selected to be consistent with Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Substituting this solution into Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8 gives Λ2 min = (ηω∗)2 4¯κ2 ∥τ(1 + τ) �� 1 + 3¯κ2 ∥ − 1 � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='10) where we define ¯κ∥ = κ∥/(1 + τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This reaches its maximum value in the limit ¯κ∥ → 0, and is a decreasing function of |¯κ∥|, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Λ2 min = � 3 8τ(τ+1)(ηω∗)2, for ¯κ∥ → 0, √ 3 4τ |ηω∗k∥vth|, for |¯κ∥| ≫ 1, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11) Physically, the first result implies that when drive (ηω∗) is much smaller than the parallel transit frequency (k∥vth), the best bound is equal to that obtained by free energy (∆ = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In this case, the bound is consistent from expectations of the growth rate of a resonant slab ITG mode, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' γL ∼ ηω∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In the opposite limit (¯κ∥ ≫ 1), however, when the drive large, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' in the so-called non-resonant or “fluid” limit, we obtain a much lower bound, essentially the geometric mean of the drive and the parallel transit frequency k∥vth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We note that this bound is not as low as what is obtained from the non-resonant solution of the dispersion relation (without density gradient), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' γL ∼ ηω1/3 ∗ (k∥vth)2/3 (Plunk et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2014), but nevertheless captures the expected weakening (relative to the resonant result) qualitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 10 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander It is interesting to observe that this latter limit corresponds to ∆min → −∞, making ˜H in some sense dominated by the electrostatic component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Toroidal ITG mode Now taking k∥vth to be small, we can neglect the right-hand side of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='5, leaving 4Λ2 α2 = G0 � (ηω∗)2G2 − 2∆ωdηω∗G4 + ∆2ω2 dG5 � − (∆ωdG3 − ηω∗G1)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='12) To derive the optimal choice of ∆, we again take the b → 0 limit and obtain from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='12 Λ2 (ηω∗)2 = 3∆2 − 8∆κd + 6κ2 d 16κ2 dτ(τ + 1 − ∆) , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='13) where we define κd = ηω∗/ωd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note the similar qualitative behavior with ∆ as Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='6, namely its divergence at the ∆ → 1 + τ, and unbounded growth as ∆ → −∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The key difference here arises in the linear term in the drive parameter κ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' this is expected from the theory of the toroidal ITG mode since the sign of the drift frequency (associated with so-called ‘good’ and ’bad’ magnetic curvature) is important for the resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We now find the value of ∆ that minimizes Λ: ∆min = (1 + τ) � 1 − � 2¯κ2 d − 8¯κd/3 + 1 � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='14) where we define the parameter ¯κd = κd/(1 + τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Substituting this into Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='13 yields Λ2 min = (ηω∗)2 � 8¯κd (ζ (¯κd) − 1) + 3 (ζ (¯κd) − 1)2 + 6¯κ2 d 16τ(τ + 1)¯κ2 dζ (¯κd) � , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15) with ζ = � 2¯κ2 d − 8¯κd/3 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This expression for Λmin is naturally separated into a factor that depends only on the instability parameter ¯κd, from which we can derive the asymptotic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' To show the behavior of this factor we plot the quantity τ(1 + τ)Λ2 min/(ηω∗)2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The overall behavior of Λmin is captured by the following limits Λ2 min = � � � � � � � |ηω∗ωd| � 3 √ 2+4σ 8τ � , for |¯κd| ≫ 1, (ηω∗)2 24τ(1+τ), for ¯κd → 0, 3(ηω∗)2 8τ(1+τ), for ¯κd → 4/3 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='16) where we denote σ = ±1 as the sign of κd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' At large drive (|¯κd| ≫ 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' |ηω∗| ≫ |ωd|(1 + τ)) we recover the expected non-resonant (“fluid”) behavior of the toroidal ITG mode with no density gradient, namely γL ∼ √ηω∗ωd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that this growth rate is much smaller than the bound found by merely considering the Helmholtz free energy (Helander and Plunk 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Although we do not see the complete stabilization (Λ = 0) at negative values of ¯κd (opposite sign of ωd and ηω∗) expected from theory, there is a strong asymmetry, with |Λ| having its larger values at positive ¯κd and being comparatively much smaller for negative ¯κd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The value ¯κd = 4/3 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' ηω∗ = 4(1 + τ)ωd/3) achieves the maximal value of Λmin at fixed ηω∗, and therefore is evocative of the resonance condition for the toroidal ITG modes ηω∗ ∼ ωd (Biglari et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This value of ¯κd is obtained by solving for ∆min = 0, Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 11 1 1 2 4/3 3 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='3 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Bound of the growth rate of the toroidal ITG mode, obtained from the optimal growth of generalized free energy, plotted versus the instability parameter ¯κd = ηω∗/[ωd(1 + τ)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' explaining why it produces the worst bound, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' that given by optimal growth of Helmoltz free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' It is noteworthy that for the limit ¯κd → 0 (ωd ≫ ηω∗/(1 + τ)) our method yields a value of |Λ| that is a factor of 1/3 reduced as compared to the resonant case, again at least qualitatively reproducing the expected stabilization of the toroidal ITG mode in this limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Conclusion We have demonstrated that the use of a generalized form of free energy ˜H introduces some of the physics of wave-particle resonance that is missing in the theory of optimal mode growth of Helmholtz free energy (Helander and Plunk 2021, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and Helander 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The growth rates of optimal modes of generalized free energy provide a rigorous upper bound on the growth of conventional gyrokinetic instabilities (“normal modes”), which is always below the Helmholtz bound, as it must be, given that the Helmholtz free energy is a special case of the generalized measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Moreover, optimal modes of generalized free energy depend on the magnetic-field geometry to a greater extent than those associated with Helmholtz free energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The difference in growth rates can be very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' For instance, in the important case of a strongly driven toroidal ITG mode, the Helmholtz bound is larger by a factor of order ηω∗/ωd ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' A single ordinary differential equation has been derived for optimal modes, allowing general magnetic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We found solutions of this equation in some simple limits to demonstrate that it indeed recovers, at least qualitatively, some of the physical effects expected from the theory of linear ITG modes, including sensitivity to the ratio of the frequencies associated with drive and resonance, and transition of the instability when this ratio is near one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Density gradient dependence of ITG mode is absent from both electrostatic and free energy input terms, assuming adiabatic electrons, so its effect is not accounted for by the theory presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The results of this work have possible implications for “turbulence optimization”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' the endeavor to shape the equilibrium magnetic geometry for low turbulence in 12 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander stellarators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The general result, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15, allows in principle for the inclusion of the complete geometric information contained in gyrokinetics, that is needed to run gyroki- netic simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' However, the solution of this equation should be far simpler and more efficient, due to the reduction of velocity space to a single moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The results found for the toroidal branch of the ITG hint at a possible optimization strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Consider fixed plasma conditions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' a given temperature gradient (ηω∗) and temperature ratio (τ): At high drive (ηω∗/(1+τ) > 4ωd/3), minimization of the optimal growth rate |Λ| is achieved by minimization of the magnetic drift ωd (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' magnetic curvature), corresponding to minimization of the strongly-driven (non-resonant) toroidal ITG mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' On the other hand, at low drive (ηω∗/(1 + τ) < 4ωd/3) the increase of ωd is favored, corresponding to a weakening of the marginally unstable ITG mode, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' an increase of the threshold of instability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The latter case corresponds to “critical gradient” optimization, an idea which has recently been developed (Roberg-Clark et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2022a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' More general solutions of the optimal mode equation, and the application to optimiza- tion will be pursued in future works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Other special limits can also be explored including, adiabatic ion limits, appropriate for studying trapped electron and universal instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Electromagnetic generalizations are also possible: although it is not clear how to construct an electromagnetic form of generalized free energy ˜H that is a nonlinear invariant, it is certainly possible to consider related measures that focus on linear bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Funding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Neither the European Union nor the European Commission can be held responsible for them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' This work was partly supported by a grant from the Simons Foundation (560651, PH).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Declaration of Interests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The authors report no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Author ORCID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/0000-0002-4012-4038;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander, https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/0000-0002-0460-590X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Several kinetic species For a plasma with an arbitrary number of particle species, we multiply each gyrokinetic equation ∂ga,k ∂t + v∥ ∂ga,k ∂l + iωdaga,k + 1 B2 � k′ B · (k × k′)δφk′ga,k−k′ (A 1) = eaFa0 Ta � ∂ ∂t + iωT ∗a � δφk , (A 2) by eaδφ ∗ k, integrate over velocity space, take the real part and the average ⟨· · · ⟩ over the flux tube, and sum over all species a and wave vectors k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' In other words, we apply the operator Re � a,k ea �� δφ ∗ k (· · · ) d3v � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (A 3) Since the expression Re (k × k′)δφ ∗ k′δφkga,k−k′ = 1 2(k × k′) � δφ ∗ k′δφkga,k−k′ + δφk′δφ ∗ kg∗ a,k−k′ � (A 4) Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 13 = 1 2(k × k′) � δφ−k′δφkga,k−k′ + δφk′δφ−kga,−k+k′� (A 5) changes sign under an exchange of k and k′, the nonlinear terms cancel upon summation over k and k′, and we obtain Re � a,k ea �� δφ ∗ k �∂ga,k ∂t + v∥ ∂ga,k ∂l + iωdaga,k − eaFa0 Ta ∂δφk ∂t � d3v � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (A 6) The quasineutrality equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='7) can be used to write the first term as Re � a,k ea � δφ ∗ k ∂ga,k ∂t d3v = d dt � k nae2 a 2Ta |δφk|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (A 7) We thus arrive at the electrostatic energy balance equation d dt � k nae2 a 2Ta � [1 − Γ0(bak)] |δφk|2� (A 8) = −Re � a,k � ea � δφ ∗ k � v∥ ∂ga,k ∂l + iωdaga,k � d3v � , (A 9) which is the generalization of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='11 to several species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The right-hand side can be interpreted as minus the work done by the electric field on the various particle species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The first term in this expression contains � J0av∥ ∂ga,k ∂l d3v = � σ 2πσB m2a � ∞ 0 dEa � Ea/B 0 J0a ∂ga,k ∂l dµa (A 10) = B ∂ ∂l � 1 B � J0av∥ga,kd3v � − � ∂J0a ∂l v∥ga,kd3v, (A 11) which we used in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='8, with σ = v∥/|v∥|, Ea = mav2/2 and µa = mav2 ⊥/(2B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Derivation of operators D and K We first write forms of D and K explicit in ˜g, noting that the contribution to D proportional to the density gradient is zero by use of quasi-neutrality with the adiabatic electron approximation (the factor ηω∗ ∝ dTi/dψ appears in what follows, but never ω∗ ∝ dni/dψ alone).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' For the same reason, the terms proportional to ν, involved in the transformation from g to ˜g, do not contribute, so expressing energy input in terms of ˜g merely has the consequence of introducing the overall factor α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The expressions are D = −Ti iα ni �� ˜g(v)˜g∗(v′) ηω∗ � v2 v2 th � J0J′ 0d3vd3v′ � + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=', (B 1) K∥ = −Ti α 2ni �� ˜g∗(v′) � v∥ ∂˜g(v) ∂l � J0J′ 0d3vd3v′ � + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=', (B 2) Kd = −Ti iα 2ni �� ˜g∗(v′)ωd˜g(v)J0J′ 0d3vd3v′ � + c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=', (B 3) 14 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander where we separate K = K∥ + Kd and ‘c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='c.’ denotes complex conjutage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' These can be re-expressed in terms of linear operators by writing them in the form D = (˜g, D˜g) = � Ti � d3v ˜g∗ F0 D˜g � , (B 4) K∥ = (˜g, K∥˜g) = � Ti � d3v ˜g∗ F0 K∥˜g � , (B 5) Kd = (˜g, Kd˜g) = � Ti � d3v ˜g∗ F0 Kd˜g � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (B 6) Identifying D and Kd is simply a matter of exchanging labels of dummy variables of integration (v for v′, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Manipulating the expression for K∥ to reveal K∥ is more involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We also need to integrate by parts in l and will need to use the fact that ∂/∂l is performed at fixed phase space variables Ei and µ = miv2 ⊥/(2B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The velocity space volume element contains an important factor of 1/v∥, which generally depends on l and does not itself commute with ∂/∂l: d3v = 2πv⊥dv⊥v∥ = � σ 2πBdEidµi m2 i |v∥| (B 7) where σ denotes the sign of v∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Moment form of eigenproblem The three terms of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9 can be rewritten in terms of the moments of ˜g (Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='10): D˜g = iα 2 ηω∗J0F0 � v2 v2 th κ1 − κ2 � , (C 1) K∥˜g = α 2 F0 � vthJ0 � −B ∂ ∂l �κ4 B � + κ5 � + v∥ ∂ ∂l (J0κ1) � , (C 2) Kd˜g = iα 2 ωdJ0F0 �� v2 ⊥ 2v2 th + v2 ∥ v2 th � κ1 − κ3 � , (C 3) (C 4) Then, taking moments of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='9 yields the following five equations 2Λ α κ1 = iηω∗ (G1κ1 − G0κ2) − i∆ωd (G3κ1 − G0κ3) − ∆G0vth � κ5 − B ∂ ∂l �κ4 B �� ,(C 5) 2Λ α κ2 = iηω∗ (G2κ1 − G1κ2) − i∆ωd (G2κ1 − G1κ3) − ∆G1vth � κ5 − B ∂ ∂l �κ4 B �� ,(C 6) 2Λ α κ3 = iηω∗ (G4κ1 − G3κ2) − i∆ωd (G5κ1 − G3κ3) − ∆G3vth � κ5 − B ∂ ∂l �κ4 B �� ,(C 7) 2Λ α κ4 = −∆vth � G′ 0,2κ1 + G0,2 ∂κ1 ∂l � ,(C 8) 2Λ α κ5 = −∆vth � G′′ 0,2κ1 + G′ 0,2 ∂κ1 ∂l � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (C 9) See the next section where the integrals Gm,n, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=', are defined and evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Note that the final two equations can be immediately used to eliminate κ4 and κ5, leaving a system Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 15 of three equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The second and third equations are used together to find forms for κ2 and κ3 in terms of κ1, and these forms are substituted into the first equation to obtain the final form, in terms of κ1 only, given by Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Bessel-type integrals The following definitions, mostly copied from Plunk and Helander (2022), are needed to perform the various integrals that appear in the moment equations for our eiegenproblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' First we need a general form of Weber’s integral, In(p, a1, a2) = � ∞ 0 exp(−pt2)Jn(a1t)Jn(a2t)tdt = 1 2p exp �−a2 1 − a2 2 4p � In �a1a2 2p � (D 1) where In is the modified Bessel function of order n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The integrals we need to evaluate can be conveniently found in terms of In.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We define G⊥m(b) = 2 � ∞ 0 xm+1 ⊥ exp(−x2 ⊥)J2 0( √ 2bx2 ⊥)dx⊥, (D 2a) G(1) ⊥m(b) = 2 � ∞ 0 xm+2 ⊥ exp(−x2 ⊥)J0( √ 2bx2 ⊥)J1( √ 2bx2 ⊥)dx⊥, (D 2b) G(2) ⊥m(b) = 2 � ∞ 0 xm+3 ⊥ exp(−x2 ⊥)J2 1( √ 2bx2 ⊥)dx⊥, (D 2c) where m is assumed to be even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Now we note that these integrals can be evaluated in terms of Weber’s integral: G⊥m(b) = 2 �� − d dp �m/2 I0(p, √ 2b, √ 2b) � p=1 , (D 3a) G(1) ⊥m(b) = 2 �� − d dp �m/2 � − d dλ � I0(p, λ, √ 2b) � p=1,λ= √ 2b , (D 3b) G(2) ⊥m(b) = 2 �� − d dp �m/2 � − d dλ1 � � − d dλ2 � I0(p, λ1, λ2) � p=1,λ1=λ2= √ 2b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 3c) The above relations allows us to evaluate the functions Gm,n(b) = G⊥m(b)G∥n, (D 4a) G(1) m,n(b) = G(1) ⊥m(b)G∥n, (D 4b) G(2) m,n(b) = G(2) ⊥m(b)G∥n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 4c) where G∥n = 1 √π � ∞ −∞ exp(−x2 ∥)xn ∥dx∥ = 1 + (−1)n 2√π ΓE �1 + n 2 � , (D 5) 16 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander and ΓE is the Euler gamma function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Finally, we can evaluate the integrals G′ m,n, and G′ m,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' We define G′ ⊥m(b) = 2 � ∞ 0 xm+1 ⊥ exp(−x2 ⊥)J0 ∂J0 ∂l dx⊥, (D 6) G′′ ⊥m(b) = 2 � ∞ 0 xm+1 ⊥ exp(−x2 ⊥) �∂J0 ∂l �2 dx⊥, (D 7) Relating x⊥ to the proper gyrokinetic phase space variable µ, that is x2 ⊥ = µB/Ti allows the derivatives to be evaluated ∂J0 ∂l = − � 2/B ∂ ∂l(B √ b)x2 ⊥J1 (D 8) so that we can write G′ ⊥m(b) = − � 2 B ∂ ∂l � B √ b � G(1) ⊥m(b), (D 9) G′′ ⊥m(b) = 2 B � ∂ ∂l � B √ b ��2 G(2) ⊥m(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 10) These expressions allow us to evaluate G′ m,n = G′ ⊥mG∥n, (D 11) G′′ m,n = G′′ ⊥mG∥n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 12) D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Explicit expressions for some Bessel integrals The b(l)-dependent factors in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15 can be written as G0 = G0,0, (D 13) G1 = G2,0 + G0,2, (D 14) G2 = G4,0 + 2G2,2 + G0,4, (D 15) G3 = 1 2G2,0 + G0,2, (D 16) G4 = 1 2G4,0 + 3 2G2,2 + G0,4, (D 17) G5 = 1 4G4,0 + G2,2 + G0,4, (D 18) which can be evaluated using the identities of the previous section in terms of the familiar Γn(b) of gyrokinetic theory (suppressing its argument for succinctness): Energetic bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part III 17 G0 = Γ0, (D 19) G1 = �3 2 − b � Γ0 + bΓ1, (D 20) G2 = 1 4 �� 6b2 − 20b + 15 � Γ0 + 2b ((10 − 4b)Γ1 + bΓ2) � , (D 21) G3 = 1 2 (bΓ1 − (b − 2)Γ0) , (D 22) G4 = 1 4 �� 3b2 − 11b + 10 � Γ0 + b ((11 − 4b)Γ1 + bΓ2) � , (D 23) G5 = 1 8 �� 3b2 − 12b + 14 � Γ0 + b (bΓ2 − 4(b − 3)Γ1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 24) where we recall Γn(b) = exp(−b)In(b) (D 25) For completeness, we evaluate the few remaining factors that enter Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G0,2 = Γ0 2 , (D 26) G(1) 0,2 = √ b (Γ0 − Γ1) 2 √ 2 , (D 27) G(2) 0,2 = 1 8 (3bΓ0 + (2 − 4b)Γ1 + bΓ2) , (D 28) and using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' D 11 G′ 0,2 = − � 2 B ∂ ∂l � B √ b � G(1) 0,2, (D 29) G′′ 0,2 = 2 B � ∂ ∂l � B √ b ��2 G(2) 0,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 30) D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Limit b → 0 In the limit b → 0 we obtain G0 = 1, (D 31) G1 = 3 2, (D 32) G2 = 15 4 , (D 33) G3 = 1, (D 34) G4 = 5 2, (D 35) G5 = 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' (D 36) and 18 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander G0,2 = 1 2, (D 37) G(1) 0,2 = 0, (D 38) G(2) 0,2 = 0, (D 39) REFERENCES P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Energetic bounds on gyrokinetic instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Fundamentals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Journal of Plasma Physics, 88(2):905880207, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Energetic bounds on gyrokinetic instabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Part 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Modes of optimal growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Journal of Plasma Physics, 88(3):905880313, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Matt Landreman, Gabriel G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk, and William Dorland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Generalized universal instability: transient linear amplification and subcritical turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Journal of Plasma Physics, 81 (5):905810501, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Dorland and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Hammett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Gyrofluid turbulence models with kinetic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Physics of Fluids B: Plasma Physics, 5(3):812–835, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' 860934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Xanthopoulos, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Connor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Collisionless microinstabilities in stellarators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' the ion-temperature-gradient mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Physics of Plasmas, 21(3):032112, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4868412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Schekochihin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Cowley, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Dorland, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Hammett, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Howes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Quataert, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Tatsuno.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' The Astrophysical Journal Supplement Series, 182(1):310, may 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1088/0067-0049/182/1/310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' PLUNK, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' COWLEY, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' SCHEKOCHIHIN, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' TATSUNO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Two-dimensional gyrokinetic turbulence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Journal of Fluid Mechanics, 664:407‚Äì435, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Proll, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Collisionless microinstabilities in stellarators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' analytical theory of trapped-particle modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Physics of Plasmas, 20(12):122505, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4846818.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Bogdan Teaca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' private communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Biglari, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Diamond, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Rosenbluth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Toroidal ion-pressure-gradient-driven drift instabilities and transport revisited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Physics of Fluids B: Plasma Physics, 1(1):109–118, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL http://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='aip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/link/?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='PFB/1/109/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Helander and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Upper bounds on gyrokinetic instabilities in magnetized plasmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=', 127:155001, Oct 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='155001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Roberg-Clark, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Xanthopoulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Coarse-grained gyrokinetics for the critical ion temperature gradient in stellarators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Research, 4:L032028, Aug 2022a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='1103/PhysRevResearch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='L032028.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Roberg-Clark, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Xanthopoulos, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Plunk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' Reduction of electrostatic turbulence in a quasi-helically symmetric stellarator via critical gradient optimization, 2022b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content=' URL https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='org/abs/2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} +page_content='16030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dAzT4oBgHgl3EQfEPoC/content/2301.00988v1.pdf'} diff --git a/6tE4T4oBgHgl3EQf1w38/content/2301.05294v1.pdf b/6tE4T4oBgHgl3EQf1w38/content/2301.05294v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..010ca9f5b91a091784971552b3489bad5bc006df --- /dev/null +++ b/6tE4T4oBgHgl3EQf1w38/content/2301.05294v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2bc885fa1e4c2cec4d3a681f5fed767583e9b9188185952ebe919cf9f75b680 +size 16705656 diff --git a/6tFAT4oBgHgl3EQfnx0W/vector_store/index.faiss b/6tFAT4oBgHgl3EQfnx0W/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d7c056e4410c0a2c6df31b91099ba60b7e243933 --- /dev/null +++ b/6tFAT4oBgHgl3EQfnx0W/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1bbdb67b97383da409fe9f0d74a4effdfa3897ecc29a73632ca2334d062be87e +size 3276845 diff --git a/79E2T4oBgHgl3EQfPgaW/vector_store/index.faiss b/79E2T4oBgHgl3EQfPgaW/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..ecefcf3f6fbebdd08b9dd57ee69da4cfd288f829 --- /dev/null +++ b/79E2T4oBgHgl3EQfPgaW/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c0651cdcf1524478b760e9a540727965e0349da6a6a18e7d42203535bd4dcf6 +size 4128813 diff --git a/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/2301.12147v1.pdf.txt b/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/2301.12147v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..bff5d8440cc809d1763d3080731e88f0481b57ca --- /dev/null +++ b/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/2301.12147v1.pdf.txt @@ -0,0 +1,2034 @@ +arXiv:2301.12147v1 [math.AP] 28 Jan 2023 +LOGISTIC ELLIPTIC EQUATION WITH A NONLINEAR BOUNDARY +CONDITION ARISING FROM COASTAL FISHERY HARVESTING II +KENICHIRO UMEZU +Abstract. We study the positive solutions of the logistic elliptic equation with a nonlinear +Neumann boundary condition that models coastal fishery harvesting ([18]). An essential role is +played by the smallest eigenvalue of the Dirichlet eigenvalue problem, with respect to which a +noncritical case is studied in [32]. In this paper, we extend our analysis to the critical case and +further study the noncritical case for a more precise description of the positive solution set. Our +approach relies on the energy method, sub- and supersolutions, and implicit function analysis. +1. Introduction +This paper is devoted to the study of the positive solutions for the following logistic elliptic +equation with a nonlinear boundary condition arising from coastal fishery harvesting ([18]): + + + + + +−∆u = u − up +in Ω, +u ≥ 0 +in Ω, +∂u +∂ν = −λuq +on ∂Ω. +(1.1) +Here, Ω ⊂ RN, N ≥ 1, is a bounded domain with smooth boundary ∂Ω, ∆ = �N +i=1 +∂2 +∂x2 +i is the +usual Laplacian in RN, 0 < q < 1 < p, λ ≥ 0 is a parameter, and ν is the unit outer normal to +∂Ω. Unless stated otherwise, throughout this paper we assume the subcritical condition +p < N + 2 +N − 2 +for N > 2. +(1.2) +In the case of p = 2, the unknown function u ≥ 0 ecologically represents the biomass of fish that +inhabit a lake Ω, obeying the logistic law ([8]), and the nonlinear boundary condition means +fishery harvesting with the harvesting effort λ on the lake coast ∂Ω, obeying the Cobb–Douglas +production function ([18, Subsection 2.1]). +A nonnegative function u ∈ H1(Ω) is called a nonnegative (weak) solution of (1.1) if u satisfies +� +Ω +� +∇u∇ϕ − uϕ + upϕ +� ++ λ +� +∂Ω +uqϕ = 0, +ϕ ∈ H1(Ω) +(1.3) +(we may regard (λ, u) as a nonnegative solution of (1.1)). It is seen that problem (1.1) has +a solution (λ, 0) for every λ > 0, called a trivial solution. +The sets {(λ, 0) : λ ≥ 0} and +{(λ, 0) : λ > 0} are said to be the trivial lines. We know ([30]) that a nonnegative solution u of +(1.1) belongs to the space W 1,r(Ω) for r > N (consequently, Cθ(Ω) for θ ∈ (0, 1)). Moreover, a +nontrivial nonnegative solution u of (1.1) satisfies that u ∈ C2+θ(Ω) for θ ∈ (0, 1), and u > 0 +in Ω ([17], [27]), which is called a positive solution. Indeed, if u > 0 in Ω, then u ∈ C2+θ(Ω) +by the bootstrap argument using elliptic regularity, and u satisfies (1.1) pointwisely in Ω in the +classical sense. However, we do not know if u > 0 on the entirety of ∂Ω for a positive solution u +2020 Mathematics Subject Classification. 35J65, 35B32, 35J25, 92D40. +Key words and phrases. logistic elliptic equation, concave–convex nonlinearity, positive solution, uniqueness, +stability, sub- and supersolutions, energy method, boundary harvesting. +1 + +of (1.1). As a matter of fact, Hopf’s boundary point lemma ([27]) does not work because of the +lack of the one-sided Lipschitz condition [26, (4.1.19)] for mapping 0 ≤ u �→ (−uq) for u close to +0. +For a positive solution (λ, u) of (1.1) satisfying u > 0 in Ω, we call γ1 = γ1(λ, u) ∈ R the +smallest eigenvalue of the linearized eigenvalue problem at (λ, u) +� +−∆ϕ = ϕ − pup−1ϕ + γϕ +in Ω, +∂ϕ +∂ν = −λquq−1ϕ + γϕ +on ∂Ω. +(1.4) +It is well known that γ1 is simple with a positive eigenfunction ϕ1 ∈ C2+θ(Ω) satisfying ϕ1 > 0 +in Ω. Indeed, γ1 is characterized by the variational formula +γ1 = inf +�� +Ω +� +|∇ϕ|2 − ϕ2 + pup−1ϕ2 +� ++ λ +� +∂Ω +quq−1ϕ2 : ϕ ∈ H1(Ω), +� +Ω +ϕ2 + +� +∂Ω +ϕ2 = 1 +� +. +A positive solution u > 0 in Ω of (1.1) is said to be asymptotically stable, weakly stable, and +unstable if γ1 > 0, γ1 ≥ 0, and γ1 < 0, respectively. +Problem (1.1) possesses a sublinear nonlinearity at infinity and also a concave–convex nature. +Thus, the global uniqueness of a positive solution of (1.1) for every λ > 0 would not be so easy +to deduce. For nonlinear elliptic problems with a concave–convex nature, we refer to [4, 31, 1, +5, 11, 12, 19]. The sublinear nonlinearity (−uq) that appears in (1.1) induces the absorption +effect on ∂Ω. Sublinear boundary conditions of the uq type were explored in [16, 14, 15, 28, 29]. +The case of an incoming flux on ∂Ω was studied in [16, 15]. The mixed case of absorption and +an incoming flux on ∂Ω was studied in [14]. The absorption case was also studied in [28, 29], +where a similar type of logistic elliptic equation with an indefinite weight has been analyzed for +the existence and multiplicity of nontrivial nonnegative solutions. +An important role is played by the smallest eigenvalue βΩ > 0 of the Dirichlet eigenvalue +problem +� +−∆φ = βφ +in Ω, +φ = 0 +on ∂Ω. +It is well known that βΩ is simple with a positive eigenfunction φΩ ∈ H1 +0(Ω) (implying φΩ ∈ +C2+θ(Ω) by elliptic regularity). Indeed, φΩ > 0 in Ω, and +c1 ≤ −∂φΩ +∂ν ≤ c2 +on ∂Ω +(1.5) +for some 0 < c1 < c2. Moreover, βΩ is characterized by the variational formula +βΩ = inf +�� +Ω +|∇φ|2 : φ ∈ H1 +0(Ω), +� +Ω +φ2 = 1 +� +. +If βΩ < 1, then uD ∈ H1 +0(Ω) ∩ C2+θ(Ω) denotes the unique positive solution of the Dirichlet +logistic problem ([7]) +� +−∆u = u − up +in Ω, +u = 0 +on ∂Ω. +(1.6) +The existence, nonexistence, and multiplicity of positive solutions for (1.1) in the case where +βΩ ̸= 1 were studied in the author’s previous work [32, Theorems 1.1, 1.2, 1.4, 1.5], which +Theorem 0 summarizes. +Theorem 0. +(I) A positive solution u of (1.1) satisfies that u < 1 in Ω and u > 0 on Γ ⊂ ∂Ω with the +condition |Γ| > 0. +2 + +(II) There exists λ∗ > 0 such that problem (1.1) has a positive solution curve +C0 = {(λ, uλ) : 0 ≤ λ ≤ λ∗}, +(1.7) +emanating from (λ, u) = (0, 1), that satisfies the following three conditions: +• λ �→ uλ ∈ C2+θ(Ω) is C∞, +• uλ > 0 in Ω, +• uλ is asymptotically stable. +Moreover, the positive solutions of (1.1) near (λ, u) = (0, 1) in R × C2+θ(Ω) form C0. +Let λ be the positive value defined as +λ = sup{λ > 0 : (1.1) has a positive solution for λ}. +(1.8) +Then, the following assertions hold. +(III) Assume that βΩ < 1. Then, we have the following (as in Figure 1). +(i) λ = ∞, and more precisely, problem (1.1) possesses a positive solution u for every +λ > 0 such that u > 0 in Ω. +(ii) (λ, uλ) ∈ C0 is a unique positive solution of (1.1) for 0 < λ ≤ λ∗ (by making λ∗ in +(1.7) smaller if necessary). +(iii) un → uD in H1(Ω) for a positive solution (λn, un) of (1.1) with λn → ∞. +(iv) The positive solution set {(λ, u)} does not meet the trivial line {(λ, 0) : λ ≥ 0} in +the topology of H1(Ω) (nor C(Ω)). +(IV) Assume that βΩ > 1. Then, we have the following (as in Figure 2). +(i) λ < ∞. +(ii) There exists a bounded subcontinuum (closed connected subset) �C0 = {(λ, u)} of +nonnegative solutions of (1.1) in [0, ∞) × C(Ω) joining (λ, u) = (0, 1) and (0, 0) +such that �C0 \ {(0, 0)} includes C0 and consists of positive solutions of (1.1). Par- +ticularly, problem (1.1) has at least two positive solutions for λ > 0 small. +(iii) The positive solution set {(λ, u)} does not meet the trivial line {(λ, 0) : λ > 0} in +the topology of H1(Ω) (nor C(Ω)). +(iv) γ1(λn, un) < 0 for a positive solution (λn, un) of (1.1) such that (λn, un) → (0, 0) +in R × H1(Ω), provided that un > 0 in Ω, i.e., un is unstable. +Remark 0. +(i) Assertions (I) and (II) hold for every case of βΩ > 0. +(ii) Assertions (II) and (III-i) hold for any p > 1. +(iii) Problem (1.1) with λ = 0 has exactly two nonnegative solutions (λ, u) = (0, 0), (0, 1). +Thus, Theorem 0(I) is used to show easily that in every case of βΩ > 0, the positive +solution set {(λ, u)} of (1.1) meets at most (0, 0) and (0, 1) on {(0, u) : u ≥ 0}, i.e., if +(λn, un) is a positive solution of (1.1) such that (λn, un) → (0, u) in H1(Ω) (equivalently +C(Ω) by elliptic regularity), then either u = 0 or 1. +In this paper, we extend our consideration to the case where βΩ = 1 and further study the +positive solution set in the case where βΩ < 1. Our first main result concerns the case where +βΩ < 1. On the basis of Theorem 0(III), we present the uniqueness and stability of a positive +solution of (1.1) for λ > 0 large and also the strong positivity of the positive solutions for every +λ > 0. +Theorem 1.1. Assume that βΩ < 1. Then, the following assertions hold (see Figure 1): +3 + +(i) There exists λ∗ ≥ λ∗ such that the positive solution of (1.1) ensured by Theorem 0(III-i) +is unique for every λ > λ∗ (say uλ); more precisely, the positive solutions of (1.1) for +λ > λ∗ form a C∞ curve C∞ = {(λ, uλ) : λ∗ < λ} (i.e., λ �→ uλ ∈ C2+θ(Ω) is C∞), +which satisfies the following conditions: +(a) uλ is asymptotically stable, +(b) uλ −→ uD in H1(Ω) as λ → ∞, +(c) uλ is decreasing, i.e., uλ1 > uλ2 in Ω if λ1 < λ2. Furthermore, if 0 < λ1 < λ2 with +the condition that λ1 ≤ λ∗ < λ2, then u > uλ2 in Ω for a positive solution u of +(1.1) for λ = λ1. +(ii) u > 0 in Ω for a positive solution u of (1.1) for every λ > 0 (strong positivity). +Figure 1. Possible positive solution sets in the case where βΩ < 1. +Remark 1.2. +(i) Assertions (i-a) and (i-b) hold for any p > 1 (see Remark 3.3). +(ii) For (λ, uλ) ∈ C0 with 0 ≤ λ ≤ λ∗ in (1.7), we present similar results as those in assertions +(i-c). Indeed, λ �→ uλ is decreasing for 0 < λ ≤ λ∗; if 0 < λ1 < λ2 with the condition +that λ1 ≤ λ∗ < λ2, then uλ1 > u in Ω for a positive solution u of (1.1) with λ = λ2. +(iii) It is an open question to get the global uniqueness for a positive solution of (1.1) for +all λ > 0, i.e., λ∗ = λ∗. In this case, [0, ∞) ∋ λ �→ uλ is C∞ and decreasing. +(iv) For uniqueness and stability analysis of positive solutions for large parameters in non- +linear elliptic problems, we refer to [9, 34, 33, 24, 10, 25, 13, 20, 21, 22]. +Our second main result is the counterpart of Theorem 0(III-i) and (III-iii) for the case where +βΩ = 1 and pq > 1. +Theorem 1.3. Assume that βΩ = 1 and pq > 1. Then, problem (1.1) possesses a positive +solution uλ for every λ > 0 such that uλ > 0 in Ω, which satisfies that +uλ −→ 0 +and +uλ +∥uλ∥ −→ φΩ +in H1(Ω) +as λ → ∞. +(1.9) +Remark 1.4. +(i) The existence assertion holds for any p > 1; thus, so does assertion (1.9) (see Remark +3.3). +(ii) Similarly as in Theorem 0(III-iii), assertion (1.9) is valid if we assume a positive solution +(λ, uλ) (which may take zero value somewhere on ∂Ω) of (1.1) with λ → ∞. +Our third main result is the counterpart of Theorem 0(III-iv), (IV-i), and (IV-iii) for the case +where βΩ = 1. +4 + +u +u +A +1 +1 +Co +Co +.... +入 +入 +*Y +\* +0 +入* +\* +0Theorem 1.5. Assume that βΩ = 1. Then, the following three assertions hold. +(i) If pq ≤ 1, then λ < ∞ where λ > 0 is defined by (1.8). +(ii) If pq ̸= 1, then the positive solution set {(λ, u)} of (1.1) does not meet the trivial line +{(λ, 0) : λ > 0} in the topology of H1(Ω) (nor C(Ω)). +(iii) If pq ≥ 1, then it does not meet {(0, 0)} in the topology of H1(Ω) (nor C(Ω)). +Theorem 1.5 provides a guess (Remark 1.6) for the global extension of the C∞ positive solution +curve C0 given by (1.7) in the case where βΩ = 1 and pq ≤ 1. +Remark 1.6. Assume that βΩ = 1 and pq ≤ 1. +Let �C0 = {(λ, u)} ⊂ [0, ∞) × C(Ω) be +the component (maximal, closed, and connected subset) of nonnegative solutions of (1.1) that +includes C0. From Theorems 0(I) and Theorem 1.5(i), �C0 \ {(0, 1)} ⊂ {(λ, u) ∈ [0, ∞) × C(Ω) : +λ ≤ λ, u < 1 in Ω}. If we suppose that Γ0 := +� +�C0 \ {(0, 1)} +� +∩{(λ, 0), (0, u) : λ ≥ 0, u ≥ 0} ̸= ∅, +then Theorem 1.5(ii),(iii) show that Γ0 = {(0, 0)} and Γ0 ⊂ {(λ, 0) : λ ≥ Λ0} for some Λ0 > 0 +when pq < 1 and pq = 1, respectively. The existence of �C0 is still an open question. Suggested +positive solution sets are illustrated in Figures 2 and 3. +Figure 2. Suggested positive solution set in the case where βΩ = 1 and pq < 1. +Figure 3. Suggested positive solution set in the case where βΩ = 1 and pq = 1, +and λc ∈ Γ0. +We conclude the Introduction by mentioning the stability of the trivial solution u = 0. A +linearized stability analysis does not work for u = 0 because u �→ uq is not differentiable at +u = 0. +Instead, by the construction of suitable sub- and supersolutions of (1.1), we try to +employ the Lyapunov stability criterion [26, Chapter 5] on the basis of the monotone iteration +method, which is developed in Section 5. +Notation: ∥ · ∥ denotes the usual norm of H1(Ω). +un ⇀ u∞ means that un weakly +converges to u∞ in H1(Ω). H1 +0(Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}. +� +Ω fdx for f ∈ L1(Ω) +5 + +u +1 +入 +入cu +1and +� +∂Ω gdσ for g ∈ L1(∂Ω) are simply written as +� +Ω f and +� +∂Ω g, respectively. | · | +represents both the Lebesgue measure in Ω and the surface measure on ∂Ω. +The remainder of this paper is organized as follows. Sections 2 and 3 are devoted to the +preparation for the proofs of Theorems 1.1, 1.3 and 1.5. In Section 2, we develop the energy +method for the energy functional associated with (1.1). +In Section 3, we use the sub- and +supersolution method to prove existence and positivity results for positive solutions of (1.1). +We give proofs for Theorems 1.1 and 1.3 in Section 3. In Section 4, we prove Theorem 1.5. +Section 5 is devoted to a stability analysis of the trivial solution u = 0, which is based on +Lemma 3.1 and Theorem 5.1. +2. Energy method +Let +E(u) = +� +Ω +(|∇u|2 − u2), +u ∈ H1(Ω); +then, the next lemma is used several times in the following arguments. +Lemma 2.1. Let {un} ⊂ H1(Ω) satisfy E(un) ≤ 0, un ⇀ u∞, and un → u∞ in L2(Ω). Then, +u∞ ̸= 0 if ∥un∥ ≥ C for some C > 0. +Proof. By the weak lower semicontinuity, E(u∞) ≤ limn E(un) ≤ limn E(un) ≤ 0. If u∞ = 0, +then ∥un∥ → 0, as desired. +□ +We start by proving the following two propositions, which provide the asymptotic profile of +a positive solution of (1.1) as λ → ∞. It is understood that uD = 0 if βΩ = 1. +Proposition 2.2. Assume that βΩ ≤ 1. Let (λn, un) be a positive solution of (1.1) with λn → ∞. +Then, un → uD in H1(Ω). +Proof. We first assume that βΩ < 1. Because un < 1 in Ω, we substitute u = ϕ = un into (1.3) +to deduce that +� +Ω +|∇un|2 = +� +Ω +� +u2 +n − up+1 +n +� +− λn +� +∂Ω +uq+1 +n +(2.1) +≤ +� +Ω +u2 +n ≤ |Ω|; +thus, ∥un∥ is bounded. Immediately, up to a subsequence, un ⇀ u∞ ≥ 0, un → u∞ in L2(Ω) +and L2(∂Ω), and un → u∞ a.e. in Ω for some u∞ ∈ H1(Ω). We then infer that +� +∂Ω +uq+1 +n += 1 +λn +� +− +� +Ω +|∇un|2 + +� +Ω +� +u2 +n − up+1 +n +�� +≤ 1 +λn +� +Ω +u2 +n −→ 0, +(2.2) +which implies that +� +∂Ω uq+1 +∞ += 0; thus, u∞ ∈ H1 +0(Ω). From (1.3) with (λ, u) = (λn, un), it follows +that +� +Ω +� +∇un∇ϕ − unϕ + up +nϕ +� += 0, +ϕ ∈ H1 +0(Ω). +Taking the limit, u∞ is a nonnegative solution of (1.6), where we have used the Lebesgue +dominated convergence theorem to deduce that +� +Ω up +nϕ → +� +Ω up +∞ϕ. +Then, we verify that u∞ ̸= 0. Since E(un) ≤ 0, the weak lower semicontinuity means that +E(u∞) ≤ lim +n→∞ +E(un) ≤ lim +n→∞ E(un) ≤ 0. +6 + +If u∞ = 0, then it follows that ∥un∥ → 0. Here, we may assume that un → 0 a.e. in Ω. Say that +wn = +un +∥un∥; then, up to a subsequence, wn ⇀ w∞ ≥ 0, wn → w∞ in L2(Ω) and L2(∂Ω), and +wn → w∞ a.e. in Ω. Since ∥wn∥ = 1, we deduce that w∞ ̸= 0 using Lemma 2.1. However, we +observe from (2.2) that +� +∂Ω +wq+1 +n +≤ 1 +λn +� +Ω +w2 +n∥un∥1−q −→ 0. +This implies that w∞ ∈ H1 +0(Ω). From (1.3) with (λ, u) = (λn, un), we see that +� +Ω +� +∇wn∇ϕ − wnϕ + wnϕ up−1 +n +� += 0, +ϕ ∈ H1 +0(Ω). +Taking the limit, +� +Ω(∇w∞ϕ − w∞ϕ) = 0, where we have used the Lebesgue dominated conver- +gence theorem to obtain that +� +Ω +��wnϕ up−1 +n +�� ≤ +�� +Ω +w2 +n +� 1 +2 �� +Ω +ϕ2u2(p−1) +n +� 1 +2 +≤ C +�� +Ω +ϕ2u2(p−1) +n +� 1 +2 +−→ 0. +This implies that w∞ is a nontrivial nonnegative solution of the problem +� +−∆w = w +in Ω, +w = 0 +on ∂Ω. +Thus, we deduce that βΩ = 1, which contradicts the assumption. The assertion that u∞ ≥ 0 +and u∞ ̸= 0 means that u∞ is the unique positive solution uD of (1.6) by the strong maximum +principle. +It remains to show that un → u∞ in H1(Ω). +Observing that E(u∞) + +� +Ω up+1 +∞ += 0 and +E(un) ≤ − +� +Ω up+1 +n +, we deduce that +E(u∞) ≤ lim +n→∞ +E(un) ≤ lim +n→∞ E(un) ≤ − lim +n→∞ +� +Ω +up+1 +n += − +� +Ω +up+1 +∞ += E(u∞), +where we have used the Lebesgue dominated convergence theorem again. Thus, E(un) → E(u∞), +i.e., ∥un∥ → ∥u∞∥. Since un ⇀ u∞, the desired assertion follows. +Next, we assume that βΩ = 1. Then, u∞ is a nonnegative solution of (1.6), and indeed u∞ = 0 +because βΩ = 1 ([7]). Thus, ∥un∥ → 0, as desired. +□ +In the case where βΩ = 1, we observe that E(u) ≥ 0 for u ∈ H1 +0(Ω). Indeed, we note that +� +u ∈ H1(Ω) : E(u) = 0 +� += ⟨φΩ⟩ := {sφΩ : s ∈ R}. +We then investigate the asymptotic profile of a positive solution (λn, un) of (1.1) with ∥un∥ → 0. +Proposition 2.3. Assume that βΩ = 1. Let (λn, un) be a positive solution of (1.1) such that +λn ≥ λ for some λ > 0 and ∥un∥ → 0. Then, we obtain that +un +∥un∥ → φΩ in H1(Ω). +Proof. Say that wn = +un +∥un∥ and, up to a subsequence, wn ⇀ w∞ ≥ 0, and wn → w∞ in L2(Ω) +and L2(∂Ω) for some w∞ ∈ H1(Ω). From (2.1) it follows that +λ +� +∂Ω +uq+1 +n +≤ +� +Ω +u2 +n. +We use the condition ∥un∥ → 0 to infer that +� +∂Ω +wq+1 +n +≤ ∥un∥1−q +λ +� +Ω +w2 +n −→ 0; +thus, +� +∂Ω wq+1 +∞ += 0, i.e., w∞ ∈ H1 +0(Ω). +7 + +Since βΩ = 1 and E(wn) ≤ 0, the weak lower semicontinuity means that +0 ≤ E(w∞) ≤ lim +n→∞ +E(wn) ≤ lim +n→∞ E(wn) ≤ 0, +implying that E(wn) → E(w∞) = 0, i.e., ∥wn∥ → ∥w∞∥. Since wn ⇀ w∞, we deduce that +wn → w∞ in H1(Ω) and w∞ = φΩ with ∥φΩ∥ = 1. Finally, because φΩ is unique, the desired +conclusion follows. +□ +Remark 2.4. If we construct a positive solution (λn, un) of (1.1) without using (1.2), then +Propositions 2.2 and 2.3 remain valid for all p > 1. +For further analysis of the asymptotic behavior of a positive solution (λn, un) of (1.1) with +the condition that λn ≥ λ and ∥un∥ → 0, the orthogonal decomposition H1(Ω) = ⟨φΩ⟩⊕V using +⟨φΩ⟩ is useful, where V denotes the orthogonal complement of ⟨φΩ⟩ that is given explicitly as +V = +� +v ∈ H1(Ω) : +� +Ω +� +∇v∇φΩ + vφΩ +� += 0 +� +. +Note that ⟨φΩ⟩ and V are both closed subspaces of H1(Ω) and ∥u∥ is equivalent to |s| + ∥v∥ for +u = sφΩ + v ∈ H1(Ω) = ⟨φΩ⟩ ⊕ V . +Using the orthogonal decomposition, +un = snφΩ + vn ∈ ⟨φΩ⟩ ⊕ V +(2.3) +for a positive solution (λn, un) of (1.1) such that λn ≥ λ for some λ > 0 and ∥un∥ → 0 (under +the assumption of Proposition 2.3). Since +un +∥un∥ → φΩ in H1(Ω), it follows that +sn +∥un∥ → 1, +(2.4) +∥vn∥ +∥un∥ → 0, +(2.5) +∥vn∥ +sn +→ 0. +(2.6) +Because of (2.4), we may assume that sn > 0. Note that vn ≥ 0 on ∂Ω because φΩ = 0 on ∂Ω. +We then deduce the following result, which plays a crucial role in the proof of Theorem 1.5. +Lemma 2.5. Assume that βΩ = 1. Let {vn} be as introduced by (2.3). Then, there exists c > 0 +such that +E(vn) + c +� +∂Ω +vq+1 +n +≤ 0 +for sufficiently large n, +(2.7) +provided that one of the following conditions is satisfied. +(a) pq < 1, +(b) pq = 1 and λn → ∞, +(c) pq > 1 and λn is bounded above. +Proof. Substituting un = snφΩ + vn into (2.1), we deduce that +2sn +�� +Ω +∇φΩ∇vn − φΩvn +� ++ E(vn) + +� +Ω +(snφΩ + vn)p+1 + λn +� +∂Ω +vq+1 +n += 0. +(2.8) +Using the divergence theorem, +� +Ω +φΩvn = +� +Ω +−∆φΩvn = +� +Ω +∇φΩ∇vn + +� +∂Ω +� +−∂φΩ +∂ν +� +vn; +(2.9) +8 + +thus, (2.8) implies that +−2sn +� +∂Ω +� +−∂φΩ +∂ν +� +vn + E(vn) + +� +Ω +(snφΩ + vn)p+1 + λn +� +∂Ω +vq+1 +n += 0. +It follows that +E(vn) + λn +2 +� +∂Ω +vq+1 +n ++ In ≤ 0 +(2.10) +with +In = λn +2 +� +∂Ω +vq+1 +n +− 2sn +� +∂Ω +� +−∂φΩ +∂ν +� +vn. +(2.11) +Once we verify that +In ≥ 0 +for sufficiently large n, +(2.12) +we obtain (2.7) and complete the proof. To verify (2.12), we use the test function ϕ = φΩ to +deduce that +� +Ω +� +∇un∇φΩ − unφΩ + up +nφΩ +� += 0. +(2.13) +Substituting un = snφΩ + vn into (2.13) and combining (2.9) with (2.13) provide +� +∂Ω +� +−∂φΩ +∂ν +� vn +sp +n += +� +Ω +� +φΩ + vn +sn +�p +φΩ. +(2.14) +We then consider either case (a) or (b). From (2.6), we deduce that +� +Ω +� +φΩ + vn +sn +�p +φΩ −→ +� +Ω +φp+1 +Ω +> 0. +Taking into account (1.5), we may derive from (2.14) that +csp +n ≤ +� +∂Ω +vn +for some c > 0. By H¨older’s inequality, it follows that +csp +n ≤ +� +∂Ω +vn ≤ |∂Ω| +q +q+1 +�� +∂Ω +vq+1 +n +� +1 +q+1 +. +(2.15) +Combining (2.11) with (2.15) and using H¨older’s inequality, there exist c, ˜c > 0 such that +In ≥ λn +2 +� +∂Ω +vq+1 +n +− c sn +�� +∂Ω +vq+1 +n +� +1 +q+1 += +� +λn +2 +�� +∂Ω +vq+1 +n +� +q +q+1 +− c sn +� �� +∂Ω +vq+1 +n +� +1 +q+1 +≥ {˜c λn spq +n − c sn} +�� +∂Ω +vq+1 +n +� +1 +q+1 += spq +n +� +˜cλn − c s1−pq +n +� �� +∂Ω +vq+1 +n +� +1 +q+1 +. +Since sn → 0 from (2.4), assertion (2.12) follows. +9 + +We next consider case (c) and verify (2.12). By combining (2.11) with (2.14), it follows from +(2.11) that +In = sp+1 +n +�λn +2 +� +∂Ω +vq+1 +n +sp+1 +n +− 2 +� +Ω +� +φΩ + vn +sn +�p +φΩ +� +. +(2.16) +Furthermore, we use the test function ϕ = 1 in (1.3) to infer that +− +� +Ω +un + +� +Ω +up +n + λn +� +∂Ω +uq +n = 0. +Substituting un = snφΩ + vn, +− +� +Ω +� +φΩ + vn +sn +� ++ sp−1 +n +� +Ω +� +φΩ + vn +sn +�p ++ +� +∂Ω +λnvq +n +sn += 0, +which implies that +� +∂Ω +λnvq +n +sn +−→ +� +Ω +φΩ > 0, +where we have used condition (2.6). Thus, we may deduce that +c sn +λn +≤ +� +∂Ω +vq +n +for some c > 0. Using H¨older’s inequality, we deduce that +c +� sn +λn +� q+1 +q +≤ +� +∂Ω +vq+1 +n +(2.17) +for some c > 0. Combining (2.16) with (2.17), +In ≥ sp+1 +n +� +c s +1 +q −p +n +λ +− 1 +q +n +− 2 +� +Ω +� +φΩ + vn +sn +�p +φΩ +� +for some c > 0. We observe that +s +1 +q −p +n +→ ∞, +λ +− 1 +q +n +≥ c +by some constant c > 0, +� +Ω +� +φΩ + vn +sn +�p +φΩ → +� +Ω +φp+1 +Ω +> 0. +Thus, assertion (2.12) follows. +□ +We conclude this section with the establishment of the uniqueness and stability results for a +positive solution of (1.1) in the case where βΩ < 1. +Proposition 2.6. Assume that βΩ < 1. Then, there exists Λ > 0 such that if λ > Λ, then the +following two assertions hold: +(i) Problem (1.1) has at most one positive solution. +(ii) A positive solution u of (1.1) satisfying u > 0 in Ω is asymptotically stable. +Proof. We recall that the unique positive solution uD of (1.6) is asymptotically stable, i.e., +γ1,D = inf +�� +Ω +� +|∇ϕ|2 − ϕ2 + pup−1 +D +ϕ2� +: ϕ ∈ H1 +0(Ω), +� +Ω +ϕ2 = 1 +� +> 0. +(2.18) +10 + +(i) Assume to the contrary that problem (1.1) has two distinct positive solutions (λn, un) and +(λn, vn) with λn → ∞. Note that un, vn < 1 in Ω. We may assume that un, vn → uD in H1(Ω) +and a.e. in Ω. The difference wn = un − vn (may change sign) allows that +� +Ω +� +∇wn∇ϕ − wnϕ +� ++ +� +Ω +� +(vn + wn)p − vp +n +� +ϕ + λn +� +Γn +(vn + wn)q − vq +n +wn +wnϕ = 0 +(2.19) +for ϕ ∈ H1(Ω), where Γn = {x ∈ ∂Ω : wn(x) ̸= 0}. Note that ∥wn∥ → 0, and wn → 0 a.e. in Ω. +Substituting ϕ = wn into (2.19), the mean value theorem shows the existence of θn ∈ (0, 1) +such that +E(wn) + +� +Ω +p(vn + θnwn)p−1w2 +n + λn +� +Γn +(vn + wn)q − vq +n +wn +w2 +n = 0; +thus, ψn = +wn +∥wn∥ implies that +E(ψn) + +� +Ω +p(vn + θnwn)p−1ψ2 +n + λn +� +Γn +(vn + wn)q − vq +n +wn +ψ2 +n = 0. +(2.20) +From ∥ψn∥ = 1, we infer that up to a subsequence, ψn ⇀ ψ∞, ψn → ψ∞ in L2(Ω) and L2(∂Ω) +for some ψ∞ ∈ H1(Ω). Then, we claim that ψ∞ ∈ H1 +0(Ω) and ψ∞ ̸= 0. From (2.20), we deduce +that +λn +� +Γn +(vn + wn)q − vq +n +wn +ψ2 +n ≤ +� +Ω +ψ2 +n ≤ 1. +We observe that +(vn + wn)q − vq +n +wn +≥ q +on Γn +because un, vn < 1 in Ω. It follows that λnq +� +∂Ω ψ2 +n ≤ 1. Passing to the limit, we deduce that +ψ∞ ∈ H1 +0(Ω). Indeed, ψ∞ ̸= 0 by Lemma 2.1. +Then, we assert in (2.20) that +� +Ω +p(vn + θnwn)p−1ψ2 +n −→ +� +Ω +pup−1 +D +ψ2 +∞. +Indeed, we use +� +Ω +p(vn + θnwn)p−1ψ2 +n = +� +Ω +p(vn + θnwn)p−1ψ2 +∞ + +� +Ω +p(vn + θnwn)p−1(ψ2 +n − ψ2 +∞). +Since vn → uD and wn → 0 a.e. in Ω and un, vn < 1 in Ω, the Lebesgue dominated convergence +theorem shows that +� +Ω +p(vn + θnwn)p−1ψ2 +∞ −→ +� +Ω +pup−1 +D +ψ2 +∞. +Using the fact +� +Ω |ψ2 +n − ψ2 +∞| → 0 yields +� +Ω +p(vn + θnwn)p−1(ψ2 +n − ψ2 +∞) −→ 0, +as desired. +Then, the weak lower semicontinuity allows us to deduce from (2.20) that +� +Ω +� +|∇ψ∞|2 − ψ2 +∞ + pup−1 +D +ψ2 +∞ +� +≤ lim +n→∞ +� +E(ψn) + +� +Ω +p(vn + θnwn)p−1ψ2 +n +� +≤ 0, +which contradicts ψ∞ ∈ H1 +0(Ω) and ψ∞ ̸= 0 in view of (2.18). +11 + +(ii) On the basis of (1.4), we claim that γ1 > 0 for sufficiently large λ > 0. +Assume by +contradiction that a positive solution (λn, un) of (1.1) with the condition that λn → ∞ and +un > 0 in Ω satisfies γn := γ1,n(λn, un) ≤ 0. This means that +� +Ω +� +|∇ϕn|2 − ϕ2 +n + pup−1 +n +ϕ2 +n +� ++ λnq +� +∂Ω +uq−1 +n +ϕ2 +n = γn ≤ 0, +(2.21) +where ϕn := ϕ1,n, normalized as +� +Ω +ϕ2 +n + +� +∂Ω +ϕ2 +n = 1. +(2.22) +Because +� +Ω |∇ϕn|2 ≤ +� +Ω ϕ2 +n ≤ 1 from (2.21) and (2.22), ∥ϕn∥ is bounded, which implies that up +to a subsequence, ϕn ⇀ ϕ∞, ϕn → ϕ∞ in L2(Ω) and L2(∂Ω), and ϕn → ϕ∞ a.e. in Ω for some +ϕ∞ ∈ H1(Ω). Since uq−1 +n +≥ 1 from Theorem 0(I), assertion (2.21) gives us +λnq +� +∂Ω +ϕ2 +n ≤ +� +Ω +ϕ2 +n ≤ 1. +Passing to the limit, ϕ∞ = 0 on ∂Ω; thus, ϕ∞ ∈ H1 +0(Ω). From (2.22), +� +Ω ϕ2 +∞ = 1 is also deduced. +By the weak lower semicontinuity, we derive from (2.21) that +� +Ω +� +|∇ϕ∞|2 − ϕ2 +∞ + pup−1 +D +ϕ2 +∞ +� +≤ lim +n→∞ +� +Ω +� +|∇ϕn|2 − ϕ2 +n + pup−1 +n +ϕ2 +n +� +≤ 0 +(2.23) +Indeed, on the basis of the facts that un → uD in H1(Ω) and un < 1 in Ω (see Theorem 0(I) +and Proposition 2.2), the Lebesgue dominated convergence theorem shows that +� +Ω +up−1 +n +ϕ2 +n = +� +Ω +up−1 +n +ϕ2 +∞ + +� +Ω +up−1 +n +(ϕ2 +n − ϕ2 +∞) −→ +� +Ω +up−1 +D +ϕ2 +∞, +where we have used that un → uD a.e. in Ω. Assertion (2.23) contradicts ϕ∞ ∈ H1 +0(Ω) and +� +Ω ϕ2 +∞ = 1 in view of (2.18). +□ +Remark 2.7. If we construct a positive solution u of (1.1) such that u > 0 in Ω without using +(1.2), then assertion (ii) of Proposition 2.6 remains valid for all p > 1. +3. Sub- and supersolutions +Consider the case where βΩ < 1 or where βΩ = 1 and pq > 1. Then, we first construct small +positive subsolutions of (1.1) and use them to establish an a priori lower bound for positive +solutions (λ, u) of (1.1) satisfying u > 0 in Ω. For a fixed τ > 0 and with a parameter ε > 0, we +set +φε(x) = ε(φΩ(x) + ετ), +x ∈ Ω, +which implies that φε ∈ C2+θ(Ω) and φε > 0 in Ω. +We then use φε to formulate the following a priori lower bound for positive solutions u > 0 +in Ω of (1.1). +Lemma 3.1. Assume that βΩ < 1 or that βΩ = 1 and pq > 1. Let τ > 1−q +q +when βΩ < 1, and +let 1−q +q +< τ < p − 1 when βΩ = 1 and pq > 1. Then, for Λ > 0 there exists ε = ε(τ, Λ) > 0 such +that φε is a subsolution of (1.1), provided that λ ∈ [0, Λ] and ε ∈ (0, ε]. Furthermore, u ≥ φε +in Ω for a positive solution u > 0 in Ω of (1.1) with λ ∈ [0, Λ]. Here, ε does not depend on +λ ∈ [0, Λ]. +12 + +Proof. We only consider the case where βΩ = 1 and pq > 1. The case where βΩ < 1 is proved +similarly. First, we verify the former assertion. We take 0 < ε ≤ 1 and then use the condition +p − τ − 1 > 0 to deduce that +−∆φε − φε + φp +ε ≤ ε1+τ +� +−1 + εp−τ−1 +� +1 + max +Ω +φΩ +�p� +≤ 0 +in Ω +if ε > 0 is small. For Λ > 0 we use (1.5) and the condition τ > 1−q +q +to deduce that +∂φε +∂ν + λφq +ε ≤ −c1ε + λε(1+τ)q ≤ ε(−c1 + Λεq+τq−1) ≤ 0 +on ∂Ω +if 0 < ε ≤ (c1/Λ)1/(q+τq−1). The desired assertion follows. +Next, we argue by contradiction to verify the latter assertion. Assume by contradiction that +u ̸≥ φε in Ω for some positive solution u > 0 in Ω with λ ∈ [0, Λ]. Because ε �→ φε is increasing +and φε → 0 uniformly in Ω, we can take ε1 ∈ (0, ε) such that +� +u ≥ φε1 +in Ω, +u(x1) = φε1(x1) +for some x1 ∈ Ω. +(3.1) +Take c > 0 such that u, φε1 ≥ c in Ω; then, choose K > 0 sufficiently large so that fK(t) = +Kt+t−tp is increasing for t ∈ +� +0, maxΩ u +� +and M > 0 sufficiently large so that M −Λqcq−1 > 0. +We use the subsolution φε1 (not a positive solution of (1.1)) to deduce that +(−∆ + K)(u − φε1) ≥ fK(u) − fK(φε1) ≥ 0 (and ̸≡ 0) +in Ω, +(3.2) +and for x ∈ ∂Ω satisfying u > φε1, +� ∂ +∂ν + M +� +(u − φε1) ≥ −λuq + λφq +ε1 + M(u − φε1) += +� +M − λuq − φq +ε1 +u − φε1 +� +(u − φε1) +≥ (M − Λqcq−1)(u − φε1) > 0. +(3.3) +Thus, the strong maximum principle and boundary point lemma are applicable to infer that +u − φε1 > 0 in Ω, which contradicts (3.1). +□ +On the basis of Lemma 3.1, we construct minimal and maximal positive solutions of (1.1) as +follows. +Proposition 3.2. Assume that βΩ < 1 or that βΩ = 1 and pq > 1. Then, problem (1.1) has +a minimal positive solution uλ ∈ C2+θ(Ω) and a maximal positive solution uλ ∈ C2+θ(Ω) for +each λ > 0 such that 0 < uλ ≤ uλ in Ω, meaning that any positive solution u of (1.1) with the +condition that u > 0 in Ω satisfies uλ ≤ u ≤ uλ in Ω. Moreover, both uλ and uλ are weakly +stable, i.e., γ1(λ, uλ), γ1(λ, uλ) ≥ 0. +Proof. It is clear that (λ, 1) is a supersolution of (1.1). Choose ε0 > 0 such that φε0 ≤ 1 in Ω; +then, Lemma 3.1 states that (λ, φε0) is a subsolution of (1.1). By Theorem 0(I) and Lemma 3.1, +a positive solution u > 0 in Ω of (1.1) implies that φε0 ≤ u ≤ 1 in Ω. Thus, this proposition is +a direct consequence of applying [3, (2.1)Theorem] and [2, Proposition 7.8]. +□ +Remark 3.3. In view of the construction, Lemma 3.1 and Proposition 3.2 remain valid for +any p > 1; therefore, Propositions 2.2, 2.3, 2.6(ii) hold for any p > 1 with the positive solution +(λn, un) of (1.1) with λn → ∞ that is constructed by Proposition 3.2 (see Remarks 2.4 and 2.7). +13 + +In the case where βΩ < 1, Propositions 2.6 and 3.2 ensure the existence of a unique positive +solution u(λ) of (1.1) for λ > Λ, which is asymptotically stable. Using the implicit function +theorem provides us with the following result. +Corollary 3.4. Assume that βΩ < 1. Then, {(λ, u(λ)) : λ > Λ} is a C∞ curve, i.e., λ �→ +u(λ) ∈ C2+θ(Ω) is C∞. Moreover, it is decreasing, i.e., u(λ1) > u(λ2) in Ω for λ2 > λ1 > Λ. +Proof. We verify the first assertion. +Let (λ0, u(λ0)) be the unique positive solution of (1.1) +for λ0 > Λ. Since γ1(λ0, u(λ0)) > 0, the implicit function theorem applies at (λ0, u0); then, +we deduce, thanks to the uniqueness, that {(λ, u(λ)) : λ1 < λ ≤ λ2} is a C∞ curve for λ1 < +λ0 < λ2 such that u(λ) is asymptotically stable. The implicit function theorem applies again at +(λ2, u(λ2)); then, the curve is continued until λ = λ3 > λ2. Repeating the same procedure, the +curve is continued to λ = ∞ thanks to the a priori upper and lower bounds (Theorem 0(I) and +Lemma 3.1), as desired. +We next verify the second assertion. If λ1 < λ2, then u(λ1) is a supersolution of (1.1) for +λ = λ2. By Lemma 3.1, it is possible to construct a subsolution φε of (1.1) for λ = λ2 such +that 0 < φε ≤ u(λ1) in Ω. The sub- and supersolution method applies, and problem (1.1) has +a positive solution u for λ = λ2 such that φε ≤ u ≤ u(λ1) in Ω, where u ̸≡ u(λ1). Thanks +to Proposition 2.6(i), we obtain u = u(λ2). The desired assertion follows by using the strong +maximum principle and boundary point lemma (as developed in (3.2) and (3.3)). +□ +We conclude this section by employing the weak sub- and supersolution method [23] to show +global strong positivity for a positive solution of (1.1) in the case where βΩ < 1. +Proposition 3.5. Assume that βΩ < 1. Then, a positive solution (λ, u) of (1.1) satisfies that +u > 0 in Ω. +Proof. Assume by contradiction that problem (1.1) possesses a positive solution (λ0, u0) for +λ0 > 0 such that u0 = 0 somewhere on ∂Ω. Let λ = λ1 > max(λ0, Λ), for which problem (1.1) +has at most one positive solution by Proposition 2.6(i). Then, u0 is a weak supersolution of +(1.1) for λ = λ1. Indeed, +0 = +� +Ω +� +∇u0∇ϕ − u0ϕ + up +0ϕ +� ++ λ0 +� +∂Ω +uq +0ϕ +≤ +� +Ω +� +∇u0∇ϕ − u0ϕ + up +0ϕ +� ++ λ1 +� +∂Ω +uq +0ϕ, +ϕ ∈ H1(Ω) and ϕ ≥ 0. +We next construct a weak subsolution of (1.1) for λ = λ1 that is smaller than or equal to +u0. Note that u0 ∈ Cθ(Ω) and u0 > 0 in Ω. From βΩ < 1, it follows by the continuity and +monotonicity of βΩ with respect to Ω that we can choose a subdomain Ω1 ⋐ Ω with smooth +boundary ∂Ω1 such that βΩ1 < 1. Then, we deduce that +u0 ≥ c +in Ω1 +(3.4) +for some c > 0. We also deduce that if ε > 0 is sufficiently small, then +−∆(εφΩ1) ≤ εφΩ1 − (εφΩ1)p +in Ω1, +where φΩ1 is a positive eigenfunction associated with βΩ1. Consequently, the divergence theorem +is applied to +� +Ω −∆(εφΩ1)ϕ for ϕ ∈ H1(Ω) and ϕ ≥ 0 to deduce that +� +Ω1 +� +∇(εφΩ1)∇ϕ − (εφΩ1)ϕ + (εφΩ1)pϕ +� +≤ 0. +(3.5) +14 + +Define +Φε = +� +εφΩ1 +in Ω1, +0 +in Ω \ Ω1, +and Φε ∈ H1(Ω) ∩ C(Ω). By virtue of (3.5), the linking technique [6, Lemma I.1] yields +� +Ω +� +∇Φε∇ϕ − Φεϕ + Φp +ε ϕ +� ++ λ1 +� +∂Ω +Φq +ε ϕ = +� +Ω1 +� +∇Φε∇ϕ − Φεϕ + Φp +ε ϕ +� +≤ 0. +Thanks to (3.4), we can take ε > 0 such that Φε ≤ u0 in Ω, as desired. +The weak sub- and supersolution method [23, Subsection 2.2] is now applicable to deduce +the existence of a positive solution (λ1, u1) of (1.1) such that Φε ≤ u1 ≤ u0 in Ω. Particularly, +u1 = 0 somewhere on ∂Ω because so is u0. However, this contradicts Proposition 3.2 in view of +the uniqueness. +□ +Proof of Theorem 1.1. The uniqueness assertion follows from Proposition 2.6(i). Assertions (i- +a) and (i-b) follow from Propositions 2.6(ii) and 2.2, respectively. Assertion (i-c) is verified by +Corollary 3.4 and an analogous argument as in the proof of Corollary 3.4. Assertion (ii) follows +from Proposition 3.5. +□ +Proof of Theorem 1.3. The existence part follows from Proposition 3.2. Assertion (1.9) follows +from Propositions 2.2 and 2.3. +□ +4. Proof of Theorem 1.5 +This section is devoted to the proof of Theorem 1.5. +(i) We prove assertion (i). Assume by contradiction that problem (1.1) has a positive solution +(λn, un) with λn → ∞. Then, Proposition 2.2 shows that ∥un∥ → 0; thus, Proposition 2.3 shows +that +un +∥un∥ → φΩ in H1(Ω). We apply Lemma 2.5(a) and (b); then, for un = snφΩ+vn ∈ ⟨φΩ⟩⊕V +as in (2.3), we have (2.7) with (2.4)–(2.6). +Observe from (2.5) that ∥vn∥ → 0. Say that ψn = +vn +∥vn∥; then, up to a subsequence, ψn ⇀ +ψ∞ ≥ 0, and ψn → ψ∞ in L2(Ω) and L2(∂Ω) for some ψ∞ ∈ H1(Ω). From (2.7), it follows that +c +� +∂Ω +ψq+1 +n +≤ −E(ψn)∥vn∥1−q −→ 0, +so that +� +∂Ω ψq+1 +∞ += 0, i.e., ψ∞ ∈ H1 +0(Ω). Lastly, we use the condition E(ψn) ≤ 0 derived from +(2.7) to follow the argument in the last paragraph of the proof of Proposition 2.3; then, we arrive +at the contradiction ψ∞ = φΩ ∈ ⟨φΩ⟩ ∩ V = {0}. +(ii) We verify assertion (ii). We remark that the convergences (λn, un) → (λ∞, 0) with λ∞ ≥ 0 +in R × H1(Ω) and R × C(Ω) are equivalent for a positive solution (λn, un) of (1.1) with λn > 0. +This is verified by the bootstrap argument [32, Lemma 3.3]. In fact, the proof of assertion (ii) +is similar to that for assertion (i). Assume by contradiction that problem (1.1) has a positive +solution (λn, un) with the condition that λn → λ∞ > 0 and ∥un∥ → 0. Lemma 2.5(a) and (c) +apply; then, we arrive at a contradiction. +(iii) To verify assertion (iii), we prove the following three auxiliary lemmas. Say that Un = +λ +− +1 +1−q +n +un. +Lemma 4.1. There exists C > 0 such that ∥Un∥ ≤ C for a positive solution (λn, un) of (1.1) +with λn > 0 satisfying that (λn, un) → (0, 0) in R × H1(Ω). +15 + +Proof. Assume by contradiction that ∥Un∥ → ∞. Say that wn = +Un +∥Un∥; then, up to a subse- +quence, wn ⇀ w∞ ≥ 0, and wn → w∞ in L2(Ω) and L2(∂Ω) for some w∞ ∈ H1(Ω). Since +E(wn) ≤ 0, Lemma 2.1 provides w∞ ̸= 0. +Recall that (λ, U) = (λn, Un) satisfies +� +Ω +� +∇U∇ϕ − Uϕ + λ +p−1 +1−q U pϕ +� ++ +� +∂Ω +U qϕ = 0, +ϕ ∈ H1(Ω). +(4.1) +Using the test function ϕ = 1 in (4.1), we deduce that +� +Ω +Un = λ +p−1 +1−q +n +� +Ω +U p +n + +� +∂Ω +U q +n = +� +Ω +up−1 +n +Un + +� +∂Ω +U q +n, +implying +� +Ω +wn = +� +Ω +up−1 +n +wn + +� +∂Ω +wq +n∥Un∥q−1. +(4.2) +We may assume that un → 0 a.e. in Ω, and since un < 1 in Ω, we deduce that +� +Ω +up−1 +n +wn = +� +Ω +up−1 +n +w∞ + +� +Ω +up−1 +n +(wn − w∞) −→ 0, +by applying the Lebesgue dominated convergence theorem and using the condition wn → w∞ +in L2(Ω). +Then, passing to the limit in (4.2) yields +� +Ω w∞ = 0, i.e., w∞ = 0, which is a +contradiction. +□ +Lemma 4.2. Assume that βΩ = 1. Then, there is no positive solution U of (4.1) for λ = 0. +Proof. If it exists, then from (4.1) with λ = 0 and ϕ = 1, it follows that U > 0 on Γ ⊂ ∂Ω with +|Γ| > 0, implying +� +∂Ω +∂φΩ +∂ν U < 0. We use the test function ϕ = φΩ to deduce that +� +Ω +� +∇U∇φΩ − UφΩ +� += 0. +However, the divergence theorem leads us to the contradiction +� +Ω +φΩU = +� +Ω +−∆φΩU = +� +Ω +∇φΩ∇U − +� +∂Ω +∂φΩ +∂ν U > +� +Ω +∇φΩ∇U. +□ +Lemma 4.3. Assume that βΩ = 1 and pq ≥ 1. Then, there exists C > 0 such that ∥Un∥ ≥ C +for a positive solution (λn, Un) of (4.1) with λn → 0+. +Proof. Assume by contradiction that (λn, Un) → (0, 0) in R × H1(Ω) for a positive solution +(λn, Un) of (4.1). Say that wn = +Un +∥Un∥; then, up to a subsequence, wn ⇀ w∞ ≥ 0, wn → w∞ in +Lp+1(Ω) and L2(∂Ω) for some w∞ ∈ H1(Ω). From (4.1) with (λ, U) = (λn, Un) and ϕ = Un, it +follows that +� +Ω +� +|∇Un|2 − U 2 +n + λ +p−1 +1−q +n +U p+1 +n +� ++ +� +∂Ω +U q+1 +n += 0. +(4.3) +We then deduce that +� +∂Ω wq+1 +n +≤ +� +Ω w2 +n∥Un∥1−q → 0; thus, +� +∂Ω wq+1 +∞ += 0, i.e., w∞ ∈ H1 +0(Ω). We +also deduce from (4.3) that E(wn) = +� +Ω(|∇wn|2 − w2 +n) ≤ 0. Thus, we derive that wn → φΩ in +H1(Ω) using a similar argument as in the last paragraph of the proof of Proposition 2.3. +For a contradiction, we use the same strategy developed in the proof of assertion (i). To this +end, we consider the orthogonal decomposition Un = snφΩ + vn ∈ ⟨φΩ⟩ ⊕ V as in (2.3); then, +16 + +we obtain (2.4) to (2.6) with un replaced by Un. As in the proof of Lemma 2.5, we deduce the +following counterpart of (2.10) and (2.11) for (4.3): +E(vn) + 1 +2 +� +∂Ω +vq+1 +n ++ Jn ≤ 0, +with +Jn = 1 +2 +� +∂Ω +vq+1 +n +− 2sn +� +∂Ω +� +−∂φΩ +∂ν +� +vn. +(4.4) +In the same spirit of Lemma 2.5 ((2.12)), we establish +E(vn) + 1 +2 +� +∂Ω +vq+1 +n +≤ 0 +for sufficiently large n, +(4.5) +by verifying that +Jn ≥ 0 +for sufficiently large n. +(4.6) +Analogously to (2.14), we obtain +� +∂Ω +� +−∂φΩ +∂ν +� +vn = λ +p−1 +1−q +n +sp +n +� +Ω +� +φΩ + vn +sn +�p +φΩ. +Using this assertion, we deduce from (4.4) that +Jn = sp+1 +�1 +2 +� +∂Ω +vq+1 +n +sp+1 − 2λ +p−1 +1−q +n +� +Ω +� +φΩ + vn +sn +�p +φΩ +� +. +(4.7) +Furthermore, we use the test function ϕ = 1 in (4.1) to obtain +− +� +Ω +Un + λ +p−1 +1−q +n +� +Ω +U p +n + +� +∂Ω +U q +n = 0. +Substituting Un = snφΩ + vn, +− +� +Ω +� +φΩ + vn +sn +� ++ λ +p−1 +1−q +n +sp−1 +n +� +Ω +� +φΩ + vn +sn +�p ++ +� +∂Ω +vq +n +sn += 0, +from which we use (2.6) with Un to infer that +� +∂Ω +vq +n +sn +−→ +� +Ω +φΩ > 0. +Then, we may deduce that +csn ≤ +� +∂Ω +vq +n +for some c > 0. By H¨older’s inequality, we deduce that +cs +q+1 +q +≤ +� +∂Ω +vq+1 +for some c > 0. We use this inequality to derive from (4.7) that +Jn ≥ sp+1 +� +cs +1 +q −p +n +− 2λ +p−1 +1−q +n +� +Ω +� +φΩ + vn +sn +�p +φΩ +� +for some c > 0; thus, (4.6) follows. Assertion (4.5) has been now established. +We end the proof of this lemma. Observe from (2.5) with Un that ∥vn∥ → 0. Then, we +develop the same argument as in the second paragraph of the proof of assertion (i) to arrive at +the same contradiction. +□ +17 + +Employing the above lemmas, we then verify assertion (iii). Assume by contradiction that +(λn, un) → (0, 0) in R × H1(Ω) for a positive solution (λn, un) of (1.1) with λn > 0. Then, +(λn, Un) with Un = λ +− +1 +1−q +n +un admits a positive solution of (4.1). Since Un is bounded in H1(Ω) +by Lemma 4.1, we deduce that up to a subsequence, Un ⇀ U∞ ≥ 0, and Un → U∞ in Lp+1(Ω) +and L2(∂Ω) for some U∞ ∈ H1(Ω). Thanks to Lemma 4.3, we apply Lemma 2.1 to obtain +U∞ ̸= 0. +Furthermore, substituting (λ, U) = (λn, Un) into (4.1) and then taking the limit, we deduce +that +� +Ω +� +∇U∞∇ϕ − U∞ϕ +� ++ +� +∂Ω +U q +∞ϕ = 0. +This implies that U∞ is a nonnegative solution of (4.1) for λ = 0. Finally, Lemma 4.2 provides +U∞ = 0, which is a contradiction. +The proof of Theorem 1.5 is complete. +□ +Remark 4.4. Assertions (ii) and (iii) of Theorem 1.5 are also derived from Lemma 3.1 when +βΩ = 1 and pq > 1. +5. Stability analysis of the trivial solution +In the last section, we consider the stability of the trivial solution u = 0. It is worthwhile +to mention that a linearized stability analysis does not work for u = 0 because u �→ uq is not +differentiable at u = 0. +The corresponding initial-boundary value problem is formulated as +follows: + + + + + +∂u +∂t (t, x) = ∆u + u − up +in (0, ∞) × Ω, +∂u +∂ν = −λuq +on (0, ∞) × ∂Ω, +u(0, x) = u0(x) ≥ 0 +in Ω. +(5.1) +We use the method of monotone iterations to determine the Lyapunov stability of the trivial +solution u = 0 (see [26, Definition 5.1.1]). +When βΩ < 1 or when βΩ = 1 and pq > 1, we observe from Lemma 3.1 that u = 0 is unstable +in the following sense: for u0 ∈ C2(Ω) sufficiently small such that u0 > 0 in Ω, the positive +solution u(t, x) of (5.1) corresponding to the initial value u0 moves away from 0 as t → ∞. +When βΩ > 1, for ε, δ, τ > 0, we set +ψδ,ε,τ(x) = δ(φΩ(x) + ε)τ, +x ∈ Ω. +Let Ωρ := {x ∈ Ω : dist(x, ∂Ω) < ρ} for ρ > 0 be a tubular neighborhood of ∂Ω. Then, by (1.5), +for ρ0 > 0 small, we can choose a constant c3 = c3(ρ0) > 0 such that |∇φΩ|2 ≥ c3 in Ωρ for +0 < ρ ≤ ρ0. If 0 < ρ ≤ ρ0, then there exists c4 = c4(ρ) > 0 such that φΩ ≥ c4 in Eρ := Ω \ Ωρ. +The following result would then provide useful information about the stability of the trivial +solution u = 0. +Theorem 5.1. Assume that βΩ > 1. Then, for +1 +βΩ < τ < 1 and ε > 0 small, there exists δ1 > 0 +such that ψδ,ε,τ is a supersolution of (1.1) whenever 0 < δ ≤ δ1. +Proof. We write ψδ,ε,τ simply as φδ,ε. By direct computations, we obtain +∇ψδ,ε = δτ(φΩ + ε)τ−1∇φΩ, +(5.2) +∆ψδ,ε = δτ(τ − 1)(φΩ + ε)τ−2|∇φΩ|2 + δτ(φΩ + ε)τ−1∆φΩ. +(5.3) +18 + +We see from (5.3) that for x ∈ Ωρ, +∆ψδ,ε + ψδ,ε − ψp +δ,ε ≤ δτ(τ − 1)(φΩ + ε)τ−2|∇φΩ|2 + δ(φΩ + ε)τ += δ(φΩ + ε)τ−2 + + +−τ(1 − τ)c3 + +� +ε + max +Ωρ +φΩ +�2 + + . +We then find 0 < ρ1 ≤ ρ0 and ε1 > 0 such that +� +ε + max +Ωρ1 +φΩ +�2 +≤ τ(1 − τ)c3 +for 0 < ε ≤ ε1, +and then, +−∆ψδ,ε + ψδ,ε − ψp +δ,ε ≤ 0 +in Ωρ1. +Let us fix c4 = c4(ρ1), and let 0 < ε ≤ ε1. We also see from (5.3) that for x ∈ Eρ1, +∆ψδ,ε + ψδ,ε − ψp +δ,ε ≤ δτ(φΩ + ε)τ−1(−βΩ)φΩ + δ(φΩ + ε)τ +≤ δ(φΩ + ε)τ−1 {(1 − τβΩ)c4 + ε} . +We then determine 0 < ε2 ≤ ε1 such that (1 − τβΩ)c4 + ε2 ≤ 0, and then, +−∆ψδ,ε2 + ψδ,ε2 − ψp +δ,ε2 ≤ 0 +in Eρ1. +Finally, using (1.5), we see from (5.2) that +∂ψδ,ε2 +∂ν ++ λψq +δ,ε2 ≥ δq(−δ1−qτετ−1 +2 +c2 + λετq +2 ) ≥ 0 +on ∂Ω, +if 0 < δ ≤ δ1 for some δ1 > 0. +In summary, ψδ,ε2, 0 < δ ≤ δ1, is as desired. +□ +From Theorem 5.1, it might be claimed that u = 0 is asymptotically stable for the case where +βΩ > 1, meaning that for u0 in the order interval [0, ψδ1,ε2,τ], the positive solution u(t, x) of (5.1) +associated with u0 tends to 0 as t → ∞. If this occurs, then Theorem 0(II) means that problem +(5.1) is bistable with two nonnegative stable equilibria for 0 < λ ≤ λ∗ (one is uλ, and the other +is u = 0), which presents ecologically a conditional persistence strategy for the harvesting effort +λ. However, the difficulty arises from the fact that the monotone iteration scheme does not +work for (5.1) in the order interval [0, ψδ1,ε2,τ] because u �→ (−uq) does not satisfy the one-sided +Lipschitz condition [26, (4.1.19)] for u close to 0. Rigorous verification of the claim is an open +question. +References +[1] S. Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv. Differential +Equations 4 (1999), 813–842. +[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM +Rev. 18 (1976), 620–709. +[3] H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, New developments in +differential equations (Proc. 2nd Scheveningen Conf., Scheveningen, 1975), pp. 43–63, North-Holland +Math. Studies, Vol. 21, North-Holland, Amsterdam, 1976. +[4] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some +elliptic problems, J. Funct. Anal. 122 (1994), 519–543. +[5] D. Arcoya, J. Carmona, B. Pellacci, Bifurcation for some quasilinear operators, Proc. Roy. Soc. +Edinburgh Sect. A 131 (2001), 733–765. +19 + +[6] H. Berestycki, P.-L. Lions, Some applications of the method of super and subsolutions, Bifurcation +and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978), pp. 16–41, +Lecture Notes in Math., 782, Springer, Berlin, 1980. +[7] H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), 55–64. +[8] R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathe- +matical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. +[9] E. N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal., Theory +Methods Appl. 8 (1984), 835–836. +[10] E. N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a +parameter is large, Proc. London Math. Soc. (3) 53 (1986), 429–452. +[11] D. G. de Figueiredo, J.-P. Gossez, P. Ubilla, Local superlinearity and sublinearity for indefinite +semilinear elliptic problems, J. Funct. Anal. 199 (2003), 452–467. +[12] D. G. de Figueiredo, J.-P. Gossez, P. Ubilla, Multiplicity results for a family of semilinear elliptic +problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS) 8 (2006), 269–286. +[13] J. Garc´ıa-Meli´an, Uniqueness for degenerate elliptic sublinear problems in the absence of dead cores, +Electron. J. Differential Equations (2004), No. 110, 16 pp. +[14] J. Garc´ıa-Meli´an, J. D. Rossi, A. Su´arez, The competition between incoming and outgoing fluxes in +an elliptic problem, Commun. Contemp. Math. 9 (2007), 781–810. +[15] J. Garc´ıa-Meli´an, C. Morales-Rodrigo, J. D. Rossi, A. Su´arez, Nonnegative solutions to an elliptic +problem with nonlinear absorption and a nonlinear incoming flux on the boundary, Ann. Mat. Pura +Appl. (4) 187 (2008), 459–486. +[16] J. Garcia-Azorero, I. Peral, J. D. Rossi, A convex–concave problem with a nonlinear boundary +condition, J. Differential Equations 198 (2004), 91–128. +[17] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, +Springer-Verlag, Berlin, 1983. +[18] D. Grass, H. Uecker, T. Upmann, Optimal fishery with coastal catch, Nat. Resour. Model. 32 (2019), +e12235, 32 pp. +[19] P. Korman, Exact multiplicity and numerical computation of solutions for two classes of non- +autonomous problems with concave–convex nonlinearities, Nonlinear Anal. 93 (2013), 226–235. +[20] D. D. Hai, R. C. Smith, On uniqueness for a class of nonlinear boundary-value problems, Proc. Roy. +Soc. Edinburgh Sect. A 136 (2006), 779–784. +[21] D. D. Hai, R. C. Smith, Uniqueness for singular semilinear elliptic boundary value problems, Glasg. +Math. J. 55 (2013), 399–409. +[22] D. D. Hai, R. C. Smith, Uniqueness for singular semilinear elliptic boundary value problems II, +Glasg. Math. J. 58 (2016), 461–469. +[23] V. K. Le, K. Schmitt, Some general concepts of sub- and supersolutions for nonlinear elliptic prob- +lems, Topol. Methods Nonlinear Anal. 28 (2006), 87–103. +[24] S. S. Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J. Math. +13 (1985), 67–81. +[25] N. Mizoguchi, T. Suzuki, Equations of gas combustion: S-shaped bifurcation and mushrooms, J. +Differential Equations 134 (1997), 183–215. +[26] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992. +[27] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations. Prentice-Hall, Inc., +Englewood Cliffs, N.J. 1967. +[28] H. Ramos Quoirin, K. Umezu, The effects of indefinite nonlinear boundary conditions on the structure +of the positive solutions set of a logistic equation, J. Differential Equations 257 (2014), 3935–3977. +[29] H. Ramos Quoirin, K. Umezu, Bifurcation for a logistic elliptic equation with nonlinear boundary +conditions: a limiting case, J. Math. Anal. Appl. 428 (2015), 1265–1285. +[30] J. D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, Sta- +tionary partial differential equations. Vol. II, 311–406, Handb. Differ. Equ., Elsevier/North-Holland, +Amsterdam, 2005. +[31] N. Tarfulea, Positive solution of some nonlinear elliptic equation with Neumann boundary conditions, +Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 161–163. +20 + +[32] K. Umezu, Logistic elliptic equation with a nonlinear boundary condition arising from coastal fishery +harvesting, Nonlinear Anal. Real World Appl. 70 (2023), Paper No. 103788, 29 pp. +[33] H. Wiebers, S-shaped bifurcation curves of nonlinear elliptic boundary value problems, Math. Ann. +270 (1985), 555–570. +[34] M. Wiegner, A uniqueness theorem for some nonlinear boundary value problems with a large pa- +rameter, Math. Ann. 270 (1985), 401–402. +Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan +Email address: kenichiro.umezu.math@vc.ibaraki.ac.jp +21 + diff --git a/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/load_file.txt b/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5055849d1899740deeb1e8013f414e93d99cbb82 --- /dev/null +++ b/7tFLT4oBgHgl3EQfsi8k/content/tmp_files/load_file.txt @@ -0,0 +1,1071 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf,len=1070 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12147v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='AP] 28 Jan 2023 LOGISTIC ELLIPTIC EQUATION WITH A NONLINEAR BOUNDARY CONDITION ARISING FROM COASTAL FISHERY HARVESTING II KENICHIRO UMEZU Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We study the positive solutions of the logistic elliptic equation with a nonlinear Neumann boundary condition that models coastal fishery harvesting ([18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' An essential role is played by the smallest eigenvalue of the Dirichlet eigenvalue problem, with respect to which a noncritical case is studied in [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In this paper, we extend our analysis to the critical case and further study the noncritical case for a more precise description of the positive solution set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Our approach relies on the energy method, sub- and supersolutions, and implicit function analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Introduction This paper is devoted to the study of the positive solutions for the following logistic elliptic equation with a nonlinear boundary condition arising from coastal fishery harvesting ([18]): \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 −∆u = u − up in Ω, u ≥ 0 in Ω, ∂u ∂ν = −λuq on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) Here, Ω ⊂ RN, N ≥ 1, is a bounded domain with smooth boundary ∂Ω, ∆ = �N i=1 ∂2 ∂x2 i is the usual Laplacian in RN, 0 < q < 1 < p, λ ≥ 0 is a parameter, and ν is the unit outer normal to ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Unless stated otherwise, throughout this paper we assume the subcritical condition p < N + 2 N − 2 for N > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) In the case of p = 2, the unknown function u ≥ 0 ecologically represents the biomass of fish that inhabit a lake Ω, obeying the logistic law ([8]), and the nonlinear boundary condition means fishery harvesting with the harvesting effort λ on the lake coast ∂Ω, obeying the Cobb–Douglas production function ([18, Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A nonnegative function u ∈ H1(Ω) is called a nonnegative (weak) solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) if u satisfies � Ω � ∇u∇ϕ − uϕ + upϕ � + λ � ∂Ω uqϕ = 0, ϕ ∈ H1(Ω) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) (we may regard (λ, u) as a nonnegative solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It is seen that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a solution (λ, 0) for every λ > 0, called a trivial solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The sets {(λ, 0) : λ ≥ 0} and {(λ, 0) : λ > 0} are said to be the trivial lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We know ([30]) that a nonnegative solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) belongs to the space W 1,r(Ω) for r > N (consequently, Cθ(Ω) for θ ∈ (0, 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Moreover, a nontrivial nonnegative solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfies that u ∈ C2+θ(Ω) for θ ∈ (0, 1), and u > 0 in Ω ([17], [27]), which is called a positive solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, if u > 0 in Ω, then u ∈ C2+θ(Ω) by the bootstrap argument using elliptic regularity, and u satisfies (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) pointwisely in Ω in the classical sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' However, we do not know if u > 0 on the entirety of ∂Ω for a positive solution u 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 35J65, 35B32, 35J25, 92D40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' logistic elliptic equation, concave–convex nonlinearity, positive solution, uniqueness, stability, sub- and supersolutions, energy method, boundary harvesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 1 of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' As a matter of fact, Hopf’s boundary point lemma ([27]) does not work because of the lack of the one-sided Lipschitz condition [26, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='19)] for mapping 0 ≤ u �→ (−uq) for u close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For a positive solution (λ, u) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfying u > 0 in Ω, we call γ1 = γ1(λ, u) ∈ R the smallest eigenvalue of the linearized eigenvalue problem at (λ, u) � −∆ϕ = ϕ − pup−1ϕ + γϕ in Ω, ∂ϕ ∂ν = −λquq−1ϕ + γϕ on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) It is well known that γ1 is simple with a positive eigenfunction ϕ1 ∈ C2+θ(Ω) satisfying ϕ1 > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, γ1 is characterized by the variational formula γ1 = inf �� Ω � |∇ϕ|2 − ϕ2 + pup−1ϕ2 � + λ � ∂Ω quq−1ϕ2 : ϕ ∈ H1(Ω), � Ω ϕ2 + � ∂Ω ϕ2 = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A positive solution u > 0 in Ω of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) is said to be asymptotically stable, weakly stable, and unstable if γ1 > 0, γ1 ≥ 0, and γ1 < 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) possesses a sublinear nonlinearity at infinity and also a concave–convex nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, the global uniqueness of a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for every λ > 0 would not be so easy to deduce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For nonlinear elliptic problems with a concave–convex nature, we refer to [4, 31, 1, 5, 11, 12, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The sublinear nonlinearity (−uq) that appears in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) induces the absorption effect on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Sublinear boundary conditions of the uq type were explored in [16, 14, 15, 28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The case of an incoming flux on ∂Ω was studied in [16, 15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The mixed case of absorption and an incoming flux on ∂Ω was studied in [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The absorption case was also studied in [28, 29], where a similar type of logistic elliptic equation with an indefinite weight has been analyzed for the existence and multiplicity of nontrivial nonnegative solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' An important role is played by the smallest eigenvalue βΩ > 0 of the Dirichlet eigenvalue problem � −∆φ = βφ in Ω, φ = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It is well known that βΩ is simple with a positive eigenfunction φΩ ∈ H1 0(Ω) (implying φΩ ∈ C2+θ(Ω) by elliptic regularity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, φΩ > 0 in Ω, and c1 ≤ −∂φΩ ∂ν ≤ c2 on ∂Ω (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) for some 0 < c1 < c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Moreover, βΩ is characterized by the variational formula βΩ = inf �� Ω |∇φ|2 : φ ∈ H1 0(Ω), � Ω φ2 = 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If βΩ < 1, then uD ∈ H1 0(Ω) ∩ C2+θ(Ω) denotes the unique positive solution of the Dirichlet logistic problem ([7]) � −∆u = u − up in Ω, u = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) The existence, nonexistence, and multiplicity of positive solutions for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) in the case where βΩ ̸= 1 were studied in the author’s previous work [32, Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5], which Theorem 0 summarizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (I) A positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfies that u < 1 in Ω and u > 0 on Γ ⊂ ∂Ω with the condition |Γ| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 2 (II) There exists λ∗ > 0 such that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a positive solution curve C0 = {(λ, uλ) : 0 ≤ λ ≤ λ∗}, (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) emanating from (λ, u) = (0, 1), that satisfies the following three conditions: λ �→ uλ ∈ C2+θ(Ω) is C∞, uλ > 0 in Ω, uλ is asymptotically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Moreover, the positive solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) near (λ, u) = (0, 1) in R × C2+θ(Ω) form C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let λ be the positive value defined as λ = sup{λ > 0 : (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a positive solution for λ}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='8) Then, the following assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (III) Assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we have the following (as in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) λ = ∞, and more precisely, problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) possesses a positive solution u for every λ > 0 such that u > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) (λ, uλ) ∈ C0 is a unique positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for 0 < λ ≤ λ∗ (by making λ∗ in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) smaller if necessary).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) un → uD in H1(Ω) for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iv) The positive solution set {(λ, u)} does not meet the trivial line {(λ, 0) : λ ≥ 0} in the topology of H1(Ω) (nor C(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (IV) Assume that βΩ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we have the following (as in Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) λ < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) There exists a bounded subcontinuum (closed connected subset) �C0 = {(λ, u)} of nonnegative solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) in [0, ∞) × C(Ω) joining (λ, u) = (0, 1) and (0, 0) such that �C0 \\ {(0, 0)} includes C0 and consists of positive solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Par- ticularly, problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has at least two positive solutions for λ > 0 small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) The positive solution set {(λ, u)} does not meet the trivial line {(λ, 0) : λ > 0} in the topology of H1(Ω) (nor C(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iv) γ1(λn, un) < 0 for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that (λn, un) → (0, 0) in R × H1(Ω), provided that un > 0 in Ω, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', un is unstable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Remark 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) Assertions (I) and (II) hold for every case of βΩ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) Assertions (II) and (III-i) hold for any p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) Problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λ = 0 has exactly two nonnegative solutions (λ, u) = (0, 0), (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, Theorem 0(I) is used to show easily that in every case of βΩ > 0, the positive solution set {(λ, u)} of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) meets at most (0, 0) and (0, 1) on {(0, u) : u ≥ 0}, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', if (λn, un) is a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that (λn, un) → (0, u) in H1(Ω) (equivalently C(Ω) by elliptic regularity), then either u = 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In this paper, we extend our consideration to the case where βΩ = 1 and further study the positive solution set in the case where βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Our first main result concerns the case where βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' On the basis of Theorem 0(III), we present the uniqueness and stability of a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ > 0 large and also the strong positivity of the positive solutions for every λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, the following assertions hold (see Figure 1): 3 (i) There exists λ∗ ≥ λ∗ such that the positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) ensured by Theorem 0(III-i) is unique for every λ > λ∗ (say uλ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' more precisely, the positive solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ > λ∗ form a C∞ curve C∞ = {(λ, uλ) : λ∗ < λ} (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', λ �→ uλ ∈ C2+θ(Ω) is C∞), which satisfies the following conditions: (a) uλ is asymptotically stable, (b) uλ −→ uD in H1(Ω) as λ → ∞, (c) uλ is decreasing, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', uλ1 > uλ2 in Ω if λ1 < λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Furthermore, if 0 < λ1 < λ2 with the condition that λ1 ≤ λ∗ < λ2, then u > uλ2 in Ω for a positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) u > 0 in Ω for a positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for every λ > 0 (strong positivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Possible positive solution sets in the case where βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) Assertions (i-a) and (i-b) hold for any p > 1 (see Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) For (λ, uλ) ∈ C0 with 0 ≤ λ ≤ λ∗ in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7), we present similar results as those in assertions (i-c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, λ �→ uλ is decreasing for 0 < λ ≤ λ∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' if 0 < λ1 < λ2 with the condition that λ1 ≤ λ∗ < λ2, then uλ1 > u in Ω for a positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λ = λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) It is an open question to get the global uniqueness for a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for all λ > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', λ∗ = λ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In this case, [0, ∞) ∋ λ �→ uλ is C∞ and decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iv) For uniqueness and stability analysis of positive solutions for large parameters in non- linear elliptic problems, we refer to [9, 34, 33, 24, 10, 25, 13, 20, 21, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Our second main result is the counterpart of Theorem 0(III-i) and (III-iii) for the case where βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) possesses a positive solution uλ for every λ > 0 such that uλ > 0 in Ω, which satisfies that uλ −→ 0 and uλ ∥uλ∥ −→ φΩ in H1(Ω) as λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) The existence assertion holds for any p > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, so does assertion (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) (see Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) Similarly as in Theorem 0(III-iii), assertion (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) is valid if we assume a positive solution (λ, uλ) (which may take zero value somewhere on ∂Ω) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Our third main result is the counterpart of Theorem 0(III-iv), (IV-i), and (IV-iii) for the case where βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 4 u u A 1 1 Co Co .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='. 入 入 Y \\* 0 入* \\* 0Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, the following three assertions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) If pq ≤ 1, then λ < ∞ where λ > 0 is defined by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) If pq ̸= 1, then the positive solution set {(λ, u)} of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) does not meet the trivial line {(λ, 0) : λ > 0} in the topology of H1(Ω) (nor C(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) If pq ≥ 1, then it does not meet {(0, 0)} in the topology of H1(Ω) (nor C(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5 provides a guess (Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) for the global extension of the C∞ positive solution curve C0 given by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) in the case where βΩ = 1 and pq ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1 and pq ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let �C0 = {(λ, u)} ⊂ [0, ∞) × C(Ω) be the component (maximal, closed, and connected subset) of nonnegative solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) that includes C0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From Theorems 0(I) and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5(i), �C0 \\ {(0, 1)} ⊂ {(λ, u) ∈ [0, ∞) × C(Ω) : λ ≤ λ, u < 1 in Ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If we suppose that Γ0 := � �C0 \\ {(0, 1)} � ∩{(λ, 0), (0, u) : λ ≥ 0, u ≥ 0} ̸= ∅, then Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5(ii),(iii) show that Γ0 = {(0, 0)} and Γ0 ⊂ {(λ, 0) : λ ≥ Λ0} for some Λ0 > 0 when pq < 1 and pq = 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The existence of �C0 is still an open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Suggested positive solution sets are illustrated in Figures 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Suggested positive solution set in the case where βΩ = 1 and pq < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Suggested positive solution set in the case where βΩ = 1 and pq = 1, and λc ∈ Γ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We conclude the Introduction by mentioning the stability of the trivial solution u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A linearized stability analysis does not work for u = 0 because u �→ uq is not differentiable at u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Instead, by the construction of suitable sub- and supersolutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1), we try to employ the Lyapunov stability criterion [26, Chapter 5] on the basis of the monotone iteration method, which is developed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Notation: ∥ · ∥ denotes the usual norm of H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' un ⇀ u∞ means that un weakly converges to u∞ in H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' H1 0(Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' � Ω fdx for f ∈ L1(Ω) 5 u 1 入 入cu 1and � ∂Ω gdσ for g ∈ L1(∂Ω) are simply written as � Ω f and � ∂Ω g, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' | · | represents both the Lebesgue measure in Ω and the surface measure on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The remainder of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Sections 2 and 3 are devoted to the preparation for the proofs of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In Section 2, we develop the energy method for the energy functional associated with (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In Section 3, we use the sub- and supersolution method to prove existence and positivity results for positive solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We give proofs for Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3 in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In Section 4, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Section 5 is devoted to a stability analysis of the trivial solution u = 0, which is based on Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 and Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Energy method Let E(u) = � Ω (|∇u|2 − u2), u ∈ H1(Ω);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, the next lemma is used several times in the following arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let {un} ⊂ H1(Ω) satisfy E(un) ≤ 0, un ⇀ u∞, and un → u∞ in L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, u∞ ̸= 0 if ∥un∥ ≥ C for some C > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By the weak lower semicontinuity, E(u∞) ≤ limn E(un) ≤ limn E(un) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If u∞ = 0, then ∥un∥ → 0, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ We start by proving the following two propositions, which provide the asymptotic profile of a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) as λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It is understood that uD = 0 if βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let (λn, un) be a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, un → uD in H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We first assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Because un < 1 in Ω, we substitute u = ϕ = un into (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) to deduce that � Ω |∇un|2 = � Ω � u2 n − up+1 n � − λn � ∂Ω uq+1 n (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) ≤ � Ω u2 n ≤ |Ω|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, ∥un∥ is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Immediately, up to a subsequence, un ⇀ u∞ ≥ 0, un → u∞ in L2(Ω) and L2(∂Ω), and un → u∞ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω for some u∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then infer that � ∂Ω uq+1 n = 1 λn � − � Ω |∇un|2 + � Ω � u2 n − up+1 n �� ≤ 1 λn � Ω u2 n −→ 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) which implies that � ∂Ω uq+1 ∞ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, u∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) with (λ, u) = (λn, un), it follows that � Ω � ∇un∇ϕ − unϕ + up nϕ � = 0, ϕ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Taking the limit, u∞ is a nonnegative solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6), where we have used the Lebesgue dominated convergence theorem to deduce that � Ω up nϕ → � Ω up ∞ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we verify that u∞ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since E(un) ≤ 0, the weak lower semicontinuity means that E(u∞) ≤ lim n→∞ E(un) ≤ lim n→∞ E(un) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 6 If u∞ = 0, then it follows that ∥un∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Here, we may assume that un → 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that wn = un ∥un∥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, up to a subsequence, wn ⇀ w∞ ≥ 0, wn → w∞ in L2(Ω) and L2(∂Ω), and wn → w∞ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since ∥wn∥ = 1, we deduce that w∞ ̸= 0 using Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' However, we observe from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) that � ∂Ω wq+1 n ≤ 1 λn � Ω w2 n∥un∥1−q −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' This implies that w∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) with (λ, u) = (λn, un), we see that � Ω � ∇wn∇ϕ − wnϕ + wnϕ up−1 n � = 0, ϕ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Taking the limit, � Ω(∇w∞ϕ − w∞ϕ) = 0, where we have used the Lebesgue dominated conver- gence theorem to obtain that � Ω ��wnϕ up−1 n �� ≤ �� Ω w2 n � 1 2 �� Ω ϕ2u2(p−1) n � 1 2 ≤ C �� Ω ϕ2u2(p−1) n � 1 2 −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' This implies that w∞ is a nontrivial nonnegative solution of the problem � −∆w = w in Ω, w = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, we deduce that βΩ = 1, which contradicts the assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The assertion that u∞ ≥ 0 and u∞ ̸= 0 means that u∞ is the unique positive solution uD of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) by the strong maximum principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It remains to show that un → u∞ in H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Observing that E(u∞) + � Ω up+1 ∞ = 0 and E(un) ≤ − � Ω up+1 n , we deduce that E(u∞) ≤ lim n→∞ E(un) ≤ lim n→∞ E(un) ≤ − lim n→∞ � Ω up+1 n = − � Ω up+1 ∞ = E(u∞), where we have used the Lebesgue dominated convergence theorem again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, E(un) → E(u∞), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', ∥un∥ → ∥u∞∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since un ⇀ u∞, the desired assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Next, we assume that βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, u∞ is a nonnegative solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6), and indeed u∞ = 0 because βΩ = 1 ([7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, ∥un∥ → 0, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ In the case where βΩ = 1, we observe that E(u) ≥ 0 for u ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, we note that � u ∈ H1(Ω) : E(u) = 0 � = ⟨φΩ⟩ := {sφΩ : s ∈ R}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then investigate the asymptotic profile of a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with ∥un∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let (λn, un) be a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that λn ≥ λ for some λ > 0 and ∥un∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we obtain that un ∥un∥ → φΩ in H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that wn = un ∥un∥ and, up to a subsequence, wn ⇀ w∞ ≥ 0, and wn → w∞ in L2(Ω) and L2(∂Ω) for some w∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) it follows that λ � ∂Ω uq+1 n ≤ � Ω u2 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We use the condition ∥un∥ → 0 to infer that � ∂Ω wq+1 n ≤ ∥un∥1−q λ � Ω w2 n −→ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, � ∂Ω wq+1 ∞ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', w∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 7 Since βΩ = 1 and E(wn) ≤ 0, the weak lower semicontinuity means that 0 ≤ E(w∞) ≤ lim n→∞ E(wn) ≤ lim n→∞ E(wn) ≤ 0, implying that E(wn) → E(w∞) = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', ∥wn∥ → ∥w∞∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since wn ⇀ w∞, we deduce that wn → w∞ in H1(Ω) and w∞ = φΩ with ∥φΩ∥ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Finally, because φΩ is unique, the desired conclusion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If we construct a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) without using (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2), then Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3 remain valid for all p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For further analysis of the asymptotic behavior of a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with the condition that λn ≥ λ and ∥un∥ → 0, the orthogonal decomposition H1(Ω) = ⟨φΩ⟩⊕V using ⟨φΩ⟩ is useful, where V denotes the orthogonal complement of ⟨φΩ⟩ that is given explicitly as V = � v ∈ H1(Ω) : � Ω � ∇v∇φΩ + vφΩ � = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Note that ⟨φΩ⟩ and V are both closed subspaces of H1(Ω) and ∥u∥ is equivalent to |s| + ∥v∥ for u = sφΩ + v ∈ H1(Ω) = ⟨φΩ⟩ ⊕ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Using the orthogonal decomposition, un = snφΩ + vn ∈ ⟨φΩ⟩ ⊕ V (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that λn ≥ λ for some λ > 0 and ∥un∥ → 0 (under the assumption of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since un ∥un∥ → φΩ in H1(Ω), it follows that sn ∥un∥ → 1, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) ∥vn∥ ∥un∥ → 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) ∥vn∥ sn → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) Because of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4), we may assume that sn > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Note that vn ≥ 0 on ∂Ω because φΩ = 0 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then deduce the following result, which plays a crucial role in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let {vn} be as introduced by (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, there exists c > 0 such that E(vn) + c � ∂Ω vq+1 n ≤ 0 for sufficiently large n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) provided that one of the following conditions is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (a) pq < 1, (b) pq = 1 and λn → ∞, (c) pq > 1 and λn is bounded above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Substituting un = snφΩ + vn into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1), we deduce that 2sn �� Ω ∇φΩ∇vn − φΩvn � + E(vn) + � Ω (snφΩ + vn)p+1 + λn � ∂Ω vq+1 n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='8) Using the divergence theorem, � Ω φΩvn = � Ω −∆φΩvn = � Ω ∇φΩ∇vn + � ∂Ω � −∂φΩ ∂ν � vn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) 8 thus, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='8) implies that −2sn � ∂Ω � −∂φΩ ∂ν � vn + E(vn) + � Ω (snφΩ + vn)p+1 + λn � ∂Ω vq+1 n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It follows that E(vn) + λn 2 � ∂Ω vq+1 n + In ≤ 0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='10) with In = λn 2 � ∂Ω vq+1 n − 2sn � ∂Ω � −∂φΩ ∂ν � vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='11) Once we verify that In ≥ 0 for sufficiently large n, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12) we obtain (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) and complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' To verify (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12), we use the test function ϕ = φΩ to deduce that � Ω � ∇un∇φΩ − unφΩ + up nφΩ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='13) Substituting un = snφΩ + vn into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='13) and combining (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='13) provide � ∂Ω � −∂φΩ ∂ν � vn sp n = � Ω � φΩ + vn sn �p φΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='14) We then consider either case (a) or (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6), we deduce that � Ω � φΩ + vn sn �p φΩ −→ � Ω φp+1 Ω > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Taking into account (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5), we may derive from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='14) that csp n ≤ � ∂Ω vn for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By H¨older’s inequality, it follows that csp n ≤ � ∂Ω vn ≤ |∂Ω| q q+1 �� ∂Ω vq+1 n � 1 q+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='15) Combining (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='11) with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='15) and using H¨older’s inequality, there exist c, ˜c > 0 such that In ≥ λn 2 � ∂Ω vq+1 n − c sn �� ∂Ω vq+1 n � 1 q+1 = � λn 2 �� ∂Ω vq+1 n � q q+1 − c sn � �� ∂Ω vq+1 n � 1 q+1 ≥ {˜c λn spq n − c sn} �� ∂Ω vq+1 n � 1 q+1 = spq n � ˜cλn − c s1−pq n � �� ∂Ω vq+1 n � 1 q+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since sn → 0 from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4), assertion (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 9 We next consider case (c) and verify (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By combining (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='11) with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='14), it follows from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='11) that In = sp+1 n �λn 2 � ∂Ω vq+1 n sp+1 n − 2 � Ω � φΩ + vn sn �p φΩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='16) Furthermore, we use the test function ϕ = 1 in (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) to infer that − � Ω un + � Ω up n + λn � ∂Ω uq n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Substituting un = snφΩ + vn, − � Ω � φΩ + vn sn � + sp−1 n � Ω � φΩ + vn sn �p + � ∂Ω λnvq n sn = 0, which implies that � ∂Ω λnvq n sn −→ � Ω φΩ > 0, where we have used condition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, we may deduce that c sn λn ≤ � ∂Ω vq n for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Using H¨older’s inequality, we deduce that c � sn λn � q+1 q ≤ � ∂Ω vq+1 n (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='17) for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Combining (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='16) with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='17), In ≥ sp+1 n � c s 1 q −p n λ − 1 q n − 2 � Ω � φΩ + vn sn �p φΩ � for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We observe that s 1 q −p n → ∞, λ − 1 q n ≥ c by some constant c > 0, � Ω � φΩ + vn sn �p φΩ → � Ω φp+1 Ω > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, assertion (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ We conclude this section with the establishment of the uniqueness and stability results for a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) in the case where βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, there exists Λ > 0 such that if λ > Λ, then the following two assertions hold: (i) Problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has at most one positive solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) A positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfying u > 0 in Ω is asymptotically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We recall that the unique positive solution uD of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) is asymptotically stable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', γ1,D = inf �� Ω � |∇ϕ|2 − ϕ2 + pup−1 D ϕ2� : ϕ ∈ H1 0(Ω), � Ω ϕ2 = 1 � > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='18) 10 (i) Assume to the contrary that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has two distinct positive solutions (λn, un) and (λn, vn) with λn → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Note that un, vn < 1 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We may assume that un, vn → uD in H1(Ω) and a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The difference wn = un − vn (may change sign) allows that � Ω � ∇wn∇ϕ − wnϕ � + � Ω � (vn + wn)p − vp n � ϕ + λn � Γn (vn + wn)q − vq n wn wnϕ = 0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='19) for ϕ ∈ H1(Ω), where Γn = {x ∈ ∂Ω : wn(x) ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Note that ∥wn∥ → 0, and wn → 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Substituting ϕ = wn into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='19), the mean value theorem shows the existence of θn ∈ (0, 1) such that E(wn) + � Ω p(vn + θnwn)p−1w2 n + λn � Γn (vn + wn)q − vq n wn w2 n = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, ψn = wn ∥wn∥ implies that E(ψn) + � Ω p(vn + θnwn)p−1ψ2 n + λn � Γn (vn + wn)q − vq n wn ψ2 n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='20) From ∥ψn∥ = 1, we infer that up to a subsequence, ψn ⇀ ψ∞, ψn → ψ∞ in L2(Ω) and L2(∂Ω) for some ψ∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we claim that ψ∞ ∈ H1 0(Ω) and ψ∞ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='20), we deduce that λn � Γn (vn + wn)q − vq n wn ψ2 n ≤ � Ω ψ2 n ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We observe that (vn + wn)q − vq n wn ≥ q on Γn because un, vn < 1 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It follows that λnq � ∂Ω ψ2 n ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Passing to the limit, we deduce that ψ∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, ψ∞ ̸= 0 by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we assert in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='20) that � Ω p(vn + θnwn)p−1ψ2 n −→ � Ω pup−1 D ψ2 ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, we use � Ω p(vn + θnwn)p−1ψ2 n = � Ω p(vn + θnwn)p−1ψ2 ∞ + � Ω p(vn + θnwn)p−1(ψ2 n − ψ2 ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since vn → uD and wn → 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω and un, vn < 1 in Ω, the Lebesgue dominated convergence theorem shows that � Ω p(vn + θnwn)p−1ψ2 ∞ −→ � Ω pup−1 D ψ2 ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Using the fact � Ω |ψ2 n − ψ2 ∞| → 0 yields � Ω p(vn + θnwn)p−1(ψ2 n − ψ2 ∞) −→ 0, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, the weak lower semicontinuity allows us to deduce from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='20) that � Ω � |∇ψ∞|2 − ψ2 ∞ + pup−1 D ψ2 ∞ � ≤ lim n→∞ � E(ψn) + � Ω p(vn + θnwn)p−1ψ2 n � ≤ 0, which contradicts ψ∞ ∈ H1 0(Ω) and ψ∞ ̸= 0 in view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 11 (ii) On the basis of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4), we claim that γ1 > 0 for sufficiently large λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with the condition that λn → ∞ and un > 0 in Ω satisfies γn := γ1,n(λn, un) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' This means that � Ω � |∇ϕn|2 − ϕ2 n + pup−1 n ϕ2 n � + λnq � ∂Ω uq−1 n ϕ2 n = γn ≤ 0, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='21) where ϕn := ϕ1,n, normalized as � Ω ϕ2 n + � ∂Ω ϕ2 n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='22) Because � Ω |∇ϕn|2 ≤ � Ω ϕ2 n ≤ 1 from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='21) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='22), ∥ϕn∥ is bounded, which implies that up to a subsequence, ϕn ⇀ ϕ∞, ϕn → ϕ∞ in L2(Ω) and L2(∂Ω), and ϕn → ϕ∞ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω for some ϕ∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since uq−1 n ≥ 1 from Theorem 0(I), assertion (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='21) gives us λnq � ∂Ω ϕ2 n ≤ � Ω ϕ2 n ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Passing to the limit, ϕ∞ = 0 on ∂Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, ϕ∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='22), � Ω ϕ2 ∞ = 1 is also deduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By the weak lower semicontinuity, we derive from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='21) that � Ω � |∇ϕ∞|2 − ϕ2 ∞ + pup−1 D ϕ2 ∞ � ≤ lim n→∞ � Ω � |∇ϕn|2 − ϕ2 n + pup−1 n ϕ2 n � ≤ 0 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='23) Indeed, on the basis of the facts that un → uD in H1(Ω) and un < 1 in Ω (see Theorem 0(I) and Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2), the Lebesgue dominated convergence theorem shows that � Ω up−1 n ϕ2 n = � Ω up−1 n ϕ2 ∞ + � Ω up−1 n (ϕ2 n − ϕ2 ∞) −→ � Ω up−1 D ϕ2 ∞, where we have used that un → uD a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertion (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='23) contradicts ϕ∞ ∈ H1 0(Ω) and � Ω ϕ2 ∞ = 1 in view of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If we construct a positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that u > 0 in Ω without using (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2), then assertion (ii) of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6 remains valid for all p > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Sub- and supersolutions Consider the case where βΩ < 1 or where βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we first construct small positive subsolutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) and use them to establish an a priori lower bound for positive solutions (λ, u) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfying u > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For a fixed τ > 0 and with a parameter ε > 0, we set φε(x) = ε(φΩ(x) + ετ), x ∈ Ω, which implies that φε ∈ C2+θ(Ω) and φε > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then use φε to formulate the following a priori lower bound for positive solutions u > 0 in Ω of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1 or that βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let τ > 1−q q when βΩ < 1, and let 1−q q < τ < p − 1 when βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, for Λ > 0 there exists ε = ε(τ, Λ) > 0 such that φε is a subsolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1), provided that λ ∈ [0, Λ] and ε ∈ (0, ε].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Furthermore, u ≥ φε in Ω for a positive solution u > 0 in Ω of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λ ∈ [0, Λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Here, ε does not depend on λ ∈ [0, Λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 12 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We only consider the case where βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The case where βΩ < 1 is proved similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' First, we verify the former assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We take 0 < ε ≤ 1 and then use the condition p − τ − 1 > 0 to deduce that −∆φε − φε + φp ε ≤ ε1+τ � −1 + εp−τ−1 � 1 + max Ω φΩ �p� ≤ 0 in Ω if ε > 0 is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For Λ > 0 we use (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) and the condition τ > 1−q q to deduce that ∂φε ∂ν + λφq ε ≤ −c1ε + λε(1+τ)q ≤ ε(−c1 + Λεq+τq−1) ≤ 0 on ∂Ω if 0 < ε ≤ (c1/Λ)1/(q+τq−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The desired assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Next, we argue by contradiction to verify the latter assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that u ̸≥ φε in Ω for some positive solution u > 0 in Ω with λ ∈ [0, Λ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Because ε �→ φε is increasing and φε → 0 uniformly in Ω, we can take ε1 ∈ (0, ε) such that � u ≥ φε1 in Ω, u(x1) = φε1(x1) for some x1 ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) Take c > 0 such that u, φε1 ≥ c in Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, choose K > 0 sufficiently large so that fK(t) = Kt+t−tp is increasing for t ∈ � 0, maxΩ u � and M > 0 sufficiently large so that M −Λqcq−1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We use the subsolution φε1 (not a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1)) to deduce that (−∆ + K)(u − φε1) ≥ fK(u) − fK(φε1) ≥ 0 (and ̸≡ 0) in Ω, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) and for x ∈ ∂Ω satisfying u > φε1, � ∂ ∂ν + M � (u − φε1) ≥ −λuq + λφq ε1 + M(u − φε1) = � M − λuq − φq ε1 u − φε1 � (u − φε1) ≥ (M − Λqcq−1)(u − φε1) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) Thus, the strong maximum principle and boundary point lemma are applicable to infer that u − φε1 > 0 in Ω, which contradicts (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ On the basis of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, we construct minimal and maximal positive solutions of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1 or that βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a minimal positive solution uλ ∈ C2+θ(Ω) and a maximal positive solution uλ ∈ C2+θ(Ω) for each λ > 0 such that 0 < uλ ≤ uλ in Ω, meaning that any positive solution u of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with the condition that u > 0 in Ω satisfies uλ ≤ u ≤ uλ in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Moreover, both uλ and uλ are weakly stable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', γ1(λ, uλ), γ1(λ, uλ) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It is clear that (λ, 1) is a supersolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Choose ε0 > 0 such that φε0 ≤ 1 in Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 states that (λ, φε0) is a subsolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By Theorem 0(I) and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, a positive solution u > 0 in Ω of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) implies that φε0 ≤ u ≤ 1 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, this proposition is a direct consequence of applying [3, (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1)Theorem] and [2, Proposition 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In view of the construction, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 remain valid for any p > 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' therefore, Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6(ii) hold for any p > 1 with the positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn → ∞ that is constructed by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 (see Remarks 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 13 In the case where βΩ < 1, Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 ensure the existence of a unique positive solution u(λ) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ > Λ, which is asymptotically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Using the implicit function theorem provides us with the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, {(λ, u(λ)) : λ > Λ} is a C∞ curve, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', λ �→ u(λ) ∈ C2+θ(Ω) is C∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Moreover, it is decreasing, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', u(λ1) > u(λ2) in Ω for λ2 > λ1 > Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We verify the first assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let (λ0, u(λ0)) be the unique positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ0 > Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since γ1(λ0, u(λ0)) > 0, the implicit function theorem applies at (λ0, u0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, we deduce, thanks to the uniqueness, that {(λ, u(λ)) : λ1 < λ ≤ λ2} is a C∞ curve for λ1 < λ0 < λ2 such that u(λ) is asymptotically stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The implicit function theorem applies again at (λ2, u(λ2));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, the curve is continued until λ = λ3 > λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Repeating the same procedure, the curve is continued to λ = ∞ thanks to the a priori upper and lower bounds (Theorem 0(I) and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1), as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We next verify the second assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If λ1 < λ2, then u(λ1) is a supersolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, it is possible to construct a subsolution φε of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = λ2 such that 0 < φε ≤ u(λ1) in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The sub- and supersolution method applies, and problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a positive solution u for λ = λ2 such that φε ≤ u ≤ u(λ1) in Ω, where u ̸≡ u(λ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thanks to Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6(i), we obtain u = u(λ2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The desired assertion follows by using the strong maximum principle and boundary point lemma (as developed in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) and (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ We conclude this section by employing the weak sub- and supersolution method [23] to show global strong positivity for a positive solution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) in the case where βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, a positive solution (λ, u) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) satisfies that u > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) possesses a positive solution (λ0, u0) for λ0 > 0 such that u0 = 0 somewhere on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let λ = λ1 > max(λ0, Λ), for which problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has at most one positive solution by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, u0 is a weak supersolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Indeed, 0 = � Ω � ∇u0∇ϕ − u0ϕ + up 0ϕ � + λ0 � ∂Ω uq 0ϕ ≤ � Ω � ∇u0∇ϕ − u0ϕ + up 0ϕ � + λ1 � ∂Ω uq 0ϕ, ϕ ∈ H1(Ω) and ϕ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We next construct a weak subsolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = λ1 that is smaller than or equal to u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Note that u0 ∈ Cθ(Ω) and u0 > 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From βΩ < 1, it follows by the continuity and monotonicity of βΩ with respect to Ω that we can choose a subdomain Ω1 ⋐ Ω with smooth boundary ∂Ω1 such that βΩ1 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we deduce that u0 ≥ c in Ω1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We also deduce that if ε > 0 is sufficiently small, then −∆(εφΩ1) ≤ εφΩ1 − (εφΩ1)p in Ω1, where φΩ1 is a positive eigenfunction associated with βΩ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Consequently, the divergence theorem is applied to � Ω −∆(εφΩ1)ϕ for ϕ ∈ H1(Ω) and ϕ ≥ 0 to deduce that � Ω1 � ∇(εφΩ1)∇ϕ − (εφΩ1)ϕ + (εφΩ1)pϕ � ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) 14 Define Φε = � εφΩ1 in Ω1, 0 in Ω \\ Ω1, and Φε ∈ H1(Ω) ∩ C(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By virtue of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5), the linking technique [6, Lemma I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1] yields � Ω � ∇Φε∇ϕ − Φεϕ + Φp ε ϕ � + λ1 � ∂Ω Φq ε ϕ = � Ω1 � ∇Φε∇ϕ − Φεϕ + Φp ε ϕ � ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thanks to (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4), we can take ε > 0 such that Φε ≤ u0 in Ω, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The weak sub- and supersolution method [23, Subsection 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2] is now applicable to deduce the existence of a positive solution (λ1, u1) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) such that Φε ≤ u1 ≤ u0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Particularly, u1 = 0 somewhere on ∂Ω because so is u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' However, this contradicts Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 in view of the uniqueness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The uniqueness assertion follows from Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertions (i- a) and (i-b) follow from Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6(ii) and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertion (i-c) is verified by Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4 and an analogous argument as in the proof of Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertion (ii) follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The existence part follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertion (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='9) follows from Propositions 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5 This section is devoted to the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (i) We prove assertion (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a positive solution (λn, un) with λn → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 shows that ∥un∥ → 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3 shows that un ∥un∥ → φΩ in H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We apply Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5(a) and (b);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, for un = snφΩ+vn ∈ ⟨φΩ⟩⊕V as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3), we have (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) with (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4)–(2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Observe from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) that ∥vn∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that ψn = vn ∥vn∥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, up to a subsequence, ψn ⇀ ψ∞ ≥ 0, and ψn → ψ∞ in L2(Ω) and L2(∂Ω) for some ψ∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7), it follows that c � ∂Ω ψq+1 n ≤ −E(ψn)∥vn∥1−q −→ 0, so that � ∂Ω ψq+1 ∞ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', ψ∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lastly, we use the condition E(ψn) ≤ 0 derived from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) to follow the argument in the last paragraph of the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, we arrive at the contradiction ψ∞ = φΩ ∈ ⟨φΩ⟩ ∩ V = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (ii) We verify assertion (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We remark that the convergences (λn, un) → (λ∞, 0) with λ∞ ≥ 0 in R × H1(Ω) and R × C(Ω) are equivalent for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' This is verified by the bootstrap argument [32, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In fact, the proof of assertion (ii) is similar to that for assertion (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that problem (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) has a positive solution (λn, un) with the condition that λn → λ∞ > 0 and ∥un∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5(a) and (c) apply;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, we arrive at a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (iii) To verify assertion (iii), we prove the following three auxiliary lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that Un = λ − 1 1−q n un.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' There exists C > 0 such that ∥Un∥ ≤ C for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn > 0 satisfying that (λn, un) → (0, 0) in R × H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 15 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that ∥Un∥ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that wn = Un ∥Un∥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, up to a subse- quence, wn ⇀ w∞ ≥ 0, and wn → w∞ in L2(Ω) and L2(∂Ω) for some w∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since E(wn) ≤ 0, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 provides w∞ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Recall that (λ, U) = (λn, Un) satisfies � Ω � ∇U∇ϕ − Uϕ + λ p−1 1−q U pϕ � + � ∂Ω U qϕ = 0, ϕ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) Using the test function ϕ = 1 in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1), we deduce that � Ω Un = λ p−1 1−q n � Ω U p n + � ∂Ω U q n = � Ω up−1 n Un + � ∂Ω U q n, implying � Ω wn = � Ω up−1 n wn + � ∂Ω wq n∥Un∥q−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) We may assume that un → 0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' in Ω, and since un < 1 in Ω, we deduce that � Ω up−1 n wn = � Ω up−1 n w∞ + � Ω up−1 n (wn − w∞) −→ 0, by applying the Lebesgue dominated convergence theorem and using the condition wn → w∞ in L2(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, passing to the limit in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) yields � Ω w∞ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', w∞ = 0, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, there is no positive solution U of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If it exists, then from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λ = 0 and ϕ = 1, it follows that U > 0 on Γ ⊂ ∂Ω with |Γ| > 0, implying � ∂Ω ∂φΩ ∂ν U < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We use the test function ϕ = φΩ to deduce that � Ω � ∇U∇φΩ − UφΩ � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' However, the divergence theorem leads us to the contradiction � Ω φΩU = � Ω −∆φΩU = � Ω ∇φΩ∇U − � ∂Ω ∂φΩ ∂ν U > � Ω ∇φΩ∇U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ = 1 and pq ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, there exists C > 0 such that ∥Un∥ ≥ C for a positive solution (λn, Un) of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn → 0+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that (λn, Un) → (0, 0) in R × H1(Ω) for a positive solution (λn, Un) of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Say that wn = Un ∥Un∥;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, up to a subsequence, wn ⇀ w∞ ≥ 0, wn → w∞ in Lp+1(Ω) and L2(∂Ω) for some w∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' From (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with (λ, U) = (λn, Un) and ϕ = Un, it follows that � Ω � |∇Un|2 − U 2 n + λ p−1 1−q n U p+1 n � + � ∂Ω U q+1 n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) We then deduce that � ∂Ω wq+1 n ≤ � Ω w2 n∥Un∥1−q → 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, � ∂Ω wq+1 ∞ = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', w∞ ∈ H1 0(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We also deduce from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) that E(wn) = � Ω(|∇wn|2 − w2 n) ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thus, we derive that wn → φΩ in H1(Ω) using a similar argument as in the last paragraph of the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' For a contradiction, we use the same strategy developed in the proof of assertion (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' To this end, we consider the orthogonal decomposition Un = snφΩ + vn ∈ ⟨φΩ⟩ ⊕ V as in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' then, 16 we obtain (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) with un replaced by Un.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' As in the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5, we deduce the following counterpart of (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='10) and (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='11) for (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3): E(vn) + 1 2 � ∂Ω vq+1 n + Jn ≤ 0, with Jn = 1 2 � ∂Ω vq+1 n − 2sn � ∂Ω � −∂φΩ ∂ν � vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) In the same spirit of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5 ((2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='12)), we establish E(vn) + 1 2 � ∂Ω vq+1 n ≤ 0 for sufficiently large n, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) by verifying that Jn ≥ 0 for sufficiently large n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) Analogously to (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='14), we obtain � ∂Ω � −∂φΩ ∂ν � vn = λ p−1 1−q n sp n � Ω � φΩ + vn sn �p φΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Using this assertion, we deduce from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4) that Jn = sp+1 �1 2 � ∂Ω vq+1 n sp+1 − 2λ p−1 1−q n � Ω � φΩ + vn sn �p φΩ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) Furthermore, we use the test function ϕ = 1 in (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) to obtain − � Ω Un + λ p−1 1−q n � Ω U p n + � ∂Ω U q n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Substituting Un = snφΩ + vn, − � Ω � φΩ + vn sn � + λ p−1 1−q n sp−1 n � Ω � φΩ + vn sn �p + � ∂Ω vq n sn = 0, from which we use (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) with Un to infer that � ∂Ω vq n sn −→ � Ω φΩ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we may deduce that csn ≤ � ∂Ω vq n for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By H¨older’s inequality, we deduce that cs q+1 q ≤ � ∂Ω vq+1 for some c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We use this inequality to derive from (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='7) that Jn ≥ sp+1 � cs 1 q −p n − 2λ p−1 1−q n � Ω � φΩ + vn sn �p φΩ � for some c > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' thus, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='6) follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertion (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) has been now established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We end the proof of this lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Observe from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5) with Un that ∥vn∥ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, we develop the same argument as in the second paragraph of the proof of assertion (i) to arrive at the same contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ 17 Employing the above lemmas, we then verify assertion (iii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume by contradiction that (λn, un) → (0, 0) in R × H1(Ω) for a positive solution (λn, un) of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) with λn > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, (λn, Un) with Un = λ − 1 1−q n un admits a positive solution of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Since Un is bounded in H1(Ω) by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, we deduce that up to a subsequence, Un ⇀ U∞ ≥ 0, and Un → U∞ in Lp+1(Ω) and L2(∂Ω) for some U∞ ∈ H1(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Thanks to Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3, we apply Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 to obtain U∞ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Furthermore, substituting (λ, U) = (λn, Un) into (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) and then taking the limit, we deduce that � Ω � ∇U∞∇ϕ − U∞ϕ � + � ∂Ω U q ∞ϕ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' This implies that U∞ is a nonnegative solution of (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) for λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Finally, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2 provides U∞ = 0, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5 is complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assertions (ii) and (iii) of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5 are also derived from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 when βΩ = 1 and pq > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Stability analysis of the trivial solution In the last section, we consider the stability of the trivial solution u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' It is worthwhile to mention that a linearized stability analysis does not work for u = 0 because u �→ uq is not differentiable at u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The corresponding initial-boundary value problem is formulated as follows: \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 ∂u ∂t (t, x) = ∆u + u − up in (0, ∞) × Ω, ∂u ∂ν = −λuq on (0, ∞) × ∂Ω, u(0, x) = u0(x) ≥ 0 in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) We use the method of monotone iterations to determine the Lyapunov stability of the trivial solution u = 0 (see [26, Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' When βΩ < 1 or when βΩ = 1 and pq > 1, we observe from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1 that u = 0 is unstable in the following sense: for u0 ∈ C2(Ω) sufficiently small such that u0 > 0 in Ω, the positive solution u(t, x) of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) corresponding to the initial value u0 moves away from 0 as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' When βΩ > 1, for ε, δ, τ > 0, we set ψδ,ε,τ(x) = δ(φΩ(x) + ε)τ, x ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let Ωρ := {x ∈ Ω : dist(x, ∂Ω) < ρ} for ρ > 0 be a tubular neighborhood of ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, by (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5), for ρ0 > 0 small, we can choose a constant c3 = c3(ρ0) > 0 such that |∇φΩ|2 ≥ c3 in Ωρ for 0 < ρ ≤ ρ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If 0 < ρ ≤ ρ0, then there exists c4 = c4(ρ) > 0 such that φΩ ≥ c4 in Eρ := Ω \\ Ωρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' The following result would then provide useful information about the stability of the trivial solution u = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Assume that βΩ > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Then, for 1 βΩ < τ < 1 and ε > 0 small, there exists δ1 > 0 such that ψδ,ε,τ is a supersolution of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) whenever 0 < δ ≤ δ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We write ψδ,ε,τ simply as φδ,ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' By direct computations, we obtain ∇ψδ,ε = δτ(φΩ + ε)τ−1∇φΩ, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) ∆ψδ,ε = δτ(τ − 1)(φΩ + ε)τ−2|∇φΩ|2 + δτ(φΩ + ε)τ−1∆φΩ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) 18 We see from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) that for x ∈ Ωρ, ∆ψδ,ε + ψδ,ε − ψp δ,ε ≤ δτ(τ − 1)(φΩ + ε)τ−2|∇φΩ|2 + δ(φΩ + ε)τ = δ(φΩ + ε)τ−2 \uf8f1 \uf8f2 \uf8f3−τ(1 − τ)c3 + � ε + max Ωρ φΩ �2\uf8fc \uf8fd \uf8fe .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then find 0 < ρ1 ≤ ρ0 and ε1 > 0 such that � ε + max Ωρ1 φΩ �2 ≤ τ(1 − τ)c3 for 0 < ε ≤ ε1, and then, −∆ψδ,ε + ψδ,ε − ψp δ,ε ≤ 0 in Ωρ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Let us fix c4 = c4(ρ1), and let 0 < ε ≤ ε1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We also see from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='3) that for x ∈ Eρ1, ∆ψδ,ε + ψδ,ε − ψp δ,ε ≤ δτ(φΩ + ε)τ−1(−βΩ)φΩ + δ(φΩ + ε)τ ≤ δ(φΩ + ε)τ−1 {(1 − τβΩ)c4 + ε} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' We then determine 0 < ε2 ≤ ε1 such that (1 − τβΩ)c4 + ε2 ≤ 0, and then, −∆ψδ,ε2 + ψδ,ε2 − ψp δ,ε2 ≤ 0 in Eρ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Finally, using (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='5), we see from (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='2) that ∂ψδ,ε2 ∂ν + λψq δ,ε2 ≥ δq(−δ1−qτετ−1 2 c2 + λετq 2 ) ≥ 0 on ∂Ω, if 0 < δ ≤ δ1 for some δ1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' In summary, ψδ,ε2, 0 < δ ≤ δ1, is as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' □ From Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1, it might be claimed that u = 0 is asymptotically stable for the case where βΩ > 1, meaning that for u0 in the order interval [0, ψδ1,ε2,τ], the positive solution u(t, x) of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) associated with u0 tends to 0 as t → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' If this occurs, then Theorem 0(II) means that problem (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) is bistable with two nonnegative stable equilibria for 0 < λ ≤ λ∗ (one is uλ, and the other is u = 0), which presents ecologically a conditional persistence strategy for the harvesting effort λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' However, the difficulty arises from the fact that the monotone iteration scheme does not work for (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1) in the order interval [0, ψδ1,ε2,τ] because u �→ (−uq) does not satisfy the one-sided Lipschitz condition [26, (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='19)] for u close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Rigorous verification of the claim is an open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Alama, Semilinear elliptic equations with sublinear indefinite nonlinearities, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differential Equations 4 (1999), 813–842.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [2] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 18 (1976), 620–709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Amann, Nonlinear elliptic equations with nonlinear boundary conditions, New developments in differential equations (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 2nd Scheveningen Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Scheveningen, 1975), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 43–63, North-Holland Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Studies, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 21, North-Holland, Amsterdam, 1976.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ambrosetti, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Brezis, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 122 (1994), 519–543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Arcoya, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Carmona, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Pellacci, Bifurcation for some quasilinear operators, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Edinburgh Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A 131 (2001), 733–765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 19 [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Berestycki, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lions, Some applications of the method of super and subsolutions, Bifurcation and nonlinear eigenvalue problems (Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Session, Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Paris XIII, Villetaneuse, 1978), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 16–41, Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', 782, Springer, Berlin, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [7] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Brezis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 10 (1986), 55–64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Cantrell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathe- matical and Computational Biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' John Wiley & Sons, Ltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Chichester, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [9] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Theory Methods Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 8 (1984), 835–836.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [10] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (3) 53 (1986), 429–452.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' de Figueiredo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Gossez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 199 (2003), 452–467.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' de Figueiredo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Gossez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (JEMS) 8 (2006), 269–286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Garc´ıa-Meli´an, Uniqueness for degenerate elliptic sublinear problems in the absence of dead cores, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differential Equations (2004), No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 110, 16 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Garc´ıa-Meli´an, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Rossi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Su´arez, The competition between incoming and outgoing fluxes in an elliptic problem, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Contemp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 9 (2007), 781–810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Garc´ıa-Meli´an, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Morales-Rodrigo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Rossi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Su´arez, Nonnegative solutions to an elliptic problem with nonlinear absorption and a nonlinear incoming flux on the boundary, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Pura Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' (4) 187 (2008), 459–486.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Garcia-Azorero, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Peral, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Rossi, A convex–concave problem with a nonlinear boundary condition, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differential Equations 198 (2004), 91–128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Gilbarg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Trudinger, Elliptic partial differential equations of second order, Second edition, Springer-Verlag, Berlin, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Grass, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Uecker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Upmann, Optimal fishery with coastal catch, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Resour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 32 (2019), e12235, 32 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Korman, Exact multiplicity and numerical computation of solutions for two classes of non- autonomous problems with concave–convex nonlinearities, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 93 (2013), 226–235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [20] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Hai, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Smith, On uniqueness for a class of nonlinear boundary-value problems, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Edinburgh Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A 136 (2006), 779–784.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [21] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Hai, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Smith, Uniqueness for singular semilinear elliptic boundary value problems, Glasg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 55 (2013), 399–409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [22] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Hai, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Smith, Uniqueness for singular semilinear elliptic boundary value problems II, Glasg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 58 (2016), 461–469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Le, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Schmitt, Some general concepts of sub- and supersolutions for nonlinear elliptic prob- lems, Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Methods Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 28 (2006), 87–103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Lin, Some uniqueness results for positone problems when a parameter is large, Chinese J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 13 (1985), 67–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [25] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Mizoguchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Suzuki, Equations of gas combustion: S-shaped bifurcation and mushrooms, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differential Equations 134 (1997), 183–215.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [26] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Protter, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Weinberger, Maximum principles in differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Prentice-Hall, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Englewood Cliffs, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [28] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ramos Quoirin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Umezu, The effects of indefinite nonlinear boundary conditions on the structure of the positive solutions set of a logistic equation, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differential Equations 257 (2014), 3935–3977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [29] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ramos Quoirin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Umezu, Bifurcation for a logistic elliptic equation with nonlinear boundary conditions: a limiting case, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 428 (2015), 1265–1285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, Sta- tionary partial differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' II, 311–406, Handb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=', Elsevier/North-Holland, Amsterdam, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [31] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Tarfulea, Positive solution of some nonlinear elliptic equation with Neumann boundary conditions, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' A Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 71 (1995), 161–163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 20 [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Umezu, Logistic elliptic equation with a nonlinear boundary condition arising from coastal fishery harvesting, Nonlinear Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Real World Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 70 (2023), Paper No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 103788, 29 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [33] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Wiebers, S-shaped bifurcation curves of nonlinear elliptic boundary value problems, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 270 (1985), 555–570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' [34] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Wiegner, A uniqueness theorem for some nonlinear boundary value problems with a large pa- rameter, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' 270 (1985), 401–402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content=' Department of Mathematics, Faculty of Education, Ibaraki University, Mito 310-8512, Japan Email address: kenichiro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='umezu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='math@vc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='ibaraki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} +page_content='jp 21' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7tFLT4oBgHgl3EQfsi8k/content/2301.12147v1.pdf'} diff --git a/89AzT4oBgHgl3EQfSfsp/content/tmp_files/2301.01232v1.pdf.txt b/89AzT4oBgHgl3EQfSfsp/content/tmp_files/2301.01232v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ede486ea8bc39ffe0d1b72e783e26657d339ece --- /dev/null +++ b/89AzT4oBgHgl3EQfSfsp/content/tmp_files/2301.01232v1.pdf.txt @@ -0,0 +1,1779 @@ +Sample efficient graph classification using binary Gaussian boson sampling +Amanuel Anteneh∗ +Department of Computer Science, University of Virginia, Charlottesville, Virginia 22903, USA† +Olivier Pfister‡ +Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA +(Dated: January 4, 2023) +We present a variation of a quantum algorithm for the machine learning task of classification with +graph-structured data. The algorithm implements a feature extraction strategy that is based on +Gaussian boson sampling (GBS) a near term model of quantum computing. However, unlike the +currently proposed algorithms for this problem, our GBS setup only requires binary (light/no light) +detectors, as opposed to photon number resolving detectors. These detectors are technologically +simpler and can operate at room temperature, making our algorithm less complex and less costly +to implement on the physical hardware. We also investigate the connection between graph theory +and the matrix function called the Torontonian which characterizes the probabilities of binary GBS +detection events. +I. +INTRODUCTION +Graphs are one of the most versatile data structures +used in computing, and developing machine learning +methods for working with graph-structured data has +been a growing sub-field of machine learning research. +Graph classification, in particular, has useful applica- +tions in fields such as bioinformatics, network science +and computer vision as many of the objects studied in +these fields can easily be represented as graphs. How- +ever, using graph-structured data with machine learning +models is not a straightforward task. +This is because +one of the most common ways of representing a graph +for computational applications, i.e., as an adjacency ma- +trix, cannot be easily used as an input to machine learn- +ing classifiers which primarily take vector-valued data as +their inputs. Therefore, a common way of working with +graph-structured data is by defining a feature map φ that +maps a graph G to a vector in a Hilbert space called a +feature space. From there a function κ, called a kernel, +is defined that measures the similarity of two graphs in +the feature space. +An example of a feature map from +R2 → R3 is shown in Fig. 1. +Kernel methods refer to machine learning algorithms +that learn by comparing pairs of data points using this +similarity measure. In our context we have a set of graphs +G and we call a kernel κ a graph kernel if it is a function +of the form κ : G × G → R [1, 2]. The most common +example of a kernel function is the feature space’s inner +product κ(x, x′) = ⟨φ(x), φ(x′)⟩. The goal of such meth- +ods is to construct mappings to feature vectors whose en- +tries (the features) relate to relevant information about +the graphs. Using a Gaussian boson sampling (GBS) de- +vice to construct graph kernels was an idea first proposed +∗ asa2rc@virginia.edu +† Current address: +Booz Allen Hamilton, Arlington, Virginia +22202, USA +‡ olivier.pfister@gmail.com +FIG. 1: In the original input space R2 the data points, +which belong either to the class ‘red’ or ‘blue’, are not +separable by a linear function (the decision boundary) +but after mapping the points to feature vectors in a +higher dimensional space R3 a linear function is able to +separate the two classes. This linear decision boundary +can be calculated by supervised machine learning +models such as a support vector machine. In our case +the input space is the set of all undirected graphs which +we denote as G. +by Schuld et al. in Ref. 3. +Boson sampling was first proposed by Aaronson and +Arkhipov [4] as a task—generating the photon-counting +outcomes of the “quantum Galton board” constituted by +an M ×M optical interferometer fed with single photons +into some of its input ports—that is strongly believed +to be intractable to classical computers. The reason for +this intractability is that calculating the probability dis- +tribution for generating random outcomes using Monte +Carlo simulations requires calculating the permanent of +an M × M matrix. Calculating the permanent of a gen- +eral matrix is known to be #P-complete [5] which is a +class of problems comparable to the class of NP-complete +problems in their difficulty. Gaussian boson sampling [6] +is a variant of boson sampling in which the single-photon +inputs are replaced with single-mode squeezed states, as +produced, for example, by two-photon-emitting optical +arXiv:2301.01232v1 [quant-ph] 3 Jan 2023 + +Linear Decision +Boundary +Input Space +Feature Space +d3 +d22 +parametric amplifiers [7]. The GBS probability distribu- +tion is governed by the Hafnian of an M × M matrix. +Calculating the Hafnian of a general square matrix can +be reduced to the task of calculating permanents there- +fore calculating the Hafnian is also #P-complete. In both +cases, a quantum machine implementing boson sampling +or GBS can easily sample from these hard-to-calculate +probability distributions, just because they are “wired- +in,” and this constitutes the “quantum advantage” that +was recently demonstrated in optical experiments [8, 9]. +Note also that the initial “quantum supremacy” result +obtained by Google on a superconducting qubit array [10] +was a quantum (circuit) sampling result as well. +Beyond these necessary initial steps of demonstrating +that quantum hardware can indeed reach regions inacces- +sible to classical hardware, a subsequent question is that +of the utility of a sampling task. Whereas the usefulness +of sampling in and of itself is far from established, we +know that the histograms produced by statistically sig- +nificant sampling constitute empirical probability distri- +butions that tend toward the true, classically intractable +probability distributions for sample numbers linear in +the number of possible outcomes [11]. The problem is +that this very number of possible outcomes grows expo- +nentially with M in a M-qubit quantum circuit in gen- +eral [12], and exponentially or super-exponentially with +M in an M-optical-mode boson or Gaussian boson sam- +pler, which dispels any notion of quantum advantage for +calculating the corresponding quantum probability dis- +tributions. +One direction that has been explored out of this co- +nundrum is the binning of GBS measurements results +into outcome classes whose cardinality scales favorably +(e.g. polynomially) with the problem size (the GBS mode +number). The immediate downside of such an approach +is loss of information it entails, which impacts usefulness. +However, graph classification using feature vectors and +coarse-graining might provide advantageous GBS appli- +cations. This was first pointed out by Schuld et al. [3]. +In this paper, we show that a technologically simpler +version of GBS, which we term binary GBS, can achieve +comparable or better performance. The paper is struc- +tured as follows. In Sec.II we give broad reminders about +GBS and graph theory (with details in Appendix A) and +the current GBS graph kernel from Ref. 3. +We then +present our graph kernel in Sec.III along with results +from numerical experiments and analyses of its complex- +ity, features and advantages. +II. +REMINDERS ABOUT GAUSSIAN BOSON +SAMPLING (GBS) AND GRAPH THEORY +A. +Gaussian Boson Sampling +As mentioned above, an M-mode GBS devise com- +prises M single-mode-squeezing (SMS) inputs, an M ×M +optical interferometer, and M photon-number-resolving +FIG. 2: Example of a 3-mode Gaussian boson sampler. +Mode i ∈ {1, 2, 3} starts in the vacuum state |0⟩, is then +squeezed by ˆS(ri) and passes through the network of +two beamsplitters (the interferometer) before the +number of photons in each mode is measured by the +detectors Di∈{1,2,3}. +(PNR) detectors, see Fig.2 for an example. The latter +have come of age in superconducting devices such as tran- +sition edge sensors [13] and superconducting nanowire +single-photon detectors [14]. +Both the former and the +latter have recently been used to make PNR measure- +ments of as many as 100 photons [15, 16]. +An M-mode Gaussian boson sampler prepares a Gaus- +sian (Wigner function) quantum state by the M squeez- +ers and the interferometer. +The squeezers output +squeezed light into the interferometer and the photons +are then passed through the interferometer after which +the M detectors detect what modes the photons end up +in resulting in a detection event. +We denote a detec- +tion event as n = (n1, ..., nM), where ni is the photon +count in the ith mode and the total number of photons +is n = �M +i=1 ni. +We know consider binary detectors, such as single- +photon avalanche photodiodes, which are single-photon +sensitive but aren’t PNR and give the same signal how- +ever many photons were absorbed. In this case, we have +ni ∈ {0, 1} where ni = 0 indicated zero photons were +detected in that mode and ni = 1 indicates that at least +one photon was detected. When using binary detectors +we no longer know the total photon number n so we use +N to denote the number of detectors that detect photons +leading to �M +i=1 ni = N ≤ M. +An M-mode Gaussian state is fully described by a co- +variance matrix Σ ∈ R2M×2M and a displacement vector +d ∈ R2M [17]. +B. +Graph theory +In this paper we define a graph G = (V, E) as a +set of vertices V += {v1, v2, ...} and a set of edges +E = {(v1, v1), (v1, v2), ...(vi, vj), ...} that connect vertices +if the edge value is not zero. A graph can be unweighted, +with all nonzero edge weights equal to 1, or weighted, for +example with real edge weights in GBS. For undirected +graphs, which is what we will exclusively work with in + +
    0. We will define N to +be the set of all possible 4-mode PNR detection events +with 0’s in the 2nd and 4th index, i.e. only the 2nd and +4th detectors detect no photons. From this we have +p((1, 0, 1, 0)) = Tor(X ˜A(1,0,1,0)) +� +det(Q) += +� +n∈N +p(n) = +� +n∈N +Haf2(An) +n! +� +det(Q) +. +(12) +This means the Torontonian of X ˜A is proportional to an +infinite sum of Hafnians as there are an infinite number +of integer lists of the form (n1, 0, n3, 0) where n1, n3 > 0. +In a real GBS experiment, however, the energy is finite +and therefore the measured probabilities of these events +would be equal to a finite version of this sum where all +detection events with total photon number greater than +some cutoff photon number vanish from the series. +In terms of graph theory this means the probability of +detecting nbin = (1, 0, 1, 0) is proportional to the sum of +the squared Hafnians of all possible subgraphs of G of +unbounded size with their 2nd and 4th vertices removed. +But again in practice the maximum size of the subgraphs + +5 +will always be bounded by some maximum photon num- +ber for a real GBS experiment. More generally we have +p(nbin) = Tor(Onbin) +� +det(Q) += Tor(X ˜Anbin) +� +det(Q) += +� +n∈N +Haf2(An) +n! +� +det(Q) +(13) +where N is the set of all PNR events that correspond to +the binary detection event nbin [23]. +B. +Constructing the feature vectors +Once the GBS device is programmed we generate S +samples from the device. For our algorithm we use bi- +nary detectors so each sample is a list of length M with +entries either 0 or 1. Once we have these samples we use +them to construct the feature vector of which we have +two definitions based on two coarse-graining strategies. +The first is based on what we call the µ coarse-graining +strategy where we group together detection events that +contain exactly i detector ‘clicks’ or ones. +For exam- +ple the detection events (1, 0, 0) and (0, 0, 1) would be +grouped together since they both contain exactly 1 detec- +tor click. These groups can also be thought of as ‘binary +orbits’ since they contain a detection event and all its per- +mutations. This strategy partitions the set of all binary +detection events into a linear number of disjoint subsets +in N. Using this strategy we can define the feature map +as φ : G → f = (f0, f1, ..., fN) ∈ RN. Where N is the +maximum number of detector clicks and fi = +Si +S with +Si being the number of samples which contain exactly i +ones. Equivalently this is the probability of detecting an +event where exactly i detectors detect a photon. +The second feature map is based on what we call the +ν coarse-graining strategy. For a 5 mode boson sampler +utilizing binary detectors with maximum click number +5 there are |Ω| = 32 possible detection outcomes. This +coarse-graining strategy groups together detection events +whose first 5 modes are one of these 32 outcomes. For +example the detection event nbin = (0, 1, 0, 0, 1, 0, 1) be- +longs in the group associated with the detection event +(0, 1, 0, 0, 1) since they are equal if one is only concerned +with the first 5 modes. +This strategy partitions the +set of all detection events of 5 or more modes into a +constant number of subsets, i.e. 32. The feature map +based on this strategy is defined as φ : G → f = +(f[0,0,0,0,0], f[1,0,0,0,0], ..., fn) ∈ R32. Where fn is the prob- +ability of detecting an event where the first 5 modes cor- +respond to one of the 32 possible detection outcomes. For +example f[1,0,0,0,0] is the probability that the first detec- +tor detects photons and the following 4 detectors detect +vacuum. +Once we construct the feature vector for each graph in +the data set we input them to a machine learning classi- +fier such as a support vector machine. +C. +Numerical experiments +We used The Walrus python library to classically sam- +ple from the GBS output distribution when running our +experiments and the GraKel python library to fetch the +data sets and simulate the classical graph kernels [24, 25]. +Classically sampling from a GBS output distribution is +very time intensive even when using binary detectors so +we choose to follow the choice made in [3] and discard +graphs with greater than 25 and less than 6 vertices for +each data set. Before sampling from the GBS device we +have four parameters we can set: the maximum number +of detector clicks allowed N, the average photon number +¯n, the displacement on each mode of the GBS device d +and lastly the number of samples generated by the GBS +device S. We set N = 6, ¯n = 5 and d = 0 for our re- +sults reported here leading to probability distribution of +32 outcomes using the ν coarse-graining strategy and 7 +outcomes using the µ coarse-graining strategy. Using Eq. +1 with δ = 0.01 and ϵ = 0.06 we require about S = 15000 +samples for the ν feature vectors and about S = 6000 +samples for the µ feature vectors. +For the machine learning classifier we use a support +vector machine with an RBF kernel κrbf. We obtain the +accuracies in Table II by running a double 10-fold cross- +validation 10 times. The inner fold performs a grid search +through the discrete set of values [10−4, 10−3, ..., 102, 103] +on the C hyper-parameter of the SVM which controls +the penalty on misclassifications. We tested our graph +kernel on the same data sets used in [3]. We also ignored +vertex labels, vertex attributes and edge attributes and +converted all adjacency matrices to be unweighted. +Four classical graph kernels were used as a bench- +mark for our algorithms classification accuracy. +The +subgraph matching kernel (SM) with time complexity +O(kM k+1) where M is the number of vertices and k the +size of the subgraphs being considered [26], the graphlet +sampling kernel (GS) with worst case time complexity +O(M k) which can be optimized to O(Mdk−1) for graphs +of bounded degree with the restriction that k ∈ {3, 4, 5}, +where k is the graphlet size and d is the maximum de- +gree of the graph [27], the random walk kernel (RW) with +time complexity O(M 3) [28] and the shortest path kernel +(SP) with time complexity O(M 4) [29]. For the graphlet +sampling kernel we set maximum graphlet size to k = 5 +and draw 5174 samples, for the random walk kernel we +use fast computation and a geometric kernel type with +the decay factor set to λ = 10−3, for the subgraph match- +ing kernel we set maximum subgraph size to k = 5 and +for the shortest path kernel we used the Floyd–Warshall +algorithm to calculate shortest paths. The accuracies of +all four classical kernels, the original GBS graph kernels +from [3] with n = 6 and our kernel are shown in Table II. + +6 +TABLE I: Graph data set statistics after prepossessing. A more detailed description of these data sets can be found +in appendix B of [3]. +Data set +# of graphs # of classes avg. # of vertices avg. # of edges +AIDS +1723 +2 +11.11 +11.29 +BZR MD +257 +2 +20.10 +197.69 +COX2 MD +118 +2 +23.90 +274.40 +ENZYMES +204 +6 +18.56 +36.30 +ER MD +357 +2 +19.27 +185.15 +FINGERPRINT +1080 +3 +10.58 +9.10 +IMDB-BINARY +806 +2 +15.98 +63.32 +MUTAG +179 +2 +17.48 +19.23 +NCI1 +1853 +2 +19.77 +21.27 +PROTEINS +515 +2 +15.77 +29.37 +PTC FM +284 +2 +13.64 +13.99 +TABLE II: Average test accuracies of the support vector machine with different data sets and graph kernels. The +error reported is the standard deviation between 10 repeats of double cross validation. GS, RW, SM and SP refer to +the graphlet sampling, random walk, subgraph matching and shortest path kernels respectively. GBSbin +ν +and GBSbin +µ +denotes our GBS kernel with binary detectors that use the ν and µ coarse-graining strategies to construct the +feature vectors respectively. GBSbin+ +ν +denotes that the feature associated with detecting vacuum [0, 0, 0, 0, 0] in the +first 5 modes was dropped from all feature vectors. GBSPNR and GBSPNR+ refer to the original GBS kernels with +PNR detectors that use orbit and meta-orbit probabilities as features respectively with a displacement of d on each +mode. *Runtime > 7 days +Data set +GBSbin+ +ν +GBSbin +ν +GBSbin +µ +GS +RW +SM +SP +AIDS +98.47(0.10) +98.74(0.20) +99.53(0.05) +99.30(0.07) +53.11(11.90) +77.85(2.44) +99.34(0.09) +BZR MD +60.14(1.28) +61.73(0.89) +58.79(1.17) +51.42(3.51) +64.54(0.36) +time out* +50.82(1.76) +COX2 MD +51.62(2.76) +50.18(2.96) +51.30(3.86) +49.01(3.18) +48.98(4.78) +time out* +48.11(4.30) +ENZYMES +48.10(1.18) +41.75(2.35) +19.83(1.43) +34.59(2.54) +19.50(2.29) +37.38(1.60) +22.15(1.88) +ER MD +67.74(0.94) +69.19(0.33) +68.84(0.50) +48.88(4.53) +70.32(0.02) +time out* +45.23(4.35) +FINGERPRINT +64.45(0.78) +65.53(0.86) +63.56(0.67) +65.25(1.30) +33.63(3.57) +46.89(0.56) +46.22(1.02) +IMDB-BINARY +60.69(0.84) +61.35(0.98) +67.34(0.38) +68.49(0.63) +67.78(0.38) +time out* +65.50(0.27) +MUTAG +84.63(0.91) +85.94(0.98) +81.37(0.90) +80.80(0.91) +83.22(0.04) +83.24(1.27) +82.74(1.65) +NCI1 +63.45(0.57) +56.99(1.69) +59.09(1.02) +50.34(3.22) +50.96(3.58) +time out* +53.40(2.25) +PROTEINS +65.95(1.03) +63.38(0.73) +63.11(0.55) +65.75(0.94) +56.91(1.39) +62.93(0.83) +63.63(0.41) +PTC FM +52.63(3.95) +57.47(2.72) +59.17(1.58) +60.74(1.48) +50.95(3.68) +56.36(2.66) +55.38(4.04) +Data set +GBSPNR (d = 0) +GBSPNR (d = 0.25) +GBSPNR+ (d = 0) +GBSPNR+ (d = 0.25) +AIDS +99.60(0.05) +99.62(0.03) +99.58(0.06) +99.61(0.05) +BZR MD +62.73(0.71) +62.13(1.44) +62.01(1.43) +63.16(2.11) +COX2 MD +44.98(1.80) +50.11(0.97) +57.84(4.04) +57.89(2.62) +ENZYMES +22.29(1.60) +28.01(1.83) +25.72(2.60) +40.42(2.02) +ER MD +70.36(0.78) +70.41(0.47) +71.01(1.26) +71.05(0.83) +FINGERPRINT +65.42(0.49) +65.85(0.36) +66.19(00.84) +66.26(4.29) +IMDB-BINARY +64.09(0.34) +68.71(0.59) +68.14(0.71) +67.60(0.75) +MUTAG +86.41(0.33) +85.58(0.59) +85.64(0.78) +84.46(0.44) +NCI1 +63.61(0.00) +62.79(0.00) +63.59(0.17) +63.11(0.93) +PROTEINS +66.88(0.22) +66.14(0.48) +65.73(0.69) +66.16(0.76) +PTC FM +53.84(0.96) +52.45(1.78) +59.14(1.72) +56.25(2.04) +D. +Complexity analysis +In this section we discuss, in addition to the time and +space complexity, the sample complexity of our algo- +rithm. +1. +Sample Complexity +Since the ni’s for binary detection events can be either +0 or 1 we can think of the detection outcomes as binary +strings of length M with at most M ones. The number +of binary strings of length M with exactly i ones is +�M +i +� +. +So the number of possible binary detection events, the +number of binary strings of length M with at most M + +7 +ones, is given by +|Ω| = +M +� +i=0 +�M +i +� +. +(14) +We can show this function grows like 2M using the bino- +mial expansion +2M = (1 + 1)M = +M +� +i=0 +�M +i +� +1M−i1i = +M +� +i=0 +�M +i +� +. +(15) +Therefore we could not simply use the probability of the +individual detection events as features without coarse- +graining even when using binary detectors as we would +still need a prohibitively large number of samples to ap- +proximate their probabilities to within a constant error. +This was the reason for introducing the ν and µ coarse- +graining strategies. +Since the number of outcomes of the µ distribution +scales linearly with N which is ≤ M the sample com- +plexity of approximating the µ coarse-grained probability +distribution is +O +�M + ln( 1 +δ ) +ϵ2 +� +(16) +which reduces to O(M) for constant ϵ and δ. The sample +complexity of approximating the ν coarse-grained prob- +ability distribution is +O +�32 + ln( 1 +δ ) +ϵ2 +� +(17) +which reduces to O(1) for constant ϵ and δ. +2. +Space Complexity +The size of the ν feature vectors is constant with re- +spect to the graph size so the space required is O(1) and +for the µ feature vectors the size grows linearly with N +which is ≤ M so the space required is O(M). +How- +ever storing the adjacency matrix of the graphs requires +O(M 2) space complexity. +3. +Time Complexity +The time complexity is determined by the most com- +putationally time intensive step of the algorithm which +is encoding the adjacency matrix into the GBS device. +This is the case because the encoding process requires +taking the Takagi decomposition of the matrix A which +for a M × M matrix has time complexity O(M 3) as it +is a special case of the singular value decomposition [30]. +However there do exist quantum algorithms for comput- +ing the singular value decomposition of a matrix with +complexity that is polylogarithmic in the size of the ma- +trix [31]. In particular the quantum singular value esti- +mation algorithm for a m × n matrix presented in [32] +has complexity O(polylog(mn)/ϵ) where ϵ is an additive +error. +E. +Feature analysis & comparison to classical +kernels +Fig. 4 shows the results of performing a principal com- +ponent analysis on the feature vectors generated using +the ν coarse-graining strategy for various datasets. The +analysis shows that the feature associated with vacuum +[0, 0, 0, 0, 0] contributes by far the most in the support of +the first principal component. The analysis also suggests +that in some cases the first 10 or so features contribute +the most to the support of all of the first four principal +components but in other cases, such as with FINGER- +PRINT, most features contribute more or less equally. +Our graph kernel has a time complexity that is equiva- +lent to the random walk kernel and better than the short- +est path kernel by a factor of M while outperforming both +on most data sets. Furthermore the time complexity of +our kernel is not exponential in the size of the subgraphs +we are probing like the subgraph matching kernel. The +graphlet sampling kernel does have a more favorable com- +plexity of O(Mdk−1) for graphs with maximum degree +d. However it’s important to note that many real world +graphs are what are called ‘scale-free networks’ and from +the network science literature [33] the maximum degree +of these graphs grows polynomially with the graph size. +Therefore it is possible that the the maximum degree +of these graphs grows linearly with the graph size i.g. +d ∈ O(M) which would lead to a complexity of O(M k) +for the graphlet sampling kernel. What is also interesting +is that GBS kernels seems to provide more distinguish- +ing power than some classical kernels for graphs with no +vertex and edge labels like those used in our simulations. +Take for example the ENZYMES dataset for which the +binary GBS kernel achieves a classification accuracy of +≈ 48% while the shortest path kernel reaches about 23%. +If we instead choose to not ignore vertex labels we found +the shortest path kernel gives a classification accuracy of +about 50%. Since the GBS features are related to Haf- +nians this suggests that features related to the number +of perfect matchings of a graph could be more useful for +distinguishing graphs of different classes when one has no +information about the attributes of the graph nodes. +IV. +CONCLUSION +We proposed a variation of an algorithm for the ma- +chine learning task of classification with graph-structured +data that uses a Gaussian boson sampler utilizing only +binary detectors. We show that our algorithm out per- +forms four classical graph kernels for the task of graph + +8 +FIG. 4: Results of the principal component analysis (PCA) on the ν feature vector entries for the ENZYMES, +MUTAG, IMDB BINARY and FINGERPRINT datasets. The heatmaps show the weight/coefficient associated with +each feature with regard to the first four principal components. +classification on many data sets. This is most evident +with regard to the ENZYMES data set where the ν fea- +ture map outperforms all methods. The feature corre- +sponding to detecting vacuum in the first 5 modes plays +a particularity important role as shown by the princi- +pal component analysis as it is related to the Hafnian of +all possible subgraphs of G with their first 5 vertices re- +moved. We also show that it is sample efficient, a major +issue for applications of GBS, and has a time complexity +that is comparable with the classical strategies. +The fact that a GBS kernel using only binary detec- +tors produces such accuracies suggests that technologi- +cally more feasible—binary detectors such as SPADs do +not operate at cryogenic temperatures such as supercon- +ducting PNR ones—GBS devices could have useful appli- +cations for machine learning with graph-structured data. +We believe that GBS with PNR detectors should also be +explored more for this application with particular atten- +tion given to coarse-graining strategies that both reduce +the sample complexity as well as provide features that +capture useful information about the graphs. +A number of questions remain open for investigation +such as how vertex and edge labels can be encoded into +the GBS device. Also as stated earlier it is known that +the existence of a polynomial-time classical algorithm for +exact sampling from the output probability distribution +of a boson sampling or Gaussian boson sampling device +would imply the collapse of the polynomial hierarchy to +the third level and thus the existence of such an algorithm +is believed to be very unlikely [34]. This result can also +be extended to GBS with binary detectors [22]. However +it is not known, although some work has been done in +this area [21], if such arguments exist for algorithms that +sample from coarse-grained versions of these probability +distributions such as those defined in [3] or our work. It is +vital to know if such arguments exist as they would imply +these quantum kernels are also likely hard to simulate +classically. +ACKNOWLEDGMENTS +We thank Maria Schuld, Kamil Br´adler, Scott Aaron- +son, Ignacio Cirac, Miller Eaton, Nicol´as Quesada, An- +drew Blance, Shreyas Murthy and Sefonias Maereg for +useful advice and discussions. We thank Research Com- +puting at the University of Virginia for providing access +to, and support with, the Rivanna computing cluster. + +ENZYMES +FINGERPRNT +Feautures +1 +1 +01 - [0, 0, 0, 0, 0] +02 - [1, 0, 0, 0, 0] +5 - +5 - +1.00 +03 - [0. 1, 0, 0, 0 +04 - [0, 0, 1, 0, 0] +9 - +- 6 +05 - [0, 0, 0, 1, 0] +tures +eautures +0.75 +06 - 0. 0. 0, 0, 1 +13 + 13 +07 - [1, 1, 0, 0, 0] +08 - [1, 0, 1, 0, 0] +17 +17 +eau +09 - [1, 0, 0, 1, 0] +0.50 +10 - [1, 0, 0, 0, 1] +21 +21 +11 - [0, 1, 1, 0, 0] +25 - +25 +12 - [0, 1, 0, 1, 0 +- 0.25 +13 - [0, 1, 0, 0, 1] +29 - +29 +14 - [0, 0, 1, 1, 0] +15 - [0, 0, 1, 0, 1] +16 - [0, 0, 0, 1, 1] +PC1 +PC2 +PC3 +PC4 +PC1 +PC2 +PC3 +PC4 +- 0.00 +MUTAG +17 - [1, 1, 1, 0, 0] +IMDBBINARY +18 - [1, 1, 0, 1, 0] +1 +19 - [1, 1, 0, 0, 1] +5 +-0.25 +5 - +20 - [1, 0, 1, 1, 0] +21 - [1, 0, 1, 0, 1] +22 - [1, 0, 0, 1, 1 +23 - [0, 1, 1, 1, 0] +-0.50 +es +13 +13 +24 - [0, 1, 1, 0, 1] +eautur +25 - [0, 1, 0, 1, 1] +17 +17 +26 - [0, 0, 1, 1, 1] +-0.75 +27 - [1, 1, 1, 1, 0 +21 +E 21 +28 - [1, 1, 1, 0, 1] +29 - [1, 1, 0, 1, 1 +25 - +25 +30 - [1, 0, 1, 1, 1] +-1.00 +31 - [0, 1, 1, 1, 1] +29 - +29 - +32 - [1, 1, 1, 1, 1] +PC1 +PC2 +PC3 +PC4 +PC1 +PC2 +PC3 +PC49 +This work was supported by NSF grant PHY-2112867. +Appendix A: Reminders about standard GBS +1. +GBS with PNR detectors +There has been substantial work done already on the +connection between graph theory and Gaussain boson +sampling with PNR detectors [18, 35, 36]. +Here we +present the important concepts. Any undirected graph +G with no self-loops and |V | = M vertices can be en- +coded into a M-mode GBS setup consisting of a set of +M squeezers followed by an interferometer of beamsplit- +ters according to its adjacency matrix A. Once the graph +is encoded into the GBS device the probability of detect- +ing a specific detection event n = (n1, ..., nM) is equal +to +p(n) = +1 +� +det(Q) +Haf( ˜An) +n! += +1 +� +det(Q) +Haf2(An) +n! +(A1) +with +Q = (I2M − X ˜A)−1, +X = +� +0 I +I 0 +� +, +(A2) +n! = n1!×...×nM!, ˜A = (A⊕A) and Haf() denoting the +Hafnian of a 2M × 2M matrix. The Hafnian is a matrix +function defined mathematically as +Haf(A) = +� +π∈SM +� +(u,v)∈π +Au,v, +(A3) +where SM is the partition of the set {1, 2, ..., 2M} into +unordered disjoint pairs. +For example if M = 2 then +SM = ({(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}). +If +A is the adjacency matrix of a unweighted graph then +the Hafnian is equal to the number of perfect matchings +of the vertices of the graph. +A perfect matching is a +partition of the vertex set of a graph into pairs such that +each vertex is connected to exactly one edge from the +edge set. All perfect matchings of a complete 4-vertex +graph are shown in Fig.5. +An is the n×n submatrix of A induced according to the +photon detection event n. An is obtained by repeating +the ith row and column according to the measurement +pattern n. If ni = 0 then the ith row and column are +deleted from A but if ni > 0 then the ith row and col- +umn are repeated ni times. For example the probability +of detecting the event where each mode has exactly one +photon n = (1, 1, ..., 1) would be proportional to the Haf- +nian of the original matrix A since An = A. What this +means in terms of the graph is that vertex i and all its +edges are either deleted if ni = 0 or duplicated ni times +if ni > 0. Therefore the probability of a detection event +n is proportional to the squared Hafnian of the subgraph +Gn corresponding to the induced adjacency matrix An. +1 +2 +3 +4 +(a) Complete graph of 4 +vertices +1 +2 +3 +4 +1 +2 +3 +4 +1 +2 +3 +4 +(b) The three perfect matchings of +the complete 4-vertex graph +FIG. 5: The complete graph of 4 vertices and its +corresponding perfect matching +FIG. 6: Table of different photon detection events n +and the corresponding subgraphs Gn they induce and +the value of the squared Hafnians of those subgraphs. +The probability of the detection event where each +detector detects one photon corresponds to the Hafnian +of the graph encoded into the GBS. We can see in the +third graph from the top when a detector detects 2 +photons the corresponding vertex is duplicated. +Examples of different detection events and their corre- +sponding induced subgraphs are shown in Fig.6. +These induced subgraphs are of even size since the +number of photons detected is always even due to the +fact that the inputs are squeezed states. However when +displacement is applied to the modes of the GBS the +probability of detecting an odd number of photons is in +general not zero anymore and the probability of individ- +ual detection events is characterized by the loop Hafnian +lHaf() as opposed to the Hafnian [37, 38]. We don’t apply +displacement for the experiments done in this paper. + +Gn +Haf(An) +n +2 +4 +(1,1,1,1) +3 +4 +(1, 0, 0, 1) +1 +4 +2 +(1,1,1,2) +0 +4 +3 +410 +2. +Encoding a graph into a GBS device +To map a graph to a feature vector we must first pro- +gram the GBS device, by setting the squeezing parame- +ters and beamsplitter angles of the device, according to +the adjacency matrix A of the graph. Any adjacency ma- +trix A ∈ RM×M of an undirected graph of M vertices can +be mapped to a symmetric, positive definite 2M ×2M co- +variance matrix Σ of a pure Gaussian state of M modes +via the following procedure. First a doubled adjacency +matrix ˜A is constructed, +˜A = c +� +A 0 +0 A +� += c(A ⊕ A), +(A4) +where c is a rescaling constant chosen such that 0 < c < +1/λmax where λmax is the maximum singular value of +A [3]. We use ˜A as, unlike A, it is guaranteed to map +to a covariance matrix of a pure Gaussian state which +is easier to prepare than a mixed one [35]. +This also +has the advantage of allowing us to utilize the identity +Haf(A ⊕ A) = Haf2(A) to relate ˜A to A. +To map ˜A +to a covariance matrix Σ we use the following matrix +equations +Σ = Q−I2M/2, with Q = (I2M −X ˜A)−1, +X = +� +0 I +I 0 +� +. +(A5) +To program the GBS device to sample from the probabil- +ity distribution corresponding to the covariance matrix Σ +of the pure Gaussian state we need the unitary matrix +U that characterizes the interferometer of the device as +well as the squeezing parameters r1, ..., rM of each the +M squeezers. We can obtain these values by taking the +Takagi decomposition of A which is of the form +A = Udiag(λ1, ..., λM)U T . +(A6) +The squeezing parameters are determined by the sin- +gular values λ1, ..., λM and c via the relationship ri = +tanh−1(cλi). +The singular values and c also uniquely +determine the mean photon number ¯n of the device ac- +cording to +¯n = +M +� +i=1 +(cλi)2 +1 − (cλi)2 = +M +� +i=1 +sinh2(ri). +(A7) +The rescaling constant c can be used to adjust ¯n as multi- +plying A by c scales it’s singular values without changing +the structure of the graph other than scaling all edge +weights by c. The matrix U can be decomposed to give +the parameters of the beamsplitter gates of the interfer- +ometer [39]. +The GBS device, if using PNR detectors, now samples +from the probability distribution +p(n) = +1 +� +det(Q) +Haf( ˜An) +n! += +1 +� +det(Q) +Haf2(An) +n! +. (A8) +Appendix B: Super Exponential Growth of GBS +Detection Events for M ∈ O(n2) +Lemma 1. +(n+M−1)! +n!(M−1)! ∈ ω( +√ +M +√ +M) for n = ⌊ +√ +M⌋ +Proof. +(n + M − 1)! +n!(M − 1)! +n=⌊ +√ +M⌋ +−−−−−−→ (⌊ +√ +M⌋ + M − 1)! +(⌊ +√ +M⌋)!(M − 1)! +(⌊ +√ +M⌋ + M − 1)! +(⌊ +√ +M⌋)!(M − 1)! += [�⌊ +√ +M⌋ +i=1 +(M − 1 + i)](M − 1)! +[�⌊ +√ +M⌋ +i=1 +i](M − 1)! += [�⌊ +√ +M⌋ +i=1 +(M − 1 + i)] +[�⌊ +√ +M⌋ +i=1 +i] += +⌊ +√ +M⌋ +� +i=1 +[M − 1 +i ++ 1] +> +⌊ +√ +M⌋ +� +i=1 +[M − 1 +⌊ +√ +M⌋ ++ 1] += (M − 1 +⌊ +√ +M⌋ ++ 1)⌊ +√ +M⌋ += ( +M +⌊ +√ +M⌋ ++ 1 − +1 +⌊ +√ +M⌋ +)⌊ +√ +M⌋ +≥ ⌊ +√ +M⌋ +⌊ +√ +M⌋ +Therefore (n+M−1)! +n!(M−1)! ∈ ω( +√ +M +√ +M) for n = ⌊ +√ +M⌋. We +drop the floor function for simplicity as ⌊x⌋ ∈ Θ(x). +Appendix C: Induction Proof for +�n +k +� +∈ Θ(nk) +Lemma 2. +�n +k +� +∈ Θ(nk) +Proof. Base Case: k = 2 +�n +2 +� += n(n − 1) +2! +lim +n→∞ +n(n−1) +2! +n2 += 1 +2! +0 < 1 +2! < ∞ +∴ +�n +2 +� +∈ Θ(n2) +Assume result holds up to k = ℓ +�n +ℓ +� += n(n − 1)(n − 2) · · · (n − ℓ − 1) +ℓ! +∈ Θ(nℓ) + +11 +Inductive Step: k = ℓ + 1 +� n +ℓ + 1 +� += n(n − 1)(n − 2) · · · (n − (ℓ + 2)) +(ℓ + 1)! +lim +n→∞ +n(n−1)(n−2)···(n−ℓ−2) +(ℓ+1)! +nℓ+1 += lim +n→∞ +n(n−1)(n−2)···(n−ℓ−1) +ℓ! +nℓ +(n−ℓ−2) +ℓ+1 +n += lim +n→∞ +n(n−1)(n−2)···(n−ℓ−1) +ℓ! +nℓ +lim +n→∞ +(n−ℓ−2) +ℓ+1 +n +≡ 1 +ℓ! +1 +ℓ + 1 += +1 +(ℓ + 1)! +0 < +1 +(ℓ + 1)! < ∞ +∴ +� n +ℓ + 1 +� +∈ Θ(nℓ+1) +[1] G. Nikolentzos, G. Siglidis, and M. Vazirgiannis, Graph +kernels: A survey, Journal of Artificial Intelligence Re- +search 72, 943 (2021). +[2] N. M. Kriege, F. D. Johansson, and C. Morris, A survey +on graph kernels, Applied Network Science 5, 1 (2020). +[3] M. Schuld, K. Br´adler, R. Israel, D. Su, and B. Gupt, +Measuring the similarity of graphs with a gaussian boson +sampler, Physical Review A 101, 032314 (2020). +[4] S. Aaronson and A. Arkhipov, The computational com- +plexity of linear optics, Electronic Colloquium on Com- +putational Complexity Report No. 170, 1 (2010). +[5] L. G. Valiant, The complexity of computing the perma- +nent, Theoretical computer science 8, 189 (1979). +[6] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, +C. Silberhorn, and I. Jex, Gaussian boson sampling, +Phys. Rev. Lett. 119, 170501 (2017). +[7] H.-A. +Bachor +and +T. +C. +Ralph, +A Guide to Experiments in Quantum Optics, +3rd +ed. (Wiley-VCH, 2019). +[8] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. +Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, +P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, +L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, +C.-Y. Lu, and J.-W. Pan, Quantum computational +advantage using photons, Science 370, 1460 (2020), +https://science.sciencemag.org/content/370/6523/1460.full.pdf. +[9] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, +T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, +L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. +Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, +N. Quesada, and J. Lavoie, Quantum computational ad- +vantage with a programmable photonic processor, Nature +606, 75 (2022). +[10] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. +Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. +Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, +B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, +E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, +R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, +M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, +T. S. Humble, +S. V. Isakov, +E. Jeffrey, +Z. Jiang, +D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, +A. Korotkov, +F. Kostritsa, +D. Landhuis, +M. Lind- +mark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mc- +Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, +M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, +M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin- +tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, +K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre- +vithick, A. Vainsencher, B. Villalonga, T. White, Z. J. +Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti- +nis, Quantum supremacy using a programmable super- +conducting processor, Nature 574, 505 (2019). +[11] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and +M. J. Weinberger, Inequalities for the l1 deviation of +the empirical distribution, HP Technical Reports HPL- +2003-97, R1 (2003). +[12] Note that this is not related to the number of possi- +ble output quantum states, which scales with the num- +ber of parameters governing the quantum evolution, e.g. +parameters of a simulated Hamiltonian. Obviously, no +quantum advantage can be obtained for M-qubit Hamil- +tonians that have O(2M) parameters but all classically +intractable M-qubit Hamiltonians of physical interest +are local and have parameter numbers polynomial in +M [40], which validates Feynman’s proposed advantage +for quantum simulation [41]. An M × M optical interfer- +ometer has M 2 parameters, for example. However, even +though any useful quantum computer will explore but +a O(M k)-dimensional region of an O(2M)-dimensional + +12 +Hilbert space, the number of measurement outcomes will +still scale like O(2M) a priori, simply because we do not +know the adequate measurement basis that best contains +the O(M k) output states. This is the well known expo- +nential overhead of quantum state tomography. +[13] A. E. Lita, A. J. Miller, and S. W. Nam, Counting near- +infrared single-photons with 95% efficiency, Opt. Expr. +16, 3032 (2008). +[14] C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, +A. J. Miller, D. J. Gauthier, and J. Kim, Multi-photon +detection using a conventional superconducting nanowire +single-photon detector, Optica 4, 1534 (2017). +[15] M. Eaton, A. Hossameldin, R. J. Birrittella, P. M. Alsing, +C. C. Gerry, H. Dong, C. Cuevas, and O. Pfister, Resolu- +tion of 100 photons and quantum generation of unbiased +random numbers, Nature Photonics 10.1038/s41566-022- +01105-9 (2022). +[16] R. Cheng, Y. Zhou, S. Wang, M. Shen, T. Taher, +and H. X. Tang, A 100-pixel photon-number-resolving +detector unveiling photon statistics, Nature Photonics +10.1038/s41566-022-01119-3 (2022). +[17] C. Weedbrook, S. Pirandola, R. Garc´ıa-Patr´on, N. J. +Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaus- +sian quantum information, Reviews of Modern Physics +84, 621 (2012). +[18] K. Br´adler, S. Friedland, J. Izaac, N. Killoran, and D. Su, +Graph isomorphism and gaussian boson sampling, Spe- +cial Matrices 9, 166 (2021). +[19] C. L. Canonne, A short note on learning discrete distri- +butions, arXiv preprint arXiv:2002.11457 (2020). +[20] A. Y. Oru¸c, On number of partitions of an integer into +a fixed number of positive integers, Journal of Number +Theory 159, 355 (2016). +[21] K. Bradler, R. Israel, M. Schuld, and D. Su, A duality +at the heart of gaussian boson sampling, arXiv preprint +arXiv:1910.04022 (2019). +[22] N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian +boson sampling using threshold detectors, Physical Re- +view A 98, 062322 (2018). +[23] The Torontonian was also shown to be a generating func- +tion for the Hafnian given by +Haf(A) = +1 +M! +dM +dzM Tor(zXA) +�� +z=0 +(C1) +where A is a 2M × 2M matrix. +[24] B. Gupt, J. Izaac, and N. Quesada, The walrus: a library +for the calculation of hafnians, hermite polynomials and +gaussian boson sampling, Journal of Open Source Soft- +ware 4, 1705 (2019). +[25] G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, +K. Skianis, and M. Vazirgiannis, Grakel: A graph ker- +nel library in python., J. Mach. Learn. Res. 21, 1 (2020). +[26] N. Kriege and P. Mutzel, Subgraph matching kernels +for attributed graphs, arXiv preprint arXiv:1206.6483 +(2012). +[27] N. +Shervashidze, +S. +Vishwanathan, +T. +Petri, +K. +Mehlhorn, +and +K. +Borgwardt, +Efficient +graphlet +kernels +for +large +graph +comparison, +in +Artificial intelligence and statistics +(PMLR, +2009) +pp. 488–495. +[28] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, +and K. M. Borgwardt, Graph kernels, Journal of Machine +Learning Research 11, 1201 (2010). +[29] K. +M. +Borgwardt +and +H.-P. +Kriegel, +Shortest-path +kernels +on +graphs, +in +Fifth IEEE international conference on data mining (ICDM’05) +(IEEE, 2005) pp. 8–pp. +[30] T. Hahn, Routines for the diagonalization of complex ma- +trices, arXiv preprint physics/0607103 (2006). +[31] L. Gu, X. Wang, and G. Zhang, Quantum higher or- +der singular value decomposition (IEEE, 2019) pp. 1166– +1171. +[32] I. Kerenidis and A. Prakash, Quantum recommendation +systems, arXiv preprint arXiv:1603.08675 (2016). +[33] A.-L. Barab´asi and M. P´osfai, Network Science (Cam- +bridge University Press, Cambridge, 2016). +[34] Although this has been proven rigorously for the exact +sampling case [4, 42] the proof pertaining to the approx- +imate sampling case rests on the assumption of two con- +jectures known as the Permanent-of-Gaussians Conjec- +ture and the Permanent Anti-Concentration Conjecture +which are as of now still unproven. +[35] K. Br´adler, P.-L. Dallaire-Demers, P. Rebentrost, D. Su, +and C. Weedbrook, Gaussian boson sampling for perfect +matchings of arbitrary graphs, Physical Review A 98, +032310 (2018). +[36] J. M. Arrazola and T. R. Bromley, Using gaussian boson +sampling to find dense subgraphs, Physical review letters +121, 030503 (2018). +[37] N. Quesada, Franck-condon factors by counting perfect +matchings of graphs with loops, The Journal of chemical +physics 150, 164113 (2019). +[38] J. F. Bulmer, S. Paesani, R. S. Chadwick, and N. Que- +sada, Threshold detection statistics of bosonic states, +arXiv preprint arXiv:2202.04600 (2022). +[39] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. +Kolthammer, and I. A. Walmsley, Optimal design for uni- +versal multiport interferometers, Optica 3, 1460 (2016). +[40] S. Lloyd, Universal quantum simulators, Science 273, +1073 (1996). +[41] R. P. Feynman, Simulating physics with computers, Int. +J. Theor. Phys. 21, 467 (1982). +[42] R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, +C. Silberhorn, and I. Jex, Detailed study of gaussian bo- +son sampling, Physical Review A 100, 032326 (2019). + diff --git a/89AzT4oBgHgl3EQfSfsp/content/tmp_files/load_file.txt b/89AzT4oBgHgl3EQfSfsp/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..218656e8ff49086c14bab1f6b1285d6dbfe170b8 --- /dev/null +++ b/89AzT4oBgHgl3EQfSfsp/content/tmp_files/load_file.txt @@ -0,0 +1,1058 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf,len=1057 +page_content='Sample efficient graph classification using binary Gaussian boson sampling Amanuel Anteneh∗ Department of Computer Science, University of Virginia, Charlottesville, Virginia 22903, USA† Olivier Pfister‡ Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA (Dated: January 4, 2023) We present a variation of a quantum algorithm for the machine learning task of classification with graph-structured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The algorithm implements a feature extraction strategy that is based on Gaussian boson sampling (GBS) a near term model of quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' However, unlike the currently proposed algorithms for this problem, our GBS setup only requires binary (light/no light) detectors, as opposed to photon number resolving detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' These detectors are technologically simpler and can operate at room temperature, making our algorithm less complex and less costly to implement on the physical hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' We also investigate the connection between graph theory and the matrix function called the Torontonian which characterizes the probabilities of binary GBS detection events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' INTRODUCTION Graphs are one of the most versatile data structures used in computing, and developing machine learning methods for working with graph-structured data has been a growing sub-field of machine learning research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Graph classification, in particular, has useful applica- tions in fields such as bioinformatics, network science and computer vision as many of the objects studied in these fields can easily be represented as graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' How- ever, using graph-structured data with machine learning models is not a straightforward task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' This is because one of the most common ways of representing a graph for computational applications, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=', as an adjacency ma- trix, cannot be easily used as an input to machine learn- ing classifiers which primarily take vector-valued data as their inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Therefore, a common way of working with graph-structured data is by defining a feature map φ that maps a graph G to a vector in a Hilbert space called a feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' From there a function κ, called a kernel, is defined that measures the similarity of two graphs in the feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' An example of a feature map from R2 → R3 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Kernel methods refer to machine learning algorithms that learn by comparing pairs of data points using this similarity measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In our context we have a set of graphs G and we call a kernel κ a graph kernel if it is a function of the form κ : G × G → R [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The most common example of a kernel function is the feature space’s inner product κ(x, x′) = ⟨φ(x), φ(x′)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The goal of such meth- ods is to construct mappings to feature vectors whose en- tries (the features) relate to relevant information about the graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Using a Gaussian boson sampling (GBS) de- vice to construct graph kernels was an idea first proposed ∗ asa2rc@virginia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='edu † Current address: Booz Allen Hamilton, Arlington, Virginia 22202, USA ‡ olivier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='pfister@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='com FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' 1: In the original input space R2 the data points, which belong either to the class ‘red’ or ‘blue’, are not separable by a linear function (the decision boundary) but after mapping the points to feature vectors in a higher dimensional space R3 a linear function is able to separate the two classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' This linear decision boundary can be calculated by supervised machine learning models such as a support vector machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In our case the input space is the set of all undirected graphs which we denote as G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' by Schuld et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Boson sampling was first proposed by Aaronson and Arkhipov [4] as a task—generating the photon-counting outcomes of the “quantum Galton board” constituted by an M ×M optical interferometer fed with single photons into some of its input ports—that is strongly believed to be intractable to classical computers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The reason for this intractability is that calculating the probability dis- tribution for generating random outcomes using Monte Carlo simulations requires calculating the permanent of an M × M matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Calculating the permanent of a gen- eral matrix is known to be #P-complete [5] which is a class of problems comparable to the class of NP-complete problems in their difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Gaussian boson sampling [6] is a variant of boson sampling in which the single-photon inputs are replaced with single-mode squeezed states, as produced, for example, by two-photon-emitting optical arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='01232v1 [quant-ph] 3 Jan 2023 Linear Decision Boundary Input Space Feature Space d3 d22 parametric amplifiers [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The GBS probability distribu- tion is governed by the Hafnian of an M × M matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Calculating the Hafnian of a general square matrix can be reduced to the task of calculating permanents there- fore calculating the Hafnian is also #P-complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In both cases, a quantum machine implementing boson sampling or GBS can easily sample from these hard-to-calculate probability distributions, just because they are “wired- in,” and this constitutes the “quantum advantage” that was recently demonstrated in optical experiments [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Note also that the initial “quantum supremacy” result obtained by Google on a superconducting qubit array [10] was a quantum (circuit) sampling result as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Beyond these necessary initial steps of demonstrating that quantum hardware can indeed reach regions inacces- sible to classical hardware, a subsequent question is that of the utility of a sampling task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Whereas the usefulness of sampling in and of itself is far from established, we know that the histograms produced by statistically sig- nificant sampling constitute empirical probability distri- butions that tend toward the true, classically intractable probability distributions for sample numbers linear in the number of possible outcomes [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The problem is that this very number of possible outcomes grows expo- nentially with M in a M-qubit quantum circuit in gen- eral [12], and exponentially or super-exponentially with M in an M-optical-mode boson or Gaussian boson sam- pler, which dispels any notion of quantum advantage for calculating the corresponding quantum probability dis- tributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' One direction that has been explored out of this co- nundrum is the binning of GBS measurements results into outcome classes whose cardinality scales favorably (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' polynomially) with the problem size (the GBS mode number).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The immediate downside of such an approach is loss of information it entails, which impacts usefulness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' However, graph classification using feature vectors and coarse-graining might provide advantageous GBS appli- cations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' This was first pointed out by Schuld et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In this paper, we show that a technologically simpler version of GBS, which we term binary GBS, can achieve comparable or better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The paper is struc- tured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='II we give broad reminders about GBS and graph theory (with details in Appendix A) and the current GBS graph kernel from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' We then present our graph kernel in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='III along with results from numerical experiments and analyses of its complex- ity, features and advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' REMINDERS ABOUT GAUSSIAN BOSON SAMPLING (GBS) AND GRAPH THEORY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Gaussian Boson Sampling As mentioned above, an M-mode GBS devise com- prises M single-mode-squeezing (SMS) inputs, an M ×M optical interferometer, and M photon-number-resolving FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' 2: Example of a 3-mode Gaussian boson sampler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Mode i ∈ {1, 2, 3} starts in the vacuum state |0⟩, is then squeezed by ˆS(ri) and passes through the network of two beamsplitters (the interferometer) before the number of photons in each mode is measured by the detectors Di∈{1,2,3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' (PNR) detectors, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='2 for an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The latter have come of age in superconducting devices such as tran- sition edge sensors [13] and superconducting nanowire single-photon detectors [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Both the former and the latter have recently been used to make PNR measure- ments of as many as 100 photons [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' An M-mode Gaussian boson sampler prepares a Gaus- sian (Wigner function) quantum state by the M squeez- ers and the interferometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' The squeezers output squeezed light into the interferometer and the photons are then passed through the interferometer after which the M detectors detect what modes the photons end up in resulting in a detection event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' We denote a detec- tion event as n = (n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=', nM), where ni is the photon count in the ith mode and the total number of photons is n = �M i=1 ni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' We know consider binary detectors, such as single- photon avalanche photodiodes, which are single-photon sensitive but aren’t PNR and give the same signal how- ever many photons were absorbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' In this case, we have ni ∈ {0, 1} where ni = 0 indicated zero photons were detected in that mode and ni = 1 indicates that at least one photon was detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' When using binary detectors we no longer know the total photon number n so we use N to denote the number of detectors that detect photons leading to �M i=1 ni = N ≤ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' An M-mode Gaussian state is fully described by a co- variance matrix Σ ∈ R2M×2M and a displacement vector d ∈ R2M [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' Graph theory In this paper we define a graph G = (V, E) as a set of vertices V = {v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='} and a set of edges E = {(v1, v1), (v1, v2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='(vi, vj), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content='} that connect vertices if the edge value is not zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' A graph can be unweighted, with all nonzero edge weights equal to 1, or weighted, for example with real edge weights in GBS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/89AzT4oBgHgl3EQfSfsp/content/2301.01232v1.pdf'} +page_content=' For undirected graphs, which is what we will exclusively work with in
      1 Gyr) stellar +populations and hence generally brighter in I-band than +at short wavelengths (e.g. Knapen et al. 2000). +Fig- +ure 2 shows, for each galaxy, the I-band images. These +were obtained by Franchetto et al. (2020) from the inte- +grated MUSE datacubes using the Cousins I-band filter +response curve. +Franchetto et al. (2020) also derived +the center coordinates, the position angle, and the incli- +nation of these galaxies by fitting the galaxy isophotes +with a series of concentric ellipses using the iraf task +ELLIPSE (Jedrzejewski 1987). +The stellar velocity fields are used to analyze the stel- +lar kinematics, which is useful to interpret the kinemat- +ics of the molecular gas. +The stellar kinematics was +extracted from the MUSE datacube using the Penal- +ized Pixel-Fitting (pPXF) code (Cappellari & Emsellem +2004). +As a preliminary step, the observations were +masked to remove spurious sources, such as stars and +background galaxies. Spaxels in the MUSE data were +binned through the Voronoi algorithm in order to reach +S/N> 10 in each bin. The observed spectra were fitted +with the stellar population templates by Vazdekis et al. +(2010) and using of single stellar populations. More de- +tails on the procedure can be found in Poggianti et al. +(2017b) and Moretti et al. (2018). +4. METHOD +Our approach relies on the software 3DBarolo1 (v.6.1 +Di Teodoro & Fraternali 2015; Di Teodoro & Peek 2021), +which simulates galaxy observations assuming a tilted- +ring model. This consists of a series of concentric annuli +described by a set of geometric and kinematic parame- +ters, which can all vary with the galactocentric distance +R. The geometrical parameters are the coordinates of +the center x0 and y0, the position angle φ, and the disc +inclination i. The kinematic parameters are the systemic +velocity Vsys, the rotation velocity Vrot, the velocity dis- +persion σ, and the radial velocity in the disc plane Vrad. +The observed line-of-sight velocity is then (e.g. Begeman +1987) +Vlos = Vsys + (Vrot cos θ + Vrad sin θ) sin i ; +(1) +where θ is the azimuthal angle in the plane of the disc. +3DBarolo (hereafter 3DB) was mainly designed to +fit emission line observations working in 3D, meaning +that the model is fitted to the datacube channel-by- +channel. This approach allows us to use all the infor- +mation in the datacube and to take into account both +the spatial resolution and the spectral resolution of the +1 https://editeodoro.github.io/Bbarolo/ +instrument. In a step prior to the fitting, 3DB convolves +the model with the point spread function (PSF) or the +beam of the instrument, while the instrumental spec- +tral broadening is included in the model construction. +The convolution with the PSF is required to correct for +the so-called “beam smearing” (Bosma 1981; Begeman +1987; Di Teodoro & Fraternali 2015). The finite size of +the PSF smears the line emission on adjacent regions +where the emitting material has different line-of-sight +velocity, causing an artificial broadening of the profile. +As a consequence, the rotation velocity and the velocity +dispersion can be respectively underestimated and over- +estimated, if beam smearing is not correctly accounted +for. This effect is particularly important if the angu- +lar resolution of the observations is low and where there +are strong velocity gradients, as in the case of the inner +regions of massive galaxies with steeply rising rotation +curve. Moreover, the beam smearing effect is expected +to become more and more relevant as the inclination an- +gle of the galaxy increases. 3DB normalizes the model +using either the flux in each pixel of the total intensity +map or the azimuthally-averaged flux in each ring. Fi- +nally, the model is fitted to the observations in order +to find the set of free parameters that minimizes the +residuals. +With respect to 2D methods, which fit the velocity +field, this 3D procedure not only corrects for the beam +smearing effect, but also breaks the degeneracy between +the rotation velocity and the velocity dispersion (e.g. +Bosma 1981; Begeman 1987; Di Teodoro & Fraternali +2015). The 3DB task 3DFIT is designed to model emis- +sion line datacubes working in 3D. The software also +includes the task 2DFIT, which can be used to model +the 2D velocity fields. In this work, we use 3DFIT and +2DFIT to model the kinematics of the molecular gas disk +and the stellar disk, respectively. For each component, +we adopted an ad-hoc methodology, that is described in +Sects. 4.1 and 4.2. +Before proceeding with the methodology presentation, +a brief disclaimer is due. We stress that 3DB, like sev- +eral other kinematic modelling software (e.g. Begeman +1987; Kamphuis et al. 2015), is specifically designed to +model radially symmetric gas flows in discs. However, +the galaxies studied in this work are subject to various +local disturbances due to internal (bar, AGN feedback) +and external (ram pressure) mechanisms, which are ex- +pected to produce deviations from this idealised kine- +matics. +Our strategy here is to use 3DB to quantify +the large-scale ordered motions (i.e., rotation and radial +flows) in the molecular gas component, and to interpret +possible deviations from such simple kinematics in terms +of internal or external mechanisms. + +Molecular gas kinematics in jellyfish galaxies +7 +0h41m32s +31s +30s +-9°15'30" +45" +16'00" +RA (ICRS) +Dec (ICRS) +1" +JO201 I-band +5 kpc +20 +40 +60 +80 +100 +F [10 +20 erg/s/cm2/Angstrom] +10h13m48.0s47.5s +47.0s +46.5s +46.0s +45.5s +-0°54'30" +40" +50" +55'00" +RA (ICRS) +Dec (ICRS) +1" +JO204 I-band +5 kpc +20 +40 +60 +80 +100 +F [10 +20 erg/s/cm2/Angstrom] +21h13m48s +47s +46s +2°28'45" +30" +15" +RA (ICRS) +Dec (ICRS) +1" +JO206 I-band +5 kpc +20 +40 +60 +80 +100 +F [10 +20 erg/s/cm2/Angstrom] +23h36m27s +26s +25s +24s +23s +21°09'30" +15" +00" +08'45" +RA (ICRS) +Dec (ICRS) +1" +JW100 I-band +5 kpc +20 +40 +60 +80 +100 +F [10 +20 erg/s/cm2/Angstrom] +Figure 2. I-band images, extracted from the MUSE observations. The red contours are at 2n with n going from 1 to 20 +with steps of 0.5 (same units as colorbars). The white stars show the galaxy center. For JO201 and JO206, the white dotted +ellipses indicate the regions influenced by the bar (see text). The light-blue contour shows the most external isophote (≈ 1.5σ +above the background) encompassing the Hα emission traced by MUSE, and it indicates the stellar disk defined by Gullieuszik +et al. (2020). The black dot in the bottom right corner shows the angular resolution of the MUSE observations. The inset +in the JO204 panel shows a zoom-in of the central regions of the galaxy, with the white circle showing the resolution of the +observations. East is to the left and north to the top. +4.1. Modeling the stellar kinematics +We model the stellar kinematics using the task 2DFIT +on the velocity field (see Sect. 3.2). We fixed the kine- +matic center at the optical center reported in Poggianti +et al. (2017a) and Vrad = 0 km s−1. Since stars are not +subject to the effect of ram pressure, we expect this to +be a good approximation everywhere in the galaxy with +the possible exception of the bar region (but see Sect. 5). +We adopt the following three-step approach. +1. We performed a preliminary run with φ, i, Vsys, +and Vrot as free parameters. The initial values of +φ and i were taken from Franchetto et al. (2020). +2. We made a second run with φ, i, and Vrot as free +parameters, fixing Vsys at the median of the best- +fit values from the first step. +3. We run again 3DB with Vrot as the free parameter, +while φ and i are regularized using a polynomial +function with degree from zero to three, in order +to avoid numerical oscillations. +The ring spacing is fixed to 1′′, which approximately +corresponds to the spatial resolution of the MUSE ob- +servations. This choice is also reasonable based on the +size of the Voronoi bins. In all 3DB runs, we chose to +give more weight to the regions close to the disc major + +8 +Bacchini et al. +axis (i.e. wfunc=2), in order to maximize the signal from +the rotational motion. +We recall that the results obtained with the 2D ap- +proach are affected by beam-smearing. The angular res- +olution of the MUSE observations is about 1 ′′, corre- +sponding to about 1 kpc in our galaxy sample. Hence, +we expect that the PSF smearing has a mild effect on the +GASP-ALMA galaxies, except JW100. In this galaxy, +the PSF smearing is likely important due to its high +inclination with respect to the line of sight. +We also note that the assumption of circular orbits +might be inappropriate for the innermost regions of +barred galaxies, as the stars in the bar move along +elongated orbits (e.g. Sellwood & Wilkinson 1993; Ko- +rmendy & Kennicutt 2004). However, only galaxies for +which the bar is inclined to both the projected ma- +jor and minor axes show non-circular motions clearly +(Sellwood & Wilkinson 1993). Hence, we do not expect +visible signatures of non-circular motions in JO201 and +JO206. In Sanchez-Garcia et al. (in preparation), the +stellar velocity field of the galaxies in the GASP sample +is fitted using an ad-hoc approach to include large-scale +non-circular motions induced by bars. Preliminary re- +sults show that, for the GASP-ALMA galaxies, the re- +covered stellar rotation velocity obtained by Sanchez- +Garcia et al. is overall consistent with ours, suggesting +that the non-circular motions are small compared to ro- +tation. +4.2. Modeling the molecular gas kinematics +We model the molecular gas kinematics using the task +3DFIT on the ALMA datacubes (see Sect. 3.1). To re- +duce the free parameters in the model, we first fixed +the kinematic center at the optical center reported in +Poggianti et al. (2017a). +However, since the interac- +tion with the ICM can displace the kinematic center of +the gas from that of the stars (e.g. Kronberger et al. +2008b; Boselli et al. 2022b), we adjusted the kinematic +center of the molecular gas when necessary. +We also +set Vsys at the value obtained from the global profile of +the emission line. When necessary, Vsys was refined by +a few km s−1after inspecting the position-velocity dia- +grams (see Sect. 5). +1. We performed a first run with Vrad = 0 km s−1and +leaving free the geometrical and kinematical pa- +rameters. By setting the 3DB parameter wfunc=2, +we chose to give more weight to the emission along +the disc major axis, where most of the information +on rotational motions lies (θ = 0° in Eq. 1). +2. We made a second run (i.e. twostage=True) in +which the geometrical parameters are regularized +using either a suitable function or the median +value. +3. Vrad is left free in the last run, while the other pa- +rameters are fixed to the best-fit values obtained +previously. +By setting wfunc=-2, we give more +weight to the emission along the disc minor axis, +where the contribution of radial motions is the +strongest (θ = 90° in Eq. 1). +This procedure is substantially based on the approach +developed by Di Teodoro & Peek (2021), who used +3DB to model the atomic gas kinematics in a sample of +nearby galaxies in order to measure gas radial motions +and mass flows. These authors used 21-cm observations +with higher spatial resolution and better velocity reso- +lution than our ALMA data. Radial motions are pos- +sibly stronger and easier to detect for galaxies affected +by the ram pressure than in the case of Di Teodoro & +Peek (2021)’s galaxies, in which radial motions are of +the order of a few km s−1. We stress that the approach +adopted in this work takes into account the radial mo- +tions within the galaxy disk, while motions perpendicu- +lar to the disk midplane are not considered (Di Teodoro +& Peek 2021). +We used the 3DB task ELLPROF to derive the +azimuthally-averaged radial profiles of the CO surface +brightness. These profile were adopted for the normal- +ization procedure of 3DB models and to derive the H2 +surface density ΣH2. +We also used the 3DB task spacepar to fully explore +the parameter space for Vrot and σ. This test is useful +to check whether the model fitting converges to a good +minimum of the parameter space. We anticipate that, +while the best-fit Vrot is generally well constrained, it +is not always the case for σ. This is likely due to the +complex shape of the emission line profiles. +A possible caveat in our methodology is that the +tilted-ring model is based on the assumption of concen- +tric orbits, which might not be valid for the gas in galax- +ies affected by strong ram pressure or in an advanced +stripping stage (e.g. Kronberger et al. 2008b). In these +cases, the results of our analysis are very uncertain and +should be taken with caution. However, if stripping is +not too dramatic, modeling the gas kinematics using the +tilted-ring approach may be possible for the disk regions +where some or most of the gas has preserved its original +motion. Stellar bars are also expected to induce non- +circular motions due to the gas streaming along the bar +(e.g. Sellwood & Wilkinson 1993). Indeed, the gas kine- +matics in barred galaxies is usually modeled using tools +that are specifically designed to take into account non- +axisymmetric distortions in the 2D velocity field (e.g. + +Molecular gas kinematics in jellyfish galaxies +9 +Schoenmakers 1999; Spekkens & Sellwood 2007). How- +ever, these methods fail when the bar is perpendicular +to or parallel the disk major axis, being unable to break +the degeneracy between the tangential and radial ve- +locity components (e.g. Sellwood & S´anchez 2010; Ran- +driamampandry et al. 2015). We thus decided to adopt +the tilted-ring approach also in the case of JO201 and +JO206, which host stellar bars aligned with the disk ma- +jor axis. +5. RESULTS AND DISCUSSION +In this section, we present the best-fit models for the +molecular gas kinematics and we then compare the stel- +lar and molecular gas rotation curves. We discuss each +galaxy individually in Sects. 5.1–5.4 and summarize our +findings in Sect. 5.5. We analyzed both the CO(1–0) +and the CO(2–1) datacubes, obtaining essentially the +same results. Thus, we show the best-fit models for the +CO(1–0) data, as they have a S/N and angular resolu- +tion more suitable for modeling the kinematics. From +here on, CO indicates CO(1–0) unless otherwise stated. +Since the focus of this work is on the molecular gas, we +show the best-fit model for the stellar kinematics only +for JO201 in Fig 3, while the models for the rest of the +sample can be found in Appendix A. +5.1. JO201 +The I-band image in Fig. 2 shows that JO201 has +a stellar bulge. Moreover, the elongated shape of the +isophotes in the inner regions suggests that JO201 hosts +a stellar bar, as reported by George et al. (2019). +Sanchez-Garcia et al. (submitted) estimated that the +bar length is ≈ 4.6 kpc. We also note that the stellar +disc of JO201 seems morphologically lopsided, being the +east side slightly more extended than the west one. +The top panels in Fig 3 show, from left to right, the +observed stellar velocity field, the best-fit model, and +the map of the residuals between the data and the best- +fit model. The bottom panels display the radial profile +of the best-fit rotation velocity (left), inclination (cen- +ter), and PA (right). The stellar velocity field is very +well reproduced by the model. The residuals in the disk +outskirts, where the Voronoi bins are the largest, tend +to be higher than in the inner regions, but still within +the velocity resolution of the MUSE observations, that +is ∆v ≈ 50 km s−1. We note that, for R ≲ 5 kpc, the ro- +tation velocity is much lower than expected for a galaxy +with stellar mass M⋆ ≈ 9 × 1010 M⊙ and hosting a stel- +lar bulge. This feature can be explained by the fact that +the stellar bar is aligned along the disk major axis. In +a scenario where a large fraction of the stars in the bar +move on elliptical orbits aligned parallel to the bar (so +called x1 type; Sellwood 2014), the velocity component +along the line of sight has its minimum at the apocentre +and then increases along the major axis. This can result +in an underestimation of the rotation velocity in the re- +gions influenced by the bar (e.g. Dicaire et al. 2008; Sell- +wood & S´anchez 2010; Randriamampandry et al. 2015). +The total CO intensity map (top left panel in Fig. 1) +gives useful indications about the effect and direction of +ram pressure. In JO201, the west side of the disk shows +compressed contours and regions with bright CO emis- +sion, possibly suggesting the ram pressure compressed +this part of the disk (Bellhouse et al. 2017). The most +evident feature in Fig. 1 is arguably the presence of the +ring-like structure surrounding the hole in the CO dis- +tribution in the innermost ≈ 3 kpc (see also George +et al. 2018, 2019). The ring-like structure is also visible +in the MUSE images shown by Bellhouse et al. (2017). +This feature can be explained by the presence of the bar +driving the formation of a molecular gas ring around the +co-rotation radius (i.e. where the bar pattern equals the +angular frequency of circular motions; see Sellwood & +Wilkinson 1993; Kormendy & Kennicutt 2004). At radii +well inside co-rotation, gas is expected to fall toward +the center. +The molecular gas distribution in barred +galaxies is typically very concentrated in the center (e.g. +Kormendy & Kennicutt 2004), while Figure 1 clearly +shows the lack of CO emission in the innermost regions +of JO201. George et al. (2019) attribute the CO cavity +to AGN feedback, which ionizes the molecular hydro- +gen (i.e. radiative feedback) and sweeps the gas from +the center (i.e. mechanical feedback). The connection +between nuclear activity and the gas distribution and +kinematics is specifically tackled in the companion pa- +per (Mingozzi et al. to be submitted). +The CO velocity field of JO201 (2nd panel in the top +row of Fig. 1) shows that the galaxy is kinematically lop- +sided, meaning that the velocity gradient in the receding +and approaching sides of the disc are significantly differ- +ent from each other (e.g. Richter & Sancisi 1994; Swa- +ters et al. 1999; Schoenmakers 1999; Shafi et al. 2015). +For this reason, we modeled the approaching side and +receding side separately. We compare the observations +with our best-fit models in Fig. 4, where the left and the +right panels are for the approaching and receding sides +of the disc, respectively. The first and second rows in +Fig. 4 are the position-velocity diagrams (PVDs) along +the major and minor axis of the disc, respectively. Our +rotating disc model can reproduce reasonably well the +observations, indicating that the molecular gas in the +disk preserved its original rotation, despite the interac- +tion with the ICM. There is however some gas, which is + +10 +Bacchini et al. +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [kpc] +0 +50 +100 +150 +200 +250 +Rotation velocity [km/s] +Bar region +2nd fit +3rd fit +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [kpc] +20 +30 +40 +50 +60 +70 +80 +Inclination [degrees] +Bar region +2nd fit +Median +3rd fit +± MAD +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [kpc] +160 +170 +180 +190 +200 +210 +Position angle [degrees] +Bar region +2nd fit +Median +3rd fit +± MAD +0h41m32s +31s +30s +29s +-9°15'30" +45" +16'00" +RA (ICRS) +Dec (ICRS) +1" +JO201 - Data +5 kpc +150 +100 +50 +0 +50 +100 +150 +VLOS [km/s] +0h41m32s +31s +30s +29s +RA (ICRS) +JO201 - Model +150 +100 +50 +0 +50 +100 +150 +VLOS [km/s] +0h41m32s +31s +30s +29s +RA (ICRS) +JO201 - Residuals +40 +20 +0 +20 +40 +Data-Model [km/s] +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +R [arcsec] +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +R [arcsec] +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +R [arcsec] +Figure 3. Top row: stellar velocity field (left), its best-fit model (center), and residual map (right) for JO201. The white +star indicates the disc center. The black curves are the iso-velocity contours with steps of 50 km s−1. The thick black contour +indicates Vsys. The white contours in the left panel shows the best-fit model on the data. The bar and the circle in the bottom +left and right corners respectively show the physical scale and the PSF of the observations. Bottom row: rotation velocity (left), +inclination (center) , and position angle (right) as a function of the galactocentric distance for the best-fit models of the stellar +velocity field. The grey dashed area indicates the region influenced by the stellar bar. The empty circles and the red points are +for the 2nd and the 3rd steps of our procedure (see Sect. 4.1), respectively. The dashed black lines and the grey area indicate +the median and the median absolute deviation, respectively. +indicated by the red arrow in Fig. 4, moving with lower +velocities than those predicted by the model. Since this +gas is located at galactocentric distances smaller than +the bar length, its anomalous kinematics is plausibly +due to the bar influence. +By exploring the parameter space, we found that +the best-fit value of the CO velocity dispersion is not +well-constrained for the outermost ring, likely because +of the low S/N. For R ≲ 5 kpc, we obtain σCO ≈ +25 − 40 km s−1, which can be explained by the non- +circular motions due to the stellar bar. Outside the bar +regions, we find σCO ≈ 20 km s−1, which is about a fac- +tor 2 higher than the typical values of the molecular gas +velocity dispersion in local isolated, unbarred galaxies +(e.g. Bacchini et al. 2020a). This enhancement of σCO +may be due to ram pressure increasing the molecular gas +turbulence, either directly or by enhancing the star for- +mation rate (SFR; see Sect. 5.5 for further discussion). +We note that the best-fit values of radial velocity are +consistent with zero, suggesting that the inclusion of +radial motions does not significantly improve the fit. +Hence, these values should be taken with caution. The +direction (either inward or outward) of these radial flows +cannot be determined unless the near/far sides of the +galaxy are known. This can be inferred by assuming that +spiral arms trail the galaxy rotation. Based on the RGB +image shown by (Bellhouse et al. 2017), the direction of +spiral arms indicate that JO201 rotates clockwise. Then, +in 3DB’s convention (Di Teodoro & Peek 2021), radial +motions with Vrad < 0 point inward, while those with +Vrad > 0 point outward. Taken at face value, the inflow +radial velocities at R ≲ 5 kpc are Vrad ≳ −10 km s−1, +which is comparable with the average values measured in +the inner regions of nearby spiral galaxies (Di Teodoro & +Peek 2021). Beyond the bar region, the radial outflow +with Vrad ≳ 20 km s−1is consistent with being caused +by ram pressure. However, since non-circular motions +can be induced by any perturbation of the gravitational +potential, we cannot exclude a different origin (e.g. Sell- +wood & S´anchez 2010). +In Fig. 5 (top left), we compare the circular velocities +inferred from the kinematics of the stellar and molecular +gas disks. The stellar circular velocity was obtained from +the rotation velocity shown in Fig. 3 by correcting for +the contribution of pressure support (asymmetric drift + +Molecular gas kinematics in jellyfish galaxies +11 +10 +5 +0 +5 +10 +Offset ["] +300 +200 +100 +0 +100 +VLOS [km/s] += 178° +Model fitted on the approaching side +10 +5 +0 +5 +10 +Offset ["] +300 +200 +100 +0 +100 +VLOS [km/s] += 180° +Model fitted on the receding side +10.0 +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +Offset ["] +300 +200 +100 +0 +100 +VLOS [km/s] += 268° +10.0 +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +Offset ["] +300 +200 +100 +0 +100 +VLOS [km/s] += 270° +0 +2 +4 +6 +8 +40 +60 +i [deg] +0 +2 +4 +6 +8 +40 +60 +i [deg] +0 +2 +4 +6 +8 +180 +200 +PA [deg] +0 +2 +4 +6 +8 +180 +200 +PA [deg] +0 +2 +4 +6 +8 +R [kpc] +0 +50 +Vrad [km/s] +Outflow +Inflow +0 +2 +4 +6 +8 +R [kpc] +0 +50 +Vrad [km/s] +Outflow +Inflow +200 +100 +0 +100 +200 +300 +VLOS (km/s) +10 +5 +0 +5 +10 +R [kpc] +200 +100 +0 +100 +200 +300 +VLOS (km/s) +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +R [kpc] +200 +100 +0 +100 +200 +300 +VLOS (km/s) +10 +5 +0 +5 +10 +R [kpc] +200 +100 +0 +100 +200 +300 +VLOS (km/s) +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +R [kpc] +JO201 +Figure 4. Best-fit models of the molecular gas kinematics for JO201 using CO(1–0) emission line observations. The left and the +right panels are for the approaching and the receding sides of the disc (the other side is shaded), respectively. The first and the +second rows show the PVD along the major and the minor axis, respectively. The observed CO(1–0) emission is shown in blue +with black and grey contours, while the red contours show the best-fit model. All the contours are at 2nσch with n = 1, ..., 10 +and σch = 0.7 mJy/beam. The yellow points indicate the projected rotation curves of the best-fit models. The vertical blue +dotted lines and the red arrows indicate the bar extent and the gas with anomalous kinematics (see text), respectively. In the +last three rows, the panels show the profiles of inclination, PA, and radial velocity of the best-fit models. The red points are +the parameters from the 1st fitting step and the dark-red lines are the regularized profiles (see Sect. 4.2). The orange and green +areas in the bottom panels indicate whether positive/negative values for Vrad mean radial gas outflow/inflow. + +12 +Bacchini et al. +0 +5 +10 +15 +0 +100 +200 +300 +Vcirc [km/s] +JO201 +CO, app. side +CO, rec. side +Stars +5 +10 +0 +100 +200 +300 +JO204 +CO +Stars +0 +5 +10 +15 +20 +R [kpc] +0 +100 +200 +300 +Vcirc [km/s] +JO206 +CO +Stars +0 +10 +20 +R [kpc] +0 +100 +200 +300 +400 +JW100 +CO, app. side +CO, rec. side +Stars +Figure 5. Comparison of the stellar (yellow stars) and the +CO (darkred points) circular velocities for each galaxy in +our sample. +When the approaching side and the receding +side of the disc are modelled separately, the resulting pro- +files are shown by the blue squares and the red diamonds, +respectively. +correction)2. Within R ≈ 5 kpc, the molecular gas and +stellar circular velocities essentially coincide, but the ve- +locity gradient is too shallow for a massive galaxy with a +bulge such as JO201. As mentioned above, this is likely +due to the stellar bar aligned along the major axis (e.g. +Dicaire et al. 2008; Sellwood & S´anchez 2010; Randria- +mampandry et al. 2015). Beyond the bar regions, the +stellar velocity field of JO201 (Fig. 3) does not show any +indication of the kinematic lopsidedness, contrary to the +molecular gas. The receding side of the CO disc reaches +slightly higher rotation velocities than the stellar disc, +while the approaching side shows a lower velocity gradi- +ent. The kinematic lopsidedness in disc galaxies is typ- +ically ascribed to a triaxial potential, as in the presence +of a stellar bar (e.g. Swaters et al. 1999; Schoenmakers +1999; Rhee et al. 2004). However, the regular kinematics +of the stellar disk seems to suggest that the molecular +gas kinematics may be perturbed by some mechanisms +that does not affect the stars, like ram pressure. The +distortions appear in the outer parts of the galaxy and +in a symmetric way, as expected for face-on ram pressure +(Kronberger et al. 2008b; Bellhouse et al. 2017, 2019). +Indeed, JO201 is moving towards the observer at very +2 We used Eq. A1 from Posti et al. (2018) for the asymmetric +drift velocity and Eq. 3 from Mancera Pi˜na et al. (2021a) for the +central velocity dispersion. We note that the asymmetric drift +correction is essentially negligible for JO201 and all the other +galaxies, as expected given their high rotation velocities. +high velocity (see Table 1), implying that the approach- +ing and receding sides of the disk move in the opposite +and the same direction as the ram pressure, respectively. +The ram pressure is thus expected to decelerate the ap- +proaching side of the molecular disk and accelerate the +receding side (Kronberger et al. 2008b), which is consis- +tent with our results. +We conclude that the molecular gas kinematics in the +inner regions of JO201 is mainly dominated by the per- +turbations due to the stellar bar. +In the outer parts +of the molecular gas disk, the kinematic lopsidedness +and radial motions (although rather uncertain) seem to +suggest that the molecular gas in JO201 is affected by +face-on ram pressure, despite other mechanisms cannot +be ruled out. +5.2. JO204 +Before focusing on the molecular gas kinematics, it +is worth noting two features of the stellar component. +First, the innermost isophotes in the I-band image +(Fig. 2) show a boxy shape that might indicate the pres- +ence of a bar seen with high inclination with respect to +the line-of-sight (e.g. Combes et al. 1990; Bettoni & Gal- +letta 1994; Kuijken & Merrifield 1995; Bureau & Free- +man 1999; Merrifield & Kuijken 1999). Unfortunately, +dust obscuration and projection effects hamper any at- +tempt to estimate the bar length from the optical im- +ages. The second feature is visible in the stellar velocity +field, which shows slightly distorted iso-velocity contours +in the innermost regions (see Fig. 11). This S-shaped +feature indicates the presence of non-circular motions +and, possibly, of a stellar bar (e.g. Bettoni 1989; Vau- +terin & Dejonghe 1997; Kormendy & Kennicutt 2004; +Cort´es et al. 2015, Sanchez-Garcia et al. in preparation). +Indeed, the top right panel of Fig. 11 shows residuals of +a few tens of km s−1in the regions close to the disc mi- +nor axis, indicating that a model based on circular orbits +cannot fully reproduce the observations. +In Fig. 1, the CO total intensity map shows that the +molecular gas distribution is strongly concentrated in +the center and two arm-like structures. Both features +are typical of barred galaxies (e.g. Athanassoula 1992a; +Bureau & Freeman 1999; Merrifield & Kuijken 1999; Ko- +rmendy & Kennicutt 2004; Hogarth et al. 2021). The +iso-velocity contours in the CO velocity field (Fig. 1) are +visibly distorted in the inner regions, which typically in- +dicates the presence of non-circular motions. The CO +velocity dispersion is also quite high in the inner regions +of disk. +To model the CO kinematics, we modified the pro- +cedure described in Sec. 4.2. +After various tests, we +decided to fit the data by fixing all the geometrical pa- + +Molecular gas kinematics in jellyfish galaxies +13 +rameters and leaving free Vrot, Vrad, and σCO, as this +choice improved the comparison between the model and +the data. We run 3DB using the reverse option, which +performs the fit starting from the most external ring +and then moving inward. This algorithm was designed +to improve the fit for galaxies seen with high inclination +(i ≳ 70°). Fig. 6 compares the best-fit model with the +observations. In Fig. 6, the PVD along the major axis +shows that, overall, the model reproduces well the ob- +servations, except for two features. The first feature is +indicated by the red arrow and consists in gas moving at +VLOS ≈ 270 km s−1at about 1 kpc from the center. One +possibility is that this CO emission is probing the inner +rise of the rotation curve of the molecular disk if the nu- +clear CO distribution is asymmetric between approach- +ing and receding sides (see for example Lelli et al. 2022). +Alternatively, this central emission can be ascribed to +complex non-circular motions caused by the stellar bar +(the so-called x2 orbits aligned perpendicular to the bar; +see Sancisi et al. 1979; Kormendy & Kennicutt 2004; +Randriamampandry et al. 2015) or even feedback from +stars or the AGN (e.g. Stuber et al. 2021). Our finding +is in agreement with the results obtained by Deb et al. +(2020), who revealed an absorption feature in the HI +global profile that could be explained by high-velocity +gas seen in front of the continuum emission from the +AGN. The second feature that is not reproduced by the +model is indicated by the magenta arrows. This emis- +sion comes from gas that moves at lower velocities than +those predicted by our model. A possible explanation +is that this gas is decelerated by the ram pressure com- +ponent in the sky plane. We note that the PVD along +the major axis (top panel of Fig. 6) shows the charac- +teristic X-shaped pattern, that is typical of a bar seen +at high inclination along the line of sight (e.g. Bureau +& Freeman 1999; Merrifield & Kuijken 1999; Kormendy +& Kennicutt 2004; Alatalo et al. 2013; Hogarth et al. +2021). +In Fig. 6, the PVD along the minor axis shows ex- +tended gas emission in the lower left quadrant, which +can only be reproduced by a model with strong radial +motions of Vrad ≳ 50 km s−1. However, the same feature +is not observed in the upper right quadrant, indicating +that the CO distribution (or kinematics) is asymmetric. +Unfortunately, JO204 does not have visible spiral arms +and the dust lanes in the optical MUSE and Hubble +Space Telescope (HST) images (Gullieuszik et al. 2017, +Gullieuszik et al., submitted) do not allow to clearly +identify the nearest side of the disk. +Hence, we can- +not infer the direction of rotation and radial motions. +Since these non-circular motions are detected in the in- +ner parts of the galaxy, one may speculate that they +10 +5 +0 +5 +10 +Offset ["] +300 +200 +100 +0 +100 +200 +300 +VLOS [km/s] += 327° +JO204 +10.0 +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +10.0 +Offset ["] +300 +200 +100 +0 +100 +200 +300 +VLOS [km/s] += 237° +1 +2 +3 +4 +5 +6 +7 +8 +R [kpc] +0 +100 +Vrad [km/s] +300 +200 +100 +0 +100 +200 +300 +VLOS (km/s) +10 +5 +0 +5 +10 +R [kpc] +300 +200 +100 +0 +100 +200 +300 +VLOS (km/s) +7.5 +5.0 +2.5 +0.0 +2.5 +5.0 +7.5 +R [kpc] +Figure 6. Same as Fig. 4 but for JO204. The model fitting is +performed on the approaching and receding sides at the same +time, and the inclination and PA are fixed to the values of +75° and 327°, respectively. The arrows indicate the gas with +anomalous kinematics (see text). Here σch = 0.9 mJy/beam. +are inflows driven by a stellar bar. The magnitude of +radial motions in JO204 is consistent with the values es- +timated in simulated barred galaxies (see Randriamam- +pandry et al. 2015), but about 2 times higher than those +measured by Di Teodoro & Peek (2021) in the atomic +gas of real barred galaxies. +The blue arrow indicates +another feature that is not reproduced by our model. +However, since this emission is very faint, it is unclear +whether this is real emission from the galaxy. We find +σCO ≈ 10 km s−1, but this value is rather uncertain +based on the inspection of the parameters space. + +14 +Bacchini et al. +Overall, our model can reproduce the molecular gas +kinematics in JO204 reasonably well, despite the com- +plexities due to the stellar bar and/or ram pressure. Fig- +ure 5 (top right panel) shows that the CO circular veloc- +ity is compatible within the uncertainties with the stel- +lar circular velocity for R ≳ 3 kpc, indicating that the +molecular gas has retained most of its original motion. +The difference in the innermost regions is likely due to +a combination of dust extinction and resolution effects, +which may smooth the gradient of the stellar rotation +curve (see Sect. 4). Similarly to the case of JO201, we +conclude that the molecular gas kinematics is rotation- +dominated in JO204. +Then, the stellar bar plays an +important role in perturbing the gas kinematics in the +inner regions and driving radial gas flows, while the ram +pressure may be a possible explanation for the gas with +anomalous kinematics in the outskirts of JO204. +5.3. JO206 +The I-band images in Fig. 2 shows that JO206 hosts +a stellar bulge. In addition, the elongated shape of the +isophotes in the inner regions indicate the presence of +a stellar bar aligned with the disk major axis, as for +JO201. +The CO total intensity map in Fig. 1 shows +that the morphology of the molecular gas distribution is +asymmetric, suggesting that the ram pressure is directed +towards south-east. Hence, we expect the molecular gas +kinematics to be particularly complex in JO206, as a +consequence of the combined effects of bar perturbations +and ram pressure stripping. Indeed, the iso-velocity con- +tours in the CO velocity field (2nd panel in the third row +in Fig. 1) are even more distorted than those of JO204, +indicating stronger perturbations. +In the light of these considerations, we modeled only +the regions of the molecular gas disk within R ≈ 6 ′′, +which essentially corresponds to the extent of its re- +ceding side (Fig. 1). We also adjusted the position of +the kinematic center with respect to the optical center +by applying a small shift of ≈ 0.23 ′′. Figure 7 shows +that our model is able to reproduce reasonably well the +observations, except for the molecular gas with anoma- +lous kinematics. The CO emission indicated by the blue +arrow (offset ≈ 10 − 20 ′′and -200 km s−1≲ VLOS ≲ +−100 km s−1) belongs to the tail of stripped gas (see also +Fig. 1). Probably, this portion of gas disc was detached +from the approaching side of the disc and decelerated by +ram pressure. Another possibility is that the ram pres- +sure displaced a portion of the disc at larger radii, thus +its rotation velocity is lowered by conservation of angular +momentum. The red arrow indicates the receding side +of the molecular gas disk that has not been stripped. In +the PVD along the minor axis (second panel in Fig. 7), +the CO emission indicated by the orange arrow belongs +to the molecular gas in the stripped tail left behind by +the galaxy. +By exploring the parameter space, we found that the +best-fit value of σCO is well constrained only for the +2nd and 3rd rings, where we obtained σCO ≈ 30 − +40 km s−1(see also Fig. 1). These values are higher than +those typically measured in nearby galaxies using CO +observations with similar resolution (e.g. Bacchini et al. +2020a), which is not surprising given the complex kine- +matics of the molecular gas in JO206. +We tentatively detect radial motions of ≈ −25 km s−1. +However, including radial motions does not improve the +best-fit model, as indicated by the fact that radial veloc- +ities are consistent with zero. In JO206, the spiral arms +can be identified from the MUSE optical images (Pog- +gianti et al. 2017b; Bellhouse et al. 2019). +Assuming +trailing spiral arms, we can infer that the galaxy ro- +tates clockwise, implying that Vrad < 0 for inflows and +Vrad > 0 for outflows. +The bottom left panel in Fig. 5 shows that the stellar +and CO circular velocities coincide within R ≈ 6.5 kpc. +As in the case of JO201 (see Sect. 5.1), the slow rise of +the inner rotation curve is plausibly due to the fact that +the stellar bar is aligned parallel to the disk major axis. +This suggest that the kinematics of both the molecular +gas and the stars is dominated by the stellar bar in these +regions3. We also note that the position and velocity of +the molecular gas emission indicated by the red arrow +(Fig. 7, top panel) is perfectly compatible with the cir- +cular velocity profile of the stars (see Fig. 5). On the +contrary, the stripped tail indicated by the blue arrow +(Fig. 7, top panel) is decelerated of about 70km s−1with +respect to the stars at the same galactocentric distance, +suggesting that this material is decoupled from the disk +rotation. The asymmetric perturbations on the molec- +ular gas kinematics and the displaced kinematic center +are signatures of edge-on ram pressure stripping (Kron- +berger et al. 2008b). +Overall, we conclude that the molecular gas kinemat- +ics is mainly perturbed by the stellar bar. +Taken at +face value, the radial motion in JO206 can be inter- +preted as a gas inflows driven by the bar, as they are +within its region of influence. We also find clear indi- +cations of edge-on ram pressure stripping based on the +presence of molecular gas emission detached from the +galaxy and with kinematics decoupled from the main +disk. This suggests that the ram pressure has a stronger +3 This result is consistent with the preliminary estimate of the bar +length obtain by Sanchez-Garcia et al. (in preparation), that is +approximately 6.7 kpc. + +Molecular gas kinematics in jellyfish galaxies +15 +10 +0 +10 +20 +Offset ["] +300 +200 +100 +0 +100 +200 +300 +400 +VLOS [km/s] += 120° +JO206 +10 +5 +0 +5 +10 +Offset ["] +300 +200 +100 +0 +100 +200 +300 +400 +VLOS [km/s] += 210° +0 +1 +2 +3 +4 +5 +6 +7 +60 +80 +i [deg] +0 +1 +2 +3 +4 +5 +6 +7 +100 +150 +PA [deg] +0 +1 +2 +3 +4 +5 +6 +7 +R [kpc] +50 +0 +Vrad [km/s] +Outflow +Inflow +300 +200 +100 +0 +100 +200 +300 +VLOS (km/s) +10 +0 +10 +20 +R [kpc] +300 +200 +100 +0 +100 +200 +300 +VLOS (km/s) +10 +5 +0 +5 +10 +R [kpc] +Figure 7. Same as Fig. 4 but for JO206. The model fitting +is performed on both the approaching and receding sides, at +the same time. Here σch = 0.8 mJy/beam. +effect on the molecular gas disk in JO206 than in JO201 +and JO204. +5.4. JW100 +The I-band image in Fig. 2 seems to suggest that +JW100 hosts a stellar bulge. Moreover, despite the fact +that JW100 is strongly affected by projection effects and +dust obscuration, we can tentatively identify the pres- +ence of a warp in the stellar disk based on the S-shape +of the isophotes. Regarding the stellar kinematics, our +model can successfully reproduce the observations and +recover the stellar rotation curve (see Fig. 13 in Append- +inx A). However, we found quite high residuals in a ring +at R ≈ 6 ′′and in the disk outskirts. After various trails, +we found no significant improvement in the residual map +using different geometrical parameters and allowing for +radial motions. This can be due to the combined effects +of low S/N of the observations in the disk outskirts, +strong projection effects due to the radial variation in +disk inclination and PA, and asymmetric dust lanes (see +Gullieuszik et al., submitted). Since JW100 belongs to +a substructure of three galaxies in Abel 2626, we cannot +rule out that the stellar kinematics is perturbed by tidal +interaction. +Figure 1 clearly shows that the distribution and kine- +matics of the molecular gas in JW100 are strongly dis- +turbed, suggesting that the ram pressure component in +the sky plane is directed westward and contributes in +pushing the gas outside the stellar disk. +The case of +JW100 may seem surprising, as the high mass of this +galaxy is expected to produce a strong gravitational pull +that can efficiently contrast the ram pressure stripping. +However, the supersonic speed and the close proximity +to the cluster center (see Table 1) indicate that JW100 is +in the most favorable conditions for experiencing strong +ram pressure. Indeed, the iso-velocity contours in the +CO velocity field (2nd panel in the last row in Fig. 1) are +even more distorted than the rest of the GASP-ALMA +sample. Also the 2nd moment map suggests that the +molecular gas velocity dispersion is very high through- +out the disk, indicating very complex line profiles. +We attempt to model the gas kinematics with the aim +of understanding whether some gas has retained its orig- +inal rotation. Hence, we run 3DB using the reverse +option for highly inclined galaxies. +We fixed the in- +clination and PA at the values obtained for the stellar +disc and shifted the kinematic center ≈ 1.6′′westward +from the optical center. +We performed the fitting on +the approaching and receding sides separately, as the +PVD along the major axis is asymmetric with respect +to Vsys. The resulting best-fit models are shown in the +left and right panels of Fig. 8, respectively. The models +well reproduce the observations, except for the emission +indicated by the blue arrow in the minor axis PVD. This +emission comes from the molecular gas in the tail that is +left behind by JW100 as it falls into the cluster receding +from the observer. Indeed, the bottom panel in Fig. 8 +shows the profiles of the radial velocity, which reaches +Vrad ≈ 50 − 100 km s−1in the disk outskirts. Taken at +face value, the radial velocities are larger than the Vrad +values of a few km s−1that are typically measured in + +16 +Bacchini et al. +nearby galaxies (e.g. Di Teodoro & Peek 2021). Also +the skewed shape of the CO emission in the PVD along +the minor axis (blue arrows in Fig. 8) seem to suggest +the presence of radial motions. We note that the emis- +sion from the stripped gas indicated by the blue arrow +reaches even higher velocities (∆VLOS ≈ −200 km s−1) +than the model emission. The dust lanes in the HST im- +ages (Gullieuszik et al., submitted) seem to suggest that +the west side of JW100 is the nearest one and the galaxy +is rotating clockwise. This implies that Vrad > 0 indi- +cates an outward radial flow. This is in agreement with +the morphology of the molecular gas disk, that clearly +suggests an ongoing large-scale removal of molecular gas +by ram pressure. We obtained σCO ≈ 30 − 60 km s−1, +possibly indicating that the molecular gas is highly tur- +bulent (see also Fig. 1). +This is not surprising given +the strong perturbations affecting the molecular gas in +JW100. +The bottom right panel in Fig. 5 compares the circu- +lar velocity profile of the stellar disk and the molecular +gas in JW100. We recall that different kinematic centers +were used for the stellar and molecular gas components. +Interestingly, the circular velocity of the approaching +side of the molecular gas disk coincides with that of +the stellar disk, flattening at Vcirc ≈ 300 km s−1. On +the contrary, the circular velocity of the receding side +keeps on growing and reaches Vcirc ≈ 400 km s−1. Sim- +ilarly to JO206, the asymmetric perturbations on the +molecular gas disk and the displaced kinematic center +are signatures of edge-on ram pressure stripping (Kro- +nberger et al. 2008b). This is consistent with the fact +that JW100 is falling into the cluster at very high ve- +locity and its disk is seen at high inclination by the ob- +server. We note that the circular velocity of JW100 rises +less steeply than what is typically found in galaxies with +similar stellar mass. Moreover, Figure 2 seems to sug- +gest that JW100 potentially hosts a stellar bulge, which +is expected to produce high circular velocities in the in- +nermost regions of the galaxy. The shallow and rather +unusual gradient of the circular velocity might be ex- +plained by either the presence of a stellar bar aligned +with the major axis or a dark matter halo with lower- +than-average concentration (Randriamampandry et al. +2015). +Disentangling between these two possibilities +would require a dedicated mass modelling of the system +which goes beyond the purpose of this study. +In conclusion, our results indicate that the molecular +gas disk of JW100 is dramatically affected by ram pres- +sure. The morphology and kinematics of the molecular +gas disk indicate strong ram pressure both in the sky +plane and along the line of sight. Gravitational inter- +actions with other members in the same substructure +may play a role, but we speculate that these effects are +milder than ram pressure, as the stellar component is +not as strongly perturbed as the molecular gas. +5.5. Summary +In Sect. 5.1, we showed that the molecular gas kine- +matics in JO201 is dominated by the bar for R ≲ 5 kpc. +At larger galactocentric distances, the rotation curve +gradient is modified by some physical mechanisms, that +is possibly face-on ram pressure. We note that, since +JO201 belongs to a cluster substructure, we cannot ex- +clude a different origin (e.g. +tidal interactions). +We +do not find clear signature of ram pressure stripping +(i.e. molecular gas removed from the main disk), but +we tentatively identify outward radial flow of gas plau- +sibly due to ram pressure. Both within and beyond the +region influenced by the bar, the velocity dispersion of +the molecular gas is enhanced with respect to the typ- +ical values measured in field galaxies (Bacchini et al. +2020b), suggesting strong turbulence motions. Beyond +the bar region, this enhancement is about a factor 2 +(σCO ≈20 km s−1), which can be either a direct or indi- +rect consequence of ram pressure increasing (or a com- +bination of both). Indeed, the ram pressure can directly +increase the gas kinetic energy, but it can also enhance +the SFR (e.g. Kronberger et al. 2008a) and thus the ve- +locity dispersion due to the transferring of the supernova +energy to the gas (Bacchini et al. 2020b). The SFR of +JO201 is about 2 times higher than field galaxies with +similar stellar mass, which supports the second scenario. +In Sect. 5.2, we found clear signatures of the pres- +ence of a bar in JO204 based on the molecular gas dis- +tribution (central concentration, arm-like overdensities) +and kinematics (PVD shape, radial motions), and the +stellar kinematics (velocity field). Radial motions are +clearly present, but we cannot identify their direction +with the available observations. A bar-driven inflow is a +reasonable hypothesis. The molecular gas kinematics is +dominated by rotation, while the ram pressure plays a +secondary role and we do not find signatures of ram pres- +sure stripping. We detect molecular gas with anomalous +kinematics that is compatible with being decelerated by +face-on ram pressure. We also find some molecular gas +with high velocity in the central regions of the galaxy, +but its origin is unclear. The estimated values of the +molecular gas velocity dispersion (σCO ≈10 km s−1) are +rather uncertain, but overall consistent with those typ- +ical of field galaxies (Bacchini et al. 2020b). This is in +line with the fact that JO204 does not show enhanced +SFR with respect to field galaxies (Vulcani et al. 2018). +Similarly to JO201, the molecular gas kinematics in +JO206 is dominated by the bar for R ≲ 6 kpc (Sect. 5.3). + +Molecular gas kinematics in jellyfish galaxies +17 +15 +10 +5 +0 +5 +10 +15 +Offset ["] +200 +0 +200 +400 +600 +VLOS [km/s] += 269° +Model fitted on the approaching side +15 +10 +5 +0 +5 +10 +15 +Offset ["] +200 +0 +200 +400 +600 +VLOS [km/s] += 269° +Model fitted on the receding side +10 +5 +0 +5 +10 +15 +Offset ["] +200 +0 +200 +400 +600 +VLOS [km/s] += 179° +10 +5 +0 +5 +10 +15 +Offset ["] +200 +0 +200 +400 +600 +VLOS [km/s] += 179° +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +R [kpc] +0 +100 +Vrad [km/s] +Outflow +Inflow +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +R [kpc] +0 +100 +Outflow +Inflow +600 +400 +200 +0 +200 +400 +VLOS (km/s) +10 +0 +10 +R [kpc] +600 +400 +200 +0 +200 +400 +VLOS (km/s) +10 +5 +0 +5 +10 +15 +600 +400 +200 +0 +200 +400 +VLOS (km/s) +10 +0 +10 +R [kpc] +600 +400 +200 +0 +200 +400 +VLOS (km/s) +10 +5 +0 +5 +10 +15 +JW100 +Figure 8. Same as Fig. 4 but for JW100. In the left and right panels, the model fitting is respectively done for the approaching +and receding sides, and the kinematic center is ≈ 1.6′′westward from the optical center. The inclination and PA are fixed to the +values of 77° and 179°, respectively. Here σch = 1.1 mJy/beam. +This seems also to drive inward radial flows of molecular +gas. We find clear signatures of edge-on ram pressure +stripping for R > 6 kpc. +The velocity dispersion of +the molecular gas is significantly enhanced (σCO ≈30- +40 km s−1), a likely consequence of the complex motions +due to the combined influence of the bar and the ram +pressure. +In JW100 (Sect. 5.4), the molecular gas distribution +and kinematics indicate ongoing ram pressure stripping. +Since JW100 belongs to a cluster substructure and prob- +ably hosts a warped stellar disk, we cannot exclude that +gravitational interactions may also play a role. We de- +tect radial motions that are compatible with an outward +gas flow. The shallow gradient of the circular velocity +in the inner regions of JW100 may be explained by a +stellar bar aligned with the disk major axis, although +other possibilities cannot be excluded (e.g. combination +of resolution effects and ram pressure, low-concentration +dark matter halo). The velocity dispersion of the molec- +ular gas is quite enhanced (σCO ≈30-60 km s−1), but the +SFR of JW100 is about 2.5 times lower than field galax- +ies with similar stellar mass (Vulcani et al. 2018). These +properties favours the scenario in which the gas turbu- +lence is directly enhanced by the ram pressure. +6. COMPARISON WITH PREVIOUS WORKS +6.1. The connection between stellar bars and AGN +At least three out of four galaxies in the GASP-ALMA +sample host a stellar bar. In the case of JW100, the +presence of the bar is difficult to confirm but arguably +plausible, given that about 60% of the disk galaxies with +10 ≲ log(M⋆/M⊙) ≲ 11 host a stellar bar (Aguerri et al. +2009; Masters et al. 2012; D´ıaz-Garc´ıa et al. 2016). The +fraction of barred galaxies may be even higher in the +central regions of clusters (e.g. Andersen 1996; Barazza +et al. 2009; M´endez-Abreu et al. 2012; Lansbury et al. +2014; Alonso et al. 2014), but this is likely due to the +increase of early-type galaxies (which are less likely to + +18 +Bacchini et al. +host a bar) with decreasing clustercentric distance (e.g. +Tawfeek et al. 2022). +The non-axisymmetric potential of a stellar bar can +trigger radial inflow of gas by inducing torques and +shocks (e.g. Athanassoula 1992b,a; Sellwood & Wilkin- +son 1993; Sellwood 2014; Marasco et al. 2018), often en- +hancing the molecular gas concentration in the central +regions of galaxies (e.g. Sheth et al. 2005; Regan et al. +2006; Yu et al. 2022). +Bar-driven inflows of gas may +play an important role in fueling the central black hole +and triggering the AGN activity (e.g. Alonso et al. 2013, +2018; Rosas-Guevara et al. 2020; Silva-Lima et al. 2022). +However, this topic is debated and some authors showed, +for instance, that the excess of AGN-hosts among barred +galaxies vanishes when the dependence on the galaxy +stellar mass and color are taken into account (e.g. Ho +et al. 1997; Lee et al. 2012). Moreover, there are indica- +tions that the bar alone is not always sufficient to feed +the black hole in an efficient way, requiring the contribu- +tion of other mechanisms (Combes 2008; Sellwood 2014; +Fanali et al. 2015; Galloway et al. 2015). This is because, +in order to feed the black hole, the molecular gas in the +disk needs to lose almost all its angular momentum (e.g. +Sellwood & Wilkinson 1993; Krolik 1999; Sellwood 2014; +Capelo et al. 2022). Using a sample of spiral galaxies, +Alonso et al. (2014) found that their location within the +group or cluster influences both the AGN and bar frac- +tion. This result suggests that the external mechanisms +affecting galaxies in dense environments may give a sig- +nificant contribution to triggering the AGN activity. For +the specific case of jellyfish galaxies, this external mech- +anism might be the interaction with the ICM (Poggianti +et al. 2017a; Peluso et al. 2022). Indeed, the ram pres- +sure can not only compress the gas in the disk, but it +can also make the gas lose its angular momentum and +eventually move inward (Ramos-Mart´ınez et al. 2018; +Ricarte et al. 2020; Farber et al. 2022, Akerman et al. +submitted). +Thus, the gas could easily reach the re- +gion influenced by the bar, which may drag it further +inward, perhaps reaching the black hole. This picture is +in agreement with the enhanced fraction of AGN in ram +pressure stripped galaxies (e.g. Poggianti et al. 2017a; +Peluso et al. 2022, but see Roman-Oliveira et al. 2019 +for a different conclusion). The relative importance of +internal mechanisms, such as bars, and external pro- +cesses, such as ram pressure, in fueling the AGN activity +is a compelling and debated topic (Alonso et al. 2018; +Kim & Choi 2020; Boselli et al. 2022a), which would +require higher statistics than the four galaxies studied +here. This task goes beyond the scope of this paper and +we leave it to future studies. +6.2. Comparison with Virgo galaxies +There is growing evidence that the ram pressure can +affect the molecular gas in cluster galaxies. In this sec- +tion, we compare the GASP-ALMA sample with the +galaxies in Virgo cluster, in order to increase the statis- +tics. Other cases of ram pressure affecting the molecu- +lar disk have been found in Coma (J´achym et al. 2017), +Norma (J´achym et al. 2014), and Fornax (Zabel et al. +2019), just to mention some examples. +Lee et al. (2017) studied the molecular gas kinemat- +ics in three disk galaxies. +These author did not find +clear signs of molecular gas stripping, but they showed +that the morphological and kinematical disturbances in +the molecular and atomic gas disks are closely related +to each other, suggesting that the molecular gas can be +also affected by strong ram pressure even if it is not +globally stripped. They also ascribed the perturbation +in the innermost regions of their galaxies to the pres- +ence of a stellar bar, rather than to ram pressure. As +discussed in Sects. 5.1 and 5.2, our results for JO201 +and JO204 are consistent with Lee et al. (2017)’s find- +ings. Interestingly, all the molecular gas disks in Lee +et al. (2017) sample are kinematically lopsided, at least +to some degree, indicating that the molecular gas was +either accelerated or decelerated by ram pressure (see +also Cramer et al. 2020). They also found CO clumps +that are kinematically decoupled from the molecular gas +disk, suggesting that this gas was displaced by the ram +pressure, as in the case of JO206 (see Sect. 5.3). +Recently, Brown et al. (2021) presented the first re- +sults of the Virgo Environment Traced in CO (VER- +TICO) survey, which maps CO emission in 51 galaxies +in Virgo cluster using ALMA. This authors derived the +mass-size relation for the molecular gas disk for VER- +TICO galaxies. +They showed that the scatter in the +relation is minimized if the disk size is defined as the ra- +dius where the azimuthally-averaged H2 surface density +reaches ΣH2 = 5 M⊙pc−2 (R5). As a control sample, +Brown et al. (2021) used the field galaxies in the Het- +erodyne Receiver Array CO Line Extragalactic Survey +(HERACLES, Leroy et al. 2009). Brown et al. (2021) +found that the best-fit relations for the galaxies in Virgo +and in the field are consistent. They concluded that R5- +MH2 relation does not depend on the environment, in +agreement with the studies on the HI size–mass relation +(Wang et al. 2016; Stevens et al. 2019), and that galax- +ies affected by environmental processes move along the +size-mass relation rather than deviating from it. +In Fig. 9, we compare our galaxies with the R5-MH2 re- +lation from Brown et al. (2021). We assumed the Milky +Way CO-to-H2 conversion factor for consistency with +Brown et al. (2021). Our galaxies are within the scatter + +Molecular gas kinematics in jellyfish galaxies +19 +of the R5-MH2 relation derived by Brown et al. (2021), +confirming that this scaling relation does not show any +clear dependence on environment, even in extreme ram +pressure cases as the galaxies of our sample. We note +that the GASP-ALMA sample tend to be slightly below +the relation, suggesting that the molecular gas distri- +bution is more centrally concentrated than the average +for these samples. +This can be due to the combined +effect of stellar bars, which tend to increase the gas den- +sity in the inner regions of the disk (e.g. Kormendy & +Kennicutt 2004), and ram pressure, which compresses +the molecular disk. The GASP-ALMA galaxies stand +out against the other two samples because of their high +MH2, being up to ≈ 0.5 dex more massive than the Virgo +and control samples (see also Moretti et al. 2020a,b). On +the other hand, it has been shown that our galaxies are +up to 50% deficient in HI with respect to field galax- +ies with similar mass and size (Ramatsoku et al. 2019, +2020; Deb et al. 2020; Healy et al. 2021; Deb et al. 2022). +Taken together, these results suggest an unusually ef- +ficient conversion of HI to H2 (Moretti et al. 2020b). +These properties are in agreement with the recent re- +sults by Zabel et al. (2022) for Virgo galaxies. +They +found that the galaxies showing clear signs of ongoing +ram pressure stripping affecting the HI disk are from +H2-normal to H2-rich. This was interpreted as an indi- +cation that ram pressure stripping is not effective at re- +ducing global molecular gas fractions on the timescales +in which such features are still clearly visible. This is +likely because the stripping is less severe on H2 than on +HI, as the molecular gas is denser and more gravitation- +ally bound to the galaxy than the atomic gas (Lee et al. +2017; Boselli et al. 2022a). The atomic gas disk of our +galaxies show indeed signs of truncation and the ram +pressure stripping is much more dramatic than for the +molecular gas disk (Ramatsoku et al. 2019, 2020; Deb +et al. 2020, 2022) +6.3. Baryonic Tully-Fisher relation +Rotation curves of disk galaxies are typically used +to derive fundamental scaling relations (e.g. Verheijen +2001; Lelli et al. 2016b; Ponomareva et al. 2017; Io- +rio et al. 2017; Posti et al. 2018; Mancera Pi˜na et al. +2021a,b; Di Teodoro & Peek 2021). In particular, the +baryonic Tully-Fisher relation (hereafter BTFR) is a +very tight correlation between the mass of baryons and +the rotation velocity of galaxies, being a useful test-case +to check the robustness of the stellar rotation derived +in this work. +The BTFR is usually derived using HI +rotation curves, as the atomic gas disk is the most ex- +tended baryonic component, allowing to probe the flat +part of the galaxy rotation curve. In jellyfish galaxies, +6.5 +7.0 +7.5 +8.0 +8.5 +9.0 +9.5 +10.0 +10.5 +11.0 +log[MH2/M +] +1.0 +0.5 +0.0 +0.5 +1.0 +1.5 +log[R5/kpc] +Molecular gas size-mass relation using R5 +Brown+2021 +± +JO201 +JO204 +JO206 +JW100 +Virgo +Field +Figure 9. +Molecular gas mass-size relation based on R5 +(see Sect. 6.2). +Each galaxy in the GASP-ALMA sample +is indicated by a colored symbol. Grey diamonds and pink +points show galaxies in the Virgo cluster and nearby field +galaxies (see text), respectively. +The best-fit relation ob- +tained by Brown et al. (2021) for the VERTICO and HER- +ACLES samples is shown by the dash-dotted line, while its +scatter is represented by the shaded area. +the atomic gas disk is stripped or truncated by the ram +pressure and the HI kinematics is strongly perturbed, +hampering the usage of HI observations to study scal- +ing relations. +The ionized gas is not a good alterna- +tive to HI, as not only it is less spatially extended but +also more diffuse and thus easier to strip. The results +of this work suggest that the molecular gas is more re- +silient to ram pressure, but its spatial extend is still very +limited. Therefore, the stellar component is likely the +best way to derive scaling relations in the case of jelly- +fish galaxies, provided that observations with high spa- +tial resolution and sensitivity are available. The GASP +sample is ideal to perform this exercise, thanks to the +high spatial resolution and sensitivity of the MUSE ob- +servations. +In Fig. 10, we show that the galaxies in +the GASP-ALMA sample closely follow the BTFR de- +rived by Di Teodoro et al. (2021) using a sample of +about 200 galaxies from high-mass disks to dwarf galax- +ies (Lelli et al. 2019). We calculated the velocity in the +flat part of the rotation curve (Vflat) as the average of +the outermost 5 measurements of the stellar rotation ve- +locity (see Fig. 5). The baryonic mass was calculated as +Mbar = M⋆ + 1.33 (MHI + MH2), where the masses of +atomic gas (MHI) and molecular gas (MH2) are taken +from Table 1 and the multiplicative factor 1.36 accounts +for the Helium content. +We checked that considering +only the gas mass within the stellar disk or the total gas +mass (including the gas in the stripped tail) does not + +20 +Bacchini et al. +1.00 +1.25 +1.50 +1.75 +2.00 +2.25 +2.50 +2.75 +3.00 +log[Vflat/(km/s)] +7 +8 +9 +10 +11 +12 +13 +log[Mbar/M +] +Baryonic Tully-Fisher relation +Best-fit (Di Teodoro+21) +y = 3.6x + 2.49 +JO201 +JO204 +JO206 +JW100 += 0.1 dex +Lelli+19 +Di Teodoro+21 +Figure 10. +Baryonic Tully-Fisher relation for the four +galaxies in the GASP-ALMA sample (triangles, diamond, +and cross). The grey points show the spiral and dwarf galax- +ies from Lelli et al. (2019), while the pink stars are for the +massive disks from Di Teodoro et al. (2021). +The dashed +line is their best-fit relation with the shaded area showing +the orthogonal intrinsic scatter. +change the results, as the gas mass is largely dominated +by molecular gas component which is mostly concen- +trated within the galaxy disk. +We also checked that +our galaxies fall on the stellar Tully-Fisher relation (not +shown here), which is not surprising given that the bary- +onic mass is largely dominated by the stellar component. +These simple tests indicate that the GASP sample can +be used to study important scaling relations of baryons +and, potentially, dark matter (e.g. Lelli et al. 2016b; +Posti et al. 2018; Mancera Pi˜na et al. 2021a; Di Teodoro +et al. 2022). This will be addressed in future work by +fully exploiting the richness and quality of the MUSE +observations obtained with the GASP survey (Bacchini +et al., in preparation). +7. SUMMARY AND CONCLUSIONS +Galaxies in dense environments, such as clusters, can +be affected by the ram pressure due to the interaction +with the ICM. This process leaves the stellar disk es- +sentially unperturbed, but it can have a strong impact +on the morphology, kinematics and overall gas content, +with important consequences on the evolution of galax- +ies (Cortese et al. 2021). In this context, jellyfish galax- +ies are ideal cases to study the impact of ram pressure +on the gas components. In this work, we have studied +the distribution and kinematics of the molecular gas in +a sample of four jellyfish galaxies in the GASP sample +(Poggianti et al. 2017b). These galaxies were observed +with ALMA to detect the CO(1–0) and CO(2–1) emis- +sion Moretti et al. (2020a,b). Thanks to the wealth of +information obtained from MUSE and ALMA observa- +tions provided by the GASP survey, we could analyze +the stellar and CO distribution and kinematics. We used +the software 3DB based on the tilted-ring approach to +model the stellar velocity field and the CO emission line +datacubes. We identified the gas with anomalous veloc- +ity that cannot be explained by a rotation disk and used +the information on the stellar distribution and kinemat- +ics to understand the origin of this anomalous gas. We +reached the following conclusions. +1. At least three (JO201, JO204, and JO206) out +of four galaxies in the GASP-ALMA sample are +barred. +In JO201 and JO206, the bars aligned +with the disk major axis are visible in the I-band +images and explain the shallow gradient of the cir- +cular velocity in the inner regions of these galax- +ies. In JO204, various bar signatures are found in +the distribution of the molecular gas and the kine- +matics of both the molecular gas and the stars. In +JW100, the disk inclination and dust obscuration +do not allow us to unambiguously identify a bar. +2. The molecular gas kinematics in JO201 and JO206 +is mainly dominated by non-circular motions in +the region influenced by the bar, while the ram +pressure becomes important at larger galactocen- +tric distance. The ram pressure plays a secondary +role for the molecular gas kinematics of JO204, +which is mainly rotation-dominated. Clear indi- +cations of molecular gas stripping are found in +two galaxies, JO206 and JW100. In JO206, some +molecular gas is detached and kinematically de- +coupled from the main disk. In JW100, the molec- +ular gas disk is displaced with respect to the stel- +lar disk and its kinematics is strongly perturbed. +Since JO201 and JW100 belong to cluster sub- +structures, other mechanisms than ram pressure +might be also at play. +3. Radial flows of molecular gas are manifestly +present in two galaxies (JO204 and JW100), but +this is less clear in the other two objects (JO201 +and JO206). +These gas flows are consistent +with being bar-driven inflows in JO206 and ram +pressure-driven outflows in JO201 and JW100. +The direction of radial motions remains unclear +for JO204. +4. The molecular gas velocity dispersion in JO201, +JO206, and JW100 tends to be enhanced with re- +spect to field galaxies, suggesting that the gas is +very turbulent. In the case of JO201 and JO206, + +Molecular gas kinematics in jellyfish galaxies +21 +this can be explained by the complex motions in- +duced by the bar within its region of influence +or, beyond the bar region, by the the ram pres- +sure, which can enhance the gas turbulence di- +rectly and/or by increasing the SFR. In the case +of JW100, the most likely scenario is that the gas +turbulence is directly enhanced by the ram pres- +sure. +5. Our galaxies fall within the scatter of the molec- +ular gas mass-size relation derived for field and +Virgo galaxies by (Brown et al. 2021), confirming +that the relation is essentially independent of en- +vironment. +Overall, our results are consistent with a scenario in +which the molecular gas is affected by ram pressure on +different timescales and less severely than the atomic +and ionized gas, likely because the molecular gas is +denser and more gravitationally bound to the galaxy +than the other gas phases. The galaxies in the GASP- +ALMA sample host an AGN (Poggianti et al. 2017a; +Peluso et al. 2022). Both stellar bars and ram pressure +can contribute to efficiently drive molecular gas towards +the galaxy center, possibly feeding the central black hole +and triggering the nuclear activity. Since the relative im- +portance of bars and ram pressure in fueling the AGN +has not been fully understood yet, we hope that our +work may foster future studies. In this work, we have +shown that high-resolution observations of the molecular +gas emission can be very useful in identifying stellar bars +and radial flows. Future effort will be devoted to fur- +ther study the bar-AGN connection by expanding the +GASP-ALMA sample. Moreover, we have shown that +the GASP sample is potentially very useful to investi- +gate the impact of environment on scaling relations of +galaxies. In future work, we plan to address this topic +by fully exploiting the richness and quality of the MUSE +observations obtained with the GASP survey. +This paper makes use of the following ALMA data: +ADS/JAO.ALMA#2017.1.00496.S. ALMA is a partner- +ship of ESO (representing its member states), NSF +(USA) and NINS (Japan), together with NRC (Canada) +and NSC and ASIAA (Taiwan), in cooperation with the +Republic of Chile. The Joint ALMA Observatory is op- +erated by ESO, AUI/NRAO and NAOJ. CB acknowl- +edges financial support from the European Research +Council (ERC) under the European Union’s Horizon +2020 research and innovation programme (grant agree- +ment No. +833824). +CB would like to thank E. Di +Teodoro, F. Rizzo, and F. Fraternali, for useful discus- +sions and the help with the kinematic modeling. +Facility: ALMA, MUSE@VLT +Software: +3DBarolo (Di Teodoro & Fraternali +2015), APLpy (Robitaille & Bressert 2012), Astropy (As- +tropy Collaboration et al. 2013, 2018). +APPENDIX +A. BEST-FIT MODELS OF THE STELLAR VELOCITY FIELD +This section provides the best-fit model of the stellar disk for JO204, JO206, and JW100. +The top panels in +Figs. 11, 12, and 13 show the observed stellar velocity field, the best-fit model, and the map of the residuals. The +bottom panels display the stellar rotation curve and the radial profiles of the PA and inclination. Overall, the stellar +kinematics is well reproduced by our models. However, the residual map of JO204 clearly shows a pattern in the +central regions of the disk, which likely indicates the presence of a stellar bar (see also Sect. 5.2). The residual map +of JW100 highlights some regions where the model does not fully reproduces the observations. The origin of these +differences is tricky to understand and may be due to asymmetric dust observation or the warp along the line of sight, +or both (see also Sect. 5.4). +REFERENCES +Aguerri, J. A. L., M´endez-Abreu, J., & Corsini, E. M. 2009, +A&A, 495, 491, doi: 10.1051/0004-6361:200810931 +Alatalo, K., Davis, T. A., Bureau, M., et al. 2013, MNRAS, +432, 1796, doi: 10.1093/mnras/sts299 +Alonso, M. S., Coldwell, G., & Lambas, D. G. 2013, A&A, +549, A141, doi: 10.1051/0004-6361/201220117 +Alonso, S., Coldwell, G., Duplancic, F., Mesa, V., & +Lambas, D. G. 2018, A&A, 618, A149, +doi: 10.1051/0004-6361/201832796 +Alonso, S., Coldwell, G., & Lambas, D. G. 2014, A&A, 572, +A86, doi: 10.1051/0004-6361/201424523 +Andersen, V. 1996, AJ, 111, 1805, doi: 10.1086/117918 + +22 +Bacchini et al. +0 +2 +4 +6 +8 +10 +12 +R [kpc] +0 +50 +100 +150 +200 +250 +Rotation velocity [km/s] +2nd fit +3rd fit +0 +2 +4 +6 +8 +10 +12 +R [kpc] +70 +72 +74 +76 +78 +80 +Inclination [degrees] +2nd fit +Median +3rd fit +± MAD +0 +2 +4 +6 +8 +10 +12 +R [kpc] +318 +320 +322 +324 +326 +328 +Position angle [degrees] +2nd fit +Median +3rd fit +± MAD +10h13m48.0s 47.5s +47.0s +46.5s +46.0s +-0°54'35" +40" +45" +50" +55" +55'00" +05" +RA (ICRS) +Dec (ICRS) +1" +JO204 - Data +5 kpc +200 +150 +100 +50 +0 +50 +100 +150 +200 +VLOS [km/s] +10h13m48.0s 47.5s +47.0s +46.5s +46.0s +RA (ICRS) +JO204 - Model +200 +150 +100 +50 +0 +50 +100 +150 +200 +VLOS [km/s] +10h13m48.0s 47.5s +47.0s +46.5s +46.0s +RA (ICRS) +JO204 - Residuals +40 +20 +0 +20 +40 +Data-Model [km/s] +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [arcsec] +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [arcsec] +0 +2 +4 +6 +8 +10 +12 +14 +16 +R [arcsec] +Figure 11. Same as Fig. 3 but for JO204. +0 +5 +10 +15 +20 +R [kpc] +0 +50 +100 +150 +200 +250 +Rotation velocity [km/s] +2nd fit +3rd fit +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +20.0 +R [kpc] +35 +40 +45 +50 +55 +60 +65 +70 +Inclination [degrees] +2nd fit +Median +3rd fit +± MAD +0.0 +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +20.0 +R [kpc] +106 +108 +110 +112 +114 +116 +118 +120 +122 +Position angle [degrees] +2nd fit +Median +3rd fit +± MAD +21h13m49s +48s +47s +46s +2°28'45" +30" +15" +RA (ICRS) +Dec (ICRS) +1" +JO206 - Data +5 kpc +200 +150 +100 +50 +0 +50 +100 +150 +200 +VLOS [km/s] +21h13m49s +48s +47s +46s +RA (ICRS) +JO206 - Model +200 +150 +100 +50 +0 +50 +100 +150 +200 +VLOS [km/s] +21h13m49s +48s +47s +46s +RA (ICRS) +JO206 - Residuals +40 +20 +0 +20 +40 +Data-Model [km/s] +0 +5 +10 +15 +20 +R [arcsec] +0 +5 +10 +15 +20 +R [arcsec] +0 +5 +10 +15 +20 +R [arcsec] +Figure 12. Same as Fig. 3 but for JO206. + +Molecular gas kinematics in jellyfish galaxies +23 +0 +5 +10 +15 +20 +25 +R [kpc] +0 +50 +100 +150 +200 +250 +300 +350 +400 +Rotation velocity [km/s] +2nd fit +3rd fit +0 +5 +10 +15 +20 +25 +R [kpc] +67.5 +70.0 +72.5 +75.0 +77.5 +80.0 +82.5 +Inclination [degrees] +2nd fit +Median +3rd fit +± MAD +0 +5 +10 +15 +20 +25 +R [kpc] +177 +178 +179 +180 +181 +182 +183 +184 +Position angle [degrees] +2nd fit +Median +3rd fit +± MAD +23h36m26s +25s +24s +21°09'15" +00" +08'45" +RA (ICRS) +Dec (ICRS) +1" +JW100 - Data +5 kpc +300 +200 +100 +0 +100 +200 +300 +VLOS [km/s] +23h36m26s +25s +24s +RA (ICRS) +JW100 - Model +300 +200 +100 +0 +100 +200 +300 +VLOS [km/s] +23h36m26s +25s +24s +RA (ICRS) +JW100 - Residuals +40 +20 +0 +20 +40 +Data-Model [km/s] +0 +5 +10 +15 +20 +R [arcsec] +0 +5 +10 +15 +20 +R [arcsec] +0 +5 +10 +15 +20 +R [arcsec] +Figure 13. Same as Fig. 3 but for JW100. + +24 +Bacchini et al. +Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., +et al. 2013, A&A, 558, A33, +doi: 10.1051/0004-6361/201322068 +Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., +et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f +Athanassoula, E. 1992a, MNRAS, 259, 345, +doi: 10.1093/mnras/259.2.345 +—. 1992b, MNRAS, 259, 328, doi: 10.1093/mnras/259.2.328 +Bacchini, C., Fraternali, F., Iorio, G., & Pezzulli, G. 2019a, +A&A, 622, A64, doi: 10.1051/0004-6361/201834382 +Bacchini, C., Fraternali, F., Iorio, G., et al. 2020a, A&A, +641, A70, doi: 10.1051/0004-6361/202038223 +Bacchini, C., Fraternali, F., Pezzulli, G., & Marasco, A. +2020b, A&A, 644, A125, +doi: 10.1051/0004-6361/202038962 +Bacchini, C., Fraternali, F., Pezzulli, G., et al. 2019b, A&A, +632, A127, doi: 10.1051/0004-6361/201936559 +Barazza, F. D., Jablonka, P., Desai, V., et al. 2009, A&A, +497, 713, doi: 10.1051/0004-6361/200810352 +Barnes, J. E., & Hernquist, L. 1992, ARA&A, 30, 705, +doi: 10.1146/annurev.aa.30.090192.003421 +Begeman, K. G. 1987, PhD thesis, - +Bellhouse, C., Jaff´e, Y. L., Hau, G. K. T., et al. 2017, ApJ, +844, 49, doi: 10.3847/1538-4357/aa7875 +Bellhouse, C., Jaff´e, Y. L., McGee, S. L., et al. 2019, +MNRAS, 485, 1157, doi: 10.1093/mnras/stz460 +Bettoni, D. 1989, AJ, 97, 79, doi: 10.1086/114958 +Bettoni, D., & Galletta, G. 1994, A&A, 281, 1 +Biviano, A., Moretti, A., Paccagnella, A., et al. 2017, A&A, +607, A81, doi: 10.1051/0004-6361/201731289 +Boselli, A., Cortese, L., Boquien, M., et al. 2014, A&A, +564, A67, doi: 10.1051/0004-6361/201322313 +Boselli, A., Fossati, M., & Sun, M. 2022a, A&A Rv, 30, 3, +doi: 10.1007/s00159-022-00140-3 +—. 2022b, A&A Rv, 30, 3, doi: 10.1007/s00159-022-00140-3 +Boselli, A., & Gavazzi, G. 2006, PASP, 118, 517, +doi: 10.1086/500691 +Boselli, A., Epinat, B., Contini, T., et al. 2019, A&A, 631, +A114, doi: 10.1051/0004-6361/201936133 +Bosma, A. 1981, AJ, 86, 1825, doi: 10.1086/113063 +Bravo-Alfaro, H., Cayatte, V., van Gorkom, J. H., & +Balkowski, C. 2000, AJ, 119, 580, doi: 10.108.f6/301194 +Brown, T., Wilson, C. D., Zabel, N., et al. 2021, ApJS, 257, +21, doi: 10.3847/1538-4365/ac28f5 +Bureau, M., & Freeman, K. C. 1999, AJ, 118, 126, +doi: 10.1086/300922 +Byrd, G., & Valtonen, M. 1990, ApJ, 350, 89, +doi: 10.1086/168362 +Capelo, P. R., Feruglio, C., Hickox, R. C., & Tombesi, F. +2022, arXiv e-prints, arXiv:2211.00765. +https://arxiv.org/abs/2211.00765 +Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138, +doi: 10.1086/381875 +Cayatte, V., van Gorkom, J. H., Balkowski, C., & Kotanyi, +C. 1990, AJ, 100, 604, doi: 10.1086/115545 +Chabrier, G. 2003, PASP, 115, 763, doi: 10.1086/376392 +Chamaraux, P., Balkowski, C., & Gerard, E. 1980, A&A, +83, 38 +Chung, A., van Gorkom, J. H., Kenney, J. D. P., Crowl, H., +& Vollmer, B. 2009, AJ, 138, 1741, +doi: 10.1088/0004-6256/138/6/1741 +Chung, A., van Gorkom, J. H., Kenney, J. D. P., & +Vollmer, B. 2007, ApJL, 659, L115, doi: 10.1086/518034 +Combes, F. 2008, in Formation and Evolution of Galaxy +Bulges, ed. M. Bureau, E. Athanassoula, & B. Barbuy, +Vol. 245, 151–160, doi: 10.1017/S1743921308017535 +Combes, F., Debbasch, F., Friedli, D., & Pfenniger, D. +1990, A&A, 233, 82 +Cort´es, J. R., Kenney, J. D. P., & Hardy, E. 2015, ApJS, +216, 9, doi: 10.1088/0067-0049/216/1/9 +Cortese, L., Catinella, B., & Smith, R. 2021, PASA, 38, +e035, doi: 10.1017/pasa.2021.18 +Cortese, L., Marcillac, D., Richard, J., et al. 2007, MNRAS, +376, 157, doi: 10.1111/j.1365-2966.2006.11369.x +Cowie, L. L., & Songaila, A. 1977, Nature, 266, 501, +doi: 10.1038/266501a0 +Cramer, W. J., Kenney, J. D. P., Cortes, J. R., et al. 2020, +ApJ, 901, 95, doi: 10.3847/1538-4357/abaf54 +Davis, T. A., Alatalo, K., Bureau, M., et al. 2013, MNRAS, +429, 534, doi: 10.1093/mnras/sts353 +Deb, T., Verheijen, M. A. W., Gullieuszik, M., et al. 2020, +MNRAS, 494, 5029, doi: 10.1093/mnras/staa968 +Deb, T., Verheijen, M. A. W., Poggianti, B. M., et al. 2022, +MNRAS, 516, 2683, doi: 10.1093/mnras/stac2441 +Di Teodoro, E. M., & Fraternali, F. 2015, MNRAS, 451, +3021, doi: 10.1093/mnras/stv1213 +Di Teodoro, E. M., & Peek, J. E. G. 2021, arXiv e-prints, +arXiv:2110.01618. https://arxiv.org/abs/2110.01618 +Di Teodoro, E. M., Posti, L., Ogle, P. M., Fall, S. M., & +Jarrett, T. 2021, MNRAS, 507, 5820, +doi: 10.1093/mnras/stab2549 +Di Teodoro, E. M., Posti, L., Fall, S. M., et al. 2022, arXiv +e-prints, arXiv:2207.02906. +https://arxiv.org/abs/2207.02906 +D´ıaz-Garc´ıa, S., Salo, H., Laurikainen, E., & +Herrera-Endoqui, M. 2016, A&A, 587, A160, +doi: 10.1051/0004-6361/201526161 + +Molecular gas kinematics in jellyfish galaxies +25 +Dicaire, I., Carignan, C., Amram, P., et al. 2008, MNRAS, +385, 553, doi: 10.1111/j.1365-2966.2008.12868.x +Fanali, R., Dotti, M., Fiacconi, D., & Haardt, F. 2015, +MNRAS, 454, 3641, doi: 10.1093/mnras/stv2247 +Farber, R. J., Ruszkowski, M., Tonnesen, S., & Holguin, F. +2022, MNRAS, 512, 5927, doi: 10.1093/mnras/stac794 +Fasano, G., Vanzella, E., Dressler, A., et al. 2012, MNRAS, +420, 926, doi: 10.1111/j.1365-2966.2011.19798.x +Franchetto, A., Vulcani, B., Poggianti, B. M., et al. 2020, +ApJ, 895, 106, doi: 10.3847/1538-4357/ab8db9 +Fumagalli, M., Krumholz, M. R., Prochaska, J. X., Gavazzi, +G., & Boselli, A. 2009, ApJ, 697, 1811, +doi: 10.1088/0004-637X/697/2/1811 +Galloway, M. A., Willett, K. W., Fortson, L. F., et al. 2015, +MNRAS, 448, 3442, doi: 10.1093/mnras/stv235 +Gavazzi, G., Consolandi, G., Gutierrez, M. L., Boselli, A., +& Yoshida, M. 2018, A&A, 618, A130, +doi: 10.1051/0004-6361/201833427 +George, K., Poggianti, B. M., Gullieuszik, M., et al. 2018, +MNRAS, 479, 4126, doi: 10.1093/mnras/sty1452 +George, K., Poggianti, B. M., Bellhouse, C., et al. 2019, +MNRAS, 487, 3102, doi: 10.1093/mnras/stz1443 +Giovanelli, R., & Haynes, M. P. 1985, ApJ, 292, 404, +doi: 10.1086/163170 +Gullieuszik, M., Poggianti, B. M., Moretti, A., et al. 2017, +ApJ, 846, 27, doi: 10.3847/1538-4357/aa8322 +Gullieuszik, M., Poggianti, B. M., McGee, S. L., et al. 2020, +ApJ, 899, 13, doi: 10.3847/1538-4357/aba3cb +Gunn, J. E., & Gott, J. Richard, I. 1972, ApJ, 176, 1, +doi: 10.1086/151605 +Haynes, M. P., Giovanelli, R., & Chincarini, G. L. 1984, +ARA&A, 22, 445, +doi: 10.1146/annurev.aa.22.090184.002305 +Healy, J., Deb, T., Verheijen, M. A. W., et al. 2021, A&A, +654, A173, doi: 10.1051/0004-6361/202141377 +Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, +ApJ, 487, 591, doi: 10.1086/304643 +Hogarth, L. M., Saintonge, A., Cortese, L., et al. 2021, +MNRAS, 500, 3802, doi: 10.1093/mnras/staa3512 +Iorio, G., Fraternali, F., Nipoti, C., et al. 2017, MNRAS, +466, 4159, doi: 10.1093/mnras/stw3285 +J´achym, P., Combes, F., Cortese, L., Sun, M., & Kenney, J. +D. P. 2014, ApJ, 792, 11, +doi: 10.1088/0004-637X/792/1/11 +J´achym, P., Sun, M., Kenney, J. D. P., et al. 2017, ApJ, +839, 114, doi: 10.3847/1538-4357/aa6af5 +Jaff´e, Y. L., Poggianti, B. M., Moretti, A., et al. 2018, +MNRAS, 476, 4753, doi: 10.1093/mnras/sty500 +Jedrzejewski, R. I. 1987, MNRAS, 226, 747, +doi: 10.1093/mnras/226.4.747 +Kamphuis, P., J´ozsa, G. I. G., Oh, S. . H., et al. 2015, +MNRAS, 452, 3139, doi: 10.1093/mnras/stv1480 +Kenney, J. D. P., van Gorkom, J. H., & Vollmer, B. 2004, +AJ, 127, 3361, doi: 10.1086/420805 +Kim, M., & Choi, Y.-Y. 2020, ApJL, 901, L38, +doi: 10.3847/2041-8213/abb66f +Knapen, J. H., Shlosman, I., & Peletier, R. F. 2000, ApJ, +529, 93, doi: 10.1086/308266 +K¨oppen, J., J´achym, P., Taylor, R., & Palouˇs, J. 2018, +MNRAS, 479, 4367, doi: 10.1093/mnras/sty1610 +Kormendy, J., & Kennicutt, Robert C., J. 2004, ARA&A, +42, 603, doi: 10.1146/annurev.astro.42.053102.134024 +Krolik, J. H. 1999, Active galactic nuclei : from the central +black hole to the galactic environment +Kronberger, T., Kapferer, W., Ferrari, C., +Unterguggenberger, S., & Schindler, S. 2008a, A&A, 481, +337, doi: 10.1051/0004-6361:20078904 +Kronberger, T., Kapferer, W., Schindler, S., et al. 2006, +A&A, 458, 69, doi: 10.1051/0004-6361:20064976 +Kronberger, T., Kapferer, W., Unterguggenberger, S., +Schindler, S., & Ziegler, B. L. 2008b, A&A, 483, 783, +doi: 10.1051/0004-6361:200809387 +Kuijken, K., & Merrifield, M. R. 1995, ApJL, 443, L13, +doi: 10.1086/187824 +Lansbury, G. B., Lucey, J. R., & Smith, R. J. 2014, +MNRAS, 439, 1749, doi: 10.1093/mnras/stu049 +Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, +237, 692, doi: 10.1086/157917 +Lee, B., Chung, A., Tonnesen, S., et al. 2017, MNRAS, 466, +1382, doi: 10.1093/mnras/stw3162 +Lee, G.-H., Woo, J.-H., Lee, M. G., et al. 2012, ApJ, 750, +141, doi: 10.1088/0004-637X/750/2/141 +Lee, S., Sheen, Y.-K., Yoon, H., Jaff´e, Y., & Chung, A. +2022, MNRAS, 517, 2912, doi: 10.1093/mnras/stac2821 +Lelli, F., Davis, T. A., Bureau, M., et al. 2022, MNRAS, +516, 4066, doi: 10.1093/mnras/stac2493 +Lelli, F., McGaugh, S. S., & Schombert, J. M. 2016a, AJ, +152, 157, doi: 10.3847/0004-6256/152/6/157 +—. 2016b, ApJL, 816, L14, +doi: 10.3847/2041-8205/816/1/L14 +Lelli, F., McGaugh, S. S., Schombert, J. M., Desmond, H., +& Katz, H. 2019, MNRAS, 484, 3267, +doi: 10.1093/mnras/stz205 +Lelli, F., Verheijen, M., & Fraternali, F. 2014, A&A, 566, +A71, doi: 10.1051/0004-6361/201322657 +Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, +2782, doi: 10.1088/0004-6256/136/6/2782 +Leroy, A. K., Walter, F., Bigiel, F., et al. 2009, AJ, 137, +4670, doi: 10.1088/0004-6256/137/6/4670 + +26 +Bacchini et al. +Loni, A., Serra, P., Kleiner, D., et al. 2021, A&A, 648, A31, +doi: 10.1051/0004-6361/202039803 +Luber, N., M¨uller, A., van Gorkom, J. H., et al. 2022, ApJ, +927, 39, doi: 10.3847/1538-4357/ac469a +Mancera Pi˜na, P. E., Posti, L., Fraternali, F., Adams, E. +A. K., & Oosterloo, T. 2021a, A&A, 647, A76, +doi: 10.1051/0004-6361/202039340 +Mancera Pi˜na, P. E., Posti, L., Pezzulli, G., et al. 2021b, +A&A, 651, L15, doi: 10.1051/0004-6361/202141574 +Mapelli, M., Moore, B., & Bland-Hawthorn, J. 2008, +MNRAS, 388, 697, doi: 10.1111/j.1365-2966.2008.13421.x +Marasco, A., Fraternali, F., van der Hulst, J. M., & +Oosterloo, T. 2017, A&A, 607, A106, +doi: 10.1051/0004-6361/201731054 +Marasco, A., Oman, K. A., Navarro, J. F., Frenk, C. S., & +Oosterloo, T. 2018, MNRAS, 476, 2168, +doi: 10.1093/mnras/sty354 +Masters, K. L., Nichol, R. C., Haynes, M. P., et al. 2012, +MNRAS, 424, 2180, +doi: 10.1111/j.1365-2966.2012.21377.x +M´endez-Abreu, J., S´anchez-Janssen, R., Aguerri, J. A. L., +Corsini, E. M., & Zarattini, S. 2012, ApJL, 761, L6, +doi: 10.1088/2041-8205/761/1/L6 +Merluzzi, P., Busarello, G., Dopita, M. A., et al. 2013, +MNRAS, 429, 1747, doi: 10.1093/mnras/sts466 +Merrifield, M. R., & Kuijken, K. 1999, A&A, 345, L47. +https://arxiv.org/abs/astro-ph/9904158 +Merritt, D. 1983, ApJ, 264, 24, doi: 10.1086/160571 +Moretti, A., Paladino, R., Poggianti, B. M., et al. 2018, +MNRAS, 480, 2508, doi: 10.1093/mnras/sty2021 +—. 2020a, ApJ, 889, 9, doi: 10.3847/1538-4357/ab616a +—. 2020b, ApJL, 897, L30, doi: 10.3847/2041-8213/ab9f3b +Moretti, A., Radovich, M., Poggianti, B. M., et al. 2022, +ApJ, 925, 4, doi: 10.3847/1538-4357/ac36c7 +M¨uller, A., Poggianti, B. M., Pfrommer, C., et al. 2021, +Nature Astronomy, 5, 159, +doi: 10.1038/s41550-020-01234-7 +Nulsen, P. E. J. 1982, MNRAS, 198, 1007, +doi: 10.1093/mnras/198.4.1007 +Olling, R. P. 1996, AJ, 112, 457, doi: 10.1086/118028 +Peluso, G., Vulcani, B., Poggianti, B. M., et al. 2022, ApJ, +927, 130, doi: 10.3847/1538-4357/ac4225 +Poggianti, B. M., & the GASP team. 2022, arXiv e-prints, +arXiv:2211.12297. https://arxiv.org/abs/2211.12297 +Poggianti, B. M., Fasano, G., Omizzolo, A., et al. 2016, AJ, +151, 78, doi: 10.3847/0004-6256/151/3/78 +Poggianti, B. M., Jaff´e, Y. L., Moretti, A., et al. 2017a, +Nature, 548, 304, doi: 10.1038/nature23462 +Poggianti, B. M., Moretti, A., Gullieuszik, M., et al. 2017b, +ApJ, 844, 48, doi: 10.3847/1538-4357/aa78ed +Poggianti, B. M., Gullieuszik, M., Tonnesen, S., et al. 2019, +MNRAS, 482, 4466, doi: 10.1093/mnras/sty2999 +Ponomareva, A. A., Verheijen, M. A. W., Peletier, R. F., & +Bosma, A. 2017, MNRAS, 469, 2387, +doi: 10.1093/mnras/stx1018 +Posti, L., Fraternali, F., Di Teodoro, E. M., & Pezzulli, G. +2018, A&A, 612, L6, doi: 10.1051/0004-6361/201833091 +Radovich, M., Poggianti, B., Jaff´e, Y. L., et al. 2019, +MNRAS, 486, 486, doi: 10.1093/mnras/stz809 +Ramatsoku, M., Serra, P., Poggianti, B. M., et al. 2019, +MNRAS, 487, 4580, doi: 10.1093/mnras/stz1609 +—. 2020, A&A, 640, A22, +doi: 10.1051/0004-6361/202037759 +Ramos-Mart´ınez, M., G´omez, G. C., & P´erez-Villegas, ´A. +2018, MNRAS, 476, 3781, doi: 10.1093/mnras/sty393 +Randriamampandry, T. H., Combes, F., Carignan, C., & +Deg, N. 2015, MNRAS, 454, 3743, +doi: 10.1093/mnras/stv2147 +Regan, M. W., Thornley, M. D., Vogel, S. N., et al. 2006, +ApJ, 652, 1112, doi: 10.1086/505382 +Rhee, G., Valenzuela, O., Klypin, A., Holtzman, J., & +Moorthy, B. 2004, ApJ, 617, 1059, doi: 10.1086/425565 +Ricarte, A., Tremmel, M., Natarajan, P., & Quinn, T. 2020, +ApJL, 895, L8, doi: 10.3847/2041-8213/ab9022 +Richter, O. G., & Sancisi, R. 1994, A&A, 290, L9 +Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical +Plotting Library in Python, Astrophysics Source Code +Library, record ascl:1208.017. http://ascl.net/1208.017 +Roediger, E., & Hensler, G. 2008, A&A, 483, 121, +doi: 10.1051/0004-6361:200809438 +Roman-Oliveira, F. V., Chies-Santos, A. L., Rodr´ıguez del +Pino, B., et al. 2019, MNRAS, 484, 892, +doi: 10.1093/mnras/stz007 +Rosas-Guevara, Y., Bonoli, S., Dotti, M., et al. 2020, +MNRAS, 491, 2547, doi: 10.1093/mnras/stz3180 +Sancisi, R., Allen, R. J., & Sullivan, W. T., I. 1979, A&A, +78, 217 +Schoenmakers, R. H. M. 1999, PhD thesis, University of +Groningen, Netherlands +Schr¨oder, A., Drinkwater, M. J., & Richter, O. G. 2001, +A&A, 376, 98, doi: 10.1051/0004-6361:20010997 +Scott, T. C., Bravo-Alfaro, H., Brinks, E., et al. 2010, +MNRAS, 403, 1175, +doi: 10.1111/j.1365-2966.2009.16204.x +Sellwood, J. A. 2014, Reviews of Modern Physics, 86, 1, +doi: 10.1103/RevModPhys.86.1 +Sellwood, J. A., & S´anchez, R. Z. 2010, MNRAS, 404, 1733, +doi: 10.1111/j.1365-2966.2010.16430.x +Sellwood, J. A., & Wilkinson, A. 1993, Reports on Progress +in Physics, 56, 173, doi: 10.1088/0034-4885/56/2/001 + +Molecular gas kinematics in jellyfish galaxies +27 +Shafi, N., Oosterloo, T. A., Morganti, R., Colafrancesco, S., +& Booth, R. 2015, MNRAS, 454, 1404, +doi: 10.1093/mnras/stv2034 +Sheth, K., Vogel, S. N., Regan, M. W., Thornley, M. D., & +Teuben, P. J. 2005, ApJ, 632, 217, doi: 10.1086/432409 +Silva-Lima, L. A., Martins, L. P., Coelho, P. R. T., & +Gadotti, D. A. 2022, A&A, 661, A105, +doi: 10.1051/0004-6361/202142432 +Solanes, J. M., Manrique, A., Garc´ıa-G´omez, C., et al. +2001, ApJ, 548, 97, doi: 10.1086/318672 +Sorgho, A., Hess, K., Carignan, C., & Oosterloo, T. A. +2017, MNRAS, 464, 530, doi: 10.1093/mnras/stw2341 +Spekkens, K., & Sellwood, J. A. 2007, ApJ, 664, 204, +doi: 10.1086/518471 +Stevens, A. R. H., Diemer, B., Lagos, C. d. P., et al. 2019, +MNRAS, 490, 96, doi: 10.1093/mnras/stz2513 +Stuber, S. K., Saito, T., Schinnerer, E., et al. 2021, A&A, +653, A172, doi: 10.1051/0004-6361/202141093 +Swaters, R. A., Schoenmakers, R. H. M., Sancisi, R., & van +Albada, T. S. 1999, MNRAS, 304, 330, +doi: 10.1046/j.1365-8711.1999.02332.x +Tawfeek, A. A., Cervantes Sodi, B., Fritz, J., et al. 2022, +ApJ, 940, 1, doi: 10.3847/1538-4357/ac9976 +Tonnesen, S., & Bryan, G. L. 2009, ApJ, 694, 789, +doi: 10.1088/0004-637X/694/2/789 +Vauterin, P., & Dejonghe, H. 1997, MNRAS, 286, 812, +doi: 10.1093/mnras/286.4.812 +Vazdekis, A., S´anchez-Bl´azquez, P., Falc´on-Barroso, J., +et al. 2010, MNRAS, 404, 1639, +doi: 10.1111/j.1365-2966.2010.16407.x +Verheijen, M. A. W. 2001, ApJ, 563, 694, +doi: 10.1086/323887 +Verheijen, M. A. W., & Sancisi, R. 2001, A&A, 370, 765, +doi: 10.1051/0004-6361:20010090 +Vollmer, B., Braine, J., Pappalardo, C., & Hily-Blant, P. +2008, A&A, 491, 455, doi: 10.1051/0004-6361:200810432 +Vulcani, B., Poggianti, B. M., Gullieuszik, M., et al. 2018, +ApJL, 866, L25, doi: 10.3847/2041-8213/aae68b +Wang, J., Koribalski, B. S., Serra, P., et al. 2016, MNRAS, +460, 2143, doi: 10.1093/mnras/stw1099 +Waugh, M., Drinkwater, M. J., Webster, R. L., et al. 2002, +MNRAS, 337, 641, doi: 10.1046/j.1365-8711.2002.05942.x +Yim, K., Wong, T., Howk, J. C., & van der Hulst, J. M. +2011, AJ, 141, 48, doi: 10.1088/0004-6256/141/2/48 +Yim, K., Wong, T., Xue, R., et al. 2014, AJ, 148, 127, +doi: 10.1088/0004-6256/148/6/127 +Yoon, H., Chung, A., Smith, R., & Jaff´e, Y. L. 2017, ApJ, +838, 81, doi: 10.3847/1538-4357/aa6579 +Yu, S.-Y., Kalinova, V., Colombo, D., et al. 2022, A&A, +666, A175, doi: 10.1051/0004-6361/202244306 +Zabel, N., Davis, T. A., Smith, M. W. L., et al. 2019, +MNRAS, 483, 2251, doi: 10.1093/mnras/sty3234 +Zabel, N., Brown, T., Wilson, C. D., et al. 2022, arXiv +e-prints, arXiv:2205.05698. +https://arxiv.org/abs/2205.05698 + diff --git a/99E1T4oBgHgl3EQfUgM7/content/tmp_files/load_file.txt b/99E1T4oBgHgl3EQfUgM7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..6fd034b75dd3045be8dd99b7a439574e75b5de9d --- /dev/null +++ b/99E1T4oBgHgl3EQfUgM7/content/tmp_files/load_file.txt @@ -0,0 +1,3079 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf,len=3078 +page_content='Draft version January 10, 2023 Typeset using LATEX twocolumn style in AASTeX631 3D modeling of the molecular gas kinematics in optically-selected jellyfish galaxies Cecilia Bacchini ,1 Matilde Mingozzi ,2 Bianca M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Alessia Moretti ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Marco Gullieuszik ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Antonino Marasco ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Bernardo Cervantes Sodi ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 Osbaldo S´anchez-Garc´ıa ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 Benedetta Vulcani ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Ariel Werle ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Rosita Paladino ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 and Mario Radovich 1 1INAF - Osservatorio Astronomico di Padova,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' vicolo dell’Osservatorio 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' IT-35122 Padova,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Italy 2Space Telescope Science Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3700 San Martin Drive,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Baltimore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' MD 21218,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' USA 3Istituto de Radioastronom´ıa y Astrof´ısica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Universidad Nacional Aut´onoma de M´exico,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Campus Morelia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3-72, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 58089, Michoac´an, M´exico 4INAF - Istituto di Radioastronomia, via P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gobetti 101, I-40129 Bologna, Italy ABSTRACT Cluster galaxies are subject to the ram pressure exerted by the intracluster medium, which can perturb or even strip away their gas while leaving the stars unperturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We model the distribution and kinematics of the stars and the molecular gas in four late-type cluster galaxies (JO201, JO204, JO206, and JW100), which show tails of atomic and ionized gas indicative of ongoing ram pressure stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We analyze MUSE@VLT data and CO data from ALMA searching for signatures of radial gas flows, ram pressure stripping, and other perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We find that all galaxies, with the possible exception of JW100, host stellar bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Signatures of ram pressure are found in JO201 and JO206, which also shows clear indications of ongoing stripping in the molecular disk outskirts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stripping affects the whole molecular gas disk of JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas kinematics in JO204 is instead dominated by rotation rather than ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also find indications of enhanced turbulence of the molecular gas compared to field galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Large-scale radial flows of molecular gas are present in JO204 and JW100, but more uncertain in JO201 and JO206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We show that our galaxy sample follows the molecular gas mass-size relation, confirming that it is essentially independent of environment even for the most extreme cases of stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our findings are consistent with the molecular gas being affected by ram pressure on different timescales and less severely than the atomic and ionized gas phases, likely because the molecular gas is denser and more gravitationally bound to the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' INTRODUCTION In dense environments, such as groups and clusters, galaxies are affected by various physical mechanisms that can significantly influence their properties and evo- lution (Nulsen 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli & Gavazzi 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cortese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These processes are usually divided into gravitational and hydrodynamical interactions (Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gravitational perturbations can be in- duced by tidal forces due to the potential of other clus- ter/group members (Merritt 1983) or the large scale structure itself (Byrd & Valtonen 1990), but also by fly- by encounters and mergers (Barnes & Hernquist 1992;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gravitational interactions af- fect both the stellar and the gaseous components of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Instead, the hydrodynamical interactions be- Corresponding author: Cecilia Bacchini cecilia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='bacchini@inaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='it tween the galactic interstellar medium (ISM) and the in- tracluster medium (ICM) are expected to influence only the gaseous components of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These mechanisms are the thermal evaporation of the cold (T ≲ 104 K) ISM due to the interaction of the hot (T ≈ 107 −108 K) ICM (Cowie & Songaila 1977), the removal of the outer ISM layer due to the viscosity momentum transfer with the ICM (viscous stripping) or instabilities (Nulsen 1982;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Roediger & Hensler 2008), and the ram pressure strip- ping, that is the removal of the ISM due to the pressure exerted by the ICM while a galaxy is moving through the cluster (Gunn & Gott 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In addition, the in- teraction with the ICM can heat up or strip away the hot (T ≈ 106 K) gas corona surrounding galaxies and prevent them from accreting new gas, finally quenching star formation (starvation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Larson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ram pressure is often considered among the domi- nant mechanisms affecting the ISM in cluster galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ram pressure can be calculated as Pram = ρICMV 2 gal, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='03090v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='GA] 8 Jan 2023 ID2 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' where ρICM and Vgal are the ICM density and the galaxy velocity relative to the cluster (Gunn & Gott 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, this mechanism is expected to be particularly strong for galaxies with high Vgal located close to the cluster center, where ρICM is the highest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ram pres- sure can have different effects on the gas distribution and kinematics in galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The compression of the gas disk can make it morphologically lopsided and asymmet- ric (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Mapelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Depending on its direction with respect to the galaxy rotation, the ram pressure can decelerate one side of the gas disk and accelerate the other, resulting in a kinemat- ically lopsided disk, or even shift the kinematic center of the gas disk with respect to the optical center of the galaxy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Typical signa- tures of ram pressure stripping are one-sided tails of gas extending outside the stellar disk and gas clouds that are spatially detached and kinematically decoupled from the galaxy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Merluzzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, gas disks in cluster galaxies are sometimes less extended and less massive that those in field galaxies (Chamaraux et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Haynes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cayatte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Schr¨oder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Both truncation and gas deficiency are proper- ties ascribed to ram pressure stripping, being relatively common in both low- (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gavazzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018) and intermediate-redshift cluster galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cortese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The efficiency of ram pressure stripping depends on the gas properties, being more effective on a diffuse medium than on dense gas clumps, and on the gravita- tional pull caused by the galactic potential, that weak- ens with increasing galactocentric distance and height above the midplane (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gunn & Gott 1972;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Tonnesen & Bryan 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K¨oppen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The atomic gas in galaxies is relatively diffuse and typically distributed in a disk that is very extended (up to twice the stellar disk diameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Verheijen & Sancisi 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016a) and thick (up to ≈1 kpc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Olling 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Yim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2011, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Marasco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019a,b, 2020b), being very susceptible to ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, cluster galaxies often contain less atomic gas than expected from their optical size or stellar mass and have truncated and/or asymmetric HI discs (Chama- raux et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1980;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Haynes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1984;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Giovanelli & Haynes 1985;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cayatte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Solanes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Schr¨oder et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Waugh et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Loni et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Morever, long tails of atomic gas are commonly observed in cluster galaxies (Bravo-Alfaro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kenney et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Scott et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sorgho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ramat- soku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Healy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas is typically denser than the atomic gas (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Leroy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008) and its distribution is also less extended in both the radial (up to the stellar disk diameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022) and vertical (up to ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 kpc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Yim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2011, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Marasco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019a,b) directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, it is expected that the molecular gas is more resilient to ram pressure than the atomic gas (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Nevertheless, there is grow- ing observational evidence that the ram pressure actu- ally influences the molecular gas in cluster galaxies, as indicated by signatures of compression, kinematic lop- sidedness, and shifts between the optical and kinematic center (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cramer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Direct observations of molecular gas stripping by ram pressure are limited, but tails and blobs of molec- ular gas far from the stellar disk have been observed in some cluster galaxies (Vollmer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J´achym et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, 2020a), as well as truncated molecular gas disks and H2-deficient galaxies (Fumagalli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, a few au- thors have found that cluster galaxies can also host a normal (both in size and mass) or even enhanced reser- voir of molecular gas (Fumagalli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022), pos- sible indication that ram pressure can increase the effi- ciency of the HI-to-H2 conversion (Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this work, we analyze the molecular gas distribution and kinematics in four cluster galaxies observed with the Atacama Large Millimeter Array (ALMA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These objects are part of the sample of 114 galaxies observed within the Large Program ”GAs Stripping Phenomena in galaxies with MUSE” (GASP), which is a survey carried out with integral-field Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The GASP survey aims at understanding the impact of environment on the evolution of galaxies by studying their stellar and ionized gas emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Recently, follow- up programs have provided multi-wavelength observa- tions for a few galaxies in the GASP sample, allowing to study other ISM components, such as atomic gas (Ra- matsoku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Healy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Luber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022), the molec- ular gas (Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, 2020a,b), and magnetic fields (M¨uller et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021), and also young stellar pop- ulations (George et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' An unexpected result of the GASP project was the high fraction of active galac- tic nuclei (AGN) among ram pressure-stripped galaxies Molecular gas kinematics in jellyfish galaxies 3 (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Peluso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti & the GASP team 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This result was interpreted as an indication that ram pressure can drive gas flows towards the center and feed the AGN activity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ricarte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The galaxies analyzed in this work (hereafter referred as the GASP-ALMA sample) were studied by Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017a) and host indeed an AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This paper aims at answering the following open questions about the GASP-ALMA galaxies: What is the impact of ram pressure on the distribution and kinematics of the molecular gas?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Can we detect inflows of molecular gas that may feed the AGN?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Section 2 presents the GASP-ALMA sample and summarizes the relevant pieces of information obtained by previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We describe the data and methods used to carry out the analysis in Sects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 and 4, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For each galaxy, we present and discuss the results in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6, we compare our findings with other works in the litera- ture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Section 7 this work and its conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We adopt standard cosmological parameters (h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7, ΩM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3, and Ωλ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7) and a Chabrier (2003) initial mass function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' THE GALAXY SAMPLE The GASP-ALMA sample consists of four late-type galaxies, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' JO201, JO204, JO206, and JW100, lo- cated in different clusters at redshift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='04 ≲ z ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='06 and with relatively high stellar mass (see Table 1 and refer- ences therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These galaxies are classified as “jellyfish” because they show one-sided tails of ionized gas longer than the stellar disk diameter (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Thanks to the wealth of information provided by the GASP project and the availability of multi-wavelength observations, these galaxies have been extensively stud- ied in the literature (for a brief review, see Poggianti & the GASP team 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Thus, we summarize some of the previous works that are relevant for our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The galaxies in our sample are moving through the ICM with either super-sonic or transonic line-of-sight ve- locities and are located close to the cluster center (Gul- lieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These properties indicate that the galaxies are in favorable conditions for strong ram pres- sure and move on very radial orbits, suggesting that they have recently entered into the cluster for the first time (Yoon et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Jaff´e et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' While JO204 and JO206 are relatively isolated for being cluster mem- bers (Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Biviano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017), JO201 and JW100 belong to a substructure of four and three galaxies, respectively (Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Previous works show that, in all the GASP- ALMA galaxies, the stellar kinematics appears to be quite regular, while the ionized gas kinematics is very perturbed, as expected for galaxies undergoing ram pres- sure stripping (Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Jaff´e et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Recent works showed that these galax- ies host strongly asymmetric HI disks with long tails of atomic gas, and also have significantly reduced the HI content with respect to field galaxies (≳ 50 %, Ra- matsoku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Healy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This HI deficiency is however not coupled with a deficiency in the molecular gas reser- voir, as these galaxies have H2 masses that are 4-5 times higher than expected for galaxies with similar stellar mass (Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As mentioned above, the galaxies in the GASP-ALMA sample host an AGN (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Radovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Peluso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' It has been shown that the AGN is the main source of gas ionization in the cen- tral regions of these galaxies and, except for JO206, it also causes a low-velocity (≈ 250 − 320 km s−1) wind of ionized gas (Radovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017a) proposed that the AGN activity in these galax- ies is triggered by the ram pressure, which can decrease the angular momentum of the gas and favor its inflow toward the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO201, George et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2019) ob- served a cavity of about 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 kpc with reduced ultravi- olet and CO flux around the AGN (see also Radovich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' By combining optical (MUSE) and sub- mm (ALMA) spectroscopic observations, these authors proposed that the cavity is due to AGN feedback that is either ionizing or sweeping away the gas, possibly reduc- ing the star formation activity in the central regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO204, Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020) found a redshifted absorption feature in the HI global profile, which could be ascribed to either a clumpy and fast rotating HI disc seen in front of the central radio continuum source or an inflow of atomic gas towards the central AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' DATA This section describes the multi-wavelength observa- tions and data products that were used in this work, which primarily focuses on the molecular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since the ram pressure can influence the kinematics and geometry of the molecular gas disk, we analyze the stellar kine- matics and use it as a reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sections 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 describe the data used to study the molecular gas and stellar component, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' ALMA data We used CO(1–0) and CO(2–1) emission line obser- vations obtained with ALMA during Cycle 5 (project 4 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Properties of the galaxy sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Property Galaxy JO201 JO204 JO206 JW100 Alternative names KAZ 364 2MASX J10134686-0054514 2MASX J21134738+0228347 IC 5337 Morphological type Sab Sab Sb Sa Cluster Abell 85 Abell 957 IIZW108 Abell 2626 zclu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05568 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='04496 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='04889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05509 zgal 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='044631 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='042372 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='051089 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='061891 Vgal [km s−1] 3138 743 629 1932 |Vgal/σclu| 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 Rclu/R200,cl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='06 Distance [Mpc] 189.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 Physical scale [kpc/arcsec] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='84 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='19 Center R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' [J2000] 00:41:30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30 10:13:46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='84 21:13:47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='41 23:36:25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05 Center DEC [J2000] 09:15:45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 00:54:51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='27 +02:28:35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 +21:09:02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='64 M⋆ [1010 M⊙] 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 29 ± 7 MHI [109 M⊙] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ≳ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 MH2 [109 M⊙] 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ± 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ± 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 Note—Galaxy names are in GASP convention;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' alternative names are also provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Morphological types are from Fasano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cluster redshifts (zclu) are from Biviano et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Galaxy redshifts (zgal) and distances from the cluster center (Rclu/R200,cl) are from Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017b, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Galaxy velocities relative to cluster are calculated as Vgal = c(zgal − zclu)/(1 + zclu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The optical center coordinates are from Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Stellar masses (M⋆) and effective radii (Reff) are from Vulcani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2018) and Franchetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Atomic gas masses (MHI) are from Ramatsoku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2019, 2020) and Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020, 2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' a conservative uncertainty of 30% is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas masses (MH2) are from Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020a);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' a conservative uncertainty of 50% is assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' PI: Poggianti).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These observations were already used by Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020b) to study the molecular gas content of the GASP-ALMA galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The datacubes used in this work are different from those used by Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020b), as the imaging proce- dure was re-performed to increase the spectral resolu- tion (Mingozzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' to be submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Here, we use ALMA datacubes with spatial resolution of ≈ 1−2′′(see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) and velocity resolution of 10 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Figure 1 shows, for each galaxy, the moment maps of the CO(1– 0) datacubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These maps were obtained from the ALMA datacubes by applying a mask made by all pixels with signal-to-noise ratio (S/N) above 3 in a datacube smoothed by a factor 2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' in which each channel map is convolved with a beam 2 times larger than the original one).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020a,b) detected faint CO emission coming from the regions outside the stel- lar disk and coinciding with the ionized gas tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The emission is not visible in the maps used in this work (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1), despite we used the same ALMA observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This difference is due to the fact that our datacubes have better velocity resolution (∆υ = 10 km s−1) but lower S/N than those used by Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020a,b), which have ∆υ = 20 km s−1and to the different masking procedure adopted in the two works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For this work, we used the datacubes with ∆υ = 10 km s−1, being the best compromise to have good velocity resolution and S/N in the regions within (or close to) the stellar disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that we do not find significant differences in mass and size of the molecular gas disk with respect to the results obtained by Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' MUSE data To analyze the stellar component, we used the MUSE observations obtained by the GASP survey (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The data reduction and processing is de- tailed in Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The wavelength cov- erage and spectral resolution of the final datacubes are 4800 ˚A < λ < 9300˚A and 1770 < R < 3590, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The pixel size is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ′′×0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ′′with a natural seeing of ≈ 1 ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this work, we use the I-band images and the stellar velocity fields extracted from the MUSE dat- acubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The I-band images are very useful to identify stellar substructures, such as bulges and bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These are typ- Molecular gas kinematics in jellyfish galaxies 5 0h41m31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 9°15\'35" 40" 45" 50" 55" 16\'00" RA (ICRS) Dec (ICRS) JO201 CO(1-0) total intensity map 5 kpc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='007 FCO(1 0) [Jy beam 1 km/s] 0h41m31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 9°15\'35" 40" 45" 50" 55" 16\'00" RA (ICRS) JO201 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='04"x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6" CO(1-0) velocity field 250 200 150 100 50 0 50 100 150 VLOS [km/s] 0h41m31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 9°15\'35" 40" 45" 50" 55" 16\'00" RA (ICRS) JO201 CO(1-0) velocity dispersion map 10 15 20 25 30 35 40 45 50 CO [km/s] 10h13m47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 0°54\'40" 45" 50" 55" 55\'00" RA (ICRS) Dec (ICRS) JO204 CO(1-0) total intensity map 5 kpc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='010 FCO(1 0) [Jy beam 1 km/s] 10h13m47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 0°54\'40" 45" 50" 55" 55\'00" RA (ICRS) JO204 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='66"x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='39" CO(1-0) velocity field 200 100 0 100 200 VLOS [km/s] 10h13m47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 0°54\'40" 45" 50" 55" 55\'00" RA (ICRS) JO204 CO(1-0) velocity dispersion map 10 20 30 40 50 60 CO [km/s] 21h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 2°28\'50" 40" 30" 20" RA (ICRS) Dec (ICRS) JO206 CO(1-0) total intensity map 5 kpc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='003 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='007 FCO(1 0) [Jy beam 1 km/s] 21h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 2°28\'50" 40" 30" 20" RA (ICRS) JO206 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='87"x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='73" CO(1-0) velocity field 100 0 100 200 300 VLOS [km/s] 21h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 2°28\'50" 40" 30" 20" RA (ICRS) JO206 CO(1-0) velocity dispersion map 10 15 20 25 30 35 40 45 50 CO [km/s] 23h36m25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 21°09\'15" 10" 05" 00" 08\'55" 50" RA (ICRS) Dec (ICRS) JW100 CO(1-0) total intensity map 5 kpc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0200 FCO(1 0) [Jy beam 1 km/s] 23h36m25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 21°09\'15" 10" 05" 00" 08\'55" 50" RA (ICRS) JW100 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='09"x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='78" CO(1-0) velocity field 200 100 0 100 200 300 400 500 VLOS [km/s] 23h36m25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7s 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 21°09\'15" 10" 05" 00" 08\'55" 50" RA (ICRS) JW100 CO(1-0) velocity dispersion map 10 20 30 40 50 60 70 80 CO [km/s] Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Total intensity map (left column), velocity field (central column) and velocity dispersion map (right column) obtained from the CO(1-0) emission line datacubes for the four galaxies in the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stars and the white dashed ellipse indicate the kinematic center and the region used for modelling the gas kinematics, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JW100, the grey cross shows the optical center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the total intensity map, the red contours are at 2nσtot, where σtot is the noise in the total map (Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Iorio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017), n = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10, and σtot = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 mJy/beam km s−1for JO201, JO204, JO206, and JW100, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the velocity field, the black curves are the iso-velocity contours, with the thick one being at the galaxy systemic velocity (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The white dotted line in the velocity field is the kinematic major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bar and the ellipse in the bottom left corner respectively show the physical scale and beam of the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The grey contours show the stellar disc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' East is to the left and North to the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' ically dominated by intermediate-age (> 1 Gyr) stellar populations and hence generally brighter in I-band than at short wavelengths (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Knapen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fig- ure 2 shows, for each galaxy, the I-band images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These were obtained by Franchetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020) from the inte- grated MUSE datacubes using the Cousins I-band filter response curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Franchetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020) also derived the center coordinates, the position angle, and the incli- nation of these galaxies by fitting the galaxy isophotes with a series of concentric ellipses using the iraf task ELLIPSE (Jedrzejewski 1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stellar velocity fields are used to analyze the stel- lar kinematics, which is useful to interpret the kinemat- ics of the molecular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stellar kinematics was extracted from the MUSE datacube using the Penal- ized Pixel-Fitting (pPXF) code (Cappellari & Emsellem 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As a preliminary step, the observations were masked to remove spurious sources, such as stars and background galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Spaxels in the MUSE data were binned through the Voronoi algorithm in order to reach S/N> 10 in each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The observed spectra were fitted with the stellar population templates by Vazdekis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2010) and using of single stellar populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' More de- tails on the procedure can be found in Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017b) and Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' METHOD Our approach relies on the software 3DBarolo1 (v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Di Teodoro & Fraternali 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro & Peek 2021), which simulates galaxy observations assuming a tilted- ring model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This consists of a series of concentric annuli described by a set of geometric and kinematic parame- ters, which can all vary with the galactocentric distance R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The geometrical parameters are the coordinates of the center x0 and y0, the position angle φ, and the disc inclination i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The kinematic parameters are the systemic velocity Vsys, the rotation velocity Vrot, the velocity dis- persion σ, and the radial velocity in the disc plane Vrad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The observed line-of-sight velocity is then (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Begeman 1987) Vlos = Vsys + (Vrot cos θ + Vrad sin θ) sin i ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (1) where θ is the azimuthal angle in the plane of the disc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3DBarolo (hereafter 3DB) was mainly designed to fit emission line observations working in 3D, meaning that the model is fitted to the datacube channel-by- channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This approach allows us to use all the infor- mation in the datacube and to take into account both the spatial resolution and the spectral resolution of the 1 https://editeodoro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='io/Bbarolo/ instrument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In a step prior to the fitting, 3DB convolves the model with the point spread function (PSF) or the beam of the instrument, while the instrumental spec- tral broadening is included in the model construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The convolution with the PSF is required to correct for the so-called “beam smearing” (Bosma 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Begeman 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro & Fraternali 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The finite size of the PSF smears the line emission on adjacent regions where the emitting material has different line-of-sight velocity, causing an artificial broadening of the profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As a consequence, the rotation velocity and the velocity dispersion can be respectively underestimated and over- estimated, if beam smearing is not correctly accounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This effect is particularly important if the angu- lar resolution of the observations is low and where there are strong velocity gradients, as in the case of the inner regions of massive galaxies with steeply rising rotation curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, the beam smearing effect is expected to become more and more relevant as the inclination an- gle of the galaxy increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3DB normalizes the model using either the flux in each pixel of the total intensity map or the azimuthally-averaged flux in each ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fi- nally, the model is fitted to the observations in order to find the set of free parameters that minimizes the residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' With respect to 2D methods, which fit the velocity field, this 3D procedure not only corrects for the beam smearing effect, but also breaks the degeneracy between the rotation velocity and the velocity dispersion (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bosma 1981;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Begeman 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro & Fraternali 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The 3DB task 3DFIT is designed to model emis- sion line datacubes working in 3D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The software also includes the task 2DFIT, which can be used to model the 2D velocity fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this work, we use 3DFIT and 2DFIT to model the kinematics of the molecular gas disk and the stellar disk, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For each component, we adopted an ad-hoc methodology, that is described in Sects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Before proceeding with the methodology presentation, a brief disclaimer is due.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We stress that 3DB, like sev- eral other kinematic modelling software (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Begeman 1987;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kamphuis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015), is specifically designed to model radially symmetric gas flows in discs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, the galaxies studied in this work are subject to various local disturbances due to internal (bar, AGN feedback) and external (ram pressure) mechanisms, which are ex- pected to produce deviations from this idealised kine- matics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our strategy here is to use 3DB to quantify the large-scale ordered motions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', rotation and radial flows) in the molecular gas component, and to interpret possible deviations from such simple kinematics in terms of internal or external mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas kinematics in jellyfish galaxies 7 0h41m32s 31s 30s 9°15\'30" 45" 16\'00" RA (ICRS) Dec (ICRS) 1" JO201 I-band 5 kpc 20 40 60 80 100 F [10 20 erg/s/cm2/Angstrom] 10h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 0°54\'30" 40" 50" 55\'00" RA (ICRS) Dec (ICRS) 1" JO204 I-band 5 kpc 20 40 60 80 100 F [10 20 erg/s/cm2/Angstrom] 21h13m48s 47s 46s 2°28\'45" 30" 15" RA (ICRS) Dec (ICRS) 1" JO206 I-band 5 kpc 20 40 60 80 100 F [10 20 erg/s/cm2/Angstrom] 23h36m27s 26s 25s 24s 23s 21°09\'30" 15" 00" 08\'45" RA (ICRS) Dec (ICRS) 1" JW100 I-band 5 kpc 20 40 60 80 100 F [10 20 erg/s/cm2/Angstrom] Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' I-band images, extracted from the MUSE observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The red contours are at 2n with n going from 1 to 20 with steps of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 (same units as colorbars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The white stars show the galaxy center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For JO201 and JO206, the white dotted ellipses indicate the regions influenced by the bar (see text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The light-blue contour shows the most external isophote (≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5σ above the background) encompassing the Hα emission traced by MUSE, and it indicates the stellar disk defined by Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The black dot in the bottom right corner shows the angular resolution of the MUSE observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The inset in the JO204 panel shows a zoom-in of the central regions of the galaxy, with the white circle showing the resolution of the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' East is to the left and north to the top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Modeling the stellar kinematics We model the stellar kinematics using the task 2DFIT on the velocity field (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We fixed the kine- matic center at the optical center reported in Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017a) and Vrad = 0 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since stars are not subject to the effect of ram pressure, we expect this to be a good approximation everywhere in the galaxy with the possible exception of the bar region (but see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We adopt the following three-step approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We performed a preliminary run with φ, i, Vsys, and Vrot as free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The initial values of φ and i were taken from Franchetto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We made a second run with φ, i, and Vrot as free parameters, fixing Vsys at the median of the best- fit values from the first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We run again 3DB with Vrot as the free parameter, while φ and i are regularized using a polynomial function with degree from zero to three, in order to avoid numerical oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ring spacing is fixed to 1′′, which approximately corresponds to the spatial resolution of the MUSE ob- servations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This choice is also reasonable based on the size of the Voronoi bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In all 3DB runs, we chose to give more weight to the regions close to the disc major 8 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' axis (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' wfunc=2), in order to maximize the signal from the rotational motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We recall that the results obtained with the 2D ap- proach are affected by beam-smearing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The angular res- olution of the MUSE observations is about 1 ′′, corre- sponding to about 1 kpc in our galaxy sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, we expect that the PSF smearing has a mild effect on the GASP-ALMA galaxies, except JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this galaxy, the PSF smearing is likely important due to its high inclination with respect to the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also note that the assumption of circular orbits might be inappropriate for the innermost regions of barred galaxies, as the stars in the bar move along elongated orbits (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & Wilkinson 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ko- rmendy & Kennicutt 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, only galaxies for which the bar is inclined to both the projected ma- jor and minor axes show non-circular motions clearly (Sellwood & Wilkinson 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, we do not expect visible signatures of non-circular motions in JO201 and JO206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Sanchez-Garcia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (in preparation), the stellar velocity field of the galaxies in the GASP sample is fitted using an ad-hoc approach to include large-scale non-circular motions induced by bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Preliminary re- sults show that, for the GASP-ALMA galaxies, the re- covered stellar rotation velocity obtained by Sanchez- Garcia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' is overall consistent with ours, suggesting that the non-circular motions are small compared to ro- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Modeling the molecular gas kinematics We model the molecular gas kinematics using the task 3DFIT on the ALMA datacubes (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' To re- duce the free parameters in the model, we first fixed the kinematic center at the optical center reported in Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, since the interac- tion with the ICM can displace the kinematic center of the gas from that of the stars (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022b), we adjusted the kinematic center of the molecular gas when necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also set Vsys at the value obtained from the global profile of the emission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' When necessary, Vsys was refined by a few km s−1after inspecting the position-velocity dia- grams (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We performed a first run with Vrad = 0 km s−1and leaving free the geometrical and kinematical pa- rameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' By setting the 3DB parameter wfunc=2, we chose to give more weight to the emission along the disc major axis, where most of the information on rotational motions lies (θ = 0° in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We made a second run (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' twostage=True) in which the geometrical parameters are regularized using either a suitable function or the median value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Vrad is left free in the last run, while the other pa- rameters are fixed to the best-fit values obtained previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' By setting wfunc=-2, we give more weight to the emission along the disc minor axis, where the contribution of radial motions is the strongest (θ = 90° in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This procedure is substantially based on the approach developed by Di Teodoro & Peek (2021), who used 3DB to model the atomic gas kinematics in a sample of nearby galaxies in order to measure gas radial motions and mass flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These authors used 21-cm observations with higher spatial resolution and better velocity reso- lution than our ALMA data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Radial motions are pos- sibly stronger and easier to detect for galaxies affected by the ram pressure than in the case of Di Teodoro & Peek (2021)’s galaxies, in which radial motions are of the order of a few km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We stress that the approach adopted in this work takes into account the radial mo- tions within the galaxy disk, while motions perpendicu- lar to the disk midplane are not considered (Di Teodoro & Peek 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We used the 3DB task ELLPROF to derive the azimuthally-averaged radial profiles of the CO surface brightness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These profile were adopted for the normal- ization procedure of 3DB models and to derive the H2 surface density ΣH2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also used the 3DB task spacepar to fully explore the parameter space for Vrot and σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This test is useful to check whether the model fitting converges to a good minimum of the parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We anticipate that, while the best-fit Vrot is generally well constrained, it is not always the case for σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is likely due to the complex shape of the emission line profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A possible caveat in our methodology is that the tilted-ring model is based on the assumption of concen- tric orbits, which might not be valid for the gas in galax- ies affected by strong ram pressure or in an advanced stripping stage (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In these cases, the results of our analysis are very uncertain and should be taken with caution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, if stripping is not too dramatic, modeling the gas kinematics using the tilted-ring approach may be possible for the disk regions where some or most of the gas has preserved its original motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Stellar bars are also expected to induce non- circular motions due to the gas streaming along the bar (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & Wilkinson 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the gas kine- matics in barred galaxies is usually modeled using tools that are specifically designed to take into account non- axisymmetric distortions in the 2D velocity field (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas kinematics in jellyfish galaxies 9 Schoenmakers 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Spekkens & Sellwood 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' How- ever, these methods fail when the bar is perpendicular to or parallel the disk major axis, being unable to break the degeneracy between the tangential and radial ve- locity components (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & S´anchez 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ran- driamampandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We thus decided to adopt the tilted-ring approach also in the case of JO201 and JO206, which host stellar bars aligned with the disk ma- jor axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' RESULTS AND DISCUSSION In this section, we present the best-fit models for the molecular gas kinematics and we then compare the stel- lar and molecular gas rotation curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We discuss each galaxy individually in Sects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 and summarize our findings in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We analyzed both the CO(1–0) and the CO(2–1) datacubes, obtaining essentially the same results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Thus, we show the best-fit models for the CO(1–0) data, as they have a S/N and angular resolu- tion more suitable for modeling the kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' From here on, CO indicates CO(1–0) unless otherwise stated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since the focus of this work is on the molecular gas, we show the best-fit model for the stellar kinematics only for JO201 in Fig 3, while the models for the rest of the sample can be found in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' JO201 The I-band image in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2 shows that JO201 has a stellar bulge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, the elongated shape of the isophotes in the inner regions suggests that JO201 hosts a stellar bar, as reported by George et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sanchez-Garcia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (submitted) estimated that the bar length is ≈ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also note that the stellar disc of JO201 seems morphologically lopsided, being the east side slightly more extended than the west one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The top panels in Fig 3 show, from left to right, the observed stellar velocity field, the best-fit model, and the map of the residuals between the data and the best- fit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bottom panels display the radial profile of the best-fit rotation velocity (left), inclination (cen- ter), and PA (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stellar velocity field is very well reproduced by the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The residuals in the disk outskirts, where the Voronoi bins are the largest, tend to be higher than in the inner regions, but still within the velocity resolution of the MUSE observations, that is ∆v ≈ 50 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that, for R ≲ 5 kpc, the ro- tation velocity is much lower than expected for a galaxy with stellar mass M⋆ ≈ 9 × 1010 M⊙ and hosting a stel- lar bulge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This feature can be explained by the fact that the stellar bar is aligned along the disk major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In a scenario where a large fraction of the stars in the bar move on elliptical orbits aligned parallel to the bar (so called x1 type;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood 2014), the velocity component along the line of sight has its minimum at the apocentre and then increases along the major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This can result in an underestimation of the rotation velocity in the re- gions influenced by the bar (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Dicaire et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sell- wood & S´anchez 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Randriamampandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The total CO intensity map (top left panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) gives useful indications about the effect and direction of ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO201, the west side of the disk shows compressed contours and regions with bright CO emis- sion, possibly suggesting the ram pressure compressed this part of the disk (Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The most evident feature in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1 is arguably the presence of the ring-like structure surrounding the hole in the CO dis- tribution in the innermost ≈ 3 kpc (see also George et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ring-like structure is also visible in the MUSE images shown by Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This feature can be explained by the presence of the bar driving the formation of a molecular gas ring around the co-rotation radius (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' where the bar pattern equals the angular frequency of circular motions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' see Sellwood & Wilkinson 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' At radii well inside co-rotation, gas is expected to fall toward the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas distribution in barred galaxies is typically very concentrated in the center (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004), while Figure 1 clearly shows the lack of CO emission in the innermost regions of JO201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' George et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2019) attribute the CO cavity to AGN feedback, which ionizes the molecular hydro- gen (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' radiative feedback) and sweeps the gas from the center (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' mechanical feedback).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The connection between nuclear activity and the gas distribution and kinematics is specifically tackled in the companion pa- per (Mingozzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' to be submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The CO velocity field of JO201 (2nd panel in the top row of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) shows that the galaxy is kinematically lop- sided, meaning that the velocity gradient in the receding and approaching sides of the disc are significantly differ- ent from each other (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Richter & Sancisi 1994;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Swa- ters et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Schoenmakers 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Shafi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For this reason, we modeled the approaching side and receding side separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We compare the observations with our best-fit models in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4, where the left and the right panels are for the approaching and receding sides of the disc, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The first and second rows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4 are the position-velocity diagrams (PVDs) along the major and minor axis of the disc, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our rotating disc model can reproduce reasonably well the observations, indicating that the molecular gas in the disk preserved its original rotation, despite the interac- tion with the ICM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' There is however some gas, which is 10 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Rotation velocity [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Bar region ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Inclination [degrees] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Bar region ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Median ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='± MAD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='170 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='190 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='210 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Position angle [degrees] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Bar region ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Median ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='± MAD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0h41m32s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='31s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='29s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9°15\'30" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='45" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16\'00" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Dec (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO201 - Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 kpc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0h41m32s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='31s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='29s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO201 - Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0h41m32s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='31s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='29s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO201 - Residuals ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Data-Model [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [arcsec] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [arcsec] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [arcsec] Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Top row: stellar velocity field (left), its best-fit model (center), and residual map (right) for JO201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The white star indicates the disc center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The black curves are the iso-velocity contours with steps of 50 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The thick black contour indicates Vsys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The white contours in the left panel shows the best-fit model on the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bar and the circle in the bottom left and right corners respectively show the physical scale and the PSF of the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bottom row: rotation velocity (left), inclination (center) , and position angle (right) as a function of the galactocentric distance for the best-fit models of the stellar velocity field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The grey dashed area indicates the region influenced by the stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The empty circles and the red points are for the 2nd and the 3rd steps of our procedure (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The dashed black lines and the grey area indicate the median and the median absolute deviation, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' indicated by the red arrow in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4, moving with lower velocities than those predicted by the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since this gas is located at galactocentric distances smaller than the bar length, its anomalous kinematics is plausibly due to the bar influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' By exploring the parameter space, we found that the best-fit value of the CO velocity dispersion is not well-constrained for the outermost ring, likely because of the low S/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For R ≲ 5 kpc, we obtain σCO ≈ 25 − 40 km s−1, which can be explained by the non- circular motions due to the stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Outside the bar regions, we find σCO ≈ 20 km s−1, which is about a fac- tor 2 higher than the typical values of the molecular gas velocity dispersion in local isolated, unbarred galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This enhancement of σCO may be due to ram pressure increasing the molecular gas turbulence, either directly or by enhancing the star for- mation rate (SFR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 for further discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the best-fit values of radial velocity are consistent with zero, suggesting that the inclusion of radial motions does not significantly improve the fit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, these values should be taken with caution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The direction (either inward or outward) of these radial flows cannot be determined unless the near/far sides of the galaxy are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This can be inferred by assuming that spiral arms trail the galaxy rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Based on the RGB image shown by (Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017), the direction of spiral arms indicate that JO201 rotates clockwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Then, in 3DB’s convention (Di Teodoro & Peek 2021), radial motions with Vrad < 0 point inward, while those with Vrad > 0 point outward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Taken at face value, the inflow radial velocities at R ≲ 5 kpc are Vrad ≳ −10 km s−1, which is comparable with the average values measured in the inner regions of nearby spiral galaxies (Di Teodoro & Peek 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Beyond the bar region, the radial outflow with Vrad ≳ 20 km s−1is consistent with being caused by ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, since non-circular motions can be induced by any perturbation of the gravitational potential, we cannot exclude a different origin (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sell- wood & S´anchez 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5 (top left), we compare the circular velocities inferred from the kinematics of the stellar and molecular gas disks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The stellar circular velocity was obtained from the rotation velocity shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 by correcting for the contribution of pressure support (asymmetric drift Molecular gas kinematics in jellyfish galaxies 11 10 5 0 5 10 Offset ["] 300 200 100 0 100 VLOS [km/s] = 178° Model fitted on the approaching side 10 5 0 5 10 Offset ["] 300 200 100 0 100 VLOS [km/s] = 180° Model fitted on the receding side 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 Offset ["] 300 200 100 0 100 VLOS [km/s] = 268° 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 Offset ["] 300 200 100 0 100 VLOS [km/s] = 270° 0 2 4 6 8 40 60 i [deg] 0 2 4 6 8 40 60 i [deg] 0 2 4 6 8 180 200 PA [deg] 0 2 4 6 8 180 200 PA [deg] 0 2 4 6 8 R [kpc] 0 50 Vrad [km/s] Outflow Inflow 0 2 4 6 8 R [kpc] 0 50 Vrad [km/s] Outflow Inflow 200 100 0 100 200 300 VLOS (km/s) 10 5 0 5 10 R [kpc] 200 100 0 100 200 300 VLOS (km/s) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [kpc] 200 100 0 100 200 300 VLOS (km/s) 10 5 0 5 10 R [kpc] 200 100 0 100 200 300 VLOS (km/s) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [kpc] JO201 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Best-fit models of the molecular gas kinematics for JO201 using CO(1–0) emission line observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The left and the right panels are for the approaching and the receding sides of the disc (the other side is shaded), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The first and the second rows show the PVD along the major and the minor axis, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The observed CO(1–0) emission is shown in blue with black and grey contours, while the red contours show the best-fit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' All the contours are at 2nσch with n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', 10 and σch = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 mJy/beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The yellow points indicate the projected rotation curves of the best-fit models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The vertical blue dotted lines and the red arrows indicate the bar extent and the gas with anomalous kinematics (see text), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the last three rows, the panels show the profiles of inclination, PA, and radial velocity of the best-fit models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The red points are the parameters from the 1st fitting step and the dark-red lines are the regularized profiles (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The orange and green areas in the bottom panels indicate whether positive/negative values for Vrad mean radial gas outflow/inflow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 12 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 0 5 10 15 0 100 200 300 Vcirc [km/s] JO201 CO, app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' side CO, rec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' side Stars 5 10 0 100 200 300 JO204 CO Stars 0 5 10 15 20 R [kpc] 0 100 200 300 Vcirc [km/s] JO206 CO Stars 0 10 20 R [kpc] 0 100 200 300 400 JW100 CO, app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' side CO, rec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' side Stars Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Comparison of the stellar (yellow stars) and the CO (darkred points) circular velocities for each galaxy in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' When the approaching side and the receding side of the disc are modelled separately, the resulting pro- files are shown by the blue squares and the red diamonds, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' correction)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Within R ≈ 5 kpc, the molecular gas and stellar circular velocities essentially coincide, but the ve- locity gradient is too shallow for a massive galaxy with a bulge such as JO201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As mentioned above, this is likely due to the stellar bar aligned along the major axis (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Dicaire et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & S´anchez 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Randria- mampandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Beyond the bar regions, the stellar velocity field of JO201 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3) does not show any indication of the kinematic lopsidedness, contrary to the molecular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The receding side of the CO disc reaches slightly higher rotation velocities than the stellar disc, while the approaching side shows a lower velocity gradi- ent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The kinematic lopsidedness in disc galaxies is typ- ically ascribed to a triaxial potential, as in the presence of a stellar bar (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Swaters et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Schoenmakers 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Rhee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, the regular kinematics of the stellar disk seems to suggest that the molecular gas kinematics may be perturbed by some mechanisms that does not affect the stars, like ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The distortions appear in the outer parts of the galaxy and in a symmetric way, as expected for face-on ram pressure (Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, JO201 is moving towards the observer at very 2 We used Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A1 from Posti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2018) for the asymmetric drift velocity and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 from Mancera Pi˜na et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021a) for the central velocity dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the asymmetric drift correction is essentially negligible for JO201 and all the other galaxies, as expected given their high rotation velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' high velocity (see Table 1), implying that the approach- ing and receding sides of the disk move in the opposite and the same direction as the ram pressure, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ram pressure is thus expected to decelerate the ap- proaching side of the molecular disk and accelerate the receding side (Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b), which is consis- tent with our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We conclude that the molecular gas kinematics in the inner regions of JO201 is mainly dominated by the per- turbations due to the stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the outer parts of the molecular gas disk, the kinematic lopsidedness and radial motions (although rather uncertain) seem to suggest that the molecular gas in JO201 is affected by face-on ram pressure, despite other mechanisms cannot be ruled out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' JO204 Before focusing on the molecular gas kinematics, it is worth noting two features of the stellar component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' First, the innermost isophotes in the I-band image (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2) show a boxy shape that might indicate the pres- ence of a bar seen with high inclination with respect to the line-of-sight (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Combes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bettoni & Gal- letta 1994;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kuijken & Merrifield 1995;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bureau & Free- man 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Merrifield & Kuijken 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Unfortunately, dust obscuration and projection effects hamper any at- tempt to estimate the bar length from the optical im- ages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The second feature is visible in the stellar velocity field, which shows slightly distorted iso-velocity contours in the innermost regions (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This S-shaped feature indicates the presence of non-circular motions and, possibly, of a stellar bar (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bettoni 1989;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Vau- terin & Dejonghe 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Cort´es et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, Sanchez-Garcia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' in preparation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the top right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 11 shows residuals of a few tens of km s−1in the regions close to the disc mi- nor axis, indicating that a model based on circular orbits cannot fully reproduce the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1, the CO total intensity map shows that the molecular gas distribution is strongly concentrated in the center and two arm-like structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Both features are typical of barred galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Athanassoula 1992a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bureau & Freeman 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Merrifield & Kuijken 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ko- rmendy & Kennicutt 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hogarth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The iso-velocity contours in the CO velocity field (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) are visibly distorted in the inner regions, which typically in- dicates the presence of non-circular motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The CO velocity dispersion is also quite high in the inner regions of disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' To model the CO kinematics, we modified the pro- cedure described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' After various tests, we decided to fit the data by fixing all the geometrical pa- Molecular gas kinematics in jellyfish galaxies 13 rameters and leaving free Vrot, Vrad, and σCO, as this choice improved the comparison between the model and the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We run 3DB using the reverse option, which performs the fit starting from the most external ring and then moving inward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This algorithm was designed to improve the fit for galaxies seen with high inclination (i ≳ 70°).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6 compares the best-fit model with the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6, the PVD along the major axis shows that, overall, the model reproduces well the ob- servations, except for two features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The first feature is indicated by the red arrow and consists in gas moving at VLOS ≈ 270 km s−1at about 1 kpc from the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' One possibility is that this CO emission is probing the inner rise of the rotation curve of the molecular disk if the nu- clear CO distribution is asymmetric between approach- ing and receding sides (see for example Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Alternatively, this central emission can be ascribed to complex non-circular motions caused by the stellar bar (the so-called x2 orbits aligned perpendicular to the bar;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' see Sancisi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1979;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Randriamampandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015) or even feedback from stars or the AGN (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Stuber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our finding is in agreement with the results obtained by Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020), who revealed an absorption feature in the HI global profile that could be explained by high-velocity gas seen in front of the continuum emission from the AGN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The second feature that is not reproduced by the model is indicated by the magenta arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This emis- sion comes from gas that moves at lower velocities than those predicted by our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A possible explanation is that this gas is decelerated by the ram pressure com- ponent in the sky plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the PVD along the major axis (top panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6) shows the charac- teristic X-shaped pattern, that is typical of a bar seen at high inclination along the line of sight (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bureau & Freeman 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Merrifield & Kuijken 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Alatalo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hogarth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6, the PVD along the minor axis shows ex- tended gas emission in the lower left quadrant, which can only be reproduced by a model with strong radial motions of Vrad ≳ 50 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, the same feature is not observed in the upper right quadrant, indicating that the CO distribution (or kinematics) is asymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Unfortunately, JO204 does not have visible spiral arms and the dust lanes in the optical MUSE and Hubble Space Telescope (HST) images (Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', submitted) do not allow to clearly identify the nearest side of the disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, we can- not infer the direction of rotation and radial motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since these non-circular motions are detected in the in- ner parts of the galaxy, one may speculate that they 10 5 0 5 10 Offset ["] 300 200 100 0 100 200 300 VLOS [km/s] = 327° JO204 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 Offset ["] 300 200 100 0 100 200 300 VLOS [km/s] = 237° 1 2 3 4 5 6 7 8 R [kpc] 0 100 Vrad [km/s] 300 200 100 0 100 200 300 VLOS (km/s) 10 5 0 5 10 R [kpc] 300 200 100 0 100 200 300 VLOS (km/s) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [kpc] Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4 but for JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The model fitting is performed on the approaching and receding sides at the same time, and the inclination and PA are fixed to the values of 75° and 327°, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The arrows indicate the gas with anomalous kinematics (see text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Here σch = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='9 mJy/beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' are inflows driven by a stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The magnitude of radial motions in JO204 is consistent with the values es- timated in simulated barred galaxies (see Randriamam- pandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015), but about 2 times higher than those measured by Di Teodoro & Peek (2021) in the atomic gas of real barred galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The blue arrow indicates another feature that is not reproduced by our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, since this emission is very faint, it is unclear whether this is real emission from the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We find σCO ≈ 10 km s−1, but this value is rather uncertain based on the inspection of the parameters space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 14 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Overall, our model can reproduce the molecular gas kinematics in JO204 reasonably well, despite the com- plexities due to the stellar bar and/or ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fig- ure 5 (top right panel) shows that the CO circular veloc- ity is compatible within the uncertainties with the stel- lar circular velocity for R ≳ 3 kpc, indicating that the molecular gas has retained most of its original motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The difference in the innermost regions is likely due to a combination of dust extinction and resolution effects, which may smooth the gradient of the stellar rotation curve (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Similarly to the case of JO201, we conclude that the molecular gas kinematics is rotation- dominated in JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Then, the stellar bar plays an important role in perturbing the gas kinematics in the inner regions and driving radial gas flows, while the ram pressure may be a possible explanation for the gas with anomalous kinematics in the outskirts of JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' JO206 The I-band images in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2 shows that JO206 hosts a stellar bulge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In addition, the elongated shape of the isophotes in the inner regions indicate the presence of a stellar bar aligned with the disk major axis, as for JO201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The CO total intensity map in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1 shows that the morphology of the molecular gas distribution is asymmetric, suggesting that the ram pressure is directed towards south-east.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, we expect the molecular gas kinematics to be particularly complex in JO206, as a consequence of the combined effects of bar perturbations and ram pressure stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the iso-velocity con- tours in the CO velocity field (2nd panel in the third row in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) are even more distorted than those of JO204, indicating stronger perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the light of these considerations, we modeled only the regions of the molecular gas disk within R ≈ 6 ′′, which essentially corresponds to the extent of its re- ceding side (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also adjusted the position of the kinematic center with respect to the optical center by applying a small shift of ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='23 ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Figure 7 shows that our model is able to reproduce reasonably well the observations, except for the molecular gas with anoma- lous kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The CO emission indicated by the blue arrow (offset ≈ 10 − 20 ′′and -200 km s−1≲ VLOS ≲ −100 km s−1) belongs to the tail of stripped gas (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Probably, this portion of gas disc was detached from the approaching side of the disc and decelerated by ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Another possibility is that the ram pres- sure displaced a portion of the disc at larger radii, thus its rotation velocity is lowered by conservation of angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The red arrow indicates the receding side of the molecular gas disk that has not been stripped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the PVD along the minor axis (second panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 7), the CO emission indicated by the orange arrow belongs to the molecular gas in the stripped tail left behind by the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' By exploring the parameter space, we found that the best-fit value of σCO is well constrained only for the 2nd and 3rd rings, where we obtained σCO ≈ 30 − 40 km s−1(see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These values are higher than those typically measured in nearby galaxies using CO observations with similar resolution (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a), which is not surprising given the complex kine- matics of the molecular gas in JO206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We tentatively detect radial motions of ≈ −25 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, including radial motions does not improve the best-fit model, as indicated by the fact that radial veloc- ities are consistent with zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO206, the spiral arms can be identified from the MUSE optical images (Pog- gianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bellhouse et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Assuming trailing spiral arms, we can infer that the galaxy ro- tates clockwise, implying that Vrad < 0 for inflows and Vrad > 0 for outflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bottom left panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5 shows that the stellar and CO circular velocities coincide within R ≈ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As in the case of JO201 (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1), the slow rise of the inner rotation curve is plausibly due to the fact that the stellar bar is aligned parallel to the disk major axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This suggest that the kinematics of both the molecular gas and the stars is dominated by the stellar bar in these regions3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also note that the position and velocity of the molecular gas emission indicated by the red arrow (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 7, top panel) is perfectly compatible with the cir- cular velocity profile of the stars (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' On the contrary, the stripped tail indicated by the blue arrow (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 7, top panel) is decelerated of about 70km s−1with respect to the stars at the same galactocentric distance, suggesting that this material is decoupled from the disk rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The asymmetric perturbations on the molec- ular gas kinematics and the displaced kinematic center are signatures of edge-on ram pressure stripping (Kron- berger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Overall, we conclude that the molecular gas kinemat- ics is mainly perturbed by the stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Taken at face value, the radial motion in JO206 can be inter- preted as a gas inflows driven by the bar, as they are within its region of influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also find clear indi- cations of edge-on ram pressure stripping based on the presence of molecular gas emission detached from the galaxy and with kinematics decoupled from the main disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This suggests that the ram pressure has a stronger 3 This result is consistent with the preliminary estimate of the bar length obtain by Sanchez-Garcia et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (in preparation), that is approximately 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Molecular gas kinematics in jellyfish galaxies ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Offset ["] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='= 120° ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO206 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Offset ["] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='= 210° ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='i [deg] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='PA [deg] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Vrad [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Outflow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Inflow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS (km/s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS (km/s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4 but for JO206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The model fitting is performed on both the approaching and receding sides, at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Here σch = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='8 mJy/beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' effect on the molecular gas disk in JO206 than in JO201 and JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' JW100 The I-band image in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2 seems to suggest that JW100 hosts a stellar bulge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, despite the fact that JW100 is strongly affected by projection effects and dust obscuration, we can tentatively identify the pres- ence of a warp in the stellar disk based on the S-shape of the isophotes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Regarding the stellar kinematics, our model can successfully reproduce the observations and recover the stellar rotation curve (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 13 in Append- inx A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, we found quite high residuals in a ring at R ≈ 6 ′′and in the disk outskirts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' After various trails, we found no significant improvement in the residual map using different geometrical parameters and allowing for radial motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This can be due to the combined effects of low S/N of the observations in the disk outskirts, strong projection effects due to the radial variation in disk inclination and PA, and asymmetric dust lanes (see Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since JW100 belongs to a substructure of three galaxies in Abel 2626, we cannot rule out that the stellar kinematics is perturbed by tidal interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Figure 1 clearly shows that the distribution and kine- matics of the molecular gas in JW100 are strongly dis- turbed, suggesting that the ram pressure component in the sky plane is directed westward and contributes in pushing the gas outside the stellar disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The case of JW100 may seem surprising, as the high mass of this galaxy is expected to produce a strong gravitational pull that can efficiently contrast the ram pressure stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, the supersonic speed and the close proximity to the cluster center (see Table 1) indicate that JW100 is in the most favorable conditions for experiencing strong ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the iso-velocity contours in the CO velocity field (2nd panel in the last row in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1) are even more distorted than the rest of the GASP-ALMA sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Also the 2nd moment map suggests that the molecular gas velocity dispersion is very high through- out the disk, indicating very complex line profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We attempt to model the gas kinematics with the aim of understanding whether some gas has retained its orig- inal rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Hence, we run 3DB using the reverse option for highly inclined galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We fixed the in- clination and PA at the values obtained for the stellar disc and shifted the kinematic center ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6′′westward from the optical center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We performed the fitting on the approaching and receding sides separately, as the PVD along the major axis is asymmetric with respect to Vsys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The resulting best-fit models are shown in the left and right panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 8, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The models well reproduce the observations, except for the emission indicated by the blue arrow in the minor axis PVD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This emission comes from the molecular gas in the tail that is left behind by JW100 as it falls into the cluster receding from the observer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the bottom panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 8 shows the profiles of the radial velocity, which reaches Vrad ≈ 50 − 100 km s−1in the disk outskirts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Taken at face value, the radial velocities are larger than the Vrad values of a few km s−1that are typically measured in 16 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' nearby galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro & Peek 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Also the skewed shape of the CO emission in the PVD along the minor axis (blue arrows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 8) seem to suggest the presence of radial motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the emis- sion from the stripped gas indicated by the blue arrow reaches even higher velocities (∆VLOS ≈ −200 km s−1) than the model emission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The dust lanes in the HST im- ages (Gullieuszik et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', submitted) seem to suggest that the west side of JW100 is the nearest one and the galaxy is rotating clockwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This implies that Vrad > 0 indi- cates an outward radial flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is in agreement with the morphology of the molecular gas disk, that clearly suggests an ongoing large-scale removal of molecular gas by ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We obtained σCO ≈ 30 − 60 km s−1, possibly indicating that the molecular gas is highly tur- bulent (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is not surprising given the strong perturbations affecting the molecular gas in JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bottom right panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5 compares the circu- lar velocity profile of the stellar disk and the molecular gas in JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We recall that different kinematic centers were used for the stellar and molecular gas components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Interestingly, the circular velocity of the approaching side of the molecular gas disk coincides with that of the stellar disk, flattening at Vcirc ≈ 300 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' On the contrary, the circular velocity of the receding side keeps on growing and reaches Vcirc ≈ 400 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sim- ilarly to JO206, the asymmetric perturbations on the molecular gas disk and the displaced kinematic center are signatures of edge-on ram pressure stripping (Kro- nberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is consistent with the fact that JW100 is falling into the cluster at very high ve- locity and its disk is seen at high inclination by the ob- server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the circular velocity of JW100 rises less steeply than what is typically found in galaxies with similar stellar mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, Figure 2 seems to sug- gest that JW100 potentially hosts a stellar bulge, which is expected to produce high circular velocities in the in- nermost regions of the galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The shallow and rather unusual gradient of the circular velocity might be ex- plained by either the presence of a stellar bar aligned with the major axis or a dark matter halo with lower- than-average concentration (Randriamampandry et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Disentangling between these two possibilities would require a dedicated mass modelling of the system which goes beyond the purpose of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In conclusion, our results indicate that the molecular gas disk of JW100 is dramatically affected by ram pres- sure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The morphology and kinematics of the molecular gas disk indicate strong ram pressure both in the sky plane and along the line of sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Gravitational inter- actions with other members in the same substructure may play a role, but we speculate that these effects are milder than ram pressure, as the stellar component is not as strongly perturbed as the molecular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Summary In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1, we showed that the molecular gas kine- matics in JO201 is dominated by the bar for R ≲ 5 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' At larger galactocentric distances, the rotation curve gradient is modified by some physical mechanisms, that is possibly face-on ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that, since JO201 belongs to a cluster substructure, we cannot ex- clude a different origin (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' tidal interactions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We do not find clear signature of ram pressure stripping (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' molecular gas removed from the main disk), but we tentatively identify outward radial flow of gas plau- sibly due to ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Both within and beyond the region influenced by the bar, the velocity dispersion of the molecular gas is enhanced with respect to the typ- ical values measured in field galaxies (Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b), suggesting strong turbulence motions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Beyond the bar region, this enhancement is about a factor 2 (σCO ≈20 km s−1), which can be either a direct or indi- rect consequence of ram pressure increasing (or a com- bination of both).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the ram pressure can directly increase the gas kinetic energy, but it can also enhance the SFR (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kronberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008a) and thus the ve- locity dispersion due to the transferring of the supernova energy to the gas (Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The SFR of JO201 is about 2 times higher than field galaxies with similar stellar mass, which supports the second scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2, we found clear signatures of the pres- ence of a bar in JO204 based on the molecular gas dis- tribution (central concentration, arm-like overdensities) and kinematics (PVD shape, radial motions), and the stellar kinematics (velocity field).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Radial motions are clearly present, but we cannot identify their direction with the available observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A bar-driven inflow is a reasonable hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas kinematics is dominated by rotation, while the ram pressure plays a secondary role and we do not find signatures of ram pres- sure stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We detect molecular gas with anomalous kinematics that is compatible with being decelerated by face-on ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also find some molecular gas with high velocity in the central regions of the galaxy, but its origin is unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The estimated values of the molecular gas velocity dispersion (σCO ≈10 km s−1) are rather uncertain, but overall consistent with those typ- ical of field galaxies (Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is in line with the fact that JO204 does not show enhanced SFR with respect to field galaxies (Vulcani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Similarly to JO201, the molecular gas kinematics in JO206 is dominated by the bar for R ≲ 6 kpc (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas kinematics in jellyfish galaxies 17 15 10 5 0 5 10 15 Offset ["] 200 0 200 400 600 VLOS [km/s] = 269° Model fitted on the approaching side 15 10 5 0 5 10 15 Offset ["] 200 0 200 400 600 VLOS [km/s] = 269° Model fitted on the receding side 10 5 0 5 10 15 Offset ["] 200 0 200 400 600 VLOS [km/s] = 179° 10 5 0 5 10 15 Offset ["] 200 0 200 400 600 VLOS [km/s] = 179° 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [kpc] 0 100 Vrad [km/s] Outflow Inflow 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 R [kpc] 0 100 Outflow Inflow 600 400 200 0 200 400 VLOS (km/s) 10 0 10 R [kpc] 600 400 200 0 200 400 VLOS (km/s) 10 5 0 5 10 15 600 400 200 0 200 400 VLOS (km/s) 10 0 10 R [kpc] 600 400 200 0 200 400 VLOS (km/s) 10 5 0 5 10 15 JW100 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4 but for JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the left and right panels, the model fitting is respectively done for the approaching and receding sides, and the kinematic center is ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6′′westward from the optical center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The inclination and PA are fixed to the values of 77° and 179°, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Here σch = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 mJy/beam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This seems also to drive inward radial flows of molecular gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We find clear signatures of edge-on ram pressure stripping for R > 6 kpc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The velocity dispersion of the molecular gas is significantly enhanced (σCO ≈30- 40 km s−1), a likely consequence of the complex motions due to the combined influence of the bar and the ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JW100 (Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4), the molecular gas distribution and kinematics indicate ongoing ram pressure stripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since JW100 belongs to a cluster substructure and prob- ably hosts a warped stellar disk, we cannot exclude that gravitational interactions may also play a role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We de- tect radial motions that are compatible with an outward gas flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The shallow gradient of the circular velocity in the inner regions of JW100 may be explained by a stellar bar aligned with the disk major axis, although other possibilities cannot be excluded (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' combination of resolution effects and ram pressure, low-concentration dark matter halo).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The velocity dispersion of the molec- ular gas is quite enhanced (σCO ≈30-60 km s−1), but the SFR of JW100 is about 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 times lower than field galax- ies with similar stellar mass (Vulcani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These properties favours the scenario in which the gas turbu- lence is directly enhanced by the ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' COMPARISON WITH PREVIOUS WORKS 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The connection between stellar bars and AGN At least three out of four galaxies in the GASP-ALMA sample host a stellar bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the case of JW100, the presence of the bar is difficult to confirm but arguably plausible, given that about 60% of the disk galaxies with 10 ≲ log(M⋆/M⊙) ≲ 11 host a stellar bar (Aguerri et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Masters et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D´ıaz-Garc´ıa et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The fraction of barred galaxies may be even higher in the central regions of clusters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Andersen 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Barazza et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M´endez-Abreu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lansbury et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Alonso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014), but this is likely due to the increase of early-type galaxies (which are less likely to 18 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' host a bar) with decreasing clustercentric distance (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Tawfeek et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The non-axisymmetric potential of a stellar bar can trigger radial inflow of gas by inducing torques and shocks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Athanassoula 1992b,a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & Wilkin- son 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Marasco et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018), often en- hancing the molecular gas concentration in the central regions of galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sheth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Regan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Yu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bar-driven inflows of gas may play an important role in fueling the central black hole and triggering the AGN activity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Alonso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Rosas-Guevara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Silva-Lima et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, this topic is debated and some authors showed, for instance, that the excess of AGN-hosts among barred galaxies vanishes when the dependence on the galaxy stellar mass and color are taken into account (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, there are indica- tions that the bar alone is not always sufficient to feed the black hole in an efficient way, requiring the contribu- tion of other mechanisms (Combes 2008;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fanali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Galloway et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is because, in order to feed the black hole, the molecular gas in the disk needs to lose almost all its angular momentum (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood & Wilkinson 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Krolik 1999;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Sellwood 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Capelo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Using a sample of spiral galaxies, Alonso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2014) found that their location within the group or cluster influences both the AGN and bar frac- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This result suggests that the external mechanisms affecting galaxies in dense environments may give a sig- nificant contribution to triggering the AGN activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' For the specific case of jellyfish galaxies, this external mech- anism might be the interaction with the ICM (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Peluso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Indeed, the ram pres- sure can not only compress the gas in the disk, but it can also make the gas lose its angular momentum and eventually move inward (Ramos-Mart´ınez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ricarte et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Farber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, Akerman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' submitted).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Thus, the gas could easily reach the re- gion influenced by the bar, which may drag it further inward, perhaps reaching the black hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This picture is in agreement with the enhanced fraction of AGN in ram pressure stripped galaxies (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Peluso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, but see Roman-Oliveira et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019 for a different conclusion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The relative importance of internal mechanisms, such as bars, and external pro- cesses, such as ram pressure, in fueling the AGN activity is a compelling and debated topic (Alonso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kim & Choi 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022a), which would require higher statistics than the four galaxies studied here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This task goes beyond the scope of this paper and we leave it to future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Comparison with Virgo galaxies There is growing evidence that the ram pressure can affect the molecular gas in cluster galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this sec- tion, we compare the GASP-ALMA sample with the galaxies in Virgo cluster, in order to increase the statis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Other cases of ram pressure affecting the molecu- lar disk have been found in Coma (J´achym et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017), Norma (J´achym et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014), and Fornax (Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019), just to mention some examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017) studied the molecular gas kinemat- ics in three disk galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These author did not find clear signs of molecular gas stripping, but they showed that the morphological and kinematical disturbances in the molecular and atomic gas disks are closely related to each other, suggesting that the molecular gas can be also affected by strong ram pressure even if it is not globally stripped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' They also ascribed the perturbation in the innermost regions of their galaxies to the pres- ence of a stellar bar, rather than to ram pressure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As discussed in Sects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2, our results for JO201 and JO204 are consistent with Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017)’s find- ings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Interestingly, all the molecular gas disks in Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2017) sample are kinematically lopsided, at least to some degree, indicating that the molecular gas was either accelerated or decelerated by ram pressure (see also Cramer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' They also found CO clumps that are kinematically decoupled from the molecular gas disk, suggesting that this gas was displaced by the ram pressure, as in the case of JO206 (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Recently, Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021) presented the first re- sults of the Virgo Environment Traced in CO (VER- TICO) survey, which maps CO emission in 51 galaxies in Virgo cluster using ALMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This authors derived the mass-size relation for the molecular gas disk for VER- TICO galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' They showed that the scatter in the relation is minimized if the disk size is defined as the ra- dius where the azimuthally-averaged H2 surface density reaches ΣH2 = 5 M⊙pc−2 (R5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' As a control sample, Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021) used the field galaxies in the Het- erodyne Receiver Array CO Line Extragalactic Survey (HERACLES, Leroy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021) found that the best-fit relations for the galaxies in Virgo and in the field are consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' They concluded that R5- MH2 relation does not depend on the environment, in agreement with the studies on the HI size–mass relation (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Stevens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019), and that galax- ies affected by environmental processes move along the size-mass relation rather than deviating from it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 9, we compare our galaxies with the R5-MH2 re- lation from Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We assumed the Milky Way CO-to-H2 conversion factor for consistency with Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our galaxies are within the scatter Molecular gas kinematics in jellyfish galaxies 19 of the R5-MH2 relation derived by Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021), confirming that this scaling relation does not show any clear dependence on environment, even in extreme ram pressure cases as the galaxies of our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We note that the GASP-ALMA sample tend to be slightly below the relation, suggesting that the molecular gas distri- bution is more centrally concentrated than the average for these samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This can be due to the combined effect of stellar bars, which tend to increase the gas den- sity in the inner regions of the disk (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Kormendy & Kennicutt 2004), and ram pressure, which compresses the molecular disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The GASP-ALMA galaxies stand out against the other two samples because of their high MH2, being up to ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 dex more massive than the Virgo and control samples (see also Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' On the other hand, it has been shown that our galaxies are up to 50% deficient in HI with respect to field galax- ies with similar mass and size (Ramatsoku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Healy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Taken together, these results suggest an unusually ef- ficient conversion of HI to H2 (Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These properties are in agreement with the recent re- sults by Zabel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2022) for Virgo galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' They found that the galaxies showing clear signs of ongoing ram pressure stripping affecting the HI disk are from H2-normal to H2-rich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This was interpreted as an indi- cation that ram pressure stripping is not effective at re- ducing global molecular gas fractions on the timescales in which such features are still clearly visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This is likely because the stripping is less severe on H2 than on HI, as the molecular gas is denser and more gravitation- ally bound to the galaxy than the atomic gas (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Boselli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The atomic gas disk of our galaxies show indeed signs of truncation and the ram pressure stripping is much more dramatic than for the molecular gas disk (Ramatsoku et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Deb et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, 2022) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Baryonic Tully-Fisher relation Rotation curves of disk galaxies are typically used to derive fundamental scaling relations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Verheijen 2001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Ponomareva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Io- rio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Posti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Mancera Pi˜na et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro & Peek 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In particular, the baryonic Tully-Fisher relation (hereafter BTFR) is a very tight correlation between the mass of baryons and the rotation velocity of galaxies, being a useful test-case to check the robustness of the stellar rotation derived in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The BTFR is usually derived using HI rotation curves, as the atomic gas disk is the most ex- tended baryonic component, allowing to probe the flat part of the galaxy rotation curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In jellyfish galaxies, 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 log[MH2/M ] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 log[R5/kpc] Molecular gas size-mass relation using R5 Brown+2021 ± JO201 JO204 JO206 JW100 Virgo Field Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas mass-size relation based on R5 (see Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Each galaxy in the GASP-ALMA sample is indicated by a colored symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Grey diamonds and pink points show galaxies in the Virgo cluster and nearby field galaxies (see text), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The best-fit relation ob- tained by Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021) for the VERTICO and HER- ACLES samples is shown by the dash-dotted line, while its scatter is represented by the shaded area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' the atomic gas disk is stripped or truncated by the ram pressure and the HI kinematics is strongly perturbed, hampering the usage of HI observations to study scal- ing relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ionized gas is not a good alterna- tive to HI, as not only it is less spatially extended but also more diffuse and thus easier to strip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The results of this work suggest that the molecular gas is more re- silient to ram pressure, but its spatial extend is still very limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Therefore, the stellar component is likely the best way to derive scaling relations in the case of jelly- fish galaxies, provided that observations with high spa- tial resolution and sensitivity are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The GASP sample is ideal to perform this exercise, thanks to the high spatial resolution and sensitivity of the MUSE ob- servations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 10, we show that the galaxies in the GASP-ALMA sample closely follow the BTFR de- rived by Di Teodoro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021) using a sample of about 200 galaxies from high-mass disks to dwarf galax- ies (Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We calculated the velocity in the flat part of the rotation curve (Vflat) as the average of the outermost 5 measurements of the stellar rotation ve- locity (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The baryonic mass was calculated as Mbar = M⋆ + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='33 (MHI + MH2), where the masses of atomic gas (MHI) and molecular gas (MH2) are taken from Table 1 and the multiplicative factor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='36 accounts for the Helium content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We checked that considering only the gas mass within the stellar disk or the total gas mass (including the gas in the stripped tail) does not 20 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='75 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00 log[Vflat/(km/s)] 7 8 9 10 11 12 13 log[Mbar/M ] Baryonic Tully-Fisher relation Best-fit (Di Teodoro+21) y = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='6x + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='49 JO201 JO204 JO206 JW100 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 dex Lelli+19 Di Teodoro+21 Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Baryonic Tully-Fisher relation for the four galaxies in the GASP-ALMA sample (triangles, diamond, and cross).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The grey points show the spiral and dwarf galax- ies from Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2019), while the pink stars are for the massive disks from Di Teodoro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The dashed line is their best-fit relation with the shaded area showing the orthogonal intrinsic scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' change the results, as the gas mass is largely dominated by molecular gas component which is mostly concen- trated within the galaxy disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We also checked that our galaxies fall on the stellar Tully-Fisher relation (not shown here), which is not surprising given that the bary- onic mass is largely dominated by the stellar component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These simple tests indicate that the GASP sample can be used to study important scaling relations of baryons and, potentially, dark matter (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Lelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Posti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Mancera Pi˜na et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This will be addressed in future work by fully exploiting the richness and quality of the MUSE observations obtained with the GASP survey (Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', in preparation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' SUMMARY AND CONCLUSIONS Galaxies in dense environments, such as clusters, can be affected by the ram pressure due to the interaction with the ICM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This process leaves the stellar disk es- sentially unperturbed, but it can have a strong impact on the morphology, kinematics and overall gas content, with important consequences on the evolution of galax- ies (Cortese et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this context, jellyfish galax- ies are ideal cases to study the impact of ram pressure on the gas components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this work, we have studied the distribution and kinematics of the molecular gas in a sample of four jellyfish galaxies in the GASP sample (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These galaxies were observed with ALMA to detect the CO(1–0) and CO(2–1) emis- sion Moretti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' (2020a,b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Thanks to the wealth of information obtained from MUSE and ALMA observa- tions provided by the GASP survey, we could analyze the stellar and CO distribution and kinematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We used the software 3DB based on the tilted-ring approach to model the stellar velocity field and the CO emission line datacubes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We identified the gas with anomalous veloc- ity that cannot be explained by a rotation disk and used the information on the stellar distribution and kinemat- ics to understand the origin of this anomalous gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' We reached the following conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' At least three (JO201, JO204, and JO206) out of four galaxies in the GASP-ALMA sample are barred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO201 and JO206, the bars aligned with the disk major axis are visible in the I-band images and explain the shallow gradient of the cir- cular velocity in the inner regions of these galax- ies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO204, various bar signatures are found in the distribution of the molecular gas and the kine- matics of both the molecular gas and the stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JW100, the disk inclination and dust obscuration do not allow us to unambiguously identify a bar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas kinematics in JO201 and JO206 is mainly dominated by non-circular motions in the region influenced by the bar, while the ram pressure becomes important at larger galactocen- tric distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The ram pressure plays a secondary role for the molecular gas kinematics of JO204, which is mainly rotation-dominated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Clear indi- cations of molecular gas stripping are found in two galaxies, JO206 and JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JO206, some molecular gas is detached and kinematically de- coupled from the main disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In JW100, the molec- ular gas disk is displaced with respect to the stel- lar disk and its kinematics is strongly perturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since JO201 and JW100 belong to cluster sub- structures, other mechanisms than ram pressure might be also at play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Radial flows of molecular gas are manifestly present in two galaxies (JO204 and JW100), but this is less clear in the other two objects (JO201 and JO206).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' These gas flows are consistent with being bar-driven inflows in JO206 and ram pressure-driven outflows in JO201 and JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The direction of radial motions remains unclear for JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The molecular gas velocity dispersion in JO201, JO206, and JW100 tends to be enhanced with re- spect to field galaxies, suggesting that the gas is very turbulent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the case of JO201 and JO206, Molecular gas kinematics in jellyfish galaxies 21 this can be explained by the complex motions in- duced by the bar within its region of influence or, beyond the bar region, by the the ram pres- sure, which can enhance the gas turbulence di- rectly and/or by increasing the SFR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In the case of JW100, the most likely scenario is that the gas turbulence is directly enhanced by the ram pres- sure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Our galaxies fall within the scatter of the molec- ular gas mass-size relation derived for field and Virgo galaxies by (Brown et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021), confirming that the relation is essentially independent of en- vironment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Overall, our results are consistent with a scenario in which the molecular gas is affected by ram pressure on different timescales and less severely than the atomic and ionized gas, likely because the molecular gas is denser and more gravitationally bound to the galaxy than the other gas phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The galaxies in the GASP- ALMA sample host an AGN (Poggianti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Peluso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Both stellar bars and ram pressure can contribute to efficiently drive molecular gas towards the galaxy center, possibly feeding the central black hole and triggering the nuclear activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Since the relative im- portance of bars and ram pressure in fueling the AGN has not been fully understood yet, we hope that our work may foster future studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In this work, we have shown that high-resolution observations of the molecular gas emission can be very useful in identifying stellar bars and radial flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Future effort will be devoted to fur- ther study the bar-AGN connection by expanding the GASP-ALMA sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Moreover, we have shown that the GASP sample is potentially very useful to investi- gate the impact of environment on scaling relations of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' In future work, we plan to address this topic by fully exploiting the richness and quality of the MUSE observations obtained with the GASP survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' This paper makes use of the following ALMA data: ADS/JAO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='ALMA#2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00496.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' ALMA is a partner- ship of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The Joint ALMA Observatory is op- erated by ESO, AUI/NRAO and NAOJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' CB acknowl- edges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agree- ment No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 833824).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' CB would like to thank E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Di Teodoro, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Rizzo, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Fraternali, for useful discus- sions and the help with the kinematic modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Facility: ALMA, MUSE@VLT Software: 3DBarolo (Di Teodoro & Fraternali 2015), APLpy (Robitaille & Bressert 2012), Astropy (As- tropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' BEST-FIT MODELS OF THE STELLAR VELOCITY FIELD This section provides the best-fit model of the stellar disk for JO204, JO206, and JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The top panels in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 11, 12, and 13 show the observed stellar velocity field, the best-fit model, and the map of the residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The bottom panels display the stellar rotation curve and the radial profiles of the PA and inclination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Overall, the stellar kinematics is well reproduced by our models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' However, the residual map of JO204 clearly shows a pattern in the central regions of the disk, which likely indicates the presence of a stellar bar (see also Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The residual map of JW100 highlights some regions where the model does not fully reproduces the observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' The origin of these differences is tricky to understand and may be due to asymmetric dust observation or the warp along the line of sight, or both (see also Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' REFERENCES Aguerri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', M´endez-Abreu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Corsini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, A&A, 495, 491, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:200810931 Alatalo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bureau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, MNRAS, 432, 1796, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sts299 Alonso, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Coldwell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Lambas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, A&A, 549, A141, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201220117 Alonso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Coldwell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Duplancic, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Mesa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Lambas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, A&A, 618, A149, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201832796 Alonso, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Coldwell, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Lambas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, A&A, 572, A86, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201424523 Andersen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1996, AJ, 111, 1805, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/117918 22 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 0 2 4 6 8 10 12 R [kpc] 0 50 100 150 200 250 Rotation velocity [km/s] 2nd fit 3rd fit 0 2 4 6 8 10 12 R [kpc] 70 72 74 76 78 80 Inclination [degrees] 2nd fit Median 3rd fit ± MAD 0 2 4 6 8 10 12 R [kpc] 318 320 322 324 326 328 Position angle [degrees] 2nd fit Median 3rd fit ± MAD 10h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 0°54\'35" 40" 45" 50" 55" 55\'00" 05" RA (ICRS) Dec (ICRS) 1" JO204 - Data 5 kpc 200 150 100 50 0 50 100 150 200 VLOS [km/s] 10h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s RA (ICRS) JO204 - Model 200 150 100 50 0 50 100 150 200 VLOS [km/s] 10h13m48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5s 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0s RA (ICRS) JO204 - Residuals 40 20 0 20 40 Data-Model [km/s] 0 2 4 6 8 10 12 14 16 R [arcsec] 0 2 4 6 8 10 12 14 16 R [arcsec] 0 2 4 6 8 10 12 14 16 R [arcsec] Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 but for JO204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 0 5 10 15 20 R [kpc] 0 50 100 150 200 250 Rotation velocity [km/s] 2nd fit 3rd fit 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 R [kpc] 35 40 45 50 55 60 65 70 Inclination [degrees] 2nd fit Median 3rd fit ± MAD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='110 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='112 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='114 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='116 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='118 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='122 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Position angle [degrees] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Median ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='± MAD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='21h13m49s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='48s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='47s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='46s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2°28\'45" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Dec (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO206 - Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 kpc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='21h13m49s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='48s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='47s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='46s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO206 - Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='21h13m49s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='48s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='47s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='46s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JO206 - Residuals ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Data-Model [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 but for JO206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Molecular gas kinematics in jellyfish galaxies 23 0 5 10 15 20 25 R [kpc] 0 50 100 150 200 250 300 350 400 Rotation velocity [km/s] 2nd fit 3rd fit 0 5 10 15 20 25 R [kpc] 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Inclination [degrees] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Median ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='± MAD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [kpc] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='177 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='178 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='179 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='181 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='182 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='183 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='184 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Position angle [degrees] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2nd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Median ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3rd fit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='± MAD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='23h36m26s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='24s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='21°09\'15" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='08\'45" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Dec (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1" ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JW100 - Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 kpc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='23h36m26s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='24s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JW100 - Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='VLOS [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='23h36m26s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='25s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='24s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='RA (ICRS) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='JW100 - Residuals ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Data-Model [km/s] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='R [arcsec] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Same as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 3 but for JW100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 24 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Astropy Collaboration, Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tollerud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, A&A, 558, A33, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Sip˝ocz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, AJ, 156, 123, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-3881/aabc4f Athanassoula, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1992a, MNRAS, 259, 345, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='345 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1992b, MNRAS, 259, 328, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/259.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='328 Bacchini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Iorio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Pezzulli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019a, A&A, 622, A64, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201834382 Bacchini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Iorio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a, A&A, 641, A70, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202038223 Bacchini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Pezzulli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Marasco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b, A&A, 644, A125, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202038962 Bacchini, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Pezzulli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019b, A&A, 632, A127, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201936559 Barazza, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jablonka, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Desai, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, A&A, 497, 713, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/200810352 Barnes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Hernquist, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1992, ARA&A, 30, 705, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='aa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='090192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='003421 Begeman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1987, PhD thesis, - Bellhouse, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Hau, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, ApJ, 844, 49, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aa7875 Bellhouse, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', McGee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 485, 1157, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz460 Bettoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1989, AJ, 97, 79, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/114958 Bettoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Galletta, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1994, A&A, 281, 1 Biviano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Paccagnella, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, A&A, 607, A81, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201731289 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Boquien, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, A&A, 564, A67, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201322313 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fossati, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022a, A&A Rv, 30, 3, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1007/s00159-022-00140-3 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022b, A&A Rv, 30, 3, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1007/s00159-022-00140-3 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Gavazzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2006, PASP, 118, 517, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/500691 Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Epinat, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Contini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, A&A, 631, A114, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201936133 Bosma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1981, AJ, 86, 1825, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/113063 Bravo-Alfaro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cayatte, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Balkowski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2000, AJ, 119, 580, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='f6/301194 Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Wilson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Zabel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, ApJS, 257, 21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4365/ac28f5 Bureau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Freeman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999, AJ, 118, 126, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/300922 Byrd, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Valtonen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990, ApJ, 350, 89, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/168362 Capelo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Feruglio, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Hickox, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Tombesi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='00765 Cappellari, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Emsellem, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004, PASP, 116, 138, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/381875 Cayatte, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Balkowski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Kotanyi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990, AJ, 100, 604, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/115545 Chabrier, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2003, PASP, 115, 763, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/376392 Chamaraux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Balkowski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Gerard, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1980, A&A, 83, 38 Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Crowl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Vollmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, AJ, 138, 1741, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-6256/138/6/1741 Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Vollmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007, ApJL, 659, L115, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/518034 Combes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, in Formation and Evolution of Galaxy Bulges, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Bureau, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Athanassoula, & B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Barbuy, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 245, 151–160, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1017/S1743921308017535 Combes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Debbasch, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Friedli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Pfenniger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1990, A&A, 233, 82 Cort´es, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Hardy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, ApJS, 216, 9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0067-0049/216/1/9 Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Catinella, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, PASA, 38, e035, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1017/pasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='18 Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Marcillac, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Richard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007, MNRAS, 376, 157, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='11369.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Cowie, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Songaila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1977, Nature, 266, 501, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1038/266501a0 Cramer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cortes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, ApJ, 901, 95, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/abaf54 Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Alatalo, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bureau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, MNRAS, 429, 534, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sts353 Deb, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, MNRAS, 494, 5029, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/staa968 Deb, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, MNRAS, 516, 2683, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stac2441 Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 451, 3021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv1213 Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Peek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, arXiv e-prints, arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='01618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='01618 Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Posti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Ogle, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fall, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Jarrett, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, MNRAS, 507, 5820, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stab2549 Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Posti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fall, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='02906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='02906 D´ıaz-Garc´ıa, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Salo, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Laurikainen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Herrera-Endoqui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016, A&A, 587, A160, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201526161 Molecular gas kinematics in jellyfish galaxies 25 Dicaire, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Carignan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Amram, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, MNRAS, 385, 553, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12868.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Fanali, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Dotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fiacconi, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Haardt, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 454, 3641, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv2247 Farber, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Ruszkowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tonnesen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Holguin, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, MNRAS, 512, 5927, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stac794 Fasano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Vanzella, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Dressler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012, MNRAS, 420, 926, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='19798.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Franchetto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Vulcani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, ApJ, 895, 106, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ab8db9 Fumagalli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Krumholz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Prochaska, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gavazzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, ApJ, 697, 1811, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-637X/697/2/1811 Galloway, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Willett, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fortson, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 448, 3442, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv235 Gavazzi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Consolandi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gutierrez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Boselli, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Yoshida, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, A&A, 618, A130, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201833427 George, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 479, 4126, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty1452 George, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bellhouse, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 487, 3102, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz1443 Giovanelli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Haynes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1985, ApJ, 292, 404, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/163170 Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, ApJ, 846, 27, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aa8322 Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', McGee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, ApJ, 899, 13, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aba3cb Gunn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Gott, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Richard, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1972, ApJ, 176, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/151605 Haynes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Giovanelli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Chincarini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1984, ARA&A, 22, 445, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='aa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='090184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='002305 Healy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Deb, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, A&A, 654, A173, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202141377 Ho, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Filippenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sargent, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1997, ApJ, 487, 591, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/304643 Hogarth, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Saintonge, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, MNRAS, 500, 3802, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/staa3512 Iorio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Nipoti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, MNRAS, 466, 4159, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stw3285 J´achym, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Combes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cortese, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, ApJ, 792, 11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-637X/792/1/11 J´achym, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Sun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, ApJ, 839, 114, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aa6af5 Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 476, 4753, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty500 Jedrzejewski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1987, MNRAS, 226, 747, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='747 Kamphuis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', J´ozsa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Oh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 452, 3139, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv1480 Kenney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Vollmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004, AJ, 127, 3361, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/420805 Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Choi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, ApJL, 901, L38, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/2041-8213/abb66f Knapen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Shlosman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Peletier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2000, ApJ, 529, 93, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/308266 K¨oppen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', J´achym, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Taylor, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Palouˇs, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 479, 4367, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty1610 Kormendy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Kennicutt, Robert C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004, ARA&A, 42, 603, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='astro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='053102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='134024 Krolik, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999, Active galactic nuclei : from the central black hole to the galactic environment Kronberger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kapferer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Ferrari, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Unterguggenberger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Schindler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008a, A&A, 481, 337, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:20078904 Kronberger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kapferer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Schindler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2006, A&A, 458, 69, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:20064976 Kronberger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kapferer, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Unterguggenberger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Schindler, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Ziegler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008b, A&A, 483, 783, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:200809387 Kuijken, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Merrifield, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1995, ApJL, 443, L13, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/187824 Lansbury, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Lucey, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, MNRAS, 439, 1749, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stu049 Larson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tinsley, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Caldwell, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1980, ApJ, 237, 692, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/157917 Lee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tonnesen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, MNRAS, 466, 1382, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stw3162 Lee, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Woo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012, ApJ, 750, 141, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-637X/750/2/141 Lee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Sheen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Yoon, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, MNRAS, 517, 2912, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stac2821 Lelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bureau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, MNRAS, 516, 4066, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stac2493 Lelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', McGaugh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Schombert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016a, AJ, 152, 157, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/0004-6256/152/6/157 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016b, ApJL, 816, L14, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/2041-8205/816/1/L14 Lelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', McGaugh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Schombert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Desmond, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Katz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 484, 3267, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz205 Lelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, A&A, 566, A71, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201322657 Leroy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Walter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Brinks, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, AJ, 136, 2782, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-6256/136/6/2782 Leroy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Walter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bigiel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, AJ, 137, 4670, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-6256/137/6/4670 26 Bacchini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Loni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kleiner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, A&A, 648, A31, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202039803 Luber, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', M¨uller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van Gorkom, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, ApJ, 927, 39, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ac469a Mancera Pi˜na, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Posti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Adams, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Oosterloo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021a, A&A, 647, A76, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202039340 Mancera Pi˜na, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Posti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Pezzulli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021b, A&A, 651, L15, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202141574 Mapelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moore, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Bland-Hawthorn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, MNRAS, 388, 697, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='13421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Marasco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', van der Hulst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Oosterloo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, A&A, 607, A106, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201731054 Marasco, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Oman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Navarro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Frenk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Oosterloo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 476, 2168, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty354 Masters, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Nichol, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Haynes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012, MNRAS, 424, 2180, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='21377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x M´endez-Abreu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', S´anchez-Janssen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Aguerri, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Corsini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Zarattini, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012, ApJL, 761, L6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/2041-8205/761/1/L6 Merluzzi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Busarello, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Dopita, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2013, MNRAS, 429, 1747, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sts466 Merrifield, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Kuijken, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999, A&A, 345, L47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/astro-ph/9904158 Merritt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1983, ApJ, 264, 24, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/160571 Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Paladino, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 480, 2508, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty2021 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020a, ApJ, 889, 9, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ab616a —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020b, ApJL, 897, L30, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/2041-8213/ab9f3b Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Radovich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, ApJ, 925, 4, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ac36c7 M¨uller, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Pfrommer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, Nature Astronomy, 5, 159, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1038/s41550-020-01234-7 Nulsen, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1982, MNRAS, 198, 1007, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1007 Olling, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1996, AJ, 112, 457, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/118028 Peluso, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Vulcani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, ApJ, 927, 130, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ac4225 Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & the GASP team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='12297 Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fasano, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Omizzolo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016, AJ, 151, 78, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/0004-6256/151/3/78 Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017a, Nature, 548, 304, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1038/nature23462 Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Moretti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017b, ApJ, 844, 48, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aa78ed Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tonnesen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 482, 4466, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty2999 Ponomareva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Peletier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Bosma, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, MNRAS, 469, 2387, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stx1018 Posti, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fraternali, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Di Teodoro, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Pezzulli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, A&A, 612, L6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/201833091 Radovich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 486, 486, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz809 Ramatsoku, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 487, 4580, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz1609 —.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, A&A, 640, A22, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202037759 Ramos-Mart´ınez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', G´omez, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & P´erez-Villegas, ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, MNRAS, 476, 3781, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty393 Randriamampandry, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Combes, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Carignan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Deg, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 454, 3743, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv2147 Regan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Thornley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Vogel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2006, ApJ, 652, 1112, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/505382 Rhee, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Valenzuela, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Klypin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Holtzman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Moorthy, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2004, ApJ, 617, 1059, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/425565 Ricarte, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Tremmel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Natarajan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Quinn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, ApJL, 895, L8, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/2041-8213/ab9022 Richter, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1994, A&A, 290, L9 Robitaille, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Bressert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2012, APLpy: Astronomical Plotting Library in Python, Astrophysics Source Code Library, record ascl:1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' http://ascl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='net/1208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='017 Roediger, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Hensler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, A&A, 483, 121, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:200809438 Roman-Oliveira, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Chies-Santos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Rodr´ıguez del Pino, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 484, 892, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz007 Rosas-Guevara, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bonoli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Dotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2020, MNRAS, 491, 2547, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz3180 Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Allen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sullivan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1979, A&A, 78, 217 Schoenmakers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999, PhD thesis, University of Groningen, Netherlands Schr¨oder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Drinkwater, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Richter, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001, A&A, 376, 98, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:20010997 Scott, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Bravo-Alfaro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Brinks, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2010, MNRAS, 403, 1175, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Sellwood, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, Reviews of Modern Physics, 86, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1 Sellwood, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & S´anchez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2010, MNRAS, 404, 1733, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Sellwood, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Wilkinson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1993, Reports on Progress in Physics, 56, 173, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0034-4885/56/2/001 Molecular gas kinematics in jellyfish galaxies 27 Shafi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Oosterloo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Morganti, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Colafrancesco, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Booth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2015, MNRAS, 454, 1404, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stv2034 Sheth, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Vogel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Regan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Thornley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Teuben, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2005, ApJ, 632, 217, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/432409 Silva-Lima, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Martins, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Coelho, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Gadotti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, A&A, 661, A105, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202142432 Solanes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Manrique, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Garc´ıa-G´omez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001, ApJ, 548, 97, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/318672 Sorgho, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Hess, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Carignan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Oosterloo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, MNRAS, 464, 530, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stw2341 Spekkens, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sellwood, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2007, ApJ, 664, 204, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/518471 Stevens, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Diemer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Lagos, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 490, 96, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stz2513 Stuber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Saito, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Schinnerer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2021, A&A, 653, A172, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202141093 Swaters, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Schoenmakers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & van Albada, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1999, MNRAS, 304, 330, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1046/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-8711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='02332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Tawfeek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Cervantes Sodi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Fritz, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, ApJ, 940, 1, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/ac9976 Tonnesen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Bryan, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2009, ApJ, 694, 789, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-637X/694/2/789 Vauterin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Dejonghe, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 1997, MNRAS, 286, 812, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='812 Vazdekis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', S´anchez-Bl´azquez, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Falc´on-Barroso, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2010, MNRAS, 404, 1639, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='16407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001, ApJ, 563, 694, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1086/323887 Verheijen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Sancisi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2001, A&A, 370, 765, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:20010090 Vollmer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Braine, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Pappalardo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Hily-Blant, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2008, A&A, 491, 455, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361:200810432 Vulcani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Poggianti, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Gullieuszik, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2018, ApJL, 866, L25, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/2041-8213/aae68b Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Koribalski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Serra, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2016, MNRAS, 460, 2143, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/stw1099 Waugh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Drinkwater, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Webster, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2002, MNRAS, 337, 641, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1046/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1365-8711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='x Yim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Wong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Howk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & van der Hulst, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2011, AJ, 141, 48, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-6256/141/2/48 Yim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Wong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Xue, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2014, AJ, 148, 127, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1088/0004-6256/148/6/127 Yoon, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Chung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Smith, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', & Jaff´e, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2017, ApJ, 838, 81, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='3847/1538-4357/aa6579 Yu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Kalinova, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Colombo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, A&A, 666, A175, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1051/0004-6361/202244306 Zabel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Davis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Smith, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2019, MNRAS, 483, 2251, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='1093/mnras/sty3234 Zabel, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', Wilson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' 2022, arXiv e-prints, arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05698.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='org/abs/2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} +page_content='05698' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99E1T4oBgHgl3EQfUgM7/content/2301.03090v1.pdf'} diff --git a/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/2301.04006v1.pdf.txt b/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/2301.04006v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b55fbb7a2c6ee76cdaf00af8919fc954feea3127 --- /dev/null +++ b/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/2301.04006v1.pdf.txt @@ -0,0 +1,2077 @@ +IRONFORGE: An Open, Secure, Fair, Decentralized +Federated Learning +Guangsheng Yu∗, Xu Wang†, Caijun Sun§, Qin Wang∗, Ping Yu‡, +Wei Ni∗, Renping Liu†, Xiwei Xu∗ +∗CSIRO Data61, Australia +†University of Technology Sydney, Australia +‡Harbin University of Technology, China +§Zhejiang Lab, China +Abstract—Federated learning (FL) provides an effective ma- +chine learning (ML) architecture to protect data privacy in a +distributed manner. However, the inevitable network asynchrony, +the over-dependence on a central coordinator, and the lack of an +open and fair incentive mechanism collectively hinder its further +development. We propose IRONFORGE, a new generation of FL +framework, that features a Directed Acyclic Graph (DAG)-based +data structure and eliminates the need for central coordinators +to achieve fully decentralized operations. IRONFORGE runs in +a public and open network, and launches a fair incentive +mechanism by enabling state consistency in the DAG, so that the +system fits in networks where training resources are unevenly +distributed. In addition, dedicated defense strategies against +prevalent FL attacks on incentive fairness and data privacy are +presented to ensure the security of IRONFORGE. Experimental +results based on a newly developed testbed FLSim highlight the +superiority of IRONFORGE to the existing prevalent FL frame- +works under various specifications in performance, fairness, and +security. To the best of our knowledge, IRONFORGE is the first +secure and fully decentralized FL framework that can be applied +in open networks with realistic network and training settings. +Index Terms—Federated Learning, DAG, Blockchain +I. INTRODUCTION +Federated learning (FL), officially introduced by Google +in 2017 [1], has become the preference to aggregate data +from distributed ends without breaching data privacy [1], +[2]. By aggregating huge data with comprehensive extracted +features in FL, critical issues such as model overfitting can be +significantly addressed [3]. However, Œ the inevitable network +asynchrony,  the over-dependence on a central coordinator, +and Ž the lack of an open and fair incentive mechanism hinder +the further development of FL in large and open scenarios [4]. +Traditional FL considers no or low delay throughout an ag- +gregation process, namely, synchronous FL. However, network +synchrony is unrealistic due to the inevitable capacity limit +of computation, bandwidth, and storage, as well as the im- +balanced capacities among the distributed participants. Thus, +recent studies propose pseudo-asynchronous FL [5] and asyn- +chronous FL [6]. The aggregation of pseudo-asynchronous +FL allows a short interval for collecting the model caches in +order to ensure that the number of models aggregated can be +sufficiently large, while the central coordinator immediately +updates the global model once receiving a new local model +from any idle participants in asynchronous FL. +Neither pseudo-asynchronous FL nor asynchronous FL can +tolerate the single-point-of-failure (SPoF) of the central coor- +dinator or even a malicious and corrupted coordinator (issue- +). The over-dependence on the central coordinator could +potentially degrade the system availability and the training +flexibility in the sense that an FL network may be confined to +specific training domains or tasks determined by the coordina- +tor. Participants in many existing studies [7]–[9], once opting +in an FL network, would have to obey the defined training +target with no flexibility to go for different tasks at will. +In addition to the weak training flexibility, the lack of an +open and fair incentive mechanism results in participants who +have fewer resources and a weaker capacity not willing to +contribute their resources to the global aggregation. This issue +deteriorates particularly in FL networks where resources are +not evenly distributed, and potentially leads to the model over- +fitting and weak generality against contingencies. Although +the authors of [10] survey the incentive mechanisms in FL, +all mentioned frameworks require a central coordinator, also +leading to issue-. +Existing studies propose to replace the central coordinator +with a committee running a consensus process in a blockchain +network to prevent the SPoF or a corrupted coordinator. Mean- +while, by sharing the model collection during the consensus +in the committee, pseudo-asynchronous FL can be achieved in +a decentralized manner, i.e., BlockFL [7], [11]–[14]. Consid- +ering only issue- being solved and issue-Œ being partially +solved by BlockFL, the authors of [9] introduce a Directed +Acyclic Graph (DAG)-based FL where both issue-Œ and issue- + are solved using the concept of asynchronous FL [6] to +fully decentralize the FL process. However, the paper [9] only +considers an ideal network in which the training resources are +evenly distributed. Moreover, the approach to enabling state +consistency for a secure and fair incentive mechanism (issue- +Ž) is missing in [9], which results in difficulty in adopting the +mechanism in a public and open network. +We propose IRONFORGE that is an open, secure, fair, +and decentralized FL system. IRONFORGE solves the above +mentioned pain points at one time. Openness: It features a +DAG-based data structure in an open network. Decentral- +ization: The need for a central coordinator is eliminated +throughout the process by IRONFORGE, inheriting from the +concept of asynchronous FL. As a result, the models are +1 +arXiv:2301.04006v1 [cs.LG] 7 Jan 2023 + +TABLE I: Qualitative comparisons between the proposed IRONFORGE and the existing FL frameworks +FL Framework +Data Structure +Data Asynchrony +Decentralization +Openness +Incentive +Security +Google FL [2] +Isolated models +Synchronous +Centralized +Private +� +� +Asynchronous FL [6] +Isolated models +Asynchronous +Centralized +Private +� +� +Block FL [15] +Blockchain +Synchronous +Decentralized +Private +Reward +� +DAG FL [9] +DAG +Asynchronous +Decentralized +Public +Reward +Poisoning/Backdoor/Lazy +IRONFORGE +DAG +Asynchronous +Decentralized +Public +Reward, Penalty +Poisoning/Backdoor/Stealing*/Collusion +* The stealing attack considered in this paper includes the traditional lazy attack. +The difference is that stealing attackers not only upload their previous models, but also fake the ownership of others’ previous models. +� Lack of corresponding designs. +maintained in a decentralized manner by all participants. +Fairness: IRONFORGE considers a practical scenario, where +resources are unevenly distributed among users. Each user, +based on its resource amount, selects several existing models, +verifies the correctness and evaluates the model accuracy over +the local dataset, and conducts the aggregation. IRONFORGE +also enables state consistency, by using which an open and +fair incentive mechanism can be established to motivate more +participants. Security: Moreover, dedicated defense strategies +against malicious attacks on incentive fairness, and against +dataset privacy breaching are presented to ensure the security +of IRONFORGE. The key contributions are as follows. +⊲ We propose a fully decentralized FL framework, namely, +IRONFORGE, which features a DAG-based data structure. +IRONFORGE addresses the network asynchrony typically +undergone in an FL process, and improves the motivation +of agents participating in the process in an open envi- +ronment by enabling reliable token rewards with strong +consistency and model prediction accuracy. +⊲ We specifically design a new validation mechanism +guarding against well-known FL attacks, including model +poisoning attacks, backdoor attacks, lazy attacks, and +model stealing attacks, among which the model of steal- +ing attack has never been considered in any existing FL +frameworks. By making use of noise-enabled Proof-of- +Learning (PoL) to validate the gradient descent process, +any malicious behaviors, such as faking the ownership +or directly using the existing models, or embezzling the +rewards for their conspirator by claiming a falsified source +list, can be captured and given punishments. +⊲ We build a flexible and efficient testbed, named FLSim, +to simulate the workflow across all considered FL frame- +works in this paper, including the proposed IRONFORGE. +We conduct comprehensive experiments based on FLSim, +comparing the system performance, security, and fairness +between the existing FL frameworks and IRONFORGE. +Insights are shed to provide guidelines on how to select +strategies in IRONFORGE to meet different requirements. +Extensive experiments corroborate that IRONFORGE outper- +forms the prevalent FL frameworks with and without attacks +leveraged, which highlights the holistic solution to the network +asynchrony (issue-Œ) and the over-dependence on the central +coordinators (issue-). Strictly and approximately monotonic +increases of rewards are observed in experiments with increas- +ing CPU cores, memory capacity, and bandwidth in different +incentive settings. This indicates that fairness (issue-Ž) can be +ensured in IRONFORGE under various definitions of fairness. +The rest of the paper is organized as follows. Section I +gives the introduction, followed by related works in Section II. +Section III provides the system overview and Section IV +details the design of IRONFORGE. Section V presents our +implementation based on a new testbed with comprehensive +experimental results. Section VI discusses system security and +properties. Finally, Section VII concludes this work. +II. RELATED WORK +A conventional synchronous FL framework is constructed +by a central coordinator and numbers of nodes, which main- +tains the global model and perform FL iterations, respec- +tively [2]. The coordinator periodically distributes the latest +global model to the nodes, and then the nodes independently +train the model with their local data and upload the trained +local models to the coordinator [16]. After receiving updated +models from nodes, the coordinator aggregates all the local +models as a new global model. Such synchronous FL frame- +work can hardly be adapted to large-scale and heterogeneous +networks, where asynchrony is non-negligible. +The issue of data asynchrony is tackled by the asyn- +chronous FL enabling nodes to train the global model from +central coordinators at any time, and the coordinators can +update the global model immediately when any local model +is collected. In [14], the authors introduced a cache layer +between the coordinator and local nodes. Each node trains +the global model with its local data and uploads its model to +the cache. The coordinator periodically aggregates the local +model in the cache and generates a new global model. Semi- +asynchronous FL protocols address the problems in FL such +as low round efficiency and poor convergence rate happened +in asynchronous FL. The system [5] incorporates a client se- +lection algorithm decoupling the coordinator and the selected +clients for a reduction of average round time. The authors +of [17] proposed an asynchronous federating-based detection +approach for end devices. A pre-shared data training strategy +for non-independent-and-identically-distributed (non-IID) data +is developed to avoid convergence divergence under the non- +IID patterns. After the collaborative model training procedure, +each client further conducts an additional local training process +to fit respective patterns. +The aforementioned FL frameworks require central coor- +dinators to schedule model training and aggregate models. +The centralized architecture suffers inherent security risks, +such as SPoF and malicious central coordinator, and limited +2 + +scalability with the bottleneck of the central coordinator. The +most recent Distributed Ledger Technology (DLT) holds the +potential to decentralize FL systems [18], [19]. Two key +technologies in DLT are blockchain and DAG. In blockchain, +a group of miners run the consensus protocol to generate hash- +chained data blocks, which are assembled from transactional +data, and synchronize the chained blocks. Blockchain assures +strong consistency among blockchain nodes and enables smart +contracts to be executed across the blockchain network in a +consistent and trustworthy way. In DAG, transactions from +decentralized DAG users are organized in a DAG structure +where directed edges indicate the reference relationship be- +tween the transactions. DAG can achieve high throughput with +short latency compared with blockchain [20]. +DLT has been developed to remove the central coordinator +and decentralize FL networks [9], [15], [21]. In BlockFL [15], +[22], [23], decentralized blockchain miners conduct model +verification and aggregation. To be specific, miners obtain +trained local models from working nodes and other miners. +After verification, miners aggregate local models for the +updated global models and conduct Proof-of-Work (PoW) to +create valid blocks containing the new global models. Then, +the blocks are propagated to all miners to start the next FL +iteration. The BlockFL relies on the resource-intensive PoW +consensus protocol to slow down the system and keep miners +synchronized. To reduce overhead and improve scalability, +DAG technology [24] is introduced to FL networks [9], [21], +where trained models are updated to a DAG topology by +working nodes without any coordination. Working nodes can +learn the latest local models in the DAG by exchanging data +with other nodes. By themselves, working nodes select and +verify aggregate local models and train the models using local +datasets. Next, working nodes publish their trained models to +the DAG with directed edges indicating the model reference. +Existing works only consider homogeneous networks where +the training resources are evenly distributed and thus lack +open and fair incentive mechanisms. IRONFORGE proposed +by this paper, on the other hand, improves the motivation of +participants with rewards for training contributions and penal- +ties for dishonest behaviors. IRONFORGE also tackles new +vulnerabilities in open FL networks, including model stealing +attacks where attackers steal models from others and claim +rewards from the plagiarized model, and collusion attacks +where attackers claim trained models are from conspirators. +III. SYSTEM OVERVIEW +In this section, we describe IRONFORGE from the aspects +of its architecture, workflow, and system assumptions. +A. System Overview +We first introduce the roles that participate in the system +and present our high-level design. +Architecture. IRONFORGE is a decentralized FL system that +features a DAG-based network structure to tackle the incon- +sistency in the decentralized FL process, excessive reliance +on central coordination, and ineffective motivation of con- +tributing the learning resources at the same time. Specifically, +Fig. 1. System model of IRONFORGE +IRONFORGE builds a hybrid architecture (cf. Fig. 1) that +involves two types of DAG, namely, Task-DAG and Global- +DAG (details refer to Fig. 2 and Fig. 3, respectively). The +training processes in both Task-DAG and Global-DAG are +traceable owing to the DAG data structure. A DAG node +published by a participant consists of a model update and the +directed edges of the node indicate the aggregating relationship +with existing models during the update, hence no central +coordinator required to conduct the training processes. +Global-DAG contains a variety of models adopted by all +participants, which can be viewed as a “unique” and public +model resource pool. No consistent testing dataset is given +in Global-DAG. Each user comes to Global-DAG and hunts +for models that uniquely meet its own local testing dataset. +Without central coordinators, any user can fetch models from +the pool for direct uses, release his task requests, or make con- +tributions, such as training on Global-DAG or on uncompleted +training tasks, or verifying the tasks. +Each training task is managed by a Task-DAG, while IRON- +FORGE can contain multiple Task-DAGs at the same time +to handle a range of different training tasks (see the right- +hand side in Fig. 1). Task-DAGs are task-specific and are +released by users who aim at improving their local model +prediction accuracy by virtue of the computational powers +and resources of others. Within a task, the Task-DAG network +contains multiple contributors who have the same training +target provided by the publisher. The trained models for each +task are broadcast and stored in the corresponding Task-DAG, +and await the check and verification. The satisfied model of a +task, observed by the publisher, is subsequently merged into +Global-DAG, increasing the exposure to the public users. As a +result, parallel learning on our hybrid DAG networks becomes +possible, and the resultant models can be collected by Global- +DAG for further involvement. +Roles. In IRONFORGE, the users can take different roles: +viewer, task publisher, verifier, and contributor. A user is a +participant in the network. Each user can select one or multiple +roles to perform specific functional activities (see the left-hand +side in Fig. 1). Specifically, a viewer can directly fetch models +from the public resource pool without further actions. The +task publisher aims to propose new tasks and the proposed +tasks are broadcast and await others’ contributions. In order +3 + +Global Network +User +Global DAG +Contributor +User +Task DAG +Global DAG +Contributor +Task DAG +User +Global DAG +Contributor +Task DAG +Viewer +Fetching +Evaluating +Models +Selected Models +Satisfied Mode +Task Publisher +Aggregating +Verification Committee +Aggregated Model +Local dataset +Contributor +Training +Trained Model +Selected Models +Task Publisher +sk +Aggregated Model +Verification Committee +% +Trained Model +Task +WorkNerifyTask +Community +…… +…… +t +① Register and Release a task +Publisher +Workers +② Announce +③ Observe +…… +b. Sync the DAG and validate DAG nodes +c. Evaluate some models with local test dataset +d. Pick up the best ones and aggregate them +e. Start training with local training dataset +f. Publish the model to the DAG +④ Train and publish models +Task-model node +Header: +Sender: … +Timestamp: … +Sources: […] +Evaluations: […] +Payload: +Weights: ipfs_uri+hash +④ +④ +④ +Local +dataset +Local +dataset +Local +dataset +Task-termination node +Sender: Publisher +Timestamp: … +Winner: … +Public testing dataset: Dtest +Accuracy: … +Balance update: … +Task-genesis node +Header: +Sender: Publisher +Timestamp: … +Target: +Commitment of Dtest: … +Prize: … +Contest strategy: … +Penalty strategy: … +Verification committee: +Payload: +Weights: ipfs_uri+hash +⑤ End a task by selecting the winner with the highest accuracy +a. Register on the global FL-DAG +V +P +Verify +Fig. 2. Task-DAG. The figure illustrates an overview of starting a new DAG-based FL task, also known as Task-DAG. One +with aims to improve his model accuracy to a certain target with the help of the community can release a task as the task +publisher. Some amount of token is deposited as the prize which will be subsequently awarded to all eligible participants +until the winning model is found and selected by the task publisher. The balance update of each participant is recorded in a +task-termination node published by the task publisher, and can be subsequently settled by the Global-DAG network. +to reap profits, a user can become a contributor to process a +training process by selecting, aggregating and training models. +He can either start the work on Global-DAG or enroll in others’ +published work from the uncompleted tasks. Also, a verifier in +the system is to verify existing tasks in the resource pool. He +can contribute or verify either one favorable task or multiple +tasks in parallel for a higher profit. In short, the four roles +cover all potential functional activities within IRONFORGE. +B. Workflow Overview +Then, we provide an overview of the workflow of IRON- +FORGE. We focus on the procedures of task establishment and +task processing by presenting the interactive steps of a user +between the Task-DAG and Global-DAG. +Step-1. The user registers a task in the Global-DAG network by +depositing the committed prize. He obtains a task identifier +and then broadcasts the task to the network. We assume +that another user has accepted the proposed task prior and +worked on the task as a task contributor. +Step-2. The contributor enters the procedure of training mod- +els. He first evaluates several existing models from the pool +and selects a series of models for the shortlist. +Step-3. Based on the selected models, the contributor aggre- +gates all the short-listed models and integrates them with +local datasets to train the model according to requirements. +Step-4. Once completing the training, the contributor submits +the trained model to the Task-DAG. Meanwhile, peer con- +tributors may also work on the same task and generate com- +petitively trained models. All these models are propagated +within the Task-DAG network. +Step-5. The publisher who obtains the trained model termi- +nates the task by marking it with a termination tag. Once +selected by users who are conducting the training process +in Global-DAG, the trained model is deemed to be formally +synchronized into Global-DAG. +Notably, a user in the Global-DAG network can either +contribute to other tasks proposed by peer users, or personally +publish a task by himself. All the procedures follow similar +steps, as described from Step-2 to Step-5. +C. System Assumptions +In this section, we list our assumptions on the network, +security, and threat models of IRONFORGE. +Resource assumption. We do not assume any resource dis- +tribution in our work. The resource distribution in the entire +network is random. This means different participants, with a +high probability, hold different computing resources, including +computing power, network bandwidth, memory space, storage +capability, and training dataset quality. Addressing the system +heterogeneity is one of the core contributions in this work, as +we weaken the long-existing implicit assumption in previous +work [9]: the even resource distribution. IRONFORGE enables +any distribution of shares of any type of resources among the +participants, making the system practical. +User behavior assumption. We have two assumptions on user +behaviors. First, the participants in the network are rational, +meaning that they can select an arbitrary task, switch to +others, or quit existing tasks for better profits. Second, different +participants can focus on different training targets, including +both task bundles (one task has dependency on another) and +orthogonal tasks (one task is independent of the others). This +enables the processing of multiple tasks in parallel, greatly +improving the system’s overall scalability and performance. +Security assumption. We assume that the honest nodes +always conduct honest behaviors, where they obey all the +policies during the model selection, model aggregation, model +4 + +Task-1 +(terminated) +Task-2 +(terminated) +Task-N +(ongoing) +G +1 +t1 +t2 +tn +2 +V +P +τ1 +3 +Local +dataset +Local +dataset +Local +dataset +…… +Community +Publish +Publish +Publish +Contribute +Contribute +VRF- +consensus +Settlement node +Sender: +Timestamp: … +PoL results: … +Unverified PoL: … +Balance: … +Fig. 3. Global-DAG. This figure illustrates an overview of the Global-DAG network. With the absence of a centralized +coordinator, each participant trains a model by selecting and aggregating as many models (including the outcomes of terminated +tasks) published by others as possible (based on the local capability). Model targets are not unique and according to different +needs, the network can be treated as a global resource pool containing a variety of models. Ones can either find a model which +satisfies his local testing dataset from the pool, or make contributions to the pool and obtain token rewards by improving +existing models. Token balances are periodically settled (endorsed by a verifiable random function (VRF)-driven consensus) +by settlement nodes that employ a chain structure to achieve strong consistency. +training, task verification, and other operations related to the +defense strategies against adversaries. The adversaries have the +ability to delay the model convergence and lower the model +accuracy by leveraging popular FL attacks, including lazy +attacks [9], poisoning attacks [25], and backdoor attacks [26]. +The adversaries also have the ability to breach the incentive +fairness by leveraging model stealing attacks [27]–[30], and +compromising the privacy of others’ training datasets. Adver- +saries not only can upload their previous models (traditional +lazy attacks), but also fake the ownership of others’ previous +models or fake their own training process to embezzle rewards +for their conspirators. These two faking types are defined as +stealing attacks and collusion attacks, respectively, and both +belong to the context of model stealing attacks in this paper. +IV. DECENTRALIZED FEDERATED LEARNING +IRONFORGE involves four novel mechanisms, i.e., the re- +lease of Task-DAG networks, the decentralized model training, +the defense strategy, and the incentive mechanism. IRON- +FORGE features two types of network, public Global-DAG and +task-specific Task-DAG. A training task can be outsourced to +communities by releasing a Task-DAG network and following +four steps including preparation, initialization, monitoring, and +finalization. The decentralized training processes of Task-DAG +and Global-DAG are specifically defined by the new decen- +tralized model training mechanism, in which users aggregate +existing models, train the aggregated models and publish the +model updates to the network in a decentralized way. The +training processes are guarded by a new defense strategy +against model stealing attacks in the decentralized setting that +has never been considered in existing studies. The crafted +incentive mechanism assures the state consistency of networks +and enables smart-contract-enhanced incentives including both +rewards and penalties. Table II summarizes the notations. +A. Managing Task-DAG +Any user can outsource an FL training task by managing +a DAG, as shown in Algo. 1. An FL training task can +be described with a training target, i.e., the model to be +trained, the targeted accuracy, and the testing dataset. To build +incentives to motivate distributed workers and deter malicious +workers, we design reward, penalty, and verification schemes +for Task-DAG networks. +1) Preparation: A training task Task𝑚 can be described +with an initial model, i.e., 𝑊𝑚,𝑔, and an accuracy target 𝛼𝑚 of +the model tested on the dataset 𝐷test +𝑚 +from the task publisher +𝑈𝑚,𝑝. To reduce the storage and bandwidth overhead, the +model weights can be stored in external infrastructures, e.g., +the InterPlanetary File System (IPFS). The Uniform Resource +Identifiers (URIs) and hash codes to the weights are embedded +in DAG nodes for access and verification. The testing dataset +𝐷test +𝑚 +is committed in the genesis node of the Task-DAG by +embedding the hash code, and is revealed by the end of the +training for model verification. This commit-and-reveal design +prevents direct access to 𝐷test +𝑚 during the training process and +ensures that the final selected model can be publicly verified. +To run a Task-DAG with an incentive in a secure way, the +task publisher 𝑈𝑚,𝑝 needs to design a contest strategy Φ𝑚 to +allocate reward 𝜈𝑚 to contributors and a penalty strategy Υ𝑚 +to suppress the flooding of excessive trivial models and other +malicious behaviors. +Some examples of the plug-and-play contest strategy in- +clude an egalitarian strategy where the prize is divided equally +among contributors along the traversal of the final winner +node, or an implementation of “to each according to his +5 + +TABLE II: Notation Definition +Notation +Definition +𝑈𝑘 +The 𝑘-th user +𝐵𝑘 +The balance of 𝑘-th user +𝐷train +𝑘 +The local training dataset of 𝑈𝑘 +𝐷test +𝑘 +The local testing dataset of 𝑈𝑘 +𝛽 +The number of candidate weights +𝜎 +The number of aggregated weights +Task-DAG +Task𝑚 +The 𝑚-th Task-DAG network +𝛼𝑚 +The accuracy target of Task𝑚 +𝜈𝑚 +The committed prize of Task𝑚 +𝑈𝑚,𝑝 +The publisher of Task𝑚 +𝑁𝑚,𝑔 +The genesis node of Task𝑚 +𝑇𝑚,𝑔 +The creation timestamp of 𝑁𝑚,𝑔 +𝑊𝑚,𝑔 +The initial model weights of Task𝑚 +𝑁𝑚,𝑘,𝑖 +The 𝑖-th node published by the 𝑘-th user in Task𝑚 +M𝑚,𝑘,𝑖 +The source list of 𝑁𝑚,𝑘,𝑖 +𝐸𝑚,𝑘,𝑖 +The evaluation result for 𝑁𝑚,𝑘,𝑖 over 𝐷test +𝑘 +E𝑚,𝑘,𝑖 +The evaluation result for M𝑚,𝑘,𝑖 over 𝐷test +𝑘 +𝑊 ∗ +𝑚,𝑘,𝑖 +The model weights aggregated by M𝑚,𝑘,𝑖 before the local +training +𝑊𝑚,𝑘,𝑖 +The model weights after the local training +𝜌𝑚,𝑘,𝑖 +The setting for training 𝑊 ∗ +𝑚,𝑘,𝑖 into 𝑊𝑚,𝑘,𝑖 +𝑇𝑚,𝑘,𝑖 +The creation timestamp of 𝑁𝑚,𝑘,𝑖 +𝑁𝑚,𝑒 +The task-termination node of Task𝑚 +𝑇𝑚,𝑒 +The creation timestamp of 𝑁𝑚,𝑒 +Ψ𝑚 +The prize allocation of Task𝑚 +Φ𝑚 +The contest strategy of Task𝑚 +Υ𝑚 +The penalty strategy for malicious attacks of Task𝑚 +Ω𝑚 +The verification committee of Task𝑚 +Global-DAG +𝑁𝑔 +The genesis node of Global-DAG +𝑁𝑘,𝑖 +The 𝑖-th node published by the 𝑘-th user in Global-DAG +𝑇𝑘,𝑖 +The creation timestamp of 𝑁𝑘,𝑖 +𝑆ℎ +The ℎ-th settlement node in the settlement sets S +𝜆ℎ +The subtree that is aggregated by 𝑆ℎ +𝑉𝑘,𝑘′,𝑖 +A PoL-challenge raised by 𝑈𝑘′ for 𝑁𝑘,𝑖 where 𝑘 ≠ 𝑘′ +𝜋𝑘,𝑘′,𝑖 +The deposit to raise 𝑉𝑘,𝑘′,𝑖 +𝜖PoL +The threshold of PoL-verification +𝑃𝑘,𝑘′,𝑖 +The PoL-response replied by the publisher 𝑈𝑘 of 𝑁𝑘,𝑖 for +𝑉𝑘,𝑘′,𝑖 raised by 𝑈𝑘′ where 𝑘 ≠ 𝑘′ +𝑅𝑘, ˆ𝑘,𝑖 +The PoL-result sent from 𝑈 ˆ𝑘 on 𝑃𝑘,𝑘′,𝑖 where 𝑘 ≠ ˆ𝑘 +𝜏ℎ +The timeout for 𝑃𝑘,𝑘′,𝑖 to be published after 𝑉𝑘′,𝑘,𝑖 has +been published and confirmed by 𝑆ℎ +Θℎ +The committee elected to conduct consensus for 𝑆ℎ +contribution” whereby the prize is allocated based on the +amount of contribution, or striking a balance in-between. Some +examples of the penalty strategy include an implementation +of S-Index +H-Index (i.e., preventing excessive self-citations) [31] or the +occupation ratio along the traversal of the final winner node. +The publisher 𝑈𝑚,𝑝 also invokes the election to nominate a +set of 𝑈𝑘 that constitute a task committee Ω𝑚 of Task𝑚 for +evaluating trained models and conducting PoL-verification. +The committee is elected via a Verifiable Random Function +(VRF) [32] upon the balances 𝐵𝑘 of eligible 𝑈𝑘. +2) Initialization: To initialize Task𝑚, the publisher 𝑈𝑚,𝑝 +firstly registers Task𝑚 to the task management smart contract +Algorithm 1: Manage Task-DAG +⊲ Initialize a training task +1 𝑈𝑚,𝑝.Deposit(Task𝑚, 𝜈𝑚) +2 Ω𝑚 ← 𝑈𝑚,𝑝.VRF(Task𝑚) +⊲ Elect the nominated verification committee to Task𝑚 +3 𝑁𝑚,𝑝 ← {𝐻 (𝑊𝑚,𝑔), URI(𝑊𝑚,𝑔), 𝐻 (𝐷test +𝑚 ), 𝛼𝑚, +𝜈𝑚, Φ𝑚, Υ𝑚, Ω𝑚, 𝑇𝑚,𝑔 } +4 𝑁𝑚,𝑝 ← 𝑈𝑚,𝑝.Sign(𝑁𝑚,𝑝) +5 𝑈𝑚,𝑝.Announce(𝑁𝑚,𝑝) +⊲ Broadcast to the network +⊲ Observe the training +6 while True do +7 +𝑁𝑚,𝑘,𝑖 ← 𝑈𝑚,𝑝.Monitor(Task𝑚) +8 +if 𝑁𝑚,𝑘,𝑖 breaches Υ𝑚 then +9 +𝑈𝑚,𝑝.ApplyPenalty(Υ𝑚, 𝑁𝑚,𝑘,𝑖, 𝑈𝑘) +10 +if 𝐸𝑚,𝑘,𝑖 > 𝛼𝑚 then +11 +ˆ𝐸𝑚,𝑘,𝑖 ← 𝑈𝑚,𝑝.Evaluate(𝑊𝑚,𝑘,𝑖, 𝐷test +𝑚 ) +12 +if ˆ𝐸𝑚,𝑘,𝑖 > 𝛼𝑚 then +13 +ˆ𝑁𝑚,𝑘,𝑖 ← 𝑁𝑚,𝑘,𝑖 +14 +break +⊲ Finalize the training task +15 Ψ𝑚 ← 𝑈𝑚,𝑝.AllocatePrize(Φ𝑚, ˆ𝑁𝑚,𝑘,𝑖) +16 𝑁𝑚,𝑒 ← { ˆ𝑁𝑚,𝑘,𝑖, +ˆ𝑈𝑘, URI(𝐷test +𝑚 ), +ˆ𝐸𝑚,𝑘,𝑖, Ψ𝑚, 𝑇𝑚,𝑒 } +𝑆𝐶𝑇 on the Global-DAG network by depositing the committed +prize 𝜈𝑚. Next, 𝑈𝑚,𝑝 prepares a genesis node 𝑁𝑚,𝑔 including +the commitment and the URI of the initial model to be trained, +i.e., 𝐻(𝑊𝑚,𝑔) and URI(𝑊𝑚,𝑔), the model accuracy target 𝛼𝑚, +the commitment of the public testing dataset 𝐻(𝐷test +𝑚 ), the +committed prize 𝜈𝑚, the contest strategy Φ𝑚, the penalty +strategy Υ𝑚, the nominated verification committee Ω𝑚, and +the creation timestamp 𝑇𝑚,𝑔1. Then, 𝑈𝑚,𝑝 can sign the genesis +node 𝑁𝑚,𝑔 and announce the genesis node. +3) Monitoring: Upon these operations, training starts in +Task𝑚, and the publisher 𝑈𝑚,𝑝 observes the progress until the +model becomes mature enough. Any 𝑈𝑘, who is interested in +contributing the computational resources and competing for +the prize 𝜈𝑚, continues training models and publishing node +𝑁𝑚,𝑘,𝑖, i.e., the 𝑖-th node released by 𝑈𝑘 in Task𝑚, as a worker. +If any nodes breaching the penalty strategy Υ𝑚 are found, +𝑈𝑚,𝑝 issues fines and updates the balance of the publisher of +the breaching nodes. Note that the balance change in regard +to the penalty has yet to be finalized at this stage. +4) Finalization: When the claim of reaching the targeted +model accuracy 𝛼𝑚 is realized, 𝑈𝑚,𝑝 evaluates the model +over the testing dataset 𝐷test +𝑚 . Once the accuracy is surely +met by the winner node +ˆ𝑁𝑚,𝑘,𝑖, 𝑈𝑚,𝑝 executes the contest +strategy Φ𝑚 and obtains the prize allocation Ψ𝑚. Next, 𝑈𝑚,𝑝 +terminates Task𝑚 by creating a task-termination node 𝑁𝑚,𝑒 that +points to the winner node ˆ𝑁𝑚,𝑘,𝑖 and contains the winner’s +address ˆ𝑈𝑘, the URI to the testing dataset URI(𝐷test +𝑚 ), the +achieved testing accuracy ˆ𝐸𝑚,𝑘,𝑖, the prize allocation Ψ𝑚, and +the creation timestamp 𝑇𝑚,𝑒. The task publisher 𝑈𝑚,𝑝 then +signs 𝑁𝑚,𝑒 and broadcasts 𝑁𝑚,𝑒 to the Global-DAG network. +The balance change in regard to both the prize allocation Ψ𝑚 +and the penalty is subsequently finalized by settlement nodes +once the termination node is revealed to the public and is +1The trustworthiness of the timestamp is guaranteed by trusted timestamp- +ing services. +6 + +Algorithm 2: Train Models +1 for 𝑈𝑘 parallelly do +⊲ Worker registration +2 +𝑈𝑘.Register(Task𝑚) +3 +while Task𝑚 is ongoing do +⊲ Sync, verify and select nodes +4 +while unsynchronized do +5 +𝑁𝑚,𝑘′,𝑖′ ← 𝑈𝑘.SyncNodes(Task𝑚) +6 +𝑈𝑘.VerifySignature(𝑁𝑚,𝑘′,𝑖′) +7 +𝑈𝑘.VerifyRegistration(𝑈𝑘′) +8 +𝑈𝑘.VerifyBalance(𝑈𝑘′) +9 +if verification passes then +10 +𝑈𝑘.Propagate(𝑁𝑚,𝑘′,𝑖′) +11 +for 𝛽 number of 𝑁𝑚,𝑘′,𝑖′ ∈ Task𝑚 parallelly do +12 +𝐸′ +𝑚,𝑘′,𝑖′ ← 𝑈𝑘.Evaluate(𝑊𝑚,𝑘′,𝑖′, 𝐷test +𝑘 ) +13 +M𝑚,𝑘,𝑖, E𝑚,𝑘,𝑖 ← 𝑈𝑘.Select({𝑁𝑚,𝑘′,𝑖′, 𝐸′ +𝑚,𝑘′,𝑖′ }, +𝜎) +⊲ Aggregate, train and contribute nodes +14 +𝑊 ∗ +𝑚,𝑘,𝑖 ← 𝑈𝑘.Aggregate(M𝑚,𝑘,𝑖) +15 +𝑊𝑚,𝑘,𝑖 ← 𝑈𝑘.T𝑚,𝑘 (𝑊 ∗ +𝑚,𝑘,𝑖, 𝜌𝑚,𝑘,𝑖, 𝐷train +𝑘 +) +16 +𝐸𝑚,𝑘,𝑖 ← 𝑈𝑘.Evaluate(𝑊𝑚,𝑘,𝑖, 𝐷test +𝑘 ) +17 +𝑁𝑚,𝑘,𝑖 ← {M𝑚,𝑘,𝑖, E𝑚,𝑘,𝑖, 𝜌𝑚,𝑘,𝑖, +𝐻 (𝑊𝑚,𝑘,𝑖), URI(𝑊𝑚,𝑘,𝑖), 𝐸𝑚,𝑘,𝑖, 𝑇𝑚,𝑘,𝑖} +18 +𝑁𝑚,𝑘,𝑖 ← 𝑈𝑘.Sign(𝑁𝑚,𝑘,𝑖) +19 +𝑈𝑘.Announce(𝑁𝑚,𝑘,𝑖) +referred by any future model in Global-DAG; see details in +Section IV-D. +B. Decentralized Model Training +As an open system, IRONFORGE allows the workers to +contribute to the decentralized training in both a Task𝑚 and +Global-DAG. The training process in a Task-DAG is given +in Algo. 2, while the training process in Global-DAG shares +the same algorithm except that there does not exist a public +shared testing dataset 𝐷test +𝑚 that decides the stopping point (i.e., +the training accuracy target 𝛼) in the Global-DAG network. +Global-DAG acts as a public resource pool of diversified +models, allowing for free hunting of models that uniquely +meet customized training targets upon local testing datasets +𝐷test +𝑘 +for each 𝑘-th user 𝑈𝑘. +Task-DAG Training. Any user 𝑈𝑘, who is interested in com- +peting for the training rewards in a Task𝑚, needs to admit the +contest and penalty strategies specified in 𝑁𝑚,𝑔 and registers to +the task management smart contract 𝑆𝐶𝑇 on the Global-DAG +network by depositing a certain amount of tokens. This can +suppress Sybil attacks, distributed denial-of-service (DDoS) +attacks, and other malicious behaviors under the regulation of +the penalty strategy Υ𝑚. +While Task𝑚 is running, 𝑈𝑘 can synchronize the view of +Task𝑚 and obtain the latest nodes 𝑁𝑚,𝑘′,𝑖′ with (𝑘 ≠ 𝑘′ ∨ +𝑖 ≠ 𝑖′) ∧ (𝑇𝑚,𝑘′,𝑖′ < 𝑇𝑚,𝑘,𝑖). 𝑈𝑘 then verifies the signature +of the nodes and confirms that the corresponding worker 𝑈𝑘′ +is registered and has enough balance from 𝑆𝐶𝑇 . Worker 𝑈𝑘 +drops the nodes that do not pass verification and propagates +the success nodes to other workers. +After verification, 𝑈𝑘 randomly evaluates several 𝑁𝑚,𝑘′,𝑖′ +over its local testing dataset 𝐷test +𝑘 +for the testing accuracy +𝐸 ′ +𝑚,𝑘′,𝑖′ until it collects 𝛽 candidated weights (Lines 11-13 +of Algo. 2). Next, 𝑈𝑘 picks up the top 𝜎 models constituting +the source list M𝑚,𝑘,𝑖 which are then aggregated into the pre- +trained model 𝑊∗ +𝑚,𝑘,𝑖 using a weighted aggregation function, +as given by +𝑊∗ +𝑚,𝑘,𝑖 = +∑︁ +𝑊𝑝 in M𝑚,𝑘,𝑖 +𝐸𝑝 in E𝑚,𝑘,𝑖 +𝐸 𝑝 +� +𝐸𝑞 ∈E𝑚,𝑘,𝑖 𝐸𝑞 +𝑊𝑝. +(1) +After that, 𝑈𝑘 trains the aggregated model 𝑊∗ +𝑚,𝑘,𝑖 over its local +training dataset 𝐷train +𝑘 +with training settings 𝜌𝑚,𝑘,𝑖 for a trained +model 𝑊𝑚,𝑘,𝑖 , as given by +𝑊𝑚,𝑘,𝑖 = T𝑚,𝑘 (𝑊∗ +𝑚,𝑘,𝑖, 𝜌𝑚,𝑘,𝑖, 𝐷train +𝑘 +), +(2) +where T𝑚,𝑘 is the training function of 𝑈𝑘 for Task𝑚. +Once the training is done, 𝑈𝑘 evaluates the model over +its local testing dataset 𝐷test +𝑘 +and obtains the testing accuracy +𝐸𝑚,𝑘,𝑖. Next, 𝑈𝑘 prepares a model update node 𝑁𝑚,𝑘,𝑖 with the +source list M𝑚,𝑘,𝑖, the corresponding accuracy list E𝑚,𝑘,𝑖, the +hash code and URI to the trained model, i.e., 𝐻(𝑊𝑚,𝑘,𝑖) and +URI(𝑊𝑚,𝑘,𝑖), the testing accuracy 𝐸𝑚,𝑘,𝑖, the training settings +𝜌𝑚,𝑘,𝑖, and the creation timestamp 𝑇𝑚,𝑘,𝑖. Worker 𝑈𝑘 then +signs 𝑁𝑚,𝑘,𝑖 and broadcasts the signed node. Note that the +training settings 𝜌𝑚,𝑘,𝑖, such as the learning rate and batch +size, are embedded in nodes as a record of the training process +for any upcoming PoL processes. +Global-DAG Training. Training in Global-DAG also goes +through Algo. 2, except that there exists neither a public shared +testing dataset 𝐷test +𝑚 , nor a unique training target that decides +the stopping point, hence an indefinitely growing DAG. The +testing accuracy 𝐸 ′ +𝑚,𝑘′,𝑖′ is also removed in rewarding con- +tributors who upload models to Global DAG. 𝑈𝑘 receives a +reward whenever one of its models gets referred by any other +subsequent models in the network, which becomes the default +contest strategy for Global-DAG. Users conducting training +in Global-DAG need to be responsible for their own training +processes, including preparing their own goals and local +testing datasets and hunting for appropriate models across the +whole network. Note that, the task-termination nodes of each +Task𝑚 are also included in Global-DAG, which enables tasks +to be advertised to the wider public and to be further evolvable +along with diversified models in Global-DAG. +C. Proof-of-Learning: Defense against Model Stealing Attacks +We design a privacy-preserving PoL scheme to prove the +computing-extensive training work and suppress model steal- +ing attacks [27]–[30]. The idea of the privacy-preserving PoL +is based on the reproducibility of training and the PoL in [33] +in which the training process from the same starting point +over the same training dataset with the same training settings +results in the same trained model or bounded differences +among the trained models. In the proposed privacy-preserving +PoL, provers can provide obfuscated training dataset and +give an estimated bound of model differences. We propose +a new dataset obfuscation process to protect the privacy of +the training dataset. The proposed privacy-preserving PoL +scheme in the Global-DAG network is given in Algo. 3. The +privacy-preserving PoL scheme for Task-DAG networks can be +7 + +Algorithm 3: Proof-of-Learning +⊲ Raise a PoL-challenge +1 𝑉𝑘,𝑘′,𝑖 ← 𝑈𝑘′.Challenge(𝑁𝑘,𝑖 | 𝑘 ≠ 𝑘′ ∧ not been challenged) +2 𝑉𝑘,𝑘′,𝑖 ← 𝑈𝑘′.Deposit(𝜋𝑘,𝑘′,𝑖) +⊲ Broadcast to the network +3 𝑉𝑘,𝑘′,𝑖 ∈ 𝜆ℎ is subsequently settled by 𝑆ℎ. +⊲ 𝜏ℎ countdown starts +⊲ Reply with a PoL-proof +4 +� +𝐷train +𝑘 +←𝑈𝑘.Obfuscate(𝐷train +𝑘 +) +5 𝑃𝑘,𝑘′,𝑖 ← 𝑈𝑘.Prove(𝑉𝑘,𝑘′,𝑖, � +𝐷train +𝑘 +)) +⊲ Broadcast to the network +6 𝑃𝑘,𝑘′,𝑖 ∈ 𝜆ℎ+𝑛 is subsequently settled by 𝑆ℎ+𝑛. +⊲ Verify the PoL-proof +7 if 𝑃𝑘,𝑘′,𝑖 presents before the timeout then +8 +if 𝑇𝑘,𝑘′,𝑖 ≤ 𝑇ℎ + 𝜏ℎ then +9 +for 𝑈 ˆ𝑘 ∈ Θℎ+𝑛+1 parallelly do +10 +𝑊 replay +𝑘,𝑖 +←𝑈 ˆ𝑘.LearningReplay(𝑃𝑘,𝑘′,𝑖.(𝑊 ∗ +𝑘,𝑖, � +𝐷train +𝑘 +, +𝜌𝑘,𝑖)) +11 +if ∥ 𝑊 replay +𝑘,𝑖 +− 𝑁𝑘,𝑖.𝑊𝑘,𝑖 ∥2< 𝜖PoL then +12 +𝑅𝑘, ˆ𝑘,𝑖 roots for 𝑃𝑘,𝑘′,𝑖 +13 +R𝑘,𝑖 ←Consensus(𝑅𝑘, ˆ𝑘,𝑖 | 𝑈 ˆ𝑘 ∈ Θℎ+𝑛+1) +14 +if R𝑘,𝑖 roots for 𝑃𝑘,𝑘′,𝑖 then +15 +emit Challenge fails +⊲ Learning proved +16 +goto Finalization +17 emit Challenge succeeds +⊲ Learning invalidated +⊲ Finalization +18 if Challenge fails then +19 +𝑈𝑘′ ←Refund(𝛽𝜋𝑘,𝑘′,𝑖 | 𝛽 ∈ (0, 1)) +20 else +21 +𝑈𝑘′ ←Refund(𝜋𝑘,𝑘′,𝑖) +22 +𝑈𝑘′ ←Penalty(𝑈𝑘, 𝜋𝑘,𝑘′,𝑖) +23 +WithdrawReward(𝑁𝑘,𝑖) +24 𝑆ℎ+𝑛+1 is generated via Algo. 4 +⊲ Notice +The Consensus is conducted by the nominated +verification committee Ω𝑚 when the PoL is +done in a Task𝑚. +conducted in the same way where the PoL-proof is verified by +the nominated task committee Ω𝑚. +1) Challenge: If a node 𝑁𝑘,𝑖 has not been challenged +before, any worker 𝑁𝑘′ can raise a PoL challenge against the +node as a challenger. 𝑈𝑘′ needs to deposit a certain amount +of tokens 𝜋𝑘,𝑘′,𝑖 to the PoL smart contract 𝑆𝐶𝑃𝑜𝐿 for the +challenging node 𝑉𝑘,𝑘′,𝑖. Then, 𝑈𝑘′ signs and broadcasts the +challenging node 𝑉𝑘,𝑘′,𝑖 to the network and starts a countdown. +2) Response: The publisher of 𝑁𝑘,𝑖, i.e., 𝑈𝑘, needs to reply +to the challenge 𝑉𝑘,𝑘′,𝑖 as a prover within the PoL timeout 𝜏. +𝑈𝑘 firstly obtains the obfuscated dataset �𝐷train +𝑘 +by applying +the noise 𝛿𝑘,𝑘′,𝑖 to its local training dataset 𝐷train +𝑘 +. Next, 𝑈𝑘 +prepares a PoL proof node 𝑃𝑘,𝑘′,𝑖 with the hash code and +URI to the obfuscated dataset, i.e., 𝐻( �𝐷train +𝑘 +) and URI( �𝐷train +𝑘 +). +Then, 𝑈𝑘 signs 𝑃𝑘,𝑘′,𝑖 and broadcasts it to the network. +3) Verification: At the PoL verification stage, the commit- +tee Θℎ (see details in Section IV-D for the use of Θℎ) verifies +𝑃𝑘,𝑘′,𝑖 in parallel if the timestamp of the prover node is within +the timeout 𝜏ℎ. To be specific, a verifier 𝑈 ˆ𝑘 can fetch the +obfuscated dataset �𝐷train +𝑘 +with the URI given in 𝑃𝑘,𝑘′,𝑖 and +confirm its integrity. Next, 𝑈 ˆ𝑘 conducts a training task with +the starting model described in 𝑁𝑘,𝑖, the training settings 𝜌𝑘,𝑖 +embedded in 𝑁𝑘,𝑖, and the training dataset �𝐷train +𝑘 +, i.e., +𝑊∗ +𝑘,𝑖 = +∑︁ +𝑊𝑝 in M𝑘,𝑖 +𝐸𝑝 in E𝑘,𝑖 +𝐸 𝑝 +� +𝐸𝑞 ∈E𝑘,𝑖 𝐸𝑞 +𝑊𝑝 +𝑊replay +𝑘,𝑖 += Tˆ𝑘 (𝑊∗ +𝑘,𝑖, 𝜌𝑘,𝑖, �𝐷train +𝑘 +). +(3) +The verifier 𝑈 ˆ𝑘 then calculates the Frobenius-Norm (F-Norm) +between trained 𝑊replay +𝑘,𝑖 +and 𝑊𝑘,𝑖 in 𝑁𝑘,𝑖 as the PoL re- +sult 𝑅𝑘, ˆ𝑘,𝑖 for 𝑃𝑘,𝑘′,𝑖 [34]. If 𝑅𝑘, ˆ𝑘,𝑖 is within the 𝜖PoL, the +verification on 𝑈 ˆ𝑘 is success and 𝑅𝑘, ˆ𝑘,𝑖 roots for 𝑃𝑘,𝑘′,𝑖. +All versifiers in the committee Θℎ run consensus algorithms, +e.g., Practical Byzantine Fault Tolerance (PBFT) [35], on +PoL results and get the final committee decision R𝑘,𝑖 as +a proving node in the network. Notice that, to prevent the +spoofing attacks against the PoL verification and improve +the security and robustness [36], 𝜖PoL can be dynamically +adjustable from the early stage to the later stage to circumvent +the consistent F-norm-based model distance during a PoL +spoofing attack. Also, any PoL prover 𝑃𝑘,𝑘′,𝑖, ∀𝑘, 𝑘′, 𝑖 could +alternatively conduct Verifiable Computation (VC) by showing +an additional VC-proof to guarantee the identity of 𝑊replay +𝑘,𝑖 +. +4) Clearing: At the finalization stage, the challenger 𝑈𝑘′ +can only get 𝛽𝜋𝑘,𝑘′,𝑖 from the challenge deposit, 𝛽 ∈ (0, 1), +if the challenge fails (i.e., the learning is proved). Otherwise, +𝑈𝑘′ can get a full refund of the challenge deposit and also +receive a reward from the penalty on 𝑈𝑘. The reward to 𝑈𝑘 +from 𝑁𝑘,𝑖 is revoked as well if the learning cannot be proved. +D. Achieving State Consistency: Incentive Basis +IRONFORGE features settlement nodes to achieve state con- +sistency for the Global-DAG network, enabling smart contracts +in DAG and recording consistent account states. The process +is shown in Algo. 4. +Global-DAG periodically, with the time interval Δ𝑇 , elects +the settlement committee Θ among which consensus is reached +to generate settlement nodes. At the beginning of the ℎ-th +interval, VRF is used to elect a committee securely Θℎ for +the settlement node 𝑆ℎ and the committee leader 𝑈 ¯ℎ. The +probability that any worker 𝑈𝑘 is selected for the committee +depends on the balance of 𝑈𝑘, i.e., 𝐵𝑘; see (4) below, +VRF-hash(prv𝑘, 𝑠𝑒𝑒𝑑) ∈ Λ𝑘, +(4) +where Λ𝑘 is the area portion occupied by 𝑈𝑘 in a hash ring, +and Λ𝑘 ∝ 𝐵𝑘. +The committee can then settle the status of Global-DAG. +To be specific, the leader of the committee 𝑈 ¯𝑘 synchronizes +the view of a particular preceding moment of Global-DAG +via consensus with others, and identifies all the tip nodes +in the ℎ-th interval, which do not have any successor in the +current interval. From each of the tip nodes, 𝑈 ¯𝑘 traverses back +according to every preceding node list M𝑘,𝑖 of 𝑁𝑘,𝑖 along the +path. The search stops and the subtree 𝜆ℎ is obtained when all +specific nodes are met, i.e., the first visible node which does +belong to the previous subtree 𝜆ℎ−1 in each path or the genesis +node 𝑁𝑔. Based on all nodes in 𝜆ℎ, 𝑈 ¯𝑘 updates the balances +of involved workers according to the training contributions, +PoL challenges, PoL proofs, and smart contract executions. In +8 + +Algorithm 4: Node Generation in the Settlement Set +⊲ Generating a settlement node upon consensus +1 while True do +2 +if 𝑇 +mod Δ𝑇 = 0 then +3 +Θℎ ← VRF(Balance(𝑈𝑘 | ∀𝑘))). +⊲ Election +4 +while Θℎ.Consensus(𝑈𝑘.view | ∀𝑘 ∧ (𝑈𝑘 ∈ Θℎ)) do +5 +if consensus is reached then +6 +break and obtain 𝑆ℎ +7 +S.Append(𝑆ℎ) +⊲ The latest balance can be found in S[latest] +⊲ Consensus +8 for 𝑈𝑘 in Θℎ parallelly do +9 +Tips ← Prune({𝑁𝑘,𝑖 | 𝑇𝑘,𝑖 > 𝑇 }) +10 +while Traverse(start ←Tips) do +11 +if (Path-𝑝 reaches 𝑁𝑔 OR 𝑁𝑘,𝑖 ∈ 𝜆ℎ−1) is True then +12 +Stop Path-𝑝 +13 +if ALL paths have stopped then +14 +break and obtain 𝜆ℎ +15 +𝜆ℎ ← Prune(Tips) +⊲ Obtain the subtree 𝜆ℎ for the creation of 𝑆ℎ +16 +¯𝑆𝑘,ℎ ← Form(𝜆ℎ.balance, 𝜆ℎ.PoL, +{𝑁𝑚,𝑒 | never been collected by S}) +⊲ Tips are excluded in balance calculation +17 +if 𝑈𝑘 is the leader 𝑈 ¯𝑘 of Θℎ then +18 +¯𝑆leader ← ¯𝑆𝑘,ℎ +19 +Broadcast( ¯𝑆leader) +20 +else +21 +Verify( ¯𝑆leader, ¯𝑆𝑘,ℎ) +22 +if verification passes then +23 +emit Consensus is reached +24 +else +25 +Elect a new Θℎ ← Θ +′ +ℎ and redo Consensus +Global-DAG, each valid reference from 𝑁𝑘′,𝑖 awards the owner +𝑈𝑘 (𝑘 ≠ 𝑘′) of the referred model 𝑁𝑘,𝑖 with a certain amount +of tokens. Next, 𝑈 ¯𝑘 proposes a new settlement node ¯𝑆𝑘,ℎ +covering the updated balances and PoL results. The settlement +committee Θℎ verifies and votes ¯𝑆𝑘,ℎ. The committee Θℎ +endorses ¯𝑆𝑘,ℎ as 𝑆ℎ if the committee reaches consensus, or +elects a new leader otherwise. +V. IMPLEMENTATION AND EVALUATION +In this section, we conduct comparisons between the pro- +posed FL system, IRONFORGE, and other popular frameworks, +including GoogleFL [2], AsyncFL [6], and BlockFL [15]. We +experimentally assess IRONFORGE in terms of the model per- +formance and expected amount of rewards that can be earned +under a variety of different environment settings, including +different aggregation strategies, different sizes of hardware and +software resources, and different types and levels of malicious +attacks such as lazy attacks [9], poisoning attacks [25], back- +door attacks [26], and model stealing attacks [27]. +A. Experimental Configurations +1) Hardware settings: The experiments are conducted on +6 servers listed as follows. +Type-A (#1-3): +• CPU. 2 × Intel(R) Xeon(R) Gold 6230R CPU @ +2.10GHz, 2 × 52 cores +• GPU. 1 × Quadro RTX 4000, 1 × 8GB +• Memory. 528GB +• Bandwidth. 1000Mb/s +Type-B (#4-6): +• CPU. 2 × Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, +2 × 40 cores +• GPU. 8 × NVIDIA PCIe A100, 8 × 40GB +• Memory. 250GB +• Bandwidth. 1000Mb/s +2) Software settings: We carry out the experiments upon +Ubuntu 18.04.6 LTS with Keras 2.7 in Python 3.7.13 and +Docker 20.10.12. We use FastDFS as the distributed file +system with 15TB storage space for the model weights. +3) A new testbed - FLSim: To benchmark the considered FL +frameworks, we build an FL testbed named FLSim as shown +in Fig. 4. FLSim is docker-containerized upon our servers (#1– +6). Choosing different FL frameworks is flexibly plug-and-play +in FLSim via three generic interfaces, i.e., the event emitter, +model channel, and capability configuration. +Event emitter. FLSim is event-driven where all events are +delivered through Redis which serves as a message queue. +Each runner can receive events in the network in real-time +by the subscription function of Redis, and can broadcast +corresponding events according to their role. +Fig. 4. Architecture of the new FL testbed FLSim +Model channel. Indexing models are done via MySQL where +properties such as the URIs of weights are included, while +the actual model weights are stored in FastDFS. As a result, +the query efficiency can be significantly improved with no +need of retaining the large weights unless they are required +for evaluation or aggregation. +Capability configuration. The tasks are trained on runners +deployed on docker clusters. Each docker container represents +9 + +GoogleFL +BlockFL +FL Framework +AsyncFL +IronForge +Interface +Event emitter +Redis +Model channel +CapabilityCofig +MySQL+FastDF +Master +Operational Layer +Minier +Worker +Runner +Virtualisation Layer +Docker Engine +Docker Orchestration +Physical Layer +Server 1 +Server nTABLE III: Hyper-parameter settings +Notation +Definition +Value (unit) +P +idle probability +0.1 +E +global epoch +2000 +𝑒 +default local epoch +5 +𝑙 +learning rate +0.002 +𝜂 +sampled weights +30 +𝛽 +default number of candidate weights +6 +𝜎 +default number of aggregated weights +5 +B +default batch size +100 +V +validation set size +100 +a runner with different resource settings, such as CPU, mem- +ory, and bandwidth. Specifications of the containers are craft- +specified with strong scalability and flexibility by defining the +capability configuration to simulate various scenarios, such +as the resource imbalance considered in the experiments. +Moreover, each runner is categorized into different roles based +on which FL framework has been plugged in, e.g., “workers” +in all considered frameworks, “masters” in GoogleFL and +AsyncFL, and “miners” in BlockFL. +4) Training settings: The tuned hyper-parameters of the +experiments are summarized in Table III. We perform training +over the MNIST with 60,000 data samples and a Convolutional +Neural Network (CNN) model illustrated in Fig. 5. +Totally 60,000 MNIST samples are randomly split into two +parts, 48,000 samples are used as the training set and 12,000 +samples are used as the testing set. We create non-IID training +shards for contributors from the training set to simulate a +practical network condition. The training set is divided into +two subsets, i.e., 24,000 for each. The samples in the first +subset are sorted by labels, and are subsequently distributed +into 120 shards, 200 for each shard. Thus, the sample labels +in each shard are relatively concentrated. The other half of +the samples are randomly selected and distributed into 120 +shards, i.e., 200 samples for each shard. Thus, the sample +labels in each shard are relatively uniform. Finally, we repeat +the sampling operation 120 times, and each time we take a +shard from each of the two subsets for merging. We end up +obtaining 120 new shards each of which contains 400 samples. +5) Environment settings: To demonstrate the state-of-the- +art of IRONFORGE, a comprehensive comparison between +IRONFORGE and the other three FL frameworks are conducted +in our experiments, i.e., the synchronous GoogleFL, AsyncFL, +and BlockFL. We launch 120 runners as workers to train +models with a probability of P. We also define two events +that represent receiving two types of intermediate models: +• GLOBAL MODEL UPLOADED EVENT +(GMUE): +the model acquired by aggregating the uploaded local +models prior to training. +• LOCAL MODEL UPLOADED EVENT (LMUE): the +model trained by workers with their local datasets +These events are broadcast to notify each runner associated +with the next step to take. Note that the genesis model of a +task is tagged as a global model in order to initiate any selected +FL framework. This indicates that emitting GMUE is used to +notify the network when the task is published. +Fig. 5. The CNN model is a lightweight version of the model +in [2]. It contains one convolution layer of which the filter +size is 32 and the kernel size is 5 × 5, one 2 × 2 max-pooling +layers, one fully connected layer with 256 units, and ReLu +activation. The output is processed by a fully connected layer +with 10 units and softmax activation. +Synchronous GoogleFL. One additional runner is launched +as the master to aggregate local model weights. For GoogleFL, +workers are activated by GMUE and the master is activated +by LMUE. The workers, when receiving a GMUE, train on +top of a global model downloaded from the master with +their own local datasets. The master receives an LMUE when +the workers upload the trained models, and subsequently +aggregates all collected local models after a timeout, followed +by uploading the aggregated result as the global model. The +above iterating process continues until the task reached the +max iteration threshold E. +AsyncFL. One additional runner is launched as the master to +aggregate local models. AsyncFL shares the same procedure +as GoogleFL, except that the master, when receiving an +LMUE during its idle period, creates a new global model by +aggregating the most recent global model and newly-collected +local models with an identical weighting factor. +BlockFL. Five additional runners are launched as miners for +BlockFL. In each iteration, the miners behave the same way +as the master does in GoogleFL or AsyncFL. An additional +step is that the miners compute the nonce to finalize the block +and compete for the rewards with a synchronized lock being +used in Redis to ensure the mining order. +IRONFORGE. No additional runners are launched for IRON- +FORGE. Each runner acts as a worker and a master at the same +time, i.e., it supports both aggregating and training operations, +thus receiving both GMU and LMUE during each iteration. +6) Security settings: We implement five types of con- +tributors: normal contributors, poison contributors, backdoor +contributors, and stealing and colluding contributors. +Normal contributors act honestly and independently across +all phases. +10 + +input: +[(None, 28, 28, 1)] +conv2d 2 input +InputLayer +output: +[(None, 28, 28, 1)] +input: +(None,28,28,1) +conv2d 2 +Conv2D +output: +(None,24,24,32) +input: +(None,24,24,32) +max_pooling2d_2 +MaxPooling2D +output: +(None,12,12,32) +input: +(None, 12,12,32) +flatten 2 +Flatten +output: +(None,4608) +input: +(None,4608) +dense_4 +Dense +output: +(None, 256) +input: +(None, 256) +dense 5 +Dense +output: +(None, 10)Poisoning contributors aim to undermine the integrity and +availability of the global model by crafting local poisoning +models [25]. In this paper, we simulate poison contributors by +adopting the label-flipping strategy that fakes labels and then +conducting training on the forged datasets. +Backdoor contributors aim to fail the global model on +targeted tasks, typically by adhering crafted triggers to training +samples, conducting training on the amended samples, and +then uploading the attack models [26]. In this paper, backdoor +contributors layer 5 × 5 white patches to training samples and +change the label of the manipulated samples to a fixed one. +Stealing contributors aim to gain rewards by stealing model +weights trained by others and uploading the plagiarized +weights as their own work [9]. In this paper, a stealing +contributor 𝑘′ selects and directly uploads one of the existing +weights by simply changing the ownership from 𝑘 to 𝑘′. +Colluding contributors aim to embezzle training rewards for +their conspirators by performing honest training processes but +claiming source list M from the conspirators. In this paper, a +certain proportion of contributors tamper the source list M in +their uploaded weights, with a certain probability. +B. Results and Evaluations +Several experiments are conducted from two perspectives, +i.e., the performance comparison between IRONFORGE and +others with and without attacks, and the fairness comparison +between different resource levels in terms of rewards. +1) Performance - with and without attacks: Fig. 6 shows +that the proposed IRONFORGE outperforms AsyncFL and +BlockFL with only slightly slower convergence than the base- +line GoogleFL across 2,000 iterations with no attacks lever- +aged. It is worth noting that the red curve increases sharply +with as few oscillations as that of the baseline, particularly +highlighting the stability of IRONFORGE. +Fig. 6. Comparison between IRONFORGE and others in terms +of accuracy with no attacks leveraged +The performance comparison with different levels of attack +behaviors being applied to IRONFORGE is shown in Fig. 7. It +is realized that IRONFORGE is resistant to the stealing attack +the most, followed by the resistance to the backdoor attacks +and poisoning attacks. It is worth noting that the performance +of a stealing ratio of 20% can be as good as that of others. +This is because the native validation process in IRONFORGE +can capture and eliminate the plagiarized models which are +reused or whose ownerships are fake. The remaining 80% of +models are still sufficient for contributors to aggregate and +train by offering strong diversity of the non-IID data samples. +On the other hand, an evident degradation of the accuracy, +around 5%, is shown in both poisoning (cf. Fig. 7(b)) and +backdoor (cf. Fig. 7(c)) contexts. Nevertheless, it can be found +from Fig. 8(a) and 8(b) that IRONFORGE outperforms all +the other FL frameworks with either 20% ratio of poisoning +attackers or 20% ratio of backdoor attackers. This significantly +highlights the superiority of IRONFORGE in terms of its strong +resistance to malicious model updating. Fig. 8(c) highlights +the resistance to stealing attacks and collusion attacks of +IRONFORGE. Note that only BlockFL is considered in the +comparison as GoogleFL and AsyncFL do not support incen- +tives natively. It is found that, by using the native validation +process in IRONFORGE, including the PoL verification, none +of the dishonest contributors who leverage either the stealing +attack or collusion attack can gain rewards. This prevents the +malicious contributors from faking the ownership of or directly +using the existing models, or embezzling the rewards for their +conspirators by claiming a falsified source list. +Fig. 9(a) shows the accuracy ranges of adjusting the candi- +date size (𝛽) for different levels of aggregation sizes (𝜎), e.g., +the blue band representing the accuracy ranged from 1-of-2 +to 1-of-8 with 𝜎 = 1 and 𝛽 ∈ [2, 8]. The results reveal that +increasing the aggregation size 𝜎 stabilizes the performance +in the beginning stage, and allows for an increasingly higher +convergence point. The effect of increasing the candidate size +for a certain aggregation size becomes gradually weakened +as the aggregation size increases, as you can see that the +width of each band turns more and more narrow. The effect +of increasing the aggregation size also becomes weakened, as +you can see from Fig. 9(a) that the performance of 5-of-6 +is as good as that of 7-of-8. The same insight can also be +shed by observing the performance comparison of adjusting +the aggregation sizes (𝜎) for different levels of candidate size +(𝛽) is shown in Fig. 9(b), e.g., the blue band representing the +accuracy ranged from 1-of-3 to 2-of-3. The bottom line of the +red band for 𝛽 = 9 performs as poorly as the 2-of-3 strategy +does, while the top line of the red band performs the best +among the kinds. It can thus be concluded that knowing that +no attacks are leveraged, aggregating more weights is more +beneficial for obtaining high accuracy than merely aggregating +a low number of weights from more candidate weights. +Fig. 9(c) shows the running time of different aggregation +strategies all the way from downloading the weights to up- +loading a new model. There is a stronger effect on the running +time when adjusting the candidate size (𝛽) than adjusting the +aggregation size (𝜎). An implication can be realized based on +this observation that the bandwidth could be the bottleneck in +IRONFORGE. We design dedicated experiments that learn this +phenomenon, as explained in the following Section V-B2. +2) Fairness - earn rewards: The fairness is investigated in +terms of the difference in rewards between different levels +of hardware specifications. The bottleneck of gaining more +11 + +0.95 +06'0 +08'0 +BlockFL +0.75 +AsyncFL +GoogleFL +IRONFORGE +0.70 +0 +250 +500 +750 +1000 +1250 +1500 +1750 +2000 +Iteration(a) Stealing attacks +(b) Poisoning attacks +(c) Backdoor attacks +Fig. 7. Comparison between different levels of stealing attacks, poisoning attacks, and backdoor attacks applied to IRONFORGE +in terms of accuracy +(a) Poisoning attacks with a poisoning ratio of 20% (b) Backdoor attacks with a poisoning ratio of 20% +(c) Stealing and collusion attacks +Fig. 8. Comparison between IRONFORGE and others in terms of accuracy or rewards with a certain level of poisoning attacks, +backdoor attacks, and stealing and colluding attacks +rewards in IRONFORGE can also be realized. We select two +different contest strategies, i.e., Immediate settlement and +Winner traverse. The immediate-settlement is the strategy used +in Global-DAG by default, rewarding every model every time +it gets referred by others. The winner-traverse could be one of +the main options used in a Task-DAG, rewarding every model +that exists in the traversal path all the way from the winner +node to the genesis node (excluded). +According to Fig. 10, A monotonic increase of the rewards +can be realized for the immediate-settlement with increasing +CPU cores, memory capacity, and bandwidth, and for the +winner-traverse only with increasing bandwidth (the winner- +traverse appears to have similar characteristics to BlockFL +which also fails to offer a pure monotonic increase of rewards +in all specifications). This is because the winner-traverse strat- +egy could include moderate models being aggregated during +each iteration in the winner-traversal path while the winner +could be highly random when the competition is intense +and the convergence is near. Therefore, many models with +high performance could be excluded by the unique winner +traversal path at the end. On the contrary, the immediate- +settlement allows every model not to be missed so long as +a valid reference relationship is confirmed. Nevertheless, the +result difference between these two strategies does not tell +the superiority of fairness. Different requirements may lead +to different principles of fairness. Rooting for an egalitarian +strategy, or “to each according to his contribution”, or striking +a balance in between is a flexible option that the proposed +IRONFORGE offers back to users without a harsh setting. +On the other hand, the monotonic increase in the band- +width comparison for both strategies, as shown in Fig. 10(c), +highlights the bandwidth being the most critical effect for +earning rewards in IRONFORGE. That is to say, relatively +poorer users being more active in uploading models to the +network with higher frequency can help them be more likely +to share the rewards, rather than spending much time on a +strongly performant model. +Fig. 11 learns the effect of data quality upon the rewards by +adding a random perturbation to 50% of the training samples +of half of the users with a mean of 0 and a standard deviation +of 1. We define the affected nodes as “Poor” nodes, while +“Excellent” nodes own normal data samples only. The result +shows that the poor nodes that use the immediate-settlement +strategy enjoy a narrower range of rewards compared to that +of the winner-traverse strategy and BlockFL. This highlights +that poor nodes earning rewards via the immediate-settlement +12 + +0.9 +0.8 +0.7 +Accuracy +0.6 +0.5 +0.4 +BlockFL +0.3 +AsyncFL +0.2 +GoogleFL +IRONFORGE +0.1 +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +4000 +Iteration0.8 +Accuracy +0.6 +0.4 +BlockFL +AsyncFL +0.2 +GoogleFL +IRONFORGE +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +4000 +IterationBlockFL +30 +IRONFORGE +25 +20 +Rewards +15 +10 +5 +0 +Normal +Dishonest +ContributorType,/1.0 +0.8 +0.6 +0.4 +Stealing Ratio:0% +StealingRatio:5% +0.2 +StealingRatio:10% +Stealing Ratio:20% +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +4000 +Iteration1.0 +0.8 +Accuracy +0.6 +0.4 +Poisoning Ratio:0% +Poisoning Ratio: 5% +0.2 +PoisoningRatio:10% +PoisoningRatio:20% +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +4000 +Iteration1.0 +0.8 +0.6 +0.4 +BackdoorRatio:0% +BackdoorRatio:5% +0.2 +BackdoorRatio:10% +BackdoorRatio:20% +0 +500 +1000 +1500 +2000 +2500 +3000 +3500 +4000 +Iteration(a) Accuracy difference between aggregation sizes +(b) Accuracy difference between candidate sizes +(c) Time difference between aggregation strategies +Fig. 9. Comparison between different combination of the aggregation strategies (𝜎-of-𝛽) applied to IRONFORGE in terms of +accuracy and execution time +(a) Reward difference between different CPU cores +(b) Reward difference between memory capacity +(c) Reward difference between bandwidths +Fig. 10. Comparison between different levels of the CPU core, memory capacity, and bandwidth in terms of rewards +Fig. 11. Comparison between IRONFORGE and others in terms +of rewards under the influence of the data quality issue +in IRONFORGE can be more stable and predictable than +BlockFL and the winner-traverse, and can be less affected by +unexpected data degradation or network noise in unreliable +channels. Excellent nodes have more opportunities to earn +higher rewards than poor nodes while the median value and +the minima of rewards remain as high as that of poor nodes. +This reflects the fairness between excellent and poor nodes, +i.e., offering stable rewards to the poor while the excellent are +given chances to make a great fortune. +VI. DISCUSSION AND ANALYSIS +This analysis focuses on the security of IRONFORGE. Every +role in the system is involved in the attack model except that +the timestamp in IRONFORGE is considered synchronous via +external trustworthy servers. +Adversaries target to break the state consistency in Global- +DAG so that operations such as incentive and consensus fail to +be executed. The adversaries also target to leverage the model +stealing attack in order to: +• forge the “amount of work” by simply stealing others’ +models with no more effort being put into the training; +• collude with attackers by creating a model referring to +models from colluded attackers. +In addition, the adversaries can target on breaching the dataset +privacy during the dataset sharing in a PoL process. At the +same time, the adversaries can also unbalance the competition +by abusing others’ datasets to enrich local resources. +State consistency: The state consistency is guaranteed over a +sufficiently long period Δ𝑇 as long as the seeds being used in +each VRF process are secure and the lower bounds of faulty +tolerance of consensus protocol (e.g., 33% for PBFT) are +satisfied in the VRF-elected committees. We consider the time +gap between two settlement nodes Δ𝑆ℎ,𝑆ℎ−1 is sufficiently large +in IRONFORGE to expect that each user who gets registered +13 + +0.9 +0.970 +0.8 +0.965 +Accuracy +0.960 +Aggregation Size(α) +0.950 +0.7 +0.945 +1 +2 +0.940 +0.935 +3 +0.930 +4 +0.6 +1000 +1200 +1400 +1600 +1800 +2000 +5 +7 +0 +250 +500 +750 +1000 +1250 +1500 +1750 +2000 +Iteration0.96 +0.94 +Accurao +0.92 +0.90 +Candidate Size (β) +3 +0.88 +5 +7 +9 +250 +500 +750 +1000 +1250 +1500 +1750 +2000 +Iteration1-of-3 +2-of-3 +1-of-5 +2-of-5 +3-of-5 +(o-of- +4-of-5 +Strategy( +1-of-7 +3-of-7 +5-of-7 +1-of-9 +3-of-9 +5-of-9 +7-of-9 +0 +20 +40 +60 +80 +Running Time (s)600 +BlockFL +IronForge(Immediatesettlement) +500 +IronForge(Winnertraverse) +400 +Rewards +300 +200 +100 +0 +2 +6 +8 +CPUCores400 +BlockFL +350 +IronForge(lmmediatesettlement) +ronForge(Winnertraverse +300 +250 +rds +Rewar +200 +150 +100 +50 +0 +4 +6 +8 +10 +Memory(GB)400 +BlockFL +IronForge(immediatesettlement) +350 +IronForge(Winnertraverse) +300 +Rewards +250 +200 +150 +100 +50 +0 +2 +4 +8 +12 +Bandwidth(MB/s)BlockFL +25 +IronForge(lmmediate settlement) +IronForge (Winner traverse +20 +Rewards +15 +10 +5 +0 +Excellent +Poor +Data Quality,Poor/Excellentfor committee election has an identical “view” of Global-DAG +starting from 𝑇ℎ−1 to 𝑇ℎ−1 + Δ𝑇 . This prevents the consensus +process in the committee from being trapped into an indefinite +disagreement due to the network asynchrony. On the other +hand, an unbiased and unpredictable random seed is crucial for +a fair VRF process where (4) cannot be manipulated. This can +be achieved by implementing existing randomness generators +such as RANDAO [37] or RandHound-VRF [38]. +Model stealing attack: Offering the proposed incentive mech- +anism in a decentralized FL attracts attackers to leverage +model stealing attacks, by either stealing the model ownership +or faking the training processes. Attackers can, with no effort +on local training, steal others’ models and fake ownership with +ease. Attackers can alternatively fake the source lists upon an +honest local training process so that their accomplices, who are +instead placed in the source list, can reap profits against other +honest users. These two types of model stealing attacks are +used for misleading those who wish to ensure the necessary +training overhead and the efforts in the source list. They are +particularly useful when attackers intend to steal the rewards +and share them with their accomplices. IRONFORGE enables +PoL-challenge where users can choose to challenge a model +via idle resources, and the model owner requires to provide +the valid PoL-proof in time for a public verification during +the consensus process. By the committee replaying parts of the +training from scratch and reaching the consensus, the “amount +of work” and the source list M can be explicitly determined. +Dataset privacy and model melting: This security metric is +an implementation of our work [34]. Dataset obfuscation helps +to preserve dataset privacy when datasets require to be publicly +shared for PoL-challenge. Experimental results in [34] show +that an obfuscated dataset satisfies PoL verification without +sacrificing the privacy level while being able to decrease the +model utility against the abuse of collecting provers’ obfus- +cated datasets, namely, model melting. In addition, applying +training over different data samples or using non-IID noise +significantly can reduce the risks of privacy decline when a +sufficient number of challenges against the same model owner +are deliberately raised by attackers. +VII. CONCLUSION +This paper proposed IRONFORGE, a new generation of FL +framework constructed by DAG-based structure, which for +the first time eliminates the need for the central coordinator +to solve the issues of network asynchrony and the excessive +reliance on the central coordinator while at the same time +enabling an open and fair incentive mechanism to encourage +more participants, particularly in networks where training +resources are unevenly distributed. Experimental results based +on a newly developed testbed FLSim along with the security +analysis highlight the superiority of IRONFORGE over the +existing prevalent FL frameworks under various specifica- +tions regarding performance, fairness, and security. To our +knowledge, this is the first paper proposing a secure and +fully decentralized FL framework that can be applied in open +networks with realistic network and training settings. +REFERENCES +[1] J. Koneˇcn´y, H. B. McMahan, F. X. Yu, P. Richt´arik, A. T. Suresh, and +D. Bacon, “Federated learning: Strategies for improving communication +efficiency,” CoRR, vol. abs/1610.05492, 2016. +[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. +y Arcas, “Communication-efficient learning of deep networks from +decentralized data,” in International Conference on Artificial Intelligence +and Statistics, 2016. +[3] L. Lyu, X. Xu, Q. Wang, and H. Yu, Collaborative Fairness in Federated +Learning. Cham: Springer International Publishing, 2020, pp. 189–204. +[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: +Challenges, methods, and future directions,” IEEE Signal Processing +Magazine, vol. 37, no. 3, pp. 50–60, 2020. +[5] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “Safa: A semi- +asynchronous protocol for fast federated learning with low overhead,” +IEEE Transactions on Computers, vol. 70, no. 5, pp. 655–668, 2021. +[6] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,” +CoRR, vol. abs/1903.03934, 2019. +[7] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, +“Reliable federated learning for mobile networks,” IEEE Wireless Com- +munications, vol. 27, no. 2, pp. 72–80, 2020. +[8] Y. Liu, J. Peng, J. Kang, A. M. Iliyasu, D. Niyato, and A. A. A. El- +Latif, “A secure federated learning framework for 5g networks,” IEEE +Wireless Communications, vol. 27, no. 4, pp. 24–31, 2020. +[9] M. Cao, L. Zhang, and B. Cao, “Towards on-device federated learning: +A direct acyclic graph-based blockchain approach,” IEEE Transactions +on Neural Networks and Learning Systems (TNNLS), pp. 1–15, 2021. +[10] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, and S. Guo, “A survey of +incentive mechanism design for federated learning,” IEEE Transactions +on Emerging Topics in Computing (TETC), vol. 10, no. 2, pp. 1035– +1044, 2022. +[11] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device +federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp. +1279–1283, 2020. +[12] U. Majeed and C. S. Hong, “Flchain: Federated learning via mec-enabled +blockchain network,” in 2019 20th Asia-Pacific Network Operations and +Management Symposium (APNOMS), 2019, pp. 1–4. +[13] E. Madill, B. Nguyen, C. K. Leung, and S. Rouhani, “Scalesfl: A shard- +ing solution for blockchain-based federated learning,” in Proceedings of +the Fourth ACM International Symposium on Blockchain and Secure +Critical Infrastructure (BSCI), 2022, p. 95–106. +[14] Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, and N. Georgalas, +“Federated learning based proactive content caching in edge computing,” +in 2018 IEEE Global Communications Conference (GLOBECOM), +2018, pp. 1–6. +[15] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device +federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp. +1279–1283, 2020. +[16] F. Sattler, S. Wiedemann, K.-R. M¨uller, and W. Samek, “Robust and +communication-efficient federated learning from non-i.i.d. data,” IEEE +Transactions on Neural Networks and Learning Systems (TNNLS), +vol. 31, no. 9, pp. 3400–3413, 2020. +[17] P. Tian, Z. Chen, W. Yu, and W. Liao, “Towards asynchronous federated +learning based threat detection: A dc-adam approach,” Computers & +Security, vol. 108, p. 102344, 2021. +[18] X. Wang, X. Zha, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng, +“Survey on blockchain for internet of things,” Computer Communica- +tions, vol. 136, pp. 10–29, 2019. +[19] G. Yu, X. Wang et al., “Survey: Sharding in blockchains,” IEEE Access, +vol. 8, pp. 14 155–14 181, 2020. +[20] B. Cao, Z. Zhang, D. Feng, S. Zhang, L. Zhang, M. Peng, and Y. Li, +“Performance analysis and comparison of pow, pos and dag based +blockchains,” Digital Communications and Networks, vol. 6, no. 4, pp. +480–485, 2020. +[21] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain +empowered asynchronous federated learning for secure data sharing in +internet of vehicles,” IEEE Transactions on Vehicular Technology (TVT), +vol. 69, no. 4, pp. 4298–4311, 2020. +[22] C. Ma, J. Li, L. Shi, M. Ding, T. Wang, Z. Han, and H. V. Poor, +“When federated learning meets blockchain: A new distributed learning +paradigm,” IEEE Computational Intelligence Magazine, vol. 17, no. 3, +pp. 26–33, 2022. +[23] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le, +A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning +meets blockchain in edge computing: Opportunities and challenges,” +14 + +IEEE Internet of Things Journal (IOTJ), vol. 8, no. 16, pp. 12 806– +12 825, 2021. +[24] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Dag-based blockchain +systems,” ACM Computing Surveys (CSUR), 2022. +[25] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing +federated learning through an adversarial lens,” in Proceedings of the +36th International Conference on Machine Learning (ICML), vol. 97, +09–15 Jun 2019, pp. 634–643. +[26] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to +backdoor federated learning,” in Proceedings of the Twenty Third Inter- +national Conference on Artificial Intelligence and Statistics (AISTATS), +vol. 108, 26–28 Aug 2020, pp. 2938–2948. +[27] F. Tram`er, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing +machine learning models via prediction APIs,” in 25th USENIX Security +Symposium (USENIX Security), Aug. 2016, pp. 601–618. +[28] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and +A. Swami, “Practical black-box attacks against machine learning,” in +Proceedings of the 2017 ACM on Asia Conference on Computer and +Communications Security (AsiaCCS), 2017, p. 506–519. +[29] J. R. Correia-Silva, R. F. Berriel, C. Badue, A. F. de Souza, and +T. Oliveira-Santos, “Copycat cnn: Stealing knowledge by persuading +confession with random non-labeled data,” in International Joint Con- +ference on Neural Networks (IJCNN), 2018, pp. 1–8. +[30] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing function- +ality of black-box models,” in Proceedings of the IEEE/CVF Conference +on Computer Vision and Pattern Recognition (CVPR), June 2019. +[31] J. W. Flatt, A. Blasimme, and E. Vayena, “Improving the measurement +of scientific success by reporting a self-citation index,” Publications, +vol. 5, no. 3, 2017. +[32] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong, “Fully distributed +verifiable random functions and their application to decentralised random +beacons,” in 2021 IEEE European Symposium on Security and Privacy +(EuroS&P), 2021, pp. 88–102. +[33] H. Jia, M. Yaghini, C. A. Choquette-Choo, N. Dullerud, A. Thudi, +V. Chandrasekaran, and N. Papernot, “Proof-of-learning: Definitions and +practice,” in 2021 IEEE Symposium on Security and Privacy (SP), 2021, +pp. 1039–1056. +[34] G. Yu, X. Wang, P. Yu, C. Sun, W. Ni, and R. P. Liu, “Dataset +obfuscation: Its applications to and impacts on edge machine learning,” +2022. +[35] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in +OsDI, vol. 99, no. 1999, 1999, pp. 173–186. +[36] R. Zhang, J. Liu, Y. Ding, Z. Wang, Q. Wu, and K. Ren, ““adversarial +examples” for proof-of-learning,” in 2022 IEEE Symposium on Security +and Privacy (SP), 2022, pp. 1408–1422. +[37] (2017) Randao: Verifiable Random Number Generation. [Online]. +Available: https://www.randao.org/whitepaper/Randao v0.85 en.pdf +[38] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and +B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via +sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), May +2018, pp. 583–598. +15 + diff --git a/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/load_file.txt b/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2a5bd0dec2465512f24d156be2013834a875f2b --- /dev/null +++ b/A9E2T4oBgHgl3EQfnQhW/content/tmp_files/load_file.txt @@ -0,0 +1,1200 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf,len=1199 +page_content='IRONFORGE: An Open, Secure, Fair, Decentralized Federated Learning Guangsheng Yu∗, Xu Wang†, Caijun Sun§, Qin Wang∗, Ping Yu‡, Wei Ni∗, Renping Liu†, Xiwei Xu∗ ∗CSIRO Data61, Australia †University of Technology Sydney, Australia ‡Harbin University of Technology, China §Zhejiang Lab, China Abstract—Federated learning (FL) provides an effective ma- chine learning (ML) architecture to protect data privacy in a distributed manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' However, the inevitable network asynchrony, the over-dependence on a central coordinator, and the lack of an open and fair incentive mechanism collectively hinder its further development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' We propose IRONFORGE, a new generation of FL framework, that features a Directed Acyclic Graph (DAG)-based data structure and eliminates the need for central coordinators to achieve fully decentralized operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE runs in a public and open network, and launches a fair incentive mechanism by enabling state consistency in the DAG, so that the system fits in networks where training resources are unevenly distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In addition, dedicated defense strategies against prevalent FL attacks on incentive fairness and data privacy are presented to ensure the security of IRONFORGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Experimental results based on a newly developed testbed FLSim highlight the superiority of IRONFORGE to the existing prevalent FL frame- works under various specifications in performance, fairness, and security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' To the best of our knowledge, IRONFORGE is the first secure and fully decentralized FL framework that can be applied in open networks with realistic network and training settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Index Terms—Federated Learning, DAG, Blockchain I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' INTRODUCTION Federated learning (FL), officially introduced by Google in 2017 [1], has become the preference to aggregate data from distributed ends without breaching data privacy [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' By aggregating huge data with comprehensive extracted features in FL, critical issues such as model overfitting can be significantly addressed [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' However, \x8c the inevitable network asynchrony, \x8d the over-dependence on a central coordinator, and \x8e the lack of an open and fair incentive mechanism hinder the further development of FL in large and open scenarios [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Traditional FL considers no or low delay throughout an ag- gregation process, namely, synchronous FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' However, network synchrony is unrealistic due to the inevitable capacity limit of computation, bandwidth, and storage, as well as the im- balanced capacities among the distributed participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Thus, recent studies propose pseudo-asynchronous FL [5] and asyn- chronous FL [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The aggregation of pseudo-asynchronous FL allows a short interval for collecting the model caches in order to ensure that the number of models aggregated can be sufficiently large, while the central coordinator immediately updates the global model once receiving a new local model from any idle participants in asynchronous FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Neither pseudo-asynchronous FL nor asynchronous FL can tolerate the single-point-of-failure (SPoF) of the central coor- dinator or even a malicious and corrupted coordinator (issue- \x8d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The over-dependence on the central coordinator could potentially degrade the system availability and the training flexibility in the sense that an FL network may be confined to specific training domains or tasks determined by the coordina- tor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Participants in many existing studies [7]–[9], once opting in an FL network, would have to obey the defined training target with no flexibility to go for different tasks at will.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In addition to the weak training flexibility, the lack of an open and fair incentive mechanism results in participants who have fewer resources and a weaker capacity not willing to contribute their resources to the global aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' This issue deteriorates particularly in FL networks where resources are not evenly distributed, and potentially leads to the model over- fitting and weak generality against contingencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Although the authors of [10] survey the incentive mechanisms in FL, all mentioned frameworks require a central coordinator, also leading to issue-\x8d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Existing studies propose to replace the central coordinator with a committee running a consensus process in a blockchain network to prevent the SPoF or a corrupted coordinator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Mean- while, by sharing the model collection during the consensus in the committee, pseudo-asynchronous FL can be achieved in a decentralized manner, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=', BlockFL [7], [11]–[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Consid- ering only issue-\x8d being solved and issue-\x8c being partially solved by BlockFL, the authors of [9] introduce a Directed Acyclic Graph (DAG)-based FL where both issue-\x8c and issue- \x8d are solved using the concept of asynchronous FL [6] to fully decentralize the FL process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' However, the paper [9] only considers an ideal network in which the training resources are evenly distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Moreover, the approach to enabling state consistency for a secure and fair incentive mechanism (issue- \x8e) is missing in [9], which results in difficulty in adopting the mechanism in a public and open network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' We propose IRONFORGE that is an open, secure, fair, and decentralized FL system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE solves the above mentioned pain points at one time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Openness: It features a DAG-based data structure in an open network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Decentral- ization: The need for a central coordinator is eliminated throughout the process by IRONFORGE, inheriting from the concept of asynchronous FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' As a result, the models are 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='04006v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='LG] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='7 Jan 2023 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='TABLE I: Qualitative comparisons between the proposed IRONFORGE and the existing FL frameworks ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='FL Framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Data Structure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Data Asynchrony ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Decentralization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Openness ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Incentive ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Security ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Google FL [2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Isolated models ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Synchronous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Centralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Private ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Asynchronous FL [6] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Isolated models ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Asynchronous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Centralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Private ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Block FL [15] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Blockchain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Synchronous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Decentralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Private ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Reward ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='DAG FL [9] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='DAG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Asynchronous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Decentralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Public ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Reward ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Poisoning/Backdoor/Lazy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='IRONFORGE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='DAG ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Asynchronous ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Decentralized ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Public ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content='Reward,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Penalty Poisoning/Backdoor/Stealing*/Collusion The stealing attack considered in this paper includes the traditional lazy attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The difference is that stealing attackers not only upload their previous models, but also fake the ownership of others’ previous models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' � Lack of corresponding designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' maintained in a decentralized manner by all participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Fairness: IRONFORGE considers a practical scenario, where resources are unevenly distributed among users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Each user, based on its resource amount, selects several existing models, verifies the correctness and evaluates the model accuracy over the local dataset, and conducts the aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE also enables state consistency, by using which an open and fair incentive mechanism can be established to motivate more participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Security: Moreover, dedicated defense strategies against malicious attacks on incentive fairness, and against dataset privacy breaching are presented to ensure the security of IRONFORGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The key contributions are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' ⊲ We propose a fully decentralized FL framework, namely, IRONFORGE, which features a DAG-based data structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE addresses the network asynchrony typically undergone in an FL process, and improves the motivation of agents participating in the process in an open envi- ronment by enabling reliable token rewards with strong consistency and model prediction accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' ⊲ We specifically design a new validation mechanism guarding against well-known FL attacks, including model poisoning attacks, backdoor attacks, lazy attacks, and model stealing attacks, among which the model of steal- ing attack has never been considered in any existing FL frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' By making use of noise-enabled Proof-of- Learning (PoL) to validate the gradient descent process, any malicious behaviors, such as faking the ownership or directly using the existing models, or embezzling the rewards for their conspirator by claiming a falsified source list, can be captured and given punishments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' ⊲ We build a flexible and efficient testbed, named FLSim, to simulate the workflow across all considered FL frame- works in this paper, including the proposed IRONFORGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' We conduct comprehensive experiments based on FLSim, comparing the system performance, security, and fairness between the existing FL frameworks and IRONFORGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Insights are shed to provide guidelines on how to select strategies in IRONFORGE to meet different requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Extensive experiments corroborate that IRONFORGE outper- forms the prevalent FL frameworks with and without attacks leveraged, which highlights the holistic solution to the network asynchrony (issue-\x8c) and the over-dependence on the central coordinators (issue-\x8d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Strictly and approximately monotonic increases of rewards are observed in experiments with increas- ing CPU cores, memory capacity, and bandwidth in different incentive settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' This indicates that fairness (issue-\x8e) can be ensured in IRONFORGE under various definitions of fairness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Section I gives the introduction, followed by related works in Section II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Section III provides the system overview and Section IV details the design of IRONFORGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Section V presents our implementation based on a new testbed with comprehensive experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Section VI discusses system security and properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Finally, Section VII concludes this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' RELATED WORK A conventional synchronous FL framework is constructed by a central coordinator and numbers of nodes, which main- tains the global model and perform FL iterations, respec- tively [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The coordinator periodically distributes the latest global model to the nodes, and then the nodes independently train the model with their local data and upload the trained local models to the coordinator [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' After receiving updated models from nodes, the coordinator aggregates all the local models as a new global model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Such synchronous FL frame- work can hardly be adapted to large-scale and heterogeneous networks, where asynchrony is non-negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The issue of data asynchrony is tackled by the asyn- chronous FL enabling nodes to train the global model from central coordinators at any time, and the coordinators can update the global model immediately when any local model is collected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In [14], the authors introduced a cache layer between the coordinator and local nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Each node trains the global model with its local data and uploads its model to the cache.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The coordinator periodically aggregates the local model in the cache and generates a new global model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Semi- asynchronous FL protocols address the problems in FL such as low round efficiency and poor convergence rate happened in asynchronous FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The system [5] incorporates a client se- lection algorithm decoupling the coordinator and the selected clients for a reduction of average round time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The authors of [17] proposed an asynchronous federating-based detection approach for end devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' A pre-shared data training strategy for non-independent-and-identically-distributed (non-IID) data is developed to avoid convergence divergence under the non- IID patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' After the collaborative model training procedure, each client further conducts an additional local training process to fit respective patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The aforementioned FL frameworks require central coor- dinators to schedule model training and aggregate models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The centralized architecture suffers inherent security risks, such as SPoF and malicious central coordinator, and limited 2 scalability with the bottleneck of the central coordinator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The most recent Distributed Ledger Technology (DLT) holds the potential to decentralize FL systems [18], [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Two key technologies in DLT are blockchain and DAG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In blockchain, a group of miners run the consensus protocol to generate hash- chained data blocks, which are assembled from transactional data, and synchronize the chained blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Blockchain assures strong consistency among blockchain nodes and enables smart contracts to be executed across the blockchain network in a consistent and trustworthy way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In DAG, transactions from decentralized DAG users are organized in a DAG structure where directed edges indicate the reference relationship be- tween the transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' DAG can achieve high throughput with short latency compared with blockchain [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' DLT has been developed to remove the central coordinator and decentralize FL networks [9], [15], [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In BlockFL [15], [22], [23], decentralized blockchain miners conduct model verification and aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' To be specific, miners obtain trained local models from working nodes and other miners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' After verification, miners aggregate local models for the updated global models and conduct Proof-of-Work (PoW) to create valid blocks containing the new global models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Then, the blocks are propagated to all miners to start the next FL iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The BlockFL relies on the resource-intensive PoW consensus protocol to slow down the system and keep miners synchronized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' To reduce overhead and improve scalability, DAG technology [24] is introduced to FL networks [9], [21], where trained models are updated to a DAG topology by working nodes without any coordination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Working nodes can learn the latest local models in the DAG by exchanging data with other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' By themselves, working nodes select and verify aggregate local models and train the models using local datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Next, working nodes publish their trained models to the DAG with directed edges indicating the model reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Existing works only consider homogeneous networks where the training resources are evenly distributed and thus lack open and fair incentive mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE proposed by this paper, on the other hand, improves the motivation of participants with rewards for training contributions and penal- ties for dishonest behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE also tackles new vulnerabilities in open FL networks, including model stealing attacks where attackers steal models from others and claim rewards from the plagiarized model, and collusion attacks where attackers claim trained models are from conspirators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' SYSTEM OVERVIEW In this section, we describe IRONFORGE from the aspects of its architecture, workflow, and system assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' System Overview We first introduce the roles that participate in the system and present our high-level design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' IRONFORGE is a decentralized FL system that features a DAG-based network structure to tackle the incon- sistency in the decentralized FL process, excessive reliance on central coordination, and ineffective motivation of con- tributing the learning resources at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Specifically, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' System model of IRONFORGE IRONFORGE builds a hybrid architecture (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 1) that involves two types of DAG, namely, Task-DAG and Global- DAG (details refer to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 3, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The training processes in both Task-DAG and Global-DAG are traceable owing to the DAG data structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' A DAG node published by a participant consists of a model update and the directed edges of the node indicate the aggregating relationship with existing models during the update, hence no central coordinator required to conduct the training processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Global-DAG contains a variety of models adopted by all participants, which can be viewed as a “unique” and public model resource pool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' No consistent testing dataset is given in Global-DAG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Each user comes to Global-DAG and hunts for models that uniquely meet its own local testing dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Without central coordinators, any user can fetch models from the pool for direct uses, release his task requests, or make con- tributions, such as training on Global-DAG or on uncompleted training tasks, or verifying the tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Each training task is managed by a Task-DAG, while IRON- FORGE can contain multiple Task-DAGs at the same time to handle a range of different training tasks (see the right- hand side in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Task-DAGs are task-specific and are released by users who aim at improving their local model prediction accuracy by virtue of the computational powers and resources of others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Within a task, the Task-DAG network contains multiple contributors who have the same training target provided by the publisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The trained models for each task are broadcast and stored in the corresponding Task-DAG, and await the check and verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The satisfied model of a task, observed by the publisher, is subsequently merged into Global-DAG, increasing the exposure to the public users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' As a result, parallel learning on our hybrid DAG networks becomes possible, and the resultant models can be collected by Global- DAG for further involvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Roles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In IRONFORGE, the users can take different roles: viewer, task publisher, verifier, and contributor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' A user is a participant in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Each user can select one or multiple roles to perform specific functional activities (see the left-hand side in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Specifically, a viewer can directly fetch models from the public resource pool without further actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' The task publisher aims to propose new tasks and the proposed tasks are broadcast and await others’ contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' In order 3 Global Network User Global DAG Contributor User Task DAG Global DAG Contributor Task DAG User Global DAG Contributor Task DAG Viewer Fetching Evaluating Models Selected Models Satisfied Mode Task Publisher Aggregating Verification Committee Aggregated Model Local dataset Contributor Training Trained Model Selected Models Task Publisher sk Aggregated Model Verification Committee % Trained Model Task WorkNerifyTask Community ……' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' ……' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' t ① Register and Release a task Publisher Workers ② Announce ③ Observe ……' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Sync the DAG and validate DAG nodes c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Evaluate some models with local test dataset d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Pick up the best ones and aggregate them e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Start training with local training dataset f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9E2T4oBgHgl3EQfnQhW/content/2301.04006v1.pdf'} +page_content=' Publish the model to the DAG ④ Train and publish models Task-model node Header: Sender: … Timestamp: … Sources: […] Evaluations: […] Payload: Weights: ipfs_uri+hash ④ ④ ④ Local dataset Local dataset Local dataset Task-termination node Sender: Publisher Timestamp: … Winner: … Public testing dataset: Dtest Accuracy: … Balance update: … Task-genesis node Header: Sender: Publisher Timestamp: … Target: A(i + k) holds. +After pass j, all km−j-inversions that were originally in A have been solved. We say an array with no k-inversions +is k-sorted. Note that the final pass with k1 is equivalent to insertion sort and is necessary to guarantee sortedness. +Therefore, the purpose of the gap sequence is to presort A as much as possible before the expensive final insertion sort +pass. +The main results of this paper are: +1. New efficient Shellsort sequences derived from experimentally optimizing sequence-generating functions. +For prescribed array sizes, these sequences outperform well-known efficient sequences (e.g. Tokuda, Ciura) +with respect to the number of comparisons. These sequences also outperform the running time of the Tokuda +sequence, making them the fastest function-based sequence on the tested array sizes. +2. We demonstrate results of experimental analysis comparing our proposed approaches with well-known se- +quences by measuring the number of comparisons, exchange operations, and running time needed to sort +randomized permutations. +Traditionally, improvements for Shellsort have come from finding gap sequences with theoretical properties. We +discuss some particularly important sequences in Section 2. Then in Section 3, we introduce parameterized sequence- +arXiv:2301.00316v1 [cs.DS] 1 Jan 2023 + +generating functions that generate a Shellsort sequence. The parameters are then optimized in a grid-search finding +the best possible sequence that can be produced from that function for a chosen array size. In Section 4 we discuss our +experimental methodology to compare the performance of the optimized template sequences to the baseline sequences +mentioned in Section 2. +2 +Background +The selection of a good gap sequence is critical to the performance of Shellsort. There has been a plethora of work +focused on selecting good sequences [4, 5, 6]. Some of the earliest proposed sequences were based on powers of +2 [7, 1]. Then Pratt showed that the sequence of 2p3q obtains a number of inversions that is Θ(Nlog2N) in the +worst case [8]. We call this sequence Pratt-23 in Table 1. This sequence still has the best known asymptotic time +complexity for any Shellsort sequence. However, it has a very large constant factor which spurred the development of +new sequences. +The proof technique used to show the time complexity of Pratt-23 was based on counting the inversions of a sequence +that has already been 2-sorted and 3-sorted. A natural extension of this is to apply the Frobenius problem to place +bounds on what has already been sorted in prior passes. A typical formulation of the Frobenius problem is as follows: +Suppose that you have k coins of denominations u1, u2, . . . , uk. What is the largest value which cannot be made +with a nonnegative linear combination of these coins? This largest value is known as the Frobenius number [9]. In +the context of Shellsort, the coins can be equated to gap size and the Frobenius number can be equated to the largest +remaining inversion after sorting with the gaps. Using the Frobenius problem, several sequences were proposed that +had a lower constant factor than Pratt-23 despite having a worse time-complexity [10, 11]. +Following those sequences, the focus of gap sequence selection shifted from finding theoretically good sequences +to finding experimentally good ones. For example, one property that was observed was that a geometric sequence +with a growth of 2.25 often performed well in practice. This observation was the basis of the Tokuda sequence [6]. +See Table 1 for a functional form. To the best of our knowledge, this remains the most competitive function in the +literature. +The next improvement came from Ciura in 2002 [4]. The Ciura sequence disregarded the idea of a function-based +sequence, and instead searched for the best set of gap elements themselves. Ciura found the best sequence for array +sizes of 128 and 1000, as well as a sequence that was conjectured to perform better for much larger array sizes. We +call these Ciura-128, Ciura-1000, and Ciura-Large in Table 1. +The Ciura sequences also marked a transition in how Shellsort performance was measured. Previously, most works +counted the number of exchanges used by the algorithm [8]. This partly because some proof techniques relied on +counting the number of inversions. Ciura instead focused on optimizing the number of comparisons, which was found +to be more directly related to the computation time of Shellsort. A comparison is defined as checking if a pair of array +elements are inverted. An exchange is typically defined as the variable swap used to fix an inversion. Minimizing the +number of comparisons is especially beneficial when comparisons are expensive to make, such as when sorting large +satellite data. Similarly, minimizing exchanges is beneficial in memory-constrained systems. In this work, we make +clear distinctions in Section 4 about what measurement we’re optimizing for. For a full treatment of the history of gap +sequences, we point the reader to [5]. +3 +Parameterized Template Functions +The approach of directly optimizing the gap sequence, as in [4], grows in computational cost very quickly as N +increases. This growth is due the fact that as N increases, both the expected number of sequence elements and their +possible range of values increases. To help alleviate this, the authors of [4] found a suitable sequence prefix and +optimize the extension of it by a few values. However, at very large N even finding this prefix would be very costly. +Here, we formulate the problem of finding the optimal sequence as optimizing the parameters of a pre-defined +sequence-generating function. Guided by principles that we have seen in sequences that perform well, we define +two functions as follows. +kA(i) = ⌊(a⌊ i +b ⌋ · c⌊ i +d ⌋)f + e⌋ +(1) +kB(i) = ⌊(a · b⌊ i +c ⌋) + d⌋ +(2) +We refer to (1) as Ours-A and (2) as Ours-B in Table 1. Both formats contain the floor function in exponents. We +found this to allow the function to express a more ”chaotic” sequence, which helped improve performance. The unique +characteristic of Ours-A is the parameter f, an exponent that helps regulate growth. The parameter a of Ours-B was +2 + +Sequence Name +Function +Optimized for N +Parameters +Initial Terms +Ciura [4] +- +128 +- +1 4 9 24 85 126 +- +1000 +- +1 4 10 23 57 156 409 995 +- +Large +- +1 4 10 23 57 132 301 701 1750 +Tokuda [6] +⌈ (9/4)k−1 +(9/4)−1 ⌉ +- +- +1 4 9 20 46 103 233 525 . . . +Ours A +⌊(a⌊ i +b ⌋ · c⌊ i +d ⌋)f + e⌋ +128 (Comp) +Table 2 +1 4 9 24 85 150 . . . +1000 (Comp) +Table 2 +1 4 10 23 57 153 400 . . . +1000 (Time) +Table 2 +1 3 7 16 33 85 179 472 . . . +Ours B +⌊(a · b⌊ i +c ⌋) + d⌋ +10000 (Comp) +Table 2 +1 4 10 27 72 187 488 . . . +Pratt-23 [8] +Ordered 2p · 3q +- +- +1 2 3 4 6 8 9 . . . +Pratt-25 +Ordered 2p · 5q +- +- +1 2 4 5 8 10 15 16 . . . +Pratt-34 +Ordered 3p · 4q +- +1 3 4 9 12 16 24 . . . +Table 1: Gap sequences that are compared during experiments +Template +a +b +c +d +e +f +Ours-A128-Comp +2.6321 +1.6841 +2.1570 +0.7360 +3 +0.7630 +Ours-A1000-Comp +3.5789 +2.6316 +3.8158 +2.1579 +3 +0.7632 +Ours-A1000-Time +2.75 +2.75 +3.7142 +2.4286 +2 +0.7429 +Ours-B10000-Comp +4.0816 +8.5714 +2.2449 +0 +- +- +Table 2: Optimized parameters for template functions +designed to have a similar purpose, albeit via multiplication. Ours-B contains fewer parameters which allows for +quicker optimization. For conciseness, we only optimize Ours-A for array sizes 128 and 1000, and Ours-B for 10000. +Furthermore, we denote as Ours-A1000-Comp if optimizing Format A for number of comparisons on arrays of size +1000. In the following section, we discuss the experimental procedure for optimizing (1) and (2), as well as for +comparing them to other baseline sequences. +4 +Experimental Procedure +Because the function is highly non-convex, it is difficult to utilize efficient techniques such as gradient descent. In- +stead, we employ a grid-search approach. One benefit of using a function grid-search, as opposed to direct sequence +optimization, is that the size of the search space has no relation to N. It depends only on the granularity and bounds +of the search. This is in constrast to the methodology used by Ciura, in which the number of tested sequences grows +with N [4]. +For Ours-A, we define the grid for parameters a, b, c, d, f as 20 linearly spaced values between 0.5 and 5. We also +allow e to be an integer value between 0 and 10, including both endpoints. Because Ours-B has fewer parameters, +we can take a more fine-grained approach. For parameters a, b, c, we test 50 linearly spaced values from 0 to 10. For +parameter d, we constrain it to be the same as e in Ours-A. +The data array that we test on contains N distinct values 1 through N, and we shuffle it with the Fischer-Yates shuffle. +For each set of parameters in the grid-space, we compute the mean cost over 1000 iterations. We then take the set of +parameters producing the lowest mean cost as optimal. This cost can be defined as number of comparisons, number +of exchanges, or time. +Because Ciura sequences are optimized for specific array sizes with no means of extending them, it would be inap- +propriate to directly compare them with any function-based sequence at large array sizes. One method of extending a +Ciura sequence is by starting a geometric series on its last term with a ratio of 2.25. We adopt this method of extension +when measuring the performance of Ciura sequences. +3 + +Sequence +N=20 +N=128 +N=200 +µCO +µEX +µCO +µEX +µCO +µEX +Ours-A128-Comp +76 ± 6 +38 ± 6 +998 ± 33 +531 ± 33 +1786 ± 46 +948 ± 48 +Ours-A1000-Comp +76 ± 6 +39 ± 7 +1004 ± 32 +516 ± 31 +1787 ± 44 +919 ± 45 +Ours-A1000-Time +79 ± 5 +39 ± 7 +1035 ± 26 +468 ± 27 +1832 ± 38 +846 ± 39 +Ours-B10000-Comp +76 ± 7 +33 ± 5 +1096 ± 52 +535 ± 36 +1775 ± 49 +960 ± 49 +Ciura-128 +76 ± 6 +37 ± 6 +998 ± 32 +531 ± 33 +1800 ± 46 +970 ± 49 +Ciura-1000 +76 ± 7 +39 ± 7 +1006 ± 31 +519 ± 34 +1787 ± 45 +920 ± 44 +Ciura-Long +76 ± 7 +39 ± 7 +1004 ± 32 +516 ± 32 +1794 ± 44 +907 ± 42 +Tokuda +76 ± 6 +37 ± 6 +1020 ± 28 +490 ± 28 +1808 ± 42 +891 ± 43 +Pratt-25 +111 ± 4 +27 ± 4 +1732 ± 16 +345 ± 17 +3207 ± 21 +610 ± 24 +Pratt-23 +136 ± 3 +25 ± 4 +2209 ± 13 +333 ± 15 +4095 ± 19 +589 ± 21 +Pratt-34 +95 ± 4 +29 ± 4 +1424 ± 16 +374 ± 19 +2593 ± 25 +660 ± 26 +Table 3: Number of operations to sort small arrays averaged over 1000 random array permutations. µCO denotes the +number of comparisons, µEX denotes the number of exchanges. +Sequence +N=1000 +N=2000 +N=5000 +µCO +µEX +µCO +µEX +µCO +µEX +Ours-A128-Comp +13250 ± 203 +7847 ± 199 +30530 ± 378 +18611 ± 384 +91122 ± 973 +57728 ± 904 +Ours-A1000-Comp +12941 ± 167 +7004 ± 155 +29596 ± 293 +16234 ± 282 +86821 ± 768 +50349 ± 770 +Ours-A1000-Time +13193 ± 144 +6461 ± 146 +30120 ± 263 +14913 ± 257 +87455 ± 548 +44305 ± 552 +Ours-B10000-Comp +12980 ± 186 +7245 ± 177 +29643 ± 305 +17241 ± 325 +86514 ± 617 +57388 ± 817 +Ciura-128 +13300 ± 166 +7003 ± 168 +30359 ± 318 +15987 ± 310 +88193 ± 629 +46689 ± 627 +Ciura-1000 +12918 ± 161 +7002 ± 155 +29534 ± 282 +16138 ± 274 +86641 ± 757 +47852 ± 751 +Ciura-Long +13035 ± 142 +6701 ± 149 +29567 ± 246 +15427 ± 261 +86232 ± 502 +45347 ± 496 +Tokuda +13116 ± 143 +6556 ± 142 +29888 ± 241 +14952 ± 228 +86838 ± 454 +44116 ± 472 +Pratt-25 +26211 ± 68 +4318 ± 72 +62722 ± 122 +9755 ± 131 +194196 ± 263 +28195 ± 278 +Pratt-23 +34380 ± 64 +4253 ± 69 +82785 ± 106 +9669 ± 116 +259088 ± 242 +28354 ± 257 +Pratt-34 +20974 ± 89 +4671 ± 87 +50038 ± 153 +10543 ± 160 +154298 ± 372 +30448 ± 372 +Table 4: Number of operations to sort medium-sized arrays averaged over 1000 random array permutations +4.1 +Filtering +There are two techniques we employ to reduce our grid-search space. +First, we notice that different sets of parameters could produce the same sequence. For example, for the template +function Ours-A, the ordering of (a, b) and (c, d) do not matter. We precalculate all of the sequences produced in the +grid and only experiment on the unique ones. For example, for N = 10000, this reduces the grid search space from +over 1.5 million sets of parameters to about 1 million. +Second, we use sequential analysis to act as a low-pass filter for screening out obviously poor sequences. This statis- +tical approach was first applied to Shellsort in [4]. Given bounds for the mean and an upper bound for the variance, +sequential analysis is able to tell in just a few repetitions whether or not a sample mean falls below the mean bounds +with a certain confidence. Sequential analysis allows us to quickly accept good gap sequences that have a low mean +number of comparisons. Any sequence that is accepted by the filter is then run for the full 1000 iterations to obtain a +more accurate estimate of the mean. We adopt the same setup as in [4]. +The Ciura sequences were optimized with respect to the number of comparisons, and because they are well-known to +be some of the most practical sequences, we optimize our template functions with respect to the number of comparisons +as well. +4.2 +Hardware +The experiments were performed on a Ubuntu machine with an 8-core Intel Xeon W-3225. Experiments counting +number of comparisons and exchanges were multithreaded. Experiments involving measurement of time were done +4 + +Sequence +N=10000 +µCO +µEX +Ours-A128-Comp +206356 ± 1796 +132351 ± 1797 +Ours-A1000-Comp +196336 ± 1707 +119012 ± 1710 +Ours-A1000-Time +194052 ± 879 +98952 ± 883 +Ours-B10000-Comp +192029 ± 992 +209292 ± 1293 +Ciura-128 +195256 ± 1106 +105544 ± 1109 +Ciura-1000 +193778 ± 1895 +111338 ± 1897 +Ciura-Long +191435 ± 892 +101680 ± 897 +Tokuda +192574 ± 795 +98071 ± 796 +Pratt-25 +450131 ± 516 +62191 ± 526 +Pratt-23 +604502 ± 451 +66923 ± 725 +Pratt-34 +355382 ± 723 +63272 ± 462 +Table 5: Number of operations to sort an array size of 10000 averaged over 1000 random array permutations +Sequence +Running Time (ms) +Ours-A128-Comp +3.15 ± 0.08 +Ours-A1000-Comp +3.02 ± 0.06 +Ours-A1000-Time +3.01 ± 0.06 +Ours-B10000-Comp +3.04 ± 0.07 +Ciura-128 +3.07 ± 0.06 +Ciura-1000 +3.01 ± 0.06 +Ciura-Long +3.04 ± 0.07 +Tokuda +3.06 ± 0.08 +Pratt-25 +5.00 ± 0.09 +Pratt-23 +6.35 ± 0.11 +Pratt-34 +4.17 ± 0.08 +Table 6: Time to sort an array size of 1000 averaged over 1000 random array permutations +Figure 1: (Left) For varying array sizes, shows the difference in number of comparisons between baseline sequences +and Ours-A128. A positive value means Ours-A128 uses fewer comparisons. (Right) Number of comparisons for +varying array sizes larger than what Ours-A128 was optimized for. +5 + +Difference inMeanNumberof Comparisons +35 +Ciura-128 +Ciura-Large +30 +Tokuda +25 +differences +20 +15 +10 +5 +0 +25 +50 +75 +100 +125 +150 +175 +200 +Array SizeMeanNumberofComparisonsvsArraySize +1800 +Ours-A128 +Ciura-128 +Ciura-Large +1700 +Tokuda +NumberofComparisons +1600 +1500 +1400 +1300 +1200 +150 +160 +170 +180 +190 +200 +Array Sizesingle threaded, as any multithreaded applications could cause discrepancies in time measurement. All code was +written in Python. +4.3 +Results +The best parameters that we found for Ours-A and Ours-B are in Table 2. Additionally, the first few terms of the +sequences are shown in Table 1. +For array size 200, we have found that Ours-B10000-Comp outperforms all other tested sequences in terms of number +of comparisons, as shown in Table 3. Figure 1 is a graphical aid to this table. These graphs show that sequences +generated by template functions can still perform well for array sizes larger, but not significantly so, than what they +were optimized for. Furthermore, we found that both Ours-A128-Comp and Ours-A1000-Comp met the number of +comparisons of, but did not surpass, the Ciura and Tokuda sequences. It’s interesting to note that several of the initial +terms are equivalent between Ciura-128 and Ours-A128-Comp. +We also test medium and large arrays, with results shown in Tables 4 and 5. For a graphical representation of Table 5, +see Figure 1 in the Appendix. Our new sequences approach the performance of Ciura sequences without surpassing +them. However, Ours-B10000 still surpasses the Tokuda sequence for all array sizes that we have tested here. Recall +that the Tokuda sequence is currently the best known sequence to be generated from a function. Therefore, we have +shown a new function-based sequence that outperforms other function-based sequences in terms of the number of +comparisons. As mentioned previously, this is particularly useful if comparisons are a dominant operation such as +when sorting large satellite data. +On the other hand, our experiments with optimizing sequences to minimize running time are shown in Table 6. The +relevant sequence, Ours-A1000-Time, takes a similar running time to the Ciura-1000 sequence. Both are faster than +any other tested sequence. The sequence Ours-A1000-Time is particularly interesting because its first few elements (1 +3 7) are different than most other fast sequences (typically starting with 1 4 9). This difference may imply that while +sequences beginning with (1 4 9) may be very good at minimizing number of comparisons, it does not guarantee that +they have a good overall running time. +5 +Conclusion +Improvements for Shellsort traditionally come from finding gap sequences with better theoretical properties. Here +we introduced an experimental framework to find improved gap sequences, following in the footsteps of [4]. Our +generated gap sequences outperformed all well-known gap sequences in terms of number of comparisons on prescribed +array sizes. Furthermore, the sequence Ours-A1000-Time is, to our knowledge, the function-based sequence with the +quickest running time. However, it meets the performance of the Ciura sequence but does not surpass it. This may be +improved with different sequence-generating functions or experimental setup, which we leave to future work. While +the sequences presented here were optimized for chosen array sizes, the optimization may be repeated for any array +size of interest. +References +[1] D. L. Shell, “A high-speed sorting procedure,” Communications of the ACM, vol. 2, no. 7, pp. 30–32, 1959. +[2] M. T. Goodrich, “Randomized shellsort: A simple data-oblivious sorting algorithm,” Journal of the ACM (JACM), vol. 58, +no. 6, pp. 1–26, 2011. +[3] J.-W. Lee, Y.-S. Kim, and J.-S. No, “Analysis of modified shell sort for fully homomorphic encryption,” IEEE Access, vol. 9, +pp. 126198–126215, 2021. +[4] M. Ciura, “Best increments for the average case of shellsort,” in International Symposium on Fundamentals of Computation +Theory, pp. 106–117, Springer, 2001. +[5] R. Sedgewick, “Analysis of shellsort and related algorithms,” in European Symposium on Algorithms, pp. 1–11, Springer, +1996. +[6] N. Tokuda, “An improved shellsort,” in Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software, +Architecture-Information Processing’92, Volume 1-Volume I, pp. 449–457, 1992. +[7] T. N. Hibbard, “An empirical study of minimal storage sorting,” Communications of the ACM, vol. 6, no. 5, pp. 206–213, +1963. +[8] V. R. Pratt, “Shellsort and sorting networks,” tech. rep., STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1972. +[9] E. S. Selmer, “On the linear diophantine problem of Frobenius,” 1977. +6 + +[10] J. Incerpi and R. Sedgewick, “Improved upper bounds on shellsort,” Journal of Computer and System Sciences, vol. 31, no. 2, +pp. 210–224, 1985. +[11] E. S. Selmer, “On shellsort and the Frobenius problem,” 1987. +7 + diff --git a/BtAyT4oBgHgl3EQfePgk/content/tmp_files/load_file.txt b/BtAyT4oBgHgl3EQfePgk/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1773ba1ef9d924524af4e5bac6903097f4f0633b --- /dev/null +++ b/BtAyT4oBgHgl3EQfePgk/content/tmp_files/load_file.txt @@ -0,0 +1,508 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf,len=507 +page_content='OPTIMIZATION PERSPECTIVES ON SHELLSORT Oscar Skean Department of Computer Science University of Kentucky oscar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='skean@uky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='edu Richard Ehrenborg Department of Mathematics University of Kentucky Jerzy W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Jaromczyk Department of Computer Science University of Kentucky ABSTRACT Shellsort is a sorting method that is attractive due to its simplicity, yet it takes effort to analyze its efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The heart of the algorithm is the gap sequence chosen a priori and used during sorting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The selection of this gap sequence affects the efficiency of Shellsort, and thus drives both its theo- retical and experimental analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We contribute to Shellsort by identifying efficient gap sequences based on new parameterized functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Specifically, a parameter grid-search identifies optimal pa- rameters for different input sizes for sorting by observing minimal overhead in three categories: number of comparisons, number of exchanges, and running time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We report that our method finds sequences that outperform state-of-the-art gap sequences concerning the number of comparisons for chosen small array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Additionally, our function-based sequences outperform the running time of the Tokuda sequences for chosen large array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' However, no substantial improvements were observed when minimizing the number of exchanges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 1 Introduction The Shellsort algorithm is a sorting method that was among the first to be discovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Published in 1959 [1], it saw early interest due to its low memory requirements and simple implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Despite this, its analysis is difficult and remains incomplete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The algorithm has found practical use today in memory-constrained environments, embedded systems, and the bzip2 compressor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Recently it has also found use in data-oblivious sorting [2] and in fully homomor- phic encryption [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Shellsort is an in-place comparison sort and can be viewed as a generalization of insertion sort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For a data array A of size N, Shellsort operates using a predetermined gap sequence 1 = k1 < · · · < km < N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The algorithm performs m passes over A: starting with the largest km and ending with k1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' During pass j, for a given gap km−j, insertion sort occurs for the km−j subarrays consisting of the data elements A(i), A(i + km−j), A(i + 2 · km−j), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' for i = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' , km−j − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We say a k-inversion is a pair (i, i + k) such that the inequality A(i) > A(i + k) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' After pass j, all km−j-inversions that were originally in A have been solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We say an array with no k-inversions is k-sorted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Note that the final pass with k1 is equivalent to insertion sort and is necessary to guarantee sortedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Therefore, the purpose of the gap sequence is to presort A as much as possible before the expensive final insertion sort pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The main results of this paper are: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' New efficient Shellsort sequences derived from experimentally optimizing sequence-generating functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For prescribed array sizes, these sequences outperform well-known efficient sequences (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Tokuda, Ciura) with respect to the number of comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' These sequences also outperform the running time of the Tokuda sequence, making them the fastest function-based sequence on the tested array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We demonstrate results of experimental analysis comparing our proposed approaches with well-known se- quences by measuring the number of comparisons, exchange operations, and running time needed to sort randomized permutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Traditionally, improvements for Shellsort have come from finding gap sequences with theoretical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We discuss some particularly important sequences in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Then in Section 3, we introduce parameterized sequence- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='00316v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='DS] 1 Jan 2023 generating functions that generate a Shellsort sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The parameters are then optimized in a grid-search finding the best possible sequence that can be produced from that function for a chosen array size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' In Section 4 we discuss our experimental methodology to compare the performance of the optimized template sequences to the baseline sequences mentioned in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 2 Background The selection of a good gap sequence is critical to the performance of Shellsort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' There has been a plethora of work focused on selecting good sequences [4, 5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Some of the earliest proposed sequences were based on powers of 2 [7, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Then Pratt showed that the sequence of 2p3q obtains a number of inversions that is Θ(Nlog2N) in the worst case [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We call this sequence Pratt-23 in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This sequence still has the best known asymptotic time complexity for any Shellsort sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' However, it has a very large constant factor which spurred the development of new sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The proof technique used to show the time complexity of Pratt-23 was based on counting the inversions of a sequence that has already been 2-sorted and 3-sorted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' A natural extension of this is to apply the Frobenius problem to place bounds on what has already been sorted in prior passes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' A typical formulation of the Frobenius problem is as follows: Suppose that you have k coins of denominations u1, u2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' , uk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' What is the largest value which cannot be made with a nonnegative linear combination of these coins?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This largest value is known as the Frobenius number [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' In the context of Shellsort, the coins can be equated to gap size and the Frobenius number can be equated to the largest remaining inversion after sorting with the gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Using the Frobenius problem, several sequences were proposed that had a lower constant factor than Pratt-23 despite having a worse time-complexity [10, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Following those sequences, the focus of gap sequence selection shifted from finding theoretically good sequences to finding experimentally good ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For example, one property that was observed was that a geometric sequence with a growth of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='25 often performed well in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This observation was the basis of the Tokuda sequence [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' See Table 1 for a functional form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' To the best of our knowledge, this remains the most competitive function in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The next improvement came from Ciura in 2002 [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The Ciura sequence disregarded the idea of a function-based sequence, and instead searched for the best set of gap elements themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ciura found the best sequence for array sizes of 128 and 1000, as well as a sequence that was conjectured to perform better for much larger array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We call these Ciura-128, Ciura-1000, and Ciura-Large in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The Ciura sequences also marked a transition in how Shellsort performance was measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Previously, most works counted the number of exchanges used by the algorithm [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This partly because some proof techniques relied on counting the number of inversions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ciura instead focused on optimizing the number of comparisons, which was found to be more directly related to the computation time of Shellsort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' A comparison is defined as checking if a pair of array elements are inverted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' An exchange is typically defined as the variable swap used to fix an inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Minimizing the number of comparisons is especially beneficial when comparisons are expensive to make, such as when sorting large satellite data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Similarly, minimizing exchanges is beneficial in memory-constrained systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' In this work, we make clear distinctions in Section 4 about what measurement we’re optimizing for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For a full treatment of the history of gap sequences, we point the reader to [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 3 Parameterized Template Functions The approach of directly optimizing the gap sequence, as in [4], grows in computational cost very quickly as N increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This growth is due the fact that as N increases, both the expected number of sequence elements and their possible range of values increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' To help alleviate this, the authors of [4] found a suitable sequence prefix and optimize the extension of it by a few values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' However, at very large N even finding this prefix would be very costly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Here, we formulate the problem of finding the optimal sequence as optimizing the parameters of a pre-defined sequence-generating function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Guided by principles that we have seen in sequences that perform well, we define two functions as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' kA(i) = ⌊(a⌊ i b ⌋ · c⌊ i d ⌋)f + e⌋ (1) kB(i) = ⌊(a · b⌊ i c ⌋) + d⌋ (2) We refer to (1) as Ours-A and (2) as Ours-B in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Both formats contain the floor function in exponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We found this to allow the function to express a more ”chaotic” sequence, which helped improve performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The unique characteristic of Ours-A is the parameter f, an exponent that helps regulate growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The parameter a of Ours-B was 2 Sequence Name Function Optimized for N Parameters Initial Terms Ciura [4] 128 1 4 9 24 85 126 1000 1 4 10 23 57 156 409 995 Large 1 4 10 23 57 132 301 701 1750 Tokuda [6] ⌈ (9/4)k−1 (9/4)−1 ⌉ 1 4 9 20 46 103 233 525 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ours A ⌊(a⌊ i b ⌋ · c⌊ i d ⌋)f + e⌋ 128 (Comp) Table 2 1 4 9 24 85 150 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 1000 (Comp) Table 2 1 4 10 23 57 153 400 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 1000 (Time) Table 2 1 3 7 16 33 85 179 472 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ours B ⌊(a · b⌊ i c ⌋) + d⌋ 10000 (Comp) Table 2 1 4 10 27 72 187 488 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Pratt-23 [8] Ordered 2p · 3q 1 2 3 4 6 8 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Pratt-25 Ordered 2p · 5q 1 2 4 5 8 10 15 16 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Pratt-34 Ordered 3p · 4q 1 3 4 9 12 16 24 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Table 1: Gap sequences that are compared during experiments Template a b c d e f Ours-A128-Comp 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6321 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6841 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1570 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7360 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7630 Ours-A1000-Comp 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='5789 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6316 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='8158 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1579 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7632 Ours-A1000-Time 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='75 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7142 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4286 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7429 Ours-B10000-Comp 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='0816 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='5714 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='2449 0 Table 2: Optimized parameters for template functions designed to have a similar purpose, albeit via multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ours-B contains fewer parameters which allows for quicker optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For conciseness, we only optimize Ours-A for array sizes 128 and 1000, and Ours-B for 10000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Furthermore, we denote as Ours-A1000-Comp if optimizing Format A for number of comparisons on arrays of size 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' In the following section, we discuss the experimental procedure for optimizing (1) and (2), as well as for comparing them to other baseline sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 4 Experimental Procedure Because the function is highly non-convex, it is difficult to utilize efficient techniques such as gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' In- stead, we employ a grid-search approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' One benefit of using a function grid-search, as opposed to direct sequence optimization, is that the size of the search space has no relation to N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' It depends only on the granularity and bounds of the search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This is in constrast to the methodology used by Ciura, in which the number of tested sequences grows with N [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For Ours-A, we define the grid for parameters a, b, c, d, f as 20 linearly spaced values between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='5 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We also allow e to be an integer value between 0 and 10, including both endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Because Ours-B has fewer parameters, we can take a more fine-grained approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For parameters a, b, c, we test 50 linearly spaced values from 0 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For parameter d, we constrain it to be the same as e in Ours-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The data array that we test on contains N distinct values 1 through N, and we shuffle it with the Fischer-Yates shuffle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For each set of parameters in the grid-space, we compute the mean cost over 1000 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We then take the set of parameters producing the lowest mean cost as optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This cost can be defined as number of comparisons, number of exchanges, or time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Because Ciura sequences are optimized for specific array sizes with no means of extending them, it would be inap- propriate to directly compare them with any function-based sequence at large array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' One method of extending a Ciura sequence is by starting a geometric series on its last term with a ratio of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We adopt this method of extension when measuring the performance of Ciura sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Sequence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A128-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='38 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='998 ± 33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='531 ± 33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1786 ± 46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='948 ± 48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='39 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1004 ± 32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='516 ± 31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1787 ± 44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='919 ± 45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='79 ± 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='39 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1035 ± 26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='468 ± 27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1832 ± 38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='846 ± 39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-B10000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='33 ± 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1096 ± 52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='535 ± 36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1775 ± 49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='960 ± 49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='37 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='998 ± 32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='531 ± 33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1800 ± 46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='970 ± 49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='39 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1006 ± 31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='519 ± 34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1787 ± 45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='920 ± 44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-Long ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='39 ± 7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1004 ± 32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='516 ± 32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1794 ± 44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='907 ± 42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Tokuda ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='76 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='37 ± 6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1020 ± 28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='490 ± 28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1808 ± 42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='891 ± 43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='111 ± 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='27 ± 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1732 ± 16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='345 ± 17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='3207 ± 21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='610 ± 24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='136 ± 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='25 ± 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='2209 ± 13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='333 ± 15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4095 ± 19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='589 ± 21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='95 ± 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29 ± 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1424 ± 16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='374 ± 19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='2593 ± 25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='660 ± 26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Table 3: Number of operations to sort small arrays averaged over 1000 random array permutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' µCO denotes the number of comparisons, µEX denotes the number of exchanges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Sequence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=5000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A128-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='13250 ± 203 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7847 ± 199 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='30530 ± 378 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='18611 ± 384 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='91122 ± 973 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='57728 ± 904 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='12941 ± 167 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7004 ± 155 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29596 ± 293 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='16234 ± 282 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='86821 ± 768 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='50349 ± 770 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='13193 ± 144 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6461 ± 146 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='30120 ± 263 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='14913 ± 257 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='87455 ± 548 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='44305 ± 552 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-B10000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='12980 ± 186 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7245 ± 177 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29643 ± 305 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='17241 ± 325 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='86514 ± 617 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='57388 ± 817 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='13300 ± 166 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7003 ± 168 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='30359 ± 318 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='15987 ± 310 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='88193 ± 629 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='46689 ± 627 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='12918 ± 161 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='7002 ± 155 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29534 ± 282 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='16138 ± 274 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='86641 ± 757 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='47852 ± 751 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-Long ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='13035 ± 142 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6701 ± 149 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29567 ± 246 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='15427 ± 261 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='86232 ± 502 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='45347 ± 496 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Tokuda ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='13116 ± 143 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='6556 ± 142 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='29888 ± 241 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='14952 ± 228 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='86838 ± 454 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='44116 ± 472 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='26211 ± 68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4318 ± 72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='62722 ± 122 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='9755 ± 131 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='194196 ± 263 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='28195 ± 278 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='34380 ± 64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4253 ± 69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='82785 ± 106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='9669 ± 116 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='259088 ± 242 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='28354 ± 257 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='20974 ± 89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4671 ± 87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='50038 ± 153 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='10543 ± 160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='154298 ± 372 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='30448 ± 372 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Table 4: Number of operations to sort medium-sized arrays averaged over 1000 random array permutations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='1 Filtering There are two techniques we employ to reduce our grid-search space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' First, we notice that different sets of parameters could produce the same sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For example, for the template function Ours-A, the ordering of (a, b) and (c, d) do not matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We precalculate all of the sequences produced in the grid and only experiment on the unique ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For example, for N = 10000, this reduces the grid search space from over 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='5 million sets of parameters to about 1 million.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Second, we use sequential analysis to act as a low-pass filter for screening out obviously poor sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This statis- tical approach was first applied to Shellsort in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Given bounds for the mean and an upper bound for the variance, sequential analysis is able to tell in just a few repetitions whether or not a sample mean falls below the mean bounds with a certain confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Sequential analysis allows us to quickly accept good gap sequences that have a low mean number of comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Any sequence that is accepted by the filter is then run for the full 1000 iterations to obtain a more accurate estimate of the mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We adopt the same setup as in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The Ciura sequences were optimized with respect to the number of comparisons, and because they are well-known to be some of the most practical sequences, we optimize our template functions with respect to the number of comparisons as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='2 Hardware The experiments were performed on a Ubuntu machine with an 8-core Intel Xeon W-3225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Experiments counting number of comparisons and exchanges were multithreaded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Experiments involving measurement of time were done ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Sequence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='N=10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µCO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='µEX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A128-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='206356 ± 1796 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='132351 ± 1797 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='196336 ± 1707 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='119012 ± 1710 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A1000-Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='194052 ± 879 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='98952 ± 883 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-B10000-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='192029 ± 992 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='209292 ± 1293 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='195256 ± 1106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='105544 ± 1109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='193778 ± 1895 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='111338 ± 1897 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ciura-Long ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='191435 ± 892 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='101680 ± 897 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Tokuda ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='192574 ± 795 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='98071 ± 796 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='450131 ± 516 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='62191 ± 526 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='604502 ± 451 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='66923 ± 725 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Pratt-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='355382 ± 723 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='63272 ± 462 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Table 5: Number of operations to sort an array size of 10000 averaged over 1000 random array permutations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Sequence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Running Time (ms) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='Ours-A128-Comp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='15 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='08 Ours-A1000-Comp 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='02 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='06 Ours-A1000-Time 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='06 Ours-B10000-Comp 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='07 Ciura-128 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='07 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='06 Ciura-1000 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='01 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='06 Ciura-Long 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='04 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='07 Tokuda 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='06 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='08 Pratt-25 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='09 Pratt-23 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='11 Pratt-34 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='08 Table 6: Time to sort an array size of 1000 averaged over 1000 random array permutations Figure 1: (Left) For varying array sizes, shows the difference in number of comparisons between baseline sequences and Ours-A128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' A positive value means Ours-A128 uses fewer comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' (Right) Number of comparisons for varying array sizes larger than what Ours-A128 was optimized for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 5 Difference inMeanNumberof Comparisons 35 Ciura-128 Ciura-Large 30 Tokuda 25 differences 20 15 10 5 0 25 50 75 100 125 150 175 200 Array SizeMeanNumberofComparisonsvsArraySize 1800 Ours-A128 Ciura-128 Ciura-Large 1700 Tokuda NumberofComparisons 1600 1500 1400 1300 1200 150 160 170 180 190 200 Array Sizesingle threaded, as any multithreaded applications could cause discrepancies in time measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' All code was written in Python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='3 Results The best parameters that we found for Ours-A and Ours-B are in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Additionally, the first few terms of the sequences are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For array size 200, we have found that Ours-B10000-Comp outperforms all other tested sequences in terms of number of comparisons, as shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Figure 1 is a graphical aid to this table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' These graphs show that sequences generated by template functions can still perform well for array sizes larger, but not significantly so, than what they were optimized for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Furthermore, we found that both Ours-A128-Comp and Ours-A1000-Comp met the number of comparisons of, but did not surpass, the Ciura and Tokuda sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' It’s interesting to note that several of the initial terms are equivalent between Ciura-128 and Ours-A128-Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' We also test medium and large arrays, with results shown in Tables 4 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' For a graphical representation of Table 5, see Figure 1 in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Our new sequences approach the performance of Ciura sequences without surpassing them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' However, Ours-B10000 still surpasses the Tokuda sequence for all array sizes that we have tested here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Recall that the Tokuda sequence is currently the best known sequence to be generated from a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Therefore, we have shown a new function-based sequence that outperforms other function-based sequences in terms of the number of comparisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' As mentioned previously, this is particularly useful if comparisons are a dominant operation such as when sorting large satellite data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' On the other hand, our experiments with optimizing sequences to minimize running time are shown in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The relevant sequence, Ours-A1000-Time, takes a similar running time to the Ciura-1000 sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Both are faster than any other tested sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' The sequence Ours-A1000-Time is particularly interesting because its first few elements (1 3 7) are different than most other fast sequences (typically starting with 1 4 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This difference may imply that while sequences beginning with (1 4 9) may be very good at minimizing number of comparisons, it does not guarantee that they have a good overall running time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 5 Conclusion Improvements for Shellsort traditionally come from finding gap sequences with better theoretical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Here we introduced an experimental framework to find improved gap sequences, following in the footsteps of [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Our generated gap sequences outperformed all well-known gap sequences in terms of number of comparisons on prescribed array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Furthermore, the sequence Ours-A1000-Time is, to our knowledge, the function-based sequence with the quickest running time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' However, it meets the performance of the Ciura sequence but does not surpass it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' This may be improved with different sequence-generating functions or experimental setup, which we leave to future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' While the sequences presented here were optimized for chosen array sizes, the optimization may be repeated for any array size of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' References [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Shell, “A high-speed sorting procedure,” Communications of the ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 30–32, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Goodrich, “Randomized shellsort: A simple data-oblivious sorting algorithm,” Journal of the ACM (JACM), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 1–26, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Lee, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Kim, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' No, “Analysis of modified shell sort for fully homomorphic encryption,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 126198–126215, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Ciura, “Best increments for the average case of shellsort,” in International Symposium on Fundamentals of Computation Theory, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 106–117, Springer, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Sedgewick, “Analysis of shellsort and related algorithms,” in European Symposium on Algorithms, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 1–11, Springer, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Tokuda, “An improved shellsort,” in Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software, Architecture-Information Processing’92, Volume 1-Volume I, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 449–457, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Hibbard, “An empirical study of minimal storage sorting,” Communications of the ACM, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 206–213, 1963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [8] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Pratt, “Shellsort and sorting networks,” tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=', STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [9] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Selmer, “On the linear diophantine problem of Frobenius,” 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 6 [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Incerpi and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Sedgewick, “Improved upper bounds on shellsort,” Journal of Computer and System Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 210–224, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' [11] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' Selmer, “On shellsort and the Frobenius problem,” 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} +page_content=' 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtAyT4oBgHgl3EQfePgk/content/2301.00316v1.pdf'} diff --git a/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf b/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3dad909a18f1c47de0c812eee4de2bda1a4e4c18 --- /dev/null +++ b/C9FQT4oBgHgl3EQf_jdA/content/2301.13458v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:103334c00d19b4563067b6dbb44e6be9afa0f6ab5ad0ecc337e4d7bd384913dd +size 5835964 diff --git a/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf b/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..cbdadaa6c97c0ae777697a72ab7b64c456f8c32c --- /dev/null +++ b/EtE5T4oBgHgl3EQfUw_x/content/2301.05547v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b8fc12a1300659a8c71a0701e19d313b9d88f01a452b6655400e9e85a4bf691f +size 627874 diff --git a/EtE5T4oBgHgl3EQfUw_x/vector_store/index.faiss b/EtE5T4oBgHgl3EQfUw_x/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..8a324482f7674a80fcd9fd70ccd8956b4dd8e17b --- /dev/null +++ b/EtE5T4oBgHgl3EQfUw_x/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:141f9e522ab6e6a9779f157147a031a087489a7f56f8b6ac67edffa977380cb8 +size 3080237 diff --git a/EtE5T4oBgHgl3EQfUw_x/vector_store/index.pkl b/EtE5T4oBgHgl3EQfUw_x/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e3963b8a07722b18679eaf77d45259c07d65da47 --- /dev/null +++ b/EtE5T4oBgHgl3EQfUw_x/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f07257ee0bac28da5fdc17bf98037b6537a344688d486849feb5316bc07a655d +size 142538 diff --git a/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/2301.01507v1.pdf.txt b/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/2301.01507v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..285c9a11594023a07b691506018cdf57b0668034 --- /dev/null +++ b/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/2301.01507v1.pdf.txt @@ -0,0 +1,1706 @@ +Bifurcation instructed design of multistate machines +Teaya Yang,1 David Hathcock,1 Yuchao Chen,1 Paul +McEuen,2 James P. Sethna,1 Itai Cohen,2 and Itay Griniasty1 +1Laboratory of Atomic and Solid State Physics, +Cornell University, Ithaca, New York 14853-2501, USA +2Laboratory of Atomic and Solid State Physics, +Cornell University, Ithaca, New York 14853-2501, +USA and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA +(Dated: January 5, 2023) +We propose a novel design paradigm for multi-state machines where transitions from one state +to another are organized by bifurcations of multiple equilibria of the energy landscape describing +the collective interactions of the machine components. This design paradigm is attractive since, +near bifurcations, small variations in a few control parameters can result in large changes to the +system’s state providing an emergent lever mechanism. Further, the topological configuration of +transitions between states near such bifurcations ensures robust operation, making the machine less +sensitive to fabrication errors and noise. To design such machines, we develop and implement a +new efficient algorithm that searches for interactions between the machine components that give +rise to energy landscapes with these bifurcation structures. We demonstrate a proof of concept for +this approach by designing magneto elastic machines whose motions are primarily guided by their +magnetic energy landscapes and show that by operating near bifurcations we can achieve multiple +transition pathways between states. This proof of concept demonstration illustrates the power of +this approach, which could be especially useful for soft robotics and at the microscale where typical +macroscale designs are difficult to implement. +Systems composed of a large number of interact- +ing elements such as meta-materials, elastic mem- +branes, and proteins can exhibit emergent behaviors +that arise from the collaborative interaction of the +system components. Designing functionality in such +systems is a formidable task that requires searches +in a high dimensional parameter space of the sys- +tem components and their interactions. Developing +organizing principles for effectively designing such +systems remains an outstanding problem in the field +[1–6]. Here, we propose that designing multi-state +machines around bifurcations of multiple equilibria +is a powerful paradigm that can be used to system- +atically organize such searches. +Bifurcations, where a single equilibrium configu- +ration splits into multiple equilibria as a function of +a control parameter is a canonical dynamical sys- +tems structure that has been used to explain vari- +ous natural phenomena ranging from phase transi- +tions [7] to the operation of simple machines. Exam- +ples of simple machines include Venus flytraps and +hummingbird beaks that have been shown to open +smoothly and then snap shut by operating about +a cusp bifurcation where three equilibria converge +[8]. Designing systems to operate near such bifur- +cations provides several advantages. Since the split- +ting of the equilibria has a power law dependence +on the control parameters [4, 7], operating near bi- +furcations automatically provides a lever mechanism +by which small variations in the control parameters +lead to large changes in the system state [12, 13]. +In the case of the Venus fly trap, slight changes in +hydrostatic pressure can drive large motions of the +trap. Similarly in hummingbirds, slight twisting of +the jaw bones enables rapid closing of a wide open +beak. +Further, such bifurcations organize a topo- +logically protected structure of saddle node mani- +folds. As such, provided that the system trajectory +encircles the cusp bifurcation where the saddle node +manifolds meet, the system is guaranteed to exhibit +a smooth change in state followed by a snap. +In +the Venus fly trap and hummingbird examples, this +topological protection guarantees that the opening +and snapping of the trap or beak is robust against +variations in the applied hydrostatic or muscle forces +driving the transitions in the system state. +Here, +we propose that moving beyond cusp bifurcations +to design systems that operate near bifurcations of +arbitrarily many equilibria preserves the lever ad- +vantage and topological protection of cusp bifurca- +tions. +Such systems can be driven by only a few +control parameters to undergo snapping transitions +between multiple states making the design of ma- +chines near such bifurcations a powerful paradigm +for organizing complex functions. To develop and +demonstrate this paradigm, we experimentally in- +vestigate increasingly sophisticated magneto elastic +machines whose function is organized by such bifur- +cations. +We start by constructing a simple magneto elas- +tic machine consisting of a control panel that can +be translated in the x − y plane and a second panel +arXiv:2301.01507v1 [cond-mat.soft] 4 Jan 2023 + +2 +FIG. 1. +Magneto-Elastic +machine +capable +of +adopting multiple configurations due to operat- +ing near a cusp bifurcation (a.) System: Panels P1 +and P2 are decorated with identical magnets. Panel P1 is +actuated externally to translate in the x and y directions, +in response Panel P2 rotates about a hinge, the dynam- +ics are over-damped. +(b.) +Magnetic potential energy +landscapes: We plot the potential for dx = −0.09 and +dy ∈ [0.28, 0.17, 0.02], where dx and dy are deviations +from the cusp’s position. Varying y we cross two saddle +node bifurcations where the number of extrema of the +magneto elastic landscape changes. (c.) +Equilibrium +manifold: The system’s equilibria θ(dx, dy) are plotted +as a function of the deviation of the parameters, color +signifies the value of θ. Brown curve marks saddle node +bifurcations where the number of equilibria change, and +the light red curve denotes the experimental trajectory. +(d.) Experimentally observed snap-through transition: +The system follows a parametric trajectory marked by a +red curve and colored tube whose color denotes the pre- +dicted state θ, around a cusp bifurcation. The colored +disks represent the experimentally measured state θ. As +expected a single snap through transition at a saddle +node bifurcation (curves colored according to the bifur- +cating state θ and converging at the cusp) is observed. +that is free to rotate about a hinge connecting the +two panels (Fig. 1a and experimental apparatus +schematic Fig.S1). The state of the system, is given +by the angle θ between the panels. By decorating +the panels with magnets, we are able to design a +magneto elastic landscape with different numbers of +minima as a function of the parameters x and y +(Fig. 1b). +Transitions between these minima cor- +respond to changes in the state of the system. To +understand the various pathways for making such +transitions we construct the manifold defined by the +local equilibria as a function of the parameters x and +y. For this particular arrangement of magnets, we +calculate (see SI) that the resulting manifold has a +domain with multiple solutions delineated by saddle +node bifurcation curves (Brown). These curves in- +tersect and terminate at a cusp bifurcation beyond +which there is only a single equilibrium state. By +translating the control panel in the x-y plane, the +system can undergo either smooth or abrupt changes +in θ. For example, starting the system at point (i) +and moving through points (ii-v), the hinge angle +increases smoothly. A further slight increase in the +control parameter y, however, leads to an abrupt +transition from a high to a low angle, correspond- +ing to points (v) and (vi) respectively. These pre- +dictions are born out by the experiments (Fig. 1d), +which also show a smooth increase in θ for a path- +way that encircles the cusp (i-v) and an abrupt tran- +sition in θ when crossing a saddle node curve (v-vi). +In this 2D representation the system makes a transi- +tion when the color of the path (yellow) matches the +color denoting the state associated with the saddle +node curve (yellow). This magneto elastic mecha- +nism is reminiscent of the cocking and snapping of +a Venus flytrap or a humming bird’s beak. +In addition to providing a mechanism for abrupt +transitions, operating near a cusp bifurcation creates +a lever mechanism where small variations in the con- +trol parameters lead to large variations in the system +state. This mechanism resolves the generic problem +that creating large variations in the system state of- +ten requires unfeasibly large variations in the control +parameters. Lever mechanisms are generic near bi- +furcations of equilibria since the magnitude of the +transition in the system state is typically propor- +tional to the square root of the parameter distance +from the bifurcation. +To characterize this lever mechanism in our exper- +iment, we map the snapping transition curves asso- +ciated with the saddle node bifurcations. +Specifi- +cally, for a given value of y (or x) we toggle x (y) +so that the system snaps back and forth, and record +the values of the control parameters x and y, and θ +immediately after each transition (Fig. 2a). +To test the scaling relations, we define the normal + +a) +HingeAxis +N +s +Parameter +SystemState +X-ControlParameter +b) +[nrun qe] A +L +2.2 +2.952.2 +2.95 +2.2 +2.95 +e[rad]-SystemState +c) +111 +2.9 + [rad] - System State +Snap-through +S +2.5 +d) +LS +Cusp Point +0.03 +0.3 +0.15 +-0.06 +0 +dy [cm]-Control Parameter +-0.15 +-0.093 +FIG. 2. +Parametric levers The change in the state +of the system after a snap through transition near a +cusp bifurcation scales sub linearly with the normal +form parameters. This sublinear scaling leads to large +variation of the state in response to small variation +of the system parameters. +a) Measurements of snap +through transitions near a cusp: The blue points mark +the state of the magneto elastic system of Fig. 1 af- +ter a snap through transition. +The dashed curve is a +fit of snap through transitions near a cusp bifurcation +to the data, derived from the normal form potential +˜V = δθ4 + a2δθ2 + a1δθ. +The normal form parame- +ters a1 and a2 are locally given by re-scaled rotations +of dx and dy, which are the deviations of the parame- +ters away from the cusp. b) Scaling laws near a cusp: +The predicted scaling laws are demonstrated by project- +ing the measurements and fit onto log-log plots. Near +the cusp the system response to a1 acts as a giant lever, +∂δθ/∂a1 ∼ 50. +form parameters a1 and a2 as rotations of the dis- +placement of the parameters x and y from the cusp. +We then fit the predicted scaling form ∆θ ∝ √a2 +and a1 ∝ a3/2 +2 +near a cusp to determine the cusp’s +position and the rotation of the normal form param- +eters. The fitted model then predicts that ∆θ ∝ a1/3 +1 +(see SI). Because the scaling exponents for ∆θ are +fractions of unity, small variations of the parameters +along a1 and a2 lead to large variations of the sys- +tem’s state. +For example, in our experiments the +range of actuation for panel 1’s position is approx- +imately 1 cm and the range of angles accessible to +panel 2 is 180◦ or π radians. Near the bifurcation +a translation along a1 of 0.1% of its range (∼ 10µ +m) leads to a snap that changes θ by ∼ 5% of it +range (∼ 0.1 rad) providing a lever advantage of +∼50 (Fig. 2b ). +The complexity of the actions achieved by such +magneto elastic mechanisms is dictated by the range +and number of stable states that the system can ac- +cess. This complexity can be achieved by designing +the magneto elastic potentials such that the system +operates near bifurcations between multiple states. +For example, working near a hypothetical symmetric +butterfly bifurcation associated with the potential +V = θ6 + a4θ4 + a2θ2 + a1θ should enable smooth +and abrupt transitions between three stable states +in any order depending on the chosen trajectory for +the control parameters. In Fig. 3a we show a cut +through parameter space of the saddle node surfaces +near this butterfly bifurcation. If the system starts +in the S (Small) state and moves along the depicted +trajectory (black arrows), it would first snap to the +M (Medium) state when the system crosses the pur- +ple saddle node bifurcation and then the L (Large) +state when it crosses the green curve. For the return +path, however, the system would transition from +the L minimum directly to the S minimum when +it crosses the yellow saddle node bifurcation curve. +Moreover, by working near the bifurcation, the lever +mechanism should allow for transitioning between +these distinct states within an accessible range of +experimental control parameters. +SEARCH ALGORITHM FOR +BIFURCATIONS OF MULTIPLE +EQUILIBRIA +To design parametric configurations correspond- +ing to bifurcations of multiple equilibria we develop +a search gradient continuation algorithm that takes +advantage of their nested structure. Bifurcations as- +sociated with k equilibria (minima plus maxima) are +degenerate singularities where the first k derivatives +of the potential vanish. Thus they can be found iter- +atively by searching for singularities of the potential +with increasing order, solving for one constraint at a +time. We find that this method is especially efficient +in finding experimentally realizable parametric con- +figurations corresponding to bifurcations of multiple +equilibria. Moreover, this method naturally extends +to searching for bifurcations with desired properties +by introducing further constraints, for example opti- +mizing the robustness of the bifurcation’s associated +states to external noise. +For ease of illustration we describe how to use this +approach to find the symmetrized butterfly bifurca- +tion described above with parameters a1, a2, a4 and +variable θ. For a random combination of parame- +ters we find an equilibrium angle where dV/dθ = 0. +Generically, this point is part of a smooth man- +ifold over which this constraint holds. +We then +vary a1, a2, a4 and θ within this manifold to min- +imize the next constraint |d2V/dθ2|. +The trajec- +tory follows the gradient of the second constraint as +closely as possible while maintaining the first con- +straint dV/dθ = 0 until we reach a point on a sad- + +a) +b) +0.09 h + [rad] +System State +0.05 +0.06 +0.04 +0 +0.05 +0.1 +0.18 +-0.05 +a2 [cm] - Normal Form Parameter +] - System State +0.09 +0 +- 0.02 +dx [cm] +0.05. +0.06 +ControlParameter +73 +0.1 +80 [rad] +0.04 +0.15 +1×10-4 +3×10-4 +0.001 +dy [cm] - Control Parameter +a,[cm] - Normal Form Parameter4 +dle node surface, which is a manifold where both +the first and second constraints hold.1 Minimizing +the third derivative within the saddle node manifold +maintains the first two constraints and allows for +finding a cusp bifurcation associated with two sta- +ble equilibria. Successive iterations allow for identi- +fying bifurcations between an increasing number of +equilibria and eventually the butterfly bifurcation. +Our gradient continuation algorithm adapts stan- +dard algorithms from the dynamical systems liter- +ature [1, 2, 15] and retools them to locally follow +the gradient of the unsatisfied constraint (see SI for +further details). We depict the resulting search path +in Fig. 3b, which highlights the fact that, indepen- +dent of the number of parameters, the search algo- +rithm follows a 1D trajectory, which is organized +by the nested structure of the intermediate bifurca- +tions. These properties enable the algorithm to find +realizable bifurcations for systems with hundreds of +parameters. +THREE STATES AND THE BUTTERFLY +BIFURCATION +As a proof of concept for our approach we demon- +strate the construction and operation of a magneto +elastic machine with 3 stable states operating near +a bifurcation of multiple equilibria. The first step in +designing such a machine is to implement our gra- +dient continuation algorithm to design a magneto +elastic potential with a butterfly bifurcation between +three stable states. To realize a system operating +near such a bifurcation where only three control pa- +rameters (x,y,z positions of panel 1) are actively var- +ied, we allowed the algorithm to also determine the +x,y positions of two of the nine magnets on panel +1.2 With these seven parameters, the algorithm was +able to identify multiple butterfly bifurcations that +satisfied these criteria (See SI for details). +Having found an appropriate butterfly bifurca- +tion, we use standard dynamical systems continua- +tion algorithms[1, 17] to compute and plot the saddle +node surfaces in the control parameter space (x,y,z) +near the bifurcation (Fig. 4). We find multiple dis- +tinct surfaces where the color denotes the angle θ +1 A local minimum of |∂2 +θV | with respect to variation of all +parameters, that lies on the fixed point manifold will throw +the algorithm off, but this is a co-dimension m point for a +system with m parameters, and so highly unlikely. +2 Typically, a butterfly bifurcation requires four control pa- +rameters to navigate between all of the stable states. Here, +we have identified a nonlinear mapping of the three active +control parameters (x,y,z) onto the four dimensional space, +which enables transitions between arbitrary minima. +FIG. 3. +Bifurcations of multiple equilibria. +a) +Work cycle near a butterfly: A system operating near a +hypothetical symmetrized butterfly bifurcation can cycle +between three states. The bifurcation is associated with +a potential V = θ6+a4θ4+a2θ2+a1θ and three accessible +states denoted by large (L), medium (M) and small (S). +As the system follows the trajectory denoted by black ar- +rows with colored background marking its state θ, it cy- +cles between the three states snapping from S to M to L +and back to S by changing a2 and a1 while a4 = 0.1. The +snaps occur at saddle node bifurcations (colored curves) +whose color signifies the state θ of the minima that is an- +nihilated at each boundary. b) Gradient Continuation +algorithm: The search algorithm finds bifurcations of +multiple equilibria by following a one dimensional curve. +Starting from a bifurcation of k equilibria the algorithm +searches for a bifurcation of k+1 equilibria by following a +curve in the augmented parameter space, tangent to the +gradient of |V k+1| in the kth bifurcation manifold. We +draw a search for a butterfly bifurcation in its symmet- +ric normal form potential. +The entire volume denotes +the equilibrium manifold. Starting from a fixed point, +the algorithm finds a saddle node bifurcation (along the +white curve), Parameters are then varied on the saddle +node surface (yellow), and cusp surface (thin lines) to re- +spectively find a cusp bifurcation (along the gray curve) +and a swallow tail bifurcation (along the black curve) +near a butterfly bifurcation (black point). +at which the saddle node bifurcation occurs3. In- +structed by these surfaces, we design a cyclic path +3 There is further local data in the potential at a saddle node + +D[a.u.] +a1 +1.0 +L +s +0.5 +SL +SM +M +0 +M +SML +12 +SL +SL +-0.5 +L +-1.0 +Butterfly + Saddle node +Cusp +Equilibrium +a1 +a4 +a25 +through the parameter space such that the system +snaps between the large, medium, and small min- +ima. The path color at each point denotes the sys- +tem state, θ. +As with the cusp and symmetrized +butterfly bifurcations depictions in Figs. 1d and 3a, +transitions occur at intersections of the path and +saddle node surfaces where their colors match. We +note that for the generic butterfly bifurcation, the +surface structure can be quite complicated as shown +by the two projections in Fig. 4a,b. +In contrast +to the symmetrized butterfly bifurcation structure +(Fig. 2a), this complicated structure necessitate us- +ing all three control parameters x, y, and z, to design +a pathway that cycles between the three states. Im- +portantly, despite the surface complexity the design +is robust. Specifically, since the trajectory crosses +surfaces, slight deviations in the control parameters +should still lead to similar snaps, snap sequences, +and ultimately the resulting complex actions of the +entire magneto elastic machine. +Using the design parameters determined by our +search algorithm, we built a magneto elastic machine +similar to that depicted in Fig. 1a, but with a dif- +ferent magnetic dipole pattern and with two of the +magnets in panel 1 displaced in the panel plane (See +SI). By following the theoretically predicted path, we +found three snap through transitions from small to +large, large to medium, and medium to small (Fig. 4c +and Movie S1). Two of the transitions occurred at +the predicted locations, while the large to medium +transition was displaced by 0.4 cm from its predicted +location. In addition, we found excellent fidelity be- +tween the predicted and measured angles θ for the +equilibrium states. Using the same magneto elastic +machine, we also designed and demonstrated cycli- +cal paths with two transitions (See Fig.S3 and Movie +S3). Finally, when the system was taken apart and +reassembled, we were able to reliably reproduce the +transitions associated with the designed trajectories. +DISCUSSION +The +experimental +validation +of +this +design +paradigm with a butterfly bifurcation of 5 equilib- +ria strongly supports the conjecture that this frame- +work could be extended to design systems perform- +ing increasingly sophisticated functions by operating +surface that can instruct the design of a trajectory. +For +example the sign of the third derivative of the potential +signals whether the state’s angle will increase or decrease as +it bifurcates. Moreover, the merging of saddle node surfaces +can also be delineated by plotting the cusp bifurcations. +Here, we do not include this additional information for ease +of viewing +near bifurcations with a growing number of equilib- +ria. Potential energies with these increasingly rare +bifurcations can be found efficiently, because the gra- +dient continuation algorithm follows a one dimen- +sional search path. Moreover, the associated lever +mechanisms provide a design feature where the op- +eration of the machine will likely be confined to a +small parameter volume, enabling the execution of +these actions by realizable machines. +Microscopic magneto-elastic machines could prove +to be a useful instance of design instructed by bifur- +cations of multiple equilibria: An important emerg- +ing strategy for manufacturing microscopic and soft +machines is fabricating them using two dimensional +lithographic and printing techniques [18–22]. Such +fabrication techniques, however, restrict the imple- +mentation of compound mechanisms composed of +springs, cogs, screws etc. that are used to achieve +complex actions in traditional macroscale machines. +These lever mechanisms could be replaced with mag- +neto elastic mechanisms with lever advantages in- +duced by bifurcations. Magnetic interactions are es- +pecially well suited for this purpose since they are +long ranged and not easily screened. This long range +allows for global changes to the conformation in re- +sponse to local actuation of system components. +Importantly, since bifurcations of multiple equi- +libria are notoriously sensitive to variations of pa- +rameters, there is a concern that a machine oper- +ating near such bifurcations will be very sensitive +to environmental noise, such as thermal vibrations, +as well as to fabrication precision. Indeed, close to +a bifurcation the sensitivity of the system to varia- +tions of certain combinations of the system param- +eters grows exponentially as the number of asso- +ciated equilibria increases. +Mathematically this is +captured by mapping the potential to a canonical +normal form via a change of coordinates [4, 5, Sec. +36.6] (see SI for derivation). Practically, however, +this increased sensitivity is often blunted outside of +the infinitesimal environment of the bifurcation. At +a finite distance from the bifurcation the mapping +to the normal form or its linearization will often +cease to be valid because of other singularities of +the potential or the nonlinear fall off in the poten- +tial. This non-linearity is especially pronounced in +keplerian potentials such as that of magnetic inter- +actions. Critically, the saddle node manifolds coa- +lescing at the bifurcation are generically preserved +outside this radius of convergence as they are topo- +logically protected and can only annihilate at a cusp +or a bifurcation of more equilibria. Thus, operating +a machine near a bifurcation of multiple equilibria, +but at a finite distance from it, allows the design +of trajectories that take advantage of the multiple +saddle node transitions associated with it, and their + +6 +FIG. 4. +3-state Cycle Near Butterfly Bifurcation Point (a.) Theory The saddle node surfaces of a magneto- +elastic system with three active control parameters, x,y and z are plotted, their color denotes the angle θ at which +the snap occurs. The system’s magnetic pattern is designed using the gradient continuation algorithm such that it +operates near a butterfly bifurcation where multiple saddle node surfaces coalesce, enabling multiple snap-through +transitions at the surfaces. A trajectory (colored tube with white arrows) is chosen such that the system snaps in +cycles between three states Large (L), Medium (M) and Small (S) angles. The system’s predicted state is denoted by +the tube’s color. At intersections of the trajectory with a surface where their colors match the system is predicted +to snap to a new state. (b.) Experimental demonstration: The colored dots mark the experimental value of the +system’s state as it follows the designed trajectory. We observe three distinct transitions as predicted. +lever advantages, while avoiding the local exponen- +tial sensitivity. +Similarly, the sensitivity of a system designed near +a bifurcation of multiple equilibria to external noise +grows exponentially with the number of associated +states. +This growth in sensitivity arises from the +decrease in the potential barriers between adjacent +states. For example in a potential with k equilibria +where all the potential barriers are of equal height, +and the minima are equally deep (which is propor- +tional to a Chebyshev polynomial of the first kind +of order k + 1) the barrier heights decay as 2−k. +This sensitivity seems prohibitive as we imagine im- +plementing this design principle to create systems +cycling between multiple states. +Despite this in- +creased sensitivity, however, we estimate that the +strength of magnetic interactions assures that mag- +neto elastic systems are robust to thermal noise at +the microscale. Specifically, in magneto elastic sys- +tems the potential is proportional to the dipole- +dipole interaction strength µ0µ2L6/R3 of two mag- +nets with magnetic dipole densities µ panel size L +and typical distance between dipoles R. +Thermal +noise is then comparable to the magneto elastic po- +tential barrier height when the number of equilibria +k ∼ log2 +� +µ0µ2L3/(R/L)3 +kbT +� +. The magnetic dipole den- +sities µ are of order 106A/m at the microscale [24]. +The smallest two state door (equivalent to the de- +vice in Fig. 1a) that is robust to thermal noise is +then ∼ .1µm in size, approaching the size limit of +30nm for fabricating stable magnetic domains [25]. +Conversely, a 100 µm machine will become sensitive +to thermal noise near a bifurcation of ∼ 40 equilib- +ria, that is 20 distinct states compressed in a span +of 100 degrees. +Finally, the designs that we have implemented in +this paper assume operation in a low Reynolds num- +ber regime where inertia can be neglected. In the +macroscale implementation this was achieved by at- +taching a damping panel immersed in a solution of +glycerol. We expect our designs to work even bet- +ter as these machines are implemented at smaller +scales since the importance of inertia drops quadrat- +ically with the system size. Operation of a 100 µm +scale machine in water, for example, would enable +the system to be in the low Re regime while operat- +ing at rates that are 1000 fold faster than those in +the macroscale experiment. +CONCLUSIONS +We have shown that the operation of multi- +parameter machines near bifurcations of multiple +equilibria allows them to efficiently and robustly cy- +cle between multiple conformation. +Moreover, we +developed a generic step-by-step framework to de- +sign and implement systems that operate near such +bifurcations. +Specifically, we: 1) created a search +algorithm that optimizes over fabrication and other +system parameters to enable operation near such bi- +furcations; 2) mapped the manifold of saddle node +bifurcations to determine a useful trajectory for the +machine operation and; 3) demonstrated the ro- +bustness of this approach by constructing and op- +erating a magneto elastic machine that can cycle +and robustly snap between multiple distinct con- +figurations in response to small variations of a few +control parameters. +Importantly, this design ap- +proach and step-by-step implementation is generic +and could be applied to many complex systems with + +z [cm] - Control +Parameter +-0.2 +L +-0.4 - +M +-0.4 +-0.2 +-0.6 +-0.4 - +-0.8 +2 +-0.8 +-0.6 - +-0.8 - +- +[rad] +2.0- +0 +1 +1.5 +MO +-1.0 +-0.5 +y +-0.5 +-1.0 +-0.5 +y [cm] - Control Parameter +-3 +-1.0 +-2 +X +-2.0 +1.5 +X7 +multiple interacting components ranging from arti- +ficial proteins, where the interactions are electro- +static, to neural networks (both biological and syn- +thetic) where the interactions are governed by net- +work topology. +Cycling between transitions in mechanical imple- +mentations of such systems can generate work or lo- +comotion. If the system is over-damped, as is often +the case in microscopic systems operating in fluids, +work and locomotion can be achieved by coupling +the system to mechanisms that break time reversal +symmetry. +These mechanisms include ratchets or +cilia-like flexible rods [26]. In the case of the mag- +neto elastic hinge described here, time reversal sym- +metry is broken by combining the smooth transla- +tions of the control panel with abrupt transitions in +the state of the dynamic panel. In systems where +the control variable is not a mechanical parameter +time reversal symmetry can be broken by using the +angle as an effective dynamical variable governing a +system with multiple degrees of freedom such as is +often used to parameterize robot locomotion. +More broadly, it is interesting to consider the ex- +tension of our work to systems with a larger number +of dynamical variables (θ1, θ2, . . .). Here, we envision +that by working near bifurcations of multiple vari- +ables (e.g. elliptic umbilic bifurcations) one could +organize snaps between states separated along mul- +tiple variables. Such designs require extending our +search algorithm to multiple variables while main- +taining its low dimensional search path. +Alterna- +tively, one could design mechanisms based on multi- +ple local bifurcations that are weakly coupled across +the machine. +For example, one bifurcation of n +states could be used to control θ1 while a second +bifurcation of m states organizes the dynamics of +the variable θ2. By weakly coupling the panels, and +hence the variables θ1 and θ2, the machine can trans- +form between n × m states in a coordinated fashion. +Indeed this approach is already being implemented +for bifurcations with two states [27–29]. Increasing +the number of states associated with each variable +would enable a similarly rich landscape for machine +design with far fewer mechanical elements or panels. +Finally, it is interesting to consider whether this +design paradigm can be used to understand natural +systems beyond the Venus fly trap and humming- +bird beak. For example, molecular machines such +as proteins often transition between different config- +urations. It is interesting to consider whether such +transitions can be thought of as snaps organized by +bifurcations of many states [3, 6]. As another ex- +ample, bifurcation theory has been implemented to +identify and explain epigenetic dynamics of cell dif- +ferentiation [30–32]. These approaches often focus +on consecutive 2-state bifurcations. The results pre- +sented here however, suggest that a comparably sim- +ple evolutionary pathway could entail development +of multi-state bifurcations. Such a structures could +allow the addition of new states while maintaining +the existing configuration through an evolutionary +process, similar to the path taken by the gradient +continuation algorithm. +I. +MATERIALS AND METHODS: +Construction of experimental hinge system +Panel P1 is constrained to a set of linear trans- +lation stages that allow its position to be adjusted +manually to any x or y coordinates near the cusp. +For experiments near the butterfly bifurcation point, +an extra translation stage is attached to Panel P1 to +allow adjustment of its z coordinate. Panel P2 is +attached to an OVA friction-less thrust air bushing +with a 13mm shaft. The air bushing is attached to +a fixed metal housing to limit Panel P2 to its ro- +tational degree of freedom. A T-shaped paddle is +attached to the bottom of the shaft and immersed +in glycerol to introduce damping to the system. Ad- +ditionally, we position a Basler Ace aca3088-57um +area scan camera above the center of the air bushing +to take top-view images of the air bushing which are +then used to calculate the angle response of Panel +P2 to high precision. +A. +Panels for experiments near cusp point +Each magnetic panel is constructed using two 1/16 +in thick laser-cut acrylic pieces and nine grade N48 +neodymium magnets of diameter 1/16 in and height +1/8 in. +Magnets are arranged in a 3-by-3 square +lattice with lattice constant of 2.5 cm. +B. +Panels for experiments near butterfly point +Each magnetic panel is constructed using two 1/16 +in thick laser-cut acrylic pieces and nine grade N48 +neodymium magnets of diameter 1/8 in and height +1/8 in. Magnets are arranged in a 3-by-3 square lat- +tice with lattice constant of 2.5 cm. In panel P1 the +x, y position of two of the magnets is displaced ac- +cording to the design determined by the search algo- +rithm. The two magnets whose position is offset are +the magnet in the bottom row on the right column, +whose offsets are dx1 = 1.418cm, dy1 = −0.273cm, +and the magnet in the middle row on the left column, +with offsets dx2 = −0.826cm, dy2 = −0.986cm. A + +8 +technical drawing illustrating the panels used for the +butterfly experiment is included in the SI. +FIG. 5. Experimental Setup Sketch of the experimen- +tal system used for demonstration of cycles and angle +measurements. Panel P1 is attached to a set of transla- +tion stages which allows us to implement the spatial con- +trol parameters in all experiments. Panel P2 is attached +to an air bushing that is fixed in space. An attachment +submerged in glycerol is added to the base of Panel P2 +to introduce damping to the system. +Angle measurements +A marker is attached to the top of the air bush- +ing, and a camera records the location of the marker +during the experiment. At each given time, the mea- +sured angle is the determined by three points: cur- +rent marker location, location of the center of rota- +tion, and marker location at θ = 0. We calibrate +the system by recording the location of the pixel at +θ = 0 and several other distinct angles. The pixel +location corresponding to the center of rotation is +obtained using a fitted circle through the calibra- +tion data points. +The resulting angle is then de- +duced from the three measured points. This data +collection process is conducted in MATLAB. +Acknowledgments We thank Michael Brenner, +Chrisy Xiyu Du, Yan Yang, Robert Distasio, and +John Guckenheimer for inspiring discussions. This +work was financially supported primarily by NSF +Grant DMREF-89228, NSF Grant EFRI-1935252, +NSF Grant CBET-2010118, Cornell Center for Ma- +terials Research DMR-1719875, and by Air Force +Office of Scientific Research Grant MURI: FA9550- +16-1-0031. I.G was also supported by the Cornell +Laboratory of Atomic and Solid State Physics. D.H +was supported by an NSF Graduate Research Fel- +lowship Grant No. DGE-2139899. +[1] O. Sigmund and K. Maute, Structural and Multidis- +ciplinary Optimization 48, 1031 (2013). +[2] C. P. Goodrich, A. J. Liu, +and S. R. Nagel, Phys. +Rev. Lett. 114, 225501 (2015). +[3] P.-S. Huang, S. E. Boyken, +and D. Baker, Nature +537, 320 (2016). +[4] J. W. Rocks, N. Pashine, I. Bischofberger, C. P. +Goodrich, A. J. Liu, and S. R. Nagel, Proceedings of +the National Academy of Sciences 114, 2520 (2017). +[5] V. F. Hagh, S. R. Nagel, A. J. Liu, M. L. Man- +ning, and E. I. Corwin, Proceedings of the National +Academy of Sciences 119, e2117622119 (2022). +[6] J.-P. Eckmann, J. Rougemont, and T. Tlusty, Rev. +Mod. Phys. 91, 031001 (2019). +[7] R. K. Pathria, Statistical mechanics (Elsevier, 2016). +[8] Y. Forterre, J. M. Skotheim, J. Dumais, and L. Ma- +hadevan, Nature 433, 421 (2005). +[8] M. Smith, G. Yanega, and A. Ruina, Journal of the- +oretical biology 282, 41 (2011). +[7] V. +I. +Arnol’d, +“Bifurcations +of +equilibria,” +in +Dynamical Systems V, +edited +by +V. +I. +Arnol’d +(Springer +Berlin +Heidelberg, +Berlin, +Heidelberg, +1994) pp. 10–38. +[4] M. V. Berry, Journal of Physics A: Mathematical and +General 10, 2061 (1977). +[12] J. T. Overvelde, T. Kloek, J. J. D’haen, +and +K. Bertoldi, Proceedings of the National Academy +of Sciences 112, 10863 (2015). +[13] Y. Chi, Y. Hong, Y. Zhao, Y. Li, and J. Yin, Science +Advances 8, eadd3788 (2022). +[1] Y. A. Kuznetsov, “Topological equivalence, bifur- +cations, and structural stability of dynamical sys- +tems,” +in +Elements of Applied Bifurcation Theory +(Springer New York, New York, NY, 2004). +[15] R. H. Clewley, W. E. Sherwood, M. D. LaMar, and +J. M. Guckenheimer, “Pydstool, a software environ- +ment for dynamical systems modeling,” (2007). +[2] J. +Guckenheimer +and +P. +Holmes, +Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields +(Springer New York, New York, NY, 1983). +[17] J. Guckenheimer and Y. A. Kuznetsov, Scholarpedia +2, 1852 (2007). +[18] J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, +and R. C. Hayward, Science 335, 1201 (2012). +[19] T. H. Ware, M. E. McConney, J. J. Wie, V. P. +Tondiglia, and T. J. White, Science 347, 982 (2015). +[20] J.-H. Na, A. A. Evans, J. Bae, M. C. Chiappelli, +C. D. Santangelo, R. J. Lang, T. C. Hull, and R. C. + +Camera +Marker +Adjustment +Screws +Air +Bushing +Magnetic +Panels +Damping +Panel +Translation +Stages +Glycerol1 +Hayward, Advanced Materials 27, 79 (2015). +[21] A. Sydney Gladman, E. A. Matsumoto, R. G. +Nuzzo, L. Mahadevan, and J. A. Lewis, Nature Ma- +terials 15, 413 EP (2016). +[22] M. Z. Miskin, A. J. Cortese, K. Dorsey, E. P. Espos- +ito, M. F. Reynolds, Q. Liu, M. Cao, D. A. Muller, +P. L. McEuen, and I. Cohen, Nature 584, 557 (2020). +[5] DLMF, “NIST Digital Library of Mathematical Func- +tions,” http://dlmf.nist.gov/, Release 1.1.4 of 2022- +01-15 (2022), f. W. J. Olver, A. B. Olde Daalhuis, +D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. +Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and +M. A. McClain, eds. +[24] J. Cui, T.-Y. Huang, Z. Luo, P. Testa, H. Gu, X.-Z. +Chen, B. J. Nelson, +and L. J. Heyderman, Nature +575, 164 (2019). +[25] R. Niu, C. X. Du, E. Esposito, J. Ng, M. P. Bren- +ner, P. L. McEuen, and I. Cohen, Proceedings of the +National Academy of Sciences 116, 24402 (2019). +[26] E. Lauga, Soft Matter 7, 3060 (2011). +[27] C. Coulais, A. Sabbadini, F. Vink, +and M. van +Hecke, Nature 561, 512 (2018). +[28] H. Bense and M. van Hecke, Proceedings of the Na- +tional Academy of Sciences 118, e2111436118 (2021). +[29] D. Shohat, D. Hexner, +and Y. Lahini, Proceed- +ings of the National Academy of Sciences 119, +e2200028119 (2022). +[30] D. A. Rand, A. Raju, M. S´aez, F. Corson, +and +E. D. Siggia, Proceedings of the National Academy +of Sciences 118 (2021), 10.1073/pnas.2109729118. +[31] E. Marco, R. L. Karp, G. Guo, P. Robson, A. H. +Hart, L. Trippa, and G.-C. Yuan, Proceedings of the +National Academy of Sciences 111, E5643 (2014). +[32] M. Setty, M. D. Tadmor, S. Reich-Zeliger, O. An- +gel, T. M. Salame, P. Kathail, K. Choi, S. Bendall, +N. Friedman, +and D. Pe’er, Nature biotechnology +34, 637 (2016). +[3] J. +W. +Bruce +and +P. +J. +Giblin, +Curves and Singularities: A Geometrical Introduction to Singularity Theory, +2nd ed. (Cambridge University Press, 1992). +[6] W. +H. +Press, +S. +A. +Teukolsky, +W. +T. +Vetterling, +and +B. +P. +Flannery, +Numerical recipes 3rd edition: The art of scientific computing +(Cambridge university press, 2007). +Supplemental material - Bifurcation instructed design of multistate machines +II. +CALCULATION OF THE POTENTIAL ENERGY LANDSCAPE +To model the dynamics of our experimental hinge system, we compute the potential energy landscape +arising from the dipole-dipole interactions between the magnets embedded in each panel. The magnets used +in our experiments are well approximated by perfect dipoles. Therefore, the potential energy for the system +is a sum of dipole-dipole interaction energies +V = − +� +i∈P 1 +� +j∈P 2 +µ0m2 +4π|rij|3 [3( ˆmi · ˆrij)( ˆmj · ˆrij) − ˆmi · ˆmj] , +(S1) +where µ0 is the vacuum permeability, m is the dipole strength (identical for all magnets), mi is the orientation +of dipole i, and rij is the distance between magnets i and j. Note that the interaction energy for dipoles in +the same panel is constant, so we can restrict the sum to pairs of dipoles in different panels. +To derive the θ dependence of the energy landscape, we must write the dipole orientations and positions +in terms of our control parameters x, y, and z and the dynamical variable θ. The dipoles on P1 are always +oriented in the z-direction, while the dipoles on the rotating panel P2 have orientation that changes with θ: +ˆmi = δiˆz +ˆmj = δj{sin θ , 0, − cos θ}, +(S2) +where δi = ±1 is the orientation of magnet i with respect to panel P1 (similar for δj). The positions of +individual dipoles are given by +ri = {xi, yi, 0} + {x, y, z} +rj = Rθ{xj, yj, 0}, +(S3) +leading to interdipole distance rij = ri − rj. Here xi and yi are the x − y positions of dipole i in panel +P1 (similar for xj, yj), x, y, and z are the coordinates of the control panel, and Rθ is the rotation matrix +corresponding to a rotation by angle θ about the y-axis. +Together Eqs. (S1-S3) give the potential energy in terms of the hinge angle θ, our control parameters x, +y, and z, and design parameters xi, yi, δi, xj, yj, and δj. Since the hinge experiment is heavily damped, θ +follows gradient dynamics ˙θ = ∂θV and the stable equilibrium angles are given by the local minima of the +potential landscape V . + +2 +III. +CUSP EXPERIMENTS +In the cusp experiments, Panel P1’s x and y positions are measured as displacements from their value +when the panels are 180◦ open, and are aligned along z and y such that the panel’s backs and bottoms +are parallel. The magnets closest to the hinge axis are removed from it by 0.75cm on both panels. The +back of the cylindrical magnets are aligned with the panel’s backs. The damping paddle used in the cusp +experiments have dimensions 1.5cm by 3.0cm. +A. +Experimental estimation of the cusp point +We estimate the location of the cusp point as the bifurcation of the two measured saddle node curves. We +map the saddle node curve by toggling x (y), for a given value of y (or x), so that the system snaps back +and forth, and record the values of the control parameters x and y, and θ immediately after each transition +(Fig. S2). Moreover, to verify the position of the cusp we record the angle θ of the system before and after +snapping, and observe that the change in angle upon snapping disappears at the cusp point. +Finally, we inspect all data collected along the bifurcation curves as shown in Fig. 2a in the main text, +and use a spline fit for the saddle-node bifurcations from L to S and the saddle-node bifurcations from S to +L. We define the cusp point as the intersection of the two splines. +B. +Single snap experiment +The mangeto elastic potential calculated for the experiment predicts a cusp at a slightly removed para- +metric position. The discrepency between the experimentally measured and theoretically predicted cusps +could be due to fabrication errors. To effectively compare theory and experiment in this section only, we +parameterize the system as a function of its displacement from the cusp for both theory and experiment +using using dx and dy. We then follow the predicted path by controlling panel P1’s x and y positions using +the translation stages. We begin the experiment by letting the system maintain its equilibrium at the initial +dx, dy position. We then change the position of Panel P1 at a slow and steady rate. Angle measurements +are recorded at various locations in the loop as shown in Fig. S1(a) (see also Fig. 1 in the main text), and +the change in position is paused once the transition happens at point vi in order to let the system settle +down and obtain an accurate angle measurement. We confirm that the system returns to its original state +once we return to the starting dx, dy position. +C. +Scaling experiment +To fit the scaling relations, we use the the same section of the data set used for determining the location +of the experimental cusp point. We neglect data in the nonlinear region of the saddle-node curves far away +from the cusp point, as well as data too close to the cusp point, where the errors due to measurement noise +are comparable to the distance to the cusp. The data points used for the scaling relations are highlighted in +Fig. S2(a). The state parameter values used in the scaling analysis correspond to the angle measurements +obtained at the points right after the snap through transitions. +IV. +ONE DIMENSIONAL BIFURCATIONS OF EQUILIBRIA: NORMAL FORM AND +SCALING +The ability to design magneto elastic machines and control parameter pathways that robustly lead to +complex actions corroborates the validity of a new design paradigm: operation near bifurcations of multiple +equilibria. The demonstrated trajectories take advantage of the structure of available dynamics near bifur- +cations of equilibira. These bifurcations are the loci of multiple distinct coalescing saddle node manifolds, +as illustrated for the idealized symmetric butterfly bifurcation (Fig 3b in the main text). By weaving a +trajectory that crosses and avoids chosen saddle node bifurcations we design a pathway that leads to com- +plex actions. The system then cycles through multiple states via small variations of the control parameters, + +3 +taking advantage of the multiple accessible lever mechanisms associated with these saddle node surfaces. +The sensitivity of the realized design increases as the number of equilibria associated with the bifurcation +grows. +Butterfly, cusp and saddle node bifurcations are the first in a series of bifurcations of equilibria in +one-dimensional gradient systems. +More generally, in systems with a single degree of freedom x, bifur- +cations of k equilibria are points in parameter space where the first k derivatives of the potential vanish, +{dV/dx, d2V/dx2, . . . , dkV/dxk} = ⃗0. That is, they are equilibrium points satisfying k − 1 equations beyond +that of mechanical equilibrium dV/dx = 0 and therefore lie on a manifold of co-dimension k − 1 within the +equilibrium manifold. The sensitivity of a bifurcation of k equilibria to variation in its parameters can be +estimated through the topological equivalence of the dynamics near it to those in a normal form potential +�V = ϕk+1 + +k−1 +� +i=1 +aiϕi, +(S4) +where the variable ϕ(θ) and normal form parameters ai(p) are coordinate transformations of the angle θ and +parameters p respectively. The normal form describes the unfolding of the Taylor expansion of the potential +at the bifurcation V ∼ xk+1 by variations of the parameters [S1–S3]. The unfolded normal form potential +demonstrates that the parameteric environment of a codimension k bifurcation includes domains with 1 to +⌈(k + 1)/2⌉ minima delineated by k saddle-node manifolds which coalesce at the bifurcation. Moreover, it +implies scaling relations between the variation in the system’s state upon a snap through transition induced +by crossing a saddle node bifurcation associated with a codimension k − 1 bifurcation and the variation of a +normal form parameter that causes the snap: +δϕ ∝ a1/(k−m+1) +m +, +m < k. +(S5) +Heuristically the scaling can be derived from the normal form by noting that near the bifurcation the kth +derivative of the potential must still vanish, and so δϕ2 ∼ ak. Similarly the next k − 1 derivatives must +progressively vanish, setting the scaling of am. An explicit proof is given in [S4] and summarized in [S5, +Sec. 36.6]. These scaling relations carry over to the original variable and parameters near the bifurcation +where the maps ϕ(x) and am(p) are approximately linear. Indeed, the scaling relations we experimentally +observed near a the cusp bifurcations are those of the systems state with the normal form parameters near +a bifurcation of three equilibria, i.e., a cusp [S4, S5]. +These scaling relations imply that the sensitivity of the system to variations of parameters grows expo- +nentially with the number of associated equilibria. A system designed near a bifurcation of k equilibria can +toggle its state between order unity separated states, δϕ ∼ 1/2, in response to variations of the linear normal +form coefficient a1 of order 1/2k. That is, both the potential lever advantage and the sensitivity to noise in +the parameters grow as the number of associated equilibria grows. However, the parametric domain in which +the mapping to the normal form is linear is often very small. The nonlinearity of the mapping often blunts +the sensitivity of the response. Thus, the increased lever advantage near bifurcations of multiple equilibria +is often not experimentally accessible. Conversely the system is not so sensitive to parametric noise when +operated at a small parametric distance from the bifurcation about which it is designed, as demonstrated +by the reproducibility of the experimental three state system, which was easily constructed twice. +V. +CONTINUATION ALGORITHMS +To find bifurcations of multiple equilibria in the dynamics of our model system and to map out the saddle +node structure in the vicinity of the high-order point, we use a series of continuation algorithms. In one +dimension, a codimension k bifurcation point is defined by the vanishing of the first k derivatives of the +potential: ∂j +θV (θ∗, {ξi}) = 0 for j = 1, 2, . . . , k. These constraints define a codimenion k manifold in the +space of dynamical variables and parameters (θ∗, {ξi}). +A. +Traditional continuation +Standard continuation algorithms compute bifurcation curves by varying a small number of parameters, +and then projecting onto the bifurcation manifold [S1]. For example, suppose we have found a co-dimension + +4 +k bifurcation. This requires the first k derivatives of the potential vanish, fixing θ∗ and k − 1 parame- +ters ξ1, ξ2, . . . , ξk−1. Varying an additional parameter ξk produces a line emanating from our initial point +(θ∗, {ξ}) = p. The continuation algorithm maps out this line by (i) taking a step along the tangent vec- +tor Tk(p) to the curve, which is the null-vector of the gradient of the first k derivatives of the potential +Tk(p) ≡ +� +⃗v ∈ Rk+1 | ∀j ∈ (1, 2, . . . , k), ⃗v · ∇θ,ξ1,ξ2,...,ξk∂j +θV = 0 +� +and (ii) correcting this step using a Newton- +Raphson algorithm4 to search perpendicular to the step for a point where the first k derivatives of the po- +tential vanish. This approach can be used to progressively search for higher order bifurcation points. For +example, a fixed-point can be continued until ∂2V (θ∗, {ξi})/∂θ2 vanishes, indicating a saddle node bifurca- +tion. Continuing the saddle-node can lead to a cusp bifurcation, which in turn might lead to a swallowtail +bifurcation. In this way, progressively adding parameters and performing continuations of one-dimensional +curves can lead toward high-codimension bifurcation points. Once we have found a high-order bifurcation +point, we use this algorithm to map out the saddle node surfaces nearby. The surfaces can in turn be used +to design cycles in control parameters that cause the system to perform desired snapping transitions. +The standard continuation approach, however, has limitations for microscopic machine design. In partic- +ular, it has limited utility for finding the high-order bifurcation points near which our machine will operate. +In our model system we have many free parameters, including the positions of each of the magnets embed- +ded in the panels. Varying a given experimental parameter does not guarantee we will find the next order +bifurcation point. Instead we want to vary many parameters simultaneously, which greatly improves the +likelihood that a higher-order bifurcation point is contained within the search space and allows for a more +efficient approach toward that point. We have developed a gradient continuation algorithm to carry out this +multi-parameter search. +B. +Design algorithm: Gradient continuation +The gradient continuation algorithm works as follows. Suppose we have N parameters ξi in our system, +plus the degree-of-freedom θ. +A point, p, where the first k derivatives of the potential vanish belongs +to a co-dimension k manifold in the full (N + 1)-dimensional augmented parameter space, composed of +the equilibrium state and control parameters, (θ∗, {ξi}). Starting from the point p, take a step along the +gradient of the k+1 derivative of the potential ∇θ,ξ1,ξ2,...,ξN ∂k+1 +θ +V , projected onto the tangent surface to the +manifold at p. The tangent surface is the null-space of the gradient of the first k derivatives of the potential5, +Tk,N(p) ≡ +� +⃗v ∈ RN+1 | ∀j ∈ (1, 2, . . . , k), ⃗v · ∇θ,ξ1,ξ2,...,ξN ∂j +θV = 0 +� +. This procedure finds the step within the +co-dimension k manifold that maximizes the change in ∂k+1 +θ +V , which we need to vanish in order to find the +next order bifurcation. After the step, the algorithm performs a corrective Newton-Raphson search [S6], +constrained to the hyperplane T ⊥ +k,N(p) perpendicular to the null-space, which returns to the codimension +k manifold on which the first k derivatives of the potential vanish. As in the standard continuation, this +approach is repeated to progressively find higher order bifurcation points. A visualization of the gradient +search algorithm, applied to the potential V = θ6 + a4θ4 + a2θ2 + a1θ, is shown in Fig. 3b in the main text. +VI. +BUTTERFLY EXPERIMENTS +A. +Butterfly panels +In the butterfly experiments, Panel P1’s x, y and z positions are measured as displacements from their +value when the panels are 180◦ open, the magnets closest to the hinge axis are removed from it by 2.5cm +on both panels, the panels are aligned vertically, and the back of the cylindrical magnets on Panel P1 are +aligned with the center of the magnets on Panel P2. This small change in magnet alignment (compared +4 Newton-Raphson(f, Ω, p) [S6] searches for the roots of the +functions f over the space Ω starting at the point p. +5 Notice that this algorithm uses all N parameters ξ1, . . . , ξN +to search for a codimension k bifurcation, while the stan- +dard continuation in the previous section only used k pa- +rameters ξ1, . . . , ξk. The null-space Tk,N(p) has dimension +(N − k + 1). + +5 +to the single snap experiment) is found to reduce the discrepancy between experiment and prediction. An +illustration for the panels is shown in Fig. S3. The damping paddle has dimensions 8.0cm by 2.5cm for the +butterfly experiments. The position of the magnets on panel P1 was changed such that the system operates +next to a butterfly bifurcation, as specified in the main text and in the following sections. +B. +Application of the continuation algorithm +To find an experimentally feasible path and magnetic pattern, we implement the continuation algorithm +by first finding a butterfly point in parameter space, then validating the resulting pattern against known +experimental constraints (e.g. we require physically realizable panel angles and magnet positions). Before +each search using the continuation algorithm, we first randomly generate orientations of the 18 magnetic +dipoles on the two panels. We also randomly select two magnets on Panel P1 to be displaced from their +lattice positions, by (dx1, dy1) and (dx2, dy2) respectively. The search algorithm is always initialized with +the values {θ, dx, dy, dz, dx1, dy1, dx2, dy2} = {1.1rad, 0.5cm, −0.25cm, 0, 0, 0, 0, 0}. +Next, +we +let +the +algorithm +try +to +find +a +butterfly +bifurcation +point. +If +no +but- +terfly +point +can +be +found, +we +repeat +the +initialization +process +and +repeat +the +search +with +a +new +randomly +generated +magnetic +pattern. +The +butterfly +point +corresponding +to +the +pattern +we +used +in +our +experiments +is +located +at +{θ, dx, dy, dz, dx1, dy1, dx2, dy2} += +{2.131rad, −0.355cm, −0.304cm, −0.824cm, 0.918cm, −0.698cm, −0.326cm, −0.486cm}. +If the butterfly point is found, we investigate the potential plots at various points in parameter space near +the bifurcation point. Specifically, we offset one or more of the 6 search parameters by ±0.2 and find the +number of minima that exist between 0 to 180 degrees at each of these locations. The potential plots at +locations with three minima are then inspected to decide the experimental feasibility of the pattern. Ideally, +all three minima are at least 5 degrees apart, and the smallest minimum is at least 5 degrees (for z = 0) +to prevent the panels from touching during experiment. We also look for patterns with large triple-minima +regions, for example if three visibly deep minima can be observed when at least one parameter is changed +by ±0.5cm. +After an experimentally feasible pattern is discovered, we manipulate the three experimentally controllable +parameters (x,y,z) continuously around the point with deepest triple minima and observe changes in our +model of the potential landscape. The design of the control path is guided by visualization of the saddle-node +surfaces mapped out using the standard continuation algorithm detailed above. Several paths are tested in +the model to obtain the desired sequence of bifurcations and to optimize various properties of the transitions +(e.g. the magnitude of the snaps and depth of the minima). +C. +Experiments for trajectories near a butterfly point +We set up the experiment by laser-cutting the holes for magnets at the exact locations corresponding to the +found dx1, dy1, dx2, dy2 values, which were 1.418cm, −0.273cm, −0.826cm, and −0.986cm respectively. We +also add a translation stage to control Panel P1’s z position. We begin the experiment by following the exact +coordinates provided by the theoretically designed path. In the event that a predicted transition cannot be +seen using the predicted path coordinates (due to fabrication or calibration errors shifting the surface), we +translate the system further from the original predicted path to determine a more robust path that may +account for some shifting in coordinates due to experimental errors (for example see Fig. 4b in the main +text). Once an experimental path is shown to demonstrate the predicted behavior with the desired number +of state transitions, we record the locations for state transitions in experiment, and repeat the experiment +while slowing down the rate of change in x,y positions near the transitions to give the system enough time to +respond in the presence of large damping. Those experiments show excellent qualitative agreement with the +theoretically designed paths, although the locations at which transitions happen and the equilibrium angle +of the panel are often shifted by a small amount due to experimental error. + +6 +D. +Additional operation mode: double-snap trajectories +The intricate saddle-node surface structure near the butterfly bifurcation enables a variety of snapping +behaviors with the same panel design, beyond the 3-state cycle presented in the main text. Here we present +a second snapping sequence that was measured experimentally. +By using the same trajectory in parameter space as the three-snap sequence in the main text, but traverses +the path in the reverse direction, we observe a two-snap sequence between small (S) and large (L) angles. +Fig. S4a shows this trajectory together with the same saddle surfaces from Fig. 4a in the main text. The +experimentally measured angles along this backward cycle are shown in Fig. S4b (see also Movie S2). Besides +a minor systematic shift in the angles of the L state, we find excellent fidelity between the predicted and +measured angles. The snapping transitions occur almost exactly at the predicted locations. +Our example trajectories demonstrate that the saddle-node structure in the vicinity of a butterfly bifurca- +tions enables a great deal of flexibility in controlling state transitions of a mechanical system. For practical +applications, further fine-tuning of the control trajectory can be used to optimize features the system’s +behavior (e.g., the positions of the steady states and their lifetimes in the presence of environmental noise). +VII. +GENERALIZATIONS: MULTIDIMENSIONAL BIFURCATIONS AND SUPPLEMENTAL +SCALING BEHAVIOURS +A. +Stopping conditions in higher dimensions +While our proof-of-concept experiment is limited to a hinge with a single degree of freedom (the opening +angle), our approach and gradient continuation algorithm are straightforward to apply to systems with +multiple degrees of freedom, e.g. a microscopic robot with multiple panels connected by elastic hinges. The +cuspoidal bifurcations discussed in this paper also naturally appear in higher-dimensional gradient systems. +However, the analytic criteria to classify them is somewhat more complicated: we can not simply search +for points where higher order derivatives of the potential vanish. In this section we will discuss stopping +criteria in higher dimensions, i.e. what quantities should we follow with the gradient continuation algorithm +to search for bifurcations of increasing order? +With two or more degrees of freedom, a saddle-node bifurcation occurs when a fixed-point (stable or +unstable) collides with a saddle point, resulting in mutual annihilation. This occurs when an eigenvalue of +the Hessian of the potential Aij = −∂θi∂θjV crosses 0 (here θi are the dynamical variables). For the purposes +of applying gradient continuation starting from a fixed point, it is therefore convenient to use det A as the +stopping criteria, since the determinant vanishes when an eigenvalue does. +Near a saddle-node bifurcation, the state space can be decomposed (by the Center Manifold Theorem) +into (i) the invariant center manifold emanating from the fixed point along the direction of the critical +eigenvector (with eigenvalue 0) and (ii) a stable/unstable manifold on which the flows exponentially grow or +decay (for the purposes of machine design we generally want only stable directions). Due to the vanishing +eigenvalue, the dynamics on the center manifold are nonlinear at lowest order. +These dynamics can be +determined perturbatively by expanding the gradient of the potential, projecting onto the center manifold +and enforcing the invariance of the center manifold [S1]. Higher-order bifurcations occur when the center +manifold expansion coefficients vanish. For example, vanishing quadratic term indicates a cusp bifurcation, +vanishing cubic term indicates a swallowtail, and so on. Thus these coefficients replace the higher-order +derivatives of the potential as the stopping criteria in the gradient continuation algorithm. Below we give +explicit expressions for these expansion coefficients. +Suppose we have an n-dimensional system θ ∈ Rn that undergoes a saddle node bifurcation at θ = 0. +Near this point, the dynamics can be expanded as follows, +˙θ = A θ + F(θ), +(S6) +where A is the Hessian of the potential (which has a zero eigenvalue) and F(θ) collects all quadratic and + +7 +higher-order terms in multilinear forms, +F(θ) = 1 +2B(θ, θ) + 1 +6C(θ, θ, θ) + 1 +24D(θ, θ, θ, θ) + O(||θ||5) += 1 +2 +n +� +i,j=1 +∂2F(φ) +∂φi∂φj +���� +φ=0 +θiθj + 1 +6 +n +� +i,j,k=1 +∂3F(φ) +∂φi∂φj∂φk +���� +φ=0 +θiθjθk ++ 1 +24 +n +� +i,j,k,l=1 +∂4F(φ) +∂φi∂φj∂φk∂φl +���� +φ=0 +θiθjθkθl + O(||θ||5). +(S7) +Let ψ and ϕ be the right and left eigenvectors corresponding to the zero eigenvalue: Aψ = 0 and AT ϕ = 0. +The projection of θ onto the center manifold ϑ = ϕ · θ has dynamics +˙ϑ = a2ϑ2 + a3ϑ3 + O(ϑ4). +(S8) +Following Kuznetsov, we derive the coefficients up to fourth order (third order is given in Ref. [S1]), +a2 = 1 +2ϕ · B(ψ, ψ) +a3 = 1 +6ϕ · C(ψ, ψ, ψ) + 1 +2ϕ · B(ψ, b2) +a4 = 1 +24ϕ · D(ψ, ψ, ψ, ψ) + 1 +4ϕ · C(ψ, ψ, b2) + 1 +8ϕ · B(b2, b2) + 1 +6ϕ · B(ψ, b3), +(S9) +where +b2 = A−1 +su +� +ψ[ϕ · B(ψ, ψ)] − B(ψ, ψ) +� +b3 = A−1 +su +� +ψ[ϕ · C(ψ, ψ, ψ) + 3ϕ · B(ψ, b2)] + 3b2[ϕ · B(q, q)] − C(ψ, ψ, ψ) − 3B(ψ, b2) +� +(S10) +and A−1 +su is the inverse of A restricted to the stable/unstable subspace (which doesn’t have zero eigenvalues). +As mentioned above, vanishing a2 indicates a cusp, if a3 also vanishes we have a swallowtail, and if all three +coefficients are zero we have a butterfly. The vectors b2 and b3 describe the curvature of the center manifold +in the full θ space, θ = qϑ + b2ϑ2/2 + b3ϑ3/6. While these bifurcations are one dimensional (they occur on +the one-dimensional invariant center manifold), the curvature of the center manifold as we move further from +the bifurcation point could allow snapping between states with reasonable separation in multiple dimensions. +In principle, this would enable machines to carry out work cycles near a butterfly bifurcation. +B. +Scaling for the Thom’s seven: hyperbolic and elliptic umbilics +Beyond the quasi-one-dimensional bifurcations there are also cuspoidal bifurcations that are genuinely mul- +tidimensional. In two dimensions, for example, we have elliptic umbilic, hyperbolic umbilic, and parabolic +umbilic catastrophes (these together with the four one-dimensional bifurcations saddle-node, cusp, swallow- +tail, and butterfly make up the Thom seven). Like the cusp and butterfly bifurcations, the unfolding of the +normal form predicts and intricate saddle-surface structure describing how fixed-points and saddle-points +come together and collide in the vicinity of the bifurcation point. These higher-dimensional bifurcations also +obey advantageous scaling laws, relating the changes in state to the variation of control parameters. For +example, the normal form potentials for the elliptic and hyperbolic umbilics are +Velliptic = θ3 +1 +3 − θ1θ2 +2 + a(θ2 +1 + θ2 +2) + bθ1 + cθ2 +Vhyperbolic = θ3 +1 + θ3 +2 + aθ1θ2 + bθ1 + cθ2 +(S11) +from which the follow scaling can be derived [S4], +δθ1, δθ2 ∼ a +b, c ∼ a2. +(S12) +Increasing the dimension further leads to even more cuspoidal bifurcations; these have been enumerated +by Arnold using an ADE classification [S7]. While the search criteria for such bifurcations is increasingly +complicated, they provide a rich design space for multi-component machines. + +8 +C. +Reynolds number scaling +The magnetic decorations in our experiments are arranged in each panel about a square lattice with +unit separation of 2.5cm. To explore over-damped, gradient dynamics, that are ubiquitous in microscopic +mechanisms, the rotating panel is attached to a paddle moving through a glycerol bath. The results of our +experiments then hold also for smaller systems in fluid with comparable kinematic viscosity. If the system +is smaller by a factor Ω ≪ 1, the time ∆t it takes our macroscopic over-damped system, of typical size L, +to traverse an angular expanse ∆θ is equal to the time it takes a microscopic system, of size ΩL to traverse +the same angular expanse in the same liquid. This comes about because both the viscous drag force and +the magnetic force between dipoles of magnetization M1 and M2, FDrag ∼ L2 ˙γ, Fdipole ∼ M1M2/R4, are +quadratic in the typical system sizes. For over-damped dynamics this results in a length-scale independent +strain-rate, ˙γ. The system is over-damped if its Reynolds number Re = L2 ˙γ/ν, is smaller then 1, where ν +is the fluid’s kinematic viscosity. The Reynold’s number of a miniaturized system is therefore smaller by a +factor of Ω2. Reducing the system’s size can compensate for changes in the system’s composition, such as +embedding it in water rather than glycerol, or the growth of magnetic dipole strength density as the system +size decreases. +[S1] Y. A. Kuznetsov, “Topological equivalence, bifurcations, and structural stability of dynamical systems,” in +Elements of Applied Bifurcation Theory (Springer New York, New York, NY, 2004) +. +[S2] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields +(Springer New York, New York, NY, 1983) +. +[S3] J. W. Bruce and P. J. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd +ed. (Cambridge University Press, 1992) +. +[S4] M. V. Berry, Journal of Physics A: Mathematical and General 10, 2061 (1977) +. +[S5] DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.1.4 of 2022-01-15 +(2022), f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. +Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. +[S6] W. +H. +Press, +S. +A. +Teukolsky, +W. +T. +Vetterling, +and +B. +P. +Flannery, +Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007) +. +[S7] V. I. Arnol’d, “Bifurcations of equilibria,” in Dynamical Systems V, edited by V. I. Arnol’d (Springer Berlin +Heidelberg, Berlin, Heidelberg, 1994) pp. 10–38 +. +[S8] M. Smith, G. Yanega, and A. Ruina, Journal of theoretical biology 282, 41 (2011) +. + +9 +FIG. S1. Single snap-through mechanism (a.) As we vary the control parameters along a loop around the cusp +point as shown, we expect to see a single snap-through buckling behavior (point v to point vi) for each cycle, akin +to how hummingbirds use their beak to capture prey [S8]. (b.) The predicted potential energy curves for points +labeled from i to vi are presented. The saddle-node bifurcation occurs between v and vi as indicated by the arrow +in v. (c.) We experimentally observe the predicted snap-through behavior. Due to experimental errors, the location +of the cusp point is shifted, but we see excellent agreement between the theory and measurements after shifting the +coordinates to align the theoretical and experimental cusp points. +FIG. S2. Snap Through transitions near a cusp. These plots show the equilibrium angle recorded in experiments +following a snap-through transition. The corresponding (x, y) denote the values of the control parameters at which +the snap-through occurred. (a.) Highlights the the data points used to fit the cusp scaling. We exclude data far from +the cusp, where higher order terms in the normal form are non-negligible, and close to the cusp, where measurement +and fabrication error are comparable to the distance from the cusp. (b.) Highlights the data corresponding to the +upper and lower saddle-node curves. + +a) +b) +c) +ty +i +vi +iii ++ +anel +-y +L 2.9 +-y + [rad] - System State +Snap-through +i: = 2.606 +vi: 0 = 2.653 +c+↑ +Snap-through ↑ ++c +Snap-through +v +ii +S +2.5 +ii: θ = 2.841 +v: θ = 2.830 +LSI +h+ ↑ +-y +L! +S +h+↑ +yT +Cusp Point +iii +iv +-c +-0.03 +0.3 +m +0.15 +-0.06 +0 +dy [cm] - Control Parameter +-0.15 +-0.09 +iii: 0 = 2.854 +iv: 0 = 2.864a) +b) +·ScalingDataPoints +· Upper Saddle Node Curve +·UnusedDataPoints +O +· +LowerSaddleNodeCurve +·EstimatedCuspPoint +·EstimatedCuspPoint +2.85 +2.85 +[rad] - System State +2.8 +[rad] - System State +2.8 +2.75 +2.75 +2.7 +2.7. +2.65 +2.65 +0 +2.6 +0.15 +2.6 +0.15 +0.2 +Q +0.2 +2.55 +0.25 +2.55 +0.25 +0.8 +0.3 +0.8 +0.3 +0.35 +0.75 +,0.75 +0.35 +x [cm] +x [cm] +Control +y [cm] - +Control +Parameter +Parameter10 +FIG. S3. Butterfly panels: In the butterfly experiments, Panel P1’s x, y and z positions are measured as displacements +from their value when the panels are 180◦ open, the magnets closest to the hinge axis are removed from it by 2.5cm +on both panels, the panels are aligned vertically and the back of the cylindrical magnets on Panel P1 are aligned with +the center of the magnets on Panel P2. This small change in magnet alignment is found to reduce the discrepancy +between experiment and prediction. +FIG. S4. +2-state Cycle Near Butterfly Bifurcation Point (a.) Theory The saddle node surfaces of a magneto- +elastic system with three active control parameters, x,y and z are plotted, their color denotes the angle θ at which +the snap occurs. The system’s magnetic pattern is designed using the gradient continuation algorithm such that it +operates near a butterfly bifurcation where multiple saddle node surfaces coalesce, enabling multiple snap-through +transitions at the surfaces. A trajectory (colored tube with white arrows) is chosen such that the system snaps back +and forth between two states with Large (L) and Small (S) angles. This trajectory is identical to that for the 3-state +cycle in Fig. 4 in the main text, but the path is traversed in the opposite direction. The system’s predicted state is +denoted by the tube’s color. At intersections of the trajectory with a surface where their colors match the system is +predicted to snap to a new state. (b.) Experimental demonstration: The colored dots mark the experimental value +of the system’s state as it follows the designed trajectory. We observe two distinct transitions as predicted. + +Hinge Axis +11 +2.. +X +dx2 +Z +7.5 +5 +2.5 +0 +[cm] +x [cm][cm] - Control +Parameter +-0.2 - +-0.4 +-0.4 +Stat +-0.2 +7 +-0.6 +-0.4 +tem +-0.8 - +-0.8 +-0.6 - +-0.8 - +0 +-2.0】 +rad +-1.5 +.1 +-1.0 > +2 +-0.5 +y +-0.5 +S +-1.0 +-0.5 +-1.0 +3 +y [cm] - C +Parameter +1.5 +x +-2.0 +1.5 +x \ No newline at end of file diff --git a/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/load_file.txt b/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..c2c8028b8eec560acc8c2409dc0fa464cfbce8ce --- /dev/null +++ b/FdAzT4oBgHgl3EQfi_0V/content/tmp_files/load_file.txt @@ -0,0 +1,1068 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf,len=1067 +page_content='Bifurcation instructed design of multistate machines Teaya Yang,1 David Hathcock,1 Yuchao Chen,1 Paul McEuen,2 James P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Sethna,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 Itai Cohen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 and Itay Griniasty1 1Laboratory of Atomic and Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cornell University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ithaca,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' New York 14853-2501,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' USA 2Laboratory of Atomic and Solid State Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cornell University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ithaca,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' New York 14853-2501,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' USA and Kavli Institute at Cornell for Nanoscale Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cornell University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ithaca,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' NY,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' USA (Dated: January 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2023) We propose a novel design paradigm for multi-state machines where transitions from one state to another are organized by bifurcations of multiple equilibria of the energy landscape describing the collective interactions of the machine components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This design paradigm is attractive since, near bifurcations, small variations in a few control parameters can result in large changes to the system’s state providing an emergent lever mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Further, the topological configuration of transitions between states near such bifurcations ensures robust operation, making the machine less sensitive to fabrication errors and noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To design such machines, we develop and implement a new efficient algorithm that searches for interactions between the machine components that give rise to energy landscapes with these bifurcation structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We demonstrate a proof of concept for this approach by designing magneto elastic machines whose motions are primarily guided by their magnetic energy landscapes and show that by operating near bifurcations we can achieve multiple transition pathways between states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This proof of concept demonstration illustrates the power of this approach, which could be especially useful for soft robotics and at the microscale where typical macroscale designs are difficult to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Systems composed of a large number of interact- ing elements such as meta-materials, elastic mem- branes, and proteins can exhibit emergent behaviors that arise from the collaborative interaction of the system components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Designing functionality in such systems is a formidable task that requires searches in a high dimensional parameter space of the sys- tem components and their interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Developing organizing principles for effectively designing such systems remains an outstanding problem in the field [1–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here, we propose that designing multi-state machines around bifurcations of multiple equilibria is a powerful paradigm that can be used to system- atically organize such searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bifurcations, where a single equilibrium configu- ration splits into multiple equilibria as a function of a control parameter is a canonical dynamical sys- tems structure that has been used to explain vari- ous natural phenomena ranging from phase transi- tions [7] to the operation of simple machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Exam- ples of simple machines include Venus flytraps and hummingbird beaks that have been shown to open smoothly and then snap shut by operating about a cusp bifurcation where three equilibria converge [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Designing systems to operate near such bifur- cations provides several advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Since the split- ting of the equilibria has a power law dependence on the control parameters [4, 7], operating near bi- furcations automatically provides a lever mechanism by which small variations in the control parameters lead to large changes in the system state [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In the case of the Venus fly trap, slight changes in hydrostatic pressure can drive large motions of the trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Similarly in hummingbirds, slight twisting of the jaw bones enables rapid closing of a wide open beak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Further, such bifurcations organize a topo- logically protected structure of saddle node mani- folds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As such, provided that the system trajectory encircles the cusp bifurcation where the saddle node manifolds meet, the system is guaranteed to exhibit a smooth change in state followed by a snap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In the Venus fly trap and hummingbird examples, this topological protection guarantees that the opening and snapping of the trap or beak is robust against variations in the applied hydrostatic or muscle forces driving the transitions in the system state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here, we propose that moving beyond cusp bifurcations to design systems that operate near bifurcations of arbitrarily many equilibria preserves the lever ad- vantage and topological protection of cusp bifurca- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Such systems can be driven by only a few control parameters to undergo snapping transitions between multiple states making the design of ma- chines near such bifurcations a powerful paradigm for organizing complex functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To develop and demonstrate this paradigm, we experimentally in- vestigate increasingly sophisticated magneto elastic machines whose function is organized by such bifur- cations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We start by constructing a simple magneto elas- tic machine consisting of a control panel that can be translated in the x − y plane and a second panel arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='01507v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='soft] 4 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Magneto-Elastic machine capable of adopting multiple configurations due to operat- ing near a cusp bifurcation (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') System: Panels P1 and P2 are decorated with identical magnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panel P1 is actuated externally to translate in the x and y directions, in response Panel P2 rotates about a hinge, the dynam- ics are over-damped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Magnetic potential energy landscapes: We plot the potential for dx = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='09 and dy ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='28, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='17, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='02], where dx and dy are deviations from the cusp’s position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Varying y we cross two saddle node bifurcations where the number of extrema of the magneto elastic landscape changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Equilibrium manifold: The system’s equilibria θ(dx, dy) are plotted as a function of the deviation of the parameters, color signifies the value of θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Brown curve marks saddle node bifurcations where the number of equilibria change, and the light red curve denotes the experimental trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Experimentally observed snap-through transition: The system follows a parametric trajectory marked by a red curve and colored tube whose color denotes the pre- dicted state θ, around a cusp bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The colored disks represent the experimentally measured state θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As expected a single snap through transition at a saddle node bifurcation (curves colored according to the bifur- cating state θ and converging at the cusp) is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' that is free to rotate about a hinge connecting the two panels (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1a and experimental apparatus schematic Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The state of the system, is given by the angle θ between the panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By decorating the panels with magnets, we are able to design a magneto elastic landscape with different numbers of minima as a function of the parameters x and y (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Transitions between these minima cor- respond to changes in the state of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To understand the various pathways for making such transitions we construct the manifold defined by the local equilibria as a function of the parameters x and y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For this particular arrangement of magnets, we calculate (see SI) that the resulting manifold has a domain with multiple solutions delineated by saddle node bifurcation curves (Brown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These curves in- tersect and terminate at a cusp bifurcation beyond which there is only a single equilibrium state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By translating the control panel in the x-y plane, the system can undergo either smooth or abrupt changes in θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, starting the system at point (i) and moving through points (ii-v), the hinge angle increases smoothly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A further slight increase in the control parameter y, however, leads to an abrupt transition from a high to a low angle, correspond- ing to points (v) and (vi) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These pre- dictions are born out by the experiments (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1d), which also show a smooth increase in θ for a path- way that encircles the cusp (i-v) and an abrupt tran- sition in θ when crossing a saddle node curve (v-vi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In this 2D representation the system makes a transi- tion when the color of the path (yellow) matches the color denoting the state associated with the saddle node curve (yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This magneto elastic mecha- nism is reminiscent of the cocking and snapping of a Venus flytrap or a humming bird’s beak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In addition to providing a mechanism for abrupt transitions, operating near a cusp bifurcation creates a lever mechanism where small variations in the con- trol parameters lead to large variations in the system state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This mechanism resolves the generic problem that creating large variations in the system state of- ten requires unfeasibly large variations in the control parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lever mechanisms are generic near bi- furcations of equilibria since the magnitude of the transition in the system state is typically propor- tional to the square root of the parameter distance from the bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To characterize this lever mechanism in our exper- iment, we map the snapping transition curves asso- ciated with the saddle node bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Specifi- cally, for a given value of y (or x) we toggle x (y) so that the system snaps back and forth, and record the values of the control parameters x and y, and θ immediately after each transition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To test the scaling relations, we define the normal a) HingeAxis N s Parameter SystemState X-ControlParameter b) [nrun qe] A L 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='952.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='95 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='95 e[rad]-SystemState c) 111 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='9 [rad] - System State Snap-through S 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 d) LS Cusp Point 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='06 0 dy [cm]-Control Parameter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='093 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Parametric levers The change in the state of the system after a snap through transition near a cusp bifurcation scales sub linearly with the normal form parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This sublinear scaling leads to large variation of the state in response to small variation of the system parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' a) Measurements of snap through transitions near a cusp: The blue points mark the state of the magneto elastic system of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1 af- ter a snap through transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The dashed curve is a fit of snap through transitions near a cusp bifurcation to the data, derived from the normal form potential ˜V = δθ4 + a2δθ2 + a1δθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The normal form parame- ters a1 and a2 are locally given by re-scaled rotations of dx and dy, which are the deviations of the parame- ters away from the cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' b) Scaling laws near a cusp: The predicted scaling laws are demonstrated by project- ing the measurements and fit onto log-log plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Near the cusp the system response to a1 acts as a giant lever, ∂δθ/∂a1 ∼ 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' form parameters a1 and a2 as rotations of the dis- placement of the parameters x and y from the cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We then fit the predicted scaling form ∆θ ∝ √a2 and a1 ∝ a3/2 2 near a cusp to determine the cusp’s position and the rotation of the normal form param- eters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The fitted model then predicts that ∆θ ∝ a1/3 1 (see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Because the scaling exponents for ∆θ are fractions of unity, small variations of the parameters along a1 and a2 lead to large variations of the sys- tem’s state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, in our experiments the range of actuation for panel 1’s position is approx- imately 1 cm and the range of angles accessible to panel 2 is 180◦ or π radians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Near the bifurcation a translation along a1 of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1% of its range (∼ 10µ m) leads to a snap that changes θ by ∼ 5% of it range (∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 rad) providing a lever advantage of ∼50 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2b ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The complexity of the actions achieved by such magneto elastic mechanisms is dictated by the range and number of stable states that the system can ac- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This complexity can be achieved by designing the magneto elastic potentials such that the system operates near bifurcations between multiple states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, working near a hypothetical symmetric butterfly bifurcation associated with the potential V = θ6 + a4θ4 + a2θ2 + a1θ should enable smooth and abrupt transitions between three stable states in any order depending on the chosen trajectory for the control parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3a we show a cut through parameter space of the saddle node surfaces near this butterfly bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' If the system starts in the S (Small) state and moves along the depicted trajectory (black arrows), it would first snap to the M (Medium) state when the system crosses the pur- ple saddle node bifurcation and then the L (Large) state when it crosses the green curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For the return path, however, the system would transition from the L minimum directly to the S minimum when it crosses the yellow saddle node bifurcation curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, by working near the bifurcation, the lever mechanism should allow for transitioning between these distinct states within an accessible range of experimental control parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' SEARCH ALGORITHM FOR BIFURCATIONS OF MULTIPLE EQUILIBRIA To design parametric configurations correspond- ing to bifurcations of multiple equilibria we develop a search gradient continuation algorithm that takes advantage of their nested structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bifurcations as- sociated with k equilibria (minima plus maxima) are degenerate singularities where the first k derivatives of the potential vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Thus they can be found iter- atively by searching for singularities of the potential with increasing order, solving for one constraint at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We find that this method is especially efficient in finding experimentally realizable parametric con- figurations corresponding to bifurcations of multiple equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, this method naturally extends to searching for bifurcations with desired properties by introducing further constraints, for example opti- mizing the robustness of the bifurcation’s associated states to external noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For ease of illustration we describe how to use this approach to find the symmetrized butterfly bifurca- tion described above with parameters a1, a2, a4 and variable θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For a random combination of parame- ters we find an equilibrium angle where dV/dθ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Generically, this point is part of a smooth man- ifold over which this constraint holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We then vary a1, a2, a4 and θ within this manifold to min- imize the next constraint |d2V/dθ2|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The trajec- tory follows the gradient of the second constraint as closely as possible while maintaining the first con- straint dV/dθ = 0 until we reach a point on a sad- a) b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='09 h [rad] System State 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='04 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='05 a2 [cm] - Normal Form Parameter ] - System State 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='09 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='02 dx [cm] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='06 ControlParameter 73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 80 [rad] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 1×10-4 3×10-4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='001 dy [cm] - Control Parameter a,[cm] - Normal Form Parameter4 dle node surface, which is a manifold where both the first and second constraints hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 Minimizing the third derivative within the saddle node manifold maintains the first two constraints and allows for finding a cusp bifurcation associated with two sta- ble equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Successive iterations allow for identi- fying bifurcations between an increasing number of equilibria and eventually the butterfly bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Our gradient continuation algorithm adapts stan- dard algorithms from the dynamical systems liter- ature [1, 2, 15] and retools them to locally follow the gradient of the unsatisfied constraint (see SI for further details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We depict the resulting search path in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3b, which highlights the fact that, indepen- dent of the number of parameters, the search algo- rithm follows a 1D trajectory, which is organized by the nested structure of the intermediate bifurca- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These properties enable the algorithm to find realizable bifurcations for systems with hundreds of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' THREE STATES AND THE BUTTERFLY BIFURCATION As a proof of concept for our approach we demon- strate the construction and operation of a magneto elastic machine with 3 stable states operating near a bifurcation of multiple equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The first step in designing such a machine is to implement our gra- dient continuation algorithm to design a magneto elastic potential with a butterfly bifurcation between three stable states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To realize a system operating near such a bifurcation where only three control pa- rameters (x,y,z positions of panel 1) are actively var- ied, we allowed the algorithm to also determine the x,y positions of two of the nine magnets on panel 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 With these seven parameters, the algorithm was able to identify multiple butterfly bifurcations that satisfied these criteria (See SI for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Having found an appropriate butterfly bifurca- tion, we use standard dynamical systems continua- tion algorithms[1, 17] to compute and plot the saddle node surfaces in the control parameter space (x,y,z) near the bifurcation (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We find multiple dis- tinct surfaces where the color denotes the angle θ 1 A local minimum of |∂2 θV | with respect to variation of all parameters, that lies on the fixed point manifold will throw the algorithm off, but this is a co-dimension m point for a system with m parameters, and so highly unlikely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2 Typically, a butterfly bifurcation requires four control pa- rameters to navigate between all of the stable states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here, we have identified a nonlinear mapping of the three active control parameters (x,y,z) onto the four dimensional space, which enables transitions between arbitrary minima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bifurcations of multiple equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' a) Work cycle near a butterfly: A system operating near a hypothetical symmetrized butterfly bifurcation can cycle between three states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The bifurcation is associated with a potential V = θ6+a4θ4+a2θ2+a1θ and three accessible states denoted by large (L), medium (M) and small (S).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As the system follows the trajectory denoted by black ar- rows with colored background marking its state θ, it cy- cles between the three states snapping from S to M to L and back to S by changing a2 and a1 while a4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The snaps occur at saddle node bifurcations (colored curves) whose color signifies the state θ of the minima that is an- nihilated at each boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' b) Gradient Continuation algorithm: The search algorithm finds bifurcations of multiple equilibria by following a one dimensional curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Starting from a bifurcation of k equilibria the algorithm searches for a bifurcation of k+1 equilibria by following a curve in the augmented parameter space, tangent to the gradient of |V k+1| in the kth bifurcation manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We draw a search for a butterfly bifurcation in its symmet- ric normal form potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The entire volume denotes the equilibrium manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Starting from a fixed point, the algorithm finds a saddle node bifurcation (along the white curve), Parameters are then varied on the saddle node surface (yellow), and cusp surface (thin lines) to re- spectively find a cusp bifurcation (along the gray curve) and a swallow tail bifurcation (along the black curve) near a butterfly bifurcation (black point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' at which the saddle node bifurcation occurs3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In- structed by these surfaces, we design a cyclic path 3 There is further local data in the potential at a saddle node D[a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='] a1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 L s 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 SL SM M 0 M SML 12 SL SL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 L 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 Butterfly Saddle node Cusp Equilibrium a1 a4 a25 through the parameter space such that the system snaps between the large, medium, and small min- ima.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The path color at each point denotes the sys- tem state, θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As with the cusp and symmetrized butterfly bifurcations depictions in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1d and 3a, transitions occur at intersections of the path and saddle node surfaces where their colors match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We note that for the generic butterfly bifurcation, the surface structure can be quite complicated as shown by the two projections in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4a,b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In contrast to the symmetrized butterfly bifurcation structure (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2a), this complicated structure necessitate us- ing all three control parameters x, y, and z, to design a pathway that cycles between the three states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Im- portantly, despite the surface complexity the design is robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Specifically, since the trajectory crosses surfaces, slight deviations in the control parameters should still lead to similar snaps, snap sequences, and ultimately the resulting complex actions of the entire magneto elastic machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Using the design parameters determined by our search algorithm, we built a magneto elastic machine similar to that depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1a, but with a dif- ferent magnetic dipole pattern and with two of the magnets in panel 1 displaced in the panel plane (See SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By following the theoretically predicted path, we found three snap through transitions from small to large, large to medium, and medium to small (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4c and Movie S1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Two of the transitions occurred at the predicted locations, while the large to medium transition was displaced by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 cm from its predicted location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In addition, we found excellent fidelity be- tween the predicted and measured angles θ for the equilibrium states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Using the same magneto elastic machine, we also designed and demonstrated cycli- cal paths with two transitions (See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='S3 and Movie S3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Finally, when the system was taken apart and reassembled, we were able to reliably reproduce the transitions associated with the designed trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' DISCUSSION The experimental validation of this design paradigm with a butterfly bifurcation of 5 equilib- ria strongly supports the conjecture that this frame- work could be extended to design systems perform- ing increasingly sophisticated functions by operating surface that can instruct the design of a trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example the sign of the third derivative of the potential signals whether the state’s angle will increase or decrease as it bifurcates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, the merging of saddle node surfaces can also be delineated by plotting the cusp bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here, we do not include this additional information for ease of viewing near bifurcations with a growing number of equilib- ria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Potential energies with these increasingly rare bifurcations can be found efficiently, because the gra- dient continuation algorithm follows a one dimen- sional search path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, the associated lever mechanisms provide a design feature where the op- eration of the machine will likely be confined to a small parameter volume, enabling the execution of these actions by realizable machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Microscopic magneto-elastic machines could prove to be a useful instance of design instructed by bifur- cations of multiple equilibria: An important emerg- ing strategy for manufacturing microscopic and soft machines is fabricating them using two dimensional lithographic and printing techniques [18–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Such fabrication techniques, however, restrict the imple- mentation of compound mechanisms composed of springs, cogs, screws etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' that are used to achieve complex actions in traditional macroscale machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These lever mechanisms could be replaced with mag- neto elastic mechanisms with lever advantages in- duced by bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Magnetic interactions are es- pecially well suited for this purpose since they are long ranged and not easily screened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This long range allows for global changes to the conformation in re- sponse to local actuation of system components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Importantly, since bifurcations of multiple equi- libria are notoriously sensitive to variations of pa- rameters, there is a concern that a machine oper- ating near such bifurcations will be very sensitive to environmental noise, such as thermal vibrations, as well as to fabrication precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Indeed, close to a bifurcation the sensitivity of the system to varia- tions of certain combinations of the system param- eters grows exponentially as the number of asso- ciated equilibria increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Mathematically this is captured by mapping the potential to a canonical normal form via a change of coordinates [4, 5, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6] (see SI for derivation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Practically, however, this increased sensitivity is often blunted outside of the infinitesimal environment of the bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' At a finite distance from the bifurcation the mapping to the normal form or its linearization will often cease to be valid because of other singularities of the potential or the nonlinear fall off in the poten- tial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This non-linearity is especially pronounced in keplerian potentials such as that of magnetic inter- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Critically, the saddle node manifolds coa- lescing at the bifurcation are generically preserved outside this radius of convergence as they are topo- logically protected and can only annihilate at a cusp or a bifurcation of more equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Thus, operating a machine near a bifurcation of multiple equilibria, but at a finite distance from it, allows the design of trajectories that take advantage of the multiple saddle node transitions associated with it, and their 6 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3-state Cycle Near Butterfly Bifurcation Point (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Theory The saddle node surfaces of a magneto- elastic system with three active control parameters, x,y and z are plotted, their color denotes the angle θ at which the snap occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system’s magnetic pattern is designed using the gradient continuation algorithm such that it operates near a butterfly bifurcation where multiple saddle node surfaces coalesce, enabling multiple snap-through transitions at the surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A trajectory (colored tube with white arrows) is chosen such that the system snaps in cycles between three states Large (L), Medium (M) and Small (S) angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system’s predicted state is denoted by the tube’s color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' At intersections of the trajectory with a surface where their colors match the system is predicted to snap to a new state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Experimental demonstration: The colored dots mark the experimental value of the system’s state as it follows the designed trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We observe three distinct transitions as predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' lever advantages, while avoiding the local exponen- tial sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Similarly, the sensitivity of a system designed near a bifurcation of multiple equilibria to external noise grows exponentially with the number of associated states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This growth in sensitivity arises from the decrease in the potential barriers between adjacent states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example in a potential with k equilibria where all the potential barriers are of equal height, and the minima are equally deep (which is propor- tional to a Chebyshev polynomial of the first kind of order k + 1) the barrier heights decay as 2−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This sensitivity seems prohibitive as we imagine im- plementing this design principle to create systems cycling between multiple states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Despite this in- creased sensitivity, however, we estimate that the strength of magnetic interactions assures that mag- neto elastic systems are robust to thermal noise at the microscale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Specifically, in magneto elastic sys- tems the potential is proportional to the dipole- dipole interaction strength µ0µ2L6/R3 of two mag- nets with magnetic dipole densities µ panel size L and typical distance between dipoles R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Thermal noise is then comparable to the magneto elastic po- tential barrier height when the number of equilibria k ∼ log2 � µ0µ2L3/(R/L)3 kbT � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The magnetic dipole den- sities µ are of order 106A/m at the microscale [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The smallest two state door (equivalent to the de- vice in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1a) that is robust to thermal noise is then ∼ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1µm in size, approaching the size limit of 30nm for fabricating stable magnetic domains [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Conversely, a 100 µm machine will become sensitive to thermal noise near a bifurcation of ∼ 40 equilib- ria, that is 20 distinct states compressed in a span of 100 degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Finally, the designs that we have implemented in this paper assume operation in a low Reynolds num- ber regime where inertia can be neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In the macroscale implementation this was achieved by at- taching a damping panel immersed in a solution of glycerol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We expect our designs to work even bet- ter as these machines are implemented at smaller scales since the importance of inertia drops quadrat- ically with the system size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Operation of a 100 µm scale machine in water, for example, would enable the system to be in the low Re regime while operat- ing at rates that are 1000 fold faster than those in the macroscale experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' CONCLUSIONS We have shown that the operation of multi- parameter machines near bifurcations of multiple equilibria allows them to efficiently and robustly cy- cle between multiple conformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, we developed a generic step-by-step framework to de- sign and implement systems that operate near such bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Specifically, we: 1) created a search algorithm that optimizes over fabrication and other system parameters to enable operation near such bi- furcations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2) mapped the manifold of saddle node bifurcations to determine a useful trajectory for the machine operation and;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3) demonstrated the ro- bustness of this approach by constructing and op- erating a magneto elastic machine that can cycle and robustly snap between multiple distinct con- figurations in response to small variations of a few control parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Importantly, this design ap- proach and step-by-step implementation is generic and could be applied to many complex systems with z [cm] - Control Parameter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 - M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 - [rad] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0- 0 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 MO 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 y [cm] - Control Parameter 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 2 X 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 X7 multiple interacting components ranging from arti- ficial proteins, where the interactions are electro- static, to neural networks (both biological and syn- thetic) where the interactions are governed by net- work topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cycling between transitions in mechanical imple- mentations of such systems can generate work or lo- comotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' If the system is over-damped, as is often the case in microscopic systems operating in fluids, work and locomotion can be achieved by coupling the system to mechanisms that break time reversal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These mechanisms include ratchets or cilia-like flexible rods [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In the case of the mag- neto elastic hinge described here, time reversal sym- metry is broken by combining the smooth transla- tions of the control panel with abrupt transitions in the state of the dynamic panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In systems where the control variable is not a mechanical parameter time reversal symmetry can be broken by using the angle as an effective dynamical variable governing a system with multiple degrees of freedom such as is often used to parameterize robot locomotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' More broadly, it is interesting to consider the ex- tension of our work to systems with a larger number of dynamical variables (θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here, we envision that by working near bifurcations of multiple vari- ables (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' elliptic umbilic bifurcations) one could organize snaps between states separated along mul- tiple variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Such designs require extending our search algorithm to multiple variables while main- taining its low dimensional search path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Alterna- tively, one could design mechanisms based on multi- ple local bifurcations that are weakly coupled across the machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, one bifurcation of n states could be used to control θ1 while a second bifurcation of m states organizes the dynamics of the variable θ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By weakly coupling the panels, and hence the variables θ1 and θ2, the machine can trans- form between n × m states in a coordinated fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Indeed this approach is already being implemented for bifurcations with two states [27–29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Increasing the number of states associated with each variable would enable a similarly rich landscape for machine design with far fewer mechanical elements or panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Finally, it is interesting to consider whether this design paradigm can be used to understand natural systems beyond the Venus fly trap and humming- bird beak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, molecular machines such as proteins often transition between different config- urations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' It is interesting to consider whether such transitions can be thought of as snaps organized by bifurcations of many states [3, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As another ex- ample, bifurcation theory has been implemented to identify and explain epigenetic dynamics of cell dif- ferentiation [30–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These approaches often focus on consecutive 2-state bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The results pre- sented here however, suggest that a comparably sim- ple evolutionary pathway could entail development of multi-state bifurcations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Such a structures could allow the addition of new states while maintaining the existing configuration through an evolutionary process, similar to the path taken by the gradient continuation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' MATERIALS AND METHODS: Construction of experimental hinge system Panel P1 is constrained to a set of linear trans- lation stages that allow its position to be adjusted manually to any x or y coordinates near the cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For experiments near the butterfly bifurcation point, an extra translation stage is attached to Panel P1 to allow adjustment of its z coordinate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panel P2 is attached to an OVA friction-less thrust air bushing with a 13mm shaft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The air bushing is attached to a fixed metal housing to limit Panel P2 to its ro- tational degree of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A T-shaped paddle is attached to the bottom of the shaft and immersed in glycerol to introduce damping to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ad- ditionally, we position a Basler Ace aca3088-57um area scan camera above the center of the air bushing to take top-view images of the air bushing which are then used to calculate the angle response of Panel P2 to high precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panels for experiments near cusp point Each magnetic panel is constructed using two 1/16 in thick laser-cut acrylic pieces and nine grade N48 neodymium magnets of diameter 1/16 in and height 1/8 in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Magnets are arranged in a 3-by-3 square lattice with lattice constant of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panels for experiments near butterfly point Each magnetic panel is constructed using two 1/16 in thick laser-cut acrylic pieces and nine grade N48 neodymium magnets of diameter 1/8 in and height 1/8 in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Magnets are arranged in a 3-by-3 square lat- tice with lattice constant of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In panel P1 the x, y position of two of the magnets is displaced ac- cording to the design determined by the search algo- rithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The two magnets whose position is offset are the magnet in the bottom row on the right column, whose offsets are dx1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='418cm, dy1 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='273cm, and the magnet in the middle row on the left column, with offsets dx2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='826cm, dy2 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='986cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A 8 technical drawing illustrating the panels used for the butterfly experiment is included in the SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Experimental Setup Sketch of the experimen- tal system used for demonstration of cycles and angle measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panel P1 is attached to a set of transla- tion stages which allows us to implement the spatial con- trol parameters in all experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Panel P2 is attached to an air bushing that is fixed in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' An attachment submerged in glycerol is added to the base of Panel P2 to introduce damping to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Angle measurements A marker is attached to the top of the air bush- ing, and a camera records the location of the marker during the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' At each given time, the mea- sured angle is the determined by three points: cur- rent marker location, location of the center of rota- tion, and marker location at θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We calibrate the system by recording the location of the pixel at θ = 0 and several other distinct angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The pixel location corresponding to the center of rotation is obtained using a fitted circle through the calibra- tion data points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The resulting angle is then de- duced from the three measured points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This data collection process is conducted in MATLAB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Acknowledgments We thank Michael Brenner, Chrisy Xiyu Du, Yan Yang, Robert Distasio, and John Guckenheimer for inspiring discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This work was financially supported primarily by NSF Grant DMREF-89228, NSF Grant EFRI-1935252, NSF Grant CBET-2010118, Cornell Center for Ma- terials Research DMR-1719875, and by Air Force Office of Scientific Research Grant MURI: FA9550- 16-1-0031.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='G was also supported by the Cornell Laboratory of Atomic and Solid State Physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='H was supported by an NSF Graduate Research Fel- lowship Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' DGE-2139899.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [1] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Sigmund and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Maute, Structural and Multidis- ciplinary Optimization 48, 1031 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Goodrich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Liu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Nagel, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 114, 225501 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Boyken, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Baker, Nature 537, 320 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Rocks, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Pashine, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bischofberger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Goodrich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Liu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Nagel, Proceedings of the National Academy of Sciences 114, 2520 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hagh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Nagel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Man- ning, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Corwin, Proceedings of the National Academy of Sciences 119, e2117622119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Eckmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Rougemont, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Tlusty, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 91, 031001 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Pathria, Statistical mechanics (Elsevier, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Forterre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Skotheim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Dumais, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ma- hadevan, Nature 433, 421 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Yanega, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ruina, Journal of the- oretical biology 282, 41 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [7] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Arnol’d, “Bifurcations of equilibria,” in Dynamical Systems V, edited by V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Arnol’d (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 10–38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Berry, Journal of Physics A: Mathematical and General 10, 2061 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Overvelde, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kloek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D’haen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bertoldi, Proceedings of the National Academy of Sciences 112, 10863 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Chi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Li, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Yin, Science Advances 8, eadd3788 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kuznetsov, “Topological equivalence, bifur- cations, and structural stability of dynamical sys- tems,” in Elements of Applied Bifurcation Theory (Springer New York, New York, NY, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Clewley, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Sherwood, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' LaMar, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Guckenheimer, “Pydstool, a software environ- ment for dynamical systems modeling,” (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Guckenheimer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer New York, New York, NY, 1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Guckenheimer and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kuznetsov, Scholarpedia 2, 1852 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hanna, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Byun, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Santangelo, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hayward, Science 335, 1201 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ware, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' McConney, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Wie, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Tondiglia, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' White, Science 347, 982 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [20] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Na, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Evans, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bae, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Chiappelli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Santangelo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hull, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Camera Marker Adjustment Screws Air Bushing Magnetic Panels Damping Panel Translation Stages Glycerol1 Hayward, Advanced Materials 27, 79 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Sydney Gladman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Matsumoto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Nuzzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Mahadevan, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lewis, Nature Ma- terials 15, 413 EP (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Miskin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cortese, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Dorsey, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Espos- ito, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Reynolds, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Muller, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' McEuen, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cohen, Nature 584, 557 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [5] DLMF, “NIST Digital Library of Mathematical Func- tions,” http://dlmf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='gov/, Release 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 of 2022- 01-15 (2022), f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Olver, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Olde Daalhuis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lozier, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Schneider, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Boisvert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Clark, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Miller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Saunders, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cohl, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' McClain, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cui, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Luo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Testa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Gu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Nelson, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Heyderman, Nature 575, 164 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Niu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Du, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Esposito, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bren- ner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' McEuen, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cohen, Proceedings of the National Academy of Sciences 116, 24402 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [26] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lauga, Soft Matter 7, 3060 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Coulais, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Sabbadini, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Vink, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' van Hecke, Nature 561, 512 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [28] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bense and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' van Hecke, Proceedings of the Na- tional Academy of Sciences 118, e2111436118 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Shohat, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hexner, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lahini, Proceed- ings of the National Academy of Sciences 119, e2200028119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [30] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Rand, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Raju, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S´aez, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Corson, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Siggia, Proceedings of the National Academy of Sciences 118 (2021), 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2109729118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [31] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Marco, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Karp, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Guo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Robson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hart, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Trippa, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Yuan, Proceedings of the National Academy of Sciences 111, E5643 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Setty, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Tadmor, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Reich-Zeliger, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' An- gel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Salame, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kathail, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Choi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bendall, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Friedman, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Pe’er, Nature biotechnology 34, 637 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bruce and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (Cambridge University Press, 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [6] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Press, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Teukolsky, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Vetterling, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Flannery, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Supplemental material - Bifurcation instructed design of multistate machines II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' CALCULATION OF THE POTENTIAL ENERGY LANDSCAPE To model the dynamics of our experimental hinge system, we compute the potential energy landscape arising from the dipole-dipole interactions between the magnets embedded in each panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The magnets used in our experiments are well approximated by perfect dipoles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Therefore, the potential energy for the system is a sum of dipole-dipole interaction energies V = − � i∈P 1 � j∈P 2 µ0m2 4π|rij|3 [3( ˆmi · ˆrij)( ˆmj · ˆrij) − ˆmi · ˆmj] , (S1) where µ0 is the vacuum permeability, m is the dipole strength (identical for all magnets), mi is the orientation of dipole i, and rij is the distance between magnets i and j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Note that the interaction energy for dipoles in the same panel is constant, so we can restrict the sum to pairs of dipoles in different panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To derive the θ dependence of the energy landscape, we must write the dipole orientations and positions in terms of our control parameters x, y, and z and the dynamical variable θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The dipoles on P1 are always oriented in the z-direction, while the dipoles on the rotating panel P2 have orientation that changes with θ: ˆmi = δiˆz ˆmj = δj{sin θ , 0, − cos θ}, (S2) where δi = ±1 is the orientation of magnet i with respect to panel P1 (similar for δj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The positions of individual dipoles are given by ri = {xi, yi, 0} + {x, y, z} rj = Rθ{xj, yj, 0}, (S3) leading to interdipole distance rij = ri − rj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here xi and yi are the x − y positions of dipole i in panel P1 (similar for xj, yj), x, y, and z are the coordinates of the control panel, and Rθ is the rotation matrix corresponding to a rotation by angle θ about the y-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Together Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S1-S3) give the potential energy in terms of the hinge angle θ, our control parameters x, y, and z, and design parameters xi, yi, δi, xj, yj, and δj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Since the hinge experiment is heavily damped, θ follows gradient dynamics ˙θ = ∂θV and the stable equilibrium angles are given by the local minima of the potential landscape V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' CUSP EXPERIMENTS In the cusp experiments, Panel P1’s x and y positions are measured as displacements from their value when the panels are 180◦ open, and are aligned along z and y such that the panel’s backs and bottoms are parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The magnets closest to the hinge axis are removed from it by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='75cm on both panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The back of the cylindrical magnets are aligned with the panel’s backs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The damping paddle used in the cusp experiments have dimensions 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Experimental estimation of the cusp point We estimate the location of the cusp point as the bifurcation of the two measured saddle node curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We map the saddle node curve by toggling x (y), for a given value of y (or x), so that the system snaps back and forth, and record the values of the control parameters x and y, and θ immediately after each transition (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, to verify the position of the cusp we record the angle θ of the system before and after snapping, and observe that the change in angle upon snapping disappears at the cusp point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Finally, we inspect all data collected along the bifurcation curves as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2a in the main text, and use a spline fit for the saddle-node bifurcations from L to S and the saddle-node bifurcations from S to L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We define the cusp point as the intersection of the two splines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Single snap experiment The mangeto elastic potential calculated for the experiment predicts a cusp at a slightly removed para- metric position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The discrepency between the experimentally measured and theoretically predicted cusps could be due to fabrication errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To effectively compare theory and experiment in this section only, we parameterize the system as a function of its displacement from the cusp for both theory and experiment using using dx and dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We then follow the predicted path by controlling panel P1’s x and y positions using the translation stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We begin the experiment by letting the system maintain its equilibrium at the initial dx, dy position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We then change the position of Panel P1 at a slow and steady rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Angle measurements are recorded at various locations in the loop as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S1(a) (see also Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 1 in the main text), and the change in position is paused once the transition happens at point vi in order to let the system settle down and obtain an accurate angle measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We confirm that the system returns to its original state once we return to the starting dx, dy position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Scaling experiment To fit the scaling relations, we use the the same section of the data set used for determining the location of the experimental cusp point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We neglect data in the nonlinear region of the saddle-node curves far away from the cusp point, as well as data too close to the cusp point, where the errors due to measurement noise are comparable to the distance to the cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The data points used for the scaling relations are highlighted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S2(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The state parameter values used in the scaling analysis correspond to the angle measurements obtained at the points right after the snap through transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' ONE DIMENSIONAL BIFURCATIONS OF EQUILIBRIA: NORMAL FORM AND SCALING The ability to design magneto elastic machines and control parameter pathways that robustly lead to complex actions corroborates the validity of a new design paradigm: operation near bifurcations of multiple equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The demonstrated trajectories take advantage of the structure of available dynamics near bifur- cations of equilibira.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These bifurcations are the loci of multiple distinct coalescing saddle node manifolds, as illustrated for the idealized symmetric butterfly bifurcation (Fig 3b in the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By weaving a trajectory that crosses and avoids chosen saddle node bifurcations we design a pathway that leads to com- plex actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system then cycles through multiple states via small variations of the control parameters, 3 taking advantage of the multiple accessible lever mechanisms associated with these saddle node surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The sensitivity of the realized design increases as the number of equilibria associated with the bifurcation grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Butterfly, cusp and saddle node bifurcations are the first in a series of bifurcations of equilibria in one-dimensional gradient systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' More generally, in systems with a single degree of freedom x, bifur- cations of k equilibria are points in parameter space where the first k derivatives of the potential vanish, {dV/dx, d2V/dx2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , dkV/dxk} = ⃗0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' That is, they are equilibrium points satisfying k − 1 equations beyond that of mechanical equilibrium dV/dx = 0 and therefore lie on a manifold of co-dimension k − 1 within the equilibrium manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The sensitivity of a bifurcation of k equilibria to variation in its parameters can be estimated through the topological equivalence of the dynamics near it to those in a normal form potential �V = ϕk+1 + k−1 � i=1 aiϕi, (S4) where the variable ϕ(θ) and normal form parameters ai(p) are coordinate transformations of the angle θ and parameters p respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The normal form describes the unfolding of the Taylor expansion of the potential at the bifurcation V ∼ xk+1 by variations of the parameters [S1–S3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The unfolded normal form potential demonstrates that the parameteric environment of a codimension k bifurcation includes domains with 1 to ⌈(k + 1)/2⌉ minima delineated by k saddle-node manifolds which coalesce at the bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Moreover, it implies scaling relations between the variation in the system’s state upon a snap through transition induced by crossing a saddle node bifurcation associated with a codimension k − 1 bifurcation and the variation of a normal form parameter that causes the snap: δϕ ∝ a1/(k−m+1) m , m < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S5) Heuristically the scaling can be derived from the normal form by noting that near the bifurcation the kth derivative of the potential must still vanish, and so δϕ2 ∼ ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Similarly the next k − 1 derivatives must progressively vanish, setting the scaling of am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' An explicit proof is given in [S4] and summarized in [S5, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These scaling relations carry over to the original variable and parameters near the bifurcation where the maps ϕ(x) and am(p) are approximately linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Indeed, the scaling relations we experimentally observed near a the cusp bifurcations are those of the systems state with the normal form parameters near a bifurcation of three equilibria, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=', a cusp [S4, S5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These scaling relations imply that the sensitivity of the system to variations of parameters grows expo- nentially with the number of associated equilibria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A system designed near a bifurcation of k equilibria can toggle its state between order unity separated states, δϕ ∼ 1/2, in response to variations of the linear normal form coefficient a1 of order 1/2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' That is, both the potential lever advantage and the sensitivity to noise in the parameters grow as the number of associated equilibria grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' However, the parametric domain in which the mapping to the normal form is linear is often very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The nonlinearity of the mapping often blunts the sensitivity of the response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Thus, the increased lever advantage near bifurcations of multiple equilibria is often not experimentally accessible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Conversely the system is not so sensitive to parametric noise when operated at a small parametric distance from the bifurcation about which it is designed, as demonstrated by the reproducibility of the experimental three state system, which was easily constructed twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' CONTINUATION ALGORITHMS To find bifurcations of multiple equilibria in the dynamics of our model system and to map out the saddle node structure in the vicinity of the high-order point, we use a series of continuation algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In one dimension, a codimension k bifurcation point is defined by the vanishing of the first k derivatives of the potential: ∂j θV (θ∗, {ξi}) = 0 for j = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These constraints define a codimenion k manifold in the space of dynamical variables and parameters (θ∗, {ξi}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Traditional continuation Standard continuation algorithms compute bifurcation curves by varying a small number of parameters, and then projecting onto the bifurcation manifold [S1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, suppose we have found a co-dimension 4 k bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This requires the first k derivatives of the potential vanish, fixing θ∗ and k − 1 parame- ters ξ1, ξ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , ξk−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Varying an additional parameter ξk produces a line emanating from our initial point (θ∗, {ξ}) = p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The continuation algorithm maps out this line by (i) taking a step along the tangent vec- tor Tk(p) to the curve, which is the null-vector of the gradient of the first k derivatives of the potential Tk(p) ≡ � ⃗v ∈ Rk+1 | ∀j ∈ (1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , k), ⃗v · ∇θ,ξ1,ξ2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=',ξk∂j θV = 0 � and (ii) correcting this step using a Newton- Raphson algorithm4 to search perpendicular to the step for a point where the first k derivatives of the po- tential vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This approach can be used to progressively search for higher order bifurcation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, a fixed-point can be continued until ∂2V (θ∗, {ξi})/∂θ2 vanishes, indicating a saddle node bifurca- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Continuing the saddle-node can lead to a cusp bifurcation, which in turn might lead to a swallowtail bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In this way, progressively adding parameters and performing continuations of one-dimensional curves can lead toward high-codimension bifurcation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Once we have found a high-order bifurcation point, we use this algorithm to map out the saddle node surfaces nearby.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The surfaces can in turn be used to design cycles in control parameters that cause the system to perform desired snapping transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The standard continuation approach, however, has limitations for microscopic machine design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In partic- ular, it has limited utility for finding the high-order bifurcation points near which our machine will operate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In our model system we have many free parameters, including the positions of each of the magnets embed- ded in the panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Varying a given experimental parameter does not guarantee we will find the next order bifurcation point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Instead we want to vary many parameters simultaneously, which greatly improves the likelihood that a higher-order bifurcation point is contained within the search space and allows for a more efficient approach toward that point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We have developed a gradient continuation algorithm to carry out this multi-parameter search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Design algorithm: Gradient continuation The gradient continuation algorithm works as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Suppose we have N parameters ξi in our system, plus the degree-of-freedom θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A point, p, where the first k derivatives of the potential vanish belongs to a co-dimension k manifold in the full (N + 1)-dimensional augmented parameter space, composed of the equilibrium state and control parameters, (θ∗, {ξi}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Starting from the point p, take a step along the gradient of the k+1 derivative of the potential ∇θ,ξ1,ξ2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=',ξN ∂k+1 θ V , projected onto the tangent surface to the manifold at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The tangent surface is the null-space of the gradient of the first k derivatives of the potential5, Tk,N(p) ≡ � ⃗v ∈ RN+1 | ∀j ∈ (1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , k), ⃗v · ∇θ,ξ1,ξ2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=',ξN ∂j θV = 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This procedure finds the step within the co-dimension k manifold that maximizes the change in ∂k+1 θ V , which we need to vanish in order to find the next order bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' After the step, the algorithm performs a corrective Newton-Raphson search [S6], constrained to the hyperplane T ⊥ k,N(p) perpendicular to the null-space, which returns to the codimension k manifold on which the first k derivatives of the potential vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As in the standard continuation, this approach is repeated to progressively find higher order bifurcation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A visualization of the gradient search algorithm, applied to the potential V = θ6 + a4θ4 + a2θ2 + a1θ, is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 3b in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' BUTTERFLY EXPERIMENTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Butterfly panels In the butterfly experiments, Panel P1’s x, y and z positions are measured as displacements from their value when the panels are 180◦ open, the magnets closest to the hinge axis are removed from it by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm on both panels, the panels are aligned vertically, and the back of the cylindrical magnets on Panel P1 are aligned with the center of the magnets on Panel P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This small change in magnet alignment (compared 4 Newton-Raphson(f, Ω, p) [S6] searches for the roots of the functions f over the space Ω starting at the point p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 5 Notice that this algorithm uses all N parameters ξ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , ξN to search for a codimension k bifurcation, while the stan- dard continuation in the previous section only used k pa- rameters ξ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' , ξk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The null-space Tk,N(p) has dimension (N − k + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 5 to the single snap experiment) is found to reduce the discrepancy between experiment and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' An illustration for the panels is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The damping paddle has dimensions 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0cm by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm for the butterfly experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The position of the magnets on panel P1 was changed such that the system operates next to a butterfly bifurcation, as specified in the main text and in the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Application of the continuation algorithm To find an experimentally feasible path and magnetic pattern, we implement the continuation algorithm by first finding a butterfly point in parameter space, then validating the resulting pattern against known experimental constraints (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' we require physically realizable panel angles and magnet positions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Before each search using the continuation algorithm, we first randomly generate orientations of the 18 magnetic dipoles on the two panels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We also randomly select two magnets on Panel P1 to be displaced from their lattice positions, by (dx1, dy1) and (dx2, dy2) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The search algorithm is always initialized with the values {θ, dx, dy, dz, dx1, dy1, dx2, dy2} = {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1rad, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='25cm, 0, 0, 0, 0, 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Next, we let the algorithm try to find a butterfly bifurcation point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' If no but- terfly point can be found, we repeat the initialization process and repeat the search with a new randomly generated magnetic pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The butterfly point corresponding to the pattern we used in our experiments is located at {θ, dx, dy, dz, dx1, dy1, dx2, dy2} = {2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='131rad, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='355cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='304cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='824cm, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='918cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='698cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='326cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='486cm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' If the butterfly point is found, we investigate the potential plots at various points in parameter space near the bifurcation point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Specifically, we offset one or more of the 6 search parameters by ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 and find the number of minima that exist between 0 to 180 degrees at each of these locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The potential plots at locations with three minima are then inspected to decide the experimental feasibility of the pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ideally, all three minima are at least 5 degrees apart, and the smallest minimum is at least 5 degrees (for z = 0) to prevent the panels from touching during experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We also look for patterns with large triple-minima regions, for example if three visibly deep minima can be observed when at least one parameter is changed by ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' After an experimentally feasible pattern is discovered, we manipulate the three experimentally controllable parameters (x,y,z) continuously around the point with deepest triple minima and observe changes in our model of the potential landscape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The design of the control path is guided by visualization of the saddle-node surfaces mapped out using the standard continuation algorithm detailed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Several paths are tested in the model to obtain the desired sequence of bifurcations and to optimize various properties of the transitions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' the magnitude of the snaps and depth of the minima).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Experiments for trajectories near a butterfly point We set up the experiment by laser-cutting the holes for magnets at the exact locations corresponding to the found dx1, dy1, dx2, dy2 values, which were 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='418cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='273cm, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='826cm, and −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='986cm respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We also add a translation stage to control Panel P1’s z position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We begin the experiment by following the exact coordinates provided by the theoretically designed path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In the event that a predicted transition cannot be seen using the predicted path coordinates (due to fabrication or calibration errors shifting the surface), we translate the system further from the original predicted path to determine a more robust path that may account for some shifting in coordinates due to experimental errors (for example see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4b in the main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Once an experimental path is shown to demonstrate the predicted behavior with the desired number of state transitions, we record the locations for state transitions in experiment, and repeat the experiment while slowing down the rate of change in x,y positions near the transitions to give the system enough time to respond in the presence of large damping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Those experiments show excellent qualitative agreement with the theoretically designed paths, although the locations at which transitions happen and the equilibrium angle of the panel are often shifted by a small amount due to experimental error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 6 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Additional operation mode: double-snap trajectories The intricate saddle-node surface structure near the butterfly bifurcation enables a variety of snapping behaviors with the same panel design, beyond the 3-state cycle presented in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Here we present a second snapping sequence that was measured experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' By using the same trajectory in parameter space as the three-snap sequence in the main text, but traverses the path in the reverse direction, we observe a two-snap sequence between small (S) and large (L) angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S4a shows this trajectory together with the same saddle surfaces from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4a in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The experimentally measured angles along this backward cycle are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S4b (see also Movie S2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Besides a minor systematic shift in the angles of the L state, we find excellent fidelity between the predicted and measured angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The snapping transitions occur almost exactly at the predicted locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Our example trajectories demonstrate that the saddle-node structure in the vicinity of a butterfly bifurca- tions enables a great deal of flexibility in controlling state transitions of a mechanical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For practical applications, further fine-tuning of the control trajectory can be used to optimize features the system’s behavior (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=', the positions of the steady states and their lifetimes in the presence of environmental noise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' GENERALIZATIONS: MULTIDIMENSIONAL BIFURCATIONS AND SUPPLEMENTAL SCALING BEHAVIOURS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Stopping conditions in higher dimensions While our proof-of-concept experiment is limited to a hinge with a single degree of freedom (the opening angle), our approach and gradient continuation algorithm are straightforward to apply to systems with multiple degrees of freedom, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' a microscopic robot with multiple panels connected by elastic hinges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The cuspoidal bifurcations discussed in this paper also naturally appear in higher-dimensional gradient systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' However, the analytic criteria to classify them is somewhat more complicated: we can not simply search for points where higher order derivatives of the potential vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In this section we will discuss stopping criteria in higher dimensions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' what quantities should we follow with the gradient continuation algorithm to search for bifurcations of increasing order?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' With two or more degrees of freedom, a saddle-node bifurcation occurs when a fixed-point (stable or unstable) collides with a saddle point, resulting in mutual annihilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This occurs when an eigenvalue of the Hessian of the potential Aij = −∂θi∂θjV crosses 0 (here θi are the dynamical variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For the purposes of applying gradient continuation starting from a fixed point, it is therefore convenient to use det A as the stopping criteria, since the determinant vanishes when an eigenvalue does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Near a saddle-node bifurcation, the state space can be decomposed (by the Center Manifold Theorem) into (i) the invariant center manifold emanating from the fixed point along the direction of the critical eigenvector (with eigenvalue 0) and (ii) a stable/unstable manifold on which the flows exponentially grow or decay (for the purposes of machine design we generally want only stable directions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Due to the vanishing eigenvalue, the dynamics on the center manifold are nonlinear at lowest order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These dynamics can be determined perturbatively by expanding the gradient of the potential, projecting onto the center manifold and enforcing the invariance of the center manifold [S1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Higher-order bifurcations occur when the center manifold expansion coefficients vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, vanishing quadratic term indicates a cusp bifurcation, vanishing cubic term indicates a swallowtail, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Thus these coefficients replace the higher-order derivatives of the potential as the stopping criteria in the gradient continuation algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Below we give explicit expressions for these expansion coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Suppose we have an n-dimensional system θ ∈ Rn that undergoes a saddle node bifurcation at θ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Near this point,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' the dynamics can be expanded as follows,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' ˙θ = A θ + F(θ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S6) where A is the Hessian of the potential (which has a zero eigenvalue) and F(θ) collects all quadratic and 7 higher-order terms in multilinear forms,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' F(θ) = 1 2B(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ) + 1 6C(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ) + 1 24D(θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' θ) + O(||θ||5) = 1 2 n � i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='j=1 ∂2F(φ) ∂φi∂φj ���� φ=0 θiθj + 1 6 n � i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='k=1 ∂3F(φ) ∂φi∂φj∂φk ���� φ=0 θiθjθk + 1 24 n � i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='l=1 ∂4F(φ) ∂φi∂φj∂φk∂φl ���� φ=0 θiθjθkθl + O(||θ||5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S7) Let ψ and ϕ be the right and left eigenvectors corresponding to the zero eigenvalue: Aψ = 0 and AT ϕ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The projection of θ onto the center manifold ϑ = ϕ · θ has dynamics ˙ϑ = a2ϑ2 + a3ϑ3 + O(ϑ4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S8) Following Kuznetsov, we derive the coefficients up to fourth order (third order is given in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S1]), a2 = 1 2ϕ · B(ψ, ψ) a3 = 1 6ϕ · C(ψ, ψ, ψ) + 1 2ϕ · B(ψ, b2) a4 = 1 24ϕ · D(ψ, ψ, ψ, ψ) + 1 4ϕ · C(ψ, ψ, b2) + 1 8ϕ · B(b2, b2) + 1 6ϕ · B(ψ, b3), (S9) where b2 = A−1 su � ψ[ϕ · B(ψ, ψ)] − B(ψ, ψ) � b3 = A−1 su � ψ[ϕ · C(ψ, ψ, ψ) + 3ϕ · B(ψ, b2)] + 3b2[ϕ · B(q, q)] − C(ψ, ψ, ψ) − 3B(ψ, b2) � (S10) and A−1 su is the inverse of A restricted to the stable/unstable subspace (which doesn’t have zero eigenvalues).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' As mentioned above, vanishing a2 indicates a cusp, if a3 also vanishes we have a swallowtail, and if all three coefficients are zero we have a butterfly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The vectors b2 and b3 describe the curvature of the center manifold in the full θ space, θ = qϑ + b2ϑ2/2 + b3ϑ3/6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' While these bifurcations are one dimensional (they occur on the one-dimensional invariant center manifold), the curvature of the center manifold as we move further from the bifurcation point could allow snapping between states with reasonable separation in multiple dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In principle, this would enable machines to carry out work cycles near a butterfly bifurcation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Scaling for the Thom’s seven: hyperbolic and elliptic umbilics Beyond the quasi-one-dimensional bifurcations there are also cuspoidal bifurcations that are genuinely mul- tidimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' In two dimensions, for example, we have elliptic umbilic, hyperbolic umbilic, and parabolic umbilic catastrophes (these together with the four one-dimensional bifurcations saddle-node, cusp, swallow- tail, and butterfly make up the Thom seven).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Like the cusp and butterfly bifurcations, the unfolding of the normal form predicts and intricate saddle-surface structure describing how fixed-points and saddle-points come together and collide in the vicinity of the bifurcation point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These higher-dimensional bifurcations also obey advantageous scaling laws, relating the changes in state to the variation of control parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For example, the normal form potentials for the elliptic and hyperbolic umbilics are Velliptic = θ3 1 3 − θ1θ2 2 + a(θ2 1 + θ2 2) + bθ1 + cθ2 Vhyperbolic = θ3 1 + θ3 2 + aθ1θ2 + bθ1 + cθ2 (S11) from which the follow scaling can be derived [S4], δθ1, δθ2 ∼ a b, c ∼ a2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (S12) Increasing the dimension further leads to even more cuspoidal bifurcations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' these have been enumerated by Arnold using an ADE classification [S7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' While the search criteria for such bifurcations is increasingly complicated, they provide a rich design space for multi-component machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 8 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Reynolds number scaling The magnetic decorations in our experiments are arranged in each panel about a square lattice with unit separation of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' To explore over-damped, gradient dynamics, that are ubiquitous in microscopic mechanisms, the rotating panel is attached to a paddle moving through a glycerol bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The results of our experiments then hold also for smaller systems in fluid with comparable kinematic viscosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' If the system is smaller by a factor Ω ≪ 1, the time ∆t it takes our macroscopic over-damped system, of typical size L, to traverse an angular expanse ∆θ is equal to the time it takes a microscopic system, of size ΩL to traverse the same angular expanse in the same liquid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This comes about because both the viscous drag force and the magnetic force between dipoles of magnetization M1 and M2, FDrag ∼ L2 ˙γ, Fdipole ∼ M1M2/R4, are quadratic in the typical system sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' For over-damped dynamics this results in a length-scale independent strain-rate, ˙γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system is over-damped if its Reynolds number Re = L2 ˙γ/ν, is smaller then 1, where ν is the fluid’s kinematic viscosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The Reynold’s number of a miniaturized system is therefore smaller by a factor of Ω2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Reducing the system’s size can compensate for changes in the system’s composition, such as embedding it in water rather than glycerol, or the growth of magnetic dipole strength density as the system size decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S1] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Kuznetsov, “Topological equivalence, bifurcations, and structural stability of dynamical systems,” in Elements of Applied Bifurcation Theory (Springer New York, New York, NY, 2004) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Guckenheimer and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer New York, New York, NY, 1983) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Bruce and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (Cambridge University Press, 1992) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Berry, Journal of Physics A: Mathematical and General 10, 2061 (1977) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S5] DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='gov/, Release 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 of 2022-01-15 (2022), f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Olver, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Olde Daalhuis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Lozier, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Schneider, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Boisvert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Clark, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Miller, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Saunders, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Cohl, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' McClain, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S6] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Press, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Teukolsky, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Vetterling, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Flannery, Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S7] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Arnol’d, “Bifurcations of equilibria,” in Dynamical Systems V, edited by V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Arnol’d (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 10–38 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' [S8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Yanega, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Ruina, Journal of theoretical biology 282, 41 (2011) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 9 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Single snap-through mechanism (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') As we vary the control parameters along a loop around the cusp point as shown, we expect to see a single snap-through buckling behavior (point v to point vi) for each cycle, akin to how hummingbirds use their beak to capture prey [S8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') The predicted potential energy curves for points labeled from i to vi are presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The saddle-node bifurcation occurs between v and vi as indicated by the arrow in v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') We experimentally observe the predicted snap-through behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Due to experimental errors, the location of the cusp point is shifted, but we see excellent agreement between the theory and measurements after shifting the coordinates to align the theoretical and experimental cusp points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Snap Through transitions near a cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' These plots show the equilibrium angle recorded in experiments following a snap-through transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The corresponding (x, y) denote the values of the control parameters at which the snap-through occurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Highlights the the data points used to fit the cusp scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We exclude data far from the cusp, where higher order terms in the normal form are non-negligible, and close to the cusp, where measurement and fabrication error are comparable to the distance from the cusp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Highlights the data corresponding to the upper and lower saddle-node curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' a) b) c) ty i vi iii + anel y L 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='9 y [rad] - System State Snap-through i: = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='606 vi: 0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='653 c+↑ Snap-through ↑ +c Snap-through v ii S 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 ii: θ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='841 v: θ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='830 LSI h+ ↑ y L!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S h+↑ yT Cusp Point iii iv c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='3 m 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='06 0 dy [cm] - Control Parameter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='09 iii: 0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='854 iv: 0 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='864a) b) ScalingDataPoints Upper Saddle Node Curve UnusedDataPoints O LowerSaddleNodeCurve EstimatedCuspPoint EstimatedCuspPoint 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='85 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='85 [rad] - System State 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 [rad] - System State 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='65 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='65 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 Q 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='75 ,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='35 x [cm] x [cm] Control y [cm] - Control Parameter Parameter10 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Butterfly panels: In the butterfly experiments, Panel P1’s x, y and z positions are measured as displacements from their value when the panels are 180◦ open, the magnets closest to the hinge axis are removed from it by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5cm on both panels, the panels are aligned vertically and the back of the cylindrical magnets on Panel P1 are aligned with the center of the magnets on Panel P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This small change in magnet alignment is found to reduce the discrepancy between experiment and prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 2-state Cycle Near Butterfly Bifurcation Point (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Theory The saddle node surfaces of a magneto- elastic system with three active control parameters, x,y and z are plotted, their color denotes the angle θ at which the snap occurs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system’s magnetic pattern is designed using the gradient continuation algorithm such that it operates near a butterfly bifurcation where multiple saddle node surfaces coalesce, enabling multiple snap-through transitions at the surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' A trajectory (colored tube with white arrows) is chosen such that the system snaps back and forth between two states with Large (L) and Small (S) angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' This trajectory is identical to that for the 3-state cycle in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' 4 in the main text, but the path is traversed in the opposite direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' The system’s predicted state is denoted by the tube’s color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' At intersections of the trajectory with a surface where their colors match the system is predicted to snap to a new state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' (b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=') Experimental demonstration: The colored dots mark the experimental value of the system’s state as it follows the designed trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' We observe two distinct transitions as predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content=' Hinge Axis 11 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='. X dx2 Z 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 0 [cm] x [cm][cm] - Control Parameter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 Stat 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='2 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='4 tem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='6 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='8 - 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0】 rad 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 > 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 S 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 3 y [cm] - C Parameter 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 x 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} +page_content='5 x' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAzT4oBgHgl3EQfi_0V/content/2301.01507v1.pdf'} diff --git a/HdE4T4oBgHgl3EQfgg3J/vector_store/index.faiss b/HdE4T4oBgHgl3EQfgg3J/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9ded3756201dd2debad3410a1ff095c77ef0c985 --- /dev/null +++ b/HdE4T4oBgHgl3EQfgg3J/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e8bcfe5639a0337f804cc1aca29236b50d8ab3096d66eaac2e79737b6bef5f5d +size 7798829 diff --git a/J9E3T4oBgHgl3EQfvQsy/vector_store/index.pkl b/J9E3T4oBgHgl3EQfvQsy/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0d3960f64941ab8789cc5cd620b882637749de0e --- /dev/null +++ b/J9E3T4oBgHgl3EQfvQsy/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:338e48f45103b0b901586522e962a3070ffb985a7016dabc2dedcf71a2ef5d7c +size 188562 diff --git a/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/2301.02909v1.pdf.txt b/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/2301.02909v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1829f27bc3b6890c3b2f4783983df4f9da9de1c2 --- /dev/null +++ b/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/2301.02909v1.pdf.txt @@ -0,0 +1,776 @@ +How to Allocate your Label Budget? Choosing between +Active Learning and Learning to Reject in Anomaly Detection +Lorenzo Perini,1 Daniele Giannuzzi, Jesse Davis 1 +1 KU Leuven, Department of Computer Science, DTAI & Leuven.AI, B-3000 Leuven, Belgium +lorenzo.perini@kuleuven.be, danielegiannuzzi1998@gmail.com, jesse.davis@kuleuven.be +Abstract +Anomaly detection attempts at finding examples that deviate +from the expected behaviour. Usually, anomaly detection is +tackled from an unsupervised perspective because anomalous +labels are rare and difficult to acquire. However, the lack of +labels makes the anomaly detector have high uncertainty in +some regions, which usually results in poor predictive perfor- +mance or low user trust in the predictions. One can reduce +such uncertainty by collecting specific labels using Active +Learning (AL), which targets examples close to the detec- +tor’s decision boundary. Alternatively, one can increase the +user trust by allowing the detector to abstain from making +highly uncertain predictions, which is called Learning to Re- +ject (LR). One way to do this is by thresholding the detector’s +uncertainty based on where its performance is low, which re- +quires labels to be evaluated. Although both AL and LR need +labels, they work with different types of labels: AL seeks +strategic labels, which are evidently biased, while LR requires +i.i.d. labels to evaluate the detector’s performance and set the +rejection threshold. Because one usually has a unique label +budget, deciding how to optimally allocate it is challenging. +In this paper, we propose a mixed strategy that, given a budget +of labels, decides in multiple rounds whether to use the bud- +get to collect AL labels or LR labels. The strategy is based +on a reward function that measures the expected gain when +allocating the budget to either side. We evaluate our strategy +on 18 benchmark datasets and compare it to some baselines. +Introduction +Anomaly detection is the task of automatically detect- +ing examples that do not follow expected patterns (Chan- +dola, Banerjee, and Kumar 2009). These examples, named +anomalies, are usually indicative of critical events such as +water leaks in stores (Perini, Vercruyssen, and Davis 2022), +breakdowns in gas turbines (Zhao, Wen, and Li 2016), or +failures in the petroleum extraction (Mart´ı et al. 2015). Such +critical events usually come along with elevated (mainte- +nance) costs or with substantial natural damages (e.g., dis- +persion of petroleum or gas). Thus, detecting anomalies in +time is a relevant task that limits such resource waste. +Collecting labels, especially for anomalies, is often a +hard task because anomalies are costly events (e.g., ma- +chine failures cannot be voluntarily induced), or simply +time-consuming (e.g., you may need to label 100s of exam- +ples before getting an anomaly). Thus, anomaly detection is +often tackled from an unsupervised perspective. However, +the lack of labels usually forces the unsupervised detector +to have high uncertainty on specific regions of the example +space (Perini, Vercruyssen, and Davis 2020). High uncer- +tainty is undesirable because it is often associated with poor +predictive performance or reduced trust in the predictions. +This uncertainty can be tackled in two complementary +ways. On the one hand, one can try to learn a more accu- +rate detector by acquiring a limited number of labels using +Active Learning (AL) (Abe, Zadrozny, and Langford 2006). +On the other hand, it is possible to increase the user trust +in the detector’s outputs by allowing the detector to abstain +from making a prediction when it is highly uncertain, which +is called Learning to Reject (LR) (Hendrickx et al. 2021; +De Stefano, Sansone, and Vento 2000). One way to do this +is to set a rejection threshold on the detector’s uncertainty +based on where its performance is poor (Cortes, DeSalvo, +and Mohri 2016). However, evaluating the detector perfor- +mance requires labels. +Both of these approaches rely on labeled data. However, +the types of labels needed for each approach are quite differ- +ent. Many AL strategies rely on biased sampling strategies +such as explicitly targeting acquiring labels, for example, for +which the detector is highly uncertain (i.e., near the detec- +tor’s current decision boundary) as these are known to yield +better performance (Pimentel et al. 2020; Culotta and Mc- +Callum 2005). Alas, using such labels to evaluate the detec- +tor’s performance, as required when setting the threshold in +LR, will yield a biased performance estimate and hence a +sub-optimal threshold (Marrocco, Molinara, and Tortorella +2007). Thus, if a user has a fixed budget for acquiring la- +bels there is a tension between collecting (a) strategic labels +that can be used to train a better detector, or (b) i.i.d. labels +that can be used to evaluate performance and set a proper +rejection threshold. Therefore, a data scientist is confronted +with the challenging question of how they should optimally +allocate their label budget between these two purposes. +In this paper, we assume that the label budget can be +split and allocated in multiple rounds. We introduce BAL- +LAD (Budget allocation for Active Learning and Learning to +reject in Anomaly Detection) a novel adaptive strategy that, +in each allocation round, (1) measures the potential reward +obtained by assigning the budget to either AL or LR, and (2) +chooses the highest reward option to collect the labels. +arXiv:2301.02909v1 [cs.LG] 7 Jan 2023 + +Preliminaries and Related Work +Anomaly Detection. +Let X be a d−dimensional random +variable with unknown p(X). We are given a dataset D = +{x1, . . . , xn} with n examples and d features is drawn i.i.d. +from p(X). Let V = {xn+1, . . . , xm} ∼i.i.d p(X), m > +n, be a validation set. Let Y be the label random variable, +such that Y |X = x indicates the class label (1 if anomaly, +0 if normal) for x ∈ Rd. An anomaly detection problem +is the task of finding an anomaly score function h: Rd → +R and a threshold t ∈ R such that Y = h(t)(X), where +h(t)(x) = 1 if h(x) ≥ t, 0 otherwise. Usually, one sets t +based on the contamination factor γ, i.e. the proportion of +anomalies (Perini, Buerkner, and Klami 2022). +Pool-based Active Learning (AL). +The goal of pool- +based AL strategies is to reduce the detector’s uncertainty +by selecting the most informative training instances. The +AL approaches can be classified into 3 categories (Monarch +2021): uncertainty-based sampling strategies aim to select +the unlabeled data samples with the highest uncertainty (Ha- +cohen, Dekel, and Weinshall 2022), diversity strategies cap- +ture the diversity among the training data (Abe, Zadrozny, +and Langford 2006; Dagan and Engelson 1995), combined +strategies integrate the advantages of uncertainty-based and +diversity-based criteria (Ebert, Fritz, and Schiele 2012). +Learning to Reject (LR). +The goal of a detector’s re- +ject option is to abstain from making a prediction when +a detector is too uncertain about predicting a test exam- +ple (Hendrickx et al. 2021; Cortes, DeSalvo, and Mohri +2016). Our goal is to develop a detector-agnostic strategy +that does ambiguity rejection, as novelty rejection would +reject all anomalies. Thus, we use a dependent rejector ar- +chitecture (Chow 1970). We indicate by C(x) the detector’s +confidence for predicting x ∈ V , and with τ ∈ [0, 1] the re- +jection threshold. If the confidence is below τ, the prediction +is rejected ht(x) = ®. Note that for appropriate inference, +we need to collect validation labels randomly (i.i.d.). +A strategy to allocate the label budget +This paper tackles the following problem: +Given: initially unlabeled training set D and validation set +V , the dataset’s contamination factor γ, an anomaly de- +tector h, and a label budget B; +Do: decide whether, in each allocation round k, to acquire +labels for D (AL) or for V (LR). +Both training the detector with more labels (AL) and learn- +ing a threshold using larger validation data (LR) improve the +detector’s performance. However, choosing the side to max- +imize such improvement is challenging for multiple reasons. +First, it requires measuring the reward of either side, i.e. the +expected gain in terms of the detector’s improvement. Sec- +ond, the rewards need to be on a similar scale such that nei- +ther side is privileged during the process. Third, comparing +a standard detector to one with the reject option is challeng- +ing because the latter needs ad-hoc metrics to overcome the +problem of predicting three classes (anomaly, normal, re- +ject) (Nadeem, Zucker, and Hanczar 2009). +In this paper, we introduce BALLAD, a strategy that mea- +sures the reward of allocating the budget for AL, i.e. collect- +ing strategic labels on the training set, and for LR, i.e., col- +lecting random labels on the validation set. Let B = k·b ∈ N +be our labelling budget. We perform k rounds and the la- +bels of b examples are queried in each round. We initialize +the problem by (1) training the detector with no labels and +setting a default rejection threshold, and (2) collecting b ran- +dom labels for V (LR) and for D (AL) for a total of 2b labels. +This allows us to compute the initial rewards by measuring +how the detector varies from (1) to (2): for LR, we mea- +sure the variation after re-setting the validation threshold; +for AL, we measure the variation after re-training the detec- +tor with the new labels. Then, we start the allocation loop. In +each round, we allocate the budget to the option (LR or AL) +with the highest reward, and we update the reward using the +new labels. We propose two alternative reward functions: 1) +the entropy reward looks at the detector’s probabilities, ei- +ther for prediction (AL), or for rejection (LR); 2) the cosine +reward considers the predicted class labels, either anomaly +yes/no (AL), or rejection yes/no (LR). +Measuring the reward +Because we do not know how beneficial the next label al- +location would be for the detector, we look at the past and +measure the effect of the last allocation round. Our challenge +is to design a reward function that reflects the gain when +querying the labels. We use the following methods to derive +the reward for both AL and LR, by using as detector’s prob- +abilities either the probability of predicting anomaly (AL), +or the probability of rejecting the example (LR). Similarly +to Vercruyssen et al. (2022), we consider two scenarios: +Entropy. +Adding more labels has the ability to decrease +the overall uncertainty of the anomaly detector. Thus, we +measure the variation of the detector’s probabilities as: +Re(k) = Ex∼X [|H(hk(x)) − H(hk−1(x))|] , +(1) +where H(h(x)) = −p log2 p is the entropy of the detector’s +probabilities p, and the subscript indicates the query round +(for k > 2). A large difference in entropy means a large +detector variation, which indicates a large impact of the new +labels and, in turn, a large reward Re. +Cosine. +More directly, one can measure the impact of the +labels in terms of variation of class predictions. Given the +detector’s probabilities, we threshold them at 0.5 and assign +value 1 to higher probabilities and 0 to lower ones. Thus, we +measure the cosine similarity between different outputs as +Rc(k) = ED∼X +� +1 − +hk(D) · hk−1(D) +∥hk(D)∥ · ∥hk−1(D)∥ +� +, +(2) +where h(D) is a vector containing the outputs (0 or 1) by the +detector h, and ∥·∥ is the Euclidean norm. This metric is less +sensitive to little variations in the detector and discriminates +more in case the new labels change the predicted class. + +Deriving the detector’s probabilities +Measuring the reward needs some probabilities, which are +not easy to derive due to the partially supervised setting. For +both prediction and rejection, we exploit the squashing func- +tion: given a positive real score s ∈ R+ and a threshold +λ ∈ R+, the squashing function +Sλ : R+ → (0, 1), +Sλ(s) = 1 − 2− s2 +λ2 +maps s to a probability > 0.5 if s > λ, and ≤ 0.5 other- +wise. Roughly speaking, Sλ calibrates the probabilities by +centering λ as the decision threshold. +Detector’s posterior probabilities. +Given the contamina- +tion factor γ, a common approach to set the threshold t is +by forcing the detector to have a training positive class rate +equal to γ. Thus, one can center the probabilities to t by +transforming the anomaly scores h(x) through the squash- +ing function: +P(ht(x) = 1) = St(h(x)) s. t. t = Qh(1 − γ). +We set t as the 1−γth quantile of the score distribution such +that only a proportion of γ scores have P(ht(x) = 1) ≥ 0.5. +Rejection probabilities. +Given a validation set with some +labels, we (1) set a specific detector confidence C(x), and (2) +set the rejection threshold τ ∈ [0, 1]. For the former, we use +the detector’s posterior probabilities: +C(x) = 2 × +��P(ht(x) = 1) − 0.5 +�� ∈ [0, 1]. +Thus, the closer P(ht(x) = 1) is to 0.5 (high uncertainty), +the lower the detector confidence. For the latter, we opti- +mize the threshold τ over the validation set (only the la- +beled examples) by minimizing a cost function M(ht). Fi- +nally, we compute the rejection probabilities by centering 1- +confidence values to the rejection threshold, i.e. by applying +the squashing function +P(ht(x) = ®) = Sτ(1 − C(x)). +The cost-based evaluation metric +Given a detector with a reject option and a detector without +it, we cannot compare their performance on the non-rejected +examples, as they would have different test sets. Thus, we +introduce a cost-based evaluation metric. Formally, given a +rejection cost cr > 0, a false positive cost cfp > 0, and a +false negative cost cfn > 0, the detector is evaluated as: +Mh = cr · P(ht(X) = ®) + cfp · P(ht(X) = 1|Y = 0) ++ cfn · P(ht(X) = 0|Y = 1). +Note that we assume cost null for the correct predictions, +while every misprediction as well as the rejection gets pe- +nalized. Because rejecting is assumed to be less costly than +mispredicting, the rejection cost needs to satisfy the inequal- +ity cr ≤ min{cfp × (1 − γ), cfn × γ}, otherwise one could +predict either always normal and pay an expected cost of +cfn × γ, or always anomaly and pay cfp × (1 − γ). +Experiments +We experimentally answer the following questions: +Q1. Does BALLAD result in lower costs when compared to +using only AL or LR? +Q2. Which reward metric is better? +Q3. Is the reward function on a similar scale for AL and LR? +Q4. How does our strategy behave when varying cfp, cfn ? +Experimental setup +Methods. +We compare BALLAD1 to two baselines: ALL- +IN-AL allocates all the budget for active learning and sets +the rejection threshold using the (biased) training labels; on +the contrary, ALL-IN-LR allocates all the budget for learn- +ing to reject and uses an unlabeled training set. +Table 1: Properties of the 18 datasets used. +Dataset +# Examples +# Features +γ +ALOI +12384 +27 +0.0304 +Annthyroid +7129 +21 +0.0749 +Arrhythmia +271 +259 +0.0996 +Cardiotocography +1734 +21 +0.0496 +Glass +214 +7 +0.0421 +InternetAds +1682 +1555 +0.0499 +KDDCup99 +48113 +40 +0.0042 +PageBlocks +5473 +10 +0.1023 +PenDigits +9868 +16 +0.0020 +Pima +526 +8 +0.0494 +Shuttle +1013 +9 +0.0128 +SpamBase +2661 +57 +0.0499 +Stamps +340 +9 +0.0912 +WBC +223 +9 +0.0448 +WDBC +367 +30 +0.0272 +WPBC +160 +33 +0.0562 +Waveform +3443 +21 +0.0290 +Wilt +4655 +5 +0.0199 +Data. +We carry out our study on 18 publicly available +benchmark datasets, which are widely used in the litera- +ture (Campos et al. 2016). See Table 1 for the properties. +Setup. +For each of the 18 benchmark datasets, we go as +follows: (i) we split the dataset into training, validation and +test sets using the proportions 40 − 40 − 20 (we have a large +validation set to better measure the impact of rejection); (ii) +we fit the anomaly detector on the unlabeled dataset and set +the rejection threshold to the default value of 0.1; (ii) we +allocate a budget b to LR and AL by randomly selecting +the initial examples; (iii) we optimize the rejection thresh- +old and measure the LR reward; (iv) we train the anomaly +detector on the partially labeled training set and measure the +AL reward; (v) we allocate the next round budget b to the +option with the highest reward and repeat (iii) or (iv) until +the whole budget B is used. During each of the steps, we +measure the detector performance on the test set using our +1Code available at https://github.com/Lorenzo-Perini/Ballad + +cost function. We set B to the 30% of the training set’s size, +and b to 2% of it, such that we run 15 allocation rounds. We +repeat (i - v) 10 times and report the average results. In total +we run 18 × 15 × 10 = 2700 experiments. +Costs and hyperparameters. +We set cfp = cfn = 1 and +cr = γ, following the cost inequality. SSDO (Vercruyssen +et al. 2018) with its default parameters is used as the semi- +supervised anomaly detector (Soenen et al. 2021). We use +IFOREST (Liu, Ting, and Zhou 2008) as its unsupervised +prior. We use Uncertainty Sampling as the active learning +strategy (Zhan et al. 2021), and the entropy as default re- +ward. For setting the rejection threshold, we use Bayesian +Optimization (GP MINIMIZE implemented in SKOPT) with +20 calls (Frazier 2018) and limit the rejection rate on the +validation set to 50%. +Experimental results +Q1. Comparing BALLAD to the ALL-IN strategies. Fig- +ure 1 shows the comparison between BALLAD with the en- +tropy reward and the ALL-IN strategies on the 18 bench- +mark datasets. On 8 datasets (Arrhythmia, Glass, Kdd- +Cup99, Pima, SpamBase, Wbc, Wdbc, Wpbc), BALLAD re- +sults in evident lower costs, although sometimes the differ- +ence is small. On 5 datasets (Cardiotocography, InternetAds, +PageBlocks, Stamps, Waveform) BALLAD performs simi- +lar/worse than ALL-IN-AL. This happens because SSDO has +an overall high performance and a contained uncertainty in +the predictions. On the other hand, in 3 cases (Aloi, Annthy- +roid, Wilt), allocating all the budget for LR has a lower cost. +This is due to the detector being inaccurate and unable to +learn from the training labels, which makes learning an opti- +mal threshold more convenient. As support for this intuition, +we analyze the plain test AUC of SSDO on the whole test +set (no rejection) for each of the three previous cases. By ag- +gregating over the rounds, SSDO obtains an average AUC +equal to 0.86, 0.88, and 0.57 when the best strategy is, re- +spectively, BALLAD, ALL-IN-AL, and ALL-IN-LR. Finally, +BALLAD obtains an overall average cost of 0.043, which is +≈ 20% lower than the baselines’ average cost (0.055 for +ALL-IN-AL, 0.054 for ALL-IN-LR). +Q2. Which reward function works better? We analyze +both types of reward functions that we introduced in Eq. 1 +and Eq. 2. Table 2 shows the mean and standard deviation +of the cost, divided by allocation round. Overall, using the +cosine reward builds a strategy that produces on average low +costs for little budget (≤ 10%), whereas, for a higher bud- +get, the entropy reward obtains better average costs. This is +due to the highly imbalanced choices made by the cosine re- +ward: the strategy opts for AL in 93% of the cases, which +usually improves a lot the detector’s performance with few +labels but tends to produce little effect when enough labels +are given. On the other hand, the entropy reward is more bal- +anced and opts for AL in 63% of the cases. This allows the +detector to keep decreasing the costs while learning during +the allocation rounds and obtain more steady performance. +Q3. Is the entropy reward balanced for AL and LR? Fig- +ure 2 shows the distribution of the difference between AL +and LR entropy rewards over all the 2700 experiments. Neg- +Budget +Entropy Re +Cosine Rc +2% +0.0536 ± 0.0401 +0.0399 ± 0.0303 +4% +0.0465 ± 0.0330 +0.0411 ± 0.0334 +6% +0.0443 ± 0.0284 +0.0398 ± 0.0321 +8% +0.0436 ± 0.0303 +0.0399 ± 0.0306 +10% +0.0420 ± 0.0299 +0.0411 ± 0.0325 +12% +0.0416 ± 0.0303 +0.0433 ± 0.0347 +14% +0.0413 ± 0.0306 +0.0448 ± 0.0367 +16% +0.0408 ± 0.0288 +0.0456 ± 0.0372 +18% +0.0403 ± 0.0290 +0.0457 ± 0.0355 +20% +0.0412 ± 0.0297 +0.0451 ± 0.0363 +22% +0.0407 ± 0.0301 +0.0451 ± 0.0359 +24% +0.0421 ± 0.0325 +0.0438 ± 0.0361 +26% +0.0417 ± 0.0345 +0.0438 ± 0.0363 +28% +0.0416 ± 0.0332 +0.0438 ± 0.0380 +30% +0.0418 ± 0.0345 +0.0427 ± 0.0354 +Table 2: Average (± std) cost per test example over the +datasets grouped by allocation round for each of the two re- +ward functions. For low budgets, the cosine reward obtains +lower costs, while not being competitive for high budgets. +ative values indicate that the LR reward is higher than AL’s +one, while the opposite holds for positive values. Overall, +the median is close to 0, which means that there is no clearly +predominant strategy. Because the left tail of the density is +larger than the right one, we conclude that LR rewards have +higher variability (std = 0.07 vs 0.03). +Q4. The impact of varying cfp, and cfn. In this experi- +ment, we penalize more false positives and false negatives +by setting, one at a time, cfp and cfn to 10. We compare +BALLAD to the two ALL-IN baselines. For cfp = 10, our +strategy is still the best for low budgets (< 15%), reduc- +ing the relative cost by between 5% and 25% with respect +to the runner-up ALL-IN-LR. However, for higher budgets +(> 15%), ALL-IN-LR becomes the best strategy as it re- +duces BALLAD’s cost by around 20% and ALL-IN-AL’s cost +by more than 40%. This happens because the anomaly de- +tector produces too many false positives, which, if rejected, +allow us to reduce the cost. For cfn = 10, BALLAD performs +much better than the baselines, reducing their cost by around +20% (vs ALL-IN-LR) and 24% (vs ALL-IN-AL). +Conclusion +We proposed BALLAD, a novel strategy to decide whether +to allocate the budget for Active Learning (AL), i.e. labeling +strategic training instances, or for Learning to Reject (LR), +i.e. labeling a random validation set. Our key insight is that +we can measure the expected reward when labeling either set +and allocate the label in the next round to the option with the +highest reward. We proposed two reward functions (entropy +and cosine similarity based). Experimentally, we evaluated +BALLAD on 18 datasets, and show that it performs better +than simply allocating all the labels to either AL or LR. + +0.03 +0.06 +0.09 +0.12 +Aloi +0.03 +0.06 +0.09 +0.12 +Ann +0.03 +0.06 +0.09 +0.12 +Arr +AL-LR +All-in AL +All-in LR +0.03 +0.06 +0.09 +0.12 +Car +0.03 +0.06 +0.09 +0.12 +Glass +0.03 +0.06 +0.09 +0.12 +Int +0.03 +0.06 +0.09 +0.12 +Cost per test example +Kdd +0.03 +0.06 +0.09 +0.12 +Page +0.03 +0.06 +0.09 +0.12 +Pen +0.03 +0.06 +0.09 +0.12 +Pima +0.03 +0.06 +0.09 +0.12 +Shu +0.03 +0.06 +0.09 +0.12 +Spam +4 +8 +12 +16 +20 +24 +28 +0.03 +0.06 +0.09 +0.12 +Stam +4 +8 +12 +16 +20 +24 +28 +0.03 +0.06 +0.09 +0.12 +Wbc +4 +8 +12 +16 +20 +24 +28 +Allocated budget (% of labeled examples) +0.03 +0.06 +0.09 +0.12 +Wdbc +4 +8 +12 +16 +20 +24 +28 +0.03 +0.06 +0.09 +0.12 +Wpbc +4 +8 +12 +16 +20 +24 +28 +0.03 +0.06 +0.09 +0.12 +Wave +4 +8 +12 +16 +20 +24 +28 +0.03 +0.06 +0.09 +0.12 +Wilt +Figure 1: Comparison between BALLAD and the ALL-IN strategies on the 18 benchmarks. The x-axis reports the 15 rounds of +2% labels each. The y-axis shows the average cost per test example. BALLAD obtains lower costs in the majority of cases. +0.3 +0.2 +0.1 +0.0 +0.1 +0.2 +0.3 +AL reward - LR reward +Density +Median +Figure 2: Distribution of the difference between AL’s and +LR’s entropy reward. The median close to 0 indicates the +absence of a predominant strategy. +Acknowledgements. +This work was presented at the 1st +AAAI Workshop on Uncertainty Reasoning and Quantifica- +tion in Decision Making (UDM23). +This research is supported by an FB Ph.D. fellowship by +FWO-Vlaanderen (grant 1166222N) [LP], the Flemish Gov- +ernment under the “Onderzoeksprogramma Artifici¨ele Intel- +ligentie (AI) Vlaanderen” programme [JD], and KUL Re- +search Fund iBOF/21/075 [JD]. +References +Abe, N.; Zadrozny, B.; and Langford, J. 2006. Outlier detec- +tion by active learning. In Proceedings of ACM SIGKDD. +Campos, G. O.; Zimek, A.; Sander, J.; Campello, R. J.; Mi- +cenkov´a, B.; Schubert, E.; Assent, I.; and Houle, M. E. 2016. +On the evaluation of unsupervised outlier detection: mea- +sures, datasets, and an empirical study. Data mining and +knowledge discovery. +Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly +detection: A survey. ACM computing surveys (CSUR). +Chow, C. 1970. On optimum recognition error and reject +tradeoff. IEEE Transactions on information theory. +Cortes, C.; DeSalvo, G.; and Mohri, M. 2016. +Learning +with rejection. In International Conference on Algorithmic +Learning Theory. Springer. +Culotta, A.; and McCallum, A. 2005. Reducing labeling ef- +fort for structured prediction tasks. In AAAI. +Dagan, I.; and Engelson, S. P. 1995. Committee-based sam- +pling for training probabilistic classifiers. In Machine Learn- +ing Proceedings 1995. Elsevier. +De Stefano, C.; Sansone, C.; and Vento, M. 2000. To reject +or not to reject: that is the question-an answer in case of +neural classifiers. IEEE Transactions on Systems, Man, and +Cybernetics, Part C (Applications and Reviews). +Ebert, S.; Fritz, M.; and Schiele, B. 2012. +Ralf: A rein- +forced active learning formulation for object class recogni- +tion. +In 2012 IEEE Conference on Computer Vision and +Pattern Recognition. IEEE. +Frazier, P. I. 2018. Bayesian optimization. In Recent ad- +vances in optimization and modeling of contemporary prob- +lems. Informs. +Hacohen, G.; Dekel, A.; and Weinshall, D. 2022. Active +learning on a budget: Opposite strategies suit high and low +budgets. arXiv preprint arXiv:2202.02794. +Hendrickx, K.; Perini, L.; Van der Plas, D.; Meert, W.; and +Davis, J. 2021. Machine learning with a reject option: A +survey. arXiv preprint arXiv:2107.11277. +Liu, F. T.; Ting, K. M.; and Zhou, Z.-H. 2008. +Isolation +forest. In 8th IEEE international conference on data mining. +Marrocco, C.; Molinara, M.; and Tortorella, F. 2007. An em- +pirical comparison of ideal and empirical ROC-based reject + +rules. In International Workshop on Machine Learning and +Data Mining in Pattern Recognition. Springer. +Mart´ı, L.; Sanchez-Pi, N.; Molina, J. M.; and Garcia, A. +C. B. 2015. +Anomaly detection based on sensor data in +petroleum industry applications. Sensors. +Monarch, R. M. 2021. Human-in-the-Loop Machine Learn- +ing: Active learning and annotation for human-centered AI. +Simon and Schuster. +Nadeem, M. S. A.; Zucker, J.-D.; and Hanczar, B. 2009. +Accuracy-rejection curves (ARCs) for comparing classifica- +tion methods with a reject option. In Machine Learning in +Systems Biology. PMLR. +Perini, L.; Buerkner, P.; and Klami, A. 2022. +Estimat- +ing the Contamination Factor’s Distribution in Unsupervised +Anomaly Detection. arXiv preprint arXiv:2210.10487. +Perini, L.; Vercruyssen, V.; and Davis, J. 2020. Quantify- +ing the confidence of anomaly detectors in their example- +wise predictions. In Joint European Conference on Machine +Learning and Knowledge Discovery in Databases. Springer. +Perini, L.; Vercruyssen, V.; and Davis, J. 2022. Transfer- +ring the Contamination Factor between Anomaly Detection +Domains by Shape Similarity. In Proceedings of the AAAI +Conference on Artificial Intelligence. +Pimentel, T.; Monteiro, M.; Veloso, A.; and Ziviani, N. +2020. Deep active learning for anomaly detection. In 2020 +International Joint Conference on Neural Networks. IEEE. +Soenen, J.; Van Wolputte, E.; Perini, L.; Vercruyssen, V.; +Meert, W.; Davis, J.; and Blockeel, H. 2021. The effect of +hyperparameter tuning on the comparative evaluation of un- +supervised anomaly detection methods. In Proceedings of +the KDD. +Vercruyssen, V.; Meert, W.; Verbruggen, G.; Maes, K.; +Baumer, R.; and Davis, J. 2018. Semi-supervised anomaly +detection with an application to water analytics. In 2018 +IEEE international conference on data mining (icdm). IEEE. +Vercruyssen, V.; Perini, L.; Meert, W.; and Davis, J. +2022. Multi-domain Active Learning for Semi-supervised +Anomaly Detection. ECML 2022 published proceedings. +Zhan, X.; Liu, H.; Li, Q.; and Chan, A. B. 2021. A Compara- +tive Survey: Benchmarking for Pool-based Active Learning. +In IJCAI. +Zhao, N.; Wen, X.; and Li, S. 2016. A review on gas tur- +bine anomaly detection for implementing health manage- +ment. Turbo Expo: Power for Land, Sea, and Air. + diff --git a/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/load_file.txt b/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ff127e3667517ffed76802c82eb5e615a20530a1 --- /dev/null +++ b/JNE1T4oBgHgl3EQfGAOI/content/tmp_files/load_file.txt @@ -0,0 +1,676 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf,len=675 +page_content='How to Allocate your Label Budget?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Choosing between Active Learning and Learning to Reject in Anomaly Detection Lorenzo Perini,1 Daniele Giannuzzi, Jesse Davis 1 1 KU Leuven, Department of Computer Science, DTAI & Leuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='AI, B-3000 Leuven, Belgium lorenzo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='perini@kuleuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='be, danielegiannuzzi1998@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='com, jesse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='davis@kuleuven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='be Abstract Anomaly detection attempts at finding examples that deviate from the expected behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Usually, anomaly detection is tackled from an unsupervised perspective because anomalous labels are rare and difficult to acquire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, the lack of labels makes the anomaly detector have high uncertainty in some regions, which usually results in poor predictive perfor- mance or low user trust in the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' One can reduce such uncertainty by collecting specific labels using Active Learning (AL), which targets examples close to the detec- tor’s decision boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Alternatively, one can increase the user trust by allowing the detector to abstain from making highly uncertain predictions, which is called Learning to Re- ject (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' One way to do this is by thresholding the detector’s uncertainty based on where its performance is low, which re- quires labels to be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Although both AL and LR need labels, they work with different types of labels: AL seeks strategic labels, which are evidently biased, while LR requires i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' labels to evaluate the detector’s performance and set the rejection threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Because one usually has a unique label budget, deciding how to optimally allocate it is challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In this paper, we propose a mixed strategy that, given a budget of labels, decides in multiple rounds whether to use the bud- get to collect AL labels or LR labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The strategy is based on a reward function that measures the expected gain when allocating the budget to either side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We evaluate our strategy on 18 benchmark datasets and compare it to some baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Introduction Anomaly detection is the task of automatically detect- ing examples that do not follow expected patterns (Chan- dola, Banerjee, and Kumar 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' These examples, named anomalies, are usually indicative of critical events such as water leaks in stores (Perini, Vercruyssen, and Davis 2022), breakdowns in gas turbines (Zhao, Wen, and Li 2016), or failures in the petroleum extraction (Mart´ı et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Such critical events usually come along with elevated (mainte- nance) costs or with substantial natural damages (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=', dis- persion of petroleum or gas).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, detecting anomalies in time is a relevant task that limits such resource waste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Collecting labels, especially for anomalies, is often a hard task because anomalies are costly events (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=', ma- chine failures cannot be voluntarily induced), or simply time-consuming (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=', you may need to label 100s of exam- ples before getting an anomaly).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, anomaly detection is often tackled from an unsupervised perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, the lack of labels usually forces the unsupervised detector to have high uncertainty on specific regions of the example space (Perini, Vercruyssen, and Davis 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' High uncer- tainty is undesirable because it is often associated with poor predictive performance or reduced trust in the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This uncertainty can be tackled in two complementary ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On the one hand, one can try to learn a more accu- rate detector by acquiring a limited number of labels using Active Learning (AL) (Abe, Zadrozny, and Langford 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On the other hand, it is possible to increase the user trust in the detector’s outputs by allowing the detector to abstain from making a prediction when it is highly uncertain, which is called Learning to Reject (LR) (Hendrickx et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' De Stefano, Sansone, and Vento 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' One way to do this is to set a rejection threshold on the detector’s uncertainty based on where its performance is poor (Cortes, DeSalvo, and Mohri 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, evaluating the detector perfor- mance requires labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Both of these approaches rely on labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, the types of labels needed for each approach are quite differ- ent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Many AL strategies rely on biased sampling strategies such as explicitly targeting acquiring labels, for example, for which the detector is highly uncertain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=', near the detec- tor’s current decision boundary) as these are known to yield better performance (Pimentel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Culotta and Mc- Callum 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Alas, using such labels to evaluate the detec- tor’s performance, as required when setting the threshold in LR, will yield a biased performance estimate and hence a sub-optimal threshold (Marrocco, Molinara, and Tortorella 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, if a user has a fixed budget for acquiring la- bels there is a tension between collecting (a) strategic labels that can be used to train a better detector, or (b) i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' labels that can be used to evaluate performance and set a proper rejection threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Therefore, a data scientist is confronted with the challenging question of how they should optimally allocate their label budget between these two purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In this paper, we assume that the label budget can be split and allocated in multiple rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We introduce BAL- LAD (Budget allocation for Active Learning and Learning to reject in Anomaly Detection) a novel adaptive strategy that, in each allocation round, (1) measures the potential reward obtained by assigning the budget to either AL or LR, and (2) chooses the highest reward option to collect the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='02909v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='LG] 7 Jan 2023 Preliminaries and Related Work Anomaly Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Let X be a d−dimensional random variable with unknown p(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We are given a dataset D = {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' , xn} with n examples and d features is drawn i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' from p(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Let V = {xn+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' , xm} ∼i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='d p(X), m > n, be a validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Let Y be the label random variable, such that Y |X = x indicates the class label (1 if anomaly, 0 if normal) for x ∈ Rd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' An anomaly detection problem is the task of finding an anomaly score function h: Rd → R and a threshold t ∈ R such that Y = h(t)(X), where h(t)(x) = 1 if h(x) ≥ t, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Usually, one sets t based on the contamination factor γ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' the proportion of anomalies (Perini, Buerkner, and Klami 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Pool-based Active Learning (AL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The goal of pool- based AL strategies is to reduce the detector’s uncertainty by selecting the most informative training instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The AL approaches can be classified into 3 categories (Monarch 2021): uncertainty-based sampling strategies aim to select the unlabeled data samples with the highest uncertainty (Ha- cohen, Dekel, and Weinshall 2022), diversity strategies cap- ture the diversity among the training data (Abe, Zadrozny, and Langford 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Dagan and Engelson 1995), combined strategies integrate the advantages of uncertainty-based and diversity-based criteria (Ebert, Fritz, and Schiele 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Learning to Reject (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The goal of a detector’s re- ject option is to abstain from making a prediction when a detector is too uncertain about predicting a test exam- ple (Hendrickx et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Cortes, DeSalvo, and Mohri 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Our goal is to develop a detector-agnostic strategy that does ambiguity rejection, as novelty rejection would reject all anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, we use a dependent rejector ar- chitecture (Chow 1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We indicate by C(x) the detector’s confidence for predicting x ∈ V , and with τ ∈ [0, 1] the re- jection threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' If the confidence is below τ, the prediction is rejected ht(x) = ®.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Note that for appropriate inference, we need to collect validation labels randomly (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' A strategy to allocate the label budget This paper tackles the following problem: Given: initially unlabeled training set D and validation set V , the dataset’s contamination factor γ, an anomaly de- tector h, and a label budget B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Do: decide whether, in each allocation round k, to acquire labels for D (AL) or for V (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Both training the detector with more labels (AL) and learn- ing a threshold using larger validation data (LR) improve the detector’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, choosing the side to max- imize such improvement is challenging for multiple reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' First, it requires measuring the reward of either side, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' the expected gain in terms of the detector’s improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Sec- ond, the rewards need to be on a similar scale such that nei- ther side is privileged during the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Third, comparing a standard detector to one with the reject option is challeng- ing because the latter needs ad-hoc metrics to overcome the problem of predicting three classes (anomaly, normal, re- ject) (Nadeem, Zucker, and Hanczar 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In this paper, we introduce BALLAD, a strategy that mea- sures the reward of allocating the budget for AL, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' collect- ing strategic labels on the training set, and for LR, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=', col- lecting random labels on the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Let B = k·b ∈ N be our labelling budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We perform k rounds and the la- bels of b examples are queried in each round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We initialize the problem by (1) training the detector with no labels and setting a default rejection threshold, and (2) collecting b ran- dom labels for V (LR) and for D (AL) for a total of 2b labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This allows us to compute the initial rewards by measuring how the detector varies from (1) to (2): for LR, we mea- sure the variation after re-setting the validation threshold;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' for AL, we measure the variation after re-training the detec- tor with the new labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Then, we start the allocation loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In each round, we allocate the budget to the option (LR or AL) with the highest reward, and we update the reward using the new labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We propose two alternative reward functions: 1) the entropy reward looks at the detector’s probabilities, ei- ther for prediction (AL), or for rejection (LR);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2) the cosine reward considers the predicted class labels, either anomaly yes/no (AL), or rejection yes/no (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Measuring the reward Because we do not know how beneficial the next label al- location would be for the detector, we look at the past and measure the effect of the last allocation round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Our challenge is to design a reward function that reflects the gain when querying the labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We use the following methods to derive the reward for both AL and LR, by using as detector’s prob- abilities either the probability of predicting anomaly (AL), or the probability of rejecting the example (LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Similarly to Vercruyssen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (2022), we consider two scenarios: Entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Adding more labels has the ability to decrease the overall uncertainty of the anomaly detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, we measure the variation of the detector’s probabilities as: Re(k) = Ex∼X [|H(hk(x)) − H(hk−1(x))|] , (1) where H(h(x)) = −p log2 p is the entropy of the detector’s probabilities p, and the subscript indicates the query round (for k > 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' A large difference in entropy means a large detector variation, which indicates a large impact of the new labels and, in turn, a large reward Re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Cosine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' More directly, one can measure the impact of the labels in terms of variation of class predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Given the detector’s probabilities, we threshold them at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5 and assign value 1 to higher probabilities and 0 to lower ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, we measure the cosine similarity between different outputs as Rc(k) = ED∼X � 1 − hk(D) · hk−1(D) ∥hk(D)∥ · ∥hk−1(D)∥ � , (2) where h(D) is a vector containing the outputs (0 or 1) by the detector h, and ∥·∥ is the Euclidean norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This metric is less sensitive to little variations in the detector and discriminates more in case the new labels change the predicted class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Deriving the detector’s probabilities Measuring the reward needs some probabilities, which are not easy to derive due to the partially supervised setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For both prediction and rejection, we exploit the squashing func- tion: given a positive real score s ∈ R+ and a threshold λ ∈ R+, the squashing function Sλ : R+ → (0, 1), Sλ(s) = 1 − 2− s2 λ2 maps s to a probability > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5 if s > λ, and ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5 other- wise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Roughly speaking, Sλ calibrates the probabilities by centering λ as the decision threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Detector’s posterior probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Given the contamina- tion factor γ, a common approach to set the threshold t is by forcing the detector to have a training positive class rate equal to γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, one can center the probabilities to t by transforming the anomaly scores h(x) through the squash- ing function: P(ht(x) = 1) = St(h(x)) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' t = Qh(1 − γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We set t as the 1−γth quantile of the score distribution such that only a proportion of γ scores have P(ht(x) = 1) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Rejection probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Given a validation set with some labels, we (1) set a specific detector confidence C(x), and (2) set the rejection threshold τ ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For the former, we use the detector’s posterior probabilities: C(x) = 2 × ��P(ht(x) = 1) − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5 �� ∈ [0, 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, the closer P(ht(x) = 1) is to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='5 (high uncertainty), the lower the detector confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For the latter, we opti- mize the threshold τ over the validation set (only the la- beled examples) by minimizing a cost function M(ht).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Fi- nally, we compute the rejection probabilities by centering 1- confidence values to the rejection threshold, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' by applying the squashing function P(ht(x) = ®) = Sτ(1 − C(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The cost-based evaluation metric Given a detector with a reject option and a detector without it, we cannot compare their performance on the non-rejected examples, as they would have different test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Thus, we introduce a cost-based evaluation metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Formally, given a rejection cost cr > 0, a false positive cost cfp > 0, and a false negative cost cfn > 0, the detector is evaluated as: Mh = cr · P(ht(X) = ®) + cfp · P(ht(X) = 1|Y = 0) + cfn · P(ht(X) = 0|Y = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Note that we assume cost null for the correct predictions, while every misprediction as well as the rejection gets pe- nalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Because rejecting is assumed to be less costly than mispredicting, the rejection cost needs to satisfy the inequal- ity cr ≤ min{cfp × (1 − γ), cfn × γ}, otherwise one could predict either always normal and pay an expected cost of cfn × γ, or always anomaly and pay cfp × (1 − γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Experiments We experimentally answer the following questions: Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Does BALLAD result in lower costs when compared to using only AL or LR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Which reward metric is better?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Is the reward function on a similar scale for AL and LR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' How does our strategy behave when varying cfp, cfn ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Experimental setup Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We compare BALLAD1 to two baselines: ALL- IN-AL allocates all the budget for active learning and sets the rejection threshold using the (biased) training labels;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' on the contrary, ALL-IN-LR allocates all the budget for learn- ing to reject and uses an unlabeled training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Table 1: Properties of the 18 datasets used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Dataset # Examples # Features γ ALOI 12384 27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0304 Annthyroid 7129 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0749 Arrhythmia 271 259 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0996 Cardiotocography 1734 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0496 Glass 214 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0421 InternetAds 1682 1555 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0499 KDDCup99 48113 40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0042 PageBlocks 5473 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='1023 PenDigits 9868 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0020 Pima 526 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0494 Shuttle 1013 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0128 SpamBase 2661 57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0499 Stamps 340 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0912 WBC 223 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0448 WDBC 367 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0272 WPBC 160 33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0562 Waveform 3443 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0290 Wilt 4655 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0199 Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We carry out our study on 18 publicly available benchmark datasets, which are widely used in the litera- ture (Campos et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' See Table 1 for the properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For each of the 18 benchmark datasets, we go as follows: (i) we split the dataset into training, validation and test sets using the proportions 40 − 40 − 20 (we have a large validation set to better measure the impact of rejection);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (ii) we fit the anomaly detector on the unlabeled dataset and set the rejection threshold to the default value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (ii) we allocate a budget b to LR and AL by randomly selecting the initial examples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (iii) we optimize the rejection thresh- old and measure the LR reward;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (iv) we train the anomaly detector on the partially labeled training set and measure the AL reward;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' (v) we allocate the next round budget b to the option with the highest reward and repeat (iii) or (iv) until the whole budget B is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' During each of the steps, we measure the detector performance on the test set using our 1Code available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='com/Lorenzo-Perini/Ballad cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We set B to the 30% of the training set’s size, and b to 2% of it, such that we run 15 allocation rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We repeat (i - v) 10 times and report the average results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In total we run 18 × 15 × 10 = 2700 experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Costs and hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We set cfp = cfn = 1 and cr = γ, following the cost inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' SSDO (Vercruyssen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2018) with its default parameters is used as the semi- supervised anomaly detector (Soenen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We use IFOREST (Liu, Ting, and Zhou 2008) as its unsupervised prior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We use Uncertainty Sampling as the active learning strategy (Zhan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021), and the entropy as default re- ward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For setting the rejection threshold, we use Bayesian Optimization (GP MINIMIZE implemented in SKOPT) with 20 calls (Frazier 2018) and limit the rejection rate on the validation set to 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Experimental results Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Comparing BALLAD to the ALL-IN strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Fig- ure 1 shows the comparison between BALLAD with the en- tropy reward and the ALL-IN strategies on the 18 bench- mark datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On 8 datasets (Arrhythmia, Glass, Kdd- Cup99, Pima, SpamBase, Wbc, Wdbc, Wpbc), BALLAD re- sults in evident lower costs, although sometimes the differ- ence is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On 5 datasets (Cardiotocography, InternetAds, PageBlocks, Stamps, Waveform) BALLAD performs simi- lar/worse than ALL-IN-AL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This happens because SSDO has an overall high performance and a contained uncertainty in the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On the other hand, in 3 cases (Aloi, Annthy- roid, Wilt), allocating all the budget for LR has a lower cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This is due to the detector being inaccurate and unable to learn from the training labels, which makes learning an opti- mal threshold more convenient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' As support for this intuition, we analyze the plain test AUC of SSDO on the whole test set (no rejection) for each of the three previous cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' By ag- gregating over the rounds, SSDO obtains an average AUC equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='86, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='88, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='57 when the best strategy is, re- spectively, BALLAD, ALL-IN-AL, and ALL-IN-LR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Finally, BALLAD obtains an overall average cost of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='043, which is ≈ 20% lower than the baselines’ average cost (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='055 for ALL-IN-AL, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='054 for ALL-IN-LR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Which reward function works better?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We analyze both types of reward functions that we introduced in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 1 and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Table 2 shows the mean and standard deviation of the cost, divided by allocation round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Overall, using the cosine reward builds a strategy that produces on average low costs for little budget (≤ 10%), whereas, for a higher bud- get, the entropy reward obtains better average costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This is due to the highly imbalanced choices made by the cosine re- ward: the strategy opts for AL in 93% of the cases, which usually improves a lot the detector’s performance with few labels but tends to produce little effect when enough labels are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On the other hand, the entropy reward is more bal- anced and opts for AL in 63% of the cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This allows the detector to keep decreasing the costs while learning during the allocation rounds and obtain more steady performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Is the entropy reward balanced for AL and LR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Fig- ure 2 shows the distribution of the difference between AL and LR entropy rewards over all the 2700 experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Neg- Budget Entropy Re Cosine Rc 2% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0536 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0401 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0399 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0303 4% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0465 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0411 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0334 6% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0443 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0284 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0398 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0321 8% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0436 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0399 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0306 10% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0420 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0299 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0411 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0325 12% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0416 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0433 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0347 14% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0413 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0306 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0448 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0367 16% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0408 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0288 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0456 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0372 18% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0403 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0290 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0457 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0355 20% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0412 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0451 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0363 22% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0407 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0301 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0451 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0359 24% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0421 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0438 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0361 26% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0417 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0438 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0363 28% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0416 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0332 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0438 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0380 30% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0418 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0345 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0427 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0354 Table 2: Average (± std) cost per test example over the datasets grouped by allocation round for each of the two re- ward functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For low budgets, the cosine reward obtains lower costs, while not being competitive for high budgets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' ative values indicate that the LR reward is higher than AL’s one, while the opposite holds for positive values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Overall, the median is close to 0, which means that there is no clearly predominant strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Because the left tail of the density is larger than the right one, we conclude that LR rewards have higher variability (std = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='07 vs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Q4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The impact of varying cfp, and cfn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In this experi- ment, we penalize more false positives and false negatives by setting, one at a time, cfp and cfn to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We compare BALLAD to the two ALL-IN baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For cfp = 10, our strategy is still the best for low budgets (< 15%), reduc- ing the relative cost by between 5% and 25% with respect to the runner-up ALL-IN-LR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' However, for higher budgets (> 15%), ALL-IN-LR becomes the best strategy as it re- duces BALLAD’s cost by around 20% and ALL-IN-AL’s cost by more than 40%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This happens because the anomaly de- tector produces too many false positives, which, if rejected, allow us to reduce the cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' For cfn = 10, BALLAD performs much better than the baselines, reducing their cost by around 20% (vs ALL-IN-LR) and 24% (vs ALL-IN-AL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Conclusion We proposed BALLAD, a novel strategy to decide whether to allocate the budget for Active Learning (AL), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' labeling strategic training instances, or for Learning to Reject (LR), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' labeling a random validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Our key insight is that we can measure the expected reward when labeling either set and allocate the label in the next round to the option with the highest reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' We proposed two reward functions (entropy and cosine similarity based).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Experimentally, we evaluated BALLAD on 18 datasets, and show that it performs better than simply allocating all the labels to either AL or LR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Aloi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Ann 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Arr AL-LR All-in AL All-in LR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Car 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Glass 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Int 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Cost per test example Kdd 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Page 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Pen 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Pima 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Shu 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Spam 4 8 12 16 20 24 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Stam 4 8 12 16 20 24 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Wbc 4 8 12 16 20 24 28 Allocated budget (% of labeled examples) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Wdbc 4 8 12 16 20 24 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Wpbc 4 8 12 16 20 24 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Wave 4 8 12 16 20 24 28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='12 Wilt Figure 1: Comparison between BALLAD and the ALL-IN strategies on the 18 benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The x-axis reports the 15 rounds of 2% labels each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The y-axis shows the average cost per test example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' BALLAD obtains lower costs in the majority of cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='3 AL reward - LR reward Density Median Figure 2: Distribution of the difference between AL’s and LR’s entropy reward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The median close to 0 indicates the absence of a predominant strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This work was presented at the 1st AAAI Workshop on Uncertainty Reasoning and Quantifica- tion in Decision Making (UDM23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' This research is supported by an FB Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' fellowship by FWO-Vlaanderen (grant 1166222N) [LP], the Flemish Gov- ernment under the “Onderzoeksprogramma Artifici¨ele Intel- ligentie (AI) Vlaanderen” programme [JD], and KUL Re- search Fund iBOF/21/075 [JD].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' References Abe, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Zadrozny, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Langford, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Outlier detec- tion by active learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Proceedings of ACM SIGKDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Campos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Zimek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Sander, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Campello, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Mi- cenkov´a, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Schubert, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Assent, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Houle, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On the evaluation of unsupervised outlier detection: mea- sures, datasets, and an empirical study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Data mining and knowledge discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Chandola, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Banerjee, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Kumar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Anomaly detection: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' ACM computing surveys (CSUR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Chow, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' On optimum recognition error and reject tradeoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' IEEE Transactions on information theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Cortes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' DeSalvo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Mohri, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Learning with rejection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In International Conference on Algorithmic Learning Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Culotta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and McCallum, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Reducing labeling ef- fort for structured prediction tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In AAAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Dagan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Engelson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Committee-based sam- pling for training probabilistic classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Machine Learn- ing Proceedings 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' De Stefano, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Sansone, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Vento, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' To reject or not to reject: that is the question-an answer in case of neural classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Ebert, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Fritz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Schiele, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Ralf: A rein- forced active learning formulation for object class recogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In 2012 IEEE Conference on Computer Vision and Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Frazier, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Bayesian optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Recent ad- vances in optimization and modeling of contemporary prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Informs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Hacohen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Dekel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Weinshall, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Active learning on a budget: Opposite strategies suit high and low budgets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='02794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Hendrickx, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Van der Plas, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Meert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Machine learning with a reject option: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' arXiv preprint arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='11277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Ting, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Isolation forest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In 8th IEEE international conference on data mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Marrocco, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Molinara, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Tortorella, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' An em- pirical comparison of ideal and empirical ROC-based reject rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In International Workshop on Machine Learning and Data Mining in Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Mart´ı, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Sanchez-Pi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Molina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Garcia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Anomaly detection based on sensor data in petroleum industry applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Monarch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Human-in-the-Loop Machine Learn- ing: Active learning and annotation for human-centered AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Simon and Schuster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Nadeem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Zucker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Hanczar, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Accuracy-rejection curves (ARCs) for comparing classifica- tion methods with a reject option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Machine Learning in Systems Biology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' PMLR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Buerkner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Klami, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Estimat- ing the Contamination Factor’s Distribution in Unsupervised Anomaly Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' arXiv preprint arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content='10487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Vercruyssen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Quantify- ing the confidence of anomaly detectors in their example- wise predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Vercruyssen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Transfer- ring the Contamination Factor between Anomaly Detection Domains by Shape Similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Pimentel, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Monteiro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Veloso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Ziviani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Deep active learning for anomaly detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In 2020 International Joint Conference on Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Soenen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Van Wolputte, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Vercruyssen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Meert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Blockeel, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' The effect of hyperparameter tuning on the comparative evaluation of un- supervised anomaly detection methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In Proceedings of the KDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Vercruyssen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Meert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Verbruggen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Maes, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Baumer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Semi-supervised anomaly detection with an application to water analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In 2018 IEEE international conference on data mining (icdm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Vercruyssen, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Perini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Meert, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Davis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Multi-domain Active Learning for Semi-supervised Anomaly Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' ECML 2022 published proceedings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Zhan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Li, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Chan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' A Compara- tive Survey: Benchmarking for Pool-based Active Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' In IJCAI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Zhao, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Wen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' and Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' A review on gas tur- bine anomaly detection for implementing health manage- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} +page_content=' Turbo Expo: Power for Land, Sea, and Air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE1T4oBgHgl3EQfGAOI/content/2301.02909v1.pdf'} diff --git a/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf b/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1d066018371bfc06cd944fadda8298ee3504dd18 --- /dev/null +++ b/JtE1T4oBgHgl3EQfGQNW/content/2301.02911v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:676ea7c1d58107b9a2a9311456760b40a2f225b4d7afe56f06f7ce38ddfc9f96 +size 4918836 diff --git a/JtE1T4oBgHgl3EQfGQNW/vector_store/index.faiss b/JtE1T4oBgHgl3EQfGQNW/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..4ba1d79f1482445723763826129d85c5d6b69d71 --- /dev/null +++ b/JtE1T4oBgHgl3EQfGQNW/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b38b236c2a19700d7a94a7e25f0fbe28d04e7e20e7f3013f30d9654ec6cbb02f +size 2621485 diff --git a/K9FRT4oBgHgl3EQf1Th-/vector_store/index.pkl b/K9FRT4oBgHgl3EQf1Th-/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3377e1e3de97a90466e466f37da1611f29b9f19a --- /dev/null +++ b/K9FRT4oBgHgl3EQf1Th-/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:207457e451cac8ea7f4857eddff6b68e8bb52b64192b9f4afdefe5583e1038f9 +size 273430 diff --git a/KtFRT4oBgHgl3EQf1Dhl/vector_store/index.faiss b/KtFRT4oBgHgl3EQf1Dhl/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..eff6348626b8d3c738df5156c80f86e4d3258613 --- /dev/null +++ b/KtFRT4oBgHgl3EQf1Dhl/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8de351a8f9e517413135191ffd059d92ad4a875b965ad88ad1c4aa751ef872b7 +size 5373997 diff --git a/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf b/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..71d55999036f7b5f514aad9c696263b6ed1df9e4 --- /dev/null +++ b/LdE0T4oBgHgl3EQfSgCx/content/2301.02224v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6fbfb5bc727213a2c5d1eea829a72f6771b35275376effd430cbc0b8527029f +size 1695680 diff --git a/LdE0T4oBgHgl3EQfSgCx/vector_store/index.faiss b/LdE0T4oBgHgl3EQfSgCx/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..af599454e5598d88040347f2a399962a6602d9b8 --- /dev/null +++ b/LdE0T4oBgHgl3EQfSgCx/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:46a61882910945a4b979474e95697a4c1e332f38a91aee88b95134d8f0f36077 +size 3276845 diff --git a/NdAyT4oBgHgl3EQfUPel/content/tmp_files/2301.00122v1.pdf.txt b/NdAyT4oBgHgl3EQfUPel/content/tmp_files/2301.00122v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..017d62030d1f835334986d556aa3b36660e6b75f --- /dev/null +++ b/NdAyT4oBgHgl3EQfUPel/content/tmp_files/2301.00122v1.pdf.txt @@ -0,0 +1,873 @@ + +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +1 + +I. INTRODUCTION + Hair, made of keratin protein, pertains to beauty and +masculinity. Approximately 5 million hair follicles are +present throughout our body [1]. Scalp Hair maintains body +temperature and protects the brain from external heat. A +typical hair growth cycle runs for 2-7 years, according to +Patel et al. [2] and Wolff, Fischer, and Blume-Peytavi [3]. A +healthy human has 100,000 hairs on the scalp, and 50-100 +hair loss per day is considered normal. Hair loss is not a +present-day issue. The hair-loss treatment was found in +ancient Ayurveda scriptures 6000 years ago [2]. However, +Hair and scalp-related issues are gaining more recognition +nowadays compared to earlier years due to certain factors, +such as environmental pollution, hormonal imbalance, +autoimmune disease, gut microbiota alteration, elevated +physical and mental stress levels in human lifestyle, seasonal +change, unhealthy diet, micronutrient deficiency, genetic +predisposition, and side-effects of drugs [2], [3]. According +to Peyravian et al., 80 million Americans have hair loss- +related issues to some extent [4]. Although most hair loss +diseases are localized, some can spread to other locations. +Some +diseases +require +prescribed +drugs +and +hair +transplantation. Some diseases are caused by bacterial or +fungal infections and require antibiotic treatment. Often, +there are genetic and sexual predispositions in hair-scalp +diseases. + Alopecia, folliculitis, and psoriasis are some common +causes of hair loss. There is a difference between regular hair +fall and alopecia; the latter develops coin-sized bald patches +all over the scalp area. Alopecia or patchy hair loss can be of +different types. Androgenetic alopecia or male-pattern +baldness (MPB) is the most common form of alopecia where +the hairline starts to recede, following a pattern where the +frontal and temple area are most affected. 70% of men and +40% of women get this type of hair loss and thinning issue +[3]. According to Liu et al., MPB is an X-linked polygenic +disease, and males are more genetically prone to develop +baldness at a mature age [5]. Topical minoxidil solution +thickens the hair by 50% [3]. On the other hand, Alopecia +areata (AA) is an autoimmune disease affecting individuals +irrespective of age and sex. Primarily affecting the scalp area, +AA can also spread in the beard, eyelashes, and eyebrows. In +this case, the body’s immune cells cannot recognize hair +follicles as ‘self.’ Instead, they consider these follicles as +‘foreign,’ which ultimately causes the hair follicles to be +Hair and Scalp Disease Detection using Machine +Learning and Image Processing + +Mrinmoy Roy, Anica Tasnim Protity +ABSTRACT + +Almost 80 million Americans suffer from hair loss due to aging, +stress, medication, or genetic makeup. Hair and scalp-related +diseases often go unnoticed in the beginning. Sometimes, a patient +cannot differentiate between hair loss and regular hair fall. +Diagnosing hair-related diseases is time-consuming as it requires +professional dermatologists to perform visual and medical tests. +Because of that, the overall diagnosis gets delayed, which worsens +the severity of the illness. Due to the image-processing ability, neural +network-based applications are used in various sectors, especially +healthcare and health informatics, to predict deadly diseases like +cancers and tumors. These applications assist clinicians and patients +and provide an initial insight into early-stage symptoms. In this +study, we used a deep learning approach that successfully predicts +three main types of hair loss and scalp-related diseases: alopecia, +psoriasis, and folliculitis. However, limited study in this area, +unavailability of a proper dataset, and degree of variety among the +images scattered over the internet made the task challenging. 150 +images were obtained from various sources and then preprocessed +by denoising, image equalization, enhancement, and data balancing, +thereby minimizing the error rate. After feeding the processed data +into the 2D convolutional neural network (CNN) model, we obtained +overall training accuracy of 96.2%, with a validation accuracy of +91.1%. The precision and recall score of alopecia, psoriasis, and +folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a +dataset of the scalp images for future prospective researchers. +Keywords: Deep Learning, Health Informatics, Machine Learning, +Scalp/ Hair Diseases. + + + Published Online: +ISSN: 2736-5492 +DOI 10.24018/ejcompute.YEAR.Vol.Issue.ID + +Mrinmoy Roy +Department +of +Computer +Science, +Northern Illinois University, USA. +(e-mail: mrinmoy.cs10 gmail.com) +Anica Tasnim Protity +Department of Biological Sciences, +Northern Illinois University, USA. +(e-mail: +protity.microbiology@gmail.com) + +*Corresponding Author +@ + + +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +2 + +targeted and destroyed by the immune cells. It is an example +of a hereditary disease. The study from Benigno et al. +reported that, in the US alone, 700,000 individuals suffer +from AA [6]. This disease, if diagnosed early, might resolve +spontaneously. In severe cases, topical corticosteroid or +immune therapy is used [3]. + Sometimes, the hair follicles might get inflamed because +of the action of bacterial accumulation. This follicle +inflammation +is +called +folliculitis +decalvans. +The +bacterium Staphylococcus aureus damages the follicle and +prevents hair growth. Staphylococcus aureus uses hair tufts +to +enter +underneath +the +follicle, +causing +chronic +inflammation, redness, swelling, scarring, itching, and hair +loss. Antibiotic treatment combined with surgical removal of +hair tufts and corticosteroids for reducing inflammation are +the +prescribed +treatment +for +Folliculitis +decalvans +[3]. Psoriasis is another form of common scalp skin disease. +According to [7], 54% of 5600 psoriasis patients had scalp +psoriasis. Severe psoriasis may cause significant itching, +scaling, and redness in the scalp. The application of topical +shampoo and corticosteroids are the treatment options by +Chan et al. [8]. + Some scalp infections may be treatable if diagnosed +early. Some but not all diseases may go on their own. Only +an expert physician can detect the illness by visual +observation. In some cases, early disease detection is +beneficial for dermatologists to initiate the treatment. An +early scalp inspection includes a dermatoscopic examination +of the scalp for inflammation, itching, localized lesion, +dandruff, follicular flakes, louse eggs (nits), and a scalp +biopsy. Besides visual observation, the patient can undergo +blood and hormone tests to detect the exact disease. +Unfortunately, most hair and scalp diseases are diagnosed in +advanced stages, which complicate the treatment options. All +these factors lengthen the diagnosis and treatment process. +Therefore, researchers are putting more effort into developing +different mechanisms for the early detection of hair and scalp +diseases. + In the 21st century, with all the advancements in +computational technology, extensive application of machine +learning has made our daily lives simple, comfortable, and +secure. The increasing popularity of machine learning and its +nature to extract patterns from data are directing researchers +to incorporate several machine learning algorithms into +health informatics. Especially during the Covid-19 pandemic +era, different applications like restraining people from covid- +19 spread [9], SARS-CoV-2 screening and treatment [10], +lock-down control in case of high dimensional input [11] +came into play, which made machine learning and healthcare +systems inseparable. Overall, adapting, integrating, and +developing deep learning-based applications on patients’ +information, medical reports, and audio-video feedback make +the diagnosis process faster. Nowadays, patients can get at +least the initial idea of disease detection by themselves using +easily accessible smart devices. All these applications clear +their confusion and help them make health-related decisions +independently. + The high computational capability of neural networks is, +therefore, a breakthrough in healthcare and medical +diagnostic organizations. Convolutional neural networks +(CNN) have brought revolutionary success in detecting +deadly diseases. To date, neural networks are assisting +healthcare professionals in the early detection of different +types of tumors and cancers, such as skin cancer (melanoma) +[12], stomach cancer (adenocarcinoma) [13], and brain +tumors (glioblastoma) [14]. Neural networks are applicable +in detecting life-threatening dengue fever [15] and covid-19 +[16] as well. In one study, CNN was used to extract complex +temporal dynamic features from heart rate variability (HRV) +signals, developing an algorithm that facilitated the early +detection of diabetics [17]. Using the image processing ability +of the neural networks, we can extract features from hair, skin +and scalp images to classify and categorize numerous hair and +scalp-related diseases. In this work, due to the importance of +early-stage hair disease detection, we applied convolutional +neural networks to 3 types of hair diseases and developed a +model to detect them successfully. + +II. CHALLENGES AND CONTRIBUTIONS + A classic application of computer vision is to detect +disease using digital images. Researchers can exploit a pool +of digital images obtained from one or more datasets, +preprocess the images, feed the images into the neural +network, and develop a model to detect the disease. +Unfortunately, minimal research has been performed on the +machine-learning approach for scalp disease detection. There +are several unique challenges behind this. First and foremost, +hair diseases are not localized and can spread to different +regions of the scalp, beard, eyebrows, eyelashes, and pubic +area. Second, every image needs different types of +preprocessing before feeding to neural networks. Different +scalp skin tones, hair colors, and types around the detection +zones make the imaging process more complicated. Third, no +proper dataset for scalp diseases is available over the internet, +and images taken from the internet differ in size and +resolution. Moreover, one must be conscious of minimalizing +and correcting the error in disease detection; otherwise, the +high false-positive and false-negative rates result in +misdiagnosis of the disease and worsening hair loss. + To overcome the challenges, we developed a model +which can successfully classify the alopecia, folliculitis, and +psoriasis diseases with a minimal false-positive and false- +negative rate. Though it is challenging to collect images for +the diseases from the internet, and the images are varied in +color, +shape, +and +resolution, +we +applied +various +preprocessing, such as denoising, resizing, enhancement and +created a dataset that might help in further scalp diseases +research. + +III. RELATED WORKS + Disease detection using machine learning approaches is +gaining popularity in health informatics. Many skin and +scalp-related diseases can be detected using images of +infected regions within a few seconds. In one study by +Choudhary et al. [18], a framework is developed to +differentiate alopecia areata from healthy hair. They obtained +200 healthy hair images from the figaro1K dataset and 68 +alopecia areata hair images from DermNet. After a series of +enhancement and segmentation, three key features were + + +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +3 + +extracted from the images: texture, shape, and color. The +researchers divided the dataset into 70%-30% train-test-split +and applied a support vector machine (SNM) and k-nearest +neighbor (KNN) for the classification task. Overall, they +achieved 91.4% and 88.9% accuracy using SVM and KNN, +respectively, with a 10-fold cross-validation approach. +However, using other machine learning algorithms might +increase in the accuracy rate, which should have been +discussed. Besides, the application of Histogram Equalization +(HE) for image enhancement complicated the process of +getting accurate texture features from distorted images, as HE +itself adds noise to the output image, distorting the signals. +Moreover, this study only shed light on alopecia areata +disease, ignoring the inter-class differences between other +similar type diseases, which increased the likelihood of +inaccurate prediction of other diseases as alopecia areata, +thereby making this framework less reliable. + Another study [19] proposed a model for early alopecia +detection. They used 100 samples for this research, with 80% +as training data and the other 20% as testing data. They +looked for four attributes, length of the hair, nail brittleness, +amount of damage made to the hair, and hair follicle. Two- +layer feed-forward network with a back propagation +technique was used for detection purposes. The proposed +model system consisting of 4 input neurons, 10 hidden +neurons, and a linear output neuron, achieved 91% training +accuracy with 86.7% validation accuracy. It showed the best +performance at epoch 4 with a 0.059687 gradient. However, +the study has some pitfalls, too, as they did not mention their +data source or differentiate data classes with their respective +sample sizes. Also, no image pre-processing was performed +on the collected images. Although there is a possibility of +overfitting without a proper data balancing technique, this +report did not discuss the data balancing between the two +classes. Furthermore, they did not calculate the model’s false- +positive and false-negative rates, which is crucial for a model +specially developed for the healthcare system. + Related work [20] was performed on skin disease +detection, where machine learning was used to analyze the +digital image of the affected skin area for identifying eczema, +melanoma, and psoriasis. Their dataset consists of 80 images +from different websites specific to skin diseases. By using a +convolutional neural network for feature extraction and +applying multiclass SVM on those features, they achieved +100% accuracy in disease classification. However, they did +not explore other essential model performance matrices and +overfitting issues. In another skin disease detection-based +article [21], the authors proposed a scheme to classify skin +lesions into five categories: healthy, acne, eczema, benign, +and malignant melanoma, using a pre-trained CNN model, +AlexNET for feature extraction and error correcting output +codes support vector machine for classification. The dataset +consists of 9144 images from different sources and achieved +84.21% accuracy using a 10-fold cross-validation technique. + Overall, we observed very few works on hair diseases. +The recent related works lack at least one of the following +categories – discussion over false positive and false negative +rates, ignoring inter-class differences, model reliability, and +overfitting problem. In this work, we have attempted to fill +these gaps by leveraging a convolutional neural network +algorithm on hair disease images while maintaining high +accuracy with good precision and recall scores. + +IV. DATA DESCRIPTION & DEVICE +A. Data Collection + The most challenging part of using visual images for +disease prediction and disease classification is data +collection. Often, one can get fewer appropriate images for +a specific illness found. Moreover, the pictures are scattered +over the internet. In this study, the authors extracted the +images from different websites, such as DermQuest, +DermNet, MedicineNet, DermnetNZ, and various medical +professionals. + +TABLE I: IMAGES PER DISEASE +Disease +Quantity +Alopecia +65 +Psoriasis +45 +Folliculitis +40 + + +Fig. 1. Image subset of each disease category. + + The image quantity is different for each category. We +found more alopecia-related images than other diseases +because alopecia is more frequent and severe among the +human population. The number of samples in each type of +disease is listed in Table I. Randomly selected images in +each category are graphically represented in Fig 1. Our +dataset is made publicly available on Github [22]. +B. Device + The research was conducted on Dell Latitude 5520 +laptop device having 11th generation Intel Core i5 (8 MB +cache, 4 cores, 8 threads, up to 4.40 GHz Turbo) and +running on Windows 10 Pro operating system. The device +has 16 GB, 1 x 16 GB, DDR4, 3200 MHz random access +memory (RAM), and 256 GB, M.2 PCIe NVMe, SSD, +Class 35 (NVRAM). For the classification of images, we +utilized the integrated Intel Iris XE graphics capable with a +thunderbolt for I5-1145G7 vPro processor. For the data + +Alopecia +Psoriasis +folliculitis +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +4 + +collection, we used iPhone-13 Pro Max having Hexa-core +(2x3.23 GHz Avalanche + 4x1.82 GHz Blizzard) CPU and +Apple GPU (5-core graphics). We used a mobile device +with 128GB 6GB RAM, and a 12 MP triple main camera +for the image collection. +V. PROPOSED MODEL + In this section, we introduce the system workflow of our +model and explain the functions of each module in details. As +shown in Fig. 2, first, the captured image is sent to +preprocessing steps which are divided into three parts: image +equalization, image enhancement, and data balancing. + + +Fig. 2. System workflow of hair disease detection model. + +Among these three, the first two parts are mainly for +increasing image quality, and the last part is for model +versatility. After the preprocessing steps, the image is passed +to the Neural Network model for the classification task. We +used a convolutional neural network that classifies an image +successfully into three different classes: alopecia, folliculitis, +and psoriasis. +A. Denoising + + +Fig. 3. Left original image & right non-local means denoised image. + + Noise is the degradation of image signals caused by +external sources [23]. Noise introduces random variations of +brightness or color information in the captured images. Most +of the time, images on the internet have some noise associated +with them. As we have collected most of the data samples +from different dermatology websites, the noise in our dataset +is not homogeneously distributed, which made it more +complex. Therefore, we applied additional filters for +denoising the collected images. We started with the gaussian +filter for a better image classification process. However, after +using the gaussian filter, the images become completely +blurred, which leads to the loss of important information and +damage to the edges. We then applied the median filter, +which worked better than the gaussian filter with kernel_size += 3. Though we achieved better accuracy using the bilateral +filter, we got the best results while applying the non-local +means filter with patch_size = 3 and patch_distance = 5. This +non-local means filter preserved all the edges and reduced the +noise better than the other filters for our application which is +shown in Fig. 3. +B. Image Equalization + Often the captured image doesn’t reflect the natural view +and needs contrast enhancement to meet the level of realistic +view [24]. Especially images with high color depth and after +denoising effects need normalization for a better realistic +view [25]. First, we applied histogram equalization (HE). +However, the HE increases the contrast of the background +when used in images with low color depth, and information +is lost as the histogram is not confined to the local region. To +overcome the problem, we applied CLAHE (Contrast +Limited Adaptive Histogram Equalization) by dividing an +image into equal size non-overlapping areas and computing a +histogram for each region. After clipping the histogram, we +distributed the clipped value over the histogram equalization, +which gives us control of the over-amplification of the +contrast and generates the resultant image shown in Fig. 4. + + +Fig. 4. Image equalization using CLAHE. + +C. Data Balancing + The overall performance of a machine learning model +depends on the balanced dataset because, without it, minority +class detection becomes difficult. Balancing a dataset reduces +the risk of skewing towards the majority. Imbalanced data +might achieve high accuracy, but the results are biased toward +the majority class. As alopecia is a common disease, we have +more alopecia images than other diseases, which creates an +imbalanced dataset for our model. For balancing the dataset, +we used data augmentation techniques (re-scaling, random +rotating, cropping, vertical and horizontal flipping) and +oversampled the infrequent class. +D. Neural Network Model + Neural network is the most applied model for visual data +analysis. Neural network needs limited human assistance and + +Image +Image +Data +Denoising +Enhancement +Augmentation +Convolutional +Diseaseclass +Neural +Detected +Network +Model +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +5 + +can identify complex non-linear relationship between input +and output. From global or local scale modeling [26] to +diagnosis by medical image classification, neural network is +using extensively. Moreover, Facial recognition, image +labeling, accurate video subtitles, assisting call centers, +automated virtual agents all these things are using neural +network. There are 3 types of neural network available: +Artificial Neural Networks (ANN), Convolution Neural +Networks (CNN) and Recurrent Neural Networks (RNN). +Each neural network has mainly 3 components: an input +layer, a processing layer, and an output layer. + + +Fig. 5. Neural Network Model. + + In this study, CNN is utilized for classification because it +takes image’s raw pixel data, trains a model, and extracts the +features automatically for better detection. We used autokeras +to find the best model for this problem. After trying 25 +different combinations, we selected 3 hidden layers with 1 +input and 1 output layer as our final model which is shown in +Fig. 5. For training the model, we used batch_size = 16 with +50 epochs for each batch. The preprocessed data is divided +into 70-30 train-test-split for training and validation purpose. +Our model consists of 256 inputs, 3 x 3 square kernel, 3 +output units and a softmax output. We used ReLU as our +activation function to prevent the exponential growth of +required computation and to explore the non-linear +relationship between input and output variables. After each +convolutional layer, input goes through the pooling layer +having 2 x 2 kernel size to reduce the dimensions of the +features map. Pooling layer summarizes the presented +features in a region and helps to prevent the over-fitting +problem by down sampling. We also used dropout layer after +each pooling layer to prevent neurons in a layer from +synchronously optimizing their weights and converging to the +same goal. Our model’s dropout rate is 0.3, which means 30% +of the neurons of this layer will be randomly dropped in each +epoch. + All the resultant 2-D arrays from pooled features map +passes through the flatten layer and converted to single +dimensional long continuous linear vector in the transition +towards the fully connected layer as in Fig. 5. In the fully +connected layer, every single output pixel from the +convolutional layers is connected to 3 output classes. Though +dense layer is computationally expensive, we used 2 dense +layers for our classification task. Finally, we used softmax +activation function to transform the 3 units of fully connected +layer to a probability distribution which is represented by a +vector of 3 elements, and the highest probability element +selected as the final class. We leveraged adam optimizer for +learning purpose and reducing the overall loss by changing +the weights and learning rates. We used adam because it can +handle sparse gradients on noisy problems and combines the +best properties of AgaGrad and RMSProp algorithms. + +VI. RESULTS + We trained our CNN model using the optimal +hyperparameters selected from the grid search. These +hyperparameters are listed in Table II. We divided the dataset +into 70%-30% train-test-split where 105 randomly selected +images are used for training and 45 random images for +testing. After applying the preprocessing steps, we used the +training dataset to train the CNN model and evaluated the test +dataset using the model. + +TABLE II: HYPERPARAMETERS OF CNN MODEL +Hyperparameters +Values +Batch Size +16 +Epoch +50 +Kernel Size +3 x 3 +Optimizer +Adam +Dropout Rate +0.3 +Pooling Size +2 x 2 +Activation Function +ReLU + + +Fig. 6. Training and Validation loss for CNN. + + +Conv 1 +Max-Pooling +Conv 2 +Max-Pooling +Conv 3 +Max-Pooling +Convolution +(2 x 2) +Convolution +(2 x 2) Kernel +Convolution +(2 x 2) Kernel +Fully-Connected +(3 x 3) +Kernel +(3 x 3) +Dropout 0.3 +(3 × 3) Kernel +Dropout 0.3 +Input +OutputTraining and validation loss +1.25 +Training loss +1.00 +Validation loss +0.50 +0.25 +0.00 +0 +10 +20 +30 +40 +50 +Epochs +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +6 + + +Fig. 7. Training and Validation Accuracy for CNN. + Our system achieved 96.2% training accuracy and +91.1% validation accuracy on the unseen data. Validation and +training losses for every epoch are shown in Fig 6. The +training losses decreased from 1.1685 to 0.1017, and the +validation losses decrease from 1.1260 to 0.3438 while going +from epoch 1 to epoch 50. At the same time, Training +accuracy and validation accuracy increased to 96.2% and +91.1%, respectively, from epoch 1 to epoch 50, shown in Fig. +7. + + +Fig. 8. Confusion Matrix of Our Model. + + +Fig. 9. Fractional Incorrect Prediction of Our Model. + + The confusion matrix in Fig. 8 shows the correct and +wrong classification for each category with inter-class +classification. Among 45 test images, alopecia (label 0) has +19 images, psoriasis (label 1) has 13 images, and folliculitis +(label 2) has 13 images. A total of 17 alopecia images were +classified as alopecia and the other 2 were incorrectly +classified as psoriasis. Again, 11 psoriasis images are +classified as psoriasis, but 2 psoriasis images were incorrectly +classified as alopecia. All 13 folliculitis images are classified +correctly. The fractional incorrect prediction for each class is +shown in Fig 9. Our model achieved the precision and recall +score of 0.895 for the alopecia disease class, 0.846 for the +psoriasis disease class, and 1.0 for the folliculitis disease +class. As the precision and recall scores are same in each +class, F1 scores are also similar to their respective precision +and recall values. + +VII. CONCLUSION + Although early-stage detection of hair and scalp-related +diseases is the key to the treatment process, hair loss and scalp +diseases can often go undetected due to a lack of awareness +and a lengthy diagnosis test. An AI-based application might +pave the way to facilitate early disease detection. In this +study, we developed a machine learning model to accurately +predict three hair and scalp-related diseases: alopecia, +folliculitis, and psoriasis by feeding 150 preprocessed image +data into a 2-D convolutional neural network model. After +using 70% of the data to train the model, we analyzed +remaining 30% of images for testing our model. After +subsequent training, the model gave an overall 96.2% training +accuracy on the training data and 91.1% validation accuracy +for the test data, with a high precision and recall scores for +each disease type. We have also provided our dataset with this +study. Our proposed system would assist dermatologists and +patients with a better understanding of disease classification +and initiating early treatment options for the three most +frequently occurred hair and scalp diseases. + +FUNDING + No funding was used to write this research paper. + +CONFLICT OF INTEREST +The authors declare that they do not have any conflicts of +interest. + +REFERENCES +[1] Cotsarelis G. Gene expression profiling gets to the root of human hair +follicle stem cells. J Clin Invest. 1 2006;116(1):19–22. doi: +10.1172/JCI27490. +[2] Patel S, Sharma V, Chauhan NS, Thakur M, Dixit VK. Hair growth: +Focus on herbal therapeutic agent. Curr Drug Discov Technol. +2015;12(1):21–42. doi: 10.2174/1570163812666150610115055. +[3] Wolff H, Fischer TW, Blume-Peytavi U. The diagnosis and treatment +of hair and scalp diseases. Dtsch Arztebl Int. 2016; doi: +10.3238/arztebl.2016.0377. +[4] Peyravian N, Deo S, Daunert S, Jimenez JJ. The inflammatory aspect +of male and female pattern hair loss. J Inflamm Res. 2020;13:879–81. +doi: 10.2147/JIR.S275785. + +Trainingand validationaccuracy +1.0 +0.8 +Accuracy +0.6 +0.4 +Trainingacc +Validationacc +0 +10 +20 +30 +40 +50 +Epochs16 +17 +2 +0 +- +14 +12 +- +10 +1 +2 +11 +0 +8 +6 +-4 +2 +13 +-2 +0 +0 +1 +2incorrect predictions +0.15 +0.10 +Fraction ofi +0.05 +0.00 +0 +1 +2 +TrueLabel +RESEARCH ARTICLE +European Journal of Information Technologies and Computer Science +www.ej-compute.org + + + + +DOI: http://dx.doi.org/10.24018/ejcompute.YEAR.VOL.ISSUE.ID +Vol X | Issue Y | Month Year +7 + +[5] Liu F, Hamer MA, Heilmann S, Herold C, Moebus S, Hofman A, et al. +Prediction of male-pattern baldness from genotypes. Eur J Hum Genet. +2016;24(6):895–902. doi: 10.1038/ejhg.2015.220. +[6] Benigno M, Anastassopoulos KP, Mostaghimi A, Udall M, Daniel SR, +Cappelleri JC, et al. A large cross-sectional survey study of the +prevalence of alopecia areata in the United States. Clin Cosmet Investig +Dermatol. 2020;13:259–66. doi: 10.2147/ccid.s245649. +[7] Farber EM, Nall L. The natural history of psoriasis in 5,600 patients. +Dermatology. 1974;148(1):1–18. doi: 10.1159/000251595. +[8] Chan CS, Van Voorhees AS, Lebwohl MG, Korman NJ, Young M, +Bebo BF Jr, et al. Treatment of severe scalp psoriasis: The Medical +Board of the National Psoriasis Foundation. J Am Acad Dermatol. +2009;60(6):962–71. doi: 10.1016/j.jaad.2008.11.890. +[9] Roy M, Seethi VDR, Bharti P. CovidAlert - A wristwatch-based system +to alert users from face touching. In: Lecture Notes of the Institute for +Computer Sciences, Social Informatics and Telecommunications +Engineering. Cham: Springer International Publishing; 2022. p. 489– +504. +[10] Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine +learning and artificial intelligence for Covid-19 (SARS-CoV-2) +pandemic: +A +review. +Chaos +Solitons +Fractals. +2020;139(110059):110059. doi: 10.1016/j.chaos.2020.110059. +[11] Pramanik P. On lock-down control of a pandemic model. arXiv +[mathOC]. [Preprint] 2022 [cited 2022 Oct 29]. Available from: +http://arxiv.org/abs/2206.04248. +[12] Kumar M, Alshehri M, AlGhamdi R, Sharma P, Deep V. A DE-ANN +inspired skin cancer detection approach using fuzzy C-means +clustering. Mob Netw Appl. 2020;25(4):1319–29. doi: 10.1007/s11036- +020-01550-2. +[13] Aytaç Korkmaz S, Binol H. Classification of molecular structure +images by using ANN, RF, LBP, HOG, and size reduction methods for +early stomach cancer detection. J Mol Struct. 2018;1156:255–63. doi: +10.1016/j.molstruc.2017.11.093. +[14] Virupakshappa, Amarapur B. An automated approach for brain tumor +identification using ANN classifier. In: 2017 International Conference +on Current Trends in Computer, Electrical, Electronics and +Communication (CTCEEC). IEEE; 2017. p. 1011–6. +[15] Balasaravanan K, Prakash M. Detection of dengue disease using +artificial neural network based classification technique. Int j eng +technol. 2017;7(1.3):13. doi: 10.14419/ijet.v7i1.3.8978. +[16] Aslan N, Ozmen Koca G, Kobat MA, Dogan S. Multi-classification +deep CNN model for diagnosing COVID-19 using iterative +neighborhood component analysis and iterative ReliefF feature +selection techniques with X-ray images. Chemometr Intell Lab Syst. +2022;224(104539):104539. doi: 10.1016/j.chemolab.2022.104539. +[17] G. S, R. V, K.p. S. Diabetes detection using deep learning algorithms. +ICT Express. 2018;4(4):243–6. doi: 10.1016/j.icte.2018.10.005. +[18] Shakeel CS, Khan SJ, Chaudhry B, Aijaz SF, Hassan U. Classification +framework for healthy hairs and alopecia areata: A machine learning +(ML) approach. Comput Math Methods Med. 2021; 2021:1102083. doi: +10.1155/2021/1102083. +[19] Kapoor I, Mishra A. Automated classification method for early +diagnosis of alopecia using machine learning. Procedia Comput Sci. +2018;132:437–43. doi: 10.1016/j.procs.2018.05.157. +[20] ALKolifi ALEnezi NS. A method of skin disease detection using image +processing and machine learning. Procedia Comput Sci. 2019;163:85– +92. doi: 10.1016/j.procs.2019.12.090. +[21] Hameed N, Shabut AM, Hossain MA. Multi-class skin diseases +classification using deep convolutional neural network and support +vector machine. In: 2018 12th International Conference on Software, +Knowledge, Information Management & Applications (SKIMA). +IEEE; 2018. +[22] Mrinmoy-Roy. Scalp-Hair-Diseases-Detection [Internet]. 2022 [cited +2022 +Oct +30]. +Available +from: +https://github.com/Mrinmoy- +Roy/Scalp-Hair-Diseases-Detection.git. +[23] Swain A. Noise in digital image processing [Internet]. Image Vision. +2018 [cited 2022 Oct 29]. Available from: https://medium.com/image- +vision/noise-in-digital-image-processing-55357c9fab71. +[24] Sameer. Image equalization (contrast enhancing) in python - analytics +Vidhya - medium [Internet]. Analytics Vidhya. 2020 [cited 2022 Oct +29]. Available from: https://medium.com/analytics-vidhya/image- +equalization-contrast-enhancing-in-python-82600d3b371c. +[25] Hiroyasu T, Hayashinuma K, Ichikawa H, Yagi N. Preprocessing with +image denoising and histogram equalization for endoscopy image +analysis using texture analysis. Annu Int Conf IEEE Eng Med Biol Soc. +2015;2015:789–92. doi: 10.1109/EMBC.2015.7318480. +[26] Tazmul Islam M, Meng Q. An exploratory study of Sentinel-1 SAR for +rapid urban flood mapping on Google Earth Engine. Int J Appl Earth +Obs +Geoinf. +2022;113(103002):103002. +doi: +10.1016/j.jag.2022.103002. + + + diff --git a/NdAyT4oBgHgl3EQfUPel/content/tmp_files/load_file.txt b/NdAyT4oBgHgl3EQfUPel/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..597733d40f7932a2a88714f436a26fdd98d3a762 --- /dev/null +++ b/NdAyT4oBgHgl3EQfUPel/content/tmp_files/load_file.txt @@ -0,0 +1,595 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf,len=594 +page_content='RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 1 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' INTRODUCTION Hair, made of keratin protein, pertains to beauty and masculinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Approximately 5 million hair follicles are present throughout our body [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Scalp Hair maintains body temperature and protects the brain from external heat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A typical hair growth cycle runs for 2-7 years, according to Patel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [2] and Wolff, Fischer, and Blume-Peytavi [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A healthy human has 100,000 hairs on the scalp, and 50-100 hair loss per day is considered normal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Hair loss is not a present-day issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The hair-loss treatment was found in ancient Ayurveda scriptures 6000 years ago [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, Hair and scalp-related issues are gaining more recognition nowadays compared to earlier years due to certain factors, such as environmental pollution, hormonal imbalance, autoimmune disease, gut microbiota alteration, elevated physical and mental stress levels in human lifestyle, seasonal change, unhealthy diet, micronutrient deficiency, genetic predisposition, and side-effects of drugs [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' According to Peyravian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=', 80 million Americans have hair loss- related issues to some extent [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Although most hair loss diseases are localized, some can spread to other locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Some diseases require prescribed drugs and hair transplantation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Some diseases are caused by bacterial or fungal infections and require antibiotic treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Often, there are genetic and sexual predispositions in hair-scalp diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Alopecia, folliculitis, and psoriasis are some common causes of hair loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' There is a difference between regular hair fall and alopecia;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' the latter develops coin-sized bald patches all over the scalp area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Alopecia or patchy hair loss can be of different types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Androgenetic alopecia or male-pattern baldness (MPB) is the most common form of alopecia where the hairline starts to recede, following a pattern where the frontal and temple area are most affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 70% of men and 40% of women get this type of hair loss and thinning issue [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' According to Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=', MPB is an X-linked polygenic disease, and males are more genetically prone to develop baldness at a mature age [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Topical minoxidil solution thickens the hair by 50% [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' On the other hand, Alopecia areata (AA) is an autoimmune disease affecting individuals irrespective of age and sex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Primarily affecting the scalp area, AA can also spread in the beard, eyelashes, and eyebrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this case, the body’s immune cells cannot recognize hair follicles as ‘self.’ Instead, they consider these follicles as ‘foreign,’ which ultimately causes the hair follicles to be Hair and Scalp Disease Detection using Machine Learning and Image Processing Mrinmoy Roy, Anica Tasnim Protity ABSTRACT Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Hair and scalp-related diseases often go unnoticed in the beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Sometimes, a patient cannot differentiate between hair loss and regular hair fall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' These applications assist clinicians and patients and provide an initial insight into early-stage symptoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2%, with a validation accuracy of 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The precision and recall score of alopecia, psoriasis, and folliculitis are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='895, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='846, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We also created a dataset of the scalp images for future prospective researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Keywords: Deep Learning, Health Informatics, Machine Learning, Scalp/ Hair Diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Published Online: ISSN: 2736 5492 DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='Issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Mrinmoy Roy Department of Computer Science, Northern Illinois University, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' (e mail: mrinmoy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='cs10 gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='com) Anica Tasnim Protity Department of Biological Sciences, Northern Illinois University, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' (e mail: protity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='microbiology@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='com) Corresponding Author @ RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 2 targeted and destroyed by the immune cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' It is an example of a hereditary disease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The study from Benigno et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' reported that, in the US alone, 700,000 individuals suffer from AA [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' This disease, if diagnosed early, might resolve spontaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In severe cases, topical corticosteroid or immune therapy is used [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Sometimes, the hair follicles might get inflamed because of the action of bacterial accumulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' This follicle inflammation is called folliculitis decalvans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The bacterium Staphylococcus aureus damages the follicle and prevents hair growth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Staphylococcus aureus uses hair tufts to enter underneath the follicle, causing chronic inflammation, redness, swelling, scarring, itching, and hair loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Antibiotic treatment combined with surgical removal of hair tufts and corticosteroids for reducing inflammation are the prescribed treatment for Folliculitis decalvans [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Psoriasis is another form of common scalp skin disease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' According to [7], 54% of 5600 psoriasis patients had scalp psoriasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Severe psoriasis may cause significant itching, scaling, and redness in the scalp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The application of topical shampoo and corticosteroids are the treatment options by Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Some scalp infections may be treatable if diagnosed early.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Some but not all diseases may go on their own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Only an expert physician can detect the illness by visual observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In some cases, early disease detection is beneficial for dermatologists to initiate the treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' An early scalp inspection includes a dermatoscopic examination of the scalp for inflammation, itching, localized lesion, dandruff, follicular flakes, louse eggs (nits), and a scalp biopsy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Besides visual observation, the patient can undergo blood and hormone tests to detect the exact disease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Unfortunately, most hair and scalp diseases are diagnosed in advanced stages, which complicate the treatment options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' All these factors lengthen the diagnosis and treatment process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Therefore, researchers are putting more effort into developing different mechanisms for the early detection of hair and scalp diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In the 21st century, with all the advancements in computational technology, extensive application of machine learning has made our daily lives simple, comfortable, and secure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The increasing popularity of machine learning and its nature to extract patterns from data are directing researchers to incorporate several machine learning algorithms into health informatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Especially during the Covid-19 pandemic era, different applications like restraining people from covid- 19 spread [9], SARS-CoV-2 screening and treatment [10], lock-down control in case of high dimensional input [11] came into play, which made machine learning and healthcare systems inseparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Overall, adapting, integrating, and developing deep learning-based applications on patients’ information, medical reports, and audio-video feedback make the diagnosis process faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Nowadays, patients can get at least the initial idea of disease detection by themselves using easily accessible smart devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' All these applications clear their confusion and help them make health-related decisions independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The high computational capability of neural networks is, therefore, a breakthrough in healthcare and medical diagnostic organizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Convolutional neural networks (CNN) have brought revolutionary success in detecting deadly diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' To date, neural networks are assisting healthcare professionals in the early detection of different types of tumors and cancers, such as skin cancer (melanoma) [12], stomach cancer (adenocarcinoma) [13], and brain tumors (glioblastoma) [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Neural networks are applicable in detecting life-threatening dengue fever [15] and covid-19 [16] as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In one study, CNN was used to extract complex temporal dynamic features from heart rate variability (HRV) signals, developing an algorithm that facilitated the early detection of diabetics [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Using the image processing ability of the neural networks, we can extract features from hair, skin and scalp images to classify and categorize numerous hair and scalp-related diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this work, due to the importance of early-stage hair disease detection, we applied convolutional neural networks to 3 types of hair diseases and developed a model to detect them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' CHALLENGES AND CONTRIBUTIONS A classic application of computer vision is to detect disease using digital images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Researchers can exploit a pool of digital images obtained from one or more datasets, preprocess the images, feed the images into the neural network, and develop a model to detect the disease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Unfortunately, minimal research has been performed on the machine-learning approach for scalp disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' There are several unique challenges behind this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' First and foremost, hair diseases are not localized and can spread to different regions of the scalp, beard, eyebrows, eyelashes, and pubic area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Second, every image needs different types of preprocessing before feeding to neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Different scalp skin tones, hair colors, and types around the detection zones make the imaging process more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Third, no proper dataset for scalp diseases is available over the internet, and images taken from the internet differ in size and resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Moreover, one must be conscious of minimalizing and correcting the error in disease detection;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' otherwise, the high false-positive and false-negative rates result in misdiagnosis of the disease and worsening hair loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' To overcome the challenges, we developed a model which can successfully classify the alopecia, folliculitis, and psoriasis diseases with a minimal false-positive and false- negative rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Though it is challenging to collect images for the diseases from the internet, and the images are varied in color, shape, and resolution, we applied various preprocessing, such as denoising, resizing, enhancement and created a dataset that might help in further scalp diseases research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' RELATED WORKS Disease detection using machine learning approaches is gaining popularity in health informatics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Many skin and scalp-related diseases can be detected using images of infected regions within a few seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In one study by Choudhary et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [18], a framework is developed to differentiate alopecia areata from healthy hair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' They obtained 200 healthy hair images from the figaro1K dataset and 68 alopecia areata hair images from DermNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After a series of enhancement and segmentation, three key features were RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 3 extracted from the images: texture, shape, and color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The researchers divided the dataset into 70%-30% train-test-split and applied a support vector machine (SNM) and k-nearest neighbor (KNN) for the classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Overall, they achieved 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='4% and 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='9% accuracy using SVM and KNN, respectively, with a 10-fold cross-validation approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, using other machine learning algorithms might increase in the accuracy rate, which should have been discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Besides, the application of Histogram Equalization (HE) for image enhancement complicated the process of getting accurate texture features from distorted images, as HE itself adds noise to the output image, distorting the signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Moreover, this study only shed light on alopecia areata disease, ignoring the inter-class differences between other similar type diseases, which increased the likelihood of inaccurate prediction of other diseases as alopecia areata, thereby making this framework less reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Another study [19] proposed a model for early alopecia detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' They used 100 samples for this research, with 80% as training data and the other 20% as testing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' They looked for four attributes, length of the hair, nail brittleness, amount of damage made to the hair, and hair follicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Two- layer feed-forward network with a back propagation technique was used for detection purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The proposed model system consisting of 4 input neurons, 10 hidden neurons, and a linear output neuron, achieved 91% training accuracy with 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='7% validation accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' It showed the best performance at epoch 4 with a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='059687 gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, the study has some pitfalls, too, as they did not mention their data source or differentiate data classes with their respective sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Also, no image pre-processing was performed on the collected images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Although there is a possibility of overfitting without a proper data balancing technique, this report did not discuss the data balancing between the two classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Furthermore, they did not calculate the model’s false- positive and false-negative rates, which is crucial for a model specially developed for the healthcare system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Related work [20] was performed on skin disease detection, where machine learning was used to analyze the digital image of the affected skin area for identifying eczema, melanoma, and psoriasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Their dataset consists of 80 images from different websites specific to skin diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' By using a convolutional neural network for feature extraction and applying multiclass SVM on those features, they achieved 100% accuracy in disease classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, they did not explore other essential model performance matrices and overfitting issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In another skin disease detection-based article [21], the authors proposed a scheme to classify skin lesions into five categories: healthy, acne, eczema, benign, and malignant melanoma, using a pre-trained CNN model, AlexNET for feature extraction and error correcting output codes support vector machine for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The dataset consists of 9144 images from different sources and achieved 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='21% accuracy using a 10-fold cross-validation technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Overall, we observed very few works on hair diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The recent related works lack at least one of the following categories – discussion over false positive and false negative rates, ignoring inter-class differences, model reliability, and overfitting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this work, we have attempted to fill these gaps by leveraging a convolutional neural network algorithm on hair disease images while maintaining high accuracy with good precision and recall scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' DATA DESCRIPTION & DEVICE A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Data Collection The most challenging part of using visual images for disease prediction and disease classification is data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Often, one can get fewer appropriate images for a specific illness found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Moreover, the pictures are scattered over the internet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this study, the authors extracted the images from different websites, such as DermQuest, DermNet, MedicineNet, DermnetNZ, and various medical professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' TABLE I: IMAGES PER DISEASE Disease Quantity Alopecia 65 Psoriasis 45 Folliculitis 40 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Image subset of each disease category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The image quantity is different for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We found more alopecia-related images than other diseases because alopecia is more frequent and severe among the human population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The number of samples in each type of disease is listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Randomly selected images in each category are graphically represented in Fig 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our dataset is made publicly available on Github [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Device The research was conducted on Dell Latitude 5520 laptop device having 11th generation Intel Core i5 (8 MB cache, 4 cores, 8 threads, up to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='40 GHz Turbo) and running on Windows 10 Pro operating system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The device has 16 GB, 1 x 16 GB, DDR4, 3200 MHz random access memory (RAM), and 256 GB, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2 PCIe NVMe, SSD, Class 35 (NVRAM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' For the classification of images, we utilized the integrated Intel Iris XE graphics capable with a thunderbolt for I5-1145G7 vPro processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' For the data Alopecia Psoriasis folliculitis RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 4 collection, we used iPhone-13 Pro Max having Hexa-core (2x3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='23 GHz Avalanche + 4x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='82 GHz Blizzard) CPU and Apple GPU (5-core graphics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We used a mobile device with 128GB 6GB RAM, and a 12 MP triple main camera for the image collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' PROPOSED MODEL In this section, we introduce the system workflow of our model and explain the functions of each module in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2, first, the captured image is sent to preprocessing steps which are divided into three parts: image equalization, image enhancement, and data balancing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' System workflow of hair disease detection model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Among these three, the first two parts are mainly for increasing image quality, and the last part is for model versatility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After the preprocessing steps, the image is passed to the Neural Network model for the classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We used a convolutional neural network that classifies an image successfully into three different classes: alopecia, folliculitis, and psoriasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Denoising Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Left original image & right non-local means denoised image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Noise is the degradation of image signals caused by external sources [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Noise introduces random variations of brightness or color information in the captured images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Most of the time, images on the internet have some noise associated with them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' As we have collected most of the data samples from different dermatology websites, the noise in our dataset is not homogeneously distributed, which made it more complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Therefore, we applied additional filters for denoising the collected images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We started with the gaussian filter for a better image classification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, after using the gaussian filter, the images become completely blurred, which leads to the loss of important information and damage to the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We then applied the median filter, which worked better than the gaussian filter with kernel_size = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Though we achieved better accuracy using the bilateral filter, we got the best results while applying the non-local means filter with patch_size = 3 and patch_distance = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' This non-local means filter preserved all the edges and reduced the noise better than the other filters for our application which is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Image Equalization Often the captured image doesn’t reflect the natural view and needs contrast enhancement to meet the level of realistic view [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Especially images with high color depth and after denoising effects need normalization for a better realistic view [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' First, we applied histogram equalization (HE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' However, the HE increases the contrast of the background when used in images with low color depth, and information is lost as the histogram is not confined to the local region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' To overcome the problem, we applied CLAHE (Contrast Limited Adaptive Histogram Equalization) by dividing an image into equal size non-overlapping areas and computing a histogram for each region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After clipping the histogram, we distributed the clipped value over the histogram equalization, which gives us control of the over-amplification of the contrast and generates the resultant image shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Image equalization using CLAHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Data Balancing The overall performance of a machine learning model depends on the balanced dataset because, without it, minority class detection becomes difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Balancing a dataset reduces the risk of skewing towards the majority.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Imbalanced data might achieve high accuracy, but the results are biased toward the majority class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' As alopecia is a common disease, we have more alopecia images than other diseases, which creates an imbalanced dataset for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' For balancing the dataset, we used data augmentation techniques (re-scaling, random rotating, cropping, vertical and horizontal flipping) and oversampled the infrequent class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Neural Network Model Neural network is the most applied model for visual data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Neural network needs limited human assistance and Image Image Data Denoising Enhancement Augmentation Convolutional Diseaseclass Neural Detected Network Model RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 5 can identify complex non-linear relationship between input and output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' From global or local scale modeling [26] to diagnosis by medical image classification, neural network is using extensively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Moreover, Facial recognition, image labeling, accurate video subtitles, assisting call centers, automated virtual agents all these things are using neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' There are 3 types of neural network available: Artificial Neural Networks (ANN), Convolution Neural Networks (CNN) and Recurrent Neural Networks (RNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Each neural network has mainly 3 components: an input layer, a processing layer, and an output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Neural Network Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this study, CNN is utilized for classification because it takes image’s raw pixel data, trains a model, and extracts the features automatically for better detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We used autokeras to find the best model for this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After trying 25 different combinations, we selected 3 hidden layers with 1 input and 1 output layer as our final model which is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' For training the model, we used batch_size = 16 with 50 epochs for each batch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The preprocessed data is divided into 70-30 train-test-split for training and validation purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our model consists of 256 inputs, 3 x 3 square kernel, 3 output units and a softmax output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We used ReLU as our activation function to prevent the exponential growth of required computation and to explore the non-linear relationship between input and output variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After each convolutional layer, input goes through the pooling layer having 2 x 2 kernel size to reduce the dimensions of the features map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Pooling layer summarizes the presented features in a region and helps to prevent the over-fitting problem by down sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We also used dropout layer after each pooling layer to prevent neurons in a layer from synchronously optimizing their weights and converging to the same goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our model’s dropout rate is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3, which means 30% of the neurons of this layer will be randomly dropped in each epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' All the resultant 2-D arrays from pooled features map passes through the flatten layer and converted to single dimensional long continuous linear vector in the transition towards the fully connected layer as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In the fully connected layer, every single output pixel from the convolutional layers is connected to 3 output classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Though dense layer is computationally expensive, we used 2 dense layers for our classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Finally, we used softmax activation function to transform the 3 units of fully connected layer to a probability distribution which is represented by a vector of 3 elements, and the highest probability element selected as the final class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We leveraged adam optimizer for learning purpose and reducing the overall loss by changing the weights and learning rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We used adam because it can handle sparse gradients on noisy problems and combines the best properties of AgaGrad and RMSProp algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' RESULTS We trained our CNN model using the optimal hyperparameters selected from the grid search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' These hyperparameters are listed in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We divided the dataset into 70%-30% train-test-split where 105 randomly selected images are used for training and 45 random images for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After applying the preprocessing steps, we used the training dataset to train the CNN model and evaluated the test dataset using the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' TABLE II: HYPERPARAMETERS OF CNN MODEL Hyperparameters Values Batch Size 16 Epoch 50 Kernel Size 3 x 3 Optimizer Adam Dropout Rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3 Pooling Size 2 x 2 Activation Function ReLU Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Training and Validation loss for CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Conv 1 Max-Pooling Conv 2 Max-Pooling Conv 3 Max-Pooling Convolution (2 x 2) Convolution (2 x 2) Kernel Convolution (2 x 2) Kernel Fully-Connected (3 x 3) Kernel (3 x 3) Dropout 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3 (3 × 3) Kernel Dropout 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3 Input OutputTraining and validation loss 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='25 Training loss 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='00 Validation loss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='00 0 10 20 30 40 50 Epochs RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 6 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Training and Validation Accuracy for CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our system achieved 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2% training accuracy and 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1% validation accuracy on the unseen data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Validation and training losses for every epoch are shown in Fig 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The training losses decreased from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1685 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1017, and the validation losses decrease from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1260 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3438 while going from epoch 1 to epoch 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' At the same time, Training accuracy and validation accuracy increased to 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2% and 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1%, respectively, from epoch 1 to epoch 50, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Confusion Matrix of Our Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Fractional Incorrect Prediction of Our Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The confusion matrix in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 8 shows the correct and wrong classification for each category with inter-class classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Among 45 test images, alopecia (label 0) has 19 images, psoriasis (label 1) has 13 images, and folliculitis (label 2) has 13 images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A total of 17 alopecia images were classified as alopecia and the other 2 were incorrectly classified as psoriasis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Again, 11 psoriasis images are classified as psoriasis, but 2 psoriasis images were incorrectly classified as alopecia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' All 13 folliculitis images are classified correctly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The fractional incorrect prediction for each class is shown in Fig 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our model achieved the precision and recall score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='895 for the alopecia disease class, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='846 for the psoriasis disease class, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='0 for the folliculitis disease class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' As the precision and recall scores are same in each class, F1 scores are also similar to their respective precision and recall values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' CONCLUSION Although early-stage detection of hair and scalp-related diseases is the key to the treatment process, hair loss and scalp diseases can often go undetected due to a lack of awareness and a lengthy diagnosis test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' An AI-based application might pave the way to facilitate early disease detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In this study, we developed a machine learning model to accurately predict three hair and scalp-related diseases: alopecia, folliculitis, and psoriasis by feeding 150 preprocessed image data into a 2-D convolutional neural network model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After using 70% of the data to train the model, we analyzed remaining 30% of images for testing our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' After subsequent training, the model gave an overall 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2% training accuracy on the training data and 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1% validation accuracy for the test data, with a high precision and recall scores for each disease type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' We have also provided our dataset with this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Our proposed system would assist dermatologists and patients with a better understanding of disease classification and initiating early treatment options for the three most frequently occurred hair and scalp diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' FUNDING No funding was used to write this research paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' CONFLICT OF INTEREST The authors declare that they do not have any conflicts of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' REFERENCES [1] Cotsarelis G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Gene expression profiling gets to the root of human hair follicle stem cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' J Clin Invest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 1 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='116(1):19–22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1172/JCI27490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [2] Patel S, Sharma V, Chauhan NS, Thakur M, Dixit VK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Hair growth: Focus on herbal therapeutic agent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Curr Drug Discov Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='12(1):21–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2174/1570163812666150610115055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [3] Wolff H, Fischer TW, Blume-Peytavi U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The diagnosis and treatment of hair and scalp diseases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Dtsch Arztebl Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3238/arztebl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='0377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [4] Peyravian N, Deo S, Daunert S, Jimenez JJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The inflammatory aspect of male and female pattern hair loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' J Inflamm Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='13:879–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2147/JIR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='S275785.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Trainingand validationaccuracy 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='8 Accuracy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='4 Trainingacc Validationacc 0 10 20 30 40 50 Epochs16 17 2 0 - 14 12 - 10 1 2 11 0 8 6 -4 2 13 -2 0 0 1 2incorrect predictions 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='10 Fraction ofi 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='00 0 1 2 TrueLabel RESEARCH ARTICLE European Journal of Information Technologies and Computer Science www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ej-compute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org DOI: http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24018/ejcompute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='YEAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='VOL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ISSUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='ID Vol X | Issue Y | Month Year 7 [5] Liu F, Hamer MA, Heilmann S, Herold C, Moebus S, Hofman A, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Prediction of male-pattern baldness from genotypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Eur J Hum Genet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='24(6):895–902.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1038/ejhg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [6] Benigno M, Anastassopoulos KP, Mostaghimi A, Udall M, Daniel SR, Cappelleri JC, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A large cross-sectional survey study of the prevalence of alopecia areata in the United States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Clin Cosmet Investig Dermatol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='13:259–66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2147/ccid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='s245649.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [7] Farber EM, Nall L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' The natural history of psoriasis in 5,600 patients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Dermatology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 1974;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='148(1):1–18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1159/000251595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [8] Chan CS, Van Voorhees AS, Lebwohl MG, Korman NJ, Young M, Bebo BF Jr, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Treatment of severe scalp psoriasis: The Medical Board of the National Psoriasis Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' J Am Acad Dermatol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='60(6):962–71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='jaad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='890.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [9] Roy M, Seethi VDR, Bharti P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' CovidAlert - A wristwatch-based system to alert users from face touching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Cham: Springer International Publishing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 489– 504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [10] Lalmuanawma S, Hussain J, Chhakchhuak L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Chaos Solitons Fractals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='139(110059):110059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='chaos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='110059.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [11] Pramanik P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' On lock-down control of a pandemic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' arXiv [mathOC].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [Preprint] 2022 [cited 2022 Oct 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Available from: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='org/abs/2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='04248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [12] Kumar M, Alshehri M, AlGhamdi R, Sharma P, Deep V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A DE-ANN inspired skin cancer detection approach using fuzzy C-means clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Mob Netw Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='25(4):1319–29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1007/s11036- 020-01550-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [13] Aytaç Korkmaz S, Binol H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Classification of molecular structure images by using ANN, RF, LBP, HOG, and size reduction methods for early stomach cancer detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' J Mol Struct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1156:255–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='molstruc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='093.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [14] Virupakshappa, Amarapur B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' An automated approach for brain tumor identification using ANN classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In: 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' IEEE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 1011–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [15] Balasaravanan K, Prakash M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Detection of dengue disease using artificial neural network based classification technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Int j eng technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='7(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3):13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='14419/ijet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='v7i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='8978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [16] Aslan N, Ozmen Koca G, Kobat MA, Dogan S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Chemometr Intell Lab Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='224(104539):104539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='chemolab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='104539.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [17] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' S, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' V, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Diabetes detection using deep learning algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' ICT Express.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='4(4):243–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='icte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [18] Shakeel CS, Khan SJ, Chaudhry B, Aijaz SF, Hassan U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Classification framework for healthy hairs and alopecia areata: A machine learning (ML) approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Comput Math Methods Med.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2021:1102083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1155/2021/1102083.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [19] Kapoor I, Mishra A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Automated classification method for early diagnosis of alopecia using machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Procedia Comput Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='132:437–43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='procs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [20] ALKolifi ALEnezi NS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' A method of skin disease detection using image processing and machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Procedia Comput Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='163:85– 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='procs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [21] Hameed N, Shabut AM, Hossain MA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Multi-class skin diseases classification using deep convolutional neural network and support vector machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' In: 2018 12th International Conference on Software, Knowledge, Information Management & Applications (SKIMA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' IEEE;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [22] Mrinmoy-Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Scalp-Hair-Diseases-Detection [Internet].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2022 [cited 2022 Oct 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Available from: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='com/Mrinmoy- Roy/Scalp-Hair-Diseases-Detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='git.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [23] Swain A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Noise in digital image processing [Internet].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Image Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2018 [cited 2022 Oct 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Available from: https://medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='com/image- vision/noise-in-digital-image-processing-55357c9fab71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [24] Sameer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Image equalization (contrast enhancing) in python - analytics Vidhya - medium [Internet].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Analytics Vidhya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2020 [cited 2022 Oct 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Available from: https://medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='com/analytics-vidhya/image- equalization-contrast-enhancing-in-python-82600d3b371c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [25] Hiroyasu T, Hayashinuma K, Ichikawa H, Yagi N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Preprocessing with image denoising and histogram equalization for endoscopy image analysis using texture analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Annu Int Conf IEEE Eng Med Biol Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2015:789–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1109/EMBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='7318480.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' [26] Tazmul Islam M, Meng Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google Earth Engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' Int J Appl Earth Obs Geoinf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='113(103002):103002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='jag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} +page_content='103002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfUPel/content/2301.00122v1.pdf'} diff --git a/NtAzT4oBgHgl3EQfzP6J/vector_store/index.pkl b/NtAzT4oBgHgl3EQfzP6J/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..aee2e6fc6bbac85fd6a0bc5c984b98fe294b9b94 --- /dev/null +++ b/NtAzT4oBgHgl3EQfzP6J/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23c69b5142d9a29b40c8949e543a35dbebd8531096c58ce51eb5e8db94284dd0 +size 324644 diff --git a/NtE1T4oBgHgl3EQfZwQu/content/2301.03153v1.pdf b/NtE1T4oBgHgl3EQfZwQu/content/2301.03153v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..8560b802310c7a1c72017d1825b5f33fe1bba32f --- /dev/null +++ b/NtE1T4oBgHgl3EQfZwQu/content/2301.03153v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d7c18c295f16837ab9ba91b1ab50ea8d3c256ae4d5dee9e139469b43a9efeb3d +size 4380585 diff --git a/NtE1T4oBgHgl3EQfZwQu/vector_store/index.faiss b/NtE1T4oBgHgl3EQfZwQu/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..f8569e71b5e7caaa7cdddaf3fbc40b3f023c9314 --- /dev/null +++ b/NtE1T4oBgHgl3EQfZwQu/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ff136d1cf7e712cfff1c3295ce6e8065e9d7fc7297c558d84aed82d0936d3567 +size 4063277 diff --git a/O9AyT4oBgHgl3EQf7Prc/vector_store/index.faiss b/O9AyT4oBgHgl3EQf7Prc/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..79e37986dd9dd3d6518f53c7faec82b186afb8b0 --- /dev/null +++ b/O9AyT4oBgHgl3EQf7Prc/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be9615cc6c86c2bd29b51bd998fec8e985416cfc59328c608c2ee4ac02e8ed64 +size 4390957 diff --git a/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/2301.08693v1.pdf.txt b/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/2301.08693v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..eb1702aa80677c3394035772e8cb147b6562a84a --- /dev/null +++ b/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/2301.08693v1.pdf.txt @@ -0,0 +1,675 @@ +SELF-SUPERVISED LEARNING FOR A NONLINEAR INVERSE +PROBLEM WITH FORWARD OPERATOR INVOLVING AN +UNKNOWN FUNCTION ARISING IN PHOTOACOUSTIC +TOMOGRAPHY +Gyeongha Hwang1, Gihyeon Jeon2∗, Sunghwan Moon3 +1 Department of Mathematics, Yeungnam University, Gyeongsan 38541, Republic of Korea +2 School of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea +3 Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea +*Corresponding author E-mails: rydbr6709@knu.ac.kr +ABSTRACT. In this article, we concern with a nonlinear inverse problem with forward opera- +tor involving an unknown function. The problem arises in diverse applications and is challenging +by the presence of the unknown function, which makes it ill-posed. Additionally, the nonlinear +nature of the problem makes it difficult to use traditional methods and thus the study has +addressed a simplified version of the problem by either linearizing it or assuming knowledge of +the unknown function. Here, we propose a self-supervised learning to directly tackle a nonlinear +inverse problem involving an unknown function. In particular, we focus on an inverse problem +derived in Photoacoustic Tomograpy (PAT) which is a hybrid medical imaging with high res- +olution and contrast. PAT can be modelled based on the wave equation. The measured data +is the solution of the equation restricted to the surface and the initial pressure of the equation +contains the biological information on the object of interest. The speed of sound wave in the +equation is unknown. Our goal is to determine the initial pressure and the speed of sound wave +simultaneously. Under a simple assumption that the sound speed is a function of the initial +pressure, the problem becomes a nonlinear inverse problem involving an unknown function. The +experimental results demonstrate that the proposed algorithm performs successfully. +1 +Introduction +Inverse problem is to find the cause factor from the observed data, which has applications +in many fields such as optics, radar, acoustics, communication theory, signal processing, +medical imaging, computer vision, geophysics, oceanography, and astronomy because it +tells us about what we cannot directly observe. The forward operator, the inverse of +the inverse problem, can be modelled as an (non)-linear system and often involves an +unknown function. Due to the nature of the inverse problem, it is usually very hard to +know the cause factor. For example, in medical imaging the cause factor is the human +body section and in seismology, we never know the structure of the earth’s interior. +In this article, we concern with a nonlinear inverse problem with forward operator involv- +ing an unknown function. Our goal is to find the unknown function and the inverse opera- +tor simultaneously from the measurements. The problem is generally ill-posed because of +1 +arXiv:2301.08693v1 [math.NA] 20 Jan 2023 + +the unknown function. Additionally, the nonlinearity in the problem makes conventional +methods difficult to use. To handle the problem, one may simplify the problem linearly +or assume knowledge of the unknown function. Here we propose a self-supervised frame- +work to directly tackle a nonlinear inverse problem involving an unknown function. In +particular, we address an inverse problem derived in Photoacoustic Tomography (PAT). +Although our proposed framework has been proposed to solve the problem arising in +PAT, it is generic and can be extended to handle a nonlinear inverse problem involving +an unknown function. +The rest of the section is devoted to an introduction of PAT. In section 2, we formulate +an inverse problem arising in PAT, which is nonlinear and also involves an unknown +function. The structure and learning method of the proposed framework for the problem +are described in section 3. The numerical simulation results in section 4 demonstrate that +the proposed algorithm performs successfully. +1.1 +Photoacoustic Tomography +PAT is a hybrid medical imaging that combines the high contrast of optical imaging with +the high spatial resolution of ultrasound images [1, 2, 3]. The physical basis of PAT is +the photoacoustic effect discovered by Bell in 1881 [4]. In PAT, when an non-destructive +testing target object absorbs a non-ionizing laser pulse, it thermally expands and emits +acoustic waves. The emitted ultrasound contains biological information on the target +object and is measured by an detector placed around it. The internal image of the target +object is reconstructed from this measured data. The advantage of PAT is that it is +economical and less harmful because of non-ionizing radiation use [5]. +The propagation of the emitted ultrasound p(x, t) can be described by the wave equation +∂2 +t p(x, t) = c(x)2∆xp(x, t) +on R2 × [0, ∞) +(1) +with the initial conditions +p(x, 0) = f(x) +∂tp(x, 0) = 0 +on R2. +(2) +Here c is the speed of waves and f is the initial pressure which contains biological in- +formation such as the location of a cancer cells in a physically small tissue. It is natural +assumption that f has compact support in the bounded domain Ω and the detectors are +located on the boundary ∂Ω of the domain. Regarding the measurement procedure, the +point-shaped detector measures the average pressure above ∂Ω where the detectors are +located and this average pressure is the value of a pressure wave p(x, t). Therefore, one of +mathematical problems in PAT is reconstructing f from the measured data p|∂Ω×[0,∞), +which implies obtaining an internal image of the target object. +It is well-known that given the initial pressure f and the speed c, the solution p is +determined uniquely. Let us define the wave forward operator W as +W : (f, c) �→ p|∂Ω×[0,∞), +i.e., +W(f, c) = p|∂Ω×[0,∞). +Reconstructing problem for f from W(f, c) is studied when speed c is constant [6, 7]. +Okanen, Stefanov and Uhlmann study the explicit reconstruction when the sound speed +2 + +is known +[8, 9]. If c depends on space variable x, the problem become much more +difficult. A few of researchers have studied the problem with a given variable sound +speed [10, 11, 12, 13]. Liu and Uhlmann figure out the sufficient conditions for recovering +f and c [14]. +Recently, the application of deep learning in an medical imaging including PAT has been +investigated extensively. Roles of deep learning in tomography include forward and in- +verse operator approximation, image reconstruction from sparse data, and artifact/noise +removal from reconstructed images [15, 16, 17, 18, 19, 20, 21]. There are also studies on +limited-view data (see [22, 23]). H. Shan et al. propose an iterative optimization algo- +rithm which reconstructs f and c simultaneously via a supervised learning [24]. However, +most works deal with linear inverse problems or inverse problems without involving an +unknown function [25]. +Many studies on PAT with deep learning are based on a supervised learning. A supervised +learning exploits a collection of paired data of the boundary data and the initial pres- +sure. In practical applications, it is difficult to obtain the initial pressure, because initial +pressure represents internal human body. Therefore, it is necessary to study a learning +method exploiting the boundary data only. One such method is a self-supervised learning +which exploits supervised signals that are generated from the input data by leveraging +its structure [26, 27]. +2 +Problem formulation +In this section, we formulate the problem precisely. For this, we will make several as- +sumptions. First we assume f has compact support, since a target object is finite. Sec- +ondly, c is assumed to be a function of f, namely c(x)2 = Γ(f(x)) for some function +Γ : [0, 1] → [0, ∞), because the wave speed c depends on the medium. Lastly, we assume +that Γ(0) and Γ(1) are known, namely Γ(0) = c0 and Γ(1) = c1. The last assumption is +reasonable because Γ(0) and Γ(1) represent the wave speeds in the air and the highest +thermal expansion coefficient respectively. Then the equation (1) is rewritten as: +∂2 +t p(x, t) = Γ(f(x))∆xp(x, t) +on R2 × [0, ∞). +(3) +Let us define WΓ by WΓ(f) = p|∂Ω×[0,∞) where p is the solution of (3) with initial +conditions (2). Then the inverse problem can be formulated as determining unknown Γ +and f from a given WΓ(f). However, this problem is ill-posed: for any Γ′ satisfying +� Γ = Γ′ on Im(f) +Γ ̸= Γ′ on Dom(Γ) \ Im(f), +we have WΓ(f) = WΓ′(f). Hence Γ can not be uniquely determined from WΓ(f). There +is also a possibility that there exist Γ1, Γ2, f1 and f2 such that Γ1 ̸= Γ2, f1 ̸= f2 and +WΓ1(f1) = WΓ2(f2). Instead, we consider the following inverse problem: +Problem 1. Let the collection of boundary data BΓ := {WΓ(f) | Γ : [0, 1] → [0, ∞), Γ(0) = +c0, Γ(1) = c1 and f ∈ L2(R2) has compact support} be given. +3 + +1. Determine unknown Γ from BΓ. +2. For all WΓ(f) ∈ BΓ, determine f. +Then the uniqueness statements for Problem 1 are +Hypothesis 1. If Γ1 ̸= Γ2, then BΓ1 ̸= BΓ2. +and +Hypothesis 2. For fixed Γ, if f1 ̸= f2, then WΓ(f1) ̸= WΓ(f2). +In this article, we aim to solve Problem 1 under Hypothesis 1 and 2. The problem is +difficult to solve because of +1. (3) involves unknown Γ. +2. (3) is not linear. +We are going to solve Problem 1 by exploiting a deep neural network (DNN). Since DNN +can only handle with finite data, we address the following inverse problem. +Problem 2. For given {WΓ(fi) | Γ : [0, 1] → [0, ∞), Γ(0) = c0, Γ(1) = c1 and fi ∈ +L2(R2) has compact support, i = 1, · · · , N}, determine Γ and {fi|i = 1, · · · , N}. +3 +Network Design +Figure 1: The network architecture +We propose a self-supervised learning for the problem formulated in section 2. Our goal +is simultaneously reconstructing {fi}N +i=1 and Γ from given collection {WΓ(fi)}N +i=1. The +proposed framework is depicted in Figure 1. It consists of three components: +4 + +input +output +Wr(f) +W (R(Wr(f))) +R(Wr(f)) +M(R(Wr(f))) +LOSS = MSEWr(f),W(RWr(f)))1. Reconstruction network R +2. Mapping network M +3. Wave forward operator W. +The reconstruction network R learns to reconstruct the initial data from the measured +data. The mapping network M approximates the function Γ : [0, 1] → [0, ∞) satisfying +c(x)2 = Γ(f(x)). The forward operator W assigns to the initial data and the wave +speed the measured data. Here we adopt the k-space method. If every component in the +framework functions properly, then output should be same to the input. Thus we define +the loss function as the difference between the input and the output: +L = 1 +N +N +� +i=1 +∥WΓ(fi) − WM(R(WΓ(fi))∥2 +∥WΓ(fi)∥2 +. +Remark. Our method estimates Γ and the inverse operator W−1 +Γ . The estimated inverse +operator can be used for the fast inference of the initial pressure from the boundary +measurement. +Remark. The proposed framework is generic and can be extended to handle a nonlinear +inverse problem involving an unknown function. +Now, the detailed structures of each component in the framework are described below. +3.1 +Reconstruction network R +The reconstruction network R is a network that reconstruct f from input data WΓ(f). +Indeed, it approximates the inverse map W−1 +Γ +: WΓ(f) �→ f. If the speed Γ of the wave +is constant, it is well-known that the inverse map of (3) is linear [7, 28, 29]. Inspired by +this fact, we propose the reconstruction network as a perturbation of a linear map: +R := T1 + U ◦ T2, +(4) +where T1, T2 : Rm×m → Rm×m are linear and U : Rm×m → Rm×m is the U-net described +in Figure 2. U-net is a type of convolutional neural network (CNN) introduced in [30] and +is used widely in medical imaging. U-net consists of a contracting path and an expansive +path. The contacting path has a typical CNN structure, where the input data is extracted +into feature map with small size and large channel. In the expansive path, the size of +the feature map increases again, and the number of channels decreases. In the end of R, +since the range of f is [0, 1], we used the clamp function which rounds up values smaller +than the minimum and round down values larger than the maximum. +5 + +Figure 2: U-net architecture for 64 × 64 size +The proposed reconstruction network show a high performance for the low resolution +data like 64 × 64 (see section 4.3.1). In case of high resolution data, however the linear +operators T1 and T2 in the reconstruction network R make some problems, because +they contains too many parameters. It causes lots of critical points which impede the +convergence to the global minimum. It also makes a hardware issue and thus for the high +resolution data, we employ Pixel Shuffle and Pixel Unshuffle which reduce the number of +parameters contained in linear operators [31]. The Pixel Unshuffle splits one image into +several images and the Pixel Shuffle merges several images into one image, as illustrated +in Figure 3. Instead of applying the linear operators (T1 and T2) directly to the high +resolution data, we process the data as follows (see Figure 4) : +1. Split the high resolution data (m × m) into four low resolution data ( m +2 × m +2 ) by +exploiting the Pixel Unshuffle. +2. Apply four different linear operators to each low resolution data. +3. Merge the outputs of the linear operators by using the Pixel Shuffle. +6 + +Figure 3: Pixel Shuffle and Pixel Unshuffle +Figure 4: Architecture of alternative map to linear for high resolution data +3.2 +Mapping network M +We use multilayer perceptron (MLP) to approximate unknown Γ, because MLP can +approximate any continuous function (a universal approximation theorem, see [32, 33]). +The proposed network is a simple structure containing only three hidden layers of 10 +nodes. To satisfy the assumption that Γ(0) = c0 and Γ(1) = c1, the output of MLP is +slightly manipulated as +M(f) = MLP(f) − MLP(0) ∗ (1 − f) − MLP(1) ∗ f + ((c1 − c0)f + c0), +7 + +Linear map +Linearmap2 +Pixel +Pixel +Unshuffle +Shuffle +Linear map 3 +Linear map 4so that +M(0) = c0 and M(1) = c1. +(5) +3.3 +Forward problem +A solution of the initial value problem (3) can be computed by the k-space method +[34, 35]. The k-space method is a numerical method for computing solution of acoustic +wave propagation, which uses information in the frequency space to obtain a solution for +the next time step. For calculating propagation of p(x, t), let w(x, t) = +1 +Γ(f(x))p(x, t) be +an auxiliary field. Then we have, +∂2 +t w(x, t) = ∆x [Γ(f(x))w(x, t)] . +Taking the Fourier transform Fx for w with respect to x yields +∂2 +t Fxw(k, t) = −|k|2Fx +� +Γ(f(·))w(·, t) +� +(k). +(6) +Meanwhile, the numerical approximation of the second derivative of Fxw is +∂2 +t Fxw(k, t) ≈ Fxw(k, t + ∆t) − 2Fxw(k, t) + Fxw(k, t − ∆t) +(∆t)2 +, +(7) +where ∆t is the time step. Then, by combining (6) and (7), we have +Fxw(k, t + ∆t) = 2Fxw(k, t) − Fxw(k, t − ∆t) − (∆t)2|k|2Fx +� +Γ(f(·))w(·, t) +� +(k). +By taking the inverse Fourier transform F−1 +k , we obtain +w(x, t + ∆t) = 2w(x, t) − w(x, t − ∆t) − F−1 +k +� +(∆t)2|·|2Fx +� +Γ(f)w +� +(·, t) +� +(x). +Here, replacing (∆t)2|k|2 in the third term with 4 sin2 � +(∆t)|k| +2 +� +provides more accurate +discretization (see [34, 35]). Finally, we have wave propagation formula: +w(x, t + ∆t) = 2w(x, t) − w(x, t − ∆t) − F−1 +k +� +4 sin2 +�(∆t)| · | +2 +� +Fx +� +Γ(f)w +� +(·, t) +� +(x), +or equivalently, +p(x, t + ∆t) = 2p(x, t) − p(x, t − ∆t) − Γ(f)F−1 +k +� +4 sin2 +�(∆t)| · | +2 +� +Fx +� +p +� +(·, t) +� +(x). +4 +Numerical Simulations +In this section, we present the details of implementation and experimental results when +Ω is the unit ball. +8 + +4.1 +Datasets +The Shepp-Logan phantom, an artificial image that describes a cross section of the brain +commonly used for simulation in tomography, contains 10 ellipses [36]. Each ellipse is +created with 6 parameters: major axis, minor axis, the x-coordinate and the y-coordinate +of center, rotation angle, and intensity value. The data set of the initial condition f defined +on [−1.0, 1.0]2 ⊂ R2 is generated by slightly changing these 6 parameters with +supp(f) ⊂ +� +(x, y) ∈ R2 : +x2 +0.692 + +y2 +0.922 ≤ 1 +� +. +We create a set of 2,688 phantoms P = {fi}2688 +i=1 . For Γ, we consider four cases: linear, +square root, square, and constant +1. Γ1(f) = 0.3f + 0.7 +2. Γ2(f) = 0.3√f + 0.7 +3. Γ3(f) = 0.3f 2 + 0.7 +4. Γ4(f) = 0.7. +For 1 ≤ j ≤ 4, we make the collection of data {WΓjfi}2688 +i=1 by using the forward operator +for P and Γj. Of the 2,688 data, we use 2,048 data for training, 128 data for validation +and 512 data for testing respectively. +Figure 5: Examples of phantoms +9 + +4.2 +Training +We use the Adam optimizer based on stochastic gradient descent and adaptive moment +estimation to train the network +[37]. There are two neural networks in the proposed +frameworks: the reconstruction network R and the mapping network M. The learning +rates for linear term of R, perturbation term of R, and M are chosen to be 10−4, +10−3, and 10−3, respectively. Momentum parameters of the Adam optimizer were set at +β1 = 0.9 and β2 = 0.999, respectively. +We specifically put the batch size to 2. For general tasks, a moderately large batch +size reduces training time. However, in this problem, a small batch size is advantageous +because our model must be able to reconstruct an exact image for each data rather than +an average result. +4.3 +Results +In this section, we illustrate experimental results. The overall results are displayed in +Figure 6, Table 1, Figure 7, Figure 8, Table 2 and Figure 9. Here the losses for f and +WΓ(f) are respectively defined by +loss for f = 1 +N +N +� +i=1 +∥fi − R(WΓ(fi))∥2 +∥fi∥2 +, +and +loss for WΓf = 1 +N +N +� +i=1 +∥WΓ(fi) − WM(R(WΓ(fi))∥2 +∥WΓ(fi)∥2 +. +4.3.1 +Low resolution data +We conduct the simulation utilizing a dataset of images with a size of 64×64. The results +for the mapping networks are shown in Figure 6. We see that the mapping networks +accurately approximates Γ. When Γ3 = 0.3f 2 + 0.7, there is a difference between the +plot of the mapping network M and the plot of Γ. This is because the values of f ∈ P +almost belong to [0, 0.3]∪1 and so it has little effect on WΓ(f). In all cases, the process of +training the mapping networks requires approximately 103 iterations. The results of the +reconstruction networks are illustrated in Table 1 and Figure 7. Table 1 shows the test +errors. So it can be concluded that the reconstruction networks accurately approximate +the inverse maps in each case. The training of the reconstruction networks necessitates +approximately 105 iterations. +Remark. The assumption on Γ, (5) is crucial. If constraint (5) is not given in M, it +may take a long time to approximate Γ, or it may fail to find Γ. Under the constraint, M +can quickly determine Γ. Early determination of Γ helps the learning of reconstruction +networks. +10 + +Figure 6: Comparison of the mapping network M and ground truth Γ for 64 × 64 data +Assumption +loss for f +loss for WΓ(f) +Γ1 = 0.3f + 0.7 +0.00504 +0.00702 +Γ2 = 0.3√f + 0.7 +0.00537 +0.00947 +Γ3 = 0.3f 2 + 0.7 +0.00557 +0.00634 +Γ4 = 0.7 +0.01373 +0.00456 +Table 1: Test errors for f and WΓ(f) according to Γ after 102,400 iterations for 64 × 64 +data +11 + +[2 = 0.3Vf + 0.7 +[1 = 0.3f + 0.7 +1.0 +ground truth +1.0 +mapping network +0.7 +0.7 +0.0 +0.5 +1.0 +0.0 +0.5 +1.0 +[3 = 0.3f2 + 0.7 +[4 = 0.7 +1.0 +1.0 +0.7 +0.7 +0.0 +0.5 +1.0 +0.0 +0.5 +1.0Figure 7: Reconstruction results according to Γ for 64 × 64 data +4.3.2 +High resolution data +In the simulation for high resolution data, two linear operators T1 and T2 in the recon- +struction network (4) are replaced by alternative map described in Figure 4. The dataset +is prepared with images of a size of 96 × 96. Similarly to the low resolution case, the +mapping network M approximates Γ accurately within 103 iterations (Figure 8). On the +other hand, the reconstruction networks for each Γ exhibit a slight decrease in perfor- +mance but still acceptable (Table 2 and Figure 9). We surmise that the slight decrease +in performance is a result of the reduction in parameters brought about by the Pixel +Unshuffle and Pixel Shuffle operations. +12 + +[1 = 0.3f + 0.7 +[2 = 0.3V f + 0.7 +[3 = 0.3f2 + 0.7 +4 = 0.7 +ground truth +1.0 +0.8 +0.6 +0.4 +0.2 +0.0Figure 8: Comparison of the mapping network M and ground truth Γ for 96 × 96 data +Assumption +loss for f +loss for WΓ(f) +Γ1 = 0.3f + 0.7 +0.00860 +0.01293 +Γ2 = 0.3√f + 0.7 +0.01023 +0.01679 +Γ3 = 0.3f 2 + 0.7 +0.00710 +0.01132 +Γ4 = 0.7 +0.00689 +0.69511 +Table 2: Test errors for f and WΓ(f) according to Γ after 102,400 iterations for 96 × 96 +data +13 + +[2 = 0.3Vf + 0.7 +[1 = 0.3f + 0.7 +1.0 +ground truth +1.0 +mapping network +0.7 +0.7 +0.0 +0.5 +1.0 +0.0 +0.5 +1.0 +[3 = 0.3f2 + 0.7 +[4 = 0.7 +1.0 +1.0 +0.7 +0.7 +0.0 +0.5 +1.0 +0.0 +0.5 +1.0Figure 9: Reconstruction results according to Γ for 96 × 96 data +5 +Conclusions +Here, we propose a self-supervised learning for a nonlinear inverse problem with forward +operator involving an unknown function. In medical imaging such as PAT, the initial +pressure is mostly untrackable for the measured data. Moreover it is difficult to know the +wave speed. So it is necessary to reconstruct the initial pressure f and the wave speed +simultaneously. Under the simple assumption, the problem becomes a nonlinear inverse +problem involving an unknown function. The experimental results demonstrate the high +performance of the proposed algorithm. Our framework can be extended to a nonlinear +inverse problem involving an unknown function, formulated under more complicated +situations. This can be an interesting line of future research. +References +[1] Huabei Jiang. Photoacoustic tomography. CRC Press, 2018. +[2] Jun Xia, Junjie Yao, and Lihong V Wang. Photoacoustic tomography: principles +and advances. Electromagnetic waves (Cambridge, Mass.), 147:1, 2014. +[3] Peter Kuchment. The Radon transform and medical imaging. SIAM, 2013. +14 + +[1 = 0.3f + 0.7 +[2 = 0.3V f + 0.7 +[3 = 0.3f2 + 0.7 +「4 = 0.7 +ground truth +1.0 +0.8 +0.6 +0.4 +0.2 +0.0[4] Alexander Graham Bell. On the production and reproduction of sound by light. In +Proc. Am. Assoc. Adv. Sci., volume 29, pages 115–136, 1881. +[5] Idan Steinberg, David M Huland, Ophir Vermesh, Hadas E Frostig, Willemieke S +Tummers, and Sanjiv S Gambhir. Photoacoustic clinical imaging. Photoacoustics, +14:77–98, 2019. +[6] Gerhard Zangerl, Sunghwan Moon, and Markus Haltmeier. Photoacoustic tomogra- +phy with direction dependent data: An exact series reconstruction approach. Inverse +Problems, 35(11):114005, 2019. +[7] Minghua Xu and Lihong V Wang. Universal back-projection algorithm for photoa- +coustic computed tomography. Physical Review E, 71(1):016706, 2005. +[8] Lauri Oksanen and Gunther Uhlmann. Photoacoustic and thermoacoustic tomog- +raphy with an uncertain wave speed. Mathematical Research Letters, 2014. +[9] Plamen Stefanov and Gunther Uhlmann. Thermoacoustic tomography with variable +sound speed Inverse Problems, 25(7):075011, 16, 2009. +[10] Jianliang Qian, Plamen Stefanov, Gunther Uhlmann, and Hongkai Zhao. An efficient +neumann series–based algorithm for thermoacoustic and photoacoustic tomography +with variable sound speed. SIAM Journal on Imaging Sciences, 4(3):850–883, 2011. +[11] Zakaria Belhachmi, Thomas Glatz, and Otmar Scherzer. +A direct method for +photoacoustic tomography with inhomogeneous sound speed. +Inverse Problems, +32(4):045005, 2016. +[12] Yulia Hristova, Peter Kuchment, and Linh Nguyen. Reconstruction and time rever- +sal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous +media. Inverse problems, 24(5):055006, 2008. +[13] Minam Moon, Injo Hur, and Sunghwan Moon. +Singular value decomposition +of the wave forward operator with radial variable coefficients. +arXiv preprint +arXiv:2208.10793, 2022. +[14] Hongyu Liu and Gunther Uhlmann. Determining both sound speed and internal +source in thermo-and photo-acoustic tomography. Inverse Problems, 31(10):105005, +2015. +[15] Stephan Antholzer, Markus Haltmeier, Robert Nuster, and Johannes Schwab. Pho- +toacoustic image reconstruction via deep learning. +In Photons Plus Ultrasound: +Imaging and Sensing 2018, volume 10494, pages 433–442. SPIE, 2018. +[16] Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexan- +dros G Dimakis, and Rebecca Willett. Deep learning techniques for inverse prob- +lems in imaging. IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, +2020. +[17] Ge Wang, Jong Chul Ye, and Bruno De Man. Deep learning for tomographic image +reconstruction. Nature Machine Intelligence, 2(12):737–748, 2020. +15 + +[18] Janek Gröhl, Melanie Schellenberg, Kris Dreher, and Lena Maier-Hein. Deep learn- +ing for biomedical photoacoustic imaging: a review. Photoacoustics, 22:100241, 2021. +[19] Changchun Yang, Hengrong Lan, Feng Gao, and Fei Gao. Review of deep learning +for photoacoustic imaging. Photoacoustics, 21:100215, 2021. +[20] Stephan Antholzer, Markus Haltmeier, and Johannes Schwab. Deep learning for +photoacoustic tomography from sparse data. +Inverse problems in science and +engineering, 27(7):987–1005, 2019. +[21] Jiasheng Zhou, Da He, Xiaoyu Shang, Zhendong Guo, Sung-Liang Chen, and Jiajia +Luo. Photoacoustic microscopy with sparse data by convolutional neural networks. +Photoacoustics, 22:100242, 2021. +[22] Steven Guan, Amir A Khan, Siddhartha Sikdar, and Parag V Chitnis. Limited- +view and sparse photoacoustic tomography for neuroimaging with deep learning. +Scientific reports, 10(1):1–12, 2020. +[23] Huijuan Zhang, LI Hongyu, Nikhila Nyayapathi, Depeng Wang, Alisa Le, Leslie +Ying, and Jun Xia. A new deep learning network for mitigating limited-view and +under-sampling artifacts in ring-shaped photoacoustic tomography. Computerized +Medical Imaging and Graphics, 84:101720, 2020. +[24] Hongming Shan, Christopher Wiedeman, Ge Wang, and Yang Yang. Simultane- +ous reconstruction of the initial pressure and sound speed in photoacoustic tomog- +raphy using a deep-learning approach. +In Novel Optical Systems, Methods, and +Applications XXII, volume 11105, page 1110504. International Society for Optics +and Photonics, 2019. +[25] Maarten V. de Hoop, Matti Lassas, and Christopher A. Wong, +Deep learn- +ing architectures for nonlinear operator functions and nonlinear inverse problems. +Mathematical Statistics and Learning, no. 1/2(4):1–86, 2021 +[26] Saeed Shurrab and Rehab Duwairi. +Self-supervised learning methods and appli- +cations in medical imaging analysis: A survey. PeerJ Computer Science, 8:e1045, +2022. +[27] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep +neural networks: A survey. +IEEE transactions on pattern analysis and machine +intelligence, 43(11):4037–4058, 2020. +[28] Sunghwan Moon. Inversion formula for a radon-type transform arising in photoa- +coustic tomography with circular integrating detectors. Advances in Mathematical +Physics, 2018, 2018. +[29] Rim Gouia-Zarrad, Souvik Roy, and Sunghwan Moon. +Numerical inversion and +uniqueness of a spherical radon transform restricted with a fixed angular span. +Applied Mathematics and Computation, 408:126338, 2021. +16 + +[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net- +works for biomedical image segmentation. In International Conference on Medical +image computing and computer-assisted intervention, pages 234–241. Springer, 2015. +[31] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob +Bishop, Daniel Rueckert, and Zehan Wang, Real-time single image and video super- +resolution using an efficient sub-pixel convolutional neural network Proceedings of +the IEEE conference on computer vision and pattern recognition,1874–1883, 2016. +[32] George Cybenko. +Approximation by superpositions of a sigmoidal function. +Mathematics of control, signals and systems, 2(4):303–314, 1989. +[33] Jae-Mo Kang and Sunghwan Moon. Error bounds for ReLU networks with depth +and width parameters. Japan Journal of Industrial and Applied Mathematics, To +appear. +[34] T Douglas Mast, Laurent P Souriau, D-LD Liu, Makoto Tabei, Adrian I Nachman, +and Robert C Waag. A k-space method for large-scale models of wave propagation +in tissue. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, +48(2):341–354, 2001. +[35] Benjamin T Cox, S Kara, Simon R Arridge, and Paul C Beard. k-space propagation +models for acoustically heterogeneous media: Application to biomedical photoacous- +tics. The Journal of the Acoustical Society of America, 121(6):3453–3464, 2007. +[36] Lawrence A Shepp and Benjamin F Logan. The Fourier reconstruction of a head +section. IEEE Transactions on nuclear science, 21.3:21–43, 1974. +[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. +arXiv preprint arXiv:1412.6980, 2014. +17 + diff --git a/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/load_file.txt b/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..809f4aff7ef4fd1e6ddfe0e2eef6c76bae7f6e0e --- /dev/null +++ b/ONFAT4oBgHgl3EQfyh6B/content/tmp_files/load_file.txt @@ -0,0 +1,470 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf,len=469 +page_content='SELF-SUPERVISED LEARNING FOR A NONLINEAR INVERSE PROBLEM WITH FORWARD OPERATOR INVOLVING AN UNKNOWN FUNCTION ARISING IN PHOTOACOUSTIC TOMOGRAPHY Gyeongha Hwang1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Gihyeon Jeon2∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Sunghwan Moon3 1 Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Yeungnam University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Gyeongsan 38541,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Republic of Korea 2 School of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Kyungpook National University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Daegu 41566,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Republic of Korea 3 Department of Mathematics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Kyungpook National University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Daegu 41566,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Republic of Korea Corresponding author E-mails: rydbr6709@knu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='kr ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In this article, we concern with a nonlinear inverse problem with forward opera- tor involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The problem arises in diverse applications and is challenging by the presence of the unknown function, which makes it ill-posed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Additionally, the nonlinear nature of the problem makes it difficult to use traditional methods and thus the study has addressed a simplified version of the problem by either linearizing it or assuming knowledge of the unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Here, we propose a self-supervised learning to directly tackle a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In particular, we focus on an inverse problem derived in Photoacoustic Tomograpy (PAT) which is a hybrid medical imaging with high res- olution and contrast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' PAT can be modelled based on the wave equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The measured data is the solution of the equation restricted to the surface and the initial pressure of the equation contains the biological information on the object of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The speed of sound wave in the equation is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Our goal is to determine the initial pressure and the speed of sound wave simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Under a simple assumption that the sound speed is a function of the initial pressure, the problem becomes a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The experimental results demonstrate that the proposed algorithm performs successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 1 Introduction Inverse problem is to find the cause factor from the observed data, which has applications in many fields such as optics, radar, acoustics, communication theory, signal processing, medical imaging, computer vision, geophysics, oceanography, and astronomy because it tells us about what we cannot directly observe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The forward operator, the inverse of the inverse problem, can be modelled as an (non)-linear system and often involves an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Due to the nature of the inverse problem, it is usually very hard to know the cause factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For example, in medical imaging the cause factor is the human body section and in seismology, we never know the structure of the earth’s interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In this article, we concern with a nonlinear inverse problem with forward operator involv- ing an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Our goal is to find the unknown function and the inverse opera- tor simultaneously from the measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The problem is generally ill-posed because of 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='08693v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='NA] 20 Jan 2023 the unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Additionally, the nonlinearity in the problem makes conventional methods difficult to use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' To handle the problem, one may simplify the problem linearly or assume knowledge of the unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Here we propose a self-supervised frame- work to directly tackle a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In particular, we address an inverse problem derived in Photoacoustic Tomography (PAT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Although our proposed framework has been proposed to solve the problem arising in PAT, it is generic and can be extended to handle a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The rest of the section is devoted to an introduction of PAT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In section 2, we formulate an inverse problem arising in PAT, which is nonlinear and also involves an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The structure and learning method of the proposed framework for the problem are described in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The numerical simulation results in section 4 demonstrate that the proposed algorithm performs successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='1 Photoacoustic Tomography PAT is a hybrid medical imaging that combines the high contrast of optical imaging with the high spatial resolution of ultrasound images [1, 2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The physical basis of PAT is the photoacoustic effect discovered by Bell in 1881 [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In PAT, when an non-destructive testing target object absorbs a non-ionizing laser pulse, it thermally expands and emits acoustic waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The emitted ultrasound contains biological information on the target object and is measured by an detector placed around it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The internal image of the target object is reconstructed from this measured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The advantage of PAT is that it is economical and less harmful because of non-ionizing radiation use [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The propagation of the emitted ultrasound p(x, t) can be described by the wave equation ∂2 t p(x, t) = c(x)2∆xp(x, t) on R2 × [0, ∞) (1) with the initial conditions p(x, 0) = f(x) ∂tp(x, 0) = 0 on R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (2) Here c is the speed of waves and f is the initial pressure which contains biological in- formation such as the location of a cancer cells in a physically small tissue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' It is natural assumption that f has compact support in the bounded domain Ω and the detectors are located on the boundary ∂Ω of the domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Regarding the measurement procedure, the point-shaped detector measures the average pressure above ∂Ω where the detectors are located and this average pressure is the value of a pressure wave p(x, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Therefore, one of mathematical problems in PAT is reconstructing f from the measured data p|∂Ω×[0,∞), which implies obtaining an internal image of the target object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' It is well-known that given the initial pressure f and the speed c, the solution p is determined uniquely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Let us define the wave forward operator W as W : (f, c) �→ p|∂Ω×[0,∞), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=', W(f, c) = p|∂Ω×[0,∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Reconstructing problem for f from W(f, c) is studied when speed c is constant [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Okanen, Stefanov and Uhlmann study the explicit reconstruction when the sound speed 2 is known [8, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' If c depends on space variable x, the problem become much more difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' A few of researchers have studied the problem with a given variable sound speed [10, 11, 12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Liu and Uhlmann figure out the sufficient conditions for recovering f and c [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Recently, the application of deep learning in an medical imaging including PAT has been investigated extensively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Roles of deep learning in tomography include forward and in- verse operator approximation, image reconstruction from sparse data, and artifact/noise removal from reconstructed images [15, 16, 17, 18, 19, 20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' There are also studies on limited-view data (see [22, 23]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Shan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' propose an iterative optimization algo- rithm which reconstructs f and c simultaneously via a supervised learning [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' However, most works deal with linear inverse problems or inverse problems without involving an unknown function [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Many studies on PAT with deep learning are based on a supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' A supervised learning exploits a collection of paired data of the boundary data and the initial pres- sure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In practical applications, it is difficult to obtain the initial pressure, because initial pressure represents internal human body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Therefore, it is necessary to study a learning method exploiting the boundary data only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' One such method is a self-supervised learning which exploits supervised signals that are generated from the input data by leveraging its structure [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 2 Problem formulation In this section, we formulate the problem precisely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For this, we will make several as- sumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' First we assume f has compact support, since a target object is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Sec- ondly, c is assumed to be a function of f, namely c(x)2 = Γ(f(x)) for some function Γ : [0, 1] → [0, ∞), because the wave speed c depends on the medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Lastly, we assume that Γ(0) and Γ(1) are known, namely Γ(0) = c0 and Γ(1) = c1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The last assumption is reasonable because Γ(0) and Γ(1) represent the wave speeds in the air and the highest thermal expansion coefficient respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Then the equation (1) is rewritten as: ∂2 t p(x, t) = Γ(f(x))∆xp(x, t) on R2 × [0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (3) Let us define WΓ by WΓ(f) = p|∂Ω×[0,∞) where p is the solution of (3) with initial conditions (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Then the inverse problem can be formulated as determining unknown Γ and f from a given WΓ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' However, this problem is ill-posed: for any Γ′ satisfying � Γ = Γ′ on Im(f) Γ ̸= Γ′ on Dom(Γ) \\ Im(f), we have WΓ(f) = WΓ′(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Hence Γ can not be uniquely determined from WΓ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' There is also a possibility that there exist Γ1, Γ2, f1 and f2 such that Γ1 ̸= Γ2, f1 ̸= f2 and WΓ1(f1) = WΓ2(f2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Instead, we consider the following inverse problem: Problem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Let the collection of boundary data BΓ := {WΓ(f) | Γ : [0, 1] → [0, ∞), Γ(0) = c0, Γ(1) = c1 and f ∈ L2(R2) has compact support} be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Determine unknown Γ from BΓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For all WΓ(f) ∈ BΓ, determine f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Then the uniqueness statements for Problem 1 are Hypothesis 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' If Γ1 ̸= Γ2, then BΓ1 ̸= BΓ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' and Hypothesis 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For fixed Γ, if f1 ̸= f2, then WΓ(f1) ̸= WΓ(f2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In this article, we aim to solve Problem 1 under Hypothesis 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The problem is difficult to solve because of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (3) involves unknown Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (3) is not linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' We are going to solve Problem 1 by exploiting a deep neural network (DNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Since DNN can only handle with finite data, we address the following inverse problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Problem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For given {WΓ(fi) | Γ : [0, 1] → [0, ∞), Γ(0) = c0, Γ(1) = c1 and fi ∈ L2(R2) has compact support, i = 1, · · · , N}, determine Γ and {fi|i = 1, · · · , N}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 3 Network Design Figure 1: The network architecture We propose a self-supervised learning for the problem formulated in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Our goal is simultaneously reconstructing {fi}N i=1 and Γ from given collection {WΓ(fi)}N i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The proposed framework is depicted in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' It consists of three components: 4 input output Wr(f) W (R(Wr(f))) R(Wr(f)) M(R(Wr(f))) LOSS = MSEWr(f),W(RWr(f)))1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Reconstruction network R 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Mapping network M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Wave forward operator W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The reconstruction network R learns to reconstruct the initial data from the measured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The mapping network M approximates the function Γ : [0, 1] → [0, ∞) satisfying c(x)2 = Γ(f(x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The forward operator W assigns to the initial data and the wave speed the measured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Here we adopt the k-space method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' If every component in the framework functions properly, then output should be same to the input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Thus we define the loss function as the difference between the input and the output: L = 1 N N � i=1 ∥WΓ(fi) − WM(R(WΓ(fi))∥2 ∥WΓ(fi)∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Our method estimates Γ and the inverse operator W−1 Γ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The estimated inverse operator can be used for the fast inference of the initial pressure from the boundary measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The proposed framework is generic and can be extended to handle a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Now, the detailed structures of each component in the framework are described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='1 Reconstruction network R The reconstruction network R is a network that reconstruct f from input data WΓ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Indeed, it approximates the inverse map W−1 Γ : WΓ(f) �→ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' If the speed Γ of the wave is constant, it is well-known that the inverse map of (3) is linear [7, 28, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inspired by this fact, we propose the reconstruction network as a perturbation of a linear map: R := T1 + U ◦ T2, (4) where T1, T2 : Rm×m → Rm×m are linear and U : Rm×m → Rm×m is the U-net described in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' U-net is a type of convolutional neural network (CNN) introduced in [30] and is used widely in medical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' U-net consists of a contracting path and an expansive path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The contacting path has a typical CNN structure, where the input data is extracted into feature map with small size and large channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In the expansive path, the size of the feature map increases again, and the number of channels decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In the end of R, since the range of f is [0, 1], we used the clamp function which rounds up values smaller than the minimum and round down values larger than the maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 5 Figure 2: U-net architecture for 64 × 64 size The proposed reconstruction network show a high performance for the low resolution data like 64 × 64 (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In case of high resolution data, however the linear operators T1 and T2 in the reconstruction network R make some problems, because they contains too many parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' It causes lots of critical points which impede the convergence to the global minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' It also makes a hardware issue and thus for the high resolution data, we employ Pixel Shuffle and Pixel Unshuffle which reduce the number of parameters contained in linear operators [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The Pixel Unshuffle splits one image into several images and the Pixel Shuffle merges several images into one image, as illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Instead of applying the linear operators (T1 and T2) directly to the high resolution data, we process the data as follows (see Figure 4) : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Split the high resolution data (m × m) into four low resolution data ( m 2 × m 2 ) by exploiting the Pixel Unshuffle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Apply four different linear operators to each low resolution data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Merge the outputs of the linear operators by using the Pixel Shuffle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 6 Figure 3: Pixel Shuffle and Pixel Unshuffle Figure 4: Architecture of alternative map to linear for high resolution data 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='2 Mapping network M We use multilayer perceptron (MLP) to approximate unknown Γ, because MLP can approximate any continuous function (a universal approximation theorem, see [32, 33]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The proposed network is a simple structure containing only three hidden layers of 10 nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' To satisfy the assumption that Γ(0) = c0 and Γ(1) = c1, the output of MLP is slightly manipulated as M(f) = MLP(f) − MLP(0) ∗ (1 − f) − MLP(1) ∗ f + ((c1 − c0)f + c0), 7 Linear map Linearmap2 Pixel Pixel Unshuffle Shuffle Linear map 3 Linear map 4so that M(0) = c0 and M(1) = c1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (5) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3 Forward problem A solution of the initial value problem (3) can be computed by the k-space method [34, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The k-space method is a numerical method for computing solution of acoustic wave propagation, which uses information in the frequency space to obtain a solution for the next time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For calculating propagation of p(x, t), let w(x, t) = 1 Γ(f(x))p(x, t) be an auxiliary field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Then we have, ∂2 t w(x, t) = ∆x [Γ(f(x))w(x, t)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Taking the Fourier transform Fx for w with respect to x yields ∂2 t Fxw(k, t) = −|k|2Fx � Γ(f(·))w(·, t) � (k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' (6) Meanwhile, the numerical approximation of the second derivative of Fxw is ∂2 t Fxw(k, t) ≈ Fxw(k, t + ∆t) − 2Fxw(k, t) + Fxw(k, t − ∆t) (∆t)2 , (7) where ∆t is the time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Then, by combining (6) and (7), we have Fxw(k, t + ∆t) = 2Fxw(k, t) − Fxw(k, t − ∆t) − (∆t)2|k|2Fx � Γ(f(·))w(·, t) � (k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' By taking the inverse Fourier transform F−1 k , we obtain w(x, t + ∆t) = 2w(x, t) − w(x, t − ∆t) − F−1 k � (∆t)2|·|2Fx � Γ(f)w � (·, t) � (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Here, replacing (∆t)2|k|2 in the third term with 4 sin2 � (∆t)|k| 2 � provides more accurate discretization (see [34, 35]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Finally, we have wave propagation formula: w(x, t + ∆t) = 2w(x, t) − w(x, t − ∆t) − F−1 k � 4 sin2 �(∆t)| · | 2 � Fx � Γ(f)w � (·, t) � (x), or equivalently, p(x, t + ∆t) = 2p(x, t) − p(x, t − ∆t) − Γ(f)F−1 k � 4 sin2 �(∆t)| · | 2 � Fx � p � (·, t) � (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 4 Numerical Simulations In this section, we present the details of implementation and experimental results when Ω is the unit ball.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='1 Datasets The Shepp-Logan phantom, an artificial image that describes a cross section of the brain commonly used for simulation in tomography, contains 10 ellipses [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Each ellipse is created with 6 parameters: major axis, minor axis, the x-coordinate and the y-coordinate of center, rotation angle, and intensity value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The data set of the initial condition f defined on [−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0]2 ⊂ R2 is generated by slightly changing these 6 parameters with supp(f) ⊂ � (x, y) ∈ R2 : x2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='692 + y2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='922 ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' We create a set of 2,688 phantoms P = {fi}2688 i=1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For Γ, we consider four cases: linear, square root, square, and constant 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Γ1(f) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Γ2(f) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3√f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Γ3(f) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f 2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Γ4(f) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For 1 ≤ j ≤ 4, we make the collection of data {WΓjfi}2688 i=1 by using the forward operator for P and Γj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Of the 2,688 data, we use 2,048 data for training, 128 data for validation and 512 data for testing respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Figure 5: Examples of phantoms 9 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='2 Training We use the Adam optimizer based on stochastic gradient descent and adaptive moment estimation to train the network [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' There are two neural networks in the proposed frameworks: the reconstruction network R and the mapping network M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The learning rates for linear term of R, perturbation term of R, and M are chosen to be 10−4, 10−3, and 10−3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Momentum parameters of the Adam optimizer were set at β1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='9 and β2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='999, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' We specifically put the batch size to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' For general tasks, a moderately large batch size reduces training time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' However, in this problem, a small batch size is advantageous because our model must be able to reconstruct an exact image for each data rather than an average result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3 Results In this section, we illustrate experimental results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The overall results are displayed in Figure 6, Table 1, Figure 7, Figure 8, Table 2 and Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Here the losses for f and WΓ(f) are respectively defined by loss for f = 1 N N � i=1 ∥fi − R(WΓ(fi))∥2 ∥fi∥2 , and loss for WΓf = 1 N N � i=1 ∥WΓ(fi) − WM(R(WΓ(fi))∥2 ∥WΓ(fi)∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='1 Low resolution data We conduct the simulation utilizing a dataset of images with a size of 64×64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The results for the mapping networks are shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' We see that the mapping networks accurately approximates Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' When Γ3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f 2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7, there is a difference between the plot of the mapping network M and the plot of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' This is because the values of f ∈ P almost belong to [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3]∪1 and so it has little effect on WΓ(f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In all cases, the process of training the mapping networks requires approximately 103 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The results of the reconstruction networks are illustrated in Table 1 and Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Table 1 shows the test errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' So it can be concluded that the reconstruction networks accurately approximate the inverse maps in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The training of the reconstruction networks necessitates approximately 105 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The assumption on Γ, (5) is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' If constraint (5) is not given in M, it may take a long time to approximate Γ, or it may fail to find Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Under the constraint, M can quickly determine Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Early determination of Γ helps the learning of reconstruction networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 10 Figure 6: Comparison of the mapping network M and ground truth Γ for 64 × 64 data Assumption loss for f loss for WΓ(f) Γ1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00702 Γ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3√f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00537 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00947 Γ3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f 2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00557 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00634 Γ4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='01373 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00456 Table 1: Test errors for f and WΓ(f) according to Γ after 102,400 iterations for 64 × 64 data 11 [2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3Vf + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 ground truth 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 mapping network 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 [3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0Figure 7: Reconstruction results according to Γ for 64 × 64 data 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='2 High resolution data In the simulation for high resolution data, two linear operators T1 and T2 in the recon- struction network (4) are replaced by alternative map described in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The dataset is prepared with images of a size of 96 × 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Similarly to the low resolution case, the mapping network M approximates Γ accurately within 103 iterations (Figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' On the other hand, the reconstruction networks for each Γ exhibit a slight decrease in perfor- mance but still acceptable (Table 2 and Figure 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' We surmise that the slight decrease in performance is a result of the reduction in parameters brought about by the Pixel Unshuffle and Pixel Shuffle operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 12 [1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3V f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 ground truth 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0Figure 8: Comparison of the mapping network M and ground truth Γ for 96 × 96 data Assumption loss for f loss for WΓ(f) Γ1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='01293 Γ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3√f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='01023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='01679 Γ3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f 2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='01132 Γ4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='00689 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='69511 Table 2: Test errors for f and WΓ(f) according to Γ after 102,400 iterations for 96 × 96 data 13 [2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3Vf + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 ground truth 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 mapping network 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 [3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0Figure 9: Reconstruction results according to Γ for 96 × 96 data 5 Conclusions Here, we propose a self-supervised learning for a nonlinear inverse problem with forward operator involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In medical imaging such as PAT, the initial pressure is mostly untrackable for the measured data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Moreover it is difficult to know the wave speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' So it is necessary to reconstruct the initial pressure f and the wave speed simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Under the simple assumption, the problem becomes a nonlinear inverse problem involving an unknown function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The experimental results demonstrate the high performance of the proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Our framework can be extended to a nonlinear inverse problem involving an unknown function, formulated under more complicated situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' This can be an interesting line of future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' References [1] Huabei Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' CRC Press, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [2] Jun Xia, Junjie Yao, and Lihong V Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic tomography: principles and advances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Electromagnetic waves (Cambridge, Mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' ), 147:1, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [3] Peter Kuchment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The Radon transform and medical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' SIAM, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 14 [1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3V f + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 [3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3f2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 「4 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='7 ground truth 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='0[4] Alexander Graham Bell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' On the production and reproduction of sound by light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=', volume 29, pages 115–136, 1881.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [5] Idan Steinberg, David M Huland, Ophir Vermesh, Hadas E Frostig, Willemieke S Tummers, and Sanjiv S Gambhir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic clinical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustics, 14:77–98, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [6] Gerhard Zangerl, Sunghwan Moon, and Markus Haltmeier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic tomogra- phy with direction dependent data: An exact series reconstruction approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inverse Problems, 35(11):114005, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [7] Minghua Xu and Lihong V Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Universal back-projection algorithm for photoa- coustic computed tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Physical Review E, 71(1):016706, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [8] Lauri Oksanen and Gunther Uhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic and thermoacoustic tomog- raphy with an uncertain wave speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Mathematical Research Letters, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [9] Plamen Stefanov and Gunther Uhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Thermoacoustic tomography with variable sound speed Inverse Problems, 25(7):075011, 16, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [10] Jianliang Qian, Plamen Stefanov, Gunther Uhlmann, and Hongkai Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' An efficient neumann series–based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' SIAM Journal on Imaging Sciences, 4(3):850–883, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [11] Zakaria Belhachmi, Thomas Glatz, and Otmar Scherzer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' A direct method for photoacoustic tomography with inhomogeneous sound speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inverse Problems, 32(4):045005, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [12] Yulia Hristova, Peter Kuchment, and Linh Nguyen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Reconstruction and time rever- sal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inverse problems, 24(5):055006, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [13] Minam Moon, Injo Hur, and Sunghwan Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Singular value decomposition of the wave forward operator with radial variable coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='10793, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [14] Hongyu Liu and Gunther Uhlmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Determining both sound speed and internal source in thermo-and photo-acoustic tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inverse Problems, 31(10):105005, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [15] Stephan Antholzer, Markus Haltmeier, Robert Nuster, and Johannes Schwab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Pho- toacoustic image reconstruction via deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In Photons Plus Ultrasound: Imaging and Sensing 2018, volume 10494, pages 433–442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' SPIE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [16] Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexan- dros G Dimakis, and Rebecca Willett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Deep learning techniques for inverse prob- lems in imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' IEEE Journal on Selected Areas in Information Theory, 1(1):39–56, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [17] Ge Wang, Jong Chul Ye, and Bruno De Man.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Deep learning for tomographic image reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Nature Machine Intelligence, 2(12):737–748, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 15 [18] Janek Gröhl, Melanie Schellenberg, Kris Dreher, and Lena Maier-Hein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Deep learn- ing for biomedical photoacoustic imaging: a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustics, 22:100241, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [19] Changchun Yang, Hengrong Lan, Feng Gao, and Fei Gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Review of deep learning for photoacoustic imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustics, 21:100215, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [20] Stephan Antholzer, Markus Haltmeier, and Johannes Schwab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Deep learning for photoacoustic tomography from sparse data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inverse problems in science and engineering, 27(7):987–1005, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [21] Jiasheng Zhou, Da He, Xiaoyu Shang, Zhendong Guo, Sung-Liang Chen, and Jiajia Luo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustic microscopy with sparse data by convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Photoacoustics, 22:100242, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [22] Steven Guan, Amir A Khan, Siddhartha Sikdar, and Parag V Chitnis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Limited- view and sparse photoacoustic tomography for neuroimaging with deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Scientific reports, 10(1):1–12, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [23] Huijuan Zhang, LI Hongyu, Nikhila Nyayapathi, Depeng Wang, Alisa Le, Leslie Ying, and Jun Xia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Computerized Medical Imaging and Graphics, 84:101720, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [24] Hongming Shan, Christopher Wiedeman, Ge Wang, and Yang Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Simultane- ous reconstruction of the initial pressure and sound speed in photoacoustic tomog- raphy using a deep-learning approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In Novel Optical Systems, Methods, and Applications XXII, volume 11105, page 1110504.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' International Society for Optics and Photonics, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [25] Maarten V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' de Hoop, Matti Lassas, and Christopher A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Wong, Deep learn- ing architectures for nonlinear operator functions and nonlinear inverse problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Mathematical Statistics and Learning, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 1/2(4):1–86, 2021 [26] Saeed Shurrab and Rehab Duwairi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Self-supervised learning methods and appli- cations in medical imaging analysis: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' PeerJ Computer Science, 8:e1045, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [27] Longlong Jing and Yingli Tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Self-supervised visual feature learning with deep neural networks: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [28] Sunghwan Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Inversion formula for a radon-type transform arising in photoa- coustic tomography with circular integrating detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Advances in Mathematical Physics, 2018, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [29] Rim Gouia-Zarrad, Souvik Roy, and Sunghwan Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Numerical inversion and uniqueness of a spherical radon transform restricted with a fixed angular span.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Applied Mathematics and Computation, 408:126338, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 16 [30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' U-net: Convolutional net- works for biomedical image segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' In International Conference on Medical image computing and computer-assisted intervention, pages 234–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [31] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang, Real-time single image and video super- resolution using an efficient sub-pixel convolutional neural network Proceedings of the IEEE conference on computer vision and pattern recognition,1874–1883, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [32] George Cybenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Approximation by superpositions of a sigmoidal function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Mathematics of control, signals and systems, 2(4):303–314, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [33] Jae-Mo Kang and Sunghwan Moon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Error bounds for ReLU networks with depth and width parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Japan Journal of Industrial and Applied Mathematics, To appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [34] T Douglas Mast, Laurent P Souriau, D-LD Liu, Makoto Tabei, Adrian I Nachman, and Robert C Waag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' A k-space method for large-scale models of wave propagation in tissue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 48(2):341–354, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [35] Benjamin T Cox, S Kara, Simon R Arridge, and Paul C Beard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacous- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The Journal of the Acoustical Society of America, 121(6):3453–3464, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [36] Lawrence A Shepp and Benjamin F Logan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' The Fourier reconstruction of a head section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' IEEE Transactions on nuclear science, 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='3:21–43, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' [37] Diederik P Kingma and Jimmy Ba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' Adam: A method for stochastic optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content='6980, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} +page_content=' 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFAT4oBgHgl3EQfyh6B/content/2301.08693v1.pdf'} diff --git a/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf b/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..091d74672677a660364c444cdd75dcdb62d54338 --- /dev/null +++ b/OtAzT4oBgHgl3EQflP1e/content/2301.01544v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:abd493acf2dfeb9650fb941c2d7854ce27be46790966a188764b7a79e71edbfb +size 608960 diff --git a/OtAzT4oBgHgl3EQflP1e/vector_store/index.faiss b/OtAzT4oBgHgl3EQflP1e/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..43d414850cc4cea6ae47c50713120a46566eb8df --- /dev/null +++ b/OtAzT4oBgHgl3EQflP1e/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9bfaff131a47f8f00ea627a070ea6a14fc48da3d8f4f9ca751b686492de59713 +size 4522029 diff --git a/OtAzT4oBgHgl3EQflP1e/vector_store/index.pkl b/OtAzT4oBgHgl3EQflP1e/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..67894ac5878e7f98c1571d674dc33f30de12a5e8 --- /dev/null +++ b/OtAzT4oBgHgl3EQflP1e/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f2de2cc8e6710919e0f35daed457cc80239206638c4eff9cc87b53b70fc77a59 +size 151129 diff --git a/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/2301.11459v1.pdf.txt b/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/2301.11459v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..af4a668718ced32ad9ec5cd0f0bb3965bb988965 --- /dev/null +++ b/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/2301.11459v1.pdf.txt @@ -0,0 +1,2719 @@ +Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via +Compositional Uncertainty Quantification +Zi Lin +UC San Diego +lzi@ucsd.edu +Jeremiah Liu†‡ +Google Research & Harvard University +jereliu@google.com +Jingbo Shang† +UC San Diego +jshang@ucsd.edu +Abstract +Pre-trained seq2seq models excel at graph se- +mantic parsing with rich annotated data, but +generalize worse to out-of-distribution (OOD) +and long-tail examples. In comparison, sym- +bolic parsers under-perform on population- +level metrics, but exhibit unique strength in +OOD and tail generalization. +In this work, +we study compositionality-aware approach to +neural-symbolic inference informed by model +confidence, performing fine-grained neural- +symbolic reasoning at subgraph level (i.e., +nodes and edges) and precisely targeting sub- +graph components with high uncertainty in +the neural parser. +As a result, the method +combines the distinct strength of the neural +and symbolic approaches in capturing differ- +ent aspects of the graph prediction, leading to +well-rounded generalization performance both +across domains and in the tail. +We empiri- +cally investigate the approach in the English +Resource Grammar (ERG) parsing problem +on a diverse suite of standard in-domain and +seven OOD corpora. Our approach leads to +35.26% and 35.60% error reduction in aggre- +gated SMATCH score over neural and sym- +bolic approaches respectively, and 14% abso- +lute accuracy gain in key tail linguistic cate- +gories over the neural model, outperforming +prior state-of-art methods that do not account +for compositionality or uncertainty. +1 +Introduction +A structured account of compositional meaning has +become a longstanding goal for Natural Language +Processing. To this end, a number of efforts have +focused on encoding semantic relationships and at- +tributes into graph-based meaning representations +(MRs, see Appendix A for details). In particular, +graph semantic parsing has been an important task +in almost every Semantic Evaluation (SemEval) +exercise since 2014. In recent years, we have wit- +nessed the burgeoning of applying neural networks +† Co-senior authors. ‡ Work done at Google. +to semantic parsing. Pre-trained language model- +based approaches have led to significant improve- +ments across different MRs (Oepen et al., 2019, +2020). However, these models often generalize +poorly to out-of-distribution (OOD) and tail ex- +amples (Cheng et al., 2019; Shaw et al., 2021; +Kim, 2021; Lin et al., 2022), while grammar or +rule-based parser work relatively robustly across +different linguistic phenomena and language do- +mains (Cao et al., 2021; Lin et al., 2022). See +Section 6 for a review of related work. +In this paper, we propose a novel compositional +neural-symbolic inference for graph semantic pars- +ing, which takes advantage of both uncertainty +quantification from a seq2seq parser and prior +knowledge from a symbolic parser at the subgraph +level (i.e., nodes and edges). We take graph seman- +tic parsing for English Resource Grammar (ERG) +as our case study. ERG is a compositional semantic +representation explicitly coupled with the syntactic +structure. Compared to other graph-based meaning +representations like Abstract Meaning Representa- +tion (AMR), ERG has high coverage of English text +and strong transferability across domains, render- +ing itself as an attractive target formalism for auto- +mated semantic parsing. Furthermore, many years +of ERG research has led to well-established sym- +bolic parser and a rich set of carefully constructed +corpus across different application domains and +fine-grained linguistic phenomena, making it an +ideal candidate for studying cross-domain general- +ization of neural-symbolic methods (Oepen et al., +2002; Crysmann and Packard, 2012). +We start with a novel investigation of the uncer- +tainty calibration behaviour of a T5-based state-of- +the-art neural ERG parser (Lin et al., 2022) on the +subgraph level (Section 3), where we make some +key observations: (1) the performance of the neu- +ral parser degrades when it becomes uncertain at +the subgraph level, while (2) the symbolic parser +works still robustly when the neural parser is un- +arXiv:2301.11459v1 [cs.CL] 26 Jan 2023 + +_the_q<0> +_want_v_1<2> +_boy_n_1<1> +_believe_v_1<6> +_girl_n_1<0> +pron<7> +pronoun_q +_the_q<3> +BV +BV +BV +ARG1 +ARG2 +ARG1 +ARG2 +The<0> boy<1> wants<2> the<3> girl<4> to<5> believe<6> him<7> +Abstract Concepts +(grammatical function) +Root +Token-Node Alignments +Surface Concepts +(related to surface tokens) +<·> +(a) EDS Representation +( _want_v_1 +:ARG1 ( _boy_n_1 +:BV-of ( _the_q ) ) +:AGR2 ( _believe_v_1 +:ARG1 ( _girl_n_1 +:BV-of ( _the_q ) ) +:ARG2 ( pron +:BV-of ( pronoun_q ) ) ) ) +(b) Variable-free PENMAN notation +Figure 1: The EDS representation for ERG and the corresponding linearization of the example sentence “The boy +wants the girl to believe him”. +certain at the subgraph level. This motivates us to +develop a compositional neural-symbolic inference +process where the neural and symbolic parser col- +laborates at a more fine-grained level and guided +by model uncertainty, which is an aspect missing in +the previous neural-symbolic and ensemble parsing +literature (see Appendix 6). +We then propose a decision-theoretic criteria to +allow for neural-symbolic inference at subgraph +level (i.e., nodes and edges) and incorporates the +neural parser’s fine-grained uncertainty for each +graph component prediction (Section 4.1). The +key to this approach is a meta graph GM that enu- +merates possible candidates for each node/edge +prediction, and is constructed by merging multiple +beam predictions from the neural seq2seq model. +The core challenge here is how to properly quan- +tify compositional uncertainty using a seq2seq +model, i.e., assigning model probability for a node +or edge prediction. For example, our interest is to +express the conditional probability of a graph node +v with respect to its parent p(v|pa(v), x), rather +than the likelihood of v conditioning on the previ- +ous tokens in the linearized string. As a result, it +cannot be achieved by relying on the naive token- +level autoregressive probabilities from the beam +search. To address this issue, we introduce a sim- +ple probabilistic formalism termed Graph Autore- +gressive Process (GAP) (Section 4.2). GAP adopts +a dual representation of an autoregressive process +and a probabilistic graphical model, and can serve +as a powerful medium for expressing compositional +uncertainty for seq2seq graph parsing. +We demonstrate the effectiveness of our ap- +proach in experiments across a diverse suite of +eight in-domain and OOD evaluation datasets en- +compassing domains including Wikipedia entries, +news articles, email communications, etc (Section +5). +We achieve the best results on the overall +performance across the eight domains, attaining +35.26% and 35.60% error reduction in the aggre- +gated SMATCH score over the neural and symbolic +parser, respectively. Our approach also exhibits sig- +nificantly stronger robustness in generalization to +OOD datasets and long-tail linguistic phenomena +than previous work, while maintaining the state- +of-the-art performance on in-domain test. Further +study also shows that the compositionality aspects +of neural-symbolic inference helps the model to as- +semble novel graph solution that the original infer- +ence process (e.g., beam search or symbolic parse) +fails to provide (Section 5.4). +In summary, our contributions are four-fold: +• We present a novel investigation of neural graph +parser’s uncertainty calibration performance at +subgraph level (Section 3). Our study confirms +the seq2seq uncertainty is effective for detecting +model error even out-of-distribution, establishing +the first empirical basis for the utility of compo- +sitional uncertainty in seq2seq graph parsing. +• We propose a practical and principled framework +for neural-symbolic graph parsing that utilizes +model uncertainty and exploits compositionality +(Section 4.1). The method is fully compatible +with modern large pre-trained seq2seq network +using beam decoding, and is general-purpose and +applicable to any graph semantic parsing task. +• We propose a simple probabilistic formalism +(GAP) to express a seq2seq model’s composi- +tional uncertainty (Section 4.2). GAP allows +us to go beyond the conventional autoregres- +sive sequence probability and express long-range +parent-child conditional probability on the graph, +serving as a useful medium of compositional un- +certainty quantification. +• We conduct a comprehensive study to evalu- +ate the state-of-the-art graph parsing approaches +across a diverse suite of in-domain and out-of- +distribution datasets (Section 5). Our study re- +veals surprising weakness of previous neural- +symbolic methods in OOD generalization, and +confirms the proposed method significantly im- + +0.3947 +0.7788 +0.9212 +0.9764 +0.9930 +0.9983 +0.9996 +0.9999 +1.0000 +T5 Model's Probabilities +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Node/Edge Accuracies +tanaka +T5 +ACE +0.5810 +0.8004 +0.9150 +0.9692 +0.9879 +0.9967 +0.9991 +0.9998 +1.0000 +T5 Model's Probabilities +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Node/Edge Accuracies +brown +T5 +ACE +Figure 2: Bar charts for the predictive accuracies of the T5 parser (blue) and ACE parser (orange) for all the +node / edge prediction across different uncertainty buckets based on T5 model’s probabilities. The performance +is evaluated on the Tanaka and Brown datasets. Each bin represents a quantile bucket of the model probability +(i.e., they contain the same number of examples). Since at most of the subgraphs, the model is pretty certain +(log P > −1e − 5), we exclude these pretty certain predictions in the figures. +proves models OOD and tail performance. +Reproducibility. +Our +code +is +available +on +Github: +https://github.com/google/ +uncertainty-baselines/tree/main/ +baselines/t5/data/deepbank. +2 +Background +2.1 +English Resource Grammar (ERG) +In this work, we take the representations from En- +glish Resource Grammar (ERG; Flickinger et al., +2014) as our target meaning representations. ERG +is a broad-coverage computational grammar of En- +glish that derives underspecified logical-form rep- +resentations of meaning (Oepen and Flickinger, +2019). It is rooted in the general linguistic theory +of Head-driven Phrase Structure Grammar (HPSG; +Pollard and Sag, 1994). +ERG can be presented into different types of an- +notation formalism (Copestake et al., 2005). This +work focuses on the Elementary Dependency Struc- +ture (EDS; Oepen and Lønning, 2006) which is +a compact representation that can be expressed +as a directed acyclic graph (DAG) and is widely +adopted in the neural parsing approaches (Buys and +Blunsom, 2017; Chen et al., 2018). An example is +shown in Figure 1(a). +2.2 +Parsing Approaches +In this section, we review the state-of-the-art sym- +bolic and neural parsers utilized in our work, i.e., +the ACE parser (Crysmann and Packard, 2012) and +the T5 parser (Lin et al., 2022). Appendix B re- +views other ERG parsing techniques. +The symbolic parser: ACE. The ACE parser +(Crysmann and Packard, 2012) is one of the state- +of-the-art symbolic parsers. It first decomposes +sentences into ERG-consistent candidate derivation +trees, and the parser will rank candidates based on +the structural features in the nodes of the deriva- +tion trees via maximum entropy models (Oepen +and Lønning, 2006; Toutanova et al., 2005). This +approach fails to parse sentences for which no valid +derivation is found. +The neural parser: T5. Lin et al. (2022) pro- +posed a T5-based ERG parser which achieves the +best known results on the in-domain DeepBank +benchmark. It is the first work that successfully +transfers the ERG parsing problem into a pure end- +to-end translation problem via compositionality- +aware tokenization and a variable-free top-down +graph linearization based on the PENMAN nota- +tion (Kasper, 1989). Figure 1(b) shows an example +of the linearized graph string from the original EDS +graph. +3 +Motivation: Subgraph-level +Uncertainty in Seq2seq Graph Parsing +We hypothesize that when the neural seq2seq +model is uncertain at the subgraph level, it is more +likely to make mistakes. Assuming the symbolic +parser performs more robustly in these situations, +we can then design a procedure to ask the symbolic +parser for help when the model is uncertain. To +validate this hypothesis, we conduct experiments +to empirically explore the following two questions: +(1) how does the model perform when it is uncer- +tain at the subgraph level? and (2) how does the +symbolic parser perform when the model is uncer- +tain? +First, we compute model probabilities for each +graph element (i.e., node and edge) prediction (see +Section 4.2 for how to compute these quanitities), +and identify the corresponding ACE parser pre- +diction using the graph matching algorithm from +SMATCH (Cai and Knight, 2013). We then evaluate +the accuracies of those graph element predictions +with respect to the gold labels, and compare it to + +that of the ACE parser. +In Figure 2, we plot the bar charts compare +the neural and symbolic performance in different +bucket of seq2seq model uncertainties on the two +largest datasets (e.g., Tanaka and Brown, see Ap- +pendix G). Results on other datasets can be found in +the Appendix K. As shown in the figure, low model +probability generally corresponds to low T5 per- +formance, while the corresponding ACE parser’s +accuracies spread relatively stably (e.g., it attains +> 90% accuracy in the lowest-confidence buck- +ets, while T5 accuracy is < 50%). This implies +that when the model is uncertain, the accuracy of +the neural model tend to be low, while the ACE +parser still performs well. This has motivated us +to develop a compositional neural-symbolic infer- +ence procedure guided the model’s subgraph level +uncertainty, such that the T5 and ACE parser can +collaborate at a more fine-grained level via com- +postional uncertainty quantification (Section 4). +4 +Methods +Notation & Problem Statement. For graph se- +mantic parsing, the input is a natural language ut- +terance x, and the output is a directed acyclic graph +(DAG) G = ⟨N, E⟩, where N is the set of nodes +and E ∈ N × N is the set of edges (e.g., Figure +1(a)). In the case of seq2seq parsing, G is repre- +sented as a linearized graph string g = s1s2 · · · sL +which consists of symbols {sl}L +l=1 (e.g., Figure +1(b)). As the graph prediction is probabilistic, each +of the graph element v ∈ N ∪ E is a random vari- +able whose values are the symbols si observed +from the beam outputs, leading to marginal prob- +abilities p(v = si|x) and conditional probabilities +p(v = si|v′ = sj, x). +To this end, our goal is to produce a principled +inference procedure for graph prediction account- +ing for model uncertainty on predicting graph ele- +ments v ∈ G. In the sequel, Section 4.1 presents +a decision-theoretic criterion that leverages the +graphical model likelihood p(G|x) to conduct com- +positional neural-symbolic inference for graph pre- +diction. To properly express the graphic model +likelihood p(G|x) = � +v∈G p(v|pa(v), x) using +a learned seq2seq model, Section 4.2 introduces +a simple probabilistic formalism termed Graph +Autoregressive Process (GAP) to translate the au- +toregressive sequence probability from the seq2seq +model to graphical model probability. Appendix E +discusses some additional extensions. +4.1 +Compositional Neural-Symbolic +Inference +Previously, an uncertainty-aware decision criteria +was proposed for neural-symbolic inference based +on the Hurwicz pessimism-optimism criteria +R(G|x) (Lin et al., 2022). Specifically, the criteria +is written as: +R(G|x) = α(x)∗Rp(G|x)+(1−α(x))∗R0(G), +where R(G|x) = − log p(G|x) is the neural model +likelihood, R0(G) = log p0(G) is the symbolic +prior likelihood, and α(x) is a the uncertainty- +driven trade-off coefficient to balance between +the optimistic MLE criteria Rp(G|x) and the pes- +simistic, prior-centered criteria R0(G|x) centered +around symbolic prediction G0. +A key drawback of this approach is the lack of +accounting for the compositionality. This motivates +us to consider synthesizing the multiple graph pre- +dictions {Gk}K +k=1 from the neural parser to form +a meta graph G 1, where we can leverage the dis- +entangled uncertainty of p(G|x) to perform fine- +grained neural-symbolic inference for each graph +component v ∈ G (i.e., nodes or edges). Specifi- +cally, we leverage the factorized graphical model +likelihood p(G|x) = � +v∈G p(v| pa(v), x) to de- +compose the overall decision criteria R(G|x) into +that of individual components R(v|x): +R(v|x) = α(v|x) ∗ log p(v| pa(v), x) ++ (1 − α(v|x)) ∗ log p0(v), +(1) +and the overall criteria is written as R(G|x) = +� +v∈G R(v|x). Here pa(v) refers to the parents +of v in G, and α(v|x) = sigmoid(− 1 +T H(v|x) + +b) is the component-specific trade-off param- +eter driven by model uncertainty H(v|x) += +− log p(v| pa(v), x), and (T, b) are scalar calibra- +tion hyperparameters that can be tuned on the dev +set. +Following previous work (Lin et al., 2022), the +symbolic prior p0 for each graph component v is +defined as a Boltzmann distribution based on the +graph output G0 from the symbolic parser, i.e., +p0(v = s) ∝ exp(I(s ∈ G0)), so that it is pro- +portional to the empirical probability of whether +a symbol s appears in G0. Notice that we have +1Given a group of candidate graphs {Gk}K +k=1, well- +established algorithm exists to synthesize different graph pre- +dictions into a meta graph G (Cai and Knight, 2013; Hoang +et al., 2021) (see Appendix F for a more detailed review). + +ignored the normalizing constants since they do +not impact optimization. +Algorithm 1 summarizes the full algorithm. +As shown, during inference, the method pro- +ceeds +by +starting +from +the +root +node +v0 +and +selects +the +optimal +prediction +ˆv0 += +arg maxc0∈Candidate(v0) R(c0|x), where c0 are dif- +ferent candidates for v0 given by the meta graph G. +The algorithm then recursively performs the same +neural-symbolic inference procedure for the chil- +dren of v0 (i.e., ch(v)). The algorithm terminates +when the optimal candidates for all graph variables +v ∈ G are determined. +As a result, the algorithm is able to adap- +tively combine subgraph predictions across mul- +tiple beam candidates thanks to the meta graph G, +and appropriately weight between the local neural +and symbolic information thanks to the uncertainty- +aware decision criteria R(v|x). Empirically, this +also gives the algorithm the ability to synthesize +novel graph predictions that are distinct from its +base models (Section 5.4). +Algorithm 1 Compositional Neural-Symbolic Inference +Inputs: +Meta graph G +Graphical model likelihood log p(G|x) +Symbolic prior p0 +Output: +Neural-symbolic graph prediction G +Initialize: +v = root(GM); G = GM. +if G does not contain undecided candidates then return G +else +for cv ∈ Candidate(v) do +Compute decision criteria R(cv|x) (Equation 1) +Select optimal candidate ˆv = arg maxc R(c|x) +Remove non-optimal candidates of v from G +Recursively perform Algorithm 1 for all v′ ∈ ch(v) +4.2 +Compositional Uncertainty +Quantification with Graph Autogressive +Process (GAP) +To properly model the uncertainty p(G|x) from a +seq2seq model, we need an intermediate probabilis- +tic representation to translate the raw token-level +probability to the distribution over graph elements. +To this end, we introduce a simple probabilistic +formalism termed Graph Autoregressive Process +(GAP), which is a probability distribution assigning +seq2seq learned probability to the graph elements +v ∈ G. Specifically, as the seq2seq-predicted graph +adopts both a sequence-based representation g = +s1, ..., sL and a graph representation G = ⟨N, E⟩, +the GAP model adopts both an autoregressive repre- +sentation p(g|x) = � +i p(si|s 0 is the temperature +parameter fixed to a small constant (e.g., t = 0.1, +see Appendix C.1 further discussion) (Malinin and +Gales, 2020). If the symbol si does not appear in +the kth beam, we set p(si|sk, 14% average absolute gain +compared to the base model. In some categories, +our method even outperforms the ACE parser while +all base model underperforms, e.g., ARG3 of basic +verb on Verbmobil and ARG3 of verb-particle on +E-commerce. +5.4 +Case Study: Synthesizing Novel Graphs +To test if our methods can generate optimal graph +solution which the base models fail to obtain, we +further explore the percentage of novel graphs +(graphs that are not identical to any of the can- +didate predictions of the neural or symbolic model) +for each dataset, and compare the corresponding +SMATCH scores on those novel cases. The results +are shown in Table 3. We see that our method syn- +thesize novel graph parses that are in general of +higher quality than that of the base models, thanks +to the calibrated uncertainty (Section 4.2). This +indicates the compositional neural-symbolic infer- +ence can synthesize evidence across neural and +symbolic results and produce novel graphs that are +closer to ground truth. + +% +Top 1 +Top 2 +Top 3 +Top 4 +Top 5 +Collab. +ACE +Ours +In-domain +31.25 +94.95 +93.01 +91.91 +89.92 +89.58 +95.10 +82.80 +98.44 +Wiki +32.29 +87.55 +86.54 +85.56 +86.00 +83.90 +88.77 +82.67 +92.24 +Brown +46.84 +90.54 +89.34 +88.57 +88.10 +87.11 +92.53 +96.15 +96.56 +Essay +50.93 +90.71 +90.02 +89.31 +89.02 +87.60 +92.41 +95.73 +96.08 +E-commerce +34.65 +90.03 +88.34 +86.61 +85.56 +82.91 +92.82 +98.96 +97.54 +Verbmobil +39.96 +85.45 +83.06 +81.54 +79.30 +78.27 +88.42 +97.78 +96.70 +LOGON +58.10 +90.75 +89.65 +88.20 +87.90 +86.95 +92.50 +96.70 +97.06 +Tanaka +24.89 +89.35 +87.46 +85.60 +83.55 +83.16 +92.30 +98.23 +98.27 +All +38.76 +90.57 +89.18 +88.01 +87.24 +86.13 +92.29 +93.93 +96.28 +Table 3: SMATCH performance on novel graphs, where the results of our inference process are not identical to any +of the candidates from the base model. +6 +Related Work +In this section we introduce related work for neural- +symbolic and ensemble learning for graph semantic +parsing. For a broader context of graph semantic +parsing, please refer to Appendix B. +Neural-Symbolic +Graph +Semantic +Parsing. +Though neural models excel at semantic parsing, +they have been shown to struggle with out-of- +distribution compositional generalization, while +grammar or rule-based approaches work relatively +robustly. This has motivated the work in neural- +symbolic parsing where symbolic approaches are +imported as inductive bias (Shaw et al., 2021; Kim, +2021; Cheng et al., 2019; Cole et al., 2021). For +graph meaning representations, importing induc- +tive bias into neural model was somehow difficult +due to the much more complicated structure com- +pared to pure syntactic rules or logical formalism +(Peng et al., 2015; Peng and Gildea, 2016). To +address this, Lin et al. (2022) proposes a collabora- +tive framework by designing a decision criterion for +beam search that incorporates the prior knowledge +from a symbolic parser and accounts for model un- +certainty, which achieves the state-of-the-art results +on the in-domain test set. +Ensemble Learning for Graph Parsing. Ensem- +ble learning is a popular machine learning approach +that combines predictions from multiple candidates +to create a new one that is more robust and ac- +curate than individual predictions. Previous stud- +ies have explored various ensemble learning ap- +proaches for graph parsing (Green and Žabokrtský, +2012; Barzdins and Gosko, 2016). Specifically, for +graph semantic parsing at subgraph level, Hoang +et al. (2021) make use of checkpoints from models +of different architectures, and mining the largest +graph that is the most supported by a collection of +graph predictions. They then propose a heuristic +algorithm to approximate the optimal solution. +Compare to the previous ensemble work, our +work differ in three ways: (1) Our decision rule is +based on neural model confidence, so the decision +is driven not by model consensus, but by model +confidence which indicates when the main (neural) +result is untrustworthy and needs to be comple- +mented by symbolic result. Model consensus is +effective when there exists a large number of candi- +date models. However, in the neural-symbolic set- +ting when there are only two models, the ability of +quantifying model uncertainty becomes important. +(2) A secondary contribution of our work is to pro- +duce an parsing approach for the ERG community +that not only exhibits strong average-case perfor- +mance on in-domain and OOD environments, but +also generalizes robustly in important categories of +tail linguistic phenomena. Therefore, our investi- +gation goes beyond average-case performance and +evaluates in tail generalization as well. (3) We re- +veal a more nuance picture of neural models’ OOD +performance: a neural model’s top K parses in fact +often contains subgraphs that generalize well to +OOD scenarios, but the vanilla MLE-based infer- +ence fails to select them (see Section 5.4 for more +details). +7 +Conclusions +We have shown how to perform accurate and ro- +bust semantic parsing across a diverse range of gen- +res and linguistic categories for English Resource +Grammar. We achieve this by taking the advan- +tage of both the symbolic parser (ACE) and the +neural parser (T5) at a fine-grained subgraph level +using compositional uncertainty, an aspect miss- +ing in the previous neural-symbolic or ensemble +parsing work. Our approach attains the best known +result on the aggregated SMATCH score across +eight evaluation corpus from Redwoods Treebank, +attaining 35.26% and 35.60% error reduction over + +the neural and symbolic parser, respectively. +Acknowledgement +Our work is sponsored in part by National Sci- +ence Foundation Convergence Accelerator under +award OIA-2040727 as well as generous gifts +from Google, Adobe, and Teradata. Any opinions, +findings, and conclusions or recommendations ex- +pressed herein are those of the authors and should +not be interpreted as necessarily representing the +views, either expressed or implied, of the U.S. Gov- +ernment. The U.S. Government is authorized to +reproduce and distribute reprints for government +purposes not withstanding any copyright annota- +tion hereon. We thank Du Phan, Panupong Pasupat, +Jie Ren, Balaji Lakshminarayanan and Deepak Ra- +machandran for helpful discussion. +Limitation +Here we discuss a potential limitations of the cur- +rent study: +Problem domain +In this work, we have selected +English Resource Grammar as the target formalism. +This is a deliberate choice based on the availabil- +ity of (1) realistic out-of-distribution evaluation +corpus, and (2) well-established, high-quality sym- +bolic parser. This is a common setting in indus- +trial applications, where an practitioner is tempted +to combine large pre-trained neural model with +expert-developed symbolic rules to improve perfor- +mance for a new domain. Unfortunately, we are not +aware of another popular meaning representation +for which both resources are available. To over- +come this challenge, we may consider studying +collaborative inference between a standard seq2seq +model and some indirect symbolic supervision, e.g., +syntactic parser or CCG parser (Steedman, 2001), +which is an interesting direction for future work. +Uncertainty estimation techniques +The vanilla +seq2seq model is known to under-estimate the true +probability of the high-likelihood output sequences, +wasting a considerable amount of probability mass +towards the space of improbable outputs (Ott et al., +2018; LeBrun et al., 2022). This systematic un- +derestimation of neural likelihood may lead to a +conservative neural-symbolic procedure that im- +plicitly favors the information from the symbolic +prior. It may also negatively impact calibration +quality, leading the model to under-detect wrong +predictions. To this end, it is interesting to ask +if a more advanced seq2seq uncertainty method +(e.g., Monte Carlo dropout or Gaussian process +(Gal and Ghahramani, 2016; Liu et al., 2020)) can +provide systematically better uncertainty quantifi- +cation, and consequently improved downstream +performance. +Graphical model specification +The GAP model +presented +in +this +work +considers +a +classi- +cal +graphical +model +likelihood +p(G|x) += +� +v∈G p(v| pa(v), x) , which leads to a clean fac- +torization between graph elements v and fast prob- +ability computation. However, it also assumes a +local Markov property that v is conditional inde- +pendent to its ancestors given the parent pa(v). In +theory, the probability learned by a seq2seq model +is capable of modeling higher order conditionals +between arbitrary elements on the graph. Therefore +it is interesting to ask if a more sophisticated graph- +ical model with higher-order dependency structure +can lead to better performance in practice while +maintaining reasonable computational complexity. +Understanding different types of uncertainty +There exists many different types of uncertainties +occur in a machine learning system (Hüllermeier +and Waegeman, 2021). This includes data uncer- +tainty (e.g., erroneously annotated training labels, +ill-formedness of the input sentence, or inherent +ambiguity in the example-to-label mapping), and +also model uncertainty which occurs the test ex- +ample not containing familiar patterns the model +learned from the training data. In this work, we +quantifies uncertainty using mean log likelihood, +which broadly captures both types of uncertainty +and does not make a distinction between these dif- +ferent subtypes. As different source of uncertainty +may lead to different strategy in neural-symbolic +parsing, the future work should look into more +fine-grained uncertainty signal that can decompose +these different sources of error and uncertainty, and +propose adaptive strategy to handle different sce- +narios. +Ethical Consideration +This paper focused on neural-symbolic semantic +parsing for the English Resource Grammar (ERG). +Our architecture are built based on open-source +models and datasets (all available online). We do +not anticipate any major ethical concerns. + +References +Omri Abend and Ari Rappoport. 2013. Universal Con- +ceptual Cognitive Annotation (UCCA). In Proceed- +ings of the 51st Annual Meeting of the Association +for Computational Linguistics (Volume 1: Long Pa- +pers), pages 228–238, Sofia, Bulgaria. Association +for Computational Linguistics. +Laura Banarescu, Claire Bonial, Shu Cai, Madalina +Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin +Knight, Philipp Koehn, Martha Palmer, and Nathan +Schneider. 2013. Abstract Meaning Representation +for sembanking. In Proceedings of the 7th Linguis- +tic Annotation Workshop and Interoperability with +Discourse, pages 178–186, Sofia, Bulgaria. Associa- +tion for Computational Linguistics. +Guntis Barzdins and Didzis Gosko. 2016. +RIGA at +SemEval-2016 task 8: Impact of Smatch extensions +and character-level neural translation on AMR pars- +ing accuracy. In Proceedings of the 10th Interna- +tional Workshop on Semantic Evaluation (SemEval- +2016), pages 1143–1147, San Diego, California. As- +sociation for Computational Linguistics. +Johan Bos, Stephen Clark, Mark Steedman, James R +Curran, and Julia Hockenmaier. 2004. +Wide- +coverage semantic representations from a ccg parser. +In COLING 2004: Proceedings of the 20th Inter- +national Conference on Computational Linguistics, +pages 1240–1246. +Jan Buys and Phil Blunsom. 2017. Robust incremen- +tal neural semantic graph parsing. In Proceedings +of the 55th Annual Meeting of the Association for +Computational Linguistics (Volume 1: Long Papers), +pages 1215–1226, Vancouver, Canada. Association +for Computational Linguistics. +Shu Cai and Kevin Knight. 2013. Smatch: an evalua- +tion metric for semantic feature structures. In Pro- +ceedings of the 51st Annual Meeting of the Associa- +tion for Computational Linguistics (Volume 2: Short +Papers), pages 748–752, Sofia, Bulgaria. Associa- +tion for Computational Linguistics. +Ulrich Callmeier. 2000. +Pet–a platform for experi- +mentation with efficient hpsg processing techniques. +Natural Language Engineering, 6(1):99–107. +Junjie Cao, Zi Lin, Weiwei Sun, and Xiaojun Wan. +2021. +Comparing knowledge-intensive and data- +intensive models for English resource semantic pars- +ing. Computational Linguistics, 47(1):43–68. +Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac- +curate SHRG-based semantic parsing. In Proceed- +ings of the 56th Annual Meeting of the Association +for Computational Linguistics (Volume 1: Long Pa- +pers), pages 408–418, Melbourne, Australia. Asso- +ciation for Computational Linguistics. +Yufei Chen, Yajie Ye, and Weiwei Sun. 2019. Peking +at MRP 2019: +Factorization- and composition- +based parsing for elementary dependency struc- +tures. In Proceedings of the Shared Task on Cross- +Framework Meaning Representation Parsing at the +2019 Conference on Natural Language Learning, +pages 166–176, Hong Kong. Association for Com- +putational Linguistics. +Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and +Mirella Lapata. 2019. Learning an executable neu- +ral semantic parser. +Computational Linguistics, +45(1):59–94. +Jeremy Cole, Nanjiang Jiang, Panupong Pasupat, +Luheng He, and Peter Shaw. 2021. +Graph-based +decoding for task oriented semantic parsing. +In +Findings of the Association for Computational Lin- +guistics: EMNLP 2021, pages 4057–4065, Punta +Cana, Dominican Republic. Association for Compu- +tational Linguistics. +Ann Copestake. 2009. Invited Talk: slacker seman- +tics: Why superficiality, dependency and avoidance +of commitment can be the right way to go. +In +Proceedings of the 12th Conference of the Euro- +pean Chapter of the ACL (EACL 2009), pages 1–9, +Athens, Greece. Association for Computational Lin- +guistics. +Ann Copestake, Dan Flickinger, Carl Pollard, and +Ivan A Sag. 2005. Minimal recursion semantics: An +introduction. Research on language and computa- +tion, 3(2):281–332. +Berthold Crysmann and Woodley Packard. 2012. To- +wards efficient HPSG generation for German, a non- +configurational language. In Proceedings of COL- +ING 2012, pages 695–710, Mumbai, India. The +COLING 2012 Organizing Committee. +Dan Flickinger, Emily M. Bender, and Stephan Oepen. +2014. Towards an encyclopedia of compositional se- +mantics: Documenting the interface of the English +Resource Grammar. In Proceedings of the Ninth In- +ternational Conference on Language Resources and +Evaluation (LREC’14), pages 875–881, Reykjavik, +Iceland. European Language Resources Association +(ELRA). +Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a +bayesian approximation: Representing model uncer- +tainty in deep learning. In international conference +on machine learning, pages 1050–1059. PMLR. +Nathan Green and Zdenˇek Žabokrtský. 2012. +Hy- +brid combination of constituency and dependency +trees into an ensemble dependency parser. In Pro- +ceedings of the Workshop on Innovative Hybrid Ap- +proaches to the Processing of Textual Data, pages +19–26, Avignon, France. Association for Computa- +tional Linguistics. +Thanh Lam Hoang, Gabriele Picco, Yufang Hou, +Young-Suk Lee, Lam Nguyen, Dzung Phan, Vanessa +López, and Ramon Fernandez Astudillo. 2021. En- +sembling graph predictions for amr parsing. +Ad- +vances in Neural Information Processing Systems, +34:8495–8505. + +Eyke Hüllermeier and Willem Waegeman. 2021. +Aleatoric and epistemic uncertainty in machine +learning: An introduction to concepts and methods. +Machine Learning, 110(3):457–506. +Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and +Dan Flickinger. 2012. Who did what to whom? a +contrastive study of syntacto-semantic dependencies. +In Proceedings of the Sixth Linguistic Annotation +Workshop, pages 2–11, Jeju, Republic of Korea. As- +sociation for Computational Linguistics. +Robert T Kasper. 1989. +A flexible interface for +linking applications to penman’s sentence genera- +tor. In Speech and Natural Language: Proceedings +of a Workshop Held at Philadelphia, Pennsylvania, +February 21-23, 1989. +Yoon Kim. 2021. Sequence-to-sequence learning with +latent neural grammars. Advances in Neural Infor- +mation Processing Systems, 34:26302–26317. +Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin +Choi, and Luke Zettlemoyer. 2017. Neural AMR: +Sequence-to-sequence models for parsing and gener- +ation. In Proceedings of the 55th Annual Meeting of +the Association for Computational Linguistics (Vol- +ume 1: Long Papers), pages 146–157, Vancouver, +Canada. Association for Computational Linguistics. +Benjamin LeBrun, Alessandro Sordoni, and Timothy J. +O’Donnell. 2022. +Evaluating distributional distor- +tion in neural language modeling. In International +Conference on Learning Representations. +Zi Lin, Jeremiah Zhe Liu, and Jingbo Shang. 2022. To- +wards collaborative neural-symbolic graph semantic +parsing via uncertainty. +In Findings of the Asso- +ciation for Computational Linguistics: ACL 2022, +pages 4160–4173, Dublin, Ireland. Association for +Computational Linguistics. +Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, +Tania Bedrax Weiss, and Balaji Lakshminarayanan. +2020. Simple and principled uncertainty estimation +with deterministic deep learning via distance aware- +ness. Advances in Neural Information Processing +Systems, 33:7498–7512. +Andrey Malinin and Mark Gales. 2020. Uncertainty es- +timation in autoregressive structured prediction. In +International Conference on Learning Representa- +tions. +Ryan McDonald. 2006. Discriminative learning and +spanning tree algorithms for dependency parsing. +University of Pennsylvania Philadelphia. +Kevin P Murphy. 2012. Machine learning: a proba- +bilistic perspective. MIT press. +Joakim Nivre. 2008. Algorithms for deterministic in- +cremental dependency parsing. Computational Lin- +guistics, 34(4):513–553. +Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo- +han Bos, Jan Hajic, Daniel Hershcovich, Bin Li, +Tim O’Gorman, Nianwen Xue, and Daniel Zeman. +2020. +MRP 2020: +The second shared task on +cross-framework and cross-lingual meaning repre- +sentation parsing. +In Proceedings of the CoNLL +2020 Shared Task: Cross-Framework Meaning Rep- +resentation Parsing, pages 1–22, Online. Associa- +tion for Computational Linguistics. +Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her- +shcovich, Marco Kuhlmann, Tim O’Gorman, Nian- +wen Xue, Jayeol Chun, Milan Straka, and Zdenka +Uresova. 2019. MRP 2019: Cross-framework mean- +ing representation parsing. +In Proceedings of the +Shared Task on Cross-Framework Meaning Repre- +sentation Parsing at the 2019 Conference on Natural +Language Learning, pages 1–27, Hong Kong. Asso- +ciation for Computational Linguistics. +Stephan Oepen and Dan Flickinger. 2019. The ERG +at MRP 2019: Radically compositional semantic de- +pendencies. In Proceedings of the Shared Task on +Cross-Framework Meaning Representation Parsing +at the 2019 Conference on Natural Language Learn- +ing, pages 40–44, Hong Kong. Association for Com- +putational Linguistics. +Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, +Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan +Hajiˇc, and Zdeˇnka Urešová. 2015. SemEval 2015 +task 18: Broad-coverage semantic dependency pars- +ing. In Proceedings of the 9th International Work- +shop on Semantic Evaluation (SemEval 2015), pages +915–926, Denver, Colorado. Association for Compu- +tational Linguistics. +Stephan +Oepen +and +Jan +Tore +Lønning. +2006. +Discriminant-based MRS banking. +In Proceed- +ings of the Fifth International Conference on +Language Resources and Evaluation (LREC’06), +Genoa, +Italy. +European +Language +Resources +Association (ELRA). +Stephan Oepen, Kristina Toutanova, Stuart Shieber, +Christopher Manning, Dan Flickinger, and Thorsten +Brants. 2002. The LinGO redwoods treebank: Mo- +tivation and preliminary applications. In COLING +2002: The 17th International Conference on Com- +putational Linguistics: Project Notes. +Myle +Ott, +Michael +Auli, +David +Grangier, +and +Marc’Aurelio Ranzato. 2018. +Analyzing uncer- +tainty in neural machine translation. +In Inter- +national Conference on Machine Learning, pages +3956–3965. PMLR. +Xiaochang Peng and Daniel Gildea. 2016. +UofR at +SemEval-2016 task 8: Learning synchronous hyper- +edge replacement grammar for AMR parsing. +In +Proceedings of the 10th International Workshop on +Semantic Evaluation (SemEval-2016), pages 1185– +1189, San Diego, California. Association for Com- +putational Linguistics. + +Xiaochang Peng, Linfeng Song, and Daniel Gildea. +2015. A synchronous hyperedge replacement gram- +mar based approach for AMR parsing. In Proceed- +ings of the Nineteenth Conference on Computational +Natural Language Learning, pages 32–41, Beijing, +China. Association for Computational Linguistics. +Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni- +anwen Xue. 2017. Addressing the data sparsity is- +sue in neural AMR parsing. In Proceedings of the +15th Conference of the European Chapter of the As- +sociation for Computational Linguistics: Volume 1, +Long Papers, pages 366–375, Valencia, Spain. Asso- +ciation for Computational Linguistics. +Carl Pollard and Ivan A Sag. 1994. +Head-driven +phrase structure grammar. University of Chicago +Press. +Colin Raffel, Noam Shazeer, Adam Roberts, Katherine +Lee, Sharan Narang, Michael Matena, Yanqi Zhou, +Wei Li, and Peter J Liu. 2020. Exploring the lim- +its of transfer learning with a unified text-to-text +transformer. Journal of Machine Learning Research, +21:1–67. +Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and +Kristina Toutanova. 2021. Compositional general- +ization and natural language variation: Can a se- +mantic parsing approach handle both? In Proceed- +ings of the 59th Annual Meeting of the Association +for Computational Linguistics and the 11th Interna- +tional Joint Conference on Natural Language Pro- +cessing (Volume 1: Long Papers), pages 922–938, +Online. Association for Computational Linguistics. +Mark Steedman. 2001. +The syntactic process. +MIT +press. +Kristina Toutanova, Christopher D Manning, Dan +Flickinger, and Stephan Oepen. 2005. +Stochas- +tic hpsg parse disambiguation using the redwoods +corpus. +Research on Language and Computation, +3(1):83–105. +Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis- +tical dependency analysis with support vector ma- +chines. In Proceedings of the Eighth International +Conference on Parsing Technologies, pages 195– +206, Nancy, France. +A +Graph-based Meaning Representation +Considerable NLP research has been devoted to +the transformation of natural language utterances +into a desired linguistically motivated semantic rep- +resentation. Such a representation can be under- +stood as a class of discrete structures that describe +lexical, syntactic, semantic, pragmatic, as well as +many other aspects of the phenomenon of human +language. In this domain, graph-based representa- +tions provide a light-weight yet effective way to en- +code rich semantic information of natural language +sentences and have been receiving heightened at- +tention in recent years. Popular frameworks un- +der this umbrella includes Bi-lexical Semantic De- +pendency Graphs (SDG; Bos et al., 2004; Ivanova +et al., 2012; Oepen et al., 2015), Abstract Mean- +ing Representation (AMR; Banarescu et al., 2013), +Graph-based Representations for English Resource +Grammar (ERG; Oepen and Lønning, 2006; Copes- +take, 2009), and Universal Conceptual Cognitive +Annotation (UCCA; Abend and Rappoport, 2013). +B +Literature Review on Graph Semantic +Parsing +In this section, we present a summary of different +parsing technologies for graph-based meaning rep- +resentations in addition to the ones discussed in +2.2, with a focus on English Resource Grammar +(ERG). +Grammar-based approach +In this type of ap- +proach, a semantic graph is derived according to +a set of lexical and syntactico-semantic rules. For +ERG parsing, sentences are parsed to HPSG deriva- +tions consistent with ERG. The nodes in the deriva- +tion trees are feature structures, from which MRS +is extracted through unification. The parser has a +default parse ranking procedure trained on a tree- +bank, where maximum entropy models are used +to score the derivations in order to find the most +likely parse. However, this approach fails to parse +sentences for which no valid derivation is found +(Toutanova et al., 2005). There are two main exist- +ing grammar-based parsers for ERG parsing: the +PET system (Callmeier, 2000) and the ACE system +(Crysmann and Packard, 2012). The core algo- +rithms implemented by both systems are the same, +but ACE is faster in certain common configurations. +We choose ACE as the symbolic parser in our work. +Factorization-based approach +This type of ap- +proach is inspired by graph-based dependency tree +parsing (McDonald, 2006). A factorization-based +parser explicitly models the target semantic struc- +tures by defining a score function that can eval- +uate the probability of any candidate graph. For +ERG parsing, Cao et al. (2021) implemented a two- +step pipeline architecture that identifies the concept +nodes and dependencies by solving two optimiza- +tion problems, where prediction of the first step is +utilized as the input for the second step. Chen et al. +(2019) presented a four-stage pipeline to incremen- +tally construct an ERG graph, whose core idea is + +similar to previous work. +Transition-based approach +In these parsing +systems, the meaning representations graph is gen- +erated via a series of actions, in a process that is +very similar to dependency tree parsing (Yamada +and Matsumoto, 2003; Nivre, 2008), with the dif- +ference being that the actions for graph parsing +need to allow reentrancies. For ERG parsing, Buys +and Blunsom (2017) proposed a neural encoder- +decoder transition-based parser, which uses stack- +based embedding features to predict graphs jointly +with unlexicalized predicates and their token align- +ments. +Composition-based approach +Following a prin- +ciple of compositionality, a semantic graph can +be viewed as the result of a derivation process, in +which a set of lexical and syntactico-semantic rules +are iteratively applied and evaluated. For ERG pars- +ing, based on Chen et al. (2018), Chen et al. (2019) +proposed a composition-based parser whose core +engine is a graph rewriting system that explicitly +explores the syntactico-semantic recursive deriva- +tions that are governed by a synchronous SHRG. +Translation-based approach +This type of ap- +proach is inspired by the success of seq2seq mod- +els which are the heart of modern Neural Machine +Translation. A translation-based parser encodes +and views a target semantic graph as a string from +another language. In a broader context of graph +semantic parsing, simply applying seq2seq models +is not successful, in part because effective lineariza- +tion (encoding graphs as linear sequences) and data +sparsity were thought to pose significant challenges +(Konstas et al., 2017). Alternatively, some specifi- +cally designed preprocessing procedures for vocab- +ulary and entities can help to address these issues +(Konstas et al., 2017; Peng et al., 2017). These pre- +processing procedures are very specific to a certain +type of meaning representation and are difficult +to transfer to others. To address this, Lin et al. +(2022) propose a variable-free top-down lineariza- +tion and a compositionality-aware tokenization for +ERG graph preprocessing, and successfully trans- +fer the ERG parsing into a translation problem that +can be solved by a state-of-the-art seq2seq model +T5 (Raffel et al., 2020). The parser achieves the +best known results on the in-domain test set from +the DeepBank benchmark. +C +Additional Methods Discussions +C.1 +Efficient Probability Estimation Using +Beam Outputs +The marginalized probability ˆp(si|x) provides a +way to reason about the global importance of si by +integrating the probabilistic evidence p(si|sk, −1e − 5), we exclude these pretty certain predictions in the figures. +with normalization, e.g., “flag burning”; (2) nomi- +nal with noun, e.g., “pilot union”; (3) verbal, e.g., +“state-owned”; (4) named entities, e.g., “West Ger- +many”. +Argument structure +In ERG, there are differ- +ent types of core predicates in argument structures, +specifically, verbs, nouns and adjectives. We also +categorize verb in to basic verb (e.g., _look_v_1) +and verb particle constructions (e.g., _look_v_up). +The verb particle construction is handled semanti- +cally by having the verb contribute a relation par- +ticular to the combination. +Coreference +ERG resolves sentence-level coref- +erence, i.e., if the sentence referring to the same +entity, the entity will be an argument for all the +nodes that it is an argument of, e.g., in the sen- +tence, “What we want to do is take a more aggres- +sive stance”, the predicates “want” (_want_v_1) +and “take” (_take_v_1) share the same agent “we” +(pron). Coreference can be presented as reentran- +cies in the ERG graph, we notice that one important +type of reentrancies is the passive construction, so +we also report evaluation on passive construction +in Table 2. +K +Calibration Performance on Other +Datasets +The correlations between the subgraph’s probabil- +ity and performance on other datasets are shown in +Figure 5. The conclusions drew from the figure is +similar to the one discussed in Section 3. + diff --git a/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/load_file.txt b/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..0a2507572e671413d0118797d52b28659716d191 --- /dev/null +++ b/P9FJT4oBgHgl3EQfJCz4/content/tmp_files/load_file.txt @@ -0,0 +1,1433 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf,len=1432 +page_content='Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via Compositional Uncertainty Quantification Zi Lin UC San Diego lzi@ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='edu Jeremiah Liu†‡ Google Research & Harvard University jereliu@google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='com Jingbo Shang† UC San Diego jshang@ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='edu Abstract Pre-trained seq2seq models excel at graph se- mantic parsing with rich annotated data, but generalize worse to out-of-distribution (OOD) and long-tail examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In comparison, sym- bolic parsers under-perform on population- level metrics, but exhibit unique strength in OOD and tail generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In this work, we study compositionality-aware approach to neural-symbolic inference informed by model confidence, performing fine-grained neural- symbolic reasoning at subgraph level (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', nodes and edges) and precisely targeting sub- graph components with high uncertainty in the neural parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As a result, the method combines the distinct strength of the neural and symbolic approaches in capturing differ- ent aspects of the graph prediction, leading to well-rounded generalization performance both across domains and in the tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We empiri- cally investigate the approach in the English Resource Grammar (ERG) parsing problem on a diverse suite of standard in-domain and seven OOD corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Our approach leads to 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='26% and 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='60% error reduction in aggre- gated SMATCH score over neural and sym- bolic approaches respectively, and 14% abso- lute accuracy gain in key tail linguistic cate- gories over the neural model, outperforming prior state-of-art methods that do not account for compositionality or uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 1 Introduction A structured account of compositional meaning has become a longstanding goal for Natural Language Processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To this end, a number of efforts have focused on encoding semantic relationships and at- tributes into graph-based meaning representations (MRs, see Appendix A for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In particular, graph semantic parsing has been an important task in almost every Semantic Evaluation (SemEval) exercise since 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In recent years, we have wit- nessed the burgeoning of applying neural networks † Co-senior authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' ‡ Work done at Google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' to semantic parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Pre-trained language model- based approaches have led to significant improve- ments across different MRs (Oepen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2019, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' However, these models often generalize poorly to out-of-distribution (OOD) and tail ex- amples (Cheng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Shaw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Kim, 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022), while grammar or rule-based parser work relatively robustly across different linguistic phenomena and language do- mains (Cao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2021;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' See Section 6 for a review of related work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In this paper, we propose a novel compositional neural-symbolic inference for graph semantic pars- ing, which takes advantage of both uncertainty quantification from a seq2seq parser and prior knowledge from a symbolic parser at the subgraph level (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', nodes and edges).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We take graph seman- tic parsing for English Resource Grammar (ERG) as our case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' ERG is a compositional semantic representation explicitly coupled with the syntactic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Compared to other graph-based meaning representations like Abstract Meaning Representa- tion (AMR), ERG has high coverage of English text and strong transferability across domains, render- ing itself as an attractive target formalism for auto- mated semantic parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Furthermore, many years of ERG research has led to well-established sym- bolic parser and a rich set of carefully constructed corpus across different application domains and fine-grained linguistic phenomena, making it an ideal candidate for studying cross-domain general- ization of neural-symbolic methods (Oepen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Crysmann and Packard, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We start with a novel investigation of the uncer- tainty calibration behaviour of a T5-based state-of- the-art neural ERG parser (Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022) on the subgraph level (Section 3), where we make some key observations: (1) the performance of the neu- ral parser degrades when it becomes uncertain at the subgraph level, while (2) the symbolic parser works still robustly when the neural parser is un- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='11459v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='CL] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='26 Jan 2023 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_the_q<0> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_want_v_1<2> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_boy_n_1<1> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_believe_v_1<6> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_girl_n_1<0> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='pron<7> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='pronoun_q ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='_the_q<3> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='BV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='BV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='BV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='ARG1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='ARG2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='ARG1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='ARG2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='The<0> boy<1> wants<2> the<3> girl<4> to<5> believe<6> him<7> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='Abstract Concepts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='(grammatical function) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='Root ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='Token-Node Alignments ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='Surface Concepts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='(related to surface tokens) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='<·> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='(a) EDS Representation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='( _want_v_1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':ARG1 ( _boy_n_1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':BV-of ( _the_q ) ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':AGR2 ( _believe_v_1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':ARG1 ( _girl_n_1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':BV-of ( _the_q ) ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':ARG2 ( pron ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=':BV-of ( pronoun_q ) ) ) ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='(b) Variable-free PENMAN notation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='Figure 1: The EDS representation for ERG and the corresponding linearization of the example sentence “The boy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='wants the girl to believe him”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' certain at the subgraph level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This motivates us to develop a compositional neural-symbolic inference process where the neural and symbolic parser col- laborates at a more fine-grained level and guided by model uncertainty, which is an aspect missing in the previous neural-symbolic and ensemble parsing literature (see Appendix 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We then propose a decision-theoretic criteria to allow for neural-symbolic inference at subgraph level (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', nodes and edges) and incorporates the neural parser’s fine-grained uncertainty for each graph component prediction (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The key to this approach is a meta graph GM that enu- merates possible candidates for each node/edge prediction, and is constructed by merging multiple beam predictions from the neural seq2seq model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The core challenge here is how to properly quan- tify compositional uncertainty using a seq2seq model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', assigning model probability for a node or edge prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' For example, our interest is to express the conditional probability of a graph node v with respect to its parent p(v|pa(v), x), rather than the likelihood of v conditioning on the previ- ous tokens in the linearized string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As a result, it cannot be achieved by relying on the naive token- level autoregressive probabilities from the beam search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To address this issue, we introduce a sim- ple probabilistic formalism termed Graph Autore- gressive Process (GAP) (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' GAP adopts a dual representation of an autoregressive process and a probabilistic graphical model, and can serve as a powerful medium for expressing compositional uncertainty for seq2seq graph parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We demonstrate the effectiveness of our ap- proach in experiments across a diverse suite of eight in-domain and OOD evaluation datasets en- compassing domains including Wikipedia entries, news articles, email communications, etc (Section 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We achieve the best results on the overall performance across the eight domains, attaining 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='26% and 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='60% error reduction in the aggre- gated SMATCH score over the neural and symbolic parser, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Our approach also exhibits sig- nificantly stronger robustness in generalization to OOD datasets and long-tail linguistic phenomena than previous work, while maintaining the state- of-the-art performance on in-domain test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Further study also shows that the compositionality aspects of neural-symbolic inference helps the model to as- semble novel graph solution that the original infer- ence process (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', beam search or symbolic parse) fails to provide (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In summary, our contributions are four-fold: We present a novel investigation of neural graph parser’s uncertainty calibration performance at subgraph level (Section 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Our study confirms the seq2seq uncertainty is effective for detecting model error even out-of-distribution, establishing the first empirical basis for the utility of compo- sitional uncertainty in seq2seq graph parsing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We propose a practical and principled framework for neural-symbolic graph parsing that utilizes model uncertainty and exploits compositionality (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The method is fully compatible with modern large pre-trained seq2seq network using beam decoding, and is general-purpose and applicable to any graph semantic parsing task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We propose a simple probabilistic formalism (GAP) to express a seq2seq model’s composi- tional uncertainty (Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' GAP allows us to go beyond the conventional autoregres- sive sequence probability and express long-range parent-child conditional probability on the graph, serving as a useful medium of compositional un- certainty quantification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We conduct a comprehensive study to evalu- ate the state-of-the-art graph parsing approaches across a diverse suite of in-domain and out-of- distribution datasets (Section 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Our study re- veals surprising weakness of previous neural- symbolic methods in OOD generalization, and confirms the proposed method significantly im- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='3947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='7788 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9212 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9983 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9996 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9999 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content="0000 T5 Model's Probabilities 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='0 Node/Edge Accuracies tanaka T5 ACE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='5810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='8004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9692 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9967 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9998 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content="0000 T5 Model's Probabilities 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='0 Node/Edge Accuracies brown T5 ACE Figure 2: Bar charts for the predictive accuracies of the T5 parser (blue) and ACE parser (orange) for all the node / edge prediction across different uncertainty buckets based on T5 model’s probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The performance is evaluated on the Tanaka and Brown datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Each bin represents a quantile bucket of the model probability (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', they contain the same number of examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Since at most of the subgraphs, the model is pretty certain (log P > −1e − 5), we exclude these pretty certain predictions in the figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' proves models OOD and tail performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Reproducibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Our code is available on Github: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='com/google/ uncertainty-baselines/tree/main/ baselines/t5/data/deepbank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 2 Background 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='1 English Resource Grammar (ERG) In this work, we take the representations from En- glish Resource Grammar (ERG;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Flickinger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2014) as our target meaning representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' ERG is a broad-coverage computational grammar of En- glish that derives underspecified logical-form rep- resentations of meaning (Oepen and Flickinger, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' It is rooted in the general linguistic theory of Head-driven Phrase Structure Grammar (HPSG;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Pollard and Sag, 1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' ERG can be presented into different types of an- notation formalism (Copestake et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This work focuses on the Elementary Dependency Struc- ture (EDS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Oepen and Lønning, 2006) which is a compact representation that can be expressed as a directed acyclic graph (DAG) and is widely adopted in the neural parsing approaches (Buys and Blunsom, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' An example is shown in Figure 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2 Parsing Approaches In this section, we review the state-of-the-art sym- bolic and neural parsers utilized in our work, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', the ACE parser (Crysmann and Packard, 2012) and the T5 parser (Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Appendix B re- views other ERG parsing techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The symbolic parser: ACE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The ACE parser (Crysmann and Packard, 2012) is one of the state- of-the-art symbolic parsers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' It first decomposes sentences into ERG-consistent candidate derivation trees, and the parser will rank candidates based on the structural features in the nodes of the deriva- tion trees via maximum entropy models (Oepen and Lønning, 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Toutanova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This approach fails to parse sentences for which no valid derivation is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The neural parser: T5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' (2022) pro- posed a T5-based ERG parser which achieves the best known results on the in-domain DeepBank benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' It is the first work that successfully transfers the ERG parsing problem into a pure end- to-end translation problem via compositionality- aware tokenization and a variable-free top-down graph linearization based on the PENMAN nota- tion (Kasper, 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Figure 1(b) shows an example of the linearized graph string from the original EDS graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 3 Motivation: Subgraph-level Uncertainty in Seq2seq Graph Parsing We hypothesize that when the neural seq2seq model is uncertain at the subgraph level, it is more likely to make mistakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Assuming the symbolic parser performs more robustly in these situations, we can then design a procedure to ask the symbolic parser for help when the model is uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To validate this hypothesis, we conduct experiments to empirically explore the following two questions: (1) how does the model perform when it is uncer- tain at the subgraph level?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' and (2) how does the symbolic parser perform when the model is uncer- tain?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' First, we compute model probabilities for each graph element (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', node and edge) prediction (see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2 for how to compute these quanitities), and identify the corresponding ACE parser pre- diction using the graph matching algorithm from SMATCH (Cai and Knight, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' We then evaluate the accuracies of those graph element predictions with respect to the gold labels, and compare it to that of the ACE parser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In Figure 2, we plot the bar charts compare the neural and symbolic performance in different bucket of seq2seq model uncertainties on the two largest datasets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', Tanaka and Brown, see Ap- pendix G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Results on other datasets can be found in the Appendix K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As shown in the figure, low model probability generally corresponds to low T5 per- formance, while the corresponding ACE parser’s accuracies spread relatively stably (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', it attains > 90% accuracy in the lowest-confidence buck- ets, while T5 accuracy is < 50%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This implies that when the model is uncertain, the accuracy of the neural model tend to be low, while the ACE parser still performs well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This has motivated us to develop a compositional neural-symbolic infer- ence procedure guided the model’s subgraph level uncertainty, such that the T5 and ACE parser can collaborate at a more fine-grained level via com- postional uncertainty quantification (Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 4 Methods Notation & Problem Statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' For graph se- mantic parsing, the input is a natural language ut- terance x, and the output is a directed acyclic graph (DAG) G = ⟨N, E⟩, where N is the set of nodes and E ∈ N × N is the set of edges (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', Figure 1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In the case of seq2seq parsing, G is repre- sented as a linearized graph string g = s1s2 · · · sL which consists of symbols {sl}L l=1 (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', Figure 1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As the graph prediction is probabilistic, each of the graph element v ∈ N ∪ E is a random vari- able whose values are the symbols si observed from the beam outputs, leading to marginal prob- abilities p(v = si|x) and conditional probabilities p(v = si|v′ = sj, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To this end, our goal is to produce a principled inference procedure for graph prediction account- ing for model uncertainty on predicting graph ele- ments v ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' In the sequel, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='1 presents a decision-theoretic criterion that leverages the graphical model likelihood p(G|x) to conduct com- positional neural-symbolic inference for graph pre- diction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To properly express the graphic model likelihood p(G|x) = � v∈G p(v|pa(v), x) using a learned seq2seq model, Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2 introduces a simple probabilistic formalism termed Graph Autoregressive Process (GAP) to translate the au- toregressive sequence probability from the seq2seq model to graphical model probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Appendix E discusses some additional extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='1 Compositional Neural-Symbolic Inference Previously, an uncertainty-aware decision criteria was proposed for neural-symbolic inference based on the Hurwicz pessimism-optimism criteria R(G|x) (Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Specifically, the criteria is written as: R(G|x) = α(x)∗Rp(G|x)+(1−α(x))∗R0(G), where R(G|x) = − log p(G|x) is the neural model likelihood, R0(G) = log p0(G) is the symbolic prior likelihood, and α(x) is a the uncertainty- driven trade-off coefficient to balance between the optimistic MLE criteria Rp(G|x) and the pes- simistic, prior-centered criteria R0(G|x) centered around symbolic prediction G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' A key drawback of this approach is the lack of accounting for the compositionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' This motivates us to consider synthesizing the multiple graph pre- dictions {Gk}K k=1 from the neural parser to form a meta graph G 1, where we can leverage the dis- entangled uncertainty of p(G|x) to perform fine- grained neural-symbolic inference for each graph component v ∈ G (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', nodes or edges).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Specifi- cally, we leverage the factorized graphical model likelihood p(G|x) = � v∈G p(v| pa(v), x) to de- compose the overall decision criteria R(G|x) into that of individual components R(v|x): R(v|x) = α(v|x) ∗ log p(v| pa(v), x) + (1 − α(v|x)) ∗ log p0(v), (1) and the overall criteria is written as R(G|x) = � v∈G R(v|x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Here pa(v) refers to the parents of v in G, and α(v|x) = sigmoid(− 1 T H(v|x) + b) is the component-specific trade-off param- eter driven by model uncertainty H(v|x) = − log p(v| pa(v), x), and (T, b) are scalar calibra- tion hyperparameters that can be tuned on the dev set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Following previous work (Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2022), the symbolic prior p0 for each graph component v is defined as a Boltzmann distribution based on the graph output G0 from the symbolic parser, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', p0(v = s) ∝ exp(I(s ∈ G0)), so that it is pro- portional to the empirical probability of whether a symbol s appears in G0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Notice that we have 1Given a group of candidate graphs {Gk}K k=1, well- established algorithm exists to synthesize different graph pre- dictions into a meta graph G (Cai and Knight, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Hoang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', 2021) (see Appendix F for a more detailed review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' ignored the normalizing constants since they do not impact optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Algorithm 1 summarizes the full algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As shown, during inference, the method pro- ceeds by starting from the root node v0 and selects the optimal prediction ˆv0 = arg maxc0∈Candidate(v0) R(c0|x), where c0 are dif- ferent candidates for v0 given by the meta graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The algorithm then recursively performs the same neural-symbolic inference procedure for the chil- dren of v0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', ch(v)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' The algorithm terminates when the optimal candidates for all graph variables v ∈ G are determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' As a result, the algorithm is able to adap- tively combine subgraph predictions across mul- tiple beam candidates thanks to the meta graph G, and appropriately weight between the local neural and symbolic information thanks to the uncertainty- aware decision criteria R(v|x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Empirically, this also gives the algorithm the ability to synthesize novel graph predictions that are distinct from its base models (Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Algorithm 1 Compositional Neural-Symbolic Inference Inputs: Meta graph G Graphical model likelihood log p(G|x) Symbolic prior p0 Output: Neural-symbolic graph prediction G Initialize: v = root(GM);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' G = GM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' if G does not contain undecided candidates then return G else for cv ∈ Candidate(v) do Compute decision criteria R(cv|x) (Equation 1) Select optimal candidate ˆv = arg maxc R(c|x) Remove non-optimal candidates of v from G Recursively perform Algorithm 1 for all v′ ∈ ch(v) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='2 Compositional Uncertainty Quantification with Graph Autogressive Process (GAP) To properly model the uncertainty p(G|x) from a seq2seq model, we need an intermediate probabilis- tic representation to translate the raw token-level probability to the distribution over graph elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' To this end, we introduce a simple probabilistic formalism termed Graph Autoregressive Process (GAP), which is a probability distribution assigning seq2seq learned probability to the graph elements v ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=' Specifically, as the seq2seq-predicted graph adopts both a sequence-based representation g = s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/P9FJT4oBgHgl3EQfJCz4/content/2301.11459v1.pdf'} +page_content=', sL and a graph representation G = ⟨N, E⟩, the GAP model adopts both an autoregressive repre- sentation p(g|x) = � i p(si|s 0 such that ∀t ∈] − ε, ε[, (φX +t )∗(F) = F. +(3) We introduce here a notion of tangency and singular foliation for arbitrary closed subsets +of a smooth or complex manifold. Let M be a smooth or complex manifold. Let S ⊆ M +be a closed subset. +(a) A vector field Z on M is said to be tangent to S if its flows φZ +t preserves S, [MP82]. +We define X(S) to be the restriction to S of vector fields of M tangent to S, it is a +OM/IS -module and a Lie algebra, with IS being the ideal of smooth functions on +M that vanish on S . +(b) A singular foliation over S is a OM/IS -submodule F of X(S) which is +(i) finitely (locally) generated, +(ii) stable under Lie bracket. +It is said to be projective if it is projective as a module. +(c) A Lie algebroid over S is a locally generated projective Lie-Rinehart algebra over +OM/IS. +Remark 1.3. The previous definitions match the usual notions of tangency and singular +foliations, for affine or Stein subvarieties in the algebraic or holomorphic cases, and for +S a smooth submanifold in the smooth case. + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +5 +(4) Let F ⊆ X(M) be a submodule. A complex of vector bundles (E, d, ρ) +� E−i−1 +d(i+1) � +� +E−i +d(i) � +� +E−i+1 +� +� +d(2)� E−1 +ρ +� +� +TM +� +M +M +M +M +M +is said to be a geometric resolution of F if the following complex is an exact sequence of +sheaves: +−→Γ(E−i−1) d(i+1) +−→ Γ(E−i) d(i) +−→ Γ(E−i+1)−→ · · · −→Γ(E−1) +ρ +−→ F. +(7) +A geometric resolution is said to be minimal at a point x ∈ M if, for all i ≥ 2, the +linear maps d(i)|x : E−i|x −→ E−i+1|x vanish. Recall that it exists in many contexts, +e.g., singular foliation with polynomial generators on Rn or Cn or locally real analytic +singular foliation on a compact manifold (see, [LLS20]). +(5) An almost graded Lie algebroid over M is the datum of a sequence (E, d = ℓ1, ρ) of +vector bundles over M equipped with a graded symmetric degree +1 K-bilinear bracket +ℓ2 : Γ(E) ⊙ Γ(E) → Γ(E) +such that: +(a) ℓ2 satisfies the Leibniz identity with respect to ρ: Γ(E−1) −→ X(M), i.e., +ℓ2(x, fy) = fℓ2(x, y) + ρ(x)[f]y +(8) +for all x ∈ Γ(E−1), y ∈ Γ(E) and f ∈ O. +(b) ℓ1 is degree +1-derivation of ℓ2, i.e., for all x ∈ Γ(E−i), y ∈ Γ(E): +ℓ1(ℓ2(x, y)) + ℓ2(ℓ1(x), y) + (−1)iℓ2(x, ℓ1(y)) = 0, +(c) ρ is a morphism, i.e., for all x, y ∈ Γ(E−1) +ρ(ℓ2(x, y)) = [ρ(x), ρ(y)]. +The O-linear map ρ is called the anchor map, and ℓ1 the differential. +(6) A Lie ∞-algebroid over M is the datum of a sequence E = (E−i), 1 ≤ i < ∞ of vector +bundles over M together with a structure of Lie ∞-algebra (ℓk)k≥1 on the sheaf of +sections of E and a vector bundle morphism, ρ: E−1 → TM, called anchor map such +that the k-ary brackets ℓk, k ̸= 2 are O-multilinear and such that +ℓ2(e1, fe2) = ρ(e1)[f]e2 + fℓ2(e1, e2) +(9) +for all e1 ∈ Γ(E−1), e2 ∈ Γ(E•) and f ∈ O. The sequence +· · · +ℓ1 � E−2 +ℓ1 +� E−1 +ρ +� TM, +(10) +is a complex called the linear part of the Lie ∞-algebroid. +(7) The following theorem is important, (see [Lav17, LLS20, LGL22] for more details) : +Theorem 1.4. Let F be a singular foliation over M. Any geometric resolution of F +· · · +d +−→ E−3 +d +−→ E−2 +d +−→ E−1 +ρ +−→ TM +(11) +comes equipped with a Lie ∞-algebroid structure whose unary bracket is d and whose +anchor map is ρ (in particular ρ(Γ(E−1)) = F). Such a Lie ∞-algebroid structure is +unique up to homotopy and is called a universal Lie ∞-algebroid of F. + +6 +RUBEN LOUIS +In particular, this structure can be truncated to an almost graded Lie algebroid for F. +(8) Let (E•, ℓ•, ρ) a universal Lie ∞-algebroid of a singular foliation F. For every point +x ∈ M, +(a) We let H•(F, x) = ⊕i≥1H−i(F, x) be the cohomology of the complex (11). The +cohomology groups H•(F, x) do not depend on the choice of a geometric resolution +of F. Notice that when the complex (11) is minimal at x, H−i(F, x) ≃ E−i|x for +every i ≥ 1. +(b) The 1, 2-ary brackets restrict to the graded vector space + +� +i≥2 +E−i|x + + ⊕ ker(ρx) +and equip the latter with an almost graded Lie ∞-algebra structure as follows : for +every k ∈ {1, 2}, +{x1, . . . , xk}k := ℓk(s1, . . . , sk)|x +(12) +for all x1, . . . , xk ∈ ev(E, x) and s1, . . . , sk ∈ Γ(E) sections of E such that si(x) = xi +with i = 1, . . . , k. +The bracket {· , · }2 induces a graded Lie algebra on H•(F, x). In particular, the 2-ary +bracket {· , ·}2 satisfies the Jacobi identity on H−1(F, x) = ker(ρx) +im(d(2) +x ), and equips the latter +with a Lie algebra structure. +(9) Let (M, F) be a singular foliation, let Ix := {f ∈ C∞(M) | f(x) = 0} and F(x) := +{X ∈ F | X(x) = 0}. The quotient gx = F(x) +IxF is a Lie algebra and is called the isotropy +Lie algebra of F at x. +Lemma 1.5. Let (E, ℓ•, ρ) be a universal Lie ∞-algebroid of F. Consider its underlying +geometric resolution +(E, d, ρ) : +· · · ℓ1=d(4) +−→ E−3 +ℓ1=d(3) +−→ E−2 +ℓ1=d(2) +−→ E−1 +ρ=d(1) +−→ TM. +(13) +Then, +(a) for all x ∈ M, we have H−1(F, x) ≃ gx as Lie algebras; +(b) the subset of regular points of F in M satisfies +Mreg,F = {x ∈ M | rk(d(2) +x ) = dim(ker ρx)} += {x ∈ M | H−i(F, x) = 0, ∀i ≥ 1}, +Mreg,F is open and dense in M; +(c) the restriction of the foliation F to Mreg,F is the set of sections of a subbundle of +TM, i.e., is a regular foliation; +(d) For every i ≥ 0, the dimension of im +� +d(i+1)� +is locally constant on Mreg,F. More- +over, if r the dimension of a regular leaf, then im(d(i+1)) is of codimension +ri = +i−1 +� +j=1 +(−1)j+1rk(E−j) + (−1)i+1r, for i ≥ 1 +in E−i or r0 = dim M − r, with E0 := TM; +(e) if (E, d, ρ) is of finite length, then (in the smooth case) all the regular leaves have +the same dimension. + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +7 +In what follows, we assume that a geometric resolution of finite length exists. +Under these +assumptions, all the regular leaves have the same dimension. Denote by r the common dimension +of the regular leaves. +2. The blowup procedures +In what follows M can be a connected complex or smooth manifold or an irreducible affine +or quasi-projective. Firstly, let us explain a general construction on morphisms of vector bundles. +2.1. Blowup of vector bundle morphisms. Let E, F be vector bundles over M and +F +d +� +�❆ +❆ +❆ +❆ +❆ +❆ +❆ +❆ +E +�⑥⑥⑥⑥⑥⑥⑥⑥ +M +a morphism of vector bundles. In the smooth case, we assume that d is of constant rank on +an open dense subset Mreg,d ⊂ M, i.e., the dimensions of im(dx) or ker(dx) are constant for +x ∈ Mreg,d, called the regular part (this is automatically true when M is complex or a quasi- +projective variety). Let r be the codimension of im(dx) ⊆ Ex for a point x ∈ Mreg,d. Notice that +for every x ∈ Mreg,d, im(dx) is a point of the Grassmannian Gr−r(Ex) and ker(dx) is a point of +Grrk(F )−r(Fx). We consider the natural section of Gr−r(E) −→ M which is defined on Mreg,d +by: +σ: Mreg,d −→ Gr−r(E), x �−→ (im(dx), x) . +(14) +Then we define � +M := σ(Mreg,d) to be the closure of the image of the section σ in Gr−r(E), +together with the projection π: � +M −→ M, where π denotes the restriction of Π: Gr−r(E) −→ M +to � +M. +Remark 2.1. Intuitively, for x ∈ M, π−1(x) = � +M ∩ Π−1(x) is the set of all possible limits of +the images imdy when y ∈ Mreg,d converges to x. One can make a similar construction with the +kernel of d. +Here is an immediate property of that construction. +Proposition 2.2. Let F +d +−→ E be a vector bundle morphism over M. The projection π: � +M → +M has the following property: +(1) π is proper and surjective. In particular, for each point x ∈ M, the fiber π−1(x) is +non-empty. +(2) For every x ∈ M and V ∈ π−1(x), one has im(dx) ⊆ V . +(3) For every x ∈ Mreg,d, π−1(x) = im(dx) is reduced to a point in Gr−r(E). +Also, +π−1(Mreg,d) is a manifold 2 and the restriction π: π−1(Mreg,d) −→ Mreg,d is invertible3 +in the smooth and holomorphic contexts. +Proof. We prove it in the smooth and complex settings. Properness derives from the fact that +the projection Π admits compact fibers. For any x ∈ M, choose U ⊂ M an open neighborhood +of x that trivializes E −→ M over U. Then, Gr−r(E) ≃ Gr−r(Krk(E)) × U. Notice that, +π−1(x) = +� +V ⊂ Ex +���� ∃ (xn) ∈ MN +reg,d, such that, im(dxn) −→ +n→+∞ V as xn +−→ +n→+∞ x +� +. +2Manifold is to be understood as quasi-projective when M is quasi-projective. +3Invertible here means: diffeomorphism, in the smooth case; bi-holomorphism, in the complex case. + +8 +RUBEN LOUIS +For any sequence (xn) in (Mreg,d ∩ U)N that converges to x, we can extract a sequence (xϕ(n)) +such that n �→ im(dxϕ(n)) ∈ Gr−r(Krk(E)) has a limit V , since the Grassmannian manifold +Gr−r(Krk(E)) is compact. Hence, π−1(x) ̸= ∅ and π is onto. This proves item 1. +Let us show item 2. +Let V ∈ π−1(x) and (xn) ∈ (Mreg,d)N such that xn +−→ +n→+∞ x and +im(dxn) −→ +n→+∞ V . Let v ∈ im(dx). We have v = dxu for some u ∈ Fx. Choose a (local) section +�u of F through u. By continuity, dxn �u(xn) −→ +n→+∞ dxu, hence dxu ∈ V . Thus, im(dx) ⊆ V . +In particular, if x ∈ Mreg,d and V ∈ π−1(x) one has im(dx) = V since dim V = dim(im(dx)). +Therefore, π−1(Mreg,d) is the image of the map σ on Mreg,d, it is isomorphic/biholomorphic to +Mreg,d. This proves item 3. +□ +We are now going to apply the constructions above to a sequence of vector bundle morphisms +which are all of constant rank on an open dense subset. +2.2. Main constructions and results. Let us work in the complex or holomorphic setting. +Let F be a locally finitely generated O(M)-submodule of X(M), i.e., every point of M admits +an open neighborhood U and a finite number of vector fields X1, . . . , Xn ∈ X(M) such that +F|U = �n +k=1 fkXk for fk ∈ O(M). We assume that there exists a geometric resolution, i.e., +complex of vector bundles (E•, d(•), ρ) of finite length +0 · · · +� E−i−1 +d(i+1) � +� +E−i +d(i) � +� +E−i+1 +� +� +d(2)� E−1 +ρ=d(1) +� +� +TM +� +M · · · +M +M +M +M +M +(15) +such that ρ(Γ(E−1)) = F and exact as in (7), (see [LLS20] for conditions on existence of geometric +resolutions at least locally). Denote by Mreg,F (as in Lemma 1.5) the open dense subset such +that the fibers of im(d(i)) are of constant rank and im(d(i+1)) = ker(d(i)), for all i ≥ 1. We set +E0 := TM by convention and proceed as the following: +(a) For every i ≥ 0, let Πi : Gr−ri(E−i) −→ M be the Grassmann bundle of E−i with ri is +as in Lemma 1.5 (d). Consider the natural section of Πi on Mreg,F defined by : +σi : Mreg,F −→ Gr−ri(E−i), x �−→ +� +im +� +d(i+1) +x +� +, x +� +(16) +(b) Let � +Mi := σi(Mreg,F) be the closure of the image of σi in Gr−ri(E−i). Let πi : � +Mi −→ M +denote the restriction of Πi to � +Mi. +We also consider the section +σ∞: Mreg,F −→ +� +x∈M +� +i≥1 +Gr−ri(E−i|x), x �→ (σ1(x), σ2(x), . . . , σi(x), . . . ) +and define � +M∞ := σ∞(Mreg,F). Here, � +M∞ should be understood as the tuples made of elements +V1 ∈ Gr−r1(E−1|x), . . . , Vi ∈ Gr−ri(E−i|x), . . . such that there exists (xn) ∈ MN +reg,d such that +im +� +d(i+1) +xn +� +−→ +n→+∞ Vi as xn +−→ +n→+∞ x for all i ∈ N. It is important to notice that the Vi’s are +given by the same sequence (xn) ∈ MN +reg,F. +Remark 2.3. The construction also makes sense for M an affine variety in CN, upon replacing +TM by TCN|M ≃ M × CN. Notice that in the definition of � +M∞ we leave � +M0 out. + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +9 +By Proposition 2.2, for each i ≥ 0, the projection πi : � +Mi → M is invertible on the open dense +subset Mreg,F, it is proper and surjective. Moreover, for each point x ∈ M and for every i ≥ 0, +the fiber π−1 +i +(x) is non-empty. Also, π−1 +∞ (x) is non-empty. +From now on, most of the proofs are delayed to Section 3. +As sets, � +Mi, � +M∞ do not need to be manifolds. They can be singular, see Section 4. +Proposition 2.4. Let F be a singular foliation on a smooth or complex variety on M ∈ +� +CN, RN� +that admits polynomial generators, then it admits a geometric resolution of finite +length and � +Mi and � +M∞ are quasi-projective varieties for all i ≥ 0. +For F a singular foliation on an affine variety, � +Mi is a quasi-projective variety. +The following assertion follows from the existence of homotopy equivalence between any two +geometric resolutions. +Theorem 2.5. Let F be a singular foliation on M that admits geometric resolution. For each +i ≥ 1, � +Mi does not depend on the choice of a geometric resolution of F. The same is true for +� +M∞. +To prove Theorem 2.5, we first establish the following results. +Proposition 2.6. Let (15) be a geometric resolution for F. For every x ∈ M, for every i ≥ 1 +and V ∈ π−1 +i +(x) one has, +im(d(i+1) +x +) ⊆ V ⊆ ker(d(i) +x ). +(17) +In particular, for all x ∈ Mreg,F and i ≥ 1, ker(d(i) +x ) = im(d(i+1) +x +) = π−1 +i +(x). +Proposition 2.7. Fix a geometric resolution (E, d, ρ) of F and a universal Lie ∞-algebroid of +F. The following are satisfied: +(1) For every x ∈ M and V ∈ π−1 +1 (x), the 2-ary bracket {· , · }2 on ker ρx restricts to V and +the image of V in H−1(F, x) ≃ gx, is a Lie subalgebra of codimension r−dim(Lx), where +dim(Lx) is the dimension the leaf through x. +(2) For all x ∈ M, and (V1 ⊂ E−1|x, . . . , Vk ⊂ E−k|x, . . .) ∈ π−1 +∞ (x) we have {Vi, Vj}2 ⊂ +Vi+j−1 for every i, j ∈ N0. +The corollary below is a direct consequence of Proposition 2.6, and is another manner to state +that Mi does not depend on the geometric resolution. +Corollary 2.8. There are inclusions +� +Mi ֒→ +� +x∈M +Gr +rk +� +d(i) +x +� +−ri(H−i(F, x)) +and +� +M∞ ֒→ +� +x∈M +� +i≥1 +Gr +rk +� +d(i) +x +� +−ri(H−i(F, x)). +(18) +Proof. Let x ∈ M and i ≥ 0. By Proposition 2.6, elements V ∈ π−1 +i +(x) satisfy im(d(i+1) +x +) ⊆ V ⊆ +ker(d(i) +x ), they correspond injectively to a (unique) sub-vector space of codimension ri−rk(d(i)) in +H−i(F, x). In particular, this implies the existence of an inclusion π−1 +i +(x) ֒→ Grri−rk(d(i))(H−i(F, x)). +□ +Remark 2.9. In particular, � +M1 ֒→ ⊔x∈MGrLiedim(Lx)−r(gx), where gx is the isotropy Lie algebra +of the singular foliation F at x and Lx is the leaf that passes through x. Here, GrLier−dim(Lx)(gx) +denotes the Grassmannian of Lie subalgebras of gx of codimension r − dim(Lx). + +10 +RUBEN LOUIS +Assume now that F is a singular foliation and that Equation (15) is a geometric resolution +for F. +Definition 2.10. Let i ≥ 0. We say that X ∈ F lifts to � +Mi ⊂ Gr−ri(E−i), or � +M∞, if there +exists a vector field �X ∈ X(Gr−ri(E−i)) or X +�� +x∈M +� +i≥1 Gr−ri(E−i|x) +� +, projectable to X and +tangent to Mi in the sense of Section 1.2.1 (3). We denote by �Xi or �X∞ the restriction of �X to +Mi or �X∞ respectively. +We say that a F lifts to � +Mi if every vector field X ∈ F lifts to � +Mi. +Remark 2.11. �Xi on π−1 +i +(Mreg,F) is tangent in the usual sense to the submanifold and projects +to X through πi. In particular, if a lift exists, its restriction to π−1(Mreg,F)) is unique, because +πi : π−1 +i +(Mreg,F) +∼ +−→ Mreg,F. Since the other points of � +Mi are limits of elements of π−1 +i +(Mreg,F), +thus its restriction to � +Mi is unique. +Theorem 2.12. Let F be a singular foliation on M that admits geometric resolution. For every +i ≥ 1, the following items hold: +(1) Every vector field X ∈ F lifts to a vector field �Xi on � +Mi, +(2) the map X ∈ F −→ �X| � +Mi does not depend on any choices. In particular, it is a Lie +algebra morphism. +(3) The module �Fi over functions of � +Mi generated by the +�X′ +is for X ∈ F is a singular +foliation. +The same holds for � +M∞. +Definition 2.13. For each i ≥ 1, �Fi is called the blowup of F on � +Mi. +Here is a remarkable fact. +Theorem 2.14. Let F be a singular foliation on M that admits geometric resolution (E, d, ρ). +�F1 is projective, i.e., it is the image of a Lie algebroid over � +M1 whose anchor map is injective +on an open dense subset. +In Theorem 2.14, we do not need the existence of geometric resolutions of F. An almost Lie +algebroid of F is enough, the latter always exists [LLS20]. +3. Proof of the main results +In this section, we prove Proposition 2.4, Proposition2.6, Proposition 2.7 and Theorem 2.12. +Proof (of Proposition 2.4). Since M = RN or CN and F is generated by polynomial vector fields, +we can choose a polynomial geometric resolution (E, d, ρ) of F by trivial vector bundles, [LLS20]. +Here by polynomial we mean the d and ρ are given by polynomials. +Let e1, . . . , ed resp. e′ +1, . . . , e′ +d′ be a basis by constant sections of E−i resp. E−i+1. One has, +d(i)(el) = +d′ +� +k=1 +f k +l e′ +k +(19) +for some polynomial functions f k +l on KN. Without any lost of generality, let us describe � +Mi using +local coordinates on Gr−ri(E−i) consider for example the first standard coordinates chart U1 for +the Grassmannian Gr−ri(E−i), (see Section 1.1.2). Denote by x = (x1, . . . , xN) the coordinates + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +11 +on M. Let m ∈ M. For W ∈ U1∩Gr−ri(E−i|m) and (apq(m)) ∈ Md,d−ri(K) be the homogeneous +coordinates of W, let us define the sections +�wq(x) := eq(x) + +ri +� +k=1 +akq(x)ek(x), +q = 1, . . . , d − ri. +(20) +By construction, the �wq(x)’s, evaluated at m, form a basis for W. Notice that we have, +d(i)( �wq)(x) = +d′ +� +k=1 +� +f k +q (x) + +ri +� +s=1 +asqf k +s (x) +� +e′ +k(x). +Therefore, W ⊆ ker d(i) +m if and only if +f k +q (m) + +ri +� +s=1 +asq(m)f k +s (m) = 0, +q = 1, . . . , d − ri +k = 1, . . . , d′. +(21) +This defines an affine variety. As a result, � +Mi is given in local coordinates U1 by elements that +satisfy +(1) Equation (21) +(2) and that are limits of solutions of (21) in nearby regular points, elements which are +unique. +Hence, it is, on the affine variety, the irreducible components of (21) that +projects onto M. +This concludes the proof in the smooth or complex cases. For a quasi-projective variety, the +proof is similar. +□ +Remark 3.1. When F is generated by polynomial vector fields, π−1 +i +(Mreg,F) is locally defined +by polynomial equations. +Proof (of Proposition 2.6). We know by Proposition 2.2(2) that, for every x ∈ M and V ∈ +π−1 +i +(x), one has im(d(i+1) +x +) ⊆ V . Now, for any element v ∈ V , there exists a sequence vn ∈ +ker(d(i) +xn) = im(d(i+1) +xn +), n ∈ N that converges to v. In particular, d(i) +xn(vn) = 0 for all n. Hence, +by continuity, one has v ∈ ker(d(i) +x ). Hence, V ⊆ ker d(i) +x . This completes the proof. +□ +Proof. (of Proposition 2.7). For all i ≥ 1, choose a local frame e(i) +1 , . . . , e(i) +qi , . . . e(i) +qi+ri of E−i on a +neighborhood U of x such that e(i) +1 (x), . . . , e(i) +qi (x) is an orthogonal basis for Vi for an arbitrary +Hermitian structure on E−i. For i, j ≥ 1, let (cij,s +kl ) ∈ O(U) be a family of functions over U such +that for all k ≤ qi and l ≤ qj, +ℓ2 +� +e(i) +k , e(j) +l +� += +� +s≥1 +cij,s +kl e(i+j−1) +s +∈ ΓU(E−i−j+1). +In particular, +� +e(i) +k (x), e(j) +l (x) +� +2 = +� +s≥1 +cij,s +kl (x)e(i+j−1) +s +(x). +(22) +The bracket in Equation 22 is well-defined even for i = 1 or j = 1, although only the 2-ary +bracket of local sections is defined in such cases, because even if i or j = 1, we are taking the +brackets of elements in ker ρx. Let u ∈ Vi, v ∈ Vj with u = +qi +� +s=1 +αse(i) +s (x), and v = +qj +� +s=1 +βse(j) +s (x). + +12 +RUBEN LOUIS +Let (xn) ∈ MN +reg,F be a sequence that converges to x such that im(d(i+1) +xn +) +−→ +n→+∞ Vi and +im(d(j+1) +xn +) −→ +n→+∞ Vj. There exist sequences +un = +qi+ri +� +k=1 +αk +ne(i) +k (xn) −→ +n→+∞ u; +vn = +qj+rj +� +l=1 +βl +ne(j) +l (xn) −→ +n→+∞ v +with un ∈ im(d(i+1) +xn +) = ker d(i) +xn and vn ∈ im(d(j+1) +xn +) = ker d(j) +xn, for all n ∈ N. In particular, +the sequences (αk +n), (βl +n) ∈ KN satisfy αk +n +−→ +n→+∞ αk; +βl +n +−→ +n→+∞ βl with αk = βl = 0 for +k ≥ qi + 1, l ≥ qj + 1. Therefore, for every n ∈ N we have +� +αk +nβl +ncij,s +kl (xn)e(i+j−1) +s +(xn) = {un, vn}2 ∈ im(d(i+j) +xn +) = ker d(i+j−1) +xn +). +(23) +We have used in (23), the fact that {du1, du2}2 ∈ im(d), for all u1, u2 ∈ E≤−2. Since +� +αk +nβs +ncij,s +kl (xn)e(i+j+1) +s +(xn) −→ +n→+∞ +� +αkβlcij,s +kl (x)e(i+j−1) +s +(x) ∈ E−i−j+1|x += {u, v}2. +(24) +As a result, {u, v}2 ∈ Vi+j−1 ∈ π−1 +i−j−1(x). Hence, for every point (V1, . . . , Vi, . . . , Vj, . . . ) ∈ π−1 +∞ (x) +one has {Vi, Vj}2 ⊆ Vi+j−1. This proves item 2. By taking i = j = 1 and Vi = Vj = V ∈ π−1 +1 (x), +Equation (24) means that {u, v}2 ∈ V . This proves item 1. +□ +3.1. Proof of Theorem 2.5. In this section, we give a proof of Theorem 2.5. By Corollary +2.8 (whose proof is independent of Theorem 2.5), for every i ≥ 1, we have an inclusion � +Mi ֒→ +� +x∈M Gr +rk +� +d(i) +x +� +−ri(H−i(F, x)), where ri is defined as in Lemma 1.5(d). We now need to show +this inclusion is canonical, i.e., independent of the choice of a geometric resolution (E, d, ρ). +Convention 3.2. For (E, d, ρ) a geometric resolution of F. Denote by � +ME +i +:= � +Mi constructed +out of (E, d, ρ) and � +ME′ +i +:= � +Mi constructed out of (E′, d′, ρ′) for i ≥ 1. Also, for x ∈ M and +V ∈ π−1 +i +(x), we denote by V the image of V in Gr +rk +� +d(i) +x +� +−ri(H−i(F, x)). +Remark 3.3. Let x ∈ M. Consider a minimal geometric resolution (E′, d′, ρ′) of F at x (see +Definition (4)). For (V, x) ∈ � +ME +1 +and (V ′, x) ∈ � +ME′ +1 +one has that dim V ′ ≤ dim V , because +rk(E′ +−1) ≤ rk(E−1) by minimality. Hence, V, V ′ do not necessarily belong to the same Grass- +mannian. However, dim V = dim V ′. We prove the latter in the next Lemma. +Lemma 3.4. Let (E, d, ρ) and (E′, d′, ρ′) be geometric resolutions of F. For all i ≥ 1, and for +all (V, x) ∈ � +ME +i +and (V ′, x) ∈ � +ME′ +i , one has, dim V = dim V ′. +Proof. If x ∈ M is a regular point, then V = V ′ = {0}. Thus, the equality holds. Let x ∈ M +be a singular point. We prove it only for i = 1, 2, since i = 1 is a special case and for i ≥ 3 the +proof uses a similar argument as for the one of i = 2. The key point in the latter is, for every +x ∈ M, the restriction of the complexes (E, d, ρ) and (E′, d′, ρ′) at x are quasi-isomorphic. This +implies that the codimension of im +� +d(i+1) +x +� +inside ker d(i) +x , resp. im +� +d′ +x +(i+1)� +inside ker d′ +x +(i), is +invariant. + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +13 +Let (V, x) ∈ � +ME +1 and (V ′, x) ∈ � +ME′ +1 . We have +dim V = dim V − dim(im (d(2) +x )) += dim V − (dim ker ρx − dim ker ρ′ +x + dim(im (d′ +x +(2))) += dim V − rk(E−1) + rk(E′ +−1) − dim(im (d′ +x +(2))) += dim V ′ − dim(im (d′ +x +(2))) += dim V ′. +We have used the fact the cohomology groups at degree −1 of both complexes are isomorphic +and the Rank–nullity theorem. +For i = 2, let (V, x) ∈ � +ME +2 and (V ′, x) ∈ � +ME′ +2 . Notice that dim V = rk(E−2) − rk(E−1) + r. +We have a similar formula for dim V ′. By direct computation we find that +dim V = dim V − dim(im d(3) +x ) += dim V − rk(E−2) + rk(E′ +−2) + dim(im (d(2) +x )) − dim(im (d′ +x +(2))) − dim(im (d′ +x +(3))). +(25) +We have used the fact the cohomology groups at degree −2 of both complexes are isomorphic +and the Rank–nullity theorem. But +dim(im (d(2) +x )) = rk(E−1) − dim(im(ρx)) − dim W, +where W is such that dim(im (d(2) +x )) ⊕ W = ker ρx. A similar formula holds for dim(im (d′ +x +(2))) +by adding ′ everywhere. Substituting them into the Equation (25) we obtain +dim V = dim V ′ + dim W ′ − dim W = dim V ′, +since dim W ′ = dim W. +□ +Proof of (Theorem 2.5). For simplicity, we prove it for i = 1. For i ≥ 1, the same arguments +hold. +Let (E, d, ρ) and (E′, d′, ρ′) be geometric resolutions of F. +There exists chain morphisms +ϕ: E −→ E′ and ψ: E′ −→ E whose compositions are homotopic to identity. In particular, ϕ +defines an isomorphism ϕ at the level of cohomology, the latter is canonical (see [LLS20], Lemma +4.1). All we need to show is ϕ sends � +ME +1 to � +ME′ +1 . The strategy is to show that for x ∈ M, the fiber +� +ME +1 ∩Grr−dim(Lx)(E−1|x) over x is independent of any choices of minimal geometric resolutions at +x, then deduce the result for every point y ∈ M, and for any two arbitrary geometric resolutions +(E, d, ρ) and (E”, d”, ρ”) of F by introducing a minimal geometric resolution (E′, d′, ρ′) at y of +F between them, then compose the underlying quasi-isomorphisms. +Let x ∈ � +ME +1 . Like we said, let us assume that (E′, d′, ρ′) is minimal at x, i.e., d′ +x = 0. Let +e1, . . . , ek be local sections around x of E−2 such that +span +� +d(2)e1|x, . . . d(2)ek|x +� += im(d(2) +x ). +There is a neighborhood Ux of x such that Fy = span +� +d(2)e1|y, . . . d(2)ek|y +� +⊆ im(d(2) +y ) is of +constant rank. These sections define a vector bundle F on Ux and Fx = im(d(2) +x ). Likewise, + +14 +RUBEN LOUIS +one consider the vector bundle F ′ ⊆ im(d′(2)) on a neighborhood of x such that ϕy(Fy) ⊆ F ′ +y. +Therefore, ϕ induces a map +im(d(2) +y ) +Fy +−→ im(d′(2) +y +) +F ′y +. +The latter is injective, because d′ +x = 0. +Since ϕy +� +im(d(2) +y ) +Fy +� +֒→ +im(d′(2) +y +) +F ′y +, then ϕy +� +im(d(2) +y ) +Fy +� +converges to W ⊆ im(d′(2) +y +) +F ′y +when y ∈ Mreg,F tends to x. Consequently, for (V, x), (V ′, x) such +that im(d(2) +y ) and im(d′(2) +y +) converges to V and V ′ respectively, one has, ϕx(V ) ⊆ V ′. Hence, +ϕx(V ) = V ′. Also, also ψx(V ′) = V since ψx and ϕx is are the inverse of each other. +□ +3.2. Proof of Theorem 2.12 and 2.14. Theorem 2.12 follows from Lemma 3.6 which itself +requires Lemma 3.5. We prove those in the smooth context. We recall that for p: E −→ M a +vector bundle over M, a linear vector field on E is a pair (Z, X) ∈ X(E) × X(M) such that +E +Z +� +p +� +TE +dp +� +M +X � TM +is a morphism of vector bundles (see e.g [Mac05], p. 110). Equivalently, +(1) Z[C∞ +lin(E)] ⊂ C∞ +lin(E) and Z[p∗C∞(M)] ⊂ p∗C∞(M). +or +(2) The flow of Z on E are (local) vector bundle morphisms E −→ E over the flow of X on +M. +where C∞ +lin(E) is the subalgebra of smooth functions on E which are fiberwise linear. The latter +is canonically isomorphic to Γ(E∗) as C∞(M)-modules. Notice in particular that, a linear vector +field is p-projectable to X. +Lemma 3.5. A linear vector field on E −→ M induces a vector field on Π: Gr−r(E) −→ M +that is Π-projectable on M. +Proof. Let (Z, X) be a linear vector field on E −→ M. Its flow φZ +t : E −→ E is a vector bundle +isomorphism whenever it is defined, induces a diffeomorphism Gr−r(E) so that it induces a map +Gr−r(E) −→ Gr−r(E), V �→ φZ +t (V ) that we still denote by φZ +t . Define �Z ∈ X(Gr−r(E)) for +(V, x) ∈ Gr−r(E) by +�Z(V ) := d +dt |t=0 +c(t) ∈ T(V,x)Gr−r(E) +(26) +where c(t) = +� +φZ +t |x(V ), φX +t (x) +� +for t in some interval I. Also, �Z is Π-projectable to X, by +construction. +□ +Lemma 3.6. Let i ≥ 1. For every X ∈ F, there is a linear vector field (Zi, X) on the vector +bundle pi : E−i −→ M or on p0 : E0 := TM −→ M, pi-projectable to X. +Their flows are +compatible with the complex of vector bundles, +· · · ℓ1=d(4) +−→ E−3 +ℓ1=d(3) +−→ E−2 +ℓ1=d(2) +−→ E−1 +ρ=d(1) +−→ TM. +(27) + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +15 +i.e., the diagram below commutes for all i ≥ 1, +M +φX +t +� +� +①①①①①①①①① +M +� +①①①①①①①①① +E−i +φZi +t +� +d(i+1) +� +E−i +d(i+1) +� +M +φX +t +� +� +①①①①①①①①① +M +� +①①①①①①①①① +E−i+1 +φZi−1 +t +� E−i+1 +(28) +and induces a vector field �Zi on Gr−ri(E−i) such that +(1) �Zi is tangent to � +Mi. +(2) �Zi projects onto X. +where φZi +t +or φX +t +denotes the flow of Zi or X, when defined. +Proof. Let (E, ℓ1, ℓ2, ρ) be an almost graded Lie algebroid of F, see Section 1.2.1(5). Let X ∈ F +and i ≥ 0. For i ̸= 0, there exists a section υ of the vector bundle pi : E−i → M such that +ρ(υ) = X. Consider the linear vector field Zi ∈ X(E−i) defined as follows +Zi[p∗ +i f] : = p∗ +i (X[f]), ∀ f ∈ C∞(M), +(29) +Zi +e[α] : = X[⟨α, e⟩] − ⟨α, ℓ2(υ, e)⟩, ∀ α ∈ Γ(E∗ +−i), e ∈ Γ(E−i). +(30) +For i = 0, one replaces ℓ2(υ, e) in (30) by [X, Y ] with Y ∈ Γ(E0) = X(M). Notice that Zi +depends on the choice of the almost graded Lie algebroid bracket ℓ2 and X. The items 1, 2, 3 +and 4 hold (see [LGLR22], Lemma 2.1.19. p. 61). +By Lemma 3.5, the linear vector field (Zi, X) induces a vector field �Zi on the Grassmanian +bundle Gr−ri(E−i). Let us show item 1, φZi +t +preserves � +Mi: to see this take (V, x) ∈ � +Mi, let +xn +−→ +n→+∞ x be such that im d(i+1) +xn +−→ +n→+∞ V with (xn) ⊂ Mreg,F. Since, d(i+1)◦φZi +t += φZi−1 +t +◦d(i+1) +for i ≥ 0, one has +φZi +t |xn +� +im d(i+1) +xn +� += im d(i+1) +φX +t (xn), +for every n ∈ N0. +Thus, +φZi +t |x(V ) = +lim +n→+∞ φZi +t |xn +� +im d(i+1) +xn +� += +lim +n→+∞ +� +im d(i+1) +φX +t (xn) +� +∈ π−1 � +φX +t (x) +� +. +By consequence, �Xi is tangent to � +Mi, by Equation (26). +□ +Proof (of Theorem 2.12). By Lemma 3.6, every vector field X ∈ F extends to a linear field +Xi ∈ X(Gr−ri(E−i)) which is tangent to � +Mi in the sense of Definition 3a. This proves item +1. Furthermore, the restriction �Xi of Xi to � +Mi is unique, since πi|π−1 +i +(Mreg,F) : π−1 +i +(Mreg,F) −→ +Mreg,F is invertible. In particular, the map X ∈ F −→ �X| � +Mi does not depend on any choices +and is a Lie algebra morphism. The module which is generated by the �Xi is closed under Lie +bracket by item 2 of Theorem 2.12). This ends the proof. +□ +Proof (of Theorem 2.14). Let (E, d, ρ) be a geometric resolution of F. Fix a universal Lie ∞- +algebroid of F on (E, d, ρ). Let τ E−1 and AE−1 be the tautological subbundle and tautological +quotient bundle on Gr−r(E−1), that fit into the exact sequence +0 −→ τ E−1 −→ Π∗E−1 −→ AE−1 −→ 0. +(31) + +16 +RUBEN LOUIS +with AE−1 ≃ Π∗E−1/τ E−1. In particular, rk(AE−1) is the dimension of the regular leaves. One +has +(1) �F1 the image of an almost Lie algebroid on Π∗E−1| � +M1 via the anchor map �ρ: Γ(Π∗E−1)| � +M1 −→ +X( � +M1) definded by π∗ +1e �−→ +� +ρ(e) ∈ �F1. +(2) The tautological subbundle τ E−1 lies in the kernel of the anchor map: indeed, the fiber +of τ E−1 over a point (V, x) ∈ � +M1 is equal to V by definition. By Proposition 2.6, the +latter is included in ker ρx with equality if x ∈ Mreg,F. +Therefore, the anchor map �ρ goes to quotient +0 +� τ E−1 +� Π∗E−1 +� +�ρ +� +AE−1 +� +�✈ ✈ ✈ ✈ ✈ +0 +T � +M1 +. +(32) +and makes �F1 the image of an almost Lie algebroid on AE−1| � +M1 whose anchor is injective on +the open dense subset Mreg,F. +Thus, AE−1| � +M1 is a Lie algebroid with anchor, injective on +π−1 +1 (Mreg,F), whose image is �F1. This proves the result. +□ +Remark 3.7. Notice that in the proof of Theorem 2.14 we do not need the existence of a +geometric resolution, we only make use of the anchor map and the bracket of an almost Lie +algebroid of F, i.e., we only need E−1 and ρ: E−1 −→ TM. +4. Examples +Let us start with some examples where our constructions give nothing new, i.e., � +Mi ≃ M or +� +M∞ ≃ M. +Example 4.1. If F is a projective singular foliation, then � +Mi ≃ M, for all i ≥ 1 and i = +∞. +This comes from the fact that there exists a vector bundle E−1 −→ M such that Γ(E−1) ≃ F by +Serre-Swan theorem [Swa62, Mor13]. This isomorphism is given by a vector bundle morphism, +E−1 +ρ→ TM which is injective on an open dense subset Mreg,F. As a consequence, E−1 +ρ→ TM +is a geometric resolution of F. Therefore, � +Mi ≃ M since E−i = 0 for i ≥ 2. Also, if r is the +dimension of the regular leaves of F, then r = rk(E−1). Hence Gr−r(E−1) ≃ M. In particular, +� +M1 ≃ M. +Example 4.2. If the regular leaves of F are open, then � +M0 ≃ M, since Gr−0(TM) ≃ M. +Example 4.3. If there exists a geometrical resolution (E, d, ρ) of length k, then � +Mi ≃ M for all +i ≥ k+1. Notice that one also has � +Mk ≃ M since the last differential map d(k): E−k −→ E−k+1 is +injective on an open dense subset so that the considered Grassmann bundle is Gr−rk(E−k)(E−k) ≃ M. +In contrast with Examples 4.1, 4.2 and 4.3, we construct two related examples where our +construction is not trivial. +Example 4.4. Consider the projective singular foliation F generated by the Euler vector field +−→ +E = �N +i=1 xi ∂ +∂xi on M = CN. Here, Mreg,F = CN \ {0}. It is easily checked that � +M0 is the +closure of the graph {([x1 : · · · : xN], x) ∈ PN−1(C) × CN | x ̸= 0}. The latter is the blowup of +CN at 0. This is an example where F is projective and � +M0 ̸= M. +Example 4.5. Let F be the singular foliation of all vector fields vanishing at the origin 0 ∈ +M = CN. Here, Mreg,F = CN \ {0}. Let us compute � +M1. To do this, we only need E−1 the + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +17 +degree −1 of a geometric resolution (E, d, ρ) of F. See Example 3.34 of [LLS20] for a complete +description of the latter. Here E−1 ≃ MN(C)×CN and the anchor map ρ is Eij �→ xi ∂ +∂xj , where +MN(C) is the vector space of N ×N matrix with coefficient in C and (Eij)i,j=1,...,N its canonical +basis. +A direct computation for every x ̸= 0 tells that ker ρx is the subspace of matrices M ∈ MN(C) +such that Mx = 0, where x = (x1, . . . , xN) is seen as a column vector. Equivalently, this kernel +can be described as N copies of [x1 : · · · : xN]⊥. Hence, � +M1 is the blowup of CN at the origin. +This is an example of a singular foliation whose regular leaves are open, but such that � +M1 ̸= M. +Let us study some examples related to the notion of an affine variety in Cd. +Let Ad be an affine space over K with a set of coordinates x1, . . . , xd. Recall that an affine +variety W is a subset of the affine space Ad given by the zero locus Z(IW) of a radical ideal +IW ⊆ K[x1, . . . , xd] and equipped with the induced Zariski topology of Ad. The coordinate ring +of W is the quotient ring OW = K[x1, . . . , xd]/IW . The Lie algebra X(W) of vector fields on W +are derivations of OW . We denote by Wreg the set of regular points of W. For every x ∈ Ad +we denote by mx the maximal ideal of vanishing polynomials at x. See, for instance, [Har77] for +more details on these notions. +Example 4.6. Let M = Cd and ϕ ∈ C[x1, . . . , xd]. Consider the singular foliation Fϕ = {X ∈ +X(Cd) | X[ϕ] = 0}. In this case, Mreg,F = {x ∈ Cd, |, dxϕ ̸= 0}. For every y ∈ Cd, (TyFϕ)⊥ = +⟨∇yϕ⟩. +For a convergent sequence yn +−→ +n→+∞ y with yn ∈ Wreg,F. +The sequence im(ρyn) = +TynF converges if and only if ∇ynϕ converges in Gr−(d−1)(Cd), that is, +� +∂ϕ +∂x1 (yn): · · · : +∂ϕ +∂xd (yn) +� +converges in the projective space Pd−1(C). Therefore, � +M0 is the closure of the image of the map, +y �→ (y, +� ∂ϕ +∂x1(y): · · · : +∂ϕ +∂xd (y) +� +) which is the blow up of Cd along the singular locus of ϕ, i.e., +along dϕ = 0. +Example 4.7. (Nash modification). +Let M = W be an affine irreducible affine variety of +dimension r embedded in Cd. +Let Σ be its singular locus. +Let F = Der(OW ) the singular +foliation of vector fields on W tangent to Σ, where IΣ stands for the polynomial functions that +vanish on Σ. Here, Wreg,F = Wreg = W \ Σ. Consider a geometric resolution (E•, d, ρ) of F by +trivial vector bundles (which exists because OW is Noetherian, see Section 3.3 in [LLS20]). +Let us show that for every x ∈ W \ Σ, im(ρx) = TxF = TxW. It is clear that im(ρx) ⊆ TxW. +Conversely, it is a classical property that x ∈ W is a regular point if and only if there exists +“local coordinates” y1, . . . , yd ∈ Ox such that W is of the form +y1 = · · · = yk = 0, +i.e., the localization of IW is generated by these variables, where Ox denotes the local ring at +x. Hence, the tangent space of W at x is the vector space, span{ ∂ +∂yi |m, i ≥ k + 1}. Therefore, +for v ∈ TxW the local vector field +X = +dim W +� +i=1 +vi +∂ +∂yk+i +maps Ox to Ox, in particular it maps O to Ox and we have X[IW ] ⊂ (IW )mx. Therefore, for +every, i ∈ {1, . . . , d} there exists a polynomial function gi that does not vanish at x such that +giY [xi] ∈ C[x1, . . . , xd]. By construction, the vector field ˆX = +g1···gr +g1(x)···gr(x)X is tangent to W, i.e., +ˆX[IW ] ⊂ IW, and satisfies ˆX(x) = v. + +18 +RUBEN LOUIS +The map π0 : W \ Σ −→ Gr−(d−r)(Cd) x �−→ im(ρx) = TxW is the so-called Gauss map +[LU81]. The Zariski closure � +W0 of the image of such a map is by definition the classical Nash +blow-up of W along its singular locus Σ. +Example 4.8. (Monoidal transformation). Let W = Cd. Let C = Z(IC) ⊂ Cd be a subvariety +of Cd defined by the ideal IC generated by f1, . . . , fk ∈ OW . Let F = ICX(W) the singular +foliation of vector fields vanishing along C. By Hilbert’s Syzygy theorem [Eis04], there exists +a free resolution of finite length for the ideal IC of polynomial functions vanishing on C of the +form +· · · −→ K−2 +∂ +−→ K−1 +∂ +−→ IC −→ 0 +(33) +Since X(W) is a flat OW = C[x1, . . . , xd]-module (in fact X(W) ≃ Od +W is a free module), the +sequence +· · · +∂⊗id +� K−2 ⊗OW X(W) +∂⊗id +� K−1 ⊗OW X(W) +ρ +� F. +(34) +is a free resolution K[W] by finitely generated K[W]-modules of the singular foliation F = +ICX(W), where for (µ1, . . . , µk) a set of generators of K−1 the map given by, ρ(µi⊗ ∂ +∂yj ) = fi ∂ +∂yj , +for i = 1, . . . , k and j = 1, . . . , d. By Theorem 2.1 in [LGL22], F admits a universal Lie ∞- +algebroid structure over the complex (34) whose unary bracket is ℓ1 = ∂ ⊗ id and whose anchor +is ρ. +Here, Wreg,F = W \ C. A direct computation shows that, for every x ∈ W \ C, ker ρx is equal +to d copies of [f1(x) : · · · : fk(x)]⊥, i.e., +ker ρx = +� +[f1(x) : · · · : fk(x)]⊥�d , +where [f1(x) : · · · : fk(x)] is a well-defined straight line of Kk generated by the vector (f1(x), . . . , fk(x)) ∈ +Kk seen as a point of the projective space Pk−1(K) = Gr−(k−1)(Ck). +One has, +π−1 +1 (x) = + + + + + + + + + + + + + + + + + + + +� +[f1(x) : · · · : fk(x)]⊥�d , for x ∈ W \ C, +V d ∈ +� +Gr−1(Ck) +�d such that ∃ (xn) ∈ W N +reg,F, [f1(xn) : · · · : fk(xn)]⊥ +−→ +n→+∞ V, +with V ∈ Gr−1(Ck) as xn +−→ +n→+∞ x, for x ∈ C. +The d components converge if and only if one of them converges. Since [f1(xn) : · · · : fk(xn)]⊥ +converges in Gr−1(Kk) if and only if the straight line [f1(xn) : · · · : fk(xn)] converges in Pk−1(K), +� +W1 corresponds to the usual monoidal transformation of W with center C (see, for instance +[Hau14]). In particular, � +W1 does not depend, up to isomorphism over W, on the choice of the +generators f1, . . . , fk. +When f1, . . . , fk form a regular sequence, (33) can be chosen to be the Koszul complex. Then +for each i ≥ 1, � +Wi is again the blowup of Cd along C. In particular, � +Wi = � +W∞ is the blowup +of W = Cd along C. Let us prove it. The proof is similar for every i ≥ 2. Let us show it for +i = 2. Since (34) is given by E−i = �i M⊗X(Cd), where M is a C[x1, . . . , xd]-module generated +by some degree −1 symbols µ1, . . . , µk and the differential map is defined by: for every i ≥ 1, +j = 1, . . . , d and 1 ≤ j1 < · · · < ji ≤ k, +d(i)(µj1 ∧ · · · ∧ µji ⊗ +∂ +∂xj +) = +i +� +l=1 +(−1)l+1fjlµj1 ∧ · · · ∧ � +µjl ∧ · · · ∧ µji ⊗ +∂ +∂xj +, + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +19 +here the hat �· means the term is omitted. The computations of � +Mi are similar for all i ∈ N0, +let us compute � +M2. Let (gj +pq) ∈ C[x1 . . . , xd] with j = 1, . . . , d and p, q = 1, . . . , k such that +d(2) + +� +p,q,j +gj +p,qµp ∧ µq ⊗ +∂ +∂xj + + = 0. This implies that +0 = +� +p,q,j +gj +p,q(fpµq − fqµp) ⊗ +∂ +∂xj += +� +q,j +�� +p +gj +p,qfp +� +µq ⊗ +∂ +∂xj +− +� +p,j +�� +q +gj +p,qfq +� +µp ⊗ +∂ +∂xj +. +For x ∈ Wreg,F, one finds that for every (p, j) and (q, j) that (gj +1,q(x), . . . , gj +k,q(x)), (gj +p,1(x), . . . , gj +p,k(x)) ∈ +[f1(x) : · · · : fk(x)]⊥. This proves the result. +Here is an example related to Poisson manifolds. +Example 4.9. Let (M, P) a smooth or holomorphic Poisson manifold with P ∈ Γ(∧2TM). +Consider the singular foliation generated by the Hamiltonian vector fields associated to P, i.e., +F = P ♯(Γ(T ∗M)), where P ♯ : T ∗M −→ TM, α �→ P(α, · ). Assume that a geometric resolution +exists. By Lemma 3.6, every Hamiltonian vector field lifts to a vector field tangent to � +Mi, i ≥ 1. +It is natural to ask whether the bivector field P lifts to � +Mi. Assume that � +Mi is smooth. Since for +every i ≥ 1, π−1 +i +(Mreg,F) −→ Mreg,F is invertible, the restriction P|U lifts to a Poisson bivector +field on π−1 +i +(Mreg,F). However, it does not lift to � +Mi in general. Indeed, consider the Poisson +manifold M = so∗(3) ≃ R3 with +P = x ∂ +∂y ∧ ∂ +∂z + y ∂ +∂z ∧ ∂ +∂x + z ∂ +∂x ∧ ∂ +∂y. +(35) +Here F is generated by the vector fields P ♯(dx) = z ∂ +∂y − y ∂ +∂z, P ♯(dy) = x ∂ +∂z − z ∂ +∂x, P ♯(dz) = +y ∂ +∂x − x ∂ +∂y. Let us compute � +M1. Given a point m ∈ Mreg,F = R3 \ {0}, we find that +ker P ♯|m = +� +(a, b, c) ∈ R3 | (a, b, c) ∈ [x(m) : y(m) : z(m)] ∈ P2(R) +� += [x(m) : y(m) : z(m)]. +Hence, � +M1 is the usual blowup B0(R3) of R3 at the origin. +The bivector field P does not lift to � +M1. Recall that the blowup space of R3 at the origin +B0(R3) ⊂ P2(R) × R3 is covered by three charts given by x ̸= 0, y ̸= 0 and z ̸= 0. Let us +look at the x-chart where the projection π1 becomes (x, y, z) �→ (x, xy, xz). In this chart P pulls +back to +y ∂ +∂z ∧ ∂ +∂x + z ∂ +∂x ∧ ∂ +∂y + 1 +x(1 + y2 + z2) ∂ +∂y ∧ ∂ +∂x. +(36) +For x = 0 Equation (36) is not defined. In conclusion, the Hamiltonian vector fields of the +Poisson structure P in (35) lift to � +M1, but the bivector field P does not lift to � +M1. +Example 4.10. Let (E−1, [· , ·] , ρ) be a smooth or holomorphic Lie algebroid over a manifold +M and denote by F = ρ(Γ(E−1)) the induced singular foliation. Assume there exists geometric +resolutions. The Lie algebroid E−1 acts on the spaces � +Mi for all i ∈ N0 also on � +M∞, in a way +that the following +X( � +M1) +� +Γ(E−1) +ρ +�✉ +✉ +✉ +✉ +✉ +ρ +� X(M) +(37) + +20 +RUBEN LOUIS +is a commutative diagram of Lie algebra morphisms. In addition, for each i ∈ N0, �Fi is the image +of a Lie algebroid on � +Mi, namely the pull-back to � +Mi of the Lie Algebroid E−1. In particular, +if F is given by a Lie algebra action of a Lie algebra g on M, then �Fi is given by an action of g +on � +Mi. +In the following example, we show that our � +M1 is the blowup construction blup(F) given by +Mohsen in Section 2.2 of [Moh21] +Example 4.11. Let F be a singular foliation that admits a geometrical resolution (E, d, ρ). +For every x ∈ M, blup(F)x is constructed out of minimal generators X1, . . . , Xd of F in a +neighborhood of x as follows: for y ∈ Mreg,F, let φy be the surjective linear map defined by +φy : +F +IxF −→ TyF, φy([Xi]x) = Xi(y), +for all +i ∈ {1, . . . , d}, +(38) +where TyF is the image of the evaluation map ey : F −→ TyM at y. By definition, blup(F)x is +made of subspaces V ⊆ +F +IxF such that there exists a sequence xn ∈ Mreg,F such that +xn −→ x, φ−1 +xn (0) −→ V ∈ Gr−r +� F +IxF +� +. +(39) +We claim that for every x ∈ M, blup(F)x ≃ π−1 +1 (x). Indeed, we can assume that (E, d, ρ) is +a minimal geometric resolution at x such that ρ(ei) = Xi for i = 1, . . . , d, where (ei)i=1,...,d +is a local frame of E−1. Since +Γ(E−1) +Ix′Γ(E−1) ≃ E−1|x′ for all x′ ∈ M, the anchor map defines an +isomorphism ρx : E−1|x −→ +F +IxF such that the diagram +E−1|x +≃ +ρx +� +≃ +κy +� +F +IxF +φy +� +E−1|y +ρy +� TyF +(40) +commutes. The claim follows. +5. Conclusion +Let us conclude this paper with an open question. Can we desingularize a singular affine +variety W by applying the constructions above to the singular foliation F = X(W) of vector +fields tangent to W? We should then understand � +W0 as the Nash modification of W [LU81]. +The meaning of � +W1 when F is the vector fields that vanish along a subvariety, is the monoidal +transformation of W along of that subvariety. �F1 is projective, and is included into the vector +fields tangent to � +W1. It is logical to apply the construction again to � +W1 or apply it to a sub- +singular foliation of F. +Notice that until now we have used the anchor map, the unary bracket and the 2-ary bracket +of a universal Lie-∞-algebroid, we would like to go further to understand, e.g., the role of the +3-ary bracket in this procedure. +Acknowledgements. +I would like to thank C. Laurent-Gengoux, my PhD supervisor, for +supporting me in writing this article and directing me to such questions that are originated +from Claire Debord and Georges Skandalis. Also, I thank the management of the University of +Lorraine for having supported me financially through an ATER position. + +NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES +21 +References +[AS09] +Iakovos +Androulidakis +and +Georges +Skandalis. +The +holonomy +groupoid +of +a +singu- +lar +foliation. +Journal +für +die +reine +und +angewandte +Mathematik, +2009(626):1–37, +2009. +https://doi.org/10.5167/uzh-23589. +[AZ14] +Iakovos +Androulidakis +and +Marco +Zambon. +Holonomy +transformations +for +singu- +lar +foliations. +Advances +in +Mathematics +(New +York. +1965), +256:348–397, +2014. +https://doi.org/10.1016/j.aim.2014.02.003. +[Cer79] +Dominique Cerveau. Distributions involutives singulières. Ann. Inst. Fourier (Grenoble), 29(3):xii, +261–294, 1979. http://archive.numdam.org/article/AIF_1979__29_3_261_0.pdf. +[Deb01] +Claire Debord. Holonomy Groupoids of Singular Foliations. J. Differential Geom., 58(3):467–500, 07 +2001. https://doi.org/10.4310/jdg/1090348356. +[Eis04] +David Eisenbud. The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative +Algebra. Springer New York, New York, NY, 2004. +[FGP94] +J. Ferrer, MI. Garćia, and F. Puerta. Differentiable families of subspaces. Linear Algebra and its +Applications, 199:229–252, 1994. Special Issue Honoring Ingram Olkin. +[GY18] +Alfonso Garmendia and Ori Yudilevich. On the inner automorphisms of a singular foliation. Mathe- +matische Zeitschrift, 2018. +[Har77] +Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer New York, New +York, NY, 1st ed. 1977. edition, 1977. +[Hau14] +Herwig Hauser. Blowups and Resolution. 2014. https://arxiv.org/abs/1404.1041. +[Lav17] +Sylvain +Lavau. +Lie +∞-algebroids +and +singular +foliations. +Ph-D +2017. +https://arxiv.org/abs/1703.07404. +[LGL22] +Camille Laurent-Gengoux and Ruben Louis. Lie-Rinehart algebras ≃ acyclic Lie ∞-algebroids. Journal +of Algebra, 594:1–53, 2022. https://doi.org/10.1016/j.jalgebra.2021.11.023. +[LGLR22] Camille +Laurent-Gengoux, +Ruben +Louis, +and +Leonid +Ryvkin. +Geometry +of +singular +folia- +tions: +a draft of an introduction. CRM Barcelona, +Poisson geometry summer school, +2022. +https://www.crm.cat/wp-content/uploads/2022/07/Singular-Foliations.pdf. +[LLS20] +Camille Laurent-Gengoux, Sylvain Lavau, and Thomas Strobl. The universal Lie ∞-algebroid of a +singular foliation. Doc. Math., 25:1571–1652, 2020. +[LU81] +D.T. Lê and T. Urabe. Geometry of Tangents on Singular Spaces and Chern Classes. Kyoto University. +Department of Mathematics. Lectures in mathematics. Kinokuniya Company, 1981. +[Mac05] +Kirill C. Mackenzie. General theory of Lie groupoids and Lie algebroids / Kirill C.H. Mackenzie,... +London Mathematical Society lecture note series. Cambridge University press, Cambridge, C 2005. +[Moh21] +Omar Mohsen. Blow-up groupoid of singular foliations. 2021. https://arxiv.org/abs/2105.05201. +[Mor13] +Archana S. Morye. Note on the Serre-Swan theorem. Mathematische Nachrichten, 286(2-3):272–278, +2013. +[MP82] +D Motreanu and N.H Pavel. Quasi-tangent vectors in flow-invariance and optimization problems on +banach manifolds. Journal of Mathematical Analysis and Applications, 88(1):116–132, 1982. +[Swa62] +Richard G. Swan. Vector Bundles and Projective modules. Transactions of the American Mathematical +Society, 105(2):264–277, 1962. https://doi.org/10.1090/S0002-9947-1962-0143225-6. +Université de Lorraine, CNRS, IECL, F-57000 Metz, France. + diff --git a/RdFAT4oBgHgl3EQf0x7h/content/tmp_files/load_file.txt b/RdFAT4oBgHgl3EQf0x7h/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ab2e433dfe50ab1897f101d70ec24e30c738fda8 --- /dev/null +++ b/RdFAT4oBgHgl3EQf0x7h/content/tmp_files/load_file.txt @@ -0,0 +1,1061 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf,len=1060 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='08706v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='DG] 20 Jan 2023 NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES RUBEN LOUIS Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We use the universal Lie ∞-algebroid of a singular foliation to construct several notions of resolution of singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For instance, we recover Nash modification or the monoidal transformation of an affine variety and a resolution method due to Mohsen [Moh21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' One of the important features is that any singular foliation becomes a Debord foliation after one blowup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Some examples are also given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Contents Introduction 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Preliminaries 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Grassmannian 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Topological structure 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Manifold structure 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Singular foliations and universal Lie ∞-algebroids 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Definitions 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The blowup procedures 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Blowup of vector bundle morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Main constructions and results 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of the main results 10 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5 12 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14 14 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Examples 16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Conclusion 20 References 21 Introduction The results of this paper are taken from Chapter 7 of my PhD thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is shown in [LLS20, LGL22] that behind any singular foliation there is a unique up to homotopy Lie ∞-algebroid, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', a Lie ∞-algebroid built over a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Now, in [Moh21], Omar Mohsen introduced a notion of blow-up of a smooth manifold along the singular leaves of a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In this paper, we give an interpretation of the latter in terms of the universal Lie ∞-algebroid of F, in fact in terms of an almost Lie algebroid over a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Indeed, we show that this construction is the 1st type of a series indexed by N0 of blowups of a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For n = 0, we recover the Nash blowups for a singular foliation, which matches Nash blowups for an affine variety W when applied to the vector fields tangent to W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1 2 RUBEN LOUIS A consequence of our construction for n = 1 is that a resolution of any singular foliation can be constructed, which is given by an action of a Lie algebroid whose anchor map is injective on an open dense subset, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', a Debord foliation [Deb01].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The paper is organized ad follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In section 1, we recall the definition of Grassmann bundles and their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Then, we recall the concept of singular foliations and its universal Lie ∞-algebroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In section 2, we give the constructions of several notions of blowup of a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Then, we state the main theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In Section 3 we write the proofs of the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In section 4, we give some examples, where we recover the usual notions of blowups for affine varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Preliminaries 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Grassmannian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For E a finite dimension vector space over a field K ∈ {R, C}, we denote by Gr−r(E) the set of all vector subspaces of E of co-dimension r ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us recall a few facts on Gr−r(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Topological structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Gr−r(E) is metric space, the corresponding metric is defined by δ(V, V ′) = ∥pV − pV ′∥, (1) where pV stands for the orthogonal projection of E onto V ⊂ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is important to notice that: for all V, V ∈ Gr−r(E), δ(V, V ′) = δ(V ⊥, V ′⊥) here V ⊥ stands for the orthogonal space of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is proven (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', [FGP94]) that Gr−r(E) equipped with the topology induced by the so-called “gap” metric (1), is equivalent to the Grassmann topology, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', the topology on Gr−r(E) whose open subsets W ⊆ Gr−r(E) are such that τ −1(W) is open in Str(d, K) := {A ∈ Md×r(K) | rk(A) = r}, with τ : Str(d, K) −→ Gr−r(E), A �−→ {vector space spanned by the columns of A}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, Gr−r(E) is a compact space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Manifold structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Gr−r(E) is moreover a compact manifold of dimension r(d − r) and also, a projective variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (1) Coordinates charts: One manner to define the standard affine coordinates on the Grassmannian Gr−r(E) is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Fix a basis e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , ed=dim E for E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us describe the first chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider ψ: Mr,d−r(K) −→ Md,d−r(K) A′ �−→ � Id−r A′ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The vector space V = τ �� Id−r A′ �� admits a basis of the form vj := ej + ℓ � k=1 akjek, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d − r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) V is completely determined by the matrix A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, τ ◦ ψ is the first chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For a permutation σ ∈ Sd, let P(σ) be the permutation matrix of lines associated to σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We claim that the family τ ◦ P(σ) ◦ ψ(Mr,d−r(K)), indexed by σ ∈ Sd is an atlas of Grr(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Its image consists of (2) up to permutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 3 (2) Grassmann bundle: For E → M a vector bundle of rank d over a manifold M (or a quasi-projective variety 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let r ≤ d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The disjoint union: Gr−r(E) := � x∈M Gr−r(E|x) comes equipped with a natural manifold structure in the smooth or complex case and a quasi-projective variety structure when M is a quasi-projective variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also Π: Gr−r(E) −→ M (3) is a fibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is called (d − r)-th Grassmann bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' To fix notations, for x ∈ M, elements of the fiber Π−1(x), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', points of Gr−r(E|x), are denoted by (V, x) with V ∈ Gr−r(E|x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every open subset U ⊂ M on which E is trivial, Π−1(U) ≃ Gr−r(Kd) × U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' An adapted chart for Gr−r(E) −→ M around a point x ∈ M is a set of local coordinates of the form (Π∗x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Π∗xn, z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , zr(d−r)), where (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xn) are local coordinates on M and (z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , zr(d−r)) are functions which are standard affine coordinates on an open subset of each fiber of Π as in item (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Convention 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let x ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , ed be local frame for E in a neighborhood U of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For y ∈ U, let κy be the linear isomorphism defined by κy : Ex −→ Ey, κy(ei(x)) = ei(y), for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (4) Let (xn) be a sequence of M that converges to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We will say that a sequence of vector space Vxn ∈ Gr−r(E) with Vxn ⊂ Exn, converges to V ⊂ Ex and write Vxn −→ n→+∞ V if κ−1(Vxn) −→ n→+∞ V in Gr−r(Ex).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (5) In the sequel we will not mention κ, since this notion of convergence does not depend on the chosen local frames of E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (3) Tautological subbundle: The Grassmann bundle Gr−r(E) comes equipped with two vector bundles τ E and AE, called tautological subbundle and tautological quotient bun- dle, that fit into the exact sequence 0 −→ τ E −→ Π∗E −→ AE −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (6) Precisely, the fiber of τ E over the point (V, x) ∈ Gr−r(E|x) is the codimension r subvector space V of E|x = E|Π(V,x) = (Π∗E)|(V,x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By construction, τ E is a subbundle of the pull- back bundle Π∗E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Furthermore, AE ≃ Π∗E/τ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This tautological quotient bundle is important for us to express some results of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Singular foliations and universal Lie ∞-algebroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We refer the reader to [AS09, AZ14, Cer79, Deb01, LLS20, LGLR22] for the topic of singular foliations, in particular to [LLS20, LGL22] for the notion of universal Lie ∞-algebroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For Lie algebroids, see [Mac05].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1the intersection inside some projective space of a Zariski-open and a Zariski-closed subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 4 RUBEN LOUIS 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We recall some basic definitions and properties on singular foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (1) A singular foliation on a smooth, real analytic, or complex manifold M, or a quasi- projective variety, is a subsheaf F ⊆ X(M) that fulfills the following conditions, (a) Stability under Lie bracket : [F, F] ⊆ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (b) F is a module over its respective relevant sheaf of functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (c) Locally finitely generateness : every m ∈ M admits an open neighborhood U to- gether with a finite number of vector fields X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Xk ∈ X(U) such that for every open subset U ⊆ M the vector fields X1|V, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Xk|V generates F on V as a mod- ule over functions on V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This condition is only necessary in the smooth case (see, [LGLR22]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' There are two classes of singular foliations we are interested in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A locally polynomial singular foliation is a singular foliation over a smooth or complex manifold which admits, around each point, polynomial generators in some local chart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A singular foliation F is projective as a module over functions if and only if there exists a Lie algebroid (A, [· , ·] , ρ) such that ρ(Γ(A)) = F whose anchor is injective on an open dense subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' These singular foliations are called Debord singular foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) Here are some important features of the above definition in the smooth/complex cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Singular foliation admits leaves : there exists a partition of M into submanifolds called leaves such that for all m ∈ M, the image of the evaluation map F → TmM is the tangent space of the leaf through m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Singular foliations are self-preserving: the flow φX t of vector fields X ∈ F, whenever defined, preserves F [AS09, GY18], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', ∀ m ∈ M, ∃ ε > 0 such that ∀t ∈] − ε, ε[, (φX t )∗(F) = F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (3) We introduce here a notion of tangency and singular foliation for arbitrary closed subsets of a smooth or complex manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let M be a smooth or complex manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let S ⊆ M be a closed subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (a) A vector field Z on M is said to be tangent to S if its flows φZ t preserves S, [MP82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We define X(S) to be the restriction to S of vector fields of M tangent to S, it is a OM/IS -module and a Lie algebra, with IS being the ideal of smooth functions on M that vanish on S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (b) A singular foliation over S is a OM/IS -submodule F of X(S) which is (i) finitely (locally) generated, (ii) stable under Lie bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is said to be projective if it is projective as a module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (c) A Lie algebroid over S is a locally generated projective Lie-Rinehart algebra over OM/IS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The previous definitions match the usual notions of tangency and singular foliations, for affine or Stein subvarieties in the algebraic or holomorphic cases, and for S a smooth submanifold in the smooth case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 5 (4) Let F ⊆ X(M) be a submodule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A complex of vector bundles (E, d, ρ) � E−i−1 d(i+1) � � E−i d(i) � � E−i+1 � � d(2)� E−1 ρ � � TM � M M M M M is said to be a geometric resolution of F if the following complex is an exact sequence of sheaves: −→Γ(E−i−1) d(i+1) −→ Γ(E−i) d(i) −→ Γ(E−i+1)−→ · · · −→Γ(E−1) ρ −→ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (7) A geometric resolution is said to be minimal at a point x ∈ M if, for all i ≥ 2, the linear maps d(i)|x : E−i|x −→ E−i+1|x vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Recall that it exists in many contexts, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', singular foliation with polynomial generators on Rn or Cn or locally real analytic singular foliation on a compact manifold (see, [LLS20]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (5) An almost graded Lie algebroid over M is the datum of a sequence (E, d = ℓ1, ρ) of vector bundles over M equipped with a graded symmetric degree +1 K-bilinear bracket ℓ2 : Γ(E) ⊙ Γ(E) → Γ(E) such that: (a) ℓ2 satisfies the Leibniz identity with respect to ρ: Γ(E−1) −→ X(M), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', ℓ2(x, fy) = fℓ2(x, y) + ρ(x)[f]y (8) for all x ∈ Γ(E−1), y ∈ Γ(E) and f ∈ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (b) ℓ1 is degree +1-derivation of ℓ2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', for all x ∈ Γ(E−i), y ∈ Γ(E): ℓ1(ℓ2(x, y)) + ℓ2(ℓ1(x), y) + (−1)iℓ2(x, ℓ1(y)) = 0, (c) ρ is a morphism, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', for all x, y ∈ Γ(E−1) ρ(ℓ2(x, y)) = [ρ(x), ρ(y)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The O-linear map ρ is called the anchor map, and ℓ1 the differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (6) A Lie ∞-algebroid over M is the datum of a sequence E = (E−i), 1 ≤ i < ∞ of vector bundles over M together with a structure of Lie ∞-algebra (ℓk)k≥1 on the sheaf of sections of E and a vector bundle morphism, ρ: E−1 → TM, called anchor map such that the k-ary brackets ℓk, k ̸= 2 are O-multilinear and such that ℓ2(e1, fe2) = ρ(e1)[f]e2 + fℓ2(e1, e2) (9) for all e1 ∈ Γ(E−1), e2 ∈ Γ(E•) and f ∈ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The sequence · · ℓ1 � E−2 ℓ1 � E−1 ρ � TM, (10) is a complex called the linear part of the Lie ∞-algebroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (7) The following theorem is important, (see [Lav17, LLS20, LGL22] for more details) : Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation over M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Any geometric resolution of F · · d −→ E−3 d −→ E−2 d −→ E−1 ρ −→ TM (11) comes equipped with a Lie ∞-algebroid structure whose unary bracket is d and whose anchor map is ρ (in particular ρ(Γ(E−1)) = F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Such a Lie ∞-algebroid structure is unique up to homotopy and is called a universal Lie ∞-algebroid of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 6 RUBEN LOUIS In particular, this structure can be truncated to an almost graded Lie algebroid for F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (8) Let (E•, ℓ•, ρ) a universal Lie ∞-algebroid of a singular foliation F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every point x ∈ M, (a) We let H•(F, x) = ⊕i≥1H−i(F, x) be the cohomology of the complex (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The cohomology groups H•(F, x) do not depend on the choice of a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that when the complex (11) is minimal at x, H−i(F, x) ≃ E−i|x for every i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (b) The 1, 2-ary brackets restrict to the graded vector space \uf8eb \uf8ed� i≥2 E−i|x \uf8f6 \uf8f8 ⊕ ker(ρx) and equip the latter with an almost graded Lie ∞-algebra structure as follows : for every k ∈ {1, 2}, {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xk}k := ℓk(s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , sk)|x (12) for all x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xk ∈ ev(E, x) and s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , sk ∈ Γ(E) sections of E such that si(x) = xi with i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The bracket {· , · }2 induces a graded Lie algebra on H•(F, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, the 2-ary bracket {· , ·}2 satisfies the Jacobi identity on H−1(F, x) = ker(ρx) im(d(2) x ), and equips the latter with a Lie algebra structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (9) Let (M, F) be a singular foliation, let Ix := {f ∈ C∞(M) | f(x) = 0} and F(x) := {X ∈ F | X(x) = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The quotient gx = F(x) IxF is a Lie algebra and is called the isotropy Lie algebra of F at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E, ℓ•, ρ) be a universal Lie ∞-algebroid of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider its underlying geometric resolution (E, d, ρ) : · · ℓ1=d(4) −→ E−3 ℓ1=d(3) −→ E−2 ℓ1=d(2) −→ E−1 ρ=d(1) −→ TM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (13) Then, (a) for all x ∈ M, we have H−1(F, x) ≃ gx as Lie algebras;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (b) the subset of regular points of F in M satisfies Mreg,F = {x ∈ M | rk(d(2) x ) = dim(ker ρx)} = {x ∈ M | H−i(F, x) = 0, ∀i ≥ 1}, Mreg,F is open and dense in M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (c) the restriction of the foliation F to Mreg,F is the set of sections of a subbundle of TM, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', is a regular foliation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (d) For every i ≥ 0, the dimension of im � d(i+1)� is locally constant on Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' More- over, if r the dimension of a regular leaf, then im(d(i+1)) is of codimension ri = i−1 � j=1 (−1)j+1rk(E−j) + (−1)i+1r, for i ≥ 1 in E−i or r0 = dim M − r, with E0 := TM;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (e) if (E, d, ρ) is of finite length, then (in the smooth case) all the regular leaves have the same dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 7 In what follows, we assume that a geometric resolution of finite length exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Under these assumptions, all the regular leaves have the same dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Denote by r the common dimension of the regular leaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The blowup procedures In what follows M can be a connected complex or smooth manifold or an irreducible affine or quasi-projective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Firstly, let us explain a general construction on morphisms of vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Blowup of vector bundle morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let E, F be vector bundles over M and F d � �❆ ❆ ❆ ❆ ❆ ❆ ❆ ❆ E �⑥⑥⑥⑥⑥⑥⑥⑥ M a morphism of vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In the smooth case, we assume that d is of constant rank on an open dense subset Mreg,d ⊂ M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', the dimensions of im(dx) or ker(dx) are constant for x ∈ Mreg,d, called the regular part (this is automatically true when M is complex or a quasi- projective variety).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let r be the codimension of im(dx) ⊆ Ex for a point x ∈ Mreg,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that for every x ∈ Mreg,d, im(dx) is a point of the Grassmannian Gr−r(Ex) and ker(dx) is a point of Grrk(F )−r(Fx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We consider the natural section of Gr−r(E) −→ M which is defined on Mreg,d by: σ: Mreg,d −→ Gr−r(E), x �−→ (im(dx), x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (14) Then we define � M := σ(Mreg,d) to be the closure of the image of the section σ in Gr−r(E), together with the projection π: � M −→ M, where π denotes the restriction of Π: Gr−r(E) −→ M to � M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Intuitively, for x ∈ M, π−1(x) = � M ∩ Π−1(x) is the set of all possible limits of the images imdy when y ∈ Mreg,d converges to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' One can make a similar construction with the kernel of d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here is an immediate property of that construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F d −→ E be a vector bundle morphism over M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The projection π: � M → M has the following property: (1) π is proper and surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, for each point x ∈ M, the fiber π−1(x) is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) For every x ∈ M and V ∈ π−1(x), one has im(dx) ⊆ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (3) For every x ∈ Mreg,d, π−1(x) = im(dx) is reduced to a point in Gr−r(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, π−1(Mreg,d) is a manifold 2 and the restriction π: π−1(Mreg,d) −→ Mreg,d is invertible3 in the smooth and holomorphic contexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We prove it in the smooth and complex settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Properness derives from the fact that the projection Π admits compact fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For any x ∈ M, choose U ⊂ M an open neighborhood of x that trivializes E −→ M over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Then, Gr−r(E) ≃ Gr−r(Krk(E)) × U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that, π−1(x) = � V ⊂ Ex ���� ∃ (xn) ∈ MN reg,d, such that, im(dxn) −→ n→+∞ V as xn −→ n→+∞ x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2Manifold is to be understood as quasi-projective when M is quasi-projective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 3Invertible here means: diffeomorphism, in the smooth case;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' bi-holomorphism, in the complex case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 8 RUBEN LOUIS For any sequence (xn) in (Mreg,d ∩ U)N that converges to x, we can extract a sequence (xϕ(n)) such that n �→ im(dxϕ(n)) ∈ Gr−r(Krk(E)) has a limit V , since the Grassmannian manifold Gr−r(Krk(E)) is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, π−1(x) ̸= ∅ and π is onto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves item 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us show item 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let V ∈ π−1(x) and (xn) ∈ (Mreg,d)N such that xn −→ n→+∞ x and im(dxn) −→ n→+∞ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let v ∈ im(dx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We have v = dxu for some u ∈ Fx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Choose a (local) section �u of F through u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By continuity, dxn �u(xn) −→ n→+∞ dxu, hence dxu ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Thus, im(dx) ⊆ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, if x ∈ Mreg,d and V ∈ π−1(x) one has im(dx) = V since dim V = dim(im(dx)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, π−1(Mreg,d) is the image of the map σ on Mreg,d, it is isomorphic/biholomorphic to Mreg,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves item 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ We are now going to apply the constructions above to a sequence of vector bundle morphisms which are all of constant rank on an open dense subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Main constructions and results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us work in the complex or holomorphic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a locally finitely generated O(M)-submodule of X(M), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', every point of M admits an open neighborhood U and a finite number of vector fields X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Xn ∈ X(M) such that F|U = �n k=1 fkXk for fk ∈ O(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We assume that there exists a geometric resolution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', complex of vector bundles (E•, d(•), ρ) of finite length 0 · · · � E−i−1 d(i+1) � � E−i d(i) � � E−i+1 � � d(2)� E−1 ρ=d(1) � � TM � M · · · M M M M M (15) such that ρ(Γ(E−1)) = F and exact as in (7), (see [LLS20] for conditions on existence of geometric resolutions at least locally).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Denote by Mreg,F (as in Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5) the open dense subset such that the fibers of im(d(i)) are of constant rank and im(d(i+1)) = ker(d(i)), for all i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We set E0 := TM by convention and proceed as the following: (a) For every i ≥ 0, let Πi : Gr−ri(E−i) −→ M be the Grassmann bundle of E−i with ri is as in Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider the natural section of Πi on Mreg,F defined by : σi : Mreg,F −→ Gr−ri(E−i), x �−→ � im � d(i+1) x � , x � (16) (b) Let � Mi := σi(Mreg,F) be the closure of the image of σi in Gr−ri(E−i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let πi : � Mi −→ M denote the restriction of Πi to � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We also consider the section σ∞: Mreg,F −→ � x∈M � i≥1 Gr−ri(E−i|x), x �→ (σ1(x), σ2(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , σi(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' ) and define � M∞ := σ∞(Mreg,F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, � M∞ should be understood as the tuples made of elements V1 ∈ Gr−r1(E−1|x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Vi ∈ Gr−ri(E−i|x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' such that there exists (xn) ∈ MN reg,d such that im � d(i+1) xn � −→ n→+∞ Vi as xn −→ n→+∞ x for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is important to notice that the Vi’s are given by the same sequence (xn) ∈ MN reg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The construction also makes sense for M an affine variety in CN, upon replacing TM by TCN|M ≃ M × CN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that in the definition of � M∞ we leave � M0 out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 9 By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2, for each i ≥ 0, the projection πi : � Mi → M is invertible on the open dense subset Mreg,F, it is proper and surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Moreover, for each point x ∈ M and for every i ≥ 0, the fiber π−1 i (x) is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, π−1 ∞ (x) is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' From now on, most of the proofs are delayed to Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' As sets, � Mi, � M∞ do not need to be manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' They can be singular, see Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation on a smooth or complex variety on M ∈ � CN, RN� that admits polynomial generators, then it admits a geometric resolution of finite length and � Mi and � M∞ are quasi-projective varieties for all i ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For F a singular foliation on an affine variety, � Mi is a quasi-projective variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The following assertion follows from the existence of homotopy equivalence between any two geometric resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation on M that admits geometric resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For each i ≥ 1, � Mi does not depend on the choice of a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The same is true for � M∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' To prove Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5, we first establish the following results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (15) be a geometric resolution for F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every x ∈ M, for every i ≥ 1 and V ∈ π−1 i (x) one has, im(d(i+1) x ) ⊆ V ⊆ ker(d(i) x ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (17) In particular, for all x ∈ Mreg,F and i ≥ 1, ker(d(i) x ) = im(d(i+1) x ) = π−1 i (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Fix a geometric resolution (E, d, ρ) of F and a universal Lie ∞-algebroid of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The following are satisfied: (1) For every x ∈ M and V ∈ π−1 1 (x), the 2-ary bracket {· , · }2 on ker ρx restricts to V and the image of V in H−1(F, x) ≃ gx, is a Lie subalgebra of codimension r−dim(Lx), where dim(Lx) is the dimension the leaf through x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) For all x ∈ M, and (V1 ⊂ E−1|x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Vk ⊂ E−k|x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=') ∈ π−1 ∞ (x) we have {Vi, Vj}2 ⊂ Vi+j−1 for every i, j ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The corollary below is a direct consequence of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, and is another manner to state that Mi does not depend on the geometric resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' There are inclusions � Mi ֒→ � x∈M Gr rk � d(i) x � −ri(H−i(F, x)) and � M∞ ֒→ � x∈M � i≥1 Gr rk � d(i) x � −ri(H−i(F, x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (18) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let x ∈ M and i ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, elements V ∈ π−1 i (x) satisfy im(d(i+1) x ) ⊆ V ⊆ ker(d(i) x ), they correspond injectively to a (unique) sub-vector space of codimension ri−rk(d(i)) in H−i(F, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, this implies the existence of an inclusion π−1 i (x) ֒→ Grri−rk(d(i))(H−i(F, x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, � M1 ֒→ ⊔x∈MGrLiedim(Lx)−r(gx), where gx is the isotropy Lie algebra of the singular foliation F at x and Lx is the leaf that passes through x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, GrLier−dim(Lx)(gx) denotes the Grassmannian of Lie subalgebras of gx of codimension r − dim(Lx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 10 RUBEN LOUIS Assume now that F is a singular foliation and that Equation (15) is a geometric resolution for F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let i ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We say that X ∈ F lifts to � Mi ⊂ Gr−ri(E−i), or � M∞, if there exists a vector field �X ∈ X(Gr−ri(E−i)) or X �� x∈M � i≥1 Gr−ri(E−i|x) � , projectable to X and tangent to Mi in the sense of Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1 (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We denote by �Xi or �X∞ the restriction of �X to Mi or �X∞ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We say that a F lifts to � Mi if every vector field X ∈ F lifts to � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' �Xi on π−1 i (Mreg,F) is tangent in the usual sense to the submanifold and projects to X through πi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, if a lift exists, its restriction to π−1(Mreg,F)) is unique, because πi : π−1 i (Mreg,F) ∼ −→ Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since the other points of � Mi are limits of elements of π−1 i (Mreg,F), thus its restriction to � Mi is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation on M that admits geometric resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every i ≥ 1, the following items hold: (1) Every vector field X ∈ F lifts to a vector field �Xi on � Mi, (2) the map X ∈ F −→ �X| � Mi does not depend on any choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, it is a Lie algebra morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (3) The module �Fi over functions of � Mi generated by the �X′ is for X ∈ F is a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The same holds for � M∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For each i ≥ 1, �Fi is called the blowup of F on � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here is a remarkable fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation on M that admits geometric resolution (E, d, ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' �F1 is projective, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', it is the image of a Lie algebroid over � M1 whose anchor map is injective on an open dense subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14, we do not need the existence of geometric resolutions of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' An almost Lie algebroid of F is enough, the latter always exists [LLS20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of the main results In this section, we prove Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4, Proposition2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='7 and Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof (of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since M = RN or CN and F is generated by polynomial vector fields, we can choose a polynomial geometric resolution (E, d, ρ) of F by trivial vector bundles, [LLS20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here by polynomial we mean the d and ρ are given by polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , ed resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' e′ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , e′ d′ be a basis by constant sections of E−i resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' E−i+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' One has, d(i)(el) = d′ � k=1 f k l e′ k (19) for some polynomial functions f k l on KN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Without any lost of generality, let us describe � Mi using local coordinates on Gr−ri(E−i) consider for example the first standard coordinates chart U1 for the Grassmannian Gr−ri(E−i), (see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Denote by x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xN) the coordinates NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 11 on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let m ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For W ∈ U1∩Gr−ri(E−i|m) and (apq(m)) ∈ Md,d−ri(K) be the homogeneous coordinates of W, let us define the sections �wq(x) := eq(x) + ri � k=1 akq(x)ek(x), q = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d − ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (20) By construction, the �wq(x)’s, evaluated at m, form a basis for W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that we have, d(i)( �wq)(x) = d′ � k=1 � f k q (x) + ri � s=1 asqf k s (x) � e′ k(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, W ⊆ ker d(i) m if and only if f k q (m) + ri � s=1 asq(m)f k s (m) = 0, q = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d − ri k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (21) This defines an affine variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' As a result, � Mi is given in local coordinates U1 by elements that satisfy (1) Equation (21) (2) and that are limits of solutions of (21) in nearby regular points, elements which are unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, it is, on the affine variety, the irreducible components of (21) that projects onto M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This concludes the proof in the smooth or complex cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For a quasi-projective variety, the proof is similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' When F is generated by polynomial vector fields, π−1 i (Mreg,F) is locally defined by polynomial equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof (of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We know by Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2(2) that, for every x ∈ M and V ∈ π−1 i (x), one has im(d(i+1) x ) ⊆ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Now, for any element v ∈ V , there exists a sequence vn ∈ ker(d(i) xn) = im(d(i+1) xn ), n ∈ N that converges to v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, d(i) xn(vn) = 0 for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, by continuity, one has v ∈ ker(d(i) x ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, V ⊆ ker d(i) x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For all i ≥ 1, choose a local frame e(i) 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , e(i) qi , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' e(i) qi+ri of E−i on a neighborhood U of x such that e(i) 1 (x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , e(i) qi (x) is an orthogonal basis for Vi for an arbitrary Hermitian structure on E−i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For i, j ≥ 1, let (cij,s kl ) ∈ O(U) be a family of functions over U such that for all k ≤ qi and l ≤ qj, ℓ2 � e(i) k , e(j) l � = � s≥1 cij,s kl e(i+j−1) s ∈ ΓU(E−i−j+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, � e(i) k (x), e(j) l (x) � 2 = � s≥1 cij,s kl (x)e(i+j−1) s (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (22) The bracket in Equation 22 is well-defined even for i = 1 or j = 1, although only the 2-ary bracket of local sections is defined in such cases, because even if i or j = 1, we are taking the brackets of elements in ker ρx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let u ∈ Vi, v ∈ Vj with u = qi � s=1 αse(i) s (x), and v = qj � s=1 βse(j) s (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 12 RUBEN LOUIS Let (xn) ∈ MN reg,F be a sequence that converges to x such that im(d(i+1) xn ) −→ n→+∞ Vi and im(d(j+1) xn ) −→ n→+∞ Vj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' There exist sequences un = qi+ri � k=1 αk ne(i) k (xn) −→ n→+∞ u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' vn = qj+rj � l=1 βl ne(j) l (xn) −→ n→+∞ v with un ∈ im(d(i+1) xn ) = ker d(i) xn and vn ∈ im(d(j+1) xn ) = ker d(j) xn, for all n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, the sequences (αk n), (βl n) ∈ KN satisfy αk n −→ n→+∞ αk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' βl n −→ n→+∞ βl with αk = βl = 0 for k ≥ qi + 1, l ≥ qj + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, for every n ∈ N we have � αk nβl ncij,s kl (xn)e(i+j−1) s (xn) = {un, vn}2 ∈ im(d(i+j) xn ) = ker d(i+j−1) xn ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (23) We have used in (23), the fact that {du1, du2}2 ∈ im(d), for all u1, u2 ∈ E≤−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since � αk nβs ncij,s kl (xn)e(i+j+1) s (xn) −→ n→+∞ � αkβlcij,s kl (x)e(i+j−1) s (x) ∈ E−i−j+1|x = {u, v}2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (24) As a result, {u, v}2 ∈ Vi+j−1 ∈ π−1 i−j−1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, for every point (V1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Vi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Vj, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' ) ∈ π−1 ∞ (x) one has {Vi, Vj}2 ⊆ Vi+j−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves item 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By taking i = j = 1 and Vi = Vj = V ∈ π−1 1 (x), Equation (24) means that {u, v}2 ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves item 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In this section, we give a proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='8 (whose proof is independent of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5), for every i ≥ 1, we have an inclusion � Mi ֒→ � x∈M Gr rk � d(i) x � −ri(H−i(F, x)), where ri is defined as in Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We now need to show this inclusion is canonical, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', independent of the choice of a geometric resolution (E, d, ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Convention 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For (E, d, ρ) a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Denote by � ME i := � Mi constructed out of (E, d, ρ) and � ME′ i := � Mi constructed out of (E′, d′, ρ′) for i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, for x ∈ M and V ∈ π−1 i (x), we denote by V the image of V in Gr rk � d(i) x � −ri(H−i(F, x)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let x ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider a minimal geometric resolution (E′, d′, ρ′) of F at x (see Definition (4)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For (V, x) ∈ � ME 1 and (V ′, x) ∈ � ME′ 1 one has that dim V ′ ≤ dim V , because rk(E′ −1) ≤ rk(E−1) by minimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, V, V ′ do not necessarily belong to the same Grass- mannian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' However, dim V = dim V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We prove the latter in the next Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E, d, ρ) and (E′, d′, ρ′) be geometric resolutions of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For all i ≥ 1, and for all (V, x) ∈ � ME i and (V ′, x) ∈ � ME′ i , one has, dim V = dim V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' If x ∈ M is a regular point, then V = V ′ = {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Thus, the equality holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let x ∈ M be a singular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We prove it only for i = 1, 2, since i = 1 is a special case and for i ≥ 3 the proof uses a similar argument as for the one of i = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The key point in the latter is, for every x ∈ M, the restriction of the complexes (E, d, ρ) and (E′, d′, ρ′) at x are quasi-isomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This implies that the codimension of im � d(i+1) x � inside ker d(i) x , resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' im � d′ x (i+1)� inside ker d′ x (i), is invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 13 Let (V, x) ∈ � ME 1 and (V ′, x) ∈ � ME′ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We have dim V = dim V − dim(im (d(2) x )) = dim V − (dim ker ρx − dim ker ρ′ x + dim(im (d′ x (2))) = dim V − rk(E−1) + rk(E′ −1) − dim(im (d′ x (2))) = dim V ′ − dim(im (d′ x (2))) = dim V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We have used the fact the cohomology groups at degree −1 of both complexes are isomorphic and the Rank–nullity theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For i = 2, let (V, x) ∈ � ME 2 and (V ′, x) ∈ � ME′ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that dim V = rk(E−2) − rk(E−1) + r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We have a similar formula for dim V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By direct computation we find that dim V = dim V − dim(im d(3) x ) = dim V − rk(E−2) + rk(E′ −2) + dim(im (d(2) x )) − dim(im (d′ x (2))) − dim(im (d′ x (3))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (25) We have used the fact the cohomology groups at degree −2 of both complexes are isomorphic and the Rank–nullity theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' But dim(im (d(2) x )) = rk(E−1) − dim(im(ρx)) − dim W, where W is such that dim(im (d(2) x )) ⊕ W = ker ρx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A similar formula holds for dim(im (d′ x (2))) by adding ′ everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Substituting them into the Equation (25) we obtain dim V = dim V ′ + dim W ′ − dim W = dim V ′, since dim W ′ = dim W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Proof of (Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For simplicity, we prove it for i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For i ≥ 1, the same arguments hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E, d, ρ) and (E′, d′, ρ′) be geometric resolutions of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' There exists chain morphisms ϕ: E −→ E′ and ψ: E′ −→ E whose compositions are homotopic to identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, ϕ defines an isomorphism ϕ at the level of cohomology, the latter is canonical (see [LLS20], Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' All we need to show is ϕ sends � ME 1 to � ME′ 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The strategy is to show that for x ∈ M, the fiber � ME 1 ∩Grr−dim(Lx)(E−1|x) over x is independent of any choices of minimal geometric resolutions at x, then deduce the result for every point y ∈ M, and for any two arbitrary geometric resolutions (E, d, ρ) and (E”, d”, ρ”) of F by introducing a minimal geometric resolution (E′, d′, ρ′) at y of F between them, then compose the underlying quasi-isomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let x ∈ � ME 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Like we said, let us assume that (E′, d′, ρ′) is minimal at x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', d′ x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , ek be local sections around x of E−2 such that span � d(2)e1|x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' d(2)ek|x � = im(d(2) x ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' There is a neighborhood Ux of x such that Fy = span � d(2)e1|y, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' d(2)ek|y � ⊆ im(d(2) y ) is of constant rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' These sections define a vector bundle F on Ux and Fx = im(d(2) x ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Likewise, 14 RUBEN LOUIS one consider the vector bundle F ′ ⊆ im(d′(2)) on a neighborhood of x such that ϕy(Fy) ⊆ F ′ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, ϕ induces a map im(d(2) y ) Fy −→ im(d′(2) y ) F ′y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The latter is injective, because d′ x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since ϕy � im(d(2) y ) Fy � ֒→ im(d′(2) y ) F ′y , then ϕy � im(d(2) y ) Fy � converges to W ⊆ im(d′(2) y ) F ′y when y ∈ Mreg,F tends to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consequently, for (V, x), (V ′, x) such that im(d(2) y ) and im(d′(2) y ) converges to V and V ′ respectively, one has, ϕx(V ) ⊆ V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, ϕx(V ) = V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, also ψx(V ′) = V since ψx and ϕx is are the inverse of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12 follows from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6 which itself requires Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We prove those in the smooth context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We recall that for p: E −→ M a vector bundle over M, a linear vector field on E is a pair (Z, X) ∈ X(E) × X(M) such that E Z � p � TE dp � M X � TM is a morphism of vector bundles (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='g [Mac05], p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 110).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Equivalently, (1) Z[C∞ lin(E)] ⊂ C∞ lin(E) and Z[p∗C∞(M)] ⊂ p∗C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' or (2) The flow of Z on E are (local) vector bundle morphisms E −→ E over the flow of X on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' where C∞ lin(E) is the subalgebra of smooth functions on E which are fiberwise linear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The latter is canonically isomorphic to Γ(E∗) as C∞(M)-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice in particular that, a linear vector field is p-projectable to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A linear vector field on E −→ M induces a vector field on Π: Gr−r(E) −→ M that is Π-projectable on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (Z, X) be a linear vector field on E −→ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Its flow φZ t : E −→ E is a vector bundle isomorphism whenever it is defined, induces a diffeomorphism Gr−r(E) so that it induces a map Gr−r(E) −→ Gr−r(E), V �→ φZ t (V ) that we still denote by φZ t .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Define �Z ∈ X(Gr−r(E)) for (V, x) ∈ Gr−r(E) by �Z(V ) := d dt |t=0 c(t) ∈ T(V,x)Gr−r(E) (26) where c(t) = � φZ t |x(V ), φX t (x) � for t in some interval I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, �Z is Π-projectable to X, by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every X ∈ F, there is a linear vector field (Zi, X) on the vector bundle pi : E−i −→ M or on p0 : E0 := TM −→ M, pi-projectable to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Their flows are compatible with the complex of vector bundles, · · ℓ1=d(4) −→ E−3 ℓ1=d(3) −→ E−2 ℓ1=d(2) −→ E−1 ρ=d(1) −→ TM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (27) NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 15 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', the diagram below commutes for all i ≥ 1, M φX t � � ①①①①①①①①① M � ①①①①①①①①① E−i φZi t � d(i+1) � E−i d(i+1) � M φX t � � ①①①①①①①①① M � ①①①①①①①①① E−i+1 φZi−1 t � E−i+1 (28) and induces a vector field �Zi on Gr−ri(E−i) such that (1) �Zi is tangent to � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) �Zi projects onto X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' where φZi t or φX t denotes the flow of Zi or X, when defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E, ℓ1, ℓ2, ρ) be an almost graded Lie algebroid of F, see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let X ∈ F and i ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For i ̸= 0, there exists a section υ of the vector bundle pi : E−i → M such that ρ(υ) = X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider the linear vector field Zi ∈ X(E−i) defined as follows Zi[p∗ i f] : = p∗ i (X[f]), ∀ f ∈ C∞(M), (29) Zi e[α] : = X[⟨α, e⟩] − ⟨α, ℓ2(υ, e)⟩, ∀ α ∈ Γ(E∗ −i), e ∈ Γ(E−i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (30) For i = 0, one replaces ℓ2(υ, e) in (30) by [X, Y ] with Y ∈ Γ(E0) = X(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that Zi depends on the choice of the almost graded Lie algebroid bracket ℓ2 and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The items 1, 2, 3 and 4 hold (see [LGLR22], Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 61).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5, the linear vector field (Zi, X) induces a vector field �Zi on the Grassmanian bundle Gr−ri(E−i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us show item 1, φZi t preserves � Mi: to see this take (V, x) ∈ � Mi, let xn −→ n→+∞ x be such that im d(i+1) xn −→ n→+∞ V with (xn) ⊂ Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since, d(i+1)◦φZi t = φZi−1 t d(i+1) for i ≥ 0, one has φZi t |xn � im d(i+1) xn � = im d(i+1) φX t (xn), for every n ∈ N0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Thus, φZi t |x(V ) = lim n→+∞ φZi t |xn � im d(i+1) xn � = lim n→+∞ � im d(i+1) φX t (xn) � ∈ π−1 � φX t (x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By consequence, �Xi is tangent to � Mi, by Equation (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Proof (of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, every vector field X ∈ F extends to a linear field Xi ∈ X(Gr−ri(E−i)) which is tangent to � Mi in the sense of Definition 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves item 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Furthermore, the restriction �Xi of Xi to � Mi is unique, since πi|π−1 i (Mreg,F) : π−1 i (Mreg,F) −→ Mreg,F is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, the map X ∈ F −→ �X| � Mi does not depend on any choices and is a Lie algebra morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The module which is generated by the �Xi is closed under Lie bracket by item 2 of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This ends the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Proof (of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E, d, ρ) be a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Fix a universal Lie ∞- algebroid of F on (E, d, ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let τ E−1 and AE−1 be the tautological subbundle and tautological quotient bundle on Gr−r(E−1), that fit into the exact sequence 0 −→ τ E−1 −→ Π∗E−1 −→ AE−1 −→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (31) 16 RUBEN LOUIS with AE−1 ≃ Π∗E−1/τ E−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, rk(AE−1) is the dimension of the regular leaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' One has (1) �F1 the image of an almost Lie algebroid on Π∗E−1| � M1 via the anchor map �ρ: Γ(Π∗E−1)| � M1 −→ X( � M1) definded by π∗ 1e �−→ � ρ(e) ∈ �F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (2) The tautological subbundle τ E−1 lies in the kernel of the anchor map: indeed, the fiber of τ E−1 over a point (V, x) ∈ � M1 is equal to V by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, the latter is included in ker ρx with equality if x ∈ Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, the anchor map �ρ goes to quotient 0 � τ E−1 � Π∗E−1 � �ρ � AE−1 � �✈ ✈ ✈ ✈ ✈ 0 T � M1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (32) and makes �F1 the image of an almost Lie algebroid on AE−1| � M1 whose anchor is injective on the open dense subset Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Thus, AE−1| � M1 is a Lie algebroid with anchor, injective on π−1 1 (Mreg,F), whose image is �F1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that in the proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='14 we do not need the existence of a geometric resolution, we only make use of the anchor map and the bracket of an almost Lie algebroid of F, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', we only need E−1 and ρ: E−1 −→ TM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Examples Let us start with some examples where our constructions give nothing new, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', � Mi ≃ M or � M∞ ≃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' If F is a projective singular foliation, then � Mi ≃ M, for all i ≥ 1 and i = +∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This comes from the fact that there exists a vector bundle E−1 −→ M such that Γ(E−1) ≃ F by Serre-Swan theorem [Swa62, Mor13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This isomorphism is given by a vector bundle morphism, E−1 ρ→ TM which is injective on an open dense subset Mreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' As a consequence, E−1 ρ→ TM is a geometric resolution of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, � Mi ≃ M since E−i = 0 for i ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, if r is the dimension of the regular leaves of F, then r = rk(E−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence Gr−r(E−1) ≃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, � M1 ≃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' If the regular leaves of F are open, then � M0 ≃ M, since Gr−0(TM) ≃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' If there exists a geometrical resolution (E, d, ρ) of length k, then � Mi ≃ M for all i ≥ k+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that one also has � Mk ≃ M since the last differential map d(k): E−k −→ E−k+1 is injective on an open dense subset so that the considered Grassmann bundle is Gr−rk(E−k)(E−k) ≃ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In contrast with Examples 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3, we construct two related examples where our construction is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider the projective singular foliation F generated by the Euler vector field −→ E = �N i=1 xi ∂ ∂xi on M = CN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, Mreg,F = CN \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is easily checked that � M0 is the closure of the graph {([x1 : · · · : xN], x) ∈ PN−1(C) × CN | x ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The latter is the blowup of CN at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This is an example where F is projective and � M0 ̸= M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be the singular foliation of all vector fields vanishing at the origin 0 ∈ M = CN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, Mreg,F = CN \\ {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us compute � M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' To do this, we only need E−1 the NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 17 degree −1 of a geometric resolution (E, d, ρ) of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' See Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='34 of [LLS20] for a complete description of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here E−1 ≃ MN(C)×CN and the anchor map ρ is Eij �→ xi ∂ ∂xj , where MN(C) is the vector space of N ×N matrix with coefficient in C and (Eij)i,j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=',N its canonical basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A direct computation for every x ̸= 0 tells that ker ρx is the subspace of matrices M ∈ MN(C) such that Mx = 0, where x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xN) is seen as a column vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Equivalently, this kernel can be described as N copies of [x1 : · · · : xN]⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, � M1 is the blowup of CN at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This is an example of a singular foliation whose regular leaves are open, but such that � M1 ̸= M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us study some examples related to the notion of an affine variety in Cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let Ad be an affine space over K with a set of coordinates x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Recall that an affine variety W is a subset of the affine space Ad given by the zero locus Z(IW) of a radical ideal IW ⊆ K[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd] and equipped with the induced Zariski topology of Ad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The coordinate ring of W is the quotient ring OW = K[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd]/IW .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The Lie algebra X(W) of vector fields on W are derivations of OW .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We denote by Wreg the set of regular points of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every x ∈ Ad we denote by mx the maximal ideal of vanishing polynomials at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' See, for instance, [Har77] for more details on these notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let M = Cd and ϕ ∈ C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider the singular foliation Fϕ = {X ∈ X(Cd) | X[ϕ] = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In this case, Mreg,F = {x ∈ Cd, |, dxϕ ̸= 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every y ∈ Cd, (TyFϕ)⊥ = ⟨∇yϕ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For a convergent sequence yn −→ n→+∞ y with yn ∈ Wreg,F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The sequence im(ρyn) = TynF converges if and only if ∇ynϕ converges in Gr−(d−1)(Cd), that is, � ∂ϕ ∂x1 (yn): · · · : ∂ϕ ∂xd (yn) � converges in the projective space Pd−1(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, � M0 is the closure of the image of the map, y �→ (y, � ∂ϕ ∂x1(y): · · · : ∂ϕ ∂xd (y) � ) which is the blow up of Cd along the singular locus of ϕ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', along dϕ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (Nash modification).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let M = W be an affine irreducible affine variety of dimension r embedded in Cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let Σ be its singular locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F = Der(OW ) the singular foliation of vector fields on W tangent to Σ, where IΣ stands for the polynomial functions that vanish on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, Wreg,F = Wreg = W \\ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider a geometric resolution (E•, d, ρ) of F by trivial vector bundles (which exists because OW is Noetherian, see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='3 in [LLS20]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us show that for every x ∈ W \\ Σ, im(ρx) = TxF = TxW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is clear that im(ρx) ⊆ TxW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Conversely, it is a classical property that x ∈ W is a regular point if and only if there exists “local coordinates” y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , yd ∈ Ox such that W is of the form y1 = · · · = yk = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', the localization of IW is generated by these variables, where Ox denotes the local ring at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, the tangent space of W at x is the vector space, span{ ∂ ∂yi |m, i ≥ k + 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, for v ∈ TxW the local vector field X = dim W � i=1 vi ∂ ∂yk+i maps Ox to Ox, in particular it maps O to Ox and we have X[IW ] ⊂ (IW )mx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Therefore, for every, i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d} there exists a polynomial function gi that does not vanish at x such that giY [xi] ∈ C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By construction, the vector field ˆX = g1···gr g1(x)···gr(x)X is tangent to W, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', ˆX[IW ] ⊂ IW, and satisfies ˆX(x) = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 18 RUBEN LOUIS The map π0 : W \\ Σ −→ Gr−(d−r)(Cd) x �−→ im(ρx) = TxW is the so-called Gauss map [LU81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The Zariski closure � W0 of the image of such a map is by definition the classical Nash blow-up of W along its singular locus Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (Monoidal transformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let W = Cd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let C = Z(IC) ⊂ Cd be a subvariety of Cd defined by the ideal IC generated by f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , fk ∈ OW .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F = ICX(W) the singular foliation of vector fields vanishing along C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Hilbert’s Syzygy theorem [Eis04], there exists a free resolution of finite length for the ideal IC of polynomial functions vanishing on C of the form · · −→ K−2 ∂ −→ K−1 ∂ −→ IC −→ 0 (33) Since X(W) is a flat OW = C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd]-module (in fact X(W) ≃ Od W is a free module), the sequence · · ∂⊗id � K−2 ⊗OW X(W) ∂⊗id � K−1 ⊗OW X(W) ρ � F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (34) is a free resolution K[W] by finitely generated K[W]-modules of the singular foliation F = ICX(W), where for (µ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , µk) a set of generators of K−1 the map given by, ρ(µi⊗ ∂ ∂yj ) = fi ∂ ∂yj , for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , k and j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1 in [LGL22], F admits a universal Lie ∞- algebroid structure over the complex (34) whose unary bracket is ℓ1 = ∂ ⊗ id and whose anchor is ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here, Wreg,F = W \\ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' A direct computation shows that, for every x ∈ W \\ C, ker ρx is equal to d copies of [f1(x) : · · · : fk(x)]⊥, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', ker ρx = � [f1(x) : · · · : fk(x)]⊥�d , where [f1(x) : · · · : fk(x)] is a well-defined straight line of Kk generated by the vector (f1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , fk(x)) ∈ Kk seen as a point of the projective space Pk−1(K) = Gr−(k−1)(Ck).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' One has, π−1 1 (x) = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 � [f1(x) : · · · : fk(x)]⊥�d , for x ∈ W \\ C, V d ∈ � Gr−1(Ck) �d such that ∃ (xn) ∈ W N reg,F, [f1(xn) : · · · : fk(xn)]⊥ −→ n→+∞ V, with V ∈ Gr−1(Ck) as xn −→ n→+∞ x, for x ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The d components converge if and only if one of them converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since [f1(xn) : · · · : fk(xn)]⊥ converges in Gr−1(Kk) if and only if the straight line [f1(xn) : · · · : fk(xn)] converges in Pk−1(K), � W1 corresponds to the usual monoidal transformation of W with center C (see, for instance [Hau14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, � W1 does not depend, up to isomorphism over W, on the choice of the generators f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , fk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' When f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , fk form a regular sequence, (33) can be chosen to be the Koszul complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Then for each i ≥ 1, � Wi is again the blowup of Cd along C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, � Wi = � W∞ is the blowup of W = Cd along C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us prove it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The proof is similar for every i ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us show it for i = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since (34) is given by E−i = �i M⊗X(Cd), where M is a C[x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd]-module generated by some degree −1 symbols µ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , µk and the differential map is defined by: for every i ≥ 1, j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d and 1 ≤ j1 < · · · < ji ≤ k, d(i)(µj1 ∧ · · · ∧ µji ⊗ ∂ ∂xj ) = i � l=1 (−1)l+1fjlµj1 ∧ · · · ∧ � µjl ∧ · · · ∧ µji ⊗ ∂ ∂xj , NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 19 here the hat �· means the term is omitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The computations of � Mi are similar for all i ∈ N0, let us compute � M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (gj pq) ∈ C[x1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , xd] with j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d and p, q = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , k such that d(2) \uf8eb \uf8ed� p,q,j gj p,qµp ∧ µq ⊗ ∂ ∂xj \uf8f6 \uf8f8 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This implies that 0 = � p,q,j gj p,q(fpµq − fqµp) ⊗ ∂ ∂xj = � q,j �� p gj p,qfp � µq ⊗ ∂ ∂xj − � p,j �� q gj p,qfq � µp ⊗ ∂ ∂xj .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For x ∈ Wreg,F, one finds that for every (p, j) and (q, j) that (gj 1,q(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , gj k,q(x)), (gj p,1(x), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , gj p,k(x)) ∈ [f1(x) : · · · : fk(x)]⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' This proves the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Here is an example related to Poisson manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (M, P) a smooth or holomorphic Poisson manifold with P ∈ Γ(∧2TM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Consider the singular foliation generated by the Hamiltonian vector fields associated to P, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', F = P ♯(Γ(T ∗M)), where P ♯ : T ∗M −→ TM, α �→ P(α, · ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Assume that a geometric resolution exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='6, every Hamiltonian vector field lifts to a vector field tangent to � Mi, i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is natural to ask whether the bivector field P lifts to � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Assume that � Mi is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since for every i ≥ 1, π−1 i (Mreg,F) −→ Mreg,F is invertible, the restriction P|U lifts to a Poisson bivector field on π−1 i (Mreg,F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' However, it does not lift to � Mi in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Indeed, consider the Poisson manifold M = so∗(3) ≃ R3 with P = x ∂ ∂y ∧ ∂ ∂z + y ∂ ∂z ∧ ∂ ∂x + z ∂ ∂x ∧ ∂ ∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (35) Here F is generated by the vector fields P ♯(dx) = z ∂ ∂y − y ∂ ∂z, P ♯(dy) = x ∂ ∂z − z ∂ ∂x, P ♯(dz) = y ∂ ∂x − x ∂ ∂y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us compute � M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Given a point m ∈ Mreg,F = R3 \\ {0}, we find that ker P ♯|m = � (a, b, c) ∈ R3 | (a, b, c) ∈ [x(m) : y(m) : z(m)] ∈ P2(R) � = [x(m) : y(m) : z(m)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Hence, � M1 is the usual blowup B0(R3) of R3 at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The bivector field P does not lift to � M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Recall that the blowup space of R3 at the origin B0(R3) ⊂ P2(R) × R3 is covered by three charts given by x ̸= 0, y ̸= 0 and z ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let us look at the x-chart where the projection π1 becomes (x, y, z) �→ (x, xy, xz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In this chart P pulls back to y ∂ ∂z ∧ ∂ ∂x + z ∂ ∂x ∧ ∂ ∂y + 1 x(1 + y2 + z2) ∂ ∂y ∧ ∂ ∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (36) For x = 0 Equation (36) is not defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In conclusion, the Hamiltonian vector fields of the Poisson structure P in (35) lift to � M1, but the bivector field P does not lift to � M1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let (E−1, [· , ·] , ρ) be a smooth or holomorphic Lie algebroid over a manifold M and denote by F = ρ(Γ(E−1)) the induced singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Assume there exists geometric resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The Lie algebroid E−1 acts on the spaces � Mi for all i ∈ N0 also on � M∞, in a way that the following X( � M1) � Γ(E−1) ρ �✉ ✉ ✉ ✉ ✉ ρ � X(M) (37) 20 RUBEN LOUIS is a commutative diagram of Lie algebra morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In addition, for each i ∈ N0, �Fi is the image of a Lie algebroid on � Mi, namely the pull-back to � Mi of the Lie Algebroid E−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In particular, if F is given by a Lie algebra action of a Lie algebra g on M, then �Fi is given by an action of g on � Mi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' In the following example, we show that our � M1 is the blowup construction blup(F) given by Mohsen in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2 of [Moh21] Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Let F be a singular foliation that admits a geometrical resolution (E, d, ρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' For every x ∈ M, blup(F)x is constructed out of minimal generators X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , Xd of F in a neighborhood of x as follows: for y ∈ Mreg,F, let φy be the surjective linear map defined by φy : F IxF −→ TyF, φy([Xi]x) = Xi(y), for all i ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d}, (38) where TyF is the image of the evaluation map ey : F −→ TyM at y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' By definition, blup(F)x is made of subspaces V ⊆ F IxF such that there exists a sequence xn ∈ Mreg,F such that xn −→ x, φ−1 xn (0) −→ V ∈ Gr−r � F IxF � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' (39) We claim that for every x ∈ M, blup(F)x ≃ π−1 1 (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Indeed, we can assume that (E, d, ρ) is a minimal geometric resolution at x such that ρ(ei) = Xi for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' , d, where (ei)i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=',d is a local frame of E−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Since Γ(E−1) Ix′Γ(E−1) ≃ E−1|x′ for all x′ ∈ M, the anchor map defines an isomorphism ρx : E−1|x −→ F IxF such that the diagram E−1|x ≃ ρx � ≃ κy � F IxF φy � E−1|y ρy � TyF (40) commutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Conclusion Let us conclude this paper with an open question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Can we desingularize a singular affine variety W by applying the constructions above to the singular foliation F = X(W) of vector fields tangent to W?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' We should then understand � W0 as the Nash modification of W [LU81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The meaning of � W1 when F is the vector fields that vanish along a subvariety, is the monoidal transformation of W along of that subvariety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' �F1 is projective, and is included into the vector fields tangent to � W1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' It is logical to apply the construction again to � W1 or apply it to a sub- singular foliation of F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Notice that until now we have used the anchor map, the unary bracket and the 2-ary bracket of a universal Lie-∞-algebroid, we would like to go further to understand, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', the role of the 3-ary bracket in this procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' I would like to thank C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Laurent-Gengoux, my PhD supervisor, for supporting me in writing this article and directing me to such questions that are originated from Claire Debord and Georges Skandalis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Also, I thank the management of the University of Lorraine for having supported me financially through an ATER position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' NASH RESOLUTIONS OF SINGULAR FOLIATIONS WITH A VIEW TOWARDS AFFINE VARIETIES 21 References [AS09] Iakovos Androulidakis and Georges Skandalis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The holonomy groupoid of a singu- lar foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Journal für die reine und angewandte Mathematik, 2009(626):1–37, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='5167/uzh-23589.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [AZ14] Iakovos Androulidakis and Marco Zambon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Holonomy transformations for singu- lar foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Advances in Mathematics (New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1965), 256:348–397, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='aim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Cer79] Dominique Cerveau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Distributions involutives singulières.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Fourier (Grenoble), 29(3):xii, 261–294, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' http://archive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='numdam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/article/AIF_1979__29_3_261_0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Deb01] Claire Debord.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Holonomy Groupoids of Singular Foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Differential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', 58(3):467–500, 07 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='4310/jdg/1090348356.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Eis04] David Eisenbud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Springer New York, New York, NY, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [FGP94] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Ferrer, MI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Garćia, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Puerta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Differentiable families of subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Linear Algebra and its Applications, 199:229–252, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Special Issue Honoring Ingram Olkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [GY18] Alfonso Garmendia and Ori Yudilevich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' On the inner automorphisms of a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Mathe- matische Zeitschrift, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Har77] Robin Hartshorne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Algebraic Geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Graduate Texts in Mathematics, 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Springer New York, New York, NY, 1st ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' edition, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Hau14] Herwig Hauser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Blowups and Resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/abs/1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Lav17] Sylvain Lavau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lie ∞-algebroids and singular foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Ph-D 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/abs/1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='07404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [LGL22] Camille Laurent-Gengoux and Ruben Louis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lie-Rinehart algebras ≃ acyclic Lie ∞-algebroids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Journal of Algebra, 594:1–53, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='jalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [LGLR22] Camille Laurent-Gengoux, Ruben Louis, and Leonid Ryvkin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Geometry of singular folia- tions: a draft of an introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' CRM Barcelona, Poisson geometry summer school, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='crm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='cat/wp-content/uploads/2022/07/Singular-Foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [LLS20] Camille Laurent-Gengoux, Sylvain Lavau, and Thomas Strobl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' The universal Lie ∞-algebroid of a singular foliation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Doc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=', 25:1571–1652, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [LU81] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lê and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Urabe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Geometry of Tangents on Singular Spaces and Chern Classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Kyoto University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Department of Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Lectures in mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Kinokuniya Company, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Mac05] Kirill C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Mackenzie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' General theory of Lie groupoids and Lie algebroids / Kirill C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Mackenzie,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' London Mathematical Society lecture note series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Cambridge University press, Cambridge, C 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Moh21] Omar Mohsen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Blow-up groupoid of singular foliations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/abs/2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='05201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Mor13] Archana S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Morye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Note on the Serre-Swan theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Mathematische Nachrichten, 286(2-3):272–278, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [MP82] D Motreanu and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='H Pavel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Quasi-tangent vectors in flow-invariance and optimization problems on banach manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Journal of Mathematical Analysis and Applications, 88(1):116–132, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' [Swa62] Richard G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Swan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Vector Bundles and Projective modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Transactions of the American Mathematical Society, 105(2):264–277, 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content='1090/S0002-9947-1962-0143225-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} +page_content=' Université de Lorraine, CNRS, IECL, F-57000 Metz, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RdFAT4oBgHgl3EQf0x7h/content/2301.08706v1.pdf'} diff --git a/StE5T4oBgHgl3EQfAA5y/content/tmp_files/2301.05375v1.pdf.txt b/StE5T4oBgHgl3EQfAA5y/content/tmp_files/2301.05375v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..197b7271456e474bf22bff9f092f5739f0c36aa5 --- /dev/null +++ b/StE5T4oBgHgl3EQfAA5y/content/tmp_files/2301.05375v1.pdf.txt @@ -0,0 +1,1067 @@ +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A +SURFACE +LEI CHEN AND BENA TSHISHIKU +Abstract. In this paper, we study the algebraic structure of mapping class group +Mod(X) of 3-manifolds X that fiber as a circle bundle over a surface S1 → X → Sg. +There is an exact sequence 1 → H1(Sg) → Mod(X) → Mod(Sg) → 1. We relate this to +the Birman exact sequence and determine when this sequence splits. +1. Introduction +For g ≥ 1, let Sg denote the closed oriented surface of genus g, and for k ∈ Z, let Xk +g +denote the closed 3-manifold that fibers +S1 → Xk +g → Sg +as an oriented circle-bundle with Euler number k. Assuming (g, k) ̸= (1, 0), the mapping +class group Mod(Xk +g ) := π0 +� +Homeo+(Xk +g ) +� +fits into a short exact sequence +(1) +1 → H1(Sg; Z) → Mod(Xk +g ) → Mod(Sg) → 1. +This paper is motivated by the following question. +Question 1.1. For which values of g, k is the extension in (1) split? +Interestingly, the extension does split for k = 2 − 2g, in which case Xk +g is unit tangent +bundle USg. In fact, there is a natural action of Mod(Sg) on USg by homeomorphisms, +which gives a splitting of (1) upon taking isotopy classes. For g ≥ 2, this action comes +from the action of the punctured mapping class group Mod(Sg,1) on triples of points on +the boundary of hyperbolic space H2. This construction dates back to the work of Nielsen. +See [FM12, §5.5.4, §8.2.6] and [Sou10, §1]. +In general, Question 1.1 reduces to a question about group cohomology. The extension +(1) splits if and only if its Euler class euk ∈ H2� +Mod(Sg); H1(Sg; Z) +� +vanishes [Bro82, +§IV.3]. Here the coefficients are twisted via the natural action of Mod(Sg) on H1(Sg; Z). +However, a computation of H2� +Mod(Sg); H1(Sg; Z) +� +does not appear to be in the litera- +ture. +The extension (1) is related to the Birman exact sequence +1 → π1(Sg) → Mod(Sg,1) → Mod(Sg) → 1. +By taking quotients by the commutator subgroup π′ ≡ [π1(Sg), π1(Sg)], we obtain the +following extension +(2) +1 → H1(Sg) → Mod(Sg,1)/π′ → Mod(Sg) → 1. +Our main result relates the sequences (1) and (2). +Date: January 16, 2023. +1 +arXiv:2301.05375v1 [math.GT] 13 Jan 2023 + +2 +LEI CHEN AND BENA TSHISHIKU +Theorem A. Fix g ≥ 1 and k ∈ Z. Assume (g, k) ̸= (1, 0). There is a map between the +short exact sequences (1) and (2) +1 +H1(Sg) +Mod(Sg,1)/π′ +Mod(Sg) +1 +1 +H1(Sg; Z) +Mod(Xk +g ) +Mod(Sg) +1 +� +� +� +� +� +� +� +� +� kδ +� +The homomorphism kδ is the Poincar´e duality isomorphism δ composed with multiplication +by k. In particular, when k = 1, the exact sequences (1) and (2) are isomorphic. +Theorem A implies the Euler classes of the extensions (1) satisfy euk = k eu1 for fixed +g. Next we determine the subgroup generated by eu1 in H2� +Mod(Sg); H1(Sg; Z) +� +. +Theorem 1.2. Fix g ≥ 1, and let eu1 be the Euler class of the extension (1). Then eu1 +has order 2g − 2 in H2� +Mod(Sg); H1(Sg; Z) +� +. Furthermore, if g ≥ 8, then eu1 generates +this group, i.e. +H2� +Mod(Sg); H1(Sg; Z) +� ∼= Z/(2g − 2)Z. +Combining Theorem A and Theorem 1.2 we obtain the following answer to Question +1.1. +Corollary 1.3. For g ≥ 2 and k ∈ Z, the extension (1) splits if and only if k is divisible +2g − 2. For g = 1 the extension splits for each k. +When a splitting exists, the different possible splittings (up to the action of H1(Sg; Z) +on Mod(Xk +g ) by conjugation) are parameterized by elements of H1� +Mod(Sg); H1(Sg; Z) +� +[Bro82, Ch. IV, Prop. 2.3]. +This group vanishes for g ≥ 1 [Mor85, Prop. 4.1], so the +splitting, when it exists, is unique. +Connection to Nielsen realization. Instead of Question 1.1, one can ask whether there +is a splitting of the composite surjection +Homeo(Xk +g ) → Mod(Xk +g ) → Mod(Sg). +This is an instance of a Nielsen realization problem. Of course, if Mod(Xk +g ) → Mod(Sg) +does not split, then neither does Homeo(Xk +g ) → Mod(Sg), and Corollary 1.3 gives examples +of this. Since Mod(Sg) has a natural action on USg, the surjection Homeo(Xk +g ) → Mod(Sg) +does split for k = ±(2g − 2). This is somewhat surprising since mapping class groups are +rarely realized as groups of surface homeomorphisms [Mar07, Che19, CS22]. We wonder +whether this splitting is unique, or if a splitting exists for other values k divisible by 2g −2 +(for example, k = 0). We plan to study this in a future paper. +Previous work and proof techniques. Waldhausen [Wal68, §7] proved that the group +π0 +� +Homeo(Xk +g ) +� +is isomorphic to the outer automorphism group Out +� +π1(Xk +g ) +� +. From this, +the short exact sequence (1) can be derived from work of Conner–Raymond [CR77] and +the Dehn–Nielsen–Baer theorem; alternatively, see McCullough [McC91, §3]. The Dehn– +Nielsen–Baer theorem also plays a central role in Theorem A, since it allows us to translate +back and forth between topology and group theory. There is a mix of both in the proof of +Theorem A in §3. + +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE +3 +To prove Theorem A, we consider a version of Question 1.1 where Xk +g and Sg are +punctured. For the punctured manifolds, similar to (1), there is a short exact sequence +1 → H1(Sg; Z) → Mod(Xk +g,1) → Mod(Sg,1) → 1, +and we construct a splitting +σ : Mod(Sg,1) → Mod(Xk +g,1). +See Corollary 3.1. A key part of our proof of Theorem A is to determine the image of +the point-pushing subgroup π1(Sg) < Mod(Sg,1) under σ. For this we relate three natural +surface group representations π1(Sg) → Mod(Xk +g,1) that appear in the following diagram, +where the diagonal map is point pushing on Xk +g (not a commutative diagram). +π1(Sg) +Mod(Sg,1) +H1(Sg; Z) +Mod(Xk +g,1) +� +point-pushing on Sg +� σ +� +�� +transvections +See Proposition 3.4 for a precise statement. +In order to deduce Corollary 1.3, we use a spectral sequence argument to prove that eu1 +generates a subgroup of H2� +Mod(Sg); H1(Sg; Z) +� +isomorphic to Z/(2g − 2)Z. A different +spectral sequence computation proves that eu1 generates H2� +Mod(Sg); H1(Sg; Z) +� +when +g is large. These computations use several known computations, including work of Morita +[Mor85]. +Section outline. In §2 we collect the results we need about the manifolds Xk +g and their +mapping class groups, including Waldhausen’s work. +Theorem A is proved in §3; this +section is the core of the paper. In §4, we do two spectral sequence computations to prove +Theorem 1.2. +Acknowledgement. +Thanks to B. Farb for sharing the reference [McC91] and to D. +Margalit for comments on a draft. +The authors are supported by NSF grants DMS- +2203178, DMS-2104346 and DMS-2005409. +2. Circle bundles over surfaces +Here we review some results about circle bundles over surfaces that we will need in +future sections. +2.1. Classification. By an oriented circle bundle we mean a fiber bundle +S1 → E → B +with structure group Homeo+(S1), the group of orientation preserving homeomorphisms +of S1. The inclusion of the rotation group SO(2) in Homeo+(S1) is a homotopy equiva- +lence, so circle bundles are in bijection with rank-2 real vector bundles. The classifying +space B SO(2) is homotopy equivalent to CP ∞, which is an Eilenberg–Maclane space +K(Z, 2). Thus each circle bundle is uniquely determined up to isomorphism by its Euler +class eu(E) ∈ H2(B; Z), which is the primary obstruction to a section of the bundle. + +4 +LEI CHEN AND BENA TSHISHIKU +When B = Sg is a closed, oriented surface, H2(Sg; Z) ∼= Z, we can speak of the Euler +number. We use Xk +g to denote the total space of the circle bundle +S1 → Xk +g → Sg +with Euler number k. For example, for the unit tangent bundle eu(USg) = 2 − 2g (the +Euler characteristic), so USg ∼= X2−2g +g +. We also note that Xk +g and X−k +g +are homeomorphic +3-manifolds, since the sign of the Euler number of a circle bundle over Sg depends on the +choice of orientation on Sg. +2.2. Fundamental group π1(Xk +g ) and its automorphisms. From the long exact se- +quence of a fibration, we have an exact sequence +1 → Z → π1(Xk +g ) → π1(Sg) → 1. +The group π1(Xk +g ) has a presentation +(3) +π1(Xk +g ) = +� +A1, B1, . . . , Ag, Bg, z | z central, [A1, B1] · · · [Ag, Bg] = zk� +. +Using this, one finds ⟨z⟩ ∼= Z is the center of π1(Xk +g ) as long as (g, k) ̸= (1, 0). When g ≥ 2 +follows from the fact that the group π1(Sg) has trivial center; the case g = 1 can be treated +directly. +Given this computation of the center, any automorphism of π1(Xk +g ) induces an auto- +morphism of ⟨z⟩ ∼= Z and descends to an automorphism of π1(Sg). The latter gives a +homomorphism +Aut +� +π1(Xk +g ) +� +→ Aut +� +π1(Sg) +� +that restricts to an isomorphism between the inner automorphism groups +(4) +Inn +� +π1(Xk +g ) +� ∼= π1(Sg) ∼= Inn +� +π1(Sg) +� +and hence descends to a homomorphism +(5) +Out +� +π1(Xk +g ) +� +→ Out +� +π1(Sg) +� +. +Orientations. It will be convenient to define +AUT +� +π1(Sg) +� +< Aut +� +π1(Sg) +� +as the subgroup that acts trivially on H2(π1(Sg); Z) ∼= Z (the “orientation-preserving” +subgroup). We define +AUT +� +π1(Xk +g ) +� +< Aut +� +π1(Xk +g ) +� +as the group of automorphisms that project into AUT +� +π1(Sg) +� +and that act trivially on +the center ⟨z⟩ ∼= Z. In particular, AUT +� +π1(Xk +g ) +� +has index 4 in Aut +� +π1(Xk +g ) +� +. +These orientation-preserving subgroups contain the (respective) inner automorphism +groups, and we denote the quotients OUT +� +π1(Xk +g ) +� +and OUT +� +π1(Sg) +� +. + +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE +5 +2.3. Mapping class group Mod(Xk +g ). Fix g ≥ 1 and k ∈ Z, and assume (g, k) ̸= (1, 0). +Let Homeo+(Xk +g ) denote the group of homeomorphisms whose image in Out +� +π1(Xk +g ) +� +is +contained in OUT +� +π1(Sg) +� +. Define +Mod(Xk +g ) := π0 +� +Homeo+(Xk +g ) +� +. +Waldhausen [Wal68, Cor. 7.5] proved that the natural homomorphism +π0 +� +Homeo(Xk +g ) +� +→ Out +� +π1(Xk +g ) +� +is an isomorphism. Then, by the definitions, this homomorphism restricts to an isomor- +phism Mod(Xk +g ) ∼= OUT +� +π1(Xk +g ) +� +. Waldhausen also proved that π0 Homeo(Xk +g ) is iso- +morphic to the group of fiber-preserving homeomorphisms modulo homeomorphisms that +are isotopic to the identity through fiber-preserving isotopies; see [Wal68, Rmk. following +Cor. 7.5]. Consequently, there is a homomorphism +(6) +Mod(Xk +g ) → Mod(Sg). +Altogether, we have the following commutative diagram relating the maps (5) and (6). +(7) +Mod(Xk +g ) +Mod(Sg) +OUT +� +π1(Xk +g ) +� +OUT +� +π1(Sg) +� +� +� +∼= +� +∼= +� +The right vertical map is an isomorphism by the Dehn–Nielsen–Baer theorem [FM12, +Thm. 8.1]. Furthermore, by Conner–Raymond [CR77, Thm. 8] that there is a short exact +sequence +(8) +1 → Hom(π1(Sg), Z) → OUT +� +π1(Xk +g ) +� +→ OUT +� +π1(Sg) +� +→ 1. +This establishes the short exact sequence (1) in the introduction. We will give a concrete +derivation of this exact sequence in Corollary 3.1 below. +3. Relating Mod(Xk +g ) to the Birman exact sequence +In this section, we prove Theorem A. To construct the map of short exact sequences in +Theorem A, our main task is to first define a homomorphism Mod(Sg,1) → Mod(Xk +g ) and +then to compute that its kernel is the commutator subgroup of π1(Sg) < Mod(Sg,1) (the +point-pushing subgroup). We do this is §3.1 and §3.2. +3.1. A homomorphism Ψ : Mod(Sg,1) → Mod(Xk +g ). Fix a basepoint ∗ ∈ Sg, and set +Sg,1 = Sg\{∗}. By the Dehn–Nielsen–Baer theorem, Mod(Sg,1) is isomorphic to Out∗(F2g), +where F2g is the free group of rank 2g and Out∗(F2g) < Out(F2g) is the subgroup that +preserves the conjugacy class corresponding to the free homotopy class of the curve around +the puncture in Sg,1. We construct Ψ as a composition +(9) +Ψ : Mod(Sg,1) ∼= Out∗(F2g) σ−→ AUT +� +π1(Xk +g ) +� +→ OUT +� +π1(Xk +g ) +� ∼= Mod(Xk +g ). +To define σ, fix a generating set α1, β1, . . . , αg, βg for F2g such that c = �g +i=1[αi, βi] +represents the conjugacy class of the curve around the puncture. Let +(10) +ι : F2g → π1(Xk +g ) +be the homomorphism defined by αi �→ Ai and βi �→ Bi. Given f ∈ Out∗(F2g), fix an +automorphism ˜f : F2g → F2g that represents f, and assume that ˜f(c) = c (this can always + +6 +LEI CHEN AND BENA TSHISHIKU +be achieved by composing any lift with an inner automorphism of F2g). Next we define +σ(f) on generators of π1(Xk +g ) by +(11) +σ(f)(Ai) = ι ˜f(αi), +σ(f)(Bi) = ι ˜f(βi), +σ(f)(z) = z. +To show that σ(f) extends to a homomorphism of π1(Xk +g ), we check that the relation +[A1, B1] · · · [Ag, Bg] = zk is preserved under σ(f): +� +i +[σ(f)(Ai), σ(f)(Bi)] = +� +i +[ι ˜f(αi), ι ˜f(βi)] = ι(c) = zk = σ(f)(zk). +The second equality uses the the fact that ˜f(c) = c. The map σ(f) is independent of +the choice of ˜f because different choices of ˜f differ by conjugation by powers of c (be- +cause the centralizer of c in F2g is the cyclic subgroup ⟨c⟩)1 and ι(c) = zk is central in +π1(Xk +g ). The homomorphism σ(f) : π1(Xk +g ) → π1(Xk +g ) is an automorphism and belongs to +AUT +� +π1(Xk +g ) +� +by definition. Furthermore, f �→ σ(f) is a homomorphism, which is easy +to check using the observation that if w = ιw′, then σ(f)(w) = ι ˜f(w′). +Composing σ with AUT → OUT gives the desired homomorphism Ψ. As a corollary of +this construction, we have proved the following. +Corollary 3.1. Fix g ≥ 1 and k ∈ Z, and assume (g, k) ̸= (1, 0). +The natural map +Φ : AUT +� +π1(Xk +g ) +� +→ AUT +� +π1(Sg) +� +(see §2.2) fits into an exact sequence +(12) +1 → Hom(π1(Sg), Z) → AUT +� +π1(Xk +g ) +� Φ−→ AUT +� +π1(Sg) +� +→ 1, +and this exact sequence splits. +Proof. First we compute the kernel of Φ. +Using the presentation for π1(Xk +g ) in (3), if +f ∈ ker(Φ), then +f(Ai) = Aizmi +and +f(Bi) = Bizni +for some m1, n1, . . . , mg, ng ∈ Z. The map ai �→ mi, bi �→ ni extends to a homomorphism +τ(f) : π1(Sg) → Z. It is elementary to check that the map ker(Φ) → Hom(π1(Sg), Z) +defined by f �→ τ(f) is an isomorphism. +The homomorphism σ defined above shows that Φ is a split surjection. Note that the +Mod(Sg, ∗) ∼= Mod(Sg \ {∗}) (basepoint vs. puncture), so by Dehn–Nielsen–Baer there is +an isomorphism AUT +� +π1(Sg) +� ∼= Out∗(F2g), and we use this isomorphism to view σ as a +splitting of Φ. +□ +Remark 3.2. We call elements of ker(Φ) ∼= H1(Sg; Z) transvections. +Remark 3.3. The homomorphism Ψ can be constructed on the level of topology as follows. +Fix a regular neighborhood D of the puncture on Sg,1 (so D is a once-punctured disk). +Given a mapping class f ∈ Mod(Sg,1), choose a representing homeomorphism f. Without +loss of generality, we can assume that f is the identity on D. The bundle Xk +g → Sg can be +trivialized over S \ D (because the classifying space B SO(2) is simply connected). Fixing +a trivialization (S \ D) × S1 over S \ D, we lift f to the product homeomorphism f × idS1. +This homeomorphisms is the identity on the boundary ∂(S \ D) × S1, so we can extend +by the identity to obtain a homeomorphism ˜f of Xk +g . The map sending f ∈ Mod(Sg,1) to +1Note that the centralizer is isomorphic to Z and contains ⟨c⟩. It is only bigger if c = ui for some u ∈ F2g +and i ≥ 2. By contradiction, if c = ui for i ≥ 2, then u is cyclically reduced because c is. This implies that +u is a subword of c = �[αi, βi], which is absurd. + +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE +7 +the isotopy class +� +˜f +� +∈ Mod(Xk +g ) is the topological version of the homomorphism Ψ. Note +that the isotopy class [f] is only well-defined up to Dehn twists about ∂D which is a loop +around the puncture. This is analogous to the ambiguity encountered in the definition of +σ, which ultimately does not affect the definition of Ψ. +Corollary 3.1 and equation (4) combine to give the short exact sequence of outer auto- +morphism groups (8). +Warning. The splitting of the short exact sequence (12) does not give a splitting of the +short exact sequence (8). Indeed we will show the latter sequence does not always split +(Corollary 1.3). The subtlety comes from the fact that the inner automorphism group +Inn +� +π1(Xk +g ) +� ∼= π1(Sg) does not coincide with the image of π1(Sg) ∼= Inn +� +π1(Sg) +� +< +Aut +� +π1(Sg) +� +under the section σ. Proposition 3.4 below describes the precise relationship. +3.2. Kernel of Ψ : Mod(Sg,1) → Mod(Xk +g ). Observe that the kernel of Ψ is contained +in the point-pushing subgroup π1(Sg) < Mod(Sg,1). This is because Ψ composed with +the natural map Mod(Xk +g ) → Mod(Sg) is the natural map Mod(Sg,1) → Mod(Sg), whose +kernel is the point-pushing subgroup. +Thus we want to understand the image of the +point-pushing subgroup under the section σ used to define Ψ. What we find is a simple +relationship between three surface group representations: +π1(Sg) +π1(Sg) +π1(Sg) +AUT +� +π1(Xk +g ) +� +� +inner auts of π1(Sg), lifted +� +inner auts of π1(Xk +g ) +� +σ +� +transvections +The main results are Proposition 3.4 and Corollary 3.5 below. In order to state Propo- +sition 3.4, we need the following notation. Let +δ : H1(Sg; Z) → H1(Sg; Z) +be the Poincar´e duality map, given explicitly by γ �→ ⟨−, γ⟩, where +⟨−, −⟩ : H1(Sg; Z) × H1(Sg; Z) → Z +is the algebraic intersection form. We use ˆδ denote the composition +ˆδ : H1(Sg; Z) δ−→ H1(Sg; Z) �→ AUT +� +π1(Xk +g ) +� +. +This map is given explicitly by ˆδ(γ)(w) = w · z⟨[ ¯w],γ⟩, where ¯w is the image of w under +π1(Xk +g ) → π1(Sg) and [ ¯w] ∈ H1(Sg; Z) is the corresponding homology class. +Fix a basepoint ⋆ ∈ Sg,1. Recall that we have fixed a standard generating set {αi, βi} of +π1(Sg,1, ⋆) ∼= F2g so that c := � +i[αi, βi] is a loop around the puncture ∗ of Sg,1 = Sg \ {∗}. +Define +(13) +Π : π1(Sg,1, ⋆) → π1(Sg, ∗) +by γ �→ ϵ.γ.¯ϵ, where ϵ is a fixed arc from ∗ to ⋆. + +8 +LEI CHEN AND BENA TSHISHIKU +Proposition 3.4. Fix t ∈ π1(Sg, ∗), and let Push(t) ∈ Mod(Sg,1) ∼= Out∗(F2g) be the +point-pushing mapping class. If ˜t ∈ π1(Sg,1, ⋆) is any lift of t (i.e. Π(˜t) = t), then +(14) +σ +� +Push(t) +� += Cι˜t ◦ ˆδ([kt]), +Here Cx denotes conjugation by x, and the maps ι : F2g → π1(Xk +g ) and σ : Out∗(F2g) → +AUT +� +π1(Xk +g ) +� +are defined in (10) and (11). +As a sanity check, observe that Cι˜t does not depend on the choice of lift ˜t because any +two lifts differ by an element of the normal closure of c in π1(Sg,1, ⋆) = F2g, and conjugation +by any such element is trivial on π1(Xk +g ). +Proof of Proposition 3.4. It suffices to prove the lemma for t ∈ π1(Sg, ∗) that are repre- +sented by a non-separating simple closed curve. To see this, first note that π1(Sg, ∗) is +generated by these curves. Furthermore, the groups Inn +� +π1(Xk +g ) +� +and H1(Sg; Z) commute +in Aut +� +π1(Xk +g ) +� +, so +� +Cι˜t1 ◦ ˆδ([t1]) +� +◦ +� +Cι˜t2 ◦ ˆδ([t2]) +� += Cι(˜t1∗˜t2) ◦ ˆδ([t1 ∗ t2]). +Assume now that t ∈ π1(Sg, ∗) is represented by a non-separating simple closed curve. +After an isotopy, we can assume that t contains ϵ as a sub-arc. Choose ˜t as pictured in +Figure 1. +∗ +⋆ +t +˜t +ϵ +Figure 1. A small regular neighborhood of a loop representing t ∈ +π1(Sg, ∗) and a lift ˜t ∈ π1(Sg,1, ⋆). +We want to show that +σ +� +Push(t) +� +(w) = +� +Cι˜t ◦ ˆδ([t]) +� +(w) +for each w ∈ π1(Xk +g ). +Since this is obviously true for w = z, it suffices to show this +equality for w = ι(s) for s ∈ π1(Sg,1, ⋆); furthermore, it suffices to show the equality on +any generating set of π1(Sg,1, ⋆). We use the (infinite) generating set consisting of curves +of one of the forms pictured in Figure 2 (the intersection of these curves with the annulus +around t has one component). +Note that Push(t) fixes the basepoint ⋆, so we can compute the action of Push(t) on +s ∈ π1(Sg,1, ⋆). We compute the action of Push(t) on the elements in Figure 2 as follows. +See Figure 3 for an illustration. +s1 �→ (˜t)−1s1˜tc−1 +and +s2 �→ (˜t)−1s2˜t +and +s3 �→ c(˜t)−1s3˜tc−1 +and +c �→ c. +This proves that, for example, that +σ +� +Push(t) +� +(ιs1) = (ι˜t)−1(ιs1)(ι˜t)z−k = +� +Cι˜t ◦ ˆδ([kt]) +� +(ιs1). +We conclude similarly for the generators s2, s3. +This proves the desired formula for +σ +� +Push(t) +� +. +□ + +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE +9 +c +s1 +s2 +s3 +Figure 2. The group π1(Sg,1, ⋆) is generated by ˜t and loops of the form +pictured above. +Push(t)(s1) +Push(t)(s2) +Push(t)(s3) +Figure 3. Action of point-pushing about t on the loops in Figure 2. The +curve c is fixed up to isotopy (up to isotopy Push(t) is the identity on a +neighborhood of t that contains c). +The following corollary is an immediate consequence of Proposition 3.4. +Corollary 3.5. Consider the composition +(15) +Ψ : AUT +� +π1(Sg) +� σ−→ AUT +� +π1(Xk +g ) +� +→ OUT +� +π1(Xk +g ) +� +. +The restriction of Ψ to π1(Sg) ∼= Inn +� +π1(Sg) +� +factors as follows. +π1(Sg) +AUT +� +π1(Sg) +� +H1(Sg; Z) +OUT +� +π1(Xk +g ) +� +� +conjugation +� Ψ +� +kδ ◦ ab +� +transvections +Here ab denotes the abelianization map π1(Sg, ∗) → H1(Sg; Z). +3.3. Proof of Theorem A. Using the isomorphisms between mapping class groups and +automorphism groups, the desired diagram is equivalent to the following one. +1 +π1(Sg)ab +AUT +� +π1(Sg) +� +/π′ +OUT +� +π1(Sg) +� +1 +1 +Hom(π1(Sg), Z) +OUT +� +π1(Xk +g ) +� +OUT +� +π1(Sg +� +) +1 +� +� +� +� +� +� +� +� +� +kδ +� +The map Ψ in (15) descends to the middle vertical map and restricts to the left vertical +map by Corollary 3.5. The fact that σ is a section (Corollary 3.1) implies that the middle + +10 +LEI CHEN AND BENA TSHISHIKU +vertical map descends to the identity map on OUT +� +π1(Sg) +� +. When k = 1, the middle +vertical map is an isomorphism by the five lemma. This concludes the proof of Theorem +A. +4. Spectral sequence computation +In this section we prove Theorem 1.2. This is achieved by two different computations +using the Lyndon–Hochschild–Serre (LHS) spectral sequence. +Recall that this spectral +sequence takes input a short exact sequence of groups 1 → N → G → Q → 1 and a +G-module A, has E2 page +Ep,q +2 += Hp� +Q; Hq(N; A) +� +, +and converges to Hp+q(G; A). For both computations we use the Birman exact sequence, +but with different choices of the module A. +Notational note. +To simplify the notation, we use the convention that cohomology +groups have Z coefficients unless otherwise specified. +4.1. Euler class computation. Our goal in this section is to prove Proposition 4.1 below, +which implies Corollary 1.3. +Proposition 4.1. Fix g ≥ 1. +Let euk be the Euler class of the extension (1). +Then +euk = k eu1, and eu1 has order 2g − 2 in H2� +Mod(Sg); H1(Sg) +� +. +Proof. The relation euk = k eu1 already follows from Theorem A. Indeed, choosing a set- +theoretic section for the sequence in the top row of the diagram in Theorem A gives a +cocycle representative for euk that is k times the cocycle representative for e1. +Now we prove that eu1 generates a cyclic subgroup isomorphic to Z/(2g − 2)Z in +H2� +Mod(Sg); H1(Sg) +� +. Our method is to apply the LHS spectral sequence to the Bir- +man exact sequence with the module A = H1(Sg). Here +Ep,q +2 +∼= Hp� +Mod(Sg); Hq(Sg; A) +� +. +A portion of the associated 5-term exact sequence is as follows. +0 → H1� +Mod(Sg); H1(Sg) +� +→ H1� +Mod(Sg,1); H1(Sg) +� +A +−→ Hom +� +H1(Sg), H1(Sg) +�Mod(Sg) +d0,1 +2 +−−→ H2� +Mod(Sg); H1(Sg) +� +This sequence has been studied by Morita. Morita [Mor85, Prop. 4.1] computes that the +first term vanishes, so the map A is injective. The group Hom +� +H1(Sg), H1(Sg) +�Mod(Sg) is +isomorphic to Z and generated the Poincar´e duality isomorphism δ. Morita [Mor85, proof +of Prop. 6.4] shows that the image of A is (2g − 2)Z. Consequently, the differential d0,1 +2 +descends to an injection Z/(2g − 2)Z → H2� +Mod(Sg); H1(Sg) +� +. +It remains to show that d0,1 +2 +sends a generator to eu1. +The differential d0,1 +2 +is the +transgression; see e.g. [NSW08, Prop. 1.6.6, Thm. 2.4.3]. By standard knowledge of the +transgression applied to our situation, we find that d0,1 +2 +sends a generator to δ∗(eu), where +eu is the Euler class of the extension (2), and +δ∗ : H2� +Mod(Sg); H1(Sg) +� +→ H2� +Mod(Sg); H1(Sg) +� +is the isomorphism induced by the Poincar´e duality isomorphism δ. (For this property +of the transgression, see [NSW08, §I.6, Exercise 1-2]. +While that reference is mainly +concerned with finite or profinite groups, the analysis of the transgression contained given +there applies more generally.) Finally, we observe that δ∗(eu) = eu1 by Theorem A. +□ + +MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE +11 +4.2. Computation of H2� +Mod(Sg); H1(Sg) +� +. Running the LHS spectral sequence with +the trivial module A = Z, we prove that if g ≥ 8, then +(16) +H2� +Mod(Sg); H1(Sg) +� ∼= Z/(2g − 2)Z. +Combining this with Proposition 4.1 proves Theorem 1.2. The relevant portion of the +spectral sequence appears below. +2 H0(Mod(Sg); H2(Sg)) +1 +0 +0 H2(Mod(Sg); H1(Sg)) +0 +Z +0 +H2(Mod(Sg)) +H3(Mod(Sg)) H4(Mod(Sg)) +0 +1 +2 +3 +4 +d0,2 +2 +d2,1 +2 +The computations in the first column are easy. In the second column, Morita [Mor85, +Prop. 4.1] computed H1� +Mod(Sg); H1(Sg) +� += 0 for g ≥ 1. +The other computation +H1� +Mod(Sg) +� += 0 holds for g ≥ 1 because the abelianization of Mod(Sg) is finite [FM12, +§5.1.2-3]. +According to [BT01, Cor. 1.2], +H∗ +� +Mod(Sg,1) +� ∼= H∗ +� +Mod(Sg) +� +⊗ Z[x] +in degrees g ≥ 2∗. Here x has degree 2. Applying this and using the universal coefficients +theorem, we conclude that +Hi� +Mod(Sg) +� +→ Hi� +Mod(Sg,1) +� +is an isomorphism if i = 3 and g ≥ 6, and it is injective if i = 4 and if g ≥ 8. +Since the map H4� +Mod(Sg) +� +→ H4� +Mod(Sg,1) +� +is injective, the differential d2,1 +2 +is zero. +Since the map H3� +Mod(Sg) +� +→ H3� +Mod(Sg,1) +� +is an isomorphism, the differential d0,2 +2 +is +surjective. +Thus, the filtration of H2� +Mod(Sg,1) +� +coming from the E∞ page gives an exact sequence +0 → H2� +Mod(Sg) +� +→ H2� +Mod(Sg,1) +� +F−→ +H0� +Mod(Sg); H2(Sg) +� ∼= Z +d0,2 +2 +−−→ +H2� +Mod(Sg); H1(Sg) +� +→ 0. +For g ≥ 4, +H2� +Mod(Sg) +� ∼= Z[e1] +and +H2� +Mod(Sg,1) +� ∼= Z[e, e1] +and the map Z[e1] → Z[e, e1] is the obvious one e1 �→ e1. We claim that F(e) = 2 − 2g. +From this we deduce the desired isomorphism (16). The claim follows from the fact that +the extension that defines e, when restricted to the point-pushing subgroup π1(Sg) < +Mod(Sg,1), gives the extension +1 → Z → π1(USg) → π1(Sg) → 1 +where USg is the unit tangent bundle. See [FM12, §5.5.5]. This extension has Euler class +2 − 2g, so the claim follows. + +12 +LEI CHEN AND BENA TSHISHIKU +References +[Bro82] +K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer- +Verlag, New York-Berlin, 1982. +[BT01] +C.-F. B¨odigheimer and U. Tillmann. Stripping and splitting decorated mapping class groups. +In Cohomological methods in homotopy theory (Bellaterra, 1998), volume 196 of Progr. Math., +pages 47–57. Birkh¨auser, Basel, 2001. +[Che19] +L. Chen. On the nonrealizability of braid groups by homeomorphisms. Geom. Topol., 23(7):3735– +3749, 2019. +[CR77] +P. E. Conner and F. Raymond. Deforming homotopy equivalences to homeomorphisms in aspher- +ical manifolds. Bull. Amer. Math. Soc., 83(1):36–85, 1977. +[CS22] +L. Chen and N. Salter. Global fixed points of mapping class group actions and a theorem of +Markovic. J. Topol., 15(3):1311–1324, 2022. +[FM12] +B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical +Series. Princeton University Press, Princeton, NJ, 2012. +[Mar07] +V. Markovic. Realization of the mapping class group by homeomorphisms. Invent. Math., +168(3):523–566, 2007. +[McC91] D. McCullough. Virtually geometrically finite mapping class groups of 3-manifolds. J. Differential +Geom., 33(1):1–65, 1991. +[Mor85] +S. Morita. Family of Jacobian manifolds and characteristic classes of surface bundles. II. Proc. +Japan Acad. Ser. A Math. Sci., 61(4):112–115, 1985. +[NSW08] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of +Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci- +ences]. Springer-Verlag, Berlin, second edition, 2008. +[Sou10] +J. Souto. A remark on the action of the mapping class group on the unit tangent bundle. Ann. +Fac. Sci. Toulouse Math. (6), 19(3-4):589–601, 2010. +[Wal68] +F. Waldhausen. On irreducible 3-manifolds which are sufficiently large. Ann. of Math. (2), 87:56– +88, 1968. +Lei Chen, Department of Mathematics, University of Maryland, 4176 Campus Drive, Col- +lege Park, MD 20742, USA, chenlei@umd.edu +Bena Tshishiku, Department of Mathematics, Brown University, 151 Thayer St., Provi- +dence, RI, 02912, USA, bena tshishiku@brown.edu. + diff --git a/StE5T4oBgHgl3EQfAA5y/content/tmp_files/load_file.txt b/StE5T4oBgHgl3EQfAA5y/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4ce4a10617c048a438eea018552264b5e38455a3 --- /dev/null +++ b/StE5T4oBgHgl3EQfAA5y/content/tmp_files/load_file.txt @@ -0,0 +1,522 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf,len=521 +page_content='MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE LEI CHEN AND BENA TSHISHIKU Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In this paper, we study the algebraic structure of mapping class group Mod(X) of 3-manifolds X that fiber as a circle bundle over a surface S1 → X → Sg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' There is an exact sequence 1 → H1(Sg) → Mod(X) → Mod(Sg) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We relate this to the Birman exact sequence and determine when this sequence splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Introduction For g ≥ 1, let Sg denote the closed oriented surface of genus g, and for k ∈ Z, let Xk g denote the closed 3-manifold that fibers S1 → Xk g → Sg as an oriented circle-bundle with Euler number k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Assuming (g, k) ̸= (1, 0), the mapping class group Mod(Xk g ) := π0 � Homeo+(Xk g ) � fits into a short exact sequence (1) 1 → H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) → Mod(Xk g ) → Mod(Sg) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This paper is motivated by the following question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For which values of g, k is the extension in (1) split?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Interestingly, the extension does split for k = 2 − 2g, in which case Xk g is unit tangent bundle USg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In fact, there is a natural action of Mod(Sg) on USg by homeomorphisms, which gives a splitting of (1) upon taking isotopy classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For g ≥ 2, this action comes from the action of the punctured mapping class group Mod(Sg,1) on triples of points on the boundary of hyperbolic space H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This construction dates back to the work of Nielsen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' See [FM12, §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4, §8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='6] and [Sou10, §1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In general, Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 reduces to a question about group cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The extension (1) splits if and only if its Euler class euk ∈ H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � vanishes [Bro82, §IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Here the coefficients are twisted via the natural action of Mod(Sg) on H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' However, a computation of H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � does not appear to be in the litera- ture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The extension (1) is related to the Birman exact sequence 1 → π1(Sg) → Mod(Sg,1) → Mod(Sg) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' By taking quotients by the commutator subgroup π′ ≡ [π1(Sg), π1(Sg)], we obtain the following extension (2) 1 → H1(Sg) → Mod(Sg,1)/π′ → Mod(Sg) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Our main result relates the sequences (1) and (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Date: January 16, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='05375v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='GT] 13 Jan 2023 2 LEI CHEN AND BENA TSHISHIKU Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix g ≥ 1 and k ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Assume (g, k) ̸= (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' There is a map between the short exact sequences (1) and (2) 1 H1(Sg) Mod(Sg,1)/π′ Mod(Sg) 1 1 H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) Mod(Xk g ) Mod(Sg) 1 � � � � � � � � � kδ � The homomorphism kδ is the Poincar´e duality isomorphism δ composed with multiplication by k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In particular, when k = 1, the exact sequences (1) and (2) are isomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Theorem A implies the Euler classes of the extensions (1) satisfy euk = k eu1 for fixed g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Next we determine the subgroup generated by eu1 in H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix g ≥ 1, and let eu1 be the Euler class of the extension (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Then eu1 has order 2g − 2 in H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Furthermore, if g ≥ 8, then eu1 generates this group, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � ∼= Z/(2g − 2)Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Combining Theorem A and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2 we obtain the following answer to Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For g ≥ 2 and k ∈ Z, the extension (1) splits if and only if k is divisible 2g − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For g = 1 the extension splits for each k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' When a splitting exists, the different possible splittings (up to the action of H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) on Mod(Xk g ) by conjugation) are parameterized by elements of H1� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � [Bro82, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' IV, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This group vanishes for g ≥ 1 [Mor85, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1], so the splitting, when it exists, is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Connection to Nielsen realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Instead of Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1, one can ask whether there is a splitting of the composite surjection Homeo(Xk g ) → Mod(Xk g ) → Mod(Sg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This is an instance of a Nielsen realization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Of course, if Mod(Xk g ) → Mod(Sg) does not split, then neither does Homeo(Xk g ) → Mod(Sg), and Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3 gives examples of this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Since Mod(Sg) has a natural action on USg, the surjection Homeo(Xk g ) → Mod(Sg) does split for k = ±(2g − 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This is somewhat surprising since mapping class groups are rarely realized as groups of surface homeomorphisms [Mar07, Che19, CS22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We wonder whether this splitting is unique, or if a splitting exists for other values k divisible by 2g −2 (for example, k = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We plan to study this in a future paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Previous work and proof techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Waldhausen [Wal68, §7] proved that the group π0 � Homeo(Xk g ) � is isomorphic to the outer automorphism group Out � π1(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' From this, the short exact sequence (1) can be derived from work of Conner–Raymond [CR77] and the Dehn–Nielsen–Baer theorem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' alternatively, see McCullough [McC91, §3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The Dehn– Nielsen–Baer theorem also plays a central role in Theorem A, since it allows us to translate back and forth between topology and group theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' There is a mix of both in the proof of Theorem A in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE 3 To prove Theorem A, we consider a version of Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 where Xk g and Sg are punctured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For the punctured manifolds, similar to (1), there is a short exact sequence 1 → H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) → Mod(Xk g,1) → Mod(Sg,1) → 1, and we construct a splitting σ : Mod(Sg,1) → Mod(Xk g,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' See Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A key part of our proof of Theorem A is to determine the image of the point-pushing subgroup π1(Sg) < Mod(Sg,1) under σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For this we relate three natural surface group representations π1(Sg) → Mod(Xk g,1) that appear in the following diagram, where the diagonal map is point pushing on Xk g (not a commutative diagram).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' π1(Sg) Mod(Sg,1) H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) Mod(Xk g,1) � point-pushing on Sg � σ � �� transvections See Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4 for a precise statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In order to deduce Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3, we use a spectral sequence argument to prove that eu1 generates a subgroup of H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � isomorphic to Z/(2g − 2)Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A different spectral sequence computation proves that eu1 generates H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) � when g is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' These computations use several known computations, including work of Morita [Mor85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Section outline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In §2 we collect the results we need about the manifolds Xk g and their mapping class groups, including Waldhausen’s work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Theorem A is proved in §3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' this section is the core of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In §4, we do two spectral sequence computations to prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Acknowledgement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Thanks to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Farb for sharing the reference [McC91] and to D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Margalit for comments on a draft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The authors are supported by NSF grants DMS- 2203178, DMS-2104346 and DMS-2005409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Circle bundles over surfaces Here we review some results about circle bundles over surfaces that we will need in future sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' By an oriented circle bundle we mean a fiber bundle S1 → E → B with structure group Homeo+(S1), the group of orientation preserving homeomorphisms of S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The inclusion of the rotation group SO(2) in Homeo+(S1) is a homotopy equiva- lence, so circle bundles are in bijection with rank-2 real vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The classifying space B SO(2) is homotopy equivalent to CP ∞, which is an Eilenberg–Maclane space K(Z, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Thus each circle bundle is uniquely determined up to isomorphism by its Euler class eu(E) ∈ H2(B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z), which is the primary obstruction to a section of the bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4 LEI CHEN AND BENA TSHISHIKU When B = Sg is a closed, oriented surface, H2(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) ∼= Z, we can speak of the Euler number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We use Xk g to denote the total space of the circle bundle S1 → Xk g → Sg with Euler number k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For example, for the unit tangent bundle eu(USg) = 2 − 2g (the Euler characteristic), so USg ∼= X2−2g g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We also note that Xk g and X−k g are homeomorphic 3-manifolds, since the sign of the Euler number of a circle bundle over Sg depends on the choice of orientation on Sg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fundamental group π1(Xk g ) and its automorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' From the long exact se- quence of a fibration, we have an exact sequence 1 → Z → π1(Xk g ) → π1(Sg) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The group π1(Xk g ) has a presentation (3) π1(Xk g ) = � A1, B1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' , Ag, Bg, z | z central, [A1, B1] · · · [Ag, Bg] = zk� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Using this, one finds ⟨z⟩ ∼= Z is the center of π1(Xk g ) as long as (g, k) ̸= (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' When g ≥ 2 follows from the fact that the group π1(Sg) has trivial center;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' the case g = 1 can be treated directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Given this computation of the center, any automorphism of π1(Xk g ) induces an auto- morphism of ⟨z⟩ ∼= Z and descends to an automorphism of π1(Sg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The latter gives a homomorphism Aut � π1(Xk g ) � → Aut � π1(Sg) � that restricts to an isomorphism between the inner automorphism groups (4) Inn � π1(Xk g ) � ∼= π1(Sg) ∼= Inn � π1(Sg) � and hence descends to a homomorphism (5) Out � π1(Xk g ) � → Out � π1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' It will be convenient to define AUT � π1(Sg) � < Aut � π1(Sg) � as the subgroup that acts trivially on H2(π1(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) ∼= Z (the “orientation-preserving” subgroup).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We define AUT � π1(Xk g ) � < Aut � π1(Xk g ) � as the group of automorphisms that project into AUT � π1(Sg) � and that act trivially on the center ⟨z⟩ ∼= Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In particular, AUT � π1(Xk g ) � has index 4 in Aut � π1(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' These orientation-preserving subgroups contain the (respective) inner automorphism groups, and we denote the quotients OUT � π1(Xk g ) � and OUT � π1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Mapping class group Mod(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix g ≥ 1 and k ∈ Z, and assume (g, k) ̸= (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Let Homeo+(Xk g ) denote the group of homeomorphisms whose image in Out � π1(Xk g ) � is contained in OUT � π1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Define Mod(Xk g ) := π0 � Homeo+(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Waldhausen [Wal68, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5] proved that the natural homomorphism π0 � Homeo(Xk g ) � → Out � π1(Xk g ) � is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Then, by the definitions, this homomorphism restricts to an isomor- phism Mod(Xk g ) ∼= OUT � π1(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Waldhausen also proved that π0 Homeo(Xk g ) is iso- morphic to the group of fiber-preserving homeomorphisms modulo homeomorphisms that are isotopic to the identity through fiber-preserving isotopies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' see [Wal68, Rmk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' following Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Consequently, there is a homomorphism (6) Mod(Xk g ) → Mod(Sg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Altogether, we have the following commutative diagram relating the maps (5) and (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' (7) Mod(Xk g ) Mod(Sg) OUT � π1(Xk g ) � OUT � π1(Sg) � � � ∼= � ∼= � The right vertical map is an isomorphism by the Dehn–Nielsen–Baer theorem [FM12, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Furthermore, by Conner–Raymond [CR77, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 8] that there is a short exact sequence (8) 1 → Hom(π1(Sg), Z) → OUT � π1(Xk g ) � → OUT � π1(Sg) � → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This establishes the short exact sequence (1) in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We will give a concrete derivation of this exact sequence in Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Relating Mod(Xk g ) to the Birman exact sequence In this section, we prove Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' To construct the map of short exact sequences in Theorem A, our main task is to first define a homomorphism Mod(Sg,1) → Mod(Xk g ) and then to compute that its kernel is the commutator subgroup of π1(Sg) < Mod(Sg,1) (the point-pushing subgroup).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We do this is §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 and §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A homomorphism Ψ : Mod(Sg,1) → Mod(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix a basepoint ∗ ∈ Sg, and set Sg,1 = Sg\\{∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' By the Dehn–Nielsen–Baer theorem, Mod(Sg,1) is isomorphic to Out∗(F2g), where F2g is the free group of rank 2g and Out∗(F2g) < Out(F2g) is the subgroup that preserves the conjugacy class corresponding to the free homotopy class of the curve around the puncture in Sg,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We construct Ψ as a composition (9) Ψ : Mod(Sg,1) ∼= Out∗(F2g) σ−→ AUT � π1(Xk g ) � → OUT � π1(Xk g ) � ∼= Mod(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' To define σ, fix a generating set α1, β1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' , αg, βg for F2g such that c = �g i=1[αi, βi] represents the conjugacy class of the curve around the puncture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Let (10) ι : F2g → π1(Xk g ) be the homomorphism defined by αi �→ Ai and βi �→ Bi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Given f ∈ Out∗(F2g), fix an automorphism ˜f : F2g → F2g that represents f, and assume that ˜f(c) = c (this can always 6 LEI CHEN AND BENA TSHISHIKU be achieved by composing any lift with an inner automorphism of F2g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Next we define σ(f) on generators of π1(Xk g ) by (11) σ(f)(Ai) = ι ˜f(αi), σ(f)(Bi) = ι ˜f(βi), σ(f)(z) = z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' To show that σ(f) extends to a homomorphism of π1(Xk g ), we check that the relation [A1, B1] · · · [Ag, Bg] = zk is preserved under σ(f): � i [σ(f)(Ai), σ(f)(Bi)] = � i [ι ˜f(αi), ι ˜f(βi)] = ι(c) = zk = σ(f)(zk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The second equality uses the the fact that ˜f(c) = c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The map σ(f) is independent of the choice of ˜f because different choices of ˜f differ by conjugation by powers of c (be- cause the centralizer of c in F2g is the cyclic subgroup ⟨c⟩)1 and ι(c) = zk is central in π1(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The homomorphism σ(f) : π1(Xk g ) → π1(Xk g ) is an automorphism and belongs to AUT � π1(Xk g ) � by definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Furthermore, f �→ σ(f) is a homomorphism, which is easy to check using the observation that if w = ιw′, then σ(f)(w) = ι ˜f(w′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Composing σ with AUT → OUT gives the desired homomorphism Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' As a corollary of this construction, we have proved the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix g ≥ 1 and k ∈ Z, and assume (g, k) ̸= (1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The natural map Φ : AUT � π1(Xk g ) � → AUT � π1(Sg) � (see §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2) fits into an exact sequence (12) 1 → Hom(π1(Sg), Z) → AUT � π1(Xk g ) � Φ−→ AUT � π1(Sg) � → 1, and this exact sequence splits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' First we compute the kernel of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Using the presentation for π1(Xk g ) in (3), if f ∈ ker(Φ), then f(Ai) = Aizmi and f(Bi) = Bizni for some m1, n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' , mg, ng ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The map ai �→ mi, bi �→ ni extends to a homomorphism τ(f) : π1(Sg) → Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' It is elementary to check that the map ker(Φ) → Hom(π1(Sg), Z) defined by f �→ τ(f) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The homomorphism σ defined above shows that Φ is a split surjection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Note that the Mod(Sg, ∗) ∼= Mod(Sg \\ {∗}) (basepoint vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' puncture), so by Dehn–Nielsen–Baer there is an isomorphism AUT � π1(Sg) � ∼= Out∗(F2g), and we use this isomorphism to view σ as a splitting of Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' □ Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We call elements of ker(Φ) ∼= H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) transvections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The homomorphism Ψ can be constructed on the level of topology as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix a regular neighborhood D of the puncture on Sg,1 (so D is a once-punctured disk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Given a mapping class f ∈ Mod(Sg,1), choose a representing homeomorphism f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Without loss of generality, we can assume that f is the identity on D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The bundle Xk g → Sg can be trivialized over S \\ D (because the classifying space B SO(2) is simply connected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fixing a trivialization (S \\ D) × S1 over S \\ D, we lift f to the product homeomorphism f × idS1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This homeomorphisms is the identity on the boundary ∂(S \\ D) × S1, so we can extend by the identity to obtain a homeomorphism ˜f of Xk g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The map sending f ∈ Mod(Sg,1) to 1Note that the centralizer is isomorphic to Z and contains ⟨c⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' It is only bigger if c = ui for some u ∈ F2g and i ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' By contradiction, if c = ui for i ≥ 2, then u is cyclically reduced because c is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This implies that u is a subword of c = �[αi, βi], which is absurd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE 7 the isotopy class � ˜f � ∈ Mod(Xk g ) is the topological version of the homomorphism Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Note that the isotopy class [f] is only well-defined up to Dehn twists about ∂D which is a loop around the puncture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This is analogous to the ambiguity encountered in the definition of σ, which ultimately does not affect the definition of Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 and equation (4) combine to give the short exact sequence of outer auto- morphism groups (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Warning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The splitting of the short exact sequence (12) does not give a splitting of the short exact sequence (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Indeed we will show the latter sequence does not always split (Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The subtlety comes from the fact that the inner automorphism group Inn � π1(Xk g ) � ∼= π1(Sg) does not coincide with the image of π1(Sg) ∼= Inn � π1(Sg) � < Aut � π1(Sg) � under the section σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4 below describes the precise relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Kernel of Ψ : Mod(Sg,1) → Mod(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Observe that the kernel of Ψ is contained in the point-pushing subgroup π1(Sg) < Mod(Sg,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This is because Ψ composed with the natural map Mod(Xk g ) → Mod(Sg) is the natural map Mod(Sg,1) → Mod(Sg), whose kernel is the point-pushing subgroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Thus we want to understand the image of the point-pushing subgroup under the section σ used to define Ψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' What we find is a simple relationship between three surface group representations: π1(Sg) π1(Sg) π1(Sg) AUT � π1(Xk g ) � � inner auts of π1(Sg), lifted � inner auts of π1(Xk g ) � σ � transvections The main results are Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4 and Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In order to state Propo- sition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4, we need the following notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Let δ : H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) → H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) be the Poincar´e duality map, given explicitly by γ �→ ⟨−, γ⟩, where ⟨−, −⟩ : H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) × H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) → Z is the algebraic intersection form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We use ˆδ denote the composition ˆδ : H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) δ−→ H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) �→ AUT � π1(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This map is given explicitly by ˆδ(γ)(w) = w · z⟨[ ¯w],γ⟩, where ¯w is the image of w under π1(Xk g ) → π1(Sg) and [ ¯w] ∈ H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) is the corresponding homology class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix a basepoint ⋆ ∈ Sg,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Recall that we have fixed a standard generating set {αi, βi} of π1(Sg,1, ⋆) ∼= F2g so that c := � i[αi, βi] is a loop around the puncture ∗ of Sg,1 = Sg \\ {∗}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Define (13) Π : π1(Sg,1, ⋆) → π1(Sg, ∗) by γ �→ ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='¯ϵ, where ϵ is a fixed arc from ∗ to ⋆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 8 LEI CHEN AND BENA TSHISHIKU Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix t ∈ π1(Sg, ∗), and let Push(t) ∈ Mod(Sg,1) ∼= Out∗(F2g) be the point-pushing mapping class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' If ˜t ∈ π1(Sg,1, ⋆) is any lift of t (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Π(˜t) = t), then (14) σ � Push(t) � = Cι˜t ◦ ˆδ([kt]), Here Cx denotes conjugation by x, and the maps ι : F2g → π1(Xk g ) and σ : Out∗(F2g) → AUT � π1(Xk g ) � are defined in (10) and (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' As a sanity check, observe that Cι˜t does not depend on the choice of lift ˜t because any two lifts differ by an element of the normal closure of c in π1(Sg,1, ⋆) = F2g, and conjugation by any such element is trivial on π1(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' It suffices to prove the lemma for t ∈ π1(Sg, ∗) that are repre- sented by a non-separating simple closed curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' To see this, first note that π1(Sg, ∗) is generated by these curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Furthermore, the groups Inn � π1(Xk g ) � and H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) commute in Aut � π1(Xk g ) � , so � Cι˜t1 ◦ ˆδ([t1]) � � Cι˜t2 ◦ ˆδ([t2]) � = Cι(˜t1∗˜t2) ◦ ˆδ([t1 ∗ t2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Assume now that t ∈ π1(Sg, ∗) is represented by a non-separating simple closed curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' After an isotopy, we can assume that t contains ϵ as a sub-arc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Choose ˜t as pictured in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' ∗ ⋆ t ˜t ϵ Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A small regular neighborhood of a loop representing t ∈ π1(Sg, ∗) and a lift ˜t ∈ π1(Sg,1, ⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We want to show that σ � Push(t) � (w) = � Cι˜t ◦ ˆδ([t]) � (w) for each w ∈ π1(Xk g ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Since this is obviously true for w = z, it suffices to show this equality for w = ι(s) for s ∈ π1(Sg,1, ⋆);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' furthermore, it suffices to show the equality on any generating set of π1(Sg,1, ⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We use the (infinite) generating set consisting of curves of one of the forms pictured in Figure 2 (the intersection of these curves with the annulus around t has one component).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Note that Push(t) fixes the basepoint ⋆, so we can compute the action of Push(t) on s ∈ π1(Sg,1, ⋆).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We compute the action of Push(t) on the elements in Figure 2 as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' See Figure 3 for an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' s1 �→ (˜t)−1s1˜tc−1 and s2 �→ (˜t)−1s2˜t and s3 �→ c(˜t)−1s3˜tc−1 and c �→ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This proves that, for example, that σ � Push(t) � (ιs1) = (ι˜t)−1(ιs1)(ι˜t)z−k = � Cι˜t ◦ ˆδ([kt]) � (ιs1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We conclude similarly for the generators s2, s3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This proves the desired formula for σ � Push(t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' □ MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE 9 c s1 s2 s3 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The group π1(Sg,1, ⋆) is generated by ˜t and loops of the form pictured above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Push(t)(s1) Push(t)(s2) Push(t)(s3) Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Action of point-pushing about t on the loops in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The curve c is fixed up to isotopy (up to isotopy Push(t) is the identity on a neighborhood of t that contains c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The following corollary is an immediate consequence of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Consider the composition (15) Ψ : AUT � π1(Sg) � σ−→ AUT � π1(Xk g ) � → OUT � π1(Xk g ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The restriction of Ψ to π1(Sg) ∼= Inn � π1(Sg) � factors as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' π1(Sg) AUT � π1(Sg) � H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z) OUT � π1(Xk g ) � � conjugation � Ψ � kδ ◦ ab � transvections Here ab denotes the abelianization map π1(Sg, ∗) → H1(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proof of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Using the isomorphisms between mapping class groups and automorphism groups, the desired diagram is equivalent to the following one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 1 π1(Sg)ab AUT � π1(Sg) � /π′ OUT � π1(Sg) � 1 1 Hom(π1(Sg), Z) OUT � π1(Xk g ) � OUT � π1(Sg � ) 1 � � � � � � � � � kδ � The map Ψ in (15) descends to the middle vertical map and restricts to the left vertical map by Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The fact that σ is a section (Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1) implies that the middle 10 LEI CHEN AND BENA TSHISHIKU vertical map descends to the identity map on OUT � π1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' When k = 1, the middle vertical map is an isomorphism by the five lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This concludes the proof of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Spectral sequence computation In this section we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This is achieved by two different computations using the Lyndon–Hochschild–Serre (LHS) spectral sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Recall that this spectral sequence takes input a short exact sequence of groups 1 → N → G → Q → 1 and a G-module A, has E2 page Ep,q 2 = Hp� Q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Hq(N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A) � , and converges to Hp+q(G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For both computations we use the Birman exact sequence, but with different choices of the module A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Notational note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' To simplify the notation, we use the convention that cohomology groups have Z coefficients unless otherwise specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Euler class computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Our goal in this section is to prove Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 below, which implies Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fix g ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Let euk be the Euler class of the extension (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Then euk = k eu1, and eu1 has order 2g − 2 in H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The relation euk = k eu1 already follows from Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Indeed, choosing a set- theoretic section for the sequence in the top row of the diagram in Theorem A gives a cocycle representative for euk that is k times the cocycle representative for e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Now we prove that eu1 generates a cyclic subgroup isomorphic to Z/(2g − 2)Z in H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Our method is to apply the LHS spectral sequence to the Bir- man exact sequence with the module A = H1(Sg).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Here Ep,q 2 ∼= Hp� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Hq(Sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A portion of the associated 5-term exact sequence is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 0 → H1� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � → H1� Mod(Sg,1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � A −→ Hom � H1(Sg), H1(Sg) �Mod(Sg) d0,1 2 −−→ H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � This sequence has been studied by Morita.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Morita [Mor85, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1] computes that the first term vanishes, so the map A is injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The group Hom � H1(Sg), H1(Sg) �Mod(Sg) is isomorphic to Z and generated the Poincar´e duality isomorphism δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Morita [Mor85, proof of Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4] shows that the image of A is (2g − 2)Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Consequently, the differential d0,1 2 descends to an injection Z/(2g − 2)Z → H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' It remains to show that d0,1 2 sends a generator to eu1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The differential d0,1 2 is the transgression;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [NSW08, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='6, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' By standard knowledge of the transgression applied to our situation, we find that d0,1 2 sends a generator to δ∗(eu), where eu is the Euler class of the extension (2), and δ∗ : H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � → H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � is the isomorphism induced by the Poincar´e duality isomorphism δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' (For this property of the transgression, see [NSW08, §I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='6, Exercise 1-2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' While that reference is mainly concerned with finite or profinite groups, the analysis of the transgression contained given there applies more generally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=') Finally, we observe that δ∗(eu) = eu1 by Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' □ MAPPING CLASS GROUPS OF CIRCLE BUNDLES OVER A SURFACE 11 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Computation of H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Running the LHS spectral sequence with the trivial module A = Z, we prove that if g ≥ 8, then (16) H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � ∼= Z/(2g − 2)Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Combining this with Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1 proves Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The relevant portion of the spectral sequence appears below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 2 H0(Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H2(Sg)) 1 0 0 H2(Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg)) 0 Z 0 H2(Mod(Sg)) H3(Mod(Sg)) H4(Mod(Sg)) 0 1 2 3 4 d0,2 2 d2,1 2 The computations in the first column are easy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In the second column, Morita [Mor85, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1] computed H1� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � = 0 for g ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The other computation H1� Mod(Sg) � = 0 holds for g ≥ 1 because the abelianization of Mod(Sg) is finite [FM12, §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2-3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' According to [BT01, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='2], H∗ � Mod(Sg,1) � ∼= H∗ � Mod(Sg) � ⊗ Z[x] in degrees g ≥ 2∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Here x has degree 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Applying this and using the universal coefficients theorem, we conclude that Hi� Mod(Sg) � → Hi� Mod(Sg,1) � is an isomorphism if i = 3 and g ≥ 6, and it is injective if i = 4 and if g ≥ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Since the map H4� Mod(Sg) � → H4� Mod(Sg,1) � is injective, the differential d2,1 2 is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Since the map H3� Mod(Sg) � → H3� Mod(Sg,1) � is an isomorphism, the differential d0,2 2 is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Thus, the filtration of H2� Mod(Sg,1) � coming from the E∞ page gives an exact sequence 0 → H2� Mod(Sg) � → H2� Mod(Sg,1) � F−→ H0� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H2(Sg) � ∼= Z d0,2 2 −−→ H2� Mod(Sg);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' H1(Sg) � → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' For g ≥ 4, H2� Mod(Sg) � ∼= Z[e1] and H2� Mod(Sg,1) � ∼= Z[e, e1] and the map Z[e1] → Z[e, e1] is the obvious one e1 �→ e1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' We claim that F(e) = 2 − 2g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' From this we deduce the desired isomorphism (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' The claim follows from the fact that the extension that defines e, when restricted to the point-pushing subgroup π1(Sg) < Mod(Sg,1), gives the extension 1 → Z → π1(USg) → π1(Sg) → 1 where USg is the unit tangent bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' See [FM12, §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' This extension has Euler class 2 − 2g, so the claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' 12 LEI CHEN AND BENA TSHISHIKU References [Bro82] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Brown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Cohomology of groups, volume 87 of Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Springer- Verlag, New York-Berlin, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [BT01] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' B¨odigheimer and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Tillmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Stripping and splitting decorated mapping class groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' In Cohomological methods in homotopy theory (Bellaterra, 1998), volume 196 of Progr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', pages 47–57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Birkh¨auser, Basel, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [Che19] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' On the nonrealizability of braid groups by homeomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 23(7):3735– 3749, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [CR77] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Conner and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Raymond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Deforming homotopy equivalences to homeomorphisms in aspher- ical manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 83(1):36–85, 1977.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [CS22] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Chen and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Salter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Global fixed points of mapping class group actions and a theorem of Markovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 15(3):1311–1324, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [FM12] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Farb and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Margalit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A primer on mapping class groups, volume 49 of Princeton Mathematical Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Princeton University Press, Princeton, NJ, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [Mar07] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Markovic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Realization of the mapping class group by homeomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Invent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 168(3):523–566, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [McC91] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' McCullough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Virtually geometrically finite mapping class groups of 3-manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Differential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 33(1):1–65, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [Mor85] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Morita.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Family of Jacobian manifolds and characteristic classes of surface bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Japan Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', 61(4):112–115, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [NSW08] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Neukirch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Schmidt, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Wingberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Cohomology of number fields, volume 323 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci- ences].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Springer-Verlag, Berlin, second edition, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [Sou10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Souto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' A remark on the action of the mapping class group on the unit tangent bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Fac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Toulouse Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' (6), 19(3-4):589–601, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' [Wal68] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Waldhausen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' On irreducible 3-manifolds which are sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' (2), 87:56– 88, 1968.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=' Lei Chen, Department of Mathematics, University of Maryland, 4176 Campus Drive, Col- lege Park, MD 20742, USA, chenlei@umd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='edu Bena Tshishiku, Department of Mathematics, Brown University, 151 Thayer St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content=', Provi- dence, RI, 02912, USA, bena tshishiku@brown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE5T4oBgHgl3EQfAA5y/content/2301.05375v1.pdf'} diff --git a/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf b/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..74b251d8dcbb2f54c92c0d873189fa5b614c7d3c --- /dev/null +++ b/TdAzT4oBgHgl3EQfJfuh/content/2301.01081v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:36d9663a9850722a2226bc157842e7dfa5e2cb24601f7229290a31eb11989fe2 +size 3779916 diff --git a/TdAzT4oBgHgl3EQfJfuh/vector_store/index.pkl b/TdAzT4oBgHgl3EQfJfuh/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c96e2e74fa1a2d295e6b7231ea24657d0813fb38 --- /dev/null +++ b/TdAzT4oBgHgl3EQfJfuh/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:488b1c83a31f48558a97b091f83ee460ef17f45d0f956661e31720b3ca2ddecb +size 158656 diff --git a/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/2301.02941v1.pdf.txt b/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/2301.02941v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..868b94ee0b90b9532481904df369f22a3190a65f --- /dev/null +++ b/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/2301.02941v1.pdf.txt @@ -0,0 +1,1005 @@ +arXiv:2301.02941v1 [math.AG] 7 Jan 2023 +DUAL EXCEPTIONAL COLLECTIONS ON LAGRANGIAN GRASSMANNIANS +ANTON FONAREV +Abstract. We construct graded left dual exceptional collections to the exceptional collections generating +the blocks of Kuznetsov and Polishchuk on Lagrangian Grassmannians. As an application, we find explicit +resolutions for some natural irreducible equivariant vector bundles. +1. Introduction +Derived categories of varieties are among the central objects in modern algebraic geometry. A skeptical +reader might complain that the very notion of the derived category is too abstract, and they might have +a point. However, since the pioneering work of Beilinson [1], derived categories have become a great +computational tool. Nowadays one would say that Beilinson constructed a full exceptional collection in +the bounded derived categories of coherent sheaves on projective spaces. +The following analogy is commonly used to explain the computational power of exceptional collections. +Given a finite dimensional real vector space V with a positive definite symmetric bilinear form ⟨−, −⟩, one +can find an orthonormal basis. That is, a basis consisting of vectors (v1, v2, . . . , vn) such that (i) ⟨vi, vi⟩ = 1 +for all i = 1, . . . , n and (ii) ⟨vi, vj⟩ = 0 whenever i ̸= j. The first condition says that the vectors are +unit vectors, while the second condition is the orthogonality condition. Given such a basis, every vector +v ∈ V can be easily decomposed with respect to our basis: +(1) +v = ⟨v, v1⟩v1 + ⟨v, v2⟩v2 + · · · + ⟨v, vn⟩vn. +Let us now relax some of the conditions; for instance, symmetry. We still want a basis which consists of +unit vectors, but we have to modify the orthogonality condition (ii). Let us say that a basis (v1, v2, . . . , vn) +is semiorthonormal if (i) ⟨vi, vi⟩ = 1 for all i = 1, . . . , n and (ii) ⟨vi, vj⟩ = 0 whenever i > j. +One +obviously needs and adjustment to the formula (1). Indeed, in (1) we explicitly used the fact that under +the isomorphism V ∗ ∼ +−→ V given by the form ⟨−, −⟩ the dual basis (v1, . . . , vn) maps back to (v1, . . . , vn). +Since we actually have two isomorphisms this time, V → V ∗, v �→ ⟨v, −⟩ and V → V ∗, v �→ ⟨−, v⟩, let us +consider the second one and assume that its inverse maps vi to ui ∈ V . That is, we have +⟨vi, uj⟩ = δij +for all 1 ≤ i, j ≤ n. +The vectors u1, . . . , un obviously form a basis, and for any v ∈ V we have the desired formula +(2) +v = ⟨v, u1⟩v1 + ⟨v, u2⟩v2 + · · · + ⟨v, un⟩vn. +What is less immediate, the vectors (un, un−1, . . . , u1) (remark the reverse order) form an orthonormal +basis called the left dual to (v1, v2, . . . , vn). +One rather indirect way to see that the latter holds is via mutations. Consider a semiorthonormal pair +(u, v): that is, ⟨u, u⟩ = ⟨v, v⟩ = 1 and ⟨v, u⟩ = 0. Let us define a new vector Luv = v − ⟨u, v⟩u, which is +called the left mutation of v through u. A simple calculation shows that (Luv, u) is a semiorthonormal +pair. As the name suggests, there is a sibling to the left mutation procedure: if one puts Rvu = u−⟨u, v⟩v, +which is called the right mutation of u through v, then the pair (v, Rvu) is semiorthonormal. It is a very +nice exercise in linear algebra to check that left and right mutations of adjacent elements define an action +This work was supported by the Russian Science Foundation under grant no. 19-11-00164, https://rscf.ru/en/project/19- +11-00164/. +1 + +of the braid group on n strands on the set of all semiorthonormal bases. Moreover, the left dual basis to +a semiorthonormal basis (v1, v2, . . . , vn) is given by +(3) +Lv1Lv2 · · · Lvn−1vn, Lv1Lv2 · · · Lvn−2vn−1, . . . , Lv2v1, v1. +We refer the reader to [2] for further insights and some interesting properties of this action. +The linear-algebraic picture translates to triangulated categories in the following way. Instead of a +vector space we consider a k-linear triangulated category T , while we treat Ext• +T (−, −) as a kind of +bilinear form. Then one says that an object E ∈ T is exceptional if Hom(E, E) = k and Exti(E, E) = 0 +for all i ̸= 0. A collection of objects (E1, E2, . . . , En) is called exceptional if every Ei is an exceptional +object and Ext•(Ei, Ej) = 0 for all i > j. Finally, a collection is called full if it generates the category in +a sense that no proper strictly full triangulated subcategory of T contains all Ei. If (E1, E2, . . . , En) is +a full exceptional collection in T , we will write T = ⟨E1, E2, . . . , En⟩. +The analogy with semiorthonormal bases should be clear by now. Assume that T has a full exceptional +collection (E1, E2, . . . , En) (which is rarely the case). What is most interesting is that not only every +object in T can be obtained from the finite set of Ei’s by iteratively taking shifts and cones, but this +procedure can be made rather explicit. +Recall that the decomposition of every vector in terms of a +given semiorthonormal basis could be done with the help of a left dual semiorthonormal basis by (2). +Let us mimic its definition in the categorical case. +Namely, let us say that a collection of objects +(∨En, ∨En−1, . . . , ∨E1) is left dual to (E1, E2, . . . , En) if Ext•(Ei, ∨Ej) = 0 for i ̸= j and Ext•(Ei, ∨Ei) = k +for all i = 1, . . . , n. It should not surprise the reader at this point that (∨En, ∨En−1, . . . , ∨E1) is again an +exceptional collection, and it is full whenever the original one is. Moreover, there is an action of the braid +group on n strands on the set of all exceptional collections of length n in T , and a formula similar to (3) +determines the left dual collection. Finally, instead of the decomposition (2) one has a spectral sequence +which computes cohomological functors applied to objects in T , which we will talk about in Section 2.1. +The bridge between exceptional collections and semiorthonormal bases is actually rather simple. Given +a sufficiently nice T (say, we assume that Ext•(E, F) is finite-dimensional for all E, F ∈ T ) with a full +exceptional collection (E1, E2, . . . , En), one checks that the classes of Ei form a basis in the Grothendieck +group K0(T ). In particular, the length of any full exceptional collection equals the rank of the latter, +which should a posteriori be a free finitely generated abelian group. If one takes � +i(−1)i dimk Exti(−, −) +as the bilinear form, exceptional collections become “categorifications” of the corresponding semiorthonor- +mal bases. +The first example of a full exceptional collection was given in [1], in which Beilinson showed that +Db(Pn) = ⟨O, O(1), . . . , O(n)⟩, where Db stands for the bounded derived category of coherent sheaves. +Interestingly enough, he also showed that the left dual is given by the collection ⟨Ωn(n), Ωn−1(n − +1), . . . , Ω1(1), O⟩. +A long-standing conjecture states that the bounded derived category of coherent +sheaves on a rational homogeneous variety admits a full exceptional collection. Though a lot of work +has been done over the years, the conjecture has been established in a very limited number of cases. +Say, for classical groups of type ABCD and Picard rank 1 the problem was fully resolved only for +Grassmannians [6], quadrics [7], symplectic and orthogonal Grassmannians of planes [8, 10], Lagrangian +Grassmannians [4], and in some sporadic cases. We refer the reader to [9] for further details. +Since many explicit constructions realize varieties as subvarieties in Grassmannians, exceptional collec- +tions on the latter become an important computational tool. One of our favorite recent examples can be +found in [11], where the authors use exceptional collections to study moduli of Ulrich bundles. In order +to use the tool’s maximum power, it is important to know the dual collection, and finding one is a task of +its own. In the present paper we find exceptional collections of Lagrangian Grassmannians dual to those +constructed in [4]. We further use them to provide explicit resolutions of some very natural irreducible +vector bundles. +2 + +From now on let we will be interested in the bounded derived category of coherent sheaves on LGr(n, V ), +the Lagrangian Grassmannian of isotropic subspaces of dimension n in a fixed 2n-dimensional vector +space V over an algebraically closed field k equipped with a non-degenerate symplectic form. Excep- +tional collections of maximal length (equal to the rank of the Grothendieck group) were constructed on +all symplectic and orthogonal Grassmannians by Kuznetsov and Polishchuk in [9]. All these collections +are conjecturally full; however, the latter was checked only for Lagrangian Grassmannians in [4]. The +construction of Kuznetsov and Polishchuk is rather indirect: they start with certain collections of ex- +ceptional irreducible vector bundles, called blocks, which naturally form an exceptional collection in the +equivariant derived category, then pass to dual collections within each block (again, in the equivariant +derived category). Each block must satisfy certain homological conditions which guarantee that the dual +collections become exceptional in the non-equivariant derived category. Most of the hard work in [9] +is related to checking that certain collections of irreducible equivariant vector bundles satisfy the block +condition, which is a rather difficult problem in representation theory. +While the block condition will be discussed in Section 2.2, let us explain why isotropic Grassmannians +are much harder than the classical ones. Full exceptional collections in the bounded derived categories of +Grassmannians were constructed by Kapranov [7], who naturally extended Beilinson’s method. Consider +the Grassmannian Gr(k, V ) of k-dimensional subspaces in a fixed N-dimensional vector space V over a +field k of characteristic zero. Denote by U the tautological rank k subbundle of the trivial bundle V ⊗ O. +Kapranov showed that +(4) +Db(Gr(k, V )) = +� +ΣλU∗ | λ ∈ Yk,N−k +� +, +where λ runs over the set of Young diagrams Yk,N−k, Σλ is the corresponding Schur functor, and the +order in this collection can be taken to be any linear order refining the partial inclusion order on the +diagrams. Moreover, he simultaneously constructed the (graded) left dual to this collection. The latter +is given by +(5) +Db(Gr(k, V )) = +� +ΣλT U⊥ | λ ∈ Yk,N−k +� +, +where U⊥ = (V/U)∗ and λT denotes the transposed diagram.1 The duality relation might seem a little +different from the one we described earlier: +(6) +Ext•(ΣλU∗, ΣµT U⊥) = +� +k[−|λ|], +if λ = µ, +0, +otherwise, +but this grading difference does not change much since the two definitions are equivalent up to shifts +in the derived category. Actually, the grading choice in (6) is favorable since the dual collection then +consists of vector bundles. +Since LGr(n, V ) is naturally embedded as a closed subvariety in Gr(n, V ), one can ask whether any +of elements of Kapranov’s collection restrict to exceptional vector bundles on LGr(n, V ). This is where +surprising things happen. It turns out that the only Young diagrams for which ΣλU∗ are exceptional are +λ ∈ Yn,1. These vector bundles are nothing but the exterior powers ΛiU∗, and there are only n of those, +while rk K0(LGr(n, V )) = 2n. Remark also that U⊥ restricts to U on LGr(n, V ). +The construction of Kuznetsov and Polishchuk produces for any λ ∈ Yh,n−h, 0 ≤ h ≤ n, an equivariant +non-irreducible (in general) vector bundle Eλ on LGr(n, V ) with the following properties. +First, Eλ +belongs to the subcategory of the derived category generated by ΣµU∗ for µ ⊆ λ. Second, the G = Sp2n- +equivariant groups Ext• +G(Eλ, ΣµU∗) = 0 for all µ ⊊ λ, while Ext• +G(Eλ, ΣλU∗) = k. A given diagram may +1A careful reader might wonder why we choose this extra transposition and not index the collection directly by YN−k,k, +as Kapranov does. After all, {λT | λ ∈ Yh,w} = Yw,h. Our choice becomes clear in Section 2.1, where we introduce our +grading convention for dual exceptional collections. +3 + +belong to various sets Yh,n−h, but the resulting bundle does not depend on the choice of h since the +previous conditions fully characterize it. The first nontrivial example of such a bundle is the universal +extension +0 → O → E2 → S2U∗ → 0. +Kuznetsov and Polishchuk showed that for any 0 ≤ h ≤ n the bundles +(7) +� +Eλ | λ ∈ Yh,n−h +� +form an exceptional collection in Db(LGr(n, V )). As in the case of Grassmannians, one can linearly order +them in any way compatible with the partial inclusion order on the corresponding Young diagrams. Let +us denote by Fλ the bundle dual (in the usual sense) to Eλ. +Theorem A (Theorem 3.1). The bundles +� +FλT | λ ∈ Yh,n−h +� +form a graded left dual exceptional col- +lection to (7). +We formulated Theorem A in terms of transposed diagrams in order to show the parallel between +our Lagrangian situation and the case of classical Grassmannians: compare the latter theorem with (4) +and (5) keeping in mind that U⊥ is isomorphic to U = (U∗)∗ on LGr(n, V ). +It is easy to see that the bundle ΣλU∗ belongs to the subcategory (7) whenever λ ∈ Yh,n−h. A nice +geometric description (as a matter of fact, two of them) was given for the bundles Fµ in [4]. Using this +description, one can compute the corresponding spectral sequences and get the following result as an +application of Theorem A (see Section 3.2 for the details). +Theorem B (Theorem 3.12). Let λ ∈ Yh,n−h for some 0 ≤ h ≤ n. Then there is an exact sequence of +vector bundles on LGr(n, V ) of the form +0 → +� +µ∈Bh(h+1) +Eλ/µ → · · · → +� +µt∈B2t +Eλ/µt → · · · → +� +µ2∈B4 +Eλ/µ2 → +� +µ1∈B2 +Eλ/µ1 → Eλ → ΣλU∗ → 0, +where B2t denotes the set of balanced diagrams with 2t boxes. +The paper is organized as follows. In Section 2 we collect all the preliminaries. It contains no new +material except, maybe, our convention for dual exceptional collections for exceptional collections indexed +by a graded partially ordered set (see Lemma 2.5). Section 3 contains our main results. That is, we +prove Theorems A and B, which are Theorems 3.1 and 3.12 respectively. +2. Preliminaries +Throughout the paper we work over a field k of characteristic zero. +2.1. Dual exceptional collections. In the present section we collect some preliminaries related to +(dual) exceptional collections. The material is well known to specialists; however, since we naturally work +with exceptional collections indexed by graded partially ordered sets, we introduce a certain convention +in the definitions. This convention seems rather natural, as we show in various examples. +2.1.1. Partially ordered sets. Recall that a partially ordered set (poset) P is a set equipped with a binary +relation ⪯, called a partial order, satisfying the following three properties: +Reflexivity: x ⪯ x for all x ∈ P. +Antisymmetry: if x ⪯ y and y ⪯ x, then x = y for all x, y ∈ P. +Transitivity: is x ⪯ y and y ⪯ z, then x ⪯ z for all x, y, z ∈ P. +4 + +Elements x and y are called comparable if either x ⪯ y or y ⪯ x. +If every two elements in P are +comparable, one calls P linearly ordered. If x ⪯ y and x ̸= y, one usually writes x ≺ y. If P is partially +ordered, its dual P◦ is the set underlying P equipped with the converse relation: x ⪯ y in P◦ if and only +if y ⪯ x in P. +Let x and y be elements of a poset P. One says that y covers x, written x ⋖ y, if x ≺ y and there +is no element z such that x ≺ z ≺ y. A grading function on P is a map ρ : P → Z with the following +properties: +• if x ≺ y then ρ(x) < ρ(y), +• if x ⋖ y then ρ(y) = ρ(x) + 1. +A poset equipped with a grading function is called a graded poset. +Of course, not all posets can be +turned into graded ones. We will be mainly interested in finite posets. If P is finite and admits a grading +function, there is a rather natural choice for such a function: there exists a unique grading function | − | +with the property that |x| = 0 whenever x is a minimal element (that is, there is no y such that y ≺ x). +In the following by a graded poset we mean a finite poset equipped with this grading function. +Example 2.1. Let Yh,w denote the set of Young diagrams of height at most h and width at most w. This set +can be identified with the set of integer sequences (λ1, λ2, . . . , λh) such that w ≥ λ1 ≥ λ2 ≥ · · · ≥ λh ≥ 0. +There is a natural partial order on Yh,w given by inclusion of diagrams: λ ⪯ µ if λi ≤ µi for all i = 1, . . . , h. +With this partial order the poset Yh,w is graded, and |λ| = λ1 + λ2 + · · · + λh equals the number of boxes +in the diagram λ. +2.1.2. Exceptional collections. Let T be a k-linear triangulated category. +An object E ∈ T is called +exceptional if Hom(E, E) = k and Extt(E, E) = Hom(E, E[t]) = 0 for all t ̸= 0. Let P be a poset. An ex- +ceptional collection indexed by P is a collection of exceptional objects {Ex}x∈P such that Ext•(Ex, Ey) = 0 +unless x ⪯ y. We denote by ⟨Ex|x ∈ P⟩ the smallest strictly full triangulated subcategory in T con- +taining all Ex. If P is finite, one can always refine the order so that it becomes isomorphic to the poset +{1, 2, . . . , l}. Under this isomorphism we get the usual definition of an exceptional collection: that is, +a collection of exceptional objects (E1, E2, . . . , El) such that Ext•(Ej, Ei) = 0 for all l ≥ j > i ≥ 1. +Example 2.2. Let V be an n-dimensional vector space over k. Consider the Grassmannian Gr(k, V ), and +let U denote the tautological rank k subbundle in the trivial bundle V . Kapranov showed in [6] that the +bounded derived category of coherent sheaves Db(Gr(k, V )) admits a full exceptional collection indexed +by Yk,n−k: +Db(Gr(k, V )) = +� +ΣλU∗ | λ ∈ Yk,n−k +� +, +where Σλ denotes the Schur functor associated with λ.2 The fact that this collection is indexed by a poset +gives more information about orthogonality of different objects: if λ and µ are incomparable (that is, +neither is contained in the other), then both Ext•(ΣλU∗, ΣµU∗) = 0 and Ext•(ΣµU∗, ΣλU∗) = 0. +2.1.3. Mutations and duality. Let (E, F) be an exceptional pair in T . +The left mutation LEF of F +through E is defined by the distinguished triangle +LEF → Ext•(E, F) ⊗ E ev +−→ F → LEF[1], +where ev is the evaluation morphism. Similarly, define the right mutation RFE via the distinguished +triangle +RF E[−1] → E coev +−−−→ Ext•(E, F)∗ ⊗ F → RFE, +where coev is the coevaluation morphism. +One easily checks that both (LEF, E) and (F, RF E) are +exceptional pairs. Moreover, ⟨E, F⟩ = ⟨LEF, E⟩ = ⟨F, RF E⟩. +2Our convention for Schur functors is such that Σ(p) is isomorphic to the p-th symmetric power Sp, so Σ(1,1) ≃ Λ2. +5 + +Example 2.3. Consider the Grassmannian Gr(k, V ). Then the structure sheaf and the dual tautological +bundle form an exceptional pair (O, U∗). One quickly checks that LOU∗ ≃ U⊥, where U⊥ = (V/U)∗. +Given an exceptional collection (E1, E2, . . . , El), mutations of adjacent elements define an action of +the braid group Brl on l strands on the set of exceptional collections in ⟨E1, E2, . . . , El⟩, see [3]. For a +fixed collection there are two important elements in the orbit. Namely, the dual collections. The left dual +collection to (E1, E2, . . . , El) is defined as +(LE1LE2 · · · LEl−1El, LE1LE2 · · · LEl−2El−1, . . . , LE1E2, E1). +We denote it by (E∨ +l , E∨ +l−1, . . . , E∨ +1 ). The left dual exceptional collection can be fully characterized by +the following three properties: +(1) E∨ +i ∈ ⟨E1, E2, . . . , El⟩ for all 1 ≤ i ≤ l, +(2) Ext•(Ei, E∨ +j ) = 0 for all i ̸= j, +(3) Ext•(Ei, E∨ +i ) = k[−i + 1] for all 1 ≤ i ≤ l. +Example 2.4. The bounded derived category of the projective space P(V ) has a full exceptional collection +consisting of the line bundles ⟨O, O(1), . . . , O(n)⟩, where n is the dimension of V . Its left dual is given +by ⟨Ωn(n), Ωn−1(n − 1), . . . , Ω1(1), O⟩, where Ωi = ΛiΩ1 +P(V ). +Similarly, the right dual collection is defined as +(En, REnEn−1, REnREn−1En−2, . . . , REnREn−1 · · · RE2E1), +and will be denoted by (∨El, ∨El−1, . . . , ∨E1). It can be fully characterized by the following conditions: +(1) ∨Ei ∈ ⟨E1, E2, . . . , El⟩ for all 1 ≤ i ≤ l, +(2) Ext•(∨Ei, Ej) = 0 for all i ̸= j, +(3) Ext•(∨Ei, Ei) = k[−n + i] for all 1 ≤ i ≤ l. +Remark that in a given exceptional collection (E1, E2, . . . , El) one can replace any object Ei with its +shift Ei[t] for any integer t. For instance, one can introduce an extra shift in the definitions of the right +and left mutations. The first two defining conditions for the left and right dual collections will not change, +while the third condition will become slightly nicer: +Ext•(∨Ei, Ei) = Ext•(Ei, E∨ +i ) = k +for any 1 ≤ i ≤ l. +This convention is often reasonable, yet even in the case of the projective space, Example 2.4, the dual +collection will not consist of vector bundles while the original collection does. +Meanwhile, the definitions we have just given also have a downside. Imagine that (E, F) is a fully +orthogonal pair in T . Then LEF ≃ F[−1], while RFE ≃ E[1]. This is often inconvenient as well. We +propose the following lemma-definition, which is tailored to the case of an exceptional collection indexed +by a finite graded poset P. The reader will immediately check that once the collection is linearly ordered, +the left dual differs from the graded left dual by shifts of objects. +Lemma 2.5. Let ⟨Ex | x ∈ P⟩ be an exceptional collection indexed by a finite graded poset P. For any +y ∈ P there exists a unique (up to isomorphism) object E◦ +y ∈ ⟨Ex | x ∈ P⟩ such that +(1) Ext•(Ex, E◦ +y) = 0 for all x ̸= y, +(2) Ext•(Ey, E◦ +y) = k[−|y|]. +Moreover, the objects E◦ +y form an exceptional collection with respect to the opposite poset P◦, called the +graded left dual, and ⟨E◦ +y | x ∈ P◦⟩ = ⟨Ex | x ∈ P⟩. +Remark 2.6. If the poset P is linearly ordered, then the definition of the graded left dual agrees with the +definition of the left dual. +6 + +Example 2.7. In Example 2.2 we have seen that Db(Gr(k, V )) admits a full exceptional collection indexed +by the poset Yk,n−k: +Db(Gr(k, V )) = +� +ΣλU∗ | λ ∈ Yk,n−k +� +, +where U is the tautological rank k subbundle in V . In the same paper Kapranov showed that its graded +left dual is given by +Db(Gr(k, V )) = +� +ΣλT U⊥ | λ ∈ Yk,n−k +� +, +where U⊥ = (V/U)∗, and λT denotes the transpose diagram. +We leave the definition of the graded right dual to the reader, indicating that for the right dual the +grading function should be taken for the opposite poset. +2.1.4. Graded spectral sequence. As stated in the introduction, dual collections provide a particularly nice +computational tool. Let (E1, E2, . . . , El) be an exceptional collection in T . Recall that a cohomological +functor from T to an abelian category A is a functor F : T → A which takes distinguished triangles to +exact sequences. As usual, we denote by F i the composition F ◦ [i]. +Proposition 2.8 ([5, Section 2.7.3]). Let G ∈ ⟨E1, E2, . . . , En⟩. There is a spectral sequence with the +first page given by +(8) +Ep,q +1 += +� +i+j=q +Ext−i(G, E∨ +p+1)∗ ⊗ F j(Ep+1) +converging to F p+q(G). +We will be interested in the case when T = Db(A) is the bounded derived category of an abelian +category A (for instance, the bounded derived category of coherent sheaves on a smooth projective +variety), and F = H0 is the usual 0-th cohomology functor. Assume that the exceptional collection +(E1, E2, . . . , El) consists of pure objects (for instance, of coherent sheaves). Then the spectral sequence (8) +simplifies to +(9) +Ep,q +1 += Ext−q(G, E∨ +p+1)∗ ⊗ Ep+1 ⇒ Hp+q(G). +In the case of an exceptional collection indexed by a graded poset P the spectral sequence (9) becomes +(10) +Ep,q +1 += +� +x∈P, |x|=p +Ext−q(G, E◦ +x)∗ ⊗ Ex ⇒ Hp+q(G). +2.2. Exceptional collections on Lagrangian Grassmannians. Let V be a 2n-dimensional vector +space over k equipped with a non-degenerate skew-symmetric bilinear form. We denote by LGr(n, V ) the +Lagrangian Grassmannian of maximal isotropic subspaces in V , and by U the tautological rank n bundle +on LGr(n, V ). The Lagrangian Grassmannian comes with an action of the symplectic group G = Sp2n. +We denote by P the set of weakly decreasing integer sequences of length n: +P = {λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn}. +Given λ ∈ P, we denote by Σλ the corresponding Schur functor. We follow the convention under which +Σ(p,0,...,0) = Sp. +7 + +2.2.1. Exceptional blocks. It is well known that every equivariant irreducible vector bundle on LGr(n, V ) +is isomorphic to ΣλU∗ for some λ ∈ P. Moreover, these form an infinite full exceptional collection in the +equivariant derived category: +Db +G(LGr(n, V )) = +� +ΣλU∗ | λ ∈ P◦� +, +where P is treated as an infinite poset with the partial order given by +λ ⪯ µ +if and only if +λi ≤ µi for all i = 1, . . . , n. +Any subset S ⊆ P with the induced partial order produces an exceptional collection ⟨ΣλU∗ | λ ∈ S◦⟩. +If S is finite and graded, we denote by +⟨Eλ | λ ∈ S⟩ +and +⟨Fλ | λ ∈ S⟩ +the graded right and left duals to ⟨ΣλU∗ | λ ∈ S◦⟩ respectively. +Kuznetsov and Polishchuk came up with a very simple3 condition under which the objects Eλ form an +exceptional collection in the non-equivariant category. +Definition 2.9 (See [9, Definition 3.1]). A subset S ⊂ P is called an exceptional block if for all λ, µ ∈ S +the canonical map +� +ν∈S +Ext• +G(ΣλU∗, ΣνU∗) ⊗ Hom(ΣνU∗, ΣµU∗) → Ext•(ΣλU∗, ΣµU∗) +is an isomorphism. +In plain words the block condition says that every extension between a pair of objects can be de- +composed as a sum of equivariant extensions followed by homomorphisms. What is rather surprising is +that even though the original objects ΣλU∗ for λ ∈ S almost never form an exceptional collection in the +non-equivariant category, the right dual do form an exceptional collection in the non-equivariant category +as long as S is a block. +Proposition 2.10 (See [9, Proposition 3.9]). If S ⊂ P is an exceptional block, then the corresponding +right dual objects form an exceptional collection in Db(LGr(n, V )), +� +Eλ | λ ∈ S +� +⊂ Db(LGr(n, V )). +It turns out that it is natural to call exceptional blocks right exceptional blocks, and that it is useful +to consider left exceptional blocks as well. +Definition 2.11 (See [4, Remark 2.12]). A subset S ⊂ P is called an left exceptional block if for all +λ, µ ∈ S the canonical map +Hom(ΣλU∗, ΣνU∗) ⊗ +� +ν∈S +Ext• +G(ΣνU∗, ΣµU∗) → Ext•(ΣλU∗, ΣµU∗) +is an isomorphism. +Recall that both the equivariant and the non-equivariant categories have the duality functor, which +is an anti-autoequivalence. Since passing to duals takes exceptional collections to exceptional collections +(with respect to the opposite order) and left and right (graded) dual collections to right and left dual +collections respectively, we immediately see that S is a right exceptional block if and only if −S is a left +exceptional block, where −S = {−λ | λ ∈ S} and −λ = (−λn, −λn−1, . . . , −λ1). The latter follows from +the isomorphism (ΣλU∗)∗ ≃ Σ−λU∗. The dual statement to Proposition 2.10 is the following. +3Simple, yet hard to check. +8 + +Proposition 2.12 (See [9, Proposition 3.9]). If S ⊂ P is a left exceptional block, then the corresponding +left dual objects form an exceptional collection in Db(LGr(n, V )), +� +Fλ | λ ∈ S +� +⊂ Db(LGr(n, V )). +The following theorem uses the term semiorthogonal decomposition. +Recall that full triangulated +subcategories T1, T2 ⊆ T are called semiorthogonal, one writes T1 ⊆ T ⊥ +2 , if HomT (X2, X1) = 0 for all +X1 ∈ T1 and X2 ∈ T2. A semiorthogonal decomposition of a category T is a collection of full triangulated +subcategories T1, T2, . . . , Tr such that Ti ⊆ T ⊥ +j +for all 1 ≤ i < j ≤ r and T is the smallest strictly +full triangulated subcategory containing all Ti. +The notation for a semiorthogonal decomposition is +T = ⟨T1, T2, . . . , Tr⟩. Finally, for a full triangulated subcategory B ∈ Db(LGr(n, V )) we denote by B(i) +its image under the autoequivalence given by tensor product with O(i). +Theorem 2.13 (See [9, Theorem 9.2] and [4, Theorem 4]). The set +Bh = {λ ∈ P | n − h ≥ λ1 ≥ λ2 ≥ · · · ≥ λh ≥ λh+1 = · · · = λn = 0} +is a right exceptional block for all h = 0, . . . , n. Moreover, there is semiorthogonal decomposition +(11) +Db(LGr(n, V )) = ⟨B0, B1(1), B2(2), . . . , Bn(n)⟩ , +where Bh = ⟨Eλ | λ ∈ Bh⟩. +Let us make a few remarks. First, Bh = Yh,n−h, where Yh,w denotes the set of Young diagrams of +height at most h and width at most w. Second, the object Eλ for λ ∈ Yh,n−h has the following homological +description: +Eλ ∈ ⟨ΣµU∗ | µ ⊆ λ⟩ ⊂ Db +G(LGr(n, V )) +and +Ext• +G(Eλ, ΣµU∗) = +� +k[−|λ|] +if µ = λ, +0 +if µ ⊊ λ. +In particular, it depends only on λ, one only needs to know that λ ∈ Yh,n−h for some 0 ≤ h ≤ n. Finally, +by using the duality anti-autoequivalence we get a semiorthogonal decomposition +Db(LGr(n, V )) = ⟨Cn(−n), Cn−1(−n + 1), . . . , C1(−1), C0⟩ , +where Ch = ⟨Fλ | λ ∈ −Bh⟩ and Fλ for λ ∈ Yh,n−h can be characterized by the following properties: +Fλ ∈ ⟨ΣµU | µ ⊆ λ⟩ ⊂ Db +G(LGr(n, V )) +and +Ext• +G(ΣµU, Fλ) = +� +k[−|λ|] +if µ = λ, +0 +if µ ⊊ λ. +2.2.2. Geometric constructions. We will need one of the two geometric constructions for the objects Fλ +obtained in [4]. Since the cases h = 0 and h = n are trivial (B0 and Bn consist of a single weight +λ = (0, 0, . . . , 0), and Fλ = Eλ = O), let us fix 0 < h < n. Consider the diagram +(12) +IFl(n − h, n; V ) +LGr(n, V ) +IGr(n − h, V ) +p +q +and denote by W the universal rank n−h bundle on IGr(n−h, V ) as well as its pullback on IFl(n−h, n; V ). +Lemma 2.14 ([4, Lemma 3.4]). The bundles ⟨ΣµT W∗ | µ ∈ Yh,w−h⟩ form an exceptional collection in +the non-equivariant derived category Db(IGr(n − h, V )). +9 + +The exceptional collection from the previous lemma is indexed by a graded poset, so we can pass in +the non-equivariant category to its graded left dual, denoted by ⟨Gλ | λ ∈ Y◦ +h,w−h⟩, see [4, Definition 3.5]. +The graded dual exceptional collection conditions are +(13) +Gλ ∈ ⟨ΣµW∗ | µ ∈ Yn−h,h⟩ +and +Ext•(ΣµW∗, Gλ) = +� +k[−|λ|] +if µ = λT , +0 +if µ ∈ Yn−h,h and µ ̸= λT . +Proposition 2.15 ([4, Proposition 3.6]). The object Fλ is isomorphic to p∗q∗Gλ. +3. Main results +We continue to use the notation introduced in Section 2.2. +Our first goal is to prove the duality +statement. +3.1. Dual exceptional collections on Lagrangian Grassmannians. The first main result of the +paper is the following theorem, where we identify the posets Yh,n−h and Yn−h,h via transposition of +diagrams. +Theorem 3.1. Let 0 ≤ h ≤ n. Then the exceptional collection ⟨Fµ | µ ∈ Y◦ +n−h,h⟩ is the graded left dual +to ⟨Eλ | λ ∈ Yh,n−h⟩. That is, for µ ∈ Yn−h,h one has +Fµ ∈ ⟨Eλ | λ ∈ Yh,n−h⟩ +and +Ext•(Eλ, Fµ) = +� +k[−|λ|] +if µ = λT , +0 +if µ ∈ Yn−h,h and µ ̸= λT . +The proof of the preceding theorem will take the rest of this section. Our strategy is to compare the +objects Eλ with the graded right dual exceptional collection to ⟨Fµ | µ ∈ Y◦ +n−h,h⟩. Since the cases h = 0 +and h = n are trivial (all the objects considered are isomorphic to O), we assume that 0 < h < n. +Lemma 3.2. Let ν ∈ Yh,n−h. The following categories coincide: +⟨Fµ | µ ⊆ νT ⟩ = ⟨Eλ | λ ⊆ ν⟩ = ⟨ΣλU∗ | λ ⊆ ν⟩, +where the latter is the smallest strictly full triangulated subcategory in Db(LGr(n, V )) containing the cor- +responding objects. +Proof. Since, the objects Eλ form a graded right dual exceptional collection to ⟨ΣλU∗ | λ ⊆ ν⟩ in +Db +G(LGr(n, V )), the second equality holds in Db +G(LGr(n, V )). Once we apply the forgetful functor from +Db +G(LGr(n, V )) to Db(LGr(n, V )), we see that the same equality holds in the non-equivariant derived +category.4 In a similar fashion one proves that +⟨Fµ | µ ⊆ νT ⟩ = ⟨ΣµU | µ ⊆ νT ⟩. +It remains to show that ⟨ΣµU | µ ⊆ νT⟩ = ⟨ΣλU∗ | λ ⊆ ν⟩, which follows from the structure of Kapranov’s +exceptional collection on Gr(n, V ) and its dual, see [4, Lemma 3.7]. +□ +Next, we need another very simple purely categorical statement. +Let T ′ = ⟨Wx | x ∈ P⟩ be a +triangulated category generated by a graded full exceptional collection. Denote by ⟨Gx | x ∈ P◦⟩ its +graded left dual. Assume F : T ′ → T is an exact functor into another triangulated category T . Put +Fx = F(Gx) for all x ∈ P◦ and assume that ⟨Fx | x ∈ P◦⟩ form a graded exceptional collection in T . +Denote by ⟨ ˜Ex | x ∈ P⟩ its graded right dual. +Lemma 3.3. For all x, y ∈ P one has +Ext• +T ( ˜Ex, F(Wy)) ≃ Ext• +T ′(Wx, Wy). +4See also the discussion preceding Corollary 3.8 in [9]. +10 + +Proof. Since the category T ′ is saturated, the functor F has a left adjoint F ∗ (see [3]). In particular, +Ext• +T ( ˜Ex, F(Wy)) ≃ Ext• +T ′(F ∗( ˜Ex), Wy). +We claim that F ∗( ˜Ex) ≃ Wx. Indeed, for any y ∈ P one has +Ext• +T ′(F ∗( ˜Ex), Gy) ≃ Ext• +T ( ˜Ex, Fy) = +� +k[−|x|] +if x = y, +0 +otherwise. +The latter is precisely the defining condition of the graded right dual to ⟨Gx | x ∈ P◦⟩, which is ⟨Wx | +x ∈ P⟩. +□ +We apply the previous lemma in our situation. Consider the isotropic Grassmannian IGr(h, V ) with +its tautological bundle W. Fix ν ∈ Yh,n−h and consider the poset P = {λ | λ ⊆ ν}. By [4, Lemma 3.4] +the bundles ⟨ΣλW∗ | λ ∈ P⟩ form an exceptional collection in Db(IGr(h, V )). Since the pullback functor +q∗ : Db(IGr(h, V )) → Db(IFl(h, n; V )) is fully faithful, the bundles ⟨ΣλW∗ | λ ∈ P⟩ form an exceptional +collection in Db(IFl(h, n; V )), and its graded left dual coincides with the pullback of the graded left dual. +Put T ′ = ⟨ΣλW∗ | λ ∈ P⟩ ⊆ Db(IFl(h, n; V )), Wλ = ΣλW∗, Gλ = q∗Gλ, T = Db(LGr(n, V )), F = p∗, +where p∗ is the restriction of the pushforward functor under the projection p : IFl(h, n; V )) → LGr(n, V ). +Denote by ⟨ ˜Eλ | λ ∈ P⟩ the graded right dual exceptional collection to ⟨Fµ | µ ⊆ νT ⟩. +Since +Fλ = F(Gλ), see Proposition 2.15, we can apply Lemma 3.3. The conclusion is that Ext•( ˜Eλ, p∗ΣµW∗) ≃ +Ext•(ΣλW∗, ΣµW∗). A simple Borel–Bott–Weil computation shows that p∗ΣµW∗ ≃ ΣµU∗ for µ ⊆ ν +(see [4, Lemma A.4]). Finally, for µ ⊆ ν we get +(14) +Ext•( ˜Eν, ΣµU∗) = +� +k +if µ = ν, +0 +if µ ⊊ ν. +Let us recall that our goal is to prove that ˜Eν ≃ Eν. It was shown in [9, Corollary 3.8] that for all +λ, µ ∈ P there is an isomorphism +Ext•(Eλ, ΣµU∗) ≃ Hom(ΣλU∗, ΣµU∗). +It follows from the Lagrangian Borel–Bott–Weil theorem (see Section 3.2.2) that Hom(ΣλU∗, ΣλU∗) ≃ k +and that Hom(ΣλU∗, ΣµU∗) = 0 if λ ̸⊆ µ. We conclude that +(15) +Ext•(Eν, ΣµU∗) = +� +k +if µ = ν, +0 +if µ ⊊ ν. +Proof of Theorem 3.1. Let ν ∈ Yh,n−h. By Lemma 3.2 we know that ˜Eν, Eν ∈ ⟨ΣµU∗ | µ ⊆ ν⟩. Choose a +nontrivial element φ ∈ Ext•(Eν, ΣνU∗) ≃ k. It follows from the discussion preceding Corollary 3.8 in [9] +that one has an exact triangle in Db(LGr(n, V )) of the form +Eν +φ−→ ΣνU∗ → Cφ → Eν[1], +where the cone Cφ is in ⟨ΣµU∗ | µ ⊊ ν⟩. Applying the functor Hom( ˜Eν, −) to the previous triangle, +from (14) we get a morphism ψ : ˜Eν → T , which lifts a nontrivial ξ ∈ Hom( ˜Eν, ΣνU∗) ≃ k. Consider the +cone of ψ: +˜Eν +ψ−→ Eν → Cψ → ˜Eν[1], +On the one hand, Cψ ∈ ⟨ΣµU∗ | µ ⊆ ν⟩ since both ˜Eν, Eν belong to this subcategory. On the other hand, +it follows from the construction of ψ and formulas (14) and (15) that Ext•(Cψ, ΣµE∗) = 0 for all µ ⊆ ν. +Thus, Cψ = 0, and ψ is an isomorphism. +□ +11 + +Remark 3.4. Theorem 3.1 shows that the semiorthogonal decomposition (11) has a very nice symmetry. +Namely, if one applies the duality anti-autoequivalence followed by the twist by O(n), the decomposition +will map to itself, and the h-th block of the resulting decomposition will be generated by the objects +⟨(Eλ)∗ | λ ∈ Yn−h,h⟩. Since (Eλ)∗ ≃ Fλ, we see that the exceptional collection generating block n − h +maps to the graded left dual of the exceptional collection generating block h. +Since we have a graded left dual exceptional collection, there is a spectral sequence associated to it; +namely, spectral sequence (10) takes the following form. +Corollary 3.5. For any object G ∈ +� +Eλ | λ ∈ Yh,n−h +� +there is a spectral sequence of the form +(16) +Ep,q +1 += +� +λ∈Yh,n−h, |λ|=p +Ext−q � +G, FλT �∗ +⊗ Eλ ⇒ Hp+q(G). +In the following section we will use this spectral sequence to produce certain resolutions of natural +equivariant non-exceptional vector bundles. +3.2. Resolutions of irreducible equivariant bundles. In the final section we produce nice resolutions +for irreducible equivariant bundles on LGr(n, V ) of the from ΣλU∗ for λ ∈ Yh,w for some h + w = n in +terms of bundles of the form Eµ. +3.2.1. Balanced diagrams. Let λ be a Young diagram. Most commonly it is represented by a sequence of +integers λ = (λ1, . . . , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, where λi is the length of the i-th row of λ. +There is an alternative description via hook length. Let us say that λ has rank s5 if λs ≥ s and λs+1 ≤ s. +Graphically, s is the size of the largest square that fits into λ. There are exactly s boxes on the diagonal +of λ. Let ai and bi denote the number of boxes to the right of the i-th diagonal box (including itself) and +below it (including itself) respectively. Classically, ai and bi are called the arm and the leg length. One +could alternatively say that ai = λi − (i − 1) and bi = max{1 ≤ j ≤ k | λj ≥ i} − (i − 1). We will write +λ = (a1, a2, . . . , as|b1, b2, . . . , bs) if λ has rank s and its arm and leg length are ai and bj respectively. +Definition 3.6. A diagram λ = (a1, a2, . . . , as|b1, b2, . . . , bs) is called balanced if ai = bi + 1 for all +1 ≤ i ≤ s. The set of balanced diagrams with 2t boxes is denoted by B2t.6 +Proposition 3.7 ([12, Proposition 2.3.9]). Let E be a locally free module over a commutative ring of +characteristic zero. Then +Λt � +S2E +� +≃ +� +λ∈B2t +ΣλE. +Remark that (a1, a2, . . . , as|b1, b2, . . . , bs)T = (b1, b2, . . . , bs|a1, a2, . . . , as). In particular λ is symmetric, +λ = λT , if and only if ai = bi for all 1 ≤ i ≤ s. It now follows from Definition 3.6 that λ is balanced if +and only if µ = (λ1 − 1, λ2 − 1, . . . , λs − 1, λs+1, . . . , λk−1, λk) is symmetric. In such case the rank of µ +equals that of λ. +Let us now assume that µ = (µ1, µ2, . . . , µk) is of rank s. One can separate µ into three parts: a +square of size s, everything to the right of it, and everything below it. The latter two are nothing by the +diagrams µr = (µ1 − s, µ2 − s, . . . , µs − s) and µb = (µs+1, µs+2, . . . , µk). Under transposition the square +maps to itself, while µr and µb get interchanged and transposed: (µT )r = (µb)T and (µT )b = (µr)T . One +immediately concludes that µ is symmetric if and only if (µr)T = µb. +Combining what is written in the two preceding paragraphs, we obtain the following characterization +of balanced diagrams. +5One also says that λ has a Durfee square of size s. +6The number of boxes in a balanced diagram is always even. +12 + +Lemma 3.8. A diagram λ = (λ1, . . . , λk) of rank s is balanced if and only if +(λ1 − (s + 1), λ2 − (s + 1), . . . , λs − (s + 1))T = (λs+1, λs+2, . . . , λk), +where, in particular, we assume that λs ≥ s + 1. +3.2.2. Lagrangian Borel–Bott–Weil. The celebrated Borel–Bott–Weil theorem fully describes the coho- +mology of irreducible equivariant line bundles on rational homogeneous varieties. Since we only use it in +one place, we formulate a much simplified version of it and refer the interested reader to [12, Chapter 4]. +Given a weakly decreasing sequence λ ∈ Zn, we denote by −λ the sequence (−λn, −λn−1, . . . , λ1), +which is again weakly decreasing. The sum of weakly decreasing sequences is defined termwise. A weakly +decreasing sequence is called non-singular if the absolute values of all of its terms are positive and distinct. +If λ is non-singular, we denote by ∥λ∥ the sequence obtained by taking all the absolute values of the +terms of λ and writing them in decreasing order. If λ is non-singular, then ∥λ∥−ρ is a weakly decreasing +sequence with non-negative terms, where ρ = (n, n − 1, . . . , 1). The set of weakly decreasing sequences +µ ∈ Zn with non-negative terms is identified with the set of dominant weights of Sp(V ). We denote by +V ⟨µ⟩ the corresponding irreducible representation. For instance, if µ = (0, 0, . . . , 0), then V ⟨µ⟩ = k. +Theorem 3.9 (Lagrangian Borel–Bott–Weil). Let λ ∈ Zn be a weakly decreasing sequence. If −λ + ρ is +non-singular, then +H•(LGr(n, V ), ΣλU) = V ⟨∥−λ+ρ∥−ρ⟩[−ℓ], +where ℓ equals the number of negative terms in −λ + ρ plus the number of pairs 1 ≤ i < j ≤ n such that +(−λ + ρ)i + (−λ + ρ)j < 0. Otherwise, H•(LGr(n, V ), ΣλU) = 0. +3.2.3. Vanishing lemma. We will need the following result, which is definitely well known to experts. +A proof is included for the sake of completeness. +Lemma 3.10. Let λ ∈ Yn,n+1 be a Young diagram. +(1) If λ is not balanced, then H•(LGr(n, V ), ΣλU) = 0. +(2) If λ is balanced and |λ| = 2t, then H•(LGr(n, V ), ΣλU) = k[−t]. +Proof. The proof is a direct application of the Borel–Bott–Weil theorem stated in the previous Section. +In order to show (1), we need to show that the weight −λ + ρ is non-singular if and only if λ is balanced. +Consider the strictly decreasing sequence +(17) +− λ + ρ = (n − λn, (n − 1) − λn−1, . . . , 2 − λ2, 1 − λ1). +Since 0 ≤ λi ≤ n + 1 for all i, all the absolute values of the terms of −λ + ρ are between 0 and n. Recall +that −λ + ρ is non-singular if and only if all the absolute values of its terms are distinct and positive. +Assume the latter. Let s denote the rank of λ. Then the first n − s terms of (17) are positive, while the +last s terms are non-positive. Since the absolute values of the latter can not be zero (the weight being +non-singular), we conclude that λi ≥ s + 1 for i = 1, . . . , s. Put µi = λi − (s + 1). Then the sequence +(18) +(n − λn, (n − 1) − λn−1, . . . , (s + 1) − λs+1, s + µ1, (s − 1) + µ2, . . . , 1 + µs) +differs from (17) only in the last s terms: their signs have been changed, and their order has been reversed. +Remark that (λs+1, λs+2, . . . , λn) = λb ∈ Yn−s,s, while µ ∈ Ys,n−s. The sequence (18) is very well known +to anyone who has ever studied Kapranov’s work. It follows from [6, Section 2.7] that all the terms in (18) +are distinct if and only if λb = µT . The latter is equivalent, by Lemma 3.8, to saying that λ is balanced. +Let us turn to (2). Assume that λ is balanced. Since the absolute values of the terms of −λ + ρ take +all the values between 1 and n, by the Borel–Bott–Weil theorem the only nonzero cohomology will be +equal to k. We only need to determine the degree in which it sits, and the latter equals the number of +negative terms in −λ+ρ plus the number of pairs 1 ≤ i < j ≤ n such that (−λ+ρ)i +(−λ+ρ)j < 0. The +13 + +first number equals s, and we need to compute the second number. Remark that if 1 ≤ j ≤ n − s, then +both (−λ + ρ)i and (−λ + ρ)j are positive. Thus, we may assume that n − s < j ≤ n. If n − s < i ≤ n, +then any i < j ≤ n contributes to the count since both terms are negative. There are s(s−1) +2 +such pairs. +Finally, assume that 1 ≤ i ≤ n − s and n − s < j ≤ n. Since (−λ + ρ)j < 0, we need to determine when +(−λ + ρ)i < −(−λ + ρ)j. Such pairs correspond precisely to inversions in the sequence (18). It is easy +to show that the number of those equals |λb| (see [6, Section 2.7]). We conclude that for a balanced λ +the only nontrivial cohomology sits in degree s + s(s−1) +2 ++ |λb| = s(s+1) +2 ++ |λb|. It remains to recall that λ +consists of λb, µ = (λb)T , and a square of size s×(s+1), so |λ| = |λb|+|µ|+s(s+1) = 2|λb|+s(s+1). +□ +The following is a simple relative version of the previous lemma. As usual, all the functors are derived. +Corollary 3.11. Let X be smooth projective variety, and let V be a rank 2k symplectic bundle on X. +Consider the relative Lagrangian Grassmannian π : LGrX(n, V) → X, denote by U ⊂ π∗V the universal +bundle. Let ν ∈ Yk,k+1. +(1) If ν is not balanced, then π∗ΣλU = 0. +(2) If ν is balanced and |λ| = 2t, then π∗ΣλU = OX[−t]. +3.2.4. Skew Schur functors. Before we formulate and prove the second main result of the paper, we need +to say a few words about skew diagrams. Let λ and µ be two Young diagrams such that µ ⊆ λ. Then +one can define the skew Schur functor Σλ/µ, see [12, Section 2.1]. +If E is a free module over a commutative ring of characteristic zero and α and β are two Young +diagrams, one has a direct sum decomposition +ΣαE ⊗ ΣβE ≃ +� +|κ|=|α|+|β| +(ΣκE)⊕c(α,β;κ) , +where c(α, β; κ) are the celebrated Littlewood–Richardson coefficients. It turns out that one has a direct +sum decomposition for skew Schur functors controlled by the same coefficients. Namely, +(19) +Σλ/µE ≃ +� +|ν|+|µ|=|λ| +(ΣνE)⊕c(ν,µ;λ) , +see [12, Theorem 2.3.6]. +If c(ν, µ; λ) > 0, we will write ν ⊆ λ/µ. Remark that ν ⊆ λ/µ implies that ν ⊆ λ. In particular, +if λ ∈ Yh,w, then ν ⊆ λ/µ implies ν ∈ Yh,w. Inspired by decomposition (19), for a pair of diagrams +λ, µ ∈ Yh,w such that h + w = n and µ ⊆ λ, we put +(20) +Eλ/µ = +� +ν⊆λ/µ +(Eν)⊕c(ν,µ;λ) . +Extend the definition, as usual, by putting Eλ/µ = 0 for µ ⊈ λ. +3.2.5. Resolutions. We are ready to present the main application of Theorem 3.1. +Theorem 3.12. Let λ ∈ Yh,n−h for some 0 ≤ h ≤ n. There is an exact sequence of vector bundles on +LGr(n, V ) of the form +(21) +0 → +� +µ∈Bh(h+1) +Eλ/µ → · · · → +� +µt∈B2t +Eλ/µt → · · · → +� +µ2∈B4 +Eλ/µ2 → +� +µ1∈B2 +Eλ/µ1 → Eλ → ΣλU∗ → 0, +where B2t denotes the set of balanced diagrams with 2t boxes. +14 + +Proof. Since the vector bundle ΣλU∗ lies in the subcategory ⟨Eλ | λ ∈ Yh,n−h⟩, spectral sequence (16) is +applicable. Precisely, one has +(22) +Ep,q +1 += +� +µ∈Yh,n−h, |α|=p +Ext−q � +ΣλU∗, FαT �∗ +⊗ Eα ⇒ Hp+q(ΣλU∗). +Let us compute Ext•(ΣλU∗, Fµ) for µ = αT ∈ Yn−h,h using the isomorphism Fµ ≃ p∗q∗Gµ given in +Proposition 2.15, where p and q come from the diagram +IFl(h, n; V ) +LGr(n, V ) +IGr(h, V ) +p +q +(This is diagram (12) with h and n − h interchanged since µ ∈ Yn−h,h.) One has a sequence of isomor- +phisms +Ext•(ΣλU∗, Fµ) ≃ Ext•(ΣλU∗, p∗q∗Gµ) +≃ Ext•(ΣλU∗, q∗Gµ) +≃ H•(IFl(h, n; V ), ΣλU ⊗ q∗Gµ) +≃ H•(IGr(h; V ), q∗(ΣλU) ⊗ Gµ), +where the second isomorphism is given by adjunction, and the last one follows from the projection formula. +As usual, all the functors are derived. +Consider the spectral sequence associated with the composition of derived functors. Its second page +is given by +(23) +Hi(IGr(n − h; V ), Rjq∗(ΣλU) ⊗ Gµ) +⇒ +Hi+j(IGr(n − h; V ), q∗ΣλU ⊗ Gµ). +Let us compute Rjq∗(ΣλU). Recall that we denoted by W ⊂ U the universal flag on IFl(h, n; V ). There +is a filtration on ΣλU associated with the short exact sequence 0 → W → U → U/W whose associated +quotients are isomorphic to +(24) +� +ν⊆λ,|ν|=k +Σλ/νW ⊗ Σν(U/W). +Since for any ν ⊆ λ the bundle Σλ/νW is pulled back from IGr(h, V ), we conclude by the projection +formula that Rjq∗(Σλ/νW ⊗ Σν(U/W)) ≃ Σλ/νW ⊗ Rjq∗Σν(U/W). +In order to compute Σλ/νW ⊗ Rjq∗Σν(U/W), recall that IFl(h, n; V ) is the relative Lagrangian Grass- +mannian LGr(n−h, W⊥/W) over IGr(h, V ). Since ν ⊆ λ, one has ν ∈ Yh,n−h. If the height of ν is greater +than n − h, then Σν(U/W) = 0. Thus, Σλ/νW ⊗ Rjq∗Σν(U/W) = 0 unless ν ∈ Yn−h,n−h. Finally, if +ν ∈ Yn−h,n−h, then we are in the situation when we can apply Corollary 3.11. We conclude that if ν ⊆ λ, +then +(25) +Σλ/νW ⊗ R•q∗Σν(U/W) ≃ +� +Σλ/νW[−t] +if ν ∈ B2t, +0 +otherwise. +Using (25), we can compute Rj(ΣλU). Indeed, the spectral sequence associated with the filtration +with the quotients (24) degenerates in the first page, and +(26) +Rjq∗(ΣλU) ≃ +� +ν⊆λ,ν∈B2j +Σλ/νW. +15 + +We are ready to get back to the spectral sequence (23). +Hi(IGr(h; V ), Rjq∗(ΣλU) ⊗ Gµ) ≃ +� +ν⊆λ,ν∈B2j +Hi(IGr(h; V ), Σλ/νW ⊗ Gµ) +≃ +� +ν⊆λ,ν∈B2j +Exti(Σλ/νW∗, Gµ) +≃ +� +ν⊆λ,ν∈B2j +� +κ⊆λ/ν +Exti((ΣκW∗)⊕c(κ,ν;λ), Gµ), +where the last isomorphism comes from (19). Since κ ⊆ λ/ν implies that κ ⊆ λ, using (13) we see that +the last term in (26) is zero unless κ = µT and i = |µ|, and is isomorphic to k otherwise. Finally, +H|µ|(IGr(h; V ), Rjq∗(ΣλU) ⊗ Gµ) ≃ +� +ν∈B2j +k⊕c(ν,µ;λ), +where 2j = |ν| = |λ| − |µ|, are the only potentially nontrivial cohomology groups, and the spectral +sequence (23) degenerates. We conclude that +H|µ|+j(IGr(h; V ), q∗ΣλU ⊗ Gµ) = +� +ν∈B2j +k⊕c(ν,µ;λ). +Let us return to spectral sequence (22). From the computations above we know that the only nontrivial +terms in it are +(27) +E−|λ|+t,|λ|−2t +1 +≃ +� +ν∈B2t +� +µ⊆λ/ν +|µ|=|λ|−2t +(Eµ)⊕c(ν,µ;λ) = +� +ν∈B2t +Eλ/ν, +where the last equality comes from the definition in (20). We conclude that the spectral sequence contains +at most one non-trivial term in each diagonal. +As the spectral sequence converges to H•(Σλ), one must have a long exact sequence of the form +· · · → E−|λ|+t,|λ|−2t +1 +→ · · · → E−|λ|+2,|λ|−4 +1 +→ E−|λ|+1,|λ|−2 +1 +→ E−|λ|,|λ| +1 +→ ΣλU∗ → 0. +Since any balanced diagram contained in λ has height at most h, its width is at most h + 1 and +E−|λ|+t,|λ|−2t +1 += 0 for t > h(h+1)/2. It remains to use (27) to get the desired long exact sequence (21). +□ +Example 3.13. We present some examples of resolutions introduced in Theorem 3.12. +h = 1: In this case λ consists of just a single row of length at most n − 1. If λ = (0), then Eλ ≃ O. If +λ = (1), then Eλ ≃ ΣλU∗ = U∗. The interesting case is λ = (p) for some 2 ≤ p ≤ n − 1. Since (2) is the +only nontrivial balanced diagram of height one, and (p)/(2) = (p − 2), resolution (21) takes form +0 → E(p−2) → E(p) → SpU∗ → 0. +As a consequence, we see that E(p) has a filtration with the associated graded quotients of the form +Sp−2tU∗ for all 0 ≤ p ≤ p/2. +w = 1 : In this case λ consists of a column of length at most n − 1. Since there are no nontrivial +balanced diagrams of width 1, we conclude that for λ = (t)T there is an isomorphism Eλ ≃ ΛtU∗. +λ = (3, 1): This is the first case when resolution (21) has length greater than 1. Remark that (2) ∈ B2 +and (3, 1) ∈ B4 are the only balanced diagrams contained in λ. Moreover, the only nontrivial Littlewood– +Richardson coefficients for (3, 1)/(2) are c ((2), (2); λ) = c ((1, 1), (2); λ) = 1. Thus, one has a resolution +of the form +0 → O → E(2) ⊕ E(1,1) → E(3,1) → Σ(3,1)U∗ → 0. +Since E(1,1) ≃ Λ2U∗ and E(2) fits into a short exact sequence 0 → O → E(2) → S2U∗ → 0, with a little +bit of work one can show that Eλ is an extension of Σ(3,1)U∗ by S2U∗ and Λ2U∗. +16 + +References +[1] +A. A. Beilinson. “Coherent sheaves on P n and problems of linear algebra”. In: Functional Analysis +and Its Applications 12.3 (July 1978), pp. 214–216. doi: 10.1007/bf01681436. +[2] +A. I. Bondal. “A symplectic groupoid of triangular bilinear forms and the braid group”. In: Izvestiya +Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 68.4 (2004), pp. 19–74. issn: 1607-0046. doi: +10.1070/IM2004v068n04ABEH000495. +[3] +A. I. Bondal and M. M. Kapranov. “Representable functors, Serre functors, and reconstructions”. +In: Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 53.6 (1989), pp. 1183–1205, 1337. +issn: 0373-2436. doi: 10.1070/IM1990v035n03ABEH000716. +[4] +Anton Fonarev. “Full exceptional collections on Lagrangian Grassmannians”. In: International +Mathematics Research Notices. IMRN 2 (2022), pp. 1081–1122. issn: 1073-7928. doi: 10.1093/imrn/rnaa098. +[5] +A. L. Gorodentsev and S. A. Kuleshov. “Helix theory”. In: Moscow Mathematical Journal 4.2 +(2004), pp. 377–440, 535. issn: 1609-3321. doi: 10.17323/1609-4514-2004-4-2-377-440. +[6] +M. M. Kapranov. “Derived category of coherent sheaves on Grassmann manifolds”. In: Izvestiya +Akademii Nauk SSSR. Seriya Matematicheskaya 48.1 (1984), pp. 192–202. issn: 0373-2436. +[7] +M. M. Kapranov. “On the derived categories of coherent sheaves on some homogeneous spaces”. In: +Inventiones Mathematicae 92.3 (1988), pp. 479–508. issn: 0020-9910. doi: 10.1007/BF01393744. +[8] +Alexander Kuznetsov. “Exceptional collections for Grassmannians of isotropic lines”. In: Proceedings +of the London Mathematical Society. Third Series 97.1 (2008), pp. 155–182. issn: 0024-6115. doi: +10.1112/plms/pdm056. +[9] +Alexander Kuznetsov and Alexander Polishchuk. “Exceptional collections on isotropic Grassman- +nians”. In: Journal of the European Mathematical Society (JEMS) 18.3 (2016), pp. 507–574. issn: +1435-9855. doi: 10.4171/JEMS/596. +[10] +Alexander Kuznetsov and Maxim Smirnov. “Residual categories for (co)adjoint Grassmannians in +classical types”. In: Compositio Mathematica 157.6 (2021), pp. 1172–1206. issn: 0010-437X. doi: +10.1112/s0010437x21007090. +[11] +Kyoung-Seog Lee and Kyeong-Dong Park. “Moduli spaces of Ulrich bundles on the Fano 3-fold V5”. +In: Journal of Algebra 574 (2021), pp. 262–277. issn: 0021-8693. doi: 10.1016/j.jalgebra.2021.01.015. +[12] +Jerzy Weyman. Cohomology of vector bundles and syzygies. Vol. 149. Cambridge Tracts in Math- +ematics. Cambridge University Press, Cambridge, 2003, pp. xiv+371. isbn: 0-521-62197-6. doi: +10.1017/CBO9780511546556. +Algebraic Geometry Section, Steklov Mathematical Institute of Russian Academy of Sciences, 8 +Gubkin str., Moscow 119991 Russia +Email address: avfonarev@mi-ras.ru +17 + diff --git a/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/load_file.txt b/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..13a31e053a88836f196bd8780674fe64ccae526f --- /dev/null +++ b/U9E1T4oBgHgl3EQfIgPL/content/tmp_files/load_file.txt @@ -0,0 +1,976 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf,len=975 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='02941v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='AG] 7 Jan 2023 DUAL EXCEPTIONAL COLLECTIONS ON LAGRANGIAN GRASSMANNIANS ANTON FONAREV Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We construct graded left dual exceptional collections to the exceptional collections generating the blocks of Kuznetsov and Polishchuk on Lagrangian Grassmannians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As an application, we find explicit resolutions for some natural irreducible equivariant vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Introduction Derived categories of varieties are among the central objects in modern algebraic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A skeptical reader might complain that the very notion of the derived category is too abstract, and they might have a point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' However, since the pioneering work of Beilinson [1], derived categories have become a great computational tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Nowadays one would say that Beilinson constructed a full exceptional collection in the bounded derived categories of coherent sheaves on projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The following analogy is commonly used to explain the computational power of exceptional collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given a finite dimensional real vector space V with a positive definite symmetric bilinear form ⟨−, −⟩, one can find an orthonormal basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' That is, a basis consisting of vectors (v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn) such that (i) ⟨vi, vi⟩ = 1 for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , n and (ii) ⟨vi, vj⟩ = 0 whenever i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The first condition says that the vectors are unit vectors, while the second condition is the orthogonality condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given such a basis, every vector v ∈ V can be easily decomposed with respect to our basis: (1) v = ⟨v, v1⟩v1 + ⟨v, v2⟩v2 + · · · + ⟨v, vn⟩vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us now relax some of the conditions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' for instance, symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We still want a basis which consists of unit vectors, but we have to modify the orthogonality condition (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us say that a basis (v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn) is semiorthonormal if (i) ⟨vi, vi⟩ = 1 for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , n and (ii) ⟨vi, vj⟩ = 0 whenever i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One obviously needs and adjustment to the formula (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Indeed, in (1) we explicitly used the fact that under the isomorphism V ∗ ∼ −→ V given by the form ⟨−, −⟩ the dual basis (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn) maps back to (v1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since we actually have two isomorphisms this time, V → V ∗, v �→ ⟨v, −⟩ and V → V ∗, v �→ ⟨−, v⟩, let us consider the second one and assume that its inverse maps vi to ui ∈ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' That is, we have ⟨vi, uj⟩ = δij for all 1 ≤ i, j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The vectors u1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , un obviously form a basis, and for any v ∈ V we have the desired formula (2) v = ⟨v, u1⟩v1 + ⟨v, u2⟩v2 + · · · + ⟨v, un⟩vn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' What is less immediate, the vectors (un, un−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , u1) (remark the reverse order) form an orthonormal basis called the left dual to (v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One rather indirect way to see that the latter holds is via mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider a semiorthonormal pair (u, v): that is, ⟨u, u⟩ = ⟨v, v⟩ = 1 and ⟨v, u⟩ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us define a new vector Luv = v − ⟨u, v⟩u, which is called the left mutation of v through u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A simple calculation shows that (Luv, u) is a semiorthonormal pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As the name suggests, there is a sibling to the left mutation procedure: if one puts Rvu = u−⟨u, v⟩v, which is called the right mutation of u through v, then the pair (v, Rvu) is semiorthonormal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It is a very nice exercise in linear algebra to check that left and right mutations of adjacent elements define an action This work was supported by the Russian Science Foundation under grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 19-11-00164, https://rscf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='ru/en/project/19- 11-00164/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 1 of the braid group on n strands on the set of all semiorthonormal bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, the left dual basis to a semiorthonormal basis (v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , vn) is given by (3) Lv1Lv2 · · · Lvn−1vn, Lv1Lv2 · · · Lvn−2vn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Lv2v1, v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We refer the reader to [2] for further insights and some interesting properties of this action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The linear-algebraic picture translates to triangulated categories in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Instead of a vector space we consider a k-linear triangulated category T , while we treat Ext• T (−, −) as a kind of bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then one says that an object E ∈ T is exceptional if Hom(E, E) = k and Exti(E, E) = 0 for all i ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A collection of objects (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En) is called exceptional if every Ei is an exceptional object and Ext•(Ei, Ej) = 0 for all i > j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, a collection is called full if it generates the category in a sense that no proper strictly full triangulated subcategory of T contains all Ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En) is a full exceptional collection in T , we will write T = ⟨E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The analogy with semiorthonormal bases should be clear by now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Assume that T has a full exceptional collection (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En) (which is rarely the case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' What is most interesting is that not only every object in T can be obtained from the finite set of Ei’s by iteratively taking shifts and cones, but this procedure can be made rather explicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that the decomposition of every vector in terms of a given semiorthonormal basis could be done with the help of a left dual semiorthonormal basis by (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us mimic its definition in the categorical case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Namely, let us say that a collection of objects (∨En, ∨En−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , ∨E1) is left dual to (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En) if Ext•(Ei, ∨Ej) = 0 for i ̸= j and Ext•(Ei, ∨Ei) = k for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It should not surprise the reader at this point that (∨En, ∨En−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , ∨E1) is again an exceptional collection, and it is full whenever the original one is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, there is an action of the braid group on n strands on the set of all exceptional collections of length n in T , and a formula similar to (3) determines the left dual collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, instead of the decomposition (2) one has a spectral sequence which computes cohomological functors applied to objects in T , which we will talk about in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The bridge between exceptional collections and semiorthonormal bases is actually rather simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given a sufficiently nice T (say, we assume that Ext•(E, F) is finite-dimensional for all E, F ∈ T ) with a full exceptional collection (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En), one checks that the classes of Ei form a basis in the Grothendieck group K0(T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In particular, the length of any full exceptional collection equals the rank of the latter, which should a posteriori be a free finitely generated abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If one takes � i(−1)i dimk Exti(−, −) as the bilinear form, exceptional collections become “categorifications” of the corresponding semiorthonor- mal bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The first example of a full exceptional collection was given in [1], in which Beilinson showed that Db(Pn) = ⟨O, O(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , O(n)⟩, where Db stands for the bounded derived category of coherent sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Interestingly enough, he also showed that the left dual is given by the collection ⟨Ωn(n), Ωn−1(n − 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Ω1(1), O⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A long-standing conjecture states that the bounded derived category of coherent sheaves on a rational homogeneous variety admits a full exceptional collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Though a lot of work has been done over the years, the conjecture has been established in a very limited number of cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Say, for classical groups of type ABCD and Picard rank 1 the problem was fully resolved only for Grassmannians [6], quadrics [7], symplectic and orthogonal Grassmannians of planes [8, 10], Lagrangian Grassmannians [4], and in some sporadic cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We refer the reader to [9] for further details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since many explicit constructions realize varieties as subvarieties in Grassmannians, exceptional collec- tions on the latter become an important computational tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One of our favorite recent examples can be found in [11], where the authors use exceptional collections to study moduli of Ulrich bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In order to use the tool’s maximum power, it is important to know the dual collection, and finding one is a task of its own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the present paper we find exceptional collections of Lagrangian Grassmannians dual to those constructed in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We further use them to provide explicit resolutions of some very natural irreducible vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2 From now on let we will be interested in the bounded derived category of coherent sheaves on LGr(n, V ), the Lagrangian Grassmannian of isotropic subspaces of dimension n in a fixed 2n-dimensional vector space V over an algebraically closed field k equipped with a non-degenerate symplectic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Excep- tional collections of maximal length (equal to the rank of the Grothendieck group) were constructed on all symplectic and orthogonal Grassmannians by Kuznetsov and Polishchuk in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' All these collections are conjecturally full;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' however, the latter was checked only for Lagrangian Grassmannians in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The construction of Kuznetsov and Polishchuk is rather indirect: they start with certain collections of ex- ceptional irreducible vector bundles, called blocks, which naturally form an exceptional collection in the equivariant derived category, then pass to dual collections within each block (again, in the equivariant derived category).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Each block must satisfy certain homological conditions which guarantee that the dual collections become exceptional in the non-equivariant derived category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Most of the hard work in [9] is related to checking that certain collections of irreducible equivariant vector bundles satisfy the block condition, which is a rather difficult problem in representation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' While the block condition will be discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2, let us explain why isotropic Grassmannians are much harder than the classical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Full exceptional collections in the bounded derived categories of Grassmannians were constructed by Kapranov [7], who naturally extended Beilinson’s method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the Grassmannian Gr(k, V ) of k-dimensional subspaces in a fixed N-dimensional vector space V over a field k of characteristic zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Denote by U the tautological rank k subbundle of the trivial bundle V ⊗ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kapranov showed that (4) Db(Gr(k, V )) = � ΣλU∗ | λ ∈ Yk,N−k � , where λ runs over the set of Young diagrams Yk,N−k, Σλ is the corresponding Schur functor, and the order in this collection can be taken to be any linear order refining the partial inclusion order on the diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, he simultaneously constructed the (graded) left dual to this collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The latter is given by (5) Db(Gr(k, V )) = � ΣλT U⊥ | λ ∈ Yk,N−k � , where U⊥ = (V/U)∗ and λT denotes the transposed diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1 The duality relation might seem a little different from the one we described earlier: (6) Ext•(ΣλU∗, ΣµT U⊥) = � k[−|λ|], if λ = µ, 0, otherwise, but this grading difference does not change much since the two definitions are equivalent up to shifts in the derived category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Actually, the grading choice in (6) is favorable since the dual collection then consists of vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since LGr(n, V ) is naturally embedded as a closed subvariety in Gr(n, V ), one can ask whether any of elements of Kapranov’s collection restrict to exceptional vector bundles on LGr(n, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' This is where surprising things happen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It turns out that the only Young diagrams for which ΣλU∗ are exceptional are λ ∈ Yn,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' These vector bundles are nothing but the exterior powers ΛiU∗, and there are only n of those, while rk K0(LGr(n, V )) = 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark also that U⊥ restricts to U on LGr(n, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The construction of Kuznetsov and Polishchuk produces for any λ ∈ Yh,n−h, 0 ≤ h ≤ n, an equivariant non-irreducible (in general) vector bundle Eλ on LGr(n, V ) with the following properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' First, Eλ belongs to the subcategory of the derived category generated by ΣµU∗ for µ ⊆ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Second, the G = Sp2n- equivariant groups Ext• G(Eλ, ΣµU∗) = 0 for all µ ⊊ λ, while Ext• G(Eλ, ΣλU∗) = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A given diagram may 1A careful reader might wonder why we choose this extra transposition and not index the collection directly by YN−k,k, as Kapranov does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' After all, {λT | λ ∈ Yh,w} = Yw,h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Our choice becomes clear in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1, where we introduce our grading convention for dual exceptional collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3 belong to various sets Yh,n−h, but the resulting bundle does not depend on the choice of h since the previous conditions fully characterize it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The first nontrivial example of such a bundle is the universal extension 0 → O → E2 → S2U∗ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kuznetsov and Polishchuk showed that for any 0 ≤ h ≤ n the bundles (7) � Eλ | λ ∈ Yh,n−h � form an exceptional collection in Db(LGr(n, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As in the case of Grassmannians, one can linearly order them in any way compatible with the partial inclusion order on the corresponding Young diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us denote by Fλ the bundle dual (in the usual sense) to Eλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem A (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The bundles � FλT | λ ∈ Yh,n−h � form a graded left dual exceptional col- lection to (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We formulated Theorem A in terms of transposed diagrams in order to show the parallel between our Lagrangian situation and the case of classical Grassmannians: compare the latter theorem with (4) and (5) keeping in mind that U⊥ is isomorphic to U = (U∗)∗ on LGr(n, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It is easy to see that the bundle ΣλU∗ belongs to the subcategory (7) whenever λ ∈ Yh,n−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A nice geometric description (as a matter of fact, two of them) was given for the bundles Fµ in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Using this description, one can compute the corresponding spectral sequences and get the following result as an application of Theorem A (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2 for the details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem B (Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ ∈ Yh,n−h for some 0 ≤ h ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then there is an exact sequence of vector bundles on LGr(n, V ) of the form 0 → � µ∈Bh(h+1) Eλ/µ → · · · → � µt∈B2t Eλ/µt → · · · → � µ2∈B4 Eλ/µ2 → � µ1∈B2 Eλ/µ1 → Eλ → ΣλU∗ → 0, where B2t denotes the set of balanced diagrams with 2t boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In Section 2 we collect all the preliminaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It contains no new material except, maybe, our convention for dual exceptional collections for exceptional collections indexed by a graded partially ordered set (see Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Section 3 contains our main results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' That is, we prove Theorems A and B, which are Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Preliminaries Throughout the paper we work over a field k of characteristic zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Dual exceptional collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the present section we collect some preliminaries related to (dual) exceptional collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The material is well known to specialists;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' however, since we naturally work with exceptional collections indexed by graded partially ordered sets, we introduce a certain convention in the definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' This convention seems rather natural, as we show in various examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Partially ordered sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that a partially ordered set (poset) P is a set equipped with a binary relation ⪯, called a partial order, satisfying the following three properties: Reflexivity: x ⪯ x for all x ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Antisymmetry: if x ⪯ y and y ⪯ x, then x = y for all x, y ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Transitivity: is x ⪯ y and y ⪯ z, then x ⪯ z for all x, y, z ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 4 Elements x and y are called comparable if either x ⪯ y or y ⪯ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If every two elements in P are comparable, one calls P linearly ordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If x ⪯ y and x ̸= y, one usually writes x ≺ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If P is partially ordered, its dual P◦ is the set underlying P equipped with the converse relation: x ⪯ y in P◦ if and only if y ⪯ x in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let x and y be elements of a poset P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One says that y covers x, written x ⋖ y, if x ≺ y and there is no element z such that x ≺ z ≺ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A grading function on P is a map ρ : P → Z with the following properties: if x ≺ y then ρ(x) < ρ(y), if x ⋖ y then ρ(y) = ρ(x) + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A poset equipped with a grading function is called a graded poset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Of course, not all posets can be turned into graded ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We will be mainly interested in finite posets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If P is finite and admits a grading function, there is a rather natural choice for such a function: there exists a unique grading function | − | with the property that |x| = 0 whenever x is a minimal element (that is, there is no y such that y ≺ x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the following by a graded poset we mean a finite poset equipped with this grading function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let Yh,w denote the set of Young diagrams of height at most h and width at most w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' This set can be identified with the set of integer sequences (λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λh) such that w ≥ λ1 ≥ λ2 ≥ · · · ≥ λh ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There is a natural partial order on Yh,w given by inclusion of diagrams: λ ⪯ µ if λi ≤ µi for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' With this partial order the poset Yh,w is graded, and |λ| = λ1 + λ2 + · · · + λh equals the number of boxes in the diagram λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Exceptional collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let T be a k-linear triangulated category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' An object E ∈ T is called exceptional if Hom(E, E) = k and Extt(E, E) = Hom(E, E[t]) = 0 for all t ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let P be a poset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' An ex- ceptional collection indexed by P is a collection of exceptional objects {Ex}x∈P such that Ext•(Ex, Ey) = 0 unless x ⪯ y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We denote by ⟨Ex|x ∈ P⟩ the smallest strictly full triangulated subcategory in T con- taining all Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If P is finite, one can always refine the order so that it becomes isomorphic to the poset {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , l}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Under this isomorphism we get the usual definition of an exceptional collection: that is, a collection of exceptional objects (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El) such that Ext•(Ej, Ei) = 0 for all l ≥ j > i ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let V be an n-dimensional vector space over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the Grassmannian Gr(k, V ), and let U denote the tautological rank k subbundle in the trivial bundle V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kapranov showed in [6] that the bounded derived category of coherent sheaves Db(Gr(k, V )) admits a full exceptional collection indexed by Yk,n−k: Db(Gr(k, V )) = � ΣλU∗ | λ ∈ Yk,n−k � , where Σλ denotes the Schur functor associated with λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2 The fact that this collection is indexed by a poset gives more information about orthogonality of different objects: if λ and µ are incomparable (that is, neither is contained in the other), then both Ext•(ΣλU∗, ΣµU∗) = 0 and Ext•(ΣµU∗, ΣλU∗) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Mutations and duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let (E, F) be an exceptional pair in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The left mutation LEF of F through E is defined by the distinguished triangle LEF → Ext•(E, F) ⊗ E ev −→ F → LEF[1], where ev is the evaluation morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Similarly, define the right mutation RFE via the distinguished triangle RF E[−1] → E coev −−−→ Ext•(E, F)∗ ⊗ F → RFE, where coev is the coevaluation morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One easily checks that both (LEF, E) and (F, RF E) are exceptional pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, ⟨E, F⟩ = ⟨LEF, E⟩ = ⟨F, RF E⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2Our convention for Schur functors is such that Σ(p) is isomorphic to the p-th symmetric power Sp, so Σ(1,1) ≃ Λ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 5 Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the Grassmannian Gr(k, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then the structure sheaf and the dual tautological bundle form an exceptional pair (O, U∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One quickly checks that LOU∗ ≃ U⊥, where U⊥ = (V/U)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given an exceptional collection (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El), mutations of adjacent elements define an action of the braid group Brl on l strands on the set of exceptional collections in ⟨E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El⟩, see [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For a fixed collection there are two important elements in the orbit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Namely, the dual collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The left dual collection to (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El) is defined as (LE1LE2 · · · LEl−1El, LE1LE2 · · · LEl−2El−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , LE1E2, E1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We denote it by (E∨ l , E∨ l−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , E∨ 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The left dual exceptional collection can be fully characterized by the following three properties: (1) E∨ i ∈ ⟨E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El⟩ for all 1 ≤ i ≤ l, (2) Ext•(Ei, E∨ j ) = 0 for all i ̸= j, (3) Ext•(Ei, E∨ i ) = k[−i + 1] for all 1 ≤ i ≤ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The bounded derived category of the projective space P(V ) has a full exceptional collection consisting of the line bundles ⟨O, O(1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , O(n)⟩, where n is the dimension of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Its left dual is given by ⟨Ωn(n), Ωn−1(n − 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Ω1(1), O⟩, where Ωi = ΛiΩ1 P(V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Similarly, the right dual collection is defined as (En, REnEn−1, REnREn−1En−2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , REnREn−1 · · · RE2E1), and will be denoted by (∨El, ∨El−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , ∨E1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It can be fully characterized by the following conditions: (1) ∨Ei ∈ ⟨E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El⟩ for all 1 ≤ i ≤ l, (2) Ext•(∨Ei, Ej) = 0 for all i ̸= j, (3) Ext•(∨Ei, Ei) = k[−n + i] for all 1 ≤ i ≤ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that in a given exceptional collection (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El) one can replace any object Ei with its shift Ei[t] for any integer t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For instance, one can introduce an extra shift in the definitions of the right and left mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The first two defining conditions for the left and right dual collections will not change, while the third condition will become slightly nicer: Ext•(∨Ei, Ei) = Ext•(Ei, E∨ i ) = k for any 1 ≤ i ≤ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' This convention is often reasonable, yet even in the case of the projective space, Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4, the dual collection will not consist of vector bundles while the original collection does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Meanwhile, the definitions we have just given also have a downside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Imagine that (E, F) is a fully orthogonal pair in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then LEF ≃ F[−1], while RFE ≃ E[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' This is often inconvenient as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We propose the following lemma-definition, which is tailored to the case of an exceptional collection indexed by a finite graded poset P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The reader will immediately check that once the collection is linearly ordered, the left dual differs from the graded left dual by shifts of objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let ⟨Ex | x ∈ P⟩ be an exceptional collection indexed by a finite graded poset P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For any y ∈ P there exists a unique (up to isomorphism) object E◦ y ∈ ⟨Ex | x ∈ P⟩ such that (1) Ext•(Ex, E◦ y) = 0 for all x ̸= y, (2) Ext•(Ey, E◦ y) = k[−|y|].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, the objects E◦ y form an exceptional collection with respect to the opposite poset P◦, called the graded left dual, and ⟨E◦ y | x ∈ P◦⟩ = ⟨Ex | x ∈ P⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If the poset P is linearly ordered, then the definition of the graded left dual agrees with the definition of the left dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 6 Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In Example 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2 we have seen that Db(Gr(k, V )) admits a full exceptional collection indexed by the poset Yk,n−k: Db(Gr(k, V )) = � ΣλU∗ | λ ∈ Yk,n−k � , where U is the tautological rank k subbundle in V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the same paper Kapranov showed that its graded left dual is given by Db(Gr(k, V )) = � ΣλT U⊥ | λ ∈ Yk,n−k � , where U⊥ = (V/U)∗, and λT denotes the transpose diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We leave the definition of the graded right dual to the reader, indicating that for the right dual the grading function should be taken for the opposite poset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Graded spectral sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As stated in the introduction, dual collections provide a particularly nice computational tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El) be an exceptional collection in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that a cohomological functor from T to an abelian category A is a functor F : T → A which takes distinguished triangles to exact sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As usual, we denote by F i the composition F ◦ [i].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8 ([5, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let G ∈ ⟨E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , En⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There is a spectral sequence with the first page given by (8) Ep,q 1 = � i+j=q Ext−i(G, E∨ p+1)∗ ⊗ F j(Ep+1) converging to F p+q(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We will be interested in the case when T = Db(A) is the bounded derived category of an abelian category A (for instance, the bounded derived category of coherent sheaves on a smooth projective variety), and F = H0 is the usual 0-th cohomology functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Assume that the exceptional collection (E1, E2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , El) consists of pure objects (for instance, of coherent sheaves).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then the spectral sequence (8) simplifies to (9) Ep,q 1 = Ext−q(G, E∨ p+1)∗ ⊗ Ep+1 ⇒ Hp+q(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the case of an exceptional collection indexed by a graded poset P the spectral sequence (9) becomes (10) Ep,q 1 = � x∈P, |x|=p Ext−q(G, E◦ x)∗ ⊗ Ex ⇒ Hp+q(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Exceptional collections on Lagrangian Grassmannians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let V be a 2n-dimensional vector space over k equipped with a non-degenerate skew-symmetric bilinear form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We denote by LGr(n, V ) the Lagrangian Grassmannian of maximal isotropic subspaces in V , and by U the tautological rank n bundle on LGr(n, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The Lagrangian Grassmannian comes with an action of the symplectic group G = Sp2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We denote by P the set of weakly decreasing integer sequences of length n: P = {λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given λ ∈ P, we denote by Σλ the corresponding Schur functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We follow the convention under which Σ(p,0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=',0) = Sp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Exceptional blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It is well known that every equivariant irreducible vector bundle on LGr(n, V ) is isomorphic to ΣλU∗ for some λ ∈ P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, these form an infinite full exceptional collection in the equivariant derived category: Db G(LGr(n, V )) = � ΣλU∗ | λ ∈ P◦� , where P is treated as an infinite poset with the partial order given by λ ⪯ µ if and only if λi ≤ µi for all i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Any subset S ⊆ P with the induced partial order produces an exceptional collection ⟨ΣλU∗ | λ ∈ S◦⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If S is finite and graded, we denote by ⟨Eλ | λ ∈ S⟩ and ⟨Fλ | λ ∈ S⟩ the graded right and left duals to ⟨ΣλU∗ | λ ∈ S◦⟩ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kuznetsov and Polishchuk came up with a very simple3 condition under which the objects Eλ form an exceptional collection in the non-equivariant category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='9 (See [9, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A subset S ⊂ P is called an exceptional block if for all λ, µ ∈ S the canonical map � ν∈S Ext• G(ΣλU∗, ΣνU∗) ⊗ Hom(ΣνU∗, ΣµU∗) → Ext•(ΣλU∗, ΣµU∗) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In plain words the block condition says that every extension between a pair of objects can be de- composed as a sum of equivariant extensions followed by homomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' What is rather surprising is that even though the original objects ΣλU∗ for λ ∈ S almost never form an exceptional collection in the non-equivariant category, the right dual do form an exceptional collection in the non-equivariant category as long as S is a block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='10 (See [9, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If S ⊂ P is an exceptional block, then the corresponding right dual objects form an exceptional collection in Db(LGr(n, V )), � Eλ | λ ∈ S � ⊂ Db(LGr(n, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It turns out that it is natural to call exceptional blocks right exceptional blocks, and that it is useful to consider left exceptional blocks as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='11 (See [4, Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A subset S ⊂ P is called an left exceptional block if for all λ, µ ∈ S the canonical map Hom(ΣλU∗, ΣνU∗) ⊗ � ν∈S Ext• G(ΣνU∗, ΣµU∗) → Ext•(ΣλU∗, ΣµU∗) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that both the equivariant and the non-equivariant categories have the duality functor, which is an anti-autoequivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since passing to duals takes exceptional collections to exceptional collections (with respect to the opposite order) and left and right (graded) dual collections to right and left dual collections respectively, we immediately see that S is a right exceptional block if and only if −S is a left exceptional block, where −S = {−λ | λ ∈ S} and −λ = (−λn, −λn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , −λ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The latter follows from the isomorphism (ΣλU∗)∗ ≃ Σ−λU∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The dual statement to Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='10 is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3Simple, yet hard to check.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 8 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12 (See [9, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If S ⊂ P is a left exceptional block, then the corresponding left dual objects form an exceptional collection in Db(LGr(n, V )), � Fλ | λ ∈ S � ⊂ Db(LGr(n, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The following theorem uses the term semiorthogonal decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that full triangulated subcategories T1, T2 ⊆ T are called semiorthogonal, one writes T1 ⊆ T ⊥ 2 , if HomT (X2, X1) = 0 for all X1 ∈ T1 and X2 ∈ T2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A semiorthogonal decomposition of a category T is a collection of full triangulated subcategories T1, T2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Tr such that Ti ⊆ T ⊥ j for all 1 ≤ i < j ≤ r and T is the smallest strictly full triangulated subcategory containing all Ti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The notation for a semiorthogonal decomposition is T = ⟨T1, T2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Tr⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, for a full triangulated subcategory B ∈ Db(LGr(n, V )) we denote by B(i) its image under the autoequivalence given by tensor product with O(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='13 (See [9, Theorem 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2] and [4, Theorem 4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The set Bh = {λ ∈ P | n − h ≥ λ1 ≥ λ2 ≥ · · · ≥ λh ≥ λh+1 = · · · = λn = 0} is a right exceptional block for all h = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, there is semiorthogonal decomposition (11) Db(LGr(n, V )) = ⟨B0, B1(1), B2(2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , Bn(n)⟩ , where Bh = ⟨Eλ | λ ∈ Bh⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us make a few remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' First, Bh = Yh,n−h, where Yh,w denotes the set of Young diagrams of height at most h and width at most w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Second, the object Eλ for λ ∈ Yh,n−h has the following homological description: Eλ ∈ ⟨ΣµU∗ | µ ⊆ λ⟩ ⊂ Db G(LGr(n, V )) and Ext• G(Eλ, ΣµU∗) = � k[−|λ|] if µ = λ, 0 if µ ⊊ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In particular, it depends only on λ, one only needs to know that λ ∈ Yh,n−h for some 0 ≤ h ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, by using the duality anti-autoequivalence we get a semiorthogonal decomposition Db(LGr(n, V )) = ⟨Cn(−n), Cn−1(−n + 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , C1(−1), C0⟩ , where Ch = ⟨Fλ | λ ∈ −Bh⟩ and Fλ for λ ∈ Yh,n−h can be characterized by the following properties: Fλ ∈ ⟨ΣµU | µ ⊆ λ⟩ ⊂ Db G(LGr(n, V )) and Ext• G(ΣµU, Fλ) = � k[−|λ|] if µ = λ, 0 if µ ⊊ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Geometric constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We will need one of the two geometric constructions for the objects Fλ obtained in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the cases h = 0 and h = n are trivial (B0 and Bn consist of a single weight λ = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , 0), and Fλ = Eλ = O), let us fix 0 < h < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the diagram (12) IFl(n − h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ) LGr(n, V ) IGr(n − h, V ) p q and denote by W the universal rank n−h bundle on IGr(n−h, V ) as well as its pullback on IFl(n−h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='14 ([4, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The bundles ⟨ΣµT W∗ | µ ∈ Yh,w−h⟩ form an exceptional collection in the non-equivariant derived category Db(IGr(n − h, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 9 The exceptional collection from the previous lemma is indexed by a graded poset, so we can pass in the non-equivariant category to its graded left dual, denoted by ⟨Gλ | λ ∈ Y◦ h,w−h⟩, see [4, Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The graded dual exceptional collection conditions are (13) Gλ ∈ ⟨ΣµW∗ | µ ∈ Yn−h,h⟩ and Ext•(ΣµW∗, Gλ) = � k[−|λ|] if µ = λT , 0 if µ ∈ Yn−h,h and µ ̸= λT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='15 ([4, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The object Fλ is isomorphic to p∗q∗Gλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Main results We continue to use the notation introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Our first goal is to prove the duality statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Dual exceptional collections on Lagrangian Grassmannians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The first main result of the paper is the following theorem, where we identify the posets Yh,n−h and Yn−h,h via transposition of diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let 0 ≤ h ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then the exceptional collection ⟨Fµ | µ ∈ Y◦ n−h,h⟩ is the graded left dual to ⟨Eλ | λ ∈ Yh,n−h⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' That is, for µ ∈ Yn−h,h one has Fµ ∈ ⟨Eλ | λ ∈ Yh,n−h⟩ and Ext•(Eλ, Fµ) = � k[−|λ|] if µ = λT , 0 if µ ∈ Yn−h,h and µ ̸= λT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The proof of the preceding theorem will take the rest of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Our strategy is to compare the objects Eλ with the graded right dual exceptional collection to ⟨Fµ | µ ∈ Y◦ n−h,h⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the cases h = 0 and h = n are trivial (all the objects considered are isomorphic to O), we assume that 0 < h < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let ν ∈ Yh,n−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The following categories coincide: ⟨Fµ | µ ⊆ νT ⟩ = ⟨Eλ | λ ⊆ ν⟩ = ⟨ΣλU∗ | λ ⊆ ν⟩, where the latter is the smallest strictly full triangulated subcategory in Db(LGr(n, V )) containing the cor- responding objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since, the objects Eλ form a graded right dual exceptional collection to ⟨ΣλU∗ | λ ⊆ ν⟩ in Db G(LGr(n, V )), the second equality holds in Db G(LGr(n, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Once we apply the forgetful functor from Db G(LGr(n, V )) to Db(LGr(n, V )), we see that the same equality holds in the non-equivariant derived category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4 In a similar fashion one proves that ⟨Fµ | µ ⊆ νT ⟩ = ⟨ΣµU | µ ⊆ νT ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It remains to show that ⟨ΣµU | µ ⊆ νT⟩ = ⟨ΣλU∗ | λ ⊆ ν⟩, which follows from the structure of Kapranov’s exceptional collection on Gr(n, V ) and its dual, see [4, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' □ Next, we need another very simple purely categorical statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let T ′ = ⟨Wx | x ∈ P⟩ be a triangulated category generated by a graded full exceptional collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Denote by ⟨Gx | x ∈ P◦⟩ its graded left dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Assume F : T ′ → T is an exact functor into another triangulated category T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Put Fx = F(Gx) for all x ∈ P◦ and assume that ⟨Fx | x ∈ P◦⟩ form a graded exceptional collection in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Denote by ⟨ ˜Ex | x ∈ P⟩ its graded right dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For all x, y ∈ P one has Ext• T ( ˜Ex, F(Wy)) ≃ Ext• T ′(Wx, Wy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 4See also the discussion preceding Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8 in [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 10 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the category T ′ is saturated, the functor F has a left adjoint F ∗ (see [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In particular, Ext• T ( ˜Ex, F(Wy)) ≃ Ext• T ′(F ∗( ˜Ex), Wy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We claim that F ∗( ˜Ex) ≃ Wx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Indeed, for any y ∈ P one has Ext• T ′(F ∗( ˜Ex), Gy) ≃ Ext• T ( ˜Ex, Fy) = � k[−|x|] if x = y, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The latter is precisely the defining condition of the graded right dual to ⟨Gx | x ∈ P◦⟩, which is ⟨Wx | x ∈ P⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' □ We apply the previous lemma in our situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the isotropic Grassmannian IGr(h, V ) with its tautological bundle W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Fix ν ∈ Yh,n−h and consider the poset P = {λ | λ ⊆ ν}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' By [4, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4] the bundles ⟨ΣλW∗ | λ ∈ P⟩ form an exceptional collection in Db(IGr(h, V )).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the pullback functor q∗ : Db(IGr(h, V )) → Db(IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V )) is fully faithful, the bundles ⟨ΣλW∗ | λ ∈ P⟩ form an exceptional collection in Db(IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V )), and its graded left dual coincides with the pullback of the graded left dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Put T ′ = ⟨ΣλW∗ | λ ∈ P⟩ ⊆ Db(IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V )), Wλ = ΣλW∗, Gλ = q∗Gλ, T = Db(LGr(n, V )), F = p∗, where p∗ is the restriction of the pushforward functor under the projection p : IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V )) → LGr(n, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Denote by ⟨ ˜Eλ | λ ∈ P⟩ the graded right dual exceptional collection to ⟨Fµ | µ ⊆ νT ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since Fλ = F(Gλ), see Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='15, we can apply Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The conclusion is that Ext•( ˜Eλ, p∗ΣµW∗) ≃ Ext•(ΣλW∗, ΣµW∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A simple Borel–Bott–Weil computation shows that p∗ΣµW∗ ≃ ΣµU∗ for µ ⊆ ν (see [4, Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, for µ ⊆ ν we get (14) Ext•( ˜Eν, ΣµU∗) = � k if µ = ν, 0 if µ ⊊ ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us recall that our goal is to prove that ˜Eν ≃ Eν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It was shown in [9, Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8] that for all λ, µ ∈ P there is an isomorphism Ext•(Eλ, ΣµU∗) ≃ Hom(ΣλU∗, ΣµU∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It follows from the Lagrangian Borel–Bott–Weil theorem (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2) that Hom(ΣλU∗, ΣλU∗) ≃ k and that Hom(ΣλU∗, ΣµU∗) = 0 if λ ̸⊆ µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We conclude that (15) Ext•(Eν, ΣµU∗) = � k if µ = ν, 0 if µ ⊊ ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let ν ∈ Yh,n−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' By Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2 we know that ˜Eν, Eν ∈ ⟨ΣµU∗ | µ ⊆ ν⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Choose a nontrivial element φ ∈ Ext•(Eν, ΣνU∗) ≃ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It follows from the discussion preceding Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8 in [9] that one has an exact triangle in Db(LGr(n, V )) of the form Eν φ−→ ΣνU∗ → Cφ → Eν[1], where the cone Cφ is in ⟨ΣµU∗ | µ ⊊ ν⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Applying the functor Hom( ˜Eν, −) to the previous triangle, from (14) we get a morphism ψ : ˜Eν → T , which lifts a nontrivial ξ ∈ Hom( ˜Eν, ΣνU∗) ≃ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the cone of ψ: ˜Eν ψ−→ Eν → Cψ → ˜Eν[1], On the one hand, Cψ ∈ ⟨ΣµU∗ | µ ⊆ ν⟩ since both ˜Eν, Eν belong to this subcategory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' On the other hand, it follows from the construction of ψ and formulas (14) and (15) that Ext•(Cψ, ΣµE∗) = 0 for all µ ⊆ ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Thus, Cψ = 0, and ψ is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' □ 11 Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1 shows that the semiorthogonal decomposition (11) has a very nice symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Namely, if one applies the duality anti-autoequivalence followed by the twist by O(n), the decomposition will map to itself, and the h-th block of the resulting decomposition will be generated by the objects ⟨(Eλ)∗ | λ ∈ Yn−h,h⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since (Eλ)∗ ≃ Fλ, we see that the exceptional collection generating block n − h maps to the graded left dual of the exceptional collection generating block h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since we have a graded left dual exceptional collection, there is a spectral sequence associated to it;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' namely, spectral sequence (10) takes the following form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For any object G ∈ � Eλ | λ ∈ Yh,n−h � there is a spectral sequence of the form (16) Ep,q 1 = � λ∈Yh,n−h, |λ|=p Ext−q � G, FλT �∗ ⊗ Eλ ⇒ Hp+q(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the following section we will use this spectral sequence to produce certain resolutions of natural equivariant non-exceptional vector bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Resolutions of irreducible equivariant bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In the final section we produce nice resolutions for irreducible equivariant bundles on LGr(n, V ) of the from ΣλU∗ for λ ∈ Yh,w for some h + w = n in terms of bundles of the form Eµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Balanced diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ be a Young diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Most commonly it is represented by a sequence of integers λ = (λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, where λi is the length of the i-th row of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There is an alternative description via hook length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us say that λ has rank s5 if λs ≥ s and λs+1 ≤ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Graphically, s is the size of the largest square that fits into λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There are exactly s boxes on the diagonal of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let ai and bi denote the number of boxes to the right of the i-th diagonal box (including itself) and below it (including itself) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Classically, ai and bi are called the arm and the leg length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One could alternatively say that ai = λi − (i − 1) and bi = max{1 ≤ j ≤ k | λj ≥ i} − (i − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We will write λ = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , as|b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , bs) if λ has rank s and its arm and leg length are ai and bj respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A diagram λ = (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , as|b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , bs) is called balanced if ai = bi + 1 for all 1 ≤ i ≤ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The set of balanced diagrams with 2t boxes is denoted by B2t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6 Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7 ([12, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let E be a locally free module over a commutative ring of characteristic zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then Λt � S2E � ≃ � λ∈B2t ΣλE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , as|b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , bs)T = (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , bs|a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , as).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In particular λ is symmetric, λ = λT , if and only if ai = bi for all 1 ≤ i ≤ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It now follows from Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6 that λ is balanced if and only if µ = (λ1 − 1, λ2 − 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λs − 1, λs+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λk−1, λk) is symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In such case the rank of µ equals that of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us now assume that µ = (µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , µk) is of rank s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One can separate µ into three parts: a square of size s, everything to the right of it, and everything below it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The latter two are nothing by the diagrams µr = (µ1 − s, µ2 − s, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , µs − s) and µb = (µs+1, µs+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , µk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Under transposition the square maps to itself, while µr and µb get interchanged and transposed: (µT )r = (µb)T and (µT )b = (µr)T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' One immediately concludes that µ is symmetric if and only if (µr)T = µb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Combining what is written in the two preceding paragraphs, we obtain the following characterization of balanced diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 5One also says that λ has a Durfee square of size s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 6The number of boxes in a balanced diagram is always even.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 12 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A diagram λ = (λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λk) of rank s is balanced if and only if (λ1 − (s + 1), λ2 − (s + 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λs − (s + 1))T = (λs+1, λs+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λk), where, in particular, we assume that λs ≥ s + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lagrangian Borel–Bott–Weil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The celebrated Borel–Bott–Weil theorem fully describes the coho- mology of irreducible equivariant line bundles on rational homogeneous varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since we only use it in one place, we formulate a much simplified version of it and refer the interested reader to [12, Chapter 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Given a weakly decreasing sequence λ ∈ Zn, we denote by −λ the sequence (−λn, −λn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λ1), which is again weakly decreasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The sum of weakly decreasing sequences is defined termwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A weakly decreasing sequence is called non-singular if the absolute values of all of its terms are positive and distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If λ is non-singular, we denote by ∥λ∥ the sequence obtained by taking all the absolute values of the terms of λ and writing them in decreasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If λ is non-singular, then ∥λ∥−ρ is a weakly decreasing sequence with non-negative terms, where ρ = (n, n − 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The set of weakly decreasing sequences µ ∈ Zn with non-negative terms is identified with the set of dominant weights of Sp(V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We denote by V ⟨µ⟩ the corresponding irreducible representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' For instance, if µ = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , 0), then V ⟨µ⟩ = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='9 (Lagrangian Borel–Bott–Weil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ ∈ Zn be a weakly decreasing sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If −λ + ρ is non-singular, then H•(LGr(n, V ), ΣλU) = V ⟨∥−λ+ρ∥−ρ⟩[−ℓ], where ℓ equals the number of negative terms in −λ + ρ plus the number of pairs 1 ≤ i < j ≤ n such that (−λ + ρ)i + (−λ + ρ)j < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Otherwise, H•(LGr(n, V ), ΣλU) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Vanishing lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We will need the following result, which is definitely well known to experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A proof is included for the sake of completeness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ ∈ Yn,n+1 be a Young diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' (1) If λ is not balanced, then H•(LGr(n, V ), ΣλU) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' (2) If λ is balanced and |λ| = 2t, then H•(LGr(n, V ), ΣλU) = k[−t].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The proof is a direct application of the Borel–Bott–Weil theorem stated in the previous Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In order to show (1), we need to show that the weight −λ + ρ is non-singular if and only if λ is balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the strictly decreasing sequence (17) − λ + ρ = (n − λn, (n − 1) − λn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , 2 − λ2, 1 − λ1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since 0 ≤ λi ≤ n + 1 for all i, all the absolute values of the terms of −λ + ρ are between 0 and n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that −λ + ρ is non-singular if and only if all the absolute values of its terms are distinct and positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Assume the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let s denote the rank of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then the first n − s terms of (17) are positive, while the last s terms are non-positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the absolute values of the latter can not be zero (the weight being non-singular), we conclude that λi ≥ s + 1 for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Put µi = λi − (s + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then the sequence (18) (n − λn, (n − 1) − λn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , (s + 1) − λs+1, s + µ1, (s − 1) + µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , 1 + µs) differs from (17) only in the last s terms: their signs have been changed, and their order has been reversed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that (λs+1, λs+2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' , λn) = λb ∈ Yn−s,s, while µ ∈ Ys,n−s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The sequence (18) is very well known to anyone who has ever studied Kapranov’s work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It follows from [6, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7] that all the terms in (18) are distinct if and only if λb = µT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The latter is equivalent, by Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='8, to saying that λ is balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us turn to (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Assume that λ is balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the absolute values of the terms of −λ + ρ take all the values between 1 and n, by the Borel–Bott–Weil theorem the only nonzero cohomology will be equal to k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We only need to determine the degree in which it sits, and the latter equals the number of negative terms in −λ+ρ plus the number of pairs 1 ≤ i < j ≤ n such that (−λ+ρ)i +(−λ+ρ)j < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The 13 first number equals s, and we need to compute the second number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that if 1 ≤ j ≤ n − s, then both (−λ + ρ)i and (−λ + ρ)j are positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Thus, we may assume that n − s < j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If n − s < i ≤ n, then any i < j ≤ n contributes to the count since both terms are negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There are s(s−1) 2 such pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, assume that 1 ≤ i ≤ n − s and n − s < j ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since (−λ + ρ)j < 0, we need to determine when (−λ + ρ)i < −(−λ + ρ)j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Such pairs correspond precisely to inversions in the sequence (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It is easy to show that the number of those equals |λb| (see [6, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We conclude that for a balanced λ the only nontrivial cohomology sits in degree s + s(s−1) 2 + |λb| = s(s+1) 2 + |λb|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It remains to recall that λ consists of λb, µ = (λb)T , and a square of size s×(s+1), so |λ| = |λb|+|µ|+s(s+1) = 2|λb|+s(s+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' □ The following is a simple relative version of the previous lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As usual, all the functors are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let X be smooth projective variety, and let V be a rank 2k symplectic bundle on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the relative Lagrangian Grassmannian π : LGrX(n, V) → X, denote by U ⊂ π∗V the universal bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let ν ∈ Yk,k+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' (1) If ν is not balanced, then π∗ΣλU = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' (2) If ν is balanced and |λ| = 2t, then π∗ΣλU = OX[−t].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Skew Schur functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Before we formulate and prove the second main result of the paper, we need to say a few words about skew diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ and µ be two Young diagrams such that µ ⊆ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Then one can define the skew Schur functor Σλ/µ, see [12, Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If E is a free module over a commutative ring of characteristic zero and α and β are two Young diagrams, one has a direct sum decomposition ΣαE ⊗ ΣβE ≃ � |κ|=|α|+|β| (ΣκE)⊕c(α,β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='κ) , where c(α, β;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' κ) are the celebrated Littlewood–Richardson coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It turns out that one has a direct sum decomposition for skew Schur functors controlled by the same coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Namely, (19) Σλ/µE ≃ � |ν|+|µ|=|λ| (ΣνE)⊕c(ν,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ) , see [12, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If c(ν, µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' λ) > 0, we will write ν ⊆ λ/µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that ν ⊆ λ/µ implies that ν ⊆ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In particular, if λ ∈ Yh,w, then ν ⊆ λ/µ implies ν ∈ Yh,w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Inspired by decomposition (19), for a pair of diagrams λ, µ ∈ Yh,w such that h + w = n and µ ⊆ λ, we put (20) Eλ/µ = � ν⊆λ/µ (Eν)⊕c(ν,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Extend the definition, as usual, by putting Eλ/µ = 0 for µ ⊈ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We are ready to present the main application of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let λ ∈ Yh,n−h for some 0 ≤ h ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There is an exact sequence of vector bundles on LGr(n, V ) of the form (21) 0 → � µ∈Bh(h+1) Eλ/µ → · · · → � µt∈B2t Eλ/µt → · · · → � µ2∈B4 Eλ/µ2 → � µ1∈B2 Eλ/µ1 → Eλ → ΣλU∗ → 0, where B2t denotes the set of balanced diagrams with 2t boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 14 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since the vector bundle ΣλU∗ lies in the subcategory ⟨Eλ | λ ∈ Yh,n−h⟩, spectral sequence (16) is applicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Precisely, one has (22) Ep,q 1 = � µ∈Yh,n−h, |α|=p Ext−q � ΣλU∗, FαT �∗ ⊗ Eα ⇒ Hp+q(ΣλU∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us compute Ext•(ΣλU∗, Fµ) for µ = αT ∈ Yn−h,h using the isomorphism Fµ ≃ p∗q∗Gµ given in Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='15, where p and q come from the diagram IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ) LGr(n, V ) IGr(h, V ) p q (This is diagram (12) with h and n − h interchanged since µ ∈ Yn−h,h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=') One has a sequence of isomor- phisms Ext•(ΣλU∗, Fµ) ≃ Ext•(ΣλU∗, p∗q∗Gµ) ≃ Ext•(ΣλU∗, q∗Gµ) ≃ H•(IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), ΣλU ⊗ q∗Gµ) ≃ H•(IGr(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), q∗(ΣλU) ⊗ Gµ), where the second isomorphism is given by adjunction, and the last one follows from the projection formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As usual, all the functors are derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Consider the spectral sequence associated with the composition of derived functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Its second page is given by (23) Hi(IGr(n − h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), Rjq∗(ΣλU) ⊗ Gµ) ⇒ Hi+j(IGr(n − h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), q∗ΣλU ⊗ Gµ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us compute Rjq∗(ΣλU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Recall that we denoted by W ⊂ U the universal flag on IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' There is a filtration on ΣλU associated with the short exact sequence 0 → W → U → U/W whose associated quotients are isomorphic to (24) � ν⊆λ,|ν|=k Σλ/νW ⊗ Σν(U/W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since for any ν ⊆ λ the bundle Σλ/νW is pulled back from IGr(h, V ), we conclude by the projection formula that Rjq∗(Σλ/νW ⊗ Σν(U/W)) ≃ Σλ/νW ⊗ Rjq∗Σν(U/W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In order to compute Σλ/νW ⊗ Rjq∗Σν(U/W), recall that IFl(h, n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ) is the relative Lagrangian Grass- mannian LGr(n−h, W⊥/W) over IGr(h, V ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since ν ⊆ λ, one has ν ∈ Yh,n−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If the height of ν is greater than n − h, then Σν(U/W) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Thus, Σλ/νW ⊗ Rjq∗Σν(U/W) = 0 unless ν ∈ Yn−h,n−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, if ν ∈ Yn−h,n−h, then we are in the situation when we can apply Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We conclude that if ν ⊆ λ, then (25) Σλ/νW ⊗ R•q∗Σν(U/W) ≃ � Σλ/νW[−t] if ν ∈ B2t, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Using (25), we can compute Rj(ΣλU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Indeed, the spectral sequence associated with the filtration with the quotients (24) degenerates in the first page, and (26) Rjq∗(ΣλU) ≃ � ν⊆λ,ν∈B2j Σλ/νW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 15 We are ready to get back to the spectral sequence (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Hi(IGr(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), Rjq∗(ΣλU) ⊗ Gµ) ≃ � ν⊆λ,ν∈B2j Hi(IGr(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), Σλ/νW ⊗ Gµ) ≃ � ν⊆λ,ν∈B2j Exti(Σλ/νW∗, Gµ) ≃ � ν⊆λ,ν∈B2j � κ⊆λ/ν Exti((ΣκW∗)⊕c(κ,ν;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ), Gµ), where the last isomorphism comes from (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since κ ⊆ λ/ν implies that κ ⊆ λ, using (13) we see that the last term in (26) is zero unless κ = µT and i = |µ|, and is isomorphic to k otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Finally, H|µ|(IGr(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), Rjq∗(ΣλU) ⊗ Gµ) ≃ � ν∈B2j k⊕c(ν,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ), where 2j = |ν| = |λ| − |µ|, are the only potentially nontrivial cohomology groups, and the spectral sequence (23) degenerates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We conclude that H|µ|+j(IGr(h;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' V ), q∗ΣλU ⊗ Gµ) = � ν∈B2j k⊕c(ν,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Let us return to spectral sequence (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' From the computations above we know that the only nontrivial terms in it are (27) E−|λ|+t,|λ|−2t 1 ≃ � ν∈B2t � µ⊆λ/ν |µ|=|λ|−2t (Eµ)⊕c(ν,µ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='λ) = � ν∈B2t Eλ/ν, where the last equality comes from the definition in (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We conclude that the spectral sequence contains at most one non-trivial term in each diagonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As the spectral sequence converges to H•(Σλ), one must have a long exact sequence of the form · · → E−|λ|+t,|λ|−2t 1 → · · · → E−|λ|+2,|λ|−4 1 → E−|λ|+1,|λ|−2 1 → E−|λ|,|λ| 1 → ΣλU∗ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since any balanced diagram contained in λ has height at most h, its width is at most h + 1 and E−|λ|+t,|λ|−2t 1 = 0 for t > h(h+1)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' It remains to use (27) to get the desired long exact sequence (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' □ Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' We present some examples of resolutions introduced in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' h = 1: In this case λ consists of just a single row of length at most n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If λ = (0), then Eλ ≃ O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' If λ = (1), then Eλ ≃ ΣλU∗ = U∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' The interesting case is λ = (p) for some 2 ≤ p ≤ n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since (2) is the only nontrivial balanced diagram of height one, and (p)/(2) = (p − 2), resolution (21) takes form 0 → E(p−2) → E(p) → SpU∗ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' As a consequence, we see that E(p) has a filtration with the associated graded quotients of the form Sp−2tU∗ for all 0 ≤ p ≤ p/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' w = 1 : In this case λ consists of a column of length at most n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since there are no nontrivial balanced diagrams of width 1, we conclude that for λ = (t)T there is an isomorphism Eλ ≃ ΛtU∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' λ = (3, 1): This is the first case when resolution (21) has length greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Remark that (2) ∈ B2 and (3, 1) ∈ B4 are the only balanced diagrams contained in λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Moreover, the only nontrivial Littlewood– Richardson coefficients for (3, 1)/(2) are c ((2), (2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' λ) = c ((1, 1), (2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' λ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Thus, one has a resolution of the form 0 → O → E(2) ⊕ E(1,1) → E(3,1) → Σ(3,1)U∗ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Since E(1,1) ≃ Λ2U∗ and E(2) fits into a short exact sequence 0 → O → E(2) → S2U∗ → 0, with a little bit of work one can show that Eλ is an extension of Σ(3,1)U∗ by S2U∗ and Λ2U∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 16 References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Beilinson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Coherent sheaves on P n and problems of linear algebra”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Functional Analysis and Its Applications 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3 (July 1978), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 214–216.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1007/bf01681436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Bondal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “A symplectic groupoid of triangular bilinear forms and the braid group”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Izvestiya Rossiiskoi Akademii Nauk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Seriya Matematicheskaya 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4 (2004), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 19–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 1607-0046.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1070/IM2004v068n04ABEH000495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Bondal and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kapranov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Representable functors, Serre functors, and reconstructions”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Izvestiya Akademii Nauk SSSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Seriya Matematicheskaya 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6 (1989), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 1183–1205, 1337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0373-2436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1070/IM1990v035n03ABEH000716.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [4] Anton Fonarev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Full exceptional collections on Lagrangian Grassmannians”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: International Mathematics Research Notices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' IMRN 2 (2022), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 1081–1122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 1073-7928.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1093/imrn/rnaa098.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Gorodentsev and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kuleshov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Helix theory”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Moscow Mathematical Journal 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2 (2004), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 377–440, 535.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 1609-3321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='17323/1609-4514-2004-4-2-377-440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kapranov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Derived category of coherent sheaves on Grassmann manifolds”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Izvestiya Akademii Nauk SSSR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Seriya Matematicheskaya 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1 (1984), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 192–202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0373-2436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Kapranov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “On the derived categories of coherent sheaves on some homogeneous spaces”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Inventiones Mathematicae 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3 (1988), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 479–508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0020-9910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1007/BF01393744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [8] Alexander Kuznetsov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Exceptional collections for Grassmannians of isotropic lines”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Proceedings of the London Mathematical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Third Series 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 155–182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0024-6115.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1112/plms/pdm056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [9] Alexander Kuznetsov and Alexander Polishchuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Exceptional collections on isotropic Grassman- nians”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Journal of the European Mathematical Society (JEMS) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='3 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 507–574.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 1435-9855.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='4171/JEMS/596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [10] Alexander Kuznetsov and Maxim Smirnov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Residual categories for (co)adjoint Grassmannians in classical types”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Compositio Mathematica 157.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='6 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 1172–1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0010-437X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1112/s0010437x21007090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [11] Kyoung-Seog Lee and Kyeong-Dong Park.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' “Moduli spaces of Ulrich bundles on the Fano 3-fold V5”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' In: Journal of Algebra 574 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 262–277.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' issn: 0021-8693.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='jalgebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' [12] Jerzy Weyman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Cohomology of vector bundles and syzygies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' 149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Cambridge Tracts in Math- ematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Cambridge University Press, Cambridge, 2003, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' xiv+371.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' isbn: 0-521-62197-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='1017/CBO9780511546556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=' Algebraic Geometry Section, Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkin str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content=', Moscow 119991 Russia Email address: avfonarev@mi-ras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} +page_content='ru 17' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/U9E1T4oBgHgl3EQfIgPL/content/2301.02941v1.pdf'} diff --git a/UdAyT4oBgHgl3EQf8fre/content/tmp_files/2301.00859v1.pdf.txt b/UdAyT4oBgHgl3EQf8fre/content/tmp_files/2301.00859v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f04e1a66cfc90b79a2e6b5329730374bb7c133ed --- /dev/null +++ b/UdAyT4oBgHgl3EQf8fre/content/tmp_files/2301.00859v1.pdf.txt @@ -0,0 +1,384 @@ +Heavy-flavour production at the LHC +Jaime Norman 𝑎,1,∗ +𝑎University of Liverpool, +Oliver Lodge Laboratory, Oxford St, Liverpool, L69 7ZE, UK +E-mail: jaime.norman@cern.ch +Heavy flavour production measurements in pp collisions are a crucial test of QCD. The LHC +experiments ALICE, ATLAS, CMS and LHCb, provide complementary abilities to measure many +aspects of heavy-flavour production. This contribution summarises recent LHC measurements +within this topic. +The Tenth Annual Conference on Large Hadron Collider Physics - LHCP2022 +16-20 May 2022 +online +1on behalf of the ALICE, ATLAS, CMS and LHCb collaborations +∗Speaker +© Copyright owned by the author(s) under the terms of the Creative Commons +Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). +https://pos.sissa.it/ +arXiv:2301.00859v1 [hep-ex] 2 Jan 2023 + +Heavy-flavour production at the LHC +Jaime Norman +Heavy-flavour (charm or beauty) hadron production in proton-proton collisions can be de- +scribed with the factorisation approach as a convolution of the heavy quark partonic cross section, +the parton distribution functions (PDFs) of the proton, and the fragmentation function (FF) of +the heavy-flavour quark into a given hadron. The hard parton cross sections are calculated with +perturbative QCD techniques, where the large mass of the heavy quark sets the hard scale meaning +production can be calculated over all 𝑝T. The PDFs and FFs on the other hand must be determined +through measurements. At the LHC, the quark and gluon densities in the proton means multiple +hard-parton scattering becomes more relevant, and the underlying event activity becomes much +larger, which may affect the fragmentation and hadronisation of quarks into hadrons. Measure- +ments of heavy-flavour hadrons in general constitute some of the most important tests of QCD over +many length scales at hadron colliders. +Heavy-flavour meson and quarkonia production has been studied extensively at the LHC. +Measurements of the prompt [1, 2] and non-prompt (from beauty decays) [3] production of D +mesons agree well with QCD calculations [4, 5], indicating that heavy-flavour meson production +is well understood. The measurement of strange to non-strange beauty meson production has also +been measured from non-prompt D mesons with ALICE [3], and a combined analysis of B meson +decays from LHCb [6]. The LHCb measurement hints at a slight increase in the production ratio +of strange to non-strange beauty meson with collision energy. This is also a crucial measurement +for reducing the uncertainty in many B0 +s branching fractions, which are a dominant source of +uncertainty in many searches for new physics. Prompt 𝐽/𝜓 production has been measured by +ALICE [7], ATLAS [8], CMS [9] and LHCb [10], and non-prompt 𝐽/𝜓 production is also measured +by ALICE [7], ATLAS [8] and CMS [9]. +Comprehensive studies of heavy-flavour baryon production have recently been performed +at the LHC, and currently heavy-flavour baryon production is less well understood than heavy- +flavour meson production. Λ+ +c production has been measured in pp collisions by ALICE [11–13] +and CMS [14], and is significantly underestimated by QCD calculations. The baryon-to-meson +production ratio Λ+ +c/D0 is significantly larger than the same measurements in e+e− and ep collisions, +by up to a factor of 5 at low 𝑝T, and exhibits a strong 𝑝T dependence. Recently the baryon-to-meson +ratios Ξ0,+ +c /D0 [15, 16], Σ++,+ +c +/D0 [11] and Ω0 +c/D0 [17] have also been measured by ALICE to +be significantly underestimated by predictions utilising fragmentation parameterisations based on +measurements in e+e− and ep collisions. The fragmentation fractions of charm quarks into charmed +hadrons have been measured for the first time in pp collisions [18], which are shown in figure 1. +The charmed hadron fragmentation fractions differ significantly from measurements in e+e− and +ep collisions, indicating the assumption of universal, independent parton-to-hadron fragmentation +across collision systems is not sufficient to describe charmed hadron production in pp collisions at +the LHC. Possible explanations of this difference include colour reconnection between independent +partons [19], quark coalescence [20, 21], or enhanced baryon production originating from the decay +of as-yet-undiscovered charm baryon states [22], which describe baryon-to-meson ratios better, +though still underpredict the Ω0 +c/D0 and Ξ0,+ +c /D0 ratios. The relative production of beauty baryons +and mesons has also been measured by LHCb [23], where a similar enhancement of the ratio +Λ0 +b/(B0 + B+) is measured at low 𝑝T. A measurement of the ratio of non-prompt Λ+ +c baryons and +D0 mesons was made as a function of 𝑝T by ALICE which aims to indirectly probe beauty quark +fragmentation. This measurement was compared to predictions utilising quark production with +2 + +Heavy-flavour production at the LHC +Jaime Norman +FONLL, and hadronisation/hadron decays with PYTHIA - the predictions require the fragmentation +fractions measured by LHCb to describe the data, and the measurement is underestimated if +utilising fragmentation fractions measured in e+e− collisions. These measurements also suggest +that fragmentation fractions of beauty baryons are not universal in different collision systems. +The production cross section measurements of different charmed hadrons has allowed for precise +measurement of the total 𝑐 ¯𝑐 [18] and 𝑏 ¯𝑏 [7] production cross sections. +Heavy-flavour hadron production has been studied as a function of the event multiplicity. The +strange to non-strange production ratio of beauty mesons B0 +s/B0 measured by LHCb in pp col- +lisions [24] is shown in figure 1 (right). When measuring the multiplicity in the same rapidity +region as the beauty hadron (with the VELO tracker) there is evidence at a level of 3.4𝜎 that the +ratio B0 +s/B0 increases with multiplicity. When measuring the multiplicity in the opposite rapidity +direction as the beauty hadron, the ratio is instead independent of this multiplicity, indicating the +enhancement is due to the local event multiplicity. The charmed baryon-to-meson ratio measured +by ALICE [25] also displays a significant enhancement in the region 2 < 𝑝T < 12 GeV/𝑐 at +high multiplicity compared to low multiplicity. This multiplicity dependence is described well by +PYTHIA when including colour reconnection mechanisms beyond the leading colour approxima- +tion. The charmed strange to non-strange ration D+ +s /D0 is instead independent of multiplicity within +the current experimental uncertainties [25]. +0 +D ++ +D +s ++ +D +c ++ +Λ +c +0 +Ξ ++ +D* +0.2 +0.4 +0.6 +0.8 +1.0 +) +c + H +→ +(c +f + = 5.02 TeV +s +ALICE, pp, + = 10.5 GeV +s +, +− +e ++ +B factories, e +Z +m + = +s +, +− +e ++ +LEP, e +HERA, ep, DIS +HERA, ep, PHP +ALI-PUB-500750 +Figure 1: Left: Charm quark fragmentation fractions into charm hadrons in pp collisions at √𝑠 = 5.02 TeV, +compared with measurements at LEP and B factories, and ep collisions [18]. Right: The production ratios +of strange to non-strange B mesons B0 +s/B0 as a function of the event multiplicity measured either in the +direction of the beauty meson (left) or in the opposite direction (right) [24]. +Fragmentation dynamics of heavy quarks are probed with measurements of heavy flavour +hadrons within jets. Figure 2 (left) shows a measurement of B± mesons within jets by ATLAS [26] +- in particular, the relative momentum of the jet that is carried by the hadron in the direction of the +jet, 𝑧 = �𝑝𝐵,𝐷 · �𝑝𝑗 +| �𝑝𝑗 | +. The transverse momentum profile is also reported in [26]. ALICE measured the +𝑧 distribution of D mesons [27] at √𝑠 = 5.02 TeV and √𝑠 = 13 TeV. Comparisons to Monte Carlo +event generators were made in all cases, which helps constrain different approaches to fragmentation +in these generators. +The first observation of 𝑏-hadron production asymmetry (i.e., asymmetrical production of a +3 + +0.5 +0.5 +LHCb +pp Vs = 13 TeV +LHCb +pp Vs = 13 TeV- +0 < p_<20 GeV/c +5.4 fb-1 +0 0 and tensor-product grid points [X, Y ] ∈ RnXnY ×2 ⊂ +I2. Let +U j ≈ u(X, Y, z(X, Y ), tj) +and +V j ≈ v(X, Y, z(X, Y ), tj), +1 ≤ j ≤ NT , +be the unknown nodal values we seek based on initial conditions U 0 and V 0. +Using the second order backward differentiation formula (BDF2) [3,39] and (13) +to discretize the RDS (15) with periodic boundary condition (11b), we obtain +9 + +(a) +δM = 0.1 +(b) +(c) +δM = 0.5 +(d) +(e) +δM = 1 +(f) +Figure 4: +Numerical solution of heat equations under different amplitudes +δM. +(a, b): δM = 0.1, (c, d): δM = 0.5, (e, f): δM = 1. +In all cases, +τ = 1E − 3, T = 1, nX = 41 = nY . +10 + +0.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +10.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +10.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +10.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +10.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +10.5 +0.5 +0.45 +0 +0.4 +-0.5 +0.35 +-0.5 +0 +0.5 +1Table 1: +Parameters of the reaction-diffusion system (15)-(16) for generating +spots and stripes patterns on rough surfaces. +Pattern +δv +δu +α +β +γ +ξ1 +ξ2 +Spots +10−3 +0.516δv +0.899 +−0.91 +−0.899 +0.02 +0.2 +Stripes +10−3 +0.516δv +0.899 +−0.91 +−0.899 +3.5 +0 +the following fully-discrete system of equations on M +� +� +� +� +� +3U j+1 − 2τδu△M,hU j+1 = 4τfu +� +U j, V j� +− 2τfu +� +U j−1, V j−1� ++ 4U j − U j−1, +3V j+1 − 2τδv△M,hV j+1 = 4τfv +� +U j, V j� +− 2τfv +� +U j−1, V j−1� ++ 4V j − V j−1, +(17) +for 1 ≤ j ≤ NT , subject to some yet-to-be specified (usually random) initial +condition and some first order approximations to the solutions at the first time +step, U 1 and V 1. Note that the two equations in (17) are not coupled; the com- +putational cost is of the same order as that of solving two scalar heat equations. +4.1 +The pattern generation process +In this subsection, we show the formation of irregular patterns as we go from +a flat two dimensional domain to rough surfaces with different amplitudes. We +start with patterns on the flat domain [−1, 1]2 as in [30], i.e., the rough sur- +face with zero amplitude (δM = 0). Model and surface parameters are chosen +according to the values in Table 1. To discretize, we select grid parameters +nX = 90, nY = nX, and a time step-size τ = 0.5. The rough surfaces M with +M = N = 5 are used in this part. +The first row of Figure 5 plots the initial conditions used to compute the +spots and stripes patterns, respectively. These are random values generated +within the interval [−0.5, 0.5]. The second row of Figure 5 shows the steady +state patterns on the surface with zero amplitude. Perfect spots and stripes +are obtained, which is similar to our previous results in [30]. Next, we set the +initial conditions for the next amplitude to be the steady solutions from the zero +amplitude rough surface, i.e, we use the solution of spots with δM = 0, T = 800 +and the solution of stripes with δM = 0, T = 4000. By increasing the amplitude +of the rough surface from δM = 0 to δM = 0.1 with increments of 0.01, and +setting initial conditions using the previous steady state, we achieve the final +patterns for δM = 0.1. These are shown in the third row of Figure 5. For rough +surfaces under small amplitude δM = 0.05, the spots and stripes are similar +to those with δM = 0. However, for larger amplitude δM = 0.1, both spots +and stripes become irregular. We can conclude that the steady state patterns +become irregular as the amplitude of the rough surface M increases. +11 + +Spots +δM = 0, t = 0 +Stripes +δM = 0, t = 0 +δM = 0, t = 800 +δM = 0, t = 4000 +Increase δM by 0.01 at a time +−−−−−→ +δM = 0.1, t = 800 × 11 +δM = 0.1, t = 4000 × 11 +Figure 5: Pattern generation on rough surfaces M with M = N = 5 and +amplitude δM increasing from 0 to 0.1. Parameters for spots and stripes are set +according to Table 1. Discretization parameters are nX = 90 = nY , τ = 0.5. +12 + +4.2 +Patterns on surfaces with different spatial frequencies +and amplitudes +Properties of rough surfaces are influenced by the amplitude δM and the spatial +frequencies M, N in (7). To better understand patterns on rough surfaces with +different properties, we compute steady state patterns for +δM ∈ {0.05, 0.1}, +(M, N) ∈ {(5, 15), (15, 15)}, +on the parameter space I2 = [−0.5, 0.5]2 ⊂ R2. Periodic boundary conditions +on ∂M := ∂I2 × z(∂I2) are prescribed. +These patterns in both 2-D view and zoom in 3-D view are presented in +Figures 6-7 for spots, and in Figures 8-9 for stripes. +As before, the initial +conditions are assigned to be random data in [−0.5, 0.5]. In order to capture +details of the spot and stripe patterns, we increase the spatial resolution from +nX = 90 to nX = 170, again keeping nY = nX to ensure the irregular patterns +were due to the roughness rather than low resolution. +Firstly, from Figures 6 and 7, we can see that the number of spots increases +as the frequencies M, N and the amplitude δM increase. For fixed amplitude +δM, patterns are deformed along the x−axis as the frequency N increases. This +conclusion is clearly illustrated in the case δM = 0.1. +On the other hand, +for fixed values of M, N, the patterns maintain their shape as spots when +δM ≤ 0.05, and start to deform when δM ≥ 0.05. For δ = 0.1, all patterns +become deformed spots. +Secondly, for fixed δM = 0.05, zoom in 3-D profiles of region [−0.3, 0.1] × +[−0.3, 0] for [M, N] = [5, 15] and region [0.2, 0.5]×[−0.3, 0] for [M, N] = [15, 15] +reveal that irregular spots appear when part of the pattern is located in a +valley or ridge of the rough surface. When δM increases to 0.1, as in Figure 7, +the deformation of the patterns is more severe. +This makes sense since the +amplitude δM is twice that of Figure 6. From zoom in 3-D figures of region +[−0.1, 0.5] × [0.1, 0.4] for [M, N] = [5, 15] and region [−0.4, 0.1] × [−0.2, 0.1] +for [M, N] = [15, 15], the deformed patterns again appear when their locations +cover the local ridge/valley/mountain of the rough surfaces. +As frequencies and amplitudes are varied, similar behavior (to the case of +spots) can be observed in stripe formation; see Figures 8 and 9. High amplitudes +and frequencies yield a particularly strong effect in the zoom in 3-D plots in +Figure 9, where the stripes break into small separate components. Further, we +observe that the largest concentration values appear at the local peaks of the +rough surface M. +4.3 +Animal coat simulation results +In simulation results on rough surfaces M which are characterized by spatial +frequencies, we observe interesting similarities between some steady state pat- +terns and actual animal coat patterns. In Figure 10, we show the simulations +of the animal coats in Figure 1 by patterns on rough surfaces M. The specific +13 + +2-D view +M = 5, N = 15 +Zoom in 3-D view +M = 15 = N +Figure 6: Patterns on rough surfaces with amplitude δM = 0.05. Discretization +parameters are nX = 170 = nY , τ = 0.5, T = 800, I2 := [−0.5, 0.5]2. +parameter values for generating each animal coat pattern are listed in Tables 1 +and 2. +Table 2: Parameters for animal coats simulation on M in Figure 10 with nX = nY = 90 +M +N +τ +T +δM +Emperor angelfish [26] +Figure 10 (a) +5 +5 +0.5 +4000 +0.05 +Genet [1] +Figure 10 (b) +15 +15 +0.5 +800 +0.1 +Plecostomus [12] +Figure 10 (c) +15 +5 +0.5 +4000 +0.1 +Cheetah [46] +Figure 10 (d) +15 +5 +0.5 +800 +0.1 +5 +Random rough surfaces S by discrete data +While the parametric equation (6) allows us to work analytically on rough sur- +faces, i.e., via the evaluation of metric tensor (2), its generalization to mani- +folds [9,10,40] is not trivial. +In [24], the authors used the covariance function of random deformation fields +and the surface Karhunen-Lo`eve expansion to generate random surfaces. In [23], +the authors applied the 2D digital filter and Fourier analysis to generate random +rough surfaces. In this section, we introduce a new approach for constructing +14 + +0.5 +10 +5 +0 +5 +-0.5 +-0.5 +0 +0.5-0.3 +-0.2 +0.05 +-0.1 +0 +0 +-0.05 +X +-0.3 +-0.2 +-0.1 +00.5 +10 +5 +0 +0 +5 +-0.5 +-0.5 +0.5 +00.05 +0 +0.4 +-0.05 +0 +0.3 +-0.1 +-0.2 +0.2 +X +-0.3 +y2-D view +M = 5, N = 15 +Zoom in 3-D view +M = 15 = N +Figure 7: Patterns on rough surfaces with amplitude δM = 0.1. Discretization +parameters are nX = 170 = nY , τ = 0.5, T = 800, I2 := [−0.5, 0.5]2. +rough surfaces S based on random data and heat filters. The desired reaction- +diffusion systems are then solved on S. +5.1 +Construction of S by heat filters +We want to generate some random rough surfaces S, which have similar rough- +ness as rough surfaces M in (7) with different M and N. +Let [X, Y ] ∈ RnXnY ×2 ⊂ I2 as in Section 3. +We assign uniform ran- +dom numbers to each node to obtain the initial random surface values ˜Z0 ∼ +� +U[−1, 1] +�nXnY at nodes [X, Y ]. We define the discretized heat filter according +to the method of Section 3 but with some filter-diffusion tensor F (instead of +the diffusion tensor A for surface M) in the Laplace-Beltrami operator △F,h. +For an isotropic filter, we take F = I2×2. This can generate an M-like surface +with M = N. For the anisotropic case with M ̸= N, we use F = diag(2, 1). We +can now smooth the surface data J-times via +˜Zj+1 = (Q + κh△F,h) ˜Zj, +for j = 0, . . . , J, +where Q is an nXnY by nXnY matrix of ones, κ > 0 is the parameter to control +the weights of △F,h, and h is the fill distance of the discrete set. This completes +the definition of the pre-surface that is the counterpart to ˜Z in (7) of the surface +15 + +0.5 +10 +5 +0 +-5 +-0.5 +-0.5 +0 +0.50.4 +0.1 +0 +0.2 +-0.1 +0.3 +0 +X +0.2 +0.1 +y0.5 +10 +5 +0 +0 +5 +-0.5 +-0.5 +0 +0.50.1 +0 +-0.1 +0.1 +0 +0 +-0.1 +-0.2 +y +-0.2 +X +-0.42-D view +M = 5, N = 15 +Zoom in 3-D view +M = 15 = N +Figure 8: +Patterns on rough surfaces with amplitude δM ∈ {0.05} and +(M, N) ∈ {(5, 15), (15, 15)}. The model parameters for stripes are set according +to Table 1. Discretization parameters are nX = 170 = nY , τ = 0.5, T = 4000. +16 + +0.5 +0.1 +0.05 +0 +0 +-0.05 +-0.1 +-0.5 +0.15 +-0.5 +0 +0.50.05 +-0.05 +-0.2 +0.5 +0 +0 +0.2 +-0.5 +X +y0.5 +0.1 +0.05 +0 +0 +-0.05 +-0.1 +-0.5 +-0.15 +-0.5 +0 +0.50.05 +0 +-0.05 +0 +-0.2 +-0.4 +-0.1 +-0.2 +-0.3 +y +-0.4 +-0.5 +X2-D view +M = 5, N = 15 +Zoom in 3-D view +M = 15 = N +Figure 9: +Patterns on rough surfaces with amplitude δM = 0.1 and (M, N) ∈ +{(5, 15), (15, 15)}. The model parameters for stripes are set according to Table 1. +Discretization parameters are nX = 170 = nY , τ = 0.5, T = 4000. +17 + +0.5 +0.1 +0.05 +0 +0 +-0.05 +-0.1 +-0.5 +0.15 +-0.5 +0 +0.50.1 +0 +-0.1 +-0.2 +-0.3 +0.4 +-0.4 +0.2 +X +-0.5 +y +00.5 +0.1 +0.05 +0 +0 +-0.05 +-0.1 +-0.5 +0.15 +-0.5 +0.5 +0-0.1 +0.1 +-0.2 +0 +-0.1 +-0.3 +0.4 +-0.4 +0.2 +X +-0.5 +0 +y(a) +(b) +(c) +(d) +Figure 10: On random rough surface M with parameters in Table 1 and Table 2, +actual animal coat patterns simulation results: (a) emperor angelfish in [26]; (b) +genet in [1]; (c) plecostomus in [12]; (d) cheetah in [46]. +18 + +(a) +(b) +(c) +Figure 11: +Rough surfaces S with κ = 2 and the number of filter steps J = +15, under various filter-diffusion tensors F: (a) F = diag(0.01, 1), (b) F = +diag(1, 1), (c) F = diag(5, 1). +type M. Similar to the scaling in (7), we define S only by nodal values +� +[X, Y, Z] : Z = +δS +∥ ˜ZJ∥∞ +˜ZJ +� +⊂ S, +for some amplitude δS > 0. +Figure 11(a, b, c) shows the rough surfaces S derived for fixed nX = +90, nY = nX, κ = 2 and J = 15 filter steps under filter-diffusion tensors +F ∈ {diag(0.01, 1), diag(1, 1), diag(5, 1)}, +respectively. +Taking F(1, 1) = 1 yields a rough surface S which is similar +to a rough surface M with equal frequencies M, N (cf. +Figure 2). +Taking +F(1, 1) = 0.01 scales down space in the x-direction, yielding a rough surface +S which is similar to a rough surface M with a larger frequency M, M > N. +Conversely, taking F(1, 1) = 5, a rough surface S is obtained which is similar +to M with a smaller frequency M, M < N. +To reproduce the properties of surface M, the required value of filter-diffusion +tensors F and number J of filtering steps will depend on the density of the given +data points [X, Y ]. +For fixed amplitude δS = 1E − 3 and nX = 90, nY = nX, +Table 3 gives values of κ, F and the number of filtering steps J to generate +surfaces that give good qualitative agreement with the rough surfaces M in (7) +for various M, N. Figure 2 gives a comparison showing that rough surfaces S +by heat filters (column 2) are qualitatively similar to our earlier surfaces M by +(7) (see column 1). +While not the focus of the current work, our construction methods for S +can be extended to generate rough closed manifolds which can be used as the +surfaces for the numerical approximation of PDEs. See Figure 12 for a graph- +ical illustration of rough closed manifolds generated by type-M and type-S +approaches respectively. Figure 12(a) was obtained by applying the type-M +procedure to the parameter space (θ, φ) ∈ [0, 2π] × [0, π] with roughness added +to the constant function r = 1. Figure 12(b) was obtained by adding noise to +r = 1 for points on the unit sphere. In contrast to that in (13), the heat filter +here makes use of the discrete Laplace-Beltrami operator for the rough sphere. +19 + +Table 3: Coefficients for constructing the surfaces S that appear in the second column of Figure 2. +Parameters are chosen to give qualitative agreement with the rough surfaces M (7) with δS = +1E − 3, nX = 90 = nY +M in (7) +S by heat filter +κ +F +filter number +[M, N] = [5, 5] +5 +diag(1, 1) +15 +[M, N] = [5, 15] +8 +diag(1, 0.01) +10 +[M, N] = [15, 15] +0.2 +diag(20, 20) +2 +(a) +(b) +Figure 12: Graphical illustration of rough closed manifolds by(a) type-M, and +(b) type-S approaches on parameter size and manifold respectively. +20 + +0 +0 +1 +0 +-10 +0 +1 +1 +0Figure 13: For δS = 0.1, nX = 90, nY = nX, spot and stripe patterns on +a rough surface S with number of filter steps J = 15, F = diag(1, 1), and +κ = 5. +These values from Table 3 give a rough surface similar to M with +M = 5, N = 15. Parameters for spots and stripes are set according to Table 1. +The FDM in Section 3 can be used to solve PDEs on rough surfaces S. +The only difference in the method is that we no longer have the parametric +equation to calculate the metric tensor G in (2) and hence the diffusion tensor +A in (13). Instead of computing metric tensor G analytically as in Section 3 +and 4, centered finite difference formulas are applied to approximate the metric +tensor G. For solving reaction-diffusion systems on rough surfaces S, we set +initial conditions to be steady state solutions on a zero amplitude rough surface +M (7). Figure 13 plots the spot and stripe patterns on a rough surface S using +the reaction-diffusion parameters provided in Table 1. As shown in the second +line of Table 3, rough surface S takes κ = 5, F = diag(1, 1) with J = 15 filter +steps to approximate rough surface M with M = 5, N = 5. It can be seen that +the spot and stripe patterns generated on S are similar to those on M under +parameters M = 5, N = 5, δM = 0.1 (see the third row of Figure 5). +We conclude by simulating the same set of animal coats displayed in Fig- +ure 1 using Turing models on rough surfaces S with parameters set according +to Table 1 and Table 4. +Figure 14 demonstrates again that adding surface +roughness into the process of pattern generation can indeed provide more var- +ied simulations for animal coats. Moreover, the patterns on surface S provide +valid simulations just like M. +Table 4: Parameters for animal coats simulation on S with nX = nY = 90 +κ +F +J +τ +T +δS +Emperor angelfish [26] +Figure 14 (a) +5 +diag(1, 1) +15 +0.5 +400 +0.05 +Genet [1] +Figure 14 (b) +8 +diag(1, 0.01) +10 +0.5 +800 +0.1 +Plecostomus [12] +Figure 14 (c) +8 +diag(1, 0.01) +10 +0.5 +3000 +0.1 +Cheetah [46] +Figure 14 (d) +0.2 +diag(20, 20) +2 +0.5 +400 +0.05 +21 + +(a) +(b) +(c) +(d) +Figure 14: On random rough surface S with parameters in Table 1 and Table 4, +actual animal coat patterns simulation results: (a) emperor angelfish in [26]; (b) +genet in [1]; (c) plecostomus in [12]; (d) cheetah in [46]. +22 + +6 +Conclusion +In this paper, we discussed pattern formation on rough surfaces, with the surface +characterized by two different methods: spatial frequency and discretized heat +filters. The patterns generated on random rough surfaces of different ampli- +tudes and spatial frequencies are illustrated, and the simulation results indicate +that the patterns became relatively more irregular as amplitude increases. The +change of spatial frequencies on the x and y axes will also lead to pattern defor- +mation along the x and y directions. Numerical results indicate that combining +reaction-diffusion systems with rough surfaces can provide better simulations +for animal coat patterns in the real world. What’s more, the method for gen- +erating rough surfaces by heat filters can be further applied to obtain closed +rough manifolds. We plan to explore this generalization in future work. +Appendix: Finite difference algorithm for the heat +equation +The heat equation (11) on a rough surface defined over the parameter space +I2 = [−1, 1]2 is considered. The set of discrete data points on I2 are defined as: +[X, Y ] := +�� +(xi +1, xj +2) +�nX +i=1 +�nY +j=1 ∈ RnXnY ×2, +with mesh size hx1, hx2 on each axis. To fully discretize (12), we require dis- +cretization of the Laplacian-Beltrami operator. For any twice differentiable func- +tion u : I2 → R, we introduce differentiation matrices Dk ∈ RnXnY ×nXnY , k ∈ +{1, 2} satisfying periodic boundary condition (11b) as follows. Using a second- +order centered finite differences, we have for each point (xi +1, xj +2) that +∂u +∂x1 +(xi +1, xj +2) = +� +− +1 +2hx1 +1 +2hx1 +� �u(xi−1 +1 +, xj +2) +u(xi+1 +1 +, xj +2) +� +, +∂u +∂x2 +(xi +1, xj +2) = +� +− +1 +2hx2 +1 +2hx2 +� �u(xi +1, xj−1 +2 +) +u(xi +1, xj+1 +2 +) +� +. +The following fictitious node approach is applied to deal with the periodic +boundary conditions: +u(x0 +1, xj +2) = u(xnX−1 +1 +, xj +2), u(xnX+1 +1 +, xj +2) = u(x2 +1, xj +2), u(xi +1, x0 +2) = u(xi +1, xnY −1 +2 +), +u(xi +1, xnY +1 +2 +) = u(xi +1, x2 +2), u(x1 +1, xj +2) = u(xnX +1 , xj +2), +u(xi +1, x1 +2) = u(xi +1, xnY +2 ). +By assembling all points in [X, Y ], the nodal values of +∂u +∂xk (k = 1, 2) at [X, Y ] +can be obtained by +∂u +∂xk +(X, Y ) ≈ Dku(X, Y ), +for k ∈ {1, 2}, +23 + +where u(X, Y ) := [u(x1 +1, x1 +2), · · · , u(xnX +1 , x1 +2), · · · , u(x1 +1, xnY +2 ), · · · , u(xnX +1 , xnY +2 )]T +is the vector of nodal function values and differential matrices Dk ∈ RnXnY ×nXnY +are in the form of +D1 = +� +�� +DB +1 +· · · +0 +... +... +... +0 +· · · +DB +1 +� +�� , DB +1 = +1 +2hx1 +� +������ +0 +1 +0 +· · · +0 +−1 +0 +−1 +0 +1 +· · · +0 +0 +0 +... +... +... +... +... +... +0 +0 +0 +· · · +−1 +0 +1 +1 +0 +0 +· · · +0 +0 +−1 +� +������ +, +and +D2 = +� +������ +0 +DB +2 +0 +· · · +0 +−DB +2 +0 +−DB +2 +0 +DB +2 +· · · +0 +0 +0 +... +... +... +... +... +... +... +0 +0 +0 +· · · +−DB +2 +0 +DB +2 +DB +2 +0 +0 +· · · +0 +0 +−DB +2 +� +������ +, DB +2 = +1 +2hx2 +� +�� +1 +· · · +0 +... +... +... +0 +· · · +1 +� +�� , +with DB +k ∈ RnX×nX, k ∈ {1, 2}. +References +[1] https://commons.wikimedia.org/wiki/Category:Genetta% +20tigrina?uselang=it. +[2] R. Asai, E. Taguchi, Y. Kume, M. Saito, and S. Kondo, Zebrafish +Leopard gene as a component of the putative reaction-diffusion system, +Mechanisms of Development, (1999), p. 6. +[3] U. M. Ascher and L. R. Petzold, Computer methods for ordinary +differential equations and differential-algebraic equations, Society for In- +dustrial and Applied Mathematics, 1998. +[4] D. Avitabile, V. F. Bre˜n Medina, and M. J. Ward, Spot dynamics +in a reaction-diffusion model of plant root hair initiation, SIAM Journal on +Applied Mathematics, 78 (2018), pp. 291–319. +[5] M. Bertalmi´o, L. Cheng, S. Osher, and G. Sapiro, Variational prob- +lems and partial differential equations on implicit surfaces, Journal of Com- +putational Physics, 174 (2001), pp. 759–780. +[6] H. A. Brooks and P. C. Bressloff, A mechanism for turing pattern +formation with active and passive transport, SIAM Journal on Applied Dy- +namical Systems, 15 (2016), pp. 1823–1843. +[7] P. Carter and A. Doelman, Traveling stripes in the klausmeier model +of vegetation pattern formation, SIAM Journal on Applied Mathematics, +78 (2018), pp. 3213–3237. +24 + +[8] M. Chen and L. Ling, Kernel-based meshless collocation methods for solv- +ing coupled bulk–surface partial differential equations, Journal of Scientific +Computing, 81 (2019), pp. 375–391. +[9] +, Extrinsic meshless collocation methods for PDEs on manifolds, +SIAM J. Num. Anal., 58 (2020), pp. 988–1007. +[10] K. C. Cheung and L. Ling, A kernel-based embedding method and con- +vergence analysis for surfaces PDEs, SIAM J. Sci. Comput., 40 (2018), +pp. A266–A287. +[11] A. Chu, Closest point methods with polyharmonic spline radial basis func- +tions and local refinement, PhD thesis, University of British Columbia, +2021. +[12] Contributors to Wikimedia projects. https://en.wikipedia.org/ +wiki/Plecostomus. +[13] J. Dong, Avoiding collisions and pattern formation in flocks, SIAM Jour- +nal on Applied Mathematics, 81 (2021), pp. 2111–2129. +[14] Q. Du, M. D. Gunzburger, and L. Ju, Voronoi-based finite volume +methods, optimal Voronoi meshes, and PDEs on the sphere, Computer +Methods in Applied Mechanics and Engineering, 192 (2003), pp. 3933– +3957. +[15] Q. Du and L. Ju, Finite volume methods on spheres and spherical cen- +troidal voronoi meshes, SIAM Journal on Numerical Analysis, 43 (2005), +pp. 1673–1692. +[16] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, +Acta Numerica, 22 (2013), pp. 289–396. +[17] +, The Science of Fractal Images, vol. 22, Cambridge University Press, +2013. +[18] P. C. Fife, Mathematical aspects of reacting and diffusing systems, 28 +(1979). +[19] E. J. Fuselier and G. B. Wright, A high-order kernel method for +diffusion and reaction-diffusion equations on surfaces, Journal of scientific +computing, 56 (2013), pp. 535–565. +[20] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa, and H. Soli- +man, Roughness parameters, Journal of Materials Processing Technology, +123 (2002), pp. 133–145. +[21] A. Gierer and H. Meinhardt, A theory of biological pattern formation, +vol. 12, 1972. +25 + +[22] G. Hu, Z. Qiao, and T. Tang, Moving finite element simulations for +reaction-diffusion systems, Advances in Applied Mathematics and Mechan- +ics, (2015). +[23] Y. Z. Hu and K. Tonder, Simulation of 3-D random rough surface by 2- +D digital filter and fourier analysis, International journal of machine tools +and manufacture, 32 (1992), pp. 83–90. +[24] W. Huang and M. Multerer, Isogeometric analysis of diffusion prob- +lems on random surfaces, arXiv preprint arXiv:2109.03761, (2021). +[25] V. Klika, M. Koz´ak, and E. A. Gaffney, Domain size driven instabil- +ity: Self-organization in systems with advection, SIAM Journal on Applied +Mathematics, 78 (2018), pp. 2298–2322. +[26] A. kok. +https://commons.wikimedia.org/wiki/File:Pomocanthus_ +imperator_facing_right.jpg, 2014. +[27] S. Kondo and R. Asai, A reaction-diffusion wave on the skin of the +marine angelfish pomacanthus, Nature, 376 (1995), pp. 765–768. +[28] O. Lakkis, A. Madzvamuse, and C. Venkataraman, Implicit–explicit +timestepping with finite element approximation of reaction–diffusion sys- +tems on evolving domains, SIAM Journal on Numerical Analysis, 51 (2013), +p. 2013. +[29] E. Lehto, V. Shankar, and G. B. Wright, A radial basis func- +tion (RBF) compact finite difference (FD) scheme for reaction-diffusion +equations on surfaces, SIAM Journal on Scientific Computing, 39 (2017), +pp. A2129–A2151. +[30] S. Li and L. Ling, Complex pattern formations by spatial varying pa- +rameters, Advances in Applied Mathematics and Mechanics, 12 (2020), +pp. 1327–1352. +[31] S. Li and Z. Qiao, A meshless collocation method with a global refine- +ment strategy for reaction-diffusion systems on evolving domains, Discrete +& Continuous Dynamical Systems–B, (2021). +[32] J. Lu, F. Baginski, and X. Ren, Equilibrium configurations of boundary +droplets in a self-organizing inhibitory system, SIAM Journal on Applied +Dynamical Systems, 17 (2018), pp. 1353–1376. +[33] D. B. McDonald, W. J. Grantham, W. L. Tabor, and M. J. Mur- +phy, Global and local optimization using radial basis function response sur- +face models, Applied Mathematical Modelling, 31 (2007), pp. 2095–2110. +[34] J. Murray, A pattern formation mechanism and its application to mam- +malian coat markings, 1980. +26 + +[35] J. Murray, A pre-pattern formation mechanism for animal coat markings, +Journal of Theoretical Biology, 88 (1981), pp. 161 – 199. +[36] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element +method for elliptic equations on surfaces, SIAM Journal on Numerical Anal- +ysis, 47 (2009), pp. 3339–3358. +[37] P. Pawlus, R. Reizer, and M. Wieczorowski, A review of methods +of random surface topography modeling, Tribology International, (2020), +p. 106530. +[38] Z. Qiao, Numerical investigations of the dynamical behaviors and instabil- +ities for the gierer-meinhardt system, Communications in Computational +Physics, 3 (2008), pp. 406–426. +[39] S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in +pattern formation, Journal of Mathematical Biology, 34 (1994). +[40] S. J. Ruuth and B. Merriman, A simple embedding method for solv- +ing partial differential equations on surfaces, Journal of Computational +Physics, 227 (2008), pp. 1943–1961. +[41] V. Shankar, G. B. Wright, and A. Narayan, A robust hyperviscos- +ity formulation for stable RBF-FD discretizations of advection-diffusion- +reaction equations on manifolds, SIAM Journal on Scientific Computing, +42 (2020), pp. A2371–A2401. +[42] R. Shi, B. Wang, Z. Yan, Z. Wang, and L. Dong, Effect of sur- +face topography parameters on friction and wear of random rough surface, +Materials, 12 (2019), p. 2762. +[43] B. Sjodin, How to generate random surfaces in COMSOL multiphysics®. +[44] P. Suchde and J. Kuhnert, A meshfree generalized finite difference +method for surface PDEs, Computers & Mathematics with Applications, +78 (2019), pp. 2789–2805. +[45] Z. Tang, Z. Fu, M. Chen, and L. Ling, A localized extrinsic collocation +method for Turing pattern formations on surfaces, Applied Mathematics +Letters, 122 (2021), p. 107534. +[46] Tasnim. https://www.tasnimnews.com/fa/news/1394/09/15/935574/. +[47] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. +Lond., 237 (1952), pp. 37–72. +27 + diff --git a/XdFPT4oBgHgl3EQfsTWZ/content/tmp_files/load_file.txt b/XdFPT4oBgHgl3EQfsTWZ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ffedddd153dca00be4d5941c1d9d8eaf99dc97f3 --- /dev/null +++ b/XdFPT4oBgHgl3EQfsTWZ/content/tmp_files/load_file.txt @@ -0,0 +1,872 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf,len=871 +page_content='Realistic pattern formations on rough surfaces∗ Siqing LI† Leevan LING‡ Steven J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' RUUTH§ Xuemeng Wang¶ January 31, 2023 Abstract We are interested in simulating patterns on rough surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' First, we consider periodic rough surfaces with analytic parametric equations, which are defined by some superposition of wave functions with random frequencies and angles of propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in our numerical studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Simulations show that the patterns become irregular as the amplitude and frequency of the rough surface increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Next, for the sake of easy generalization to closed manifolds, we propose another construction method of rough surfaces by using random nodal values and discretized heat filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We provide numer- ical evidence that both surface constructions yield comparable patterns to those found in real-life animals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' keywords Laplace-Beltrami operator, reaction-diffusion system, random surfaces, Turing pattern AMS subject classifications 65M06, 35K57 1 Introduction Pattern formation by reaction-diffusion systems has been an intensively studied field for decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In 1952, Turing proposed the idea of diffusion-driven instabil- ity [47], in which simple mechanisms evolve from a homogeneous state into spa- tial heterogeneous patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In recent years, a variety of application areas have ∗This work was funded by the Hong Kong Research Grant Council GRF Grants (12303818,12301419,12301520), a National Youth Science Foundation of China (12201449), and the financial support of NSERC Canada (RGPIN-2022-03302).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' †College of Data Science, Taiyuan University of Technology, Shanxi, China (lisiqing@tyut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='cn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' ‡Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (lling@hkbu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='hk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' §Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6 (sruuth@sfu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='ca).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' ¶Department of Mathematics, University of British Columbia, Vancouver, Canada, and Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (17251109@life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='hkbu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='hk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='13148v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='NA] 13 Jan 2023 (a) (b) (c) (d) Figure 1: Skin patterns in real-life: (a) emperor angelfish [26], (b) genet [1], (c) pecostomus [12], (d) cheetah [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' been actively developed, including vegetation pattern, plant root hair initiation, flock simulation and boundary drop configurations [4,7,13,32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Mechanisms of pattern generation under different types of transport or domain size have been considered as well;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' see [6,25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In theoretical biology, reaction-diffusion systems provide a relatively generic and concise approach for simulating animal skin pat- terns [18,35], as well as regenerative processes of organisms [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In particular, reaction-diffusion systems are a well-accepted class of models for multiple pig- mentation processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Examples include marine [27] and emperor [26] angelfish, genets [1], plecostomi [12], cheetah [46], zebra fish [2], and many other mam- mal skin patterns [34];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' see Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Although animal skin pattern simulation through reaction-diffusion systems has been explored in many researches, see the second row of Figure 5 for typical examples, very few of them have taken the skin texture into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In reality, the skin surfaces are often rugged, and consequently the pattern will actually not be regular spots or stripes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' There- fore, combining surface properties with reaction-diffusion systems can provide an opportunity for improved simulation of real pattern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In [11, 30], parameter functions instead of constants were used in PDEs to generate nonuniform and complex, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', more real-life, patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Characterizing random rough surfaces can be carried out by a variety of methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' These include the reference parameter method, motif method, fractal method, watershed method, and wavelet method, etc [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For three-dimensional surface topography, there are a number of parameters involved [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To generate random rough surfaces, both the Fast Fourier Transform (FFT) [37] and digital filter [23] methods can be applied to approximate the auto-correlation function for surfaces with wavelengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In [24], the authors proposed an approach that applies the covariance function and Karhunen-Lo`eve expansion to generate ran- dom surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Rough surfaces may also be generated from spatial frequencies via the FFT method;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' in this case, the rough surface is built by summing up 2 trigonometric functions [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Section 2, the rough surface M with parametric equations will be for- mulated in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We consider periodic rough surfaces M characterized with spatial frequency, which come with analytic parametric equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Section 5, we consider surfaces S constructed by random nodal values and discretized heat filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The latter surface construction technique can be easily extended to add “roughness” to more general manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Along with the construction of rough surfaces, we will review the concept of the heat equation which is a surface PDE involving the Laplace operator on manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Moving from a flat geometry to rough surfaces, generally speaking, we have to deal with surface dependent differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Surface PDEs have been extensively studied in recent years, and there are a variety of techniques for their analysis and computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The approaches for surface PDEs can be separated into intrinsic methods and embedding methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Intrinsic methods solve PDEs on the manifold directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' However, embedding methods formulate and solve PDEs on a band around the manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Intrinsic and embedding methods that are dependent on mesh construction have been explored by many researchers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Examples of such methods include finite difference [40], finite element [5,16,36], and finite volume [14,15] methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' There are also numerical methods that do not require meshes, namely meshfree methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Meshfree methods for surface PDEs, such as radial basis function (RBF) methods [8–10,19] and the meshfree generalized finite difference method [44,45], have the advantage of avoiding mesh construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Section 3, we apply the finite difference method to solve pattern forma- tion PDEs on rough surfaces M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' the FDM is chosen because of its simplicity and effectiveness on the class of problem domains considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The rough sur- face pattern formation models here are not yet extendable to add roughness to other manifolds, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', we cannot yet create red-blood cells with rough surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Our aim is to study the effect of roughness on pattern formation using the sim- plest setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Numerical simulation results on rough surfaces M with parametric equations are demonstrated in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Section 5, we put forward a different construction method of rough sur- faces S by random discrete data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' After updating our numerical schemes for M to work on S, we see that surface types M and S yield comparable patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Section 4 and Section 5, we present some simulated animal coat patterns on both types of surfaces, M and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Results for PDEs with constant parameters on rough surfaces with various roughness are similar to the real-life patterns displayed in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2 Rough surfaces M with analytic parametric equations Consider Ck–smooth (k ≥ 2), codimension 1, and periodic Riemannian surfaces M = � (x, y, z) ∈ R3 : z = z(x, y) for (x, y) ∈ V ⊂ R2� , (1) 3 for some Ck function z(·, ·) defined on a global parameter space V ⊂ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A corresponding parametric representation of M is given by ⃗r(x, y) = � x, y, z(x, y) �T ∈ M, (x, y) ∈ V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For convenience, let (x, y) := (x1, x2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' we shall use both notations interchange- ably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Recall that the first fundamental form G : V → R2×2 of M is defined by G(x, y) = � g11 g12 g21 g22 � (x, y) where gij(x, y) = ∂⃗r(x, y) ∂xi ∂⃗r(x, y) ∂xj , see [16] for a review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In the case of a surface function M as in (1), we have G(x, y) = �g11 g12 g21 g22 � (x, y) = �1 + z2 x zxzy zxzy 1 + z2 y � , (2) whose determinant and inverse are g(x, y) := det(G)(x, y) = 1 + z2 x + z2 y, (3) and G−1(x, y) = �g11 g12 g21 g22 � (x, y) = 1 1 + z2x + z2y � 1 + z2 y −zxzy −zxzy 1 + z2 x � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (4) Using (3)–(4), the Laplace-Beltrami operator on M is given by ∆Mf = 1 √g � 1≤i,j≤2 ∂ ∂i �√ggij ∂ ∂j f � =: 1 √g ∇ · � A∇f � , (5) for any C2 function f : M → R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Now, we focus on random rough surfaces M ⊆ R3 in the form of (1), whose surface function z : I2 = [−L, L]2 → R is a superposition of elementary waves [17,43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The function z is stochastically determined by z(x, y) = M � m=−M N � n=−N am,n cos � 2π(mx + ny) + φm,n � , (6) for some random variables am,n and φm,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Similar to a Fourier series expansion, z(x, y) in (6) is constructed by trigonometric functions in which m, n correspond to spatial frequencies on the x and y axes respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' As in [43], the spatial frequencies m and n allow values taken up to maximum integers M and N respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' this corresponds to a high frequency cut off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To determine (6), we first introduce ˜am,n ∼ N(0, 1) and φm,n ∼ U(0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This specifies the pre-surface function ˜z = ˜z(x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Next, we control the ampli- tude of the rough surface M to be within a specific range [−δM, δM] by scaling according to z := δM ∥˜z∥∞ ˜z, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', am,n := δM ∥˜z∥∞ ˜am,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (7) 4 M (a) M = 5 = N Lower roughness S (d) (b) M = 5, N = 15 Increasing M, N ←−−−−−−−−−−−−−− (e) (c) M = 15 = N Higher roughness (f) Figure 2: Bird’s-eye view of some random rough surfaces M from Section 2 (left) and S from Section 5 (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figures 2 (a)–(c), first column, show some rough surfaces M with amplitude δM = 10−3 and various (M, N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The construction of the rough surfaces S appearing in the second column will be discussed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Remark: One can also add a decay condition with respect to frequencies m, n and a frequency attenuation parameter β to the pre-coefficient ˜am,n via ˜am,n ∼ 1 (m2 + n2)β/2 N(µ, σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Surface roughness and Laplace-Beltrami operator Applying the definition of the Laplace-Beltrami operator (5) to the rough sur- face function in (6)–(7), the relationship between the eigenvalues of the diffusion tensor and the geometry of the surface can be made explicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Firstly, the diffu- 5 sion tensor A in (5) is A(x, y) = �A1 A2 A2 A4 � (x, y) := √gG−1 = 1 √g �1 + z2 y −zxzy −zxzy 1 + z2 x � , (8) with the partial derivatives zx and zy computing from (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We are interested in obtaining the eigenvalues and eigenvectors of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Rather than computing these quantities directly, it turns out to be easier to first compute the eigenvalues and eigenvectors of the Riemannian metric tensor G in (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' From the characteristic equation of G |G − λI| = (1 + z2 x − λ)(1 + z2 y − λ) − z2 xz2 y = 0, we find that the eigenvalues λG of G are 1 + z2 x + z2 y = g and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Since A⃗v = √gG−1⃗v = √g λG ⃗v, (9) any eigenvector ⃗v of G is also an eigenvector of A and the eigenvalues λA of A are λA = �√g = � 1 + z2x + z2y, 1 √g � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (10) Note that, by (7), the matrix function [G−λGI](zx, zy) = C(δM)[G−λGI](˜zx, ˜zy) for some δM-dependent constant C(δM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This implies that all eigendirections of G (and A) are independent of the amplitude δM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Simple calculations show that λA = 1 + O(M 2N 2δ2 M) varies with δM nonlinearly by a bijection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Thus, the contour lines (but not the height) of λA are independent of δM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 3 illustrates the close relationship between the eigenvalues of A and the geometric properties of a rough surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In particular, we can see from subfigures (b), (c), and (e) that the maximum (and minimum) eigenvalues are larger (and smaller) at regions of the surface with the steepest gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In subfigures (d) and (f), eigendirections are plotted on top of subfigure (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We can clearly see that the eigenvectors corresponding to the maximum (and minimum) eigenvalues are tangent (and orthogonal) to the contour plots of eigenvalues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 3 Solving heat equations on rough surfaces M We begin by constructing a finite difference scheme for solving heat equations on rough surfaces M ⊂ R3 defined by (6)–(7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We work intrinsically by transform- ing the PDEs on rough surfaces to the parameter space I2 = [−L, L]2 ⊂ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Subsequently, we move on to solving reaction-diffusion systems for pattern for- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We consider the heat equation on a rough surface ∂u ∂t (ξ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' t) − ∆Mu(ξ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' t) = h(ξ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' t) for ξ ∈ M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' t ∈ (0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' T],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (11a) 6 (a) M = 1 = N (b) Contour of a rough surface M (c) maximum eigenvalue λA max (d) eigendirection of λA max (e) minimum eigenvalue λA min (f) eigendirection of λA min Figure 3: (a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' b): 3D and contour plots of a rough surface in the form of (7) with M = N = 1 and amplitude δM = 1E −1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' d): maximum eigenvalue and eigendirection of A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' f): minimum eigenvalue and eigendirection of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 1 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='94 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1where u : M × (0, T] → R, subject to periodic boundary conditions on ∂M := ∂I2 × z(∂I2) with z(∂I2) being the surface function in (6), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', u([−L, y, z(−L, y)]T , t) = u([L, y, z(L, y)]T , t), for y ∈ I, t ∈ (0, T], u([x, −L, z(x, −L)]T , t) = u([x, L, z(x, L)]T , t), for x ∈ I, t ∈ (0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (11b) Since all surface points are in the form ξ = [x, y, z(x, y)]T ∈ M for [x, y]T ∈ I2 and z in (6), we discretize the parameter space I2 by some set of nXnY tensor-product grid points [X, Y ] ∈ RnXnY ×2 ⊂ I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Let uj(x, y) ≈ u([x, y, z(x, y)]T , tj) for [x, y]T ∈ I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We begin by temporal discretization of (11a) by the θ-method uj+1 − uj τ = θ � ∆Muj+1 + hj+1� + (1 − θ) � ∆Muj + hj� , (12) for an equispaced partition {tj}M j=0 of [0, T] with step-size τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' By some user- selected finite difference scheme for the first derivative, we construct differenti- ation matrices Dk ∈ RnXnY ×nXnY such that, for any C1-function w : I2 → R satisfying periodic boundary condition (11b), we have Dkw(X, Y ) ≈ ∂w ∂xk (X, Y ), for k ∈ {1, 2}, where the nXnY × 1 vector w(X, Y ) (and ∂w ∂xk (X, Y )) contains nodal values of w (and ∂w ∂xk ) at grid points in [X, Y ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Working directly on definitions (5)–(8),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' we can approximate the Laplace-Beltrami term ∆Mw at grids [X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ] by nodal function values W := w(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) according to ∆Mw(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ≈ 1 √g (X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y )⊛ � D1 � A1(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊛ (D1W) � + D2 � A4(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊛ (D2W) � + D1 � A2(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊛ (D2W) � + D2 � A2(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊛ (D1W) �� = 1 √g (X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y )⊚ � D1 � A1(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊚ D1 � + D2 � A4(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊚ D2 � + D1 � A2(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊚ D2 � + D2 � A2(X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Y ) ⊚ D1 �� W =: △M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='hW,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (13) where △M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='h ∈ RnXnY ×nXnY ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' ⊛ is the element-wise Hadamard product of ma- trices and ⊚ is a vector-matrix product defined by ⃗a ⊚ [⃗b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='⃗bn] := [⃗a ⊛ ⃗b1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=',⃗a ⊛ ⃗bn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' See Appendix for the detailed construction of differentiation matrices D1, D2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Combining (12) and (13) yields a fully discretized scheme for the update in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Visualizing heat flow on a rough surface M We show the heat flow under different amplitudes of rough surface M in (3) by solving the heat equations (11a) with zero flux h(ξ, t) = 0 and periodic boundary 8 conditions (11b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The rough surfaces M are defined over the parameter space I2 = [−1, 1]2 ⊂ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The compatible initial condition is given by u(x, y, z, 0) = cos(πx/2) cos(πy/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (14) Figure 4 shows the numerical solutions on the surface M in Figure 3 (b) with δM ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 1} in the respective rows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In all cases, we use backward Euler method, and set τ = 1E − 3, T = 1 and nX = 41 = nY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 4 shows that the range of the numerical solutions becomes larger as the amplitude of M increases from δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 to δM = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' From the rough surface in Figure 3 (b) and solutions in Figure 4, it can be concluded that the heat flow when projected to the plane is greatest in flat regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 4 Pattern formation on a rough surface M In this section, we consider reaction-diffusion systems (RDS) on a rough surface M � ∂tu = δu∆Mu + fu(u, v), ∂tv = δv∆Mv + fv(u, v), (15) for some (concentration) functions u, v : M × (0, T] → R, and reaction terms � � � fu(u, v) = αu(1 − ξ1v2) + v(1 − ξ2u), fv(u, v) = βv � 1 + αξ1 β uv � + u(γ + ξ2v), (16) with parameters δu, δv, α, β, ξ1, ξ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Pattern formation on very smooth (and usu- ally closed) surfaces with little variation is discussed in [10, 29, 33, 41];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' pattern formation on rough surfaces has not been studied as far as the authors know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In this section, we aim to analyze the effect of rough surfaces on pattern formation generated by the reaction-diffusion system (15)-(16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Numerical methods are not our focus and we simply extend the finite difference scheme in the previous section to work here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Other options for the discretization of reaction-diffusion systems include the finite element method [22,28,38], and various types of mesh- free methods [30,31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' As in Section 3, we work on an equispaced temporal partition {tj}NT j=0 with some time step-size τ > 0 and tensor-product grid points [X, Y ] ∈ RnXnY ×2 ⊂ I2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Let U j ≈ u(X, Y, z(X, Y ), tj) and V j ≈ v(X, Y, z(X, Y ), tj), 1 ≤ j ≤ NT , be the unknown nodal values we seek based on initial conditions U 0 and V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Using the second order backward differentiation formula (BDF2) [3,39] and (13) to discretize the RDS (15) with periodic boundary condition (11b), we obtain 9 (a) δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 (b) (c) δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 (d) (e) δM = 1 (f) Figure 4: Numerical solution of heat equations under different amplitudes δM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (a, b): δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, (c, d): δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, (e, f): δM = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In all cases, τ = 1E − 3, T = 1, nX = 41 = nY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='45 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 1Table 1: Parameters of the reaction-diffusion system (15)-(16) for generating spots and stripes patterns on rough surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Pattern δv δu α β γ ξ1 ξ2 Spots 10−3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='516δv 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='899 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='91 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 Stripes 10−3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='516δv 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='899 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='91 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='899 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 the following fully-discrete system of equations on M � � � � � 3U j+1 − 2τδu△M,hU j+1 = 4τfu � U j, V j� − 2τfu � U j−1, V j−1� + 4U j − U j−1, 3V j+1 − 2τδv△M,hV j+1 = 4τfv � U j, V j� − 2τfv � U j−1, V j−1� + 4V j − V j−1, (17) for 1 ≤ j ≤ NT , subject to some yet-to-be specified (usually random) initial condition and some first order approximations to the solutions at the first time step, U 1 and V 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Note that the two equations in (17) are not coupled;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' the com- putational cost is of the same order as that of solving two scalar heat equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 The pattern generation process In this subsection, we show the formation of irregular patterns as we go from a flat two dimensional domain to rough surfaces with different amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We start with patterns on the flat domain [−1, 1]2 as in [30], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', the rough sur- face with zero amplitude (δM = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Model and surface parameters are chosen according to the values in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To discretize, we select grid parameters nX = 90, nY = nX, and a time step-size τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The rough surfaces M with M = N = 5 are used in this part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The first row of Figure 5 plots the initial conditions used to compute the spots and stripes patterns, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' These are random values generated within the interval [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The second row of Figure 5 shows the steady state patterns on the surface with zero amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Perfect spots and stripes are obtained, which is similar to our previous results in [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Next, we set the initial conditions for the next amplitude to be the steady solutions from the zero amplitude rough surface, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e, we use the solution of spots with δM = 0, T = 800 and the solution of stripes with δM = 0, T = 4000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' By increasing the amplitude of the rough surface from δM = 0 to δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 with increments of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01, and setting initial conditions using the previous steady state, we achieve the final patterns for δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' These are shown in the third row of Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For rough surfaces under small amplitude δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05, the spots and stripes are similar to those with δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' However, for larger amplitude δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, both spots and stripes become irregular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We can conclude that the steady state patterns become irregular as the amplitude of the rough surface M increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 11 Spots δM = 0, t = 0 Stripes δM = 0, t = 0 δM = 0, t = 800 δM = 0, t = 4000 Increase δM by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01 at a time −−−−−→ δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, t = 800 × 11 δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, t = 4000 × 11 Figure 5: Pattern generation on rough surfaces M with M = N = 5 and amplitude δM increasing from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Parameters for spots and stripes are set according to Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Discretization parameters are nX = 90 = nY , τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 Patterns on surfaces with different spatial frequencies and amplitudes Properties of rough surfaces are influenced by the amplitude δM and the spatial frequencies M, N in (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To better understand patterns on rough surfaces with different properties, we compute steady state patterns for δM ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1}, (M, N) ∈ {(5, 15), (15, 15)}, on the parameter space I2 = [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5]2 ⊂ R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Periodic boundary conditions on ∂M := ∂I2 × z(∂I2) are prescribed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' These patterns in both 2-D view and zoom in 3-D view are presented in Figures 6-7 for spots, and in Figures 8-9 for stripes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' As before, the initial conditions are assigned to be random data in [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In order to capture details of the spot and stripe patterns, we increase the spatial resolution from nX = 90 to nX = 170, again keeping nY = nX to ensure the irregular patterns were due to the roughness rather than low resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Firstly, from Figures 6 and 7, we can see that the number of spots increases as the frequencies M, N and the amplitude δM increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For fixed amplitude δM, patterns are deformed along the x−axis as the frequency N increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This conclusion is clearly illustrated in the case δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' On the other hand, for fixed values of M, N, the patterns maintain their shape as spots when δM ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05, and start to deform when δM ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, all patterns become deformed spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Secondly, for fixed δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05, zoom in 3-D profiles of region [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3, 0] for [M, N] = [5, 15] and region [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5]×[−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3, 0] for [M, N] = [15, 15] reveal that irregular spots appear when part of the pattern is located in a valley or ridge of the rough surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' When δM increases to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, as in Figure 7, the deformation of the patterns is more severe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This makes sense since the amplitude δM is twice that of Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' From zoom in 3-D figures of region [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5] × [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4] for [M, N] = [5, 15] and region [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1] × [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1] for [M, N] = [15, 15], the deformed patterns again appear when their locations cover the local ridge/valley/mountain of the rough surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' As frequencies and amplitudes are varied, similar behavior (to the case of spots) can be observed in stripe formation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' see Figures 8 and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' High amplitudes and frequencies yield a particularly strong effect in the zoom in 3-D plots in Figure 9, where the stripes break into small separate components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Further, we observe that the largest concentration values appear at the local peaks of the rough surface M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 Animal coat simulation results In simulation results on rough surfaces M which are characterized by spatial frequencies, we observe interesting similarities between some steady state pat- terns and actual animal coat patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In Figure 10, we show the simulations of the animal coats in Figure 1 by patterns on rough surfaces M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The specific 13 2-D view M = 5, N = 15 Zoom in 3-D view M = 15 = N Figure 6: Patterns on rough surfaces with amplitude δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Discretization parameters are nX = 170 = nY , τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, T = 800, I2 := [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' parameter values for generating each animal coat pattern are listed in Tables 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Table 2: Parameters for animal coats simulation on M in Figure 10 with nX = nY = 90 M N τ T δM Emperor angelfish [26] Figure 10 (a) 5 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 4000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 Genet [1] Figure 10 (b) 15 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Plecostomus [12] Figure 10 (c) 15 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 4000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Cheetah [46] Figure 10 (d) 15 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 5 Random rough surfaces S by discrete data While the parametric equation (6) allows us to work analytically on rough sur- faces, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', via the evaluation of metric tensor (2), its generalization to mani- folds [9,10,40] is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In [24], the authors used the covariance function of random deformation fields and the surface Karhunen-Lo`eve expansion to generate random surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In [23], the authors applied the 2D digital filter and Fourier analysis to generate random rough surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In this section, we introduce a new approach for constructing 14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10 5 0 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10 5 0 0 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 y2-D view M = 5, N = 15 Zoom in 3-D view M = 15 = N Figure 7: Patterns on rough surfaces with amplitude δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Discretization parameters are nX = 170 = nY , τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, T = 800, I2 := [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' rough surfaces S based on random data and heat filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The desired reaction- diffusion systems are then solved on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Construction of S by heat filters We want to generate some random rough surfaces S, which have similar rough- ness as rough surfaces M in (7) with different M and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Let [X, Y ] ∈ RnXnY ×2 ⊂ I2 as in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We assign uniform ran- dom numbers to each node to obtain the initial random surface values ˜Z0 ∼ � U[−1, 1] �nXnY at nodes [X, Y ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We define the discretized heat filter according to the method of Section 3 but with some filter-diffusion tensor F (instead of the diffusion tensor A for surface M) in the Laplace-Beltrami operator △F,h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For an isotropic filter, we take F = I2×2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This can generate an M-like surface with M = N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For the anisotropic case with M ̸= N, we use F = diag(2, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We can now smooth the surface data J-times via ˜Zj+1 = (Q + κh△F,h) ˜Zj, for j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' , J, where Q is an nXnY by nXnY matrix of ones, κ > 0 is the parameter to control the weights of △F,h, and h is the fill distance of the discrete set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' This completes the definition of the pre-surface that is the counterpart to ˜Z in (7) of the surface 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10 5 0 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 10 5 0 0 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='42-D view M = 5, N = 15 Zoom in 3-D view M = 15 = N Figure 8: Patterns on rough surfaces with amplitude δM ∈ {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05} and (M, N) ∈ {(5, 15), (15, 15)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The model parameters for stripes are set according to Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Discretization parameters are nX = 170 = nY , τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, T = 4000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 X y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 X2-D view M = 5, N = 15 Zoom in 3-D view M = 15 = N Figure 9: Patterns on rough surfaces with amplitude δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 and (M, N) ∈ {(5, 15), (15, 15)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The model parameters for stripes are set according to Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Discretization parameters are nX = 170 = nY , τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5, T = 4000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 y 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 X 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 0 y(a) (b) (c) (d) Figure 10: On random rough surface M with parameters in Table 1 and Table 2, actual animal coat patterns simulation results: (a) emperor angelfish in [26];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (b) genet in [1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (c) plecostomus in [12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (d) cheetah in [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 18 (a) (b) (c) Figure 11: Rough surfaces S with κ = 2 and the number of filter steps J = 15, under various filter-diffusion tensors F: (a) F = diag(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01, 1), (b) F = diag(1, 1), (c) F = diag(5, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' type M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Similar to the scaling in (7), we define S only by nodal values � [X, Y, Z] : Z = δS ∥ ˜ZJ∥∞ ˜ZJ � ⊂ S, for some amplitude δS > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 11(a, b, c) shows the rough surfaces S derived for fixed nX = 90, nY = nX, κ = 2 and J = 15 filter steps under filter-diffusion tensors F ∈ {diag(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01, 1), diag(1, 1), diag(5, 1)}, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Taking F(1, 1) = 1 yields a rough surface S which is similar to a rough surface M with equal frequencies M, N (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Taking F(1, 1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01 scales down space in the x-direction, yielding a rough surface S which is similar to a rough surface M with a larger frequency M, M > N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Conversely, taking F(1, 1) = 5, a rough surface S is obtained which is similar to M with a smaller frequency M, M < N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To reproduce the properties of surface M, the required value of filter-diffusion tensors F and number J of filtering steps will depend on the density of the given data points [X, Y ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For fixed amplitude δS = 1E − 3 and nX = 90, nY = nX, Table 3 gives values of κ, F and the number of filtering steps J to generate surfaces that give good qualitative agreement with the rough surfaces M in (7) for various M, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 2 gives a comparison showing that rough surfaces S by heat filters (column 2) are qualitatively similar to our earlier surfaces M by (7) (see column 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' While not the focus of the current work, our construction methods for S can be extended to generate rough closed manifolds which can be used as the surfaces for the numerical approximation of PDEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' See Figure 12 for a graph- ical illustration of rough closed manifolds generated by type-M and type-S approaches respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 12(a) was obtained by applying the type-M procedure to the parameter space (θ, φ) ∈ [0, 2π] × [0, π] with roughness added to the constant function r = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 12(b) was obtained by adding noise to r = 1 for points on the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' In contrast to that in (13), the heat filter here makes use of the discrete Laplace-Beltrami operator for the rough sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 19 Table 3: Coefficients for constructing the surfaces S that appear in the second column of Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Parameters are chosen to give qualitative agreement with the rough surfaces M (7) with δS = 1E − 3, nX = 90 = nY M in (7) S by heat filter κ F filter number [M, N] = [5, 5] 5 diag(1, 1) 15 [M, N] = [5, 15] 8 diag(1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01) 10 [M, N] = [15, 15] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 diag(20, 20) 2 (a) (b) Figure 12: Graphical illustration of rough closed manifolds by(a) type-M, and (b) type-S approaches on parameter size and manifold respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 20 0 0 1 0 10 0 1 1 0Figure 13: For δS = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1, nX = 90, nY = nX, spot and stripe patterns on a rough surface S with number of filter steps J = 15, F = diag(1, 1), and κ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' These values from Table 3 give a rough surface similar to M with M = 5, N = 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Parameters for spots and stripes are set according to Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The FDM in Section 3 can be used to solve PDEs on rough surfaces S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The only difference in the method is that we no longer have the parametric equation to calculate the metric tensor G in (2) and hence the diffusion tensor A in (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Instead of computing metric tensor G analytically as in Section 3 and 4, centered finite difference formulas are applied to approximate the metric tensor G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For solving reaction-diffusion systems on rough surfaces S, we set initial conditions to be steady state solutions on a zero amplitude rough surface M (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 13 plots the spot and stripe patterns on a rough surface S using the reaction-diffusion parameters provided in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' As shown in the second line of Table 3, rough surface S takes κ = 5, F = diag(1, 1) with J = 15 filter steps to approximate rough surface M with M = 5, N = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' It can be seen that the spot and stripe patterns generated on S are similar to those on M under parameters M = 5, N = 5, δM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 (see the third row of Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We conclude by simulating the same set of animal coats displayed in Fig- ure 1 using Turing models on rough surfaces S with parameters set according to Table 1 and Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Figure 14 demonstrates again that adding surface roughness into the process of pattern generation can indeed provide more var- ied simulations for animal coats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Moreover, the patterns on surface S provide valid simulations just like M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Table 4: Parameters for animal coats simulation on S with nX = nY = 90 κ F J τ T δS Emperor angelfish [26] Figure 14 (a) 5 diag(1, 1) 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 Genet [1] Figure 14 (b) 8 diag(1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01) 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Plecostomus [12] Figure 14 (c) 8 diag(1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='01) 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 3000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='1 Cheetah [46] Figure 14 (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='2 diag(20, 20) 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='5 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='05 21 (a) (b) (c) (d) Figure 14: On random rough surface S with parameters in Table 1 and Table 4, actual animal coat patterns simulation results: (a) emperor angelfish in [26];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (b) genet in [1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (c) plecostomus in [12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' (d) cheetah in [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 22 6 Conclusion In this paper, we discussed pattern formation on rough surfaces, with the surface characterized by two different methods: spatial frequency and discretized heat filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The patterns generated on random rough surfaces of different ampli- tudes and spatial frequencies are illustrated, and the simulation results indicate that the patterns became relatively more irregular as amplitude increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The change of spatial frequencies on the x and y axes will also lead to pattern defor- mation along the x and y directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Numerical results indicate that combining reaction-diffusion systems with rough surfaces can provide better simulations for animal coat patterns in the real world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' What’s more, the method for gen- erating rough surfaces by heat filters can be further applied to obtain closed rough manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' We plan to explore this generalization in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Appendix: Finite difference algorithm for the heat equation The heat equation (11) on a rough surface defined over the parameter space I2 = [−1, 1]2 is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The set of discrete data points on I2 are defined as: [X, Y ] := �� (xi 1, xj 2) �nX i=1 �nY j=1 ∈ RnXnY ×2, with mesh size hx1, hx2 on each axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' To fully discretize (12), we require dis- cretization of the Laplacian-Beltrami operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' For any twice differentiable func- tion u : I2 → R, we introduce differentiation matrices Dk ∈ RnXnY ×nXnY , k ∈ {1, 2} satisfying periodic boundary condition (11b) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Using a second- order centered finite differences, we have for each point (xi 1, xj 2) that ∂u ∂x1 (xi 1, xj 2) = � − 1 2hx1 1 2hx1 � �u(xi−1 1 , xj 2) u(xi+1 1 , xj 2) � , ∂u ∂x2 (xi 1, xj 2) = � − 1 2hx2 1 2hx2 � �u(xi 1, xj−1 2 ) u(xi 1, xj+1 2 ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' The following fictitious node approach is applied to deal with the periodic boundary conditions: u(x0 1, xj 2) = u(xnX−1 1 , xj 2), u(xnX+1 1 , xj 2) = u(x2 1, xj 2), u(xi 1, x0 2) = u(xi 1, xnY −1 2 ), u(xi 1, xnY +1 2 ) = u(xi 1, x2 2), u(x1 1, xj 2) = u(xnX 1 , xj 2), u(xi 1, x1 2) = u(xi 1, xnY 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' By assembling all points in [X, Y ], the nodal values of ∂u ∂xk (k = 1, 2) at [X, Y ] can be obtained by ∂u ∂xk (X, Y ) ≈ Dku(X, Y ), for k ∈ {1, 2}, 23 where u(X, Y ) := [u(x1 1, x1 2), · · · , u(xnX 1 , x1 2), · · · , u(x1 1, xnY 2 ), · · · , u(xnX 1 , xnY 2 )]T is the vector of nodal function values and differential matrices Dk ∈ RnXnY ×nXnY are in the form of D1 = � �� DB 1 · · 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 0 · · DB 1 � �� , DB 1 = 1 2hx1 � ������ 0 1 0 · · 0 −1 0 −1 0 1 · · 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 0 0 0 · · −1 0 1 1 0 0 · · 0 0 −1 � ������ , and D2 = � ������ 0 DB 2 0 · · 0 −DB 2 0 −DB 2 0 DB 2 · · 0 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 0 0 0 · · −DB 2 0 DB 2 DB 2 0 0 · · 0 0 −DB 2 � ������ , DB 2 = 1 2hx2 � �� 1 · · 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 0 · · 1 � �� , with DB k ∈ RnX×nX, k ∈ {1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' References [1] https://commons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='wikimedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='org/wiki/Category:Genetta% 20tigrina?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='uselang=it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Asai, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Taguchi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Kume, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Saito, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Kondo, Zebrafish Leopard gene as a component of the putative reaction-diffusion system, Mechanisms of Development, (1999), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [3] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ascher and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Petzold, Computer methods for ordinary differential equations and differential-algebraic equations, Society for In- dustrial and Applied Mathematics, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Avitabile, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Bre˜n Medina, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ward, Spot dynamics in a reaction-diffusion model of plant root hair initiation, SIAM Journal on Applied Mathematics, 78 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 291–319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Bertalmi´o, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Cheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Osher, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Sapiro, Variational prob- lems and partial differential equations on implicit surfaces, Journal of Com- putational Physics, 174 (2001), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 759–780.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Brooks and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Bressloff, A mechanism for turing pattern formation with active and passive transport, SIAM Journal on Applied Dy- namical Systems, 15 (2016), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1823–1843.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [7] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Carter and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Doelman, Traveling stripes in the klausmeier model of vegetation pattern formation, SIAM Journal on Applied Mathematics, 78 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 3213–3237.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 24 [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Chen and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ling, Kernel-based meshless collocation methods for solv- ing coupled bulk–surface partial differential equations, Journal of Scientific Computing, 81 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 375–391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [9] , Extrinsic meshless collocation methods for PDEs on manifolds, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Num.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', 58 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 988–1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Cheung and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ling, A kernel-based embedding method and con- vergence analysis for surfaces PDEs, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', 40 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A266–A287.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Chu, Closest point methods with polyharmonic spline radial basis func- tions and local refinement, PhD thesis, University of British Columbia, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [12] Contributors to Wikimedia projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' https://en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='org/ wiki/Plecostomus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Dong, Avoiding collisions and pattern formation in flocks, SIAM Jour- nal on Applied Mathematics, 81 (2021), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2111–2129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [14] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Gunzburger, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ju, Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere, Computer Methods in Applied Mechanics and Engineering, 192 (2003), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 3933– 3957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [15] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Du and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ju, Finite volume methods on spheres and spherical cen- troidal voronoi meshes, SIAM Journal on Numerical Analysis, 43 (2005), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1673–1692.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Dziuk and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Elliott, Finite element methods for surface PDEs, Acta Numerica, 22 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 289–396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [17] , The Science of Fractal Images, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 22, Cambridge University Press, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Fife, Mathematical aspects of reacting and diffusing systems, 28 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [19] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Fuselier and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wright, A high-order kernel method for diffusion and reaction-diffusion equations on surfaces, Journal of scientific computing, 56 (2013), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 535–565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [20] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Gadelmawla, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Koura, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Maksoud, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Elewa, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Soli- man, Roughness parameters, Journal of Materials Processing Technology, 123 (2002), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 133–145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [21] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Gierer and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Meinhardt, A theory of biological pattern formation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 12, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 25 [22] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Hu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Qiao, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Tang, Moving finite element simulations for reaction-diffusion systems, Advances in Applied Mathematics and Mechan- ics, (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Hu and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Tonder, Simulation of 3-D random rough surface by 2- D digital filter and fourier analysis, International journal of machine tools and manufacture, 32 (1992), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 83–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [24] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Huang and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Multerer, Isogeometric analysis of diffusion prob- lems on random surfaces, arXiv preprint arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='03761, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [25] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Klika, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Koz´ak, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Gaffney, Domain size driven instabil- ity: Self-organization in systems with advection, SIAM Journal on Applied Mathematics, 78 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2298–2322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [26] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' kok.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' https://commons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='wikimedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='org/wiki/File:Pomocanthus_ imperator_facing_right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='jpg, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Kondo and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Asai, A reaction-diffusion wave on the skin of the marine angelfish pomacanthus, Nature, 376 (1995), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 765–768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [28] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Lakkis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Madzvamuse, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Venkataraman, Implicit–explicit timestepping with finite element approximation of reaction–diffusion sys- tems on evolving domains, SIAM Journal on Numerical Analysis, 51 (2013), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [29] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Lehto, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Shankar, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wright, A radial basis func- tion (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces, SIAM Journal on Scientific Computing, 39 (2017), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A2129–A2151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [30] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Li and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ling, Complex pattern formations by spatial varying pa- rameters, Advances in Applied Mathematics and Mechanics, 12 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1327–1352.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [31] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Li and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Qiao, A meshless collocation method with a global refine- ment strategy for reaction-diffusion systems on evolving domains, Discrete & Continuous Dynamical Systems–B, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [32] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Lu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Baginski, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ren, Equilibrium configurations of boundary droplets in a self-organizing inhibitory system, SIAM Journal on Applied Dynamical Systems, 17 (2018), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1353–1376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [33] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' McDonald, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Grantham, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Tabor, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Mur- phy, Global and local optimization using radial basis function response sur- face models, Applied Mathematical Modelling, 31 (2007), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2095–2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Murray, A pattern formation mechanism and its application to mam- malian coat markings, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 26 [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Murray, A pre-pattern formation mechanism for animal coat markings, Journal of Theoretical Biology, 88 (1981), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 161 – 199.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Olshanskii, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Reusken, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Grande, A finite element method for elliptic equations on surfaces, SIAM Journal on Numerical Anal- ysis, 47 (2009), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 3339–3358.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [37] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Pawlus, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Reizer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wieczorowski, A review of methods of random surface topography modeling, Tribology International, (2020), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 106530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [38] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Qiao, Numerical investigations of the dynamical behaviors and instabil- ities for the gierer-meinhardt system, Communications in Computational Physics, 3 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 406–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, Journal of Mathematical Biology, 34 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [40] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ruuth and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Merriman, A simple embedding method for solv- ing partial differential equations on surfaces, Journal of Computational Physics, 227 (2008), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 1943–1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [41] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Shankar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wright, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Narayan, A robust hyperviscos- ity formulation for stable RBF-FD discretizations of advection-diffusion- reaction equations on manifolds, SIAM Journal on Scientific Computing, 42 (2020), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' A2371–A2401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [42] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Shi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Yan, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Dong, Effect of sur- face topography parameters on friction and wear of random rough surface, Materials, 12 (2019), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2762.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [43] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Sjodin, How to generate random surfaces in COMSOL multiphysics®.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [44] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Suchde and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Kuhnert, A meshfree generalized finite difference method for surface PDEs, Computers & Mathematics with Applications, 78 (2019), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 2789–2805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [45] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Tang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Fu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Chen, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Ling, A localized extrinsic collocation method for Turing pattern formations on surfaces, Applied Mathematics Letters, 122 (2021), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 107534.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [46] Tasnim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='tasnimnews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content='com/fa/news/1394/09/15/935574/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' [47] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Turing, The chemical basis of morphogenesis, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=', 237 (1952), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 37–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} +page_content=' 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XdFPT4oBgHgl3EQfsTWZ/content/2301.13148v1.pdf'} diff --git a/Y9E0T4oBgHgl3EQf3wL_/vector_store/index.pkl b/Y9E0T4oBgHgl3EQf3wL_/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e46e0e2c3e1a6d5bb78845707f857f509fb4376c --- /dev/null +++ b/Y9E0T4oBgHgl3EQf3wL_/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2c92919e43ee0ddd8f2713738b8b9d6ea7e29a4bc414846de88d840240a6b902 +size 176157 diff --git a/Y9FLT4oBgHgl3EQfVi9P/vector_store/index.pkl b/Y9FLT4oBgHgl3EQfVi9P/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..0352bd3e92b77957ce9b75f6908b77eb3affb58f --- /dev/null +++ b/Y9FLT4oBgHgl3EQfVi9P/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dafccbbab7a1ea1d4c3695697957eab7c71f0a3ed4304709e7dd79ce01bcf1f9 +size 114678 diff --git a/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/2301.01101v1.pdf.txt b/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/2301.01101v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..986c60e36c1aa028b3405199623c84fe4ee32c27 --- /dev/null +++ b/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/2301.01101v1.pdf.txt @@ -0,0 +1,862 @@ +Manipulation of the magnetic state of a porphyrin-based molecule on gold : From Kondo to +quantum nanomagnet via the charge fluctuation regime +Yingzheng Gao,1 Sergio Vlaic,1 Tommaso Gorni,1 Luca de’ Medici,1 +Sylvain Clair,2 Dimitri Roditchev,1, 3 and Stéphane Pons1, ∗ +1Laboratoire de Physique et d’Étude des Matériaux (LPEM), ESPCI Paris, +Université PSL, CNRS UMR8213, Sorbonne Université, 75005 Paris, France +2Aix Marseille Univ, CNRS, IM2NP, Marseille, France +3Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR7588, 75005 Paris, France +(Dated: 4 janvier 2023) +By moving individual Fe-Porphyrin-based molecules with the tip of Scanning Tunneling Microscope +in the vicinity of a Br-atom containing elbow of the herringbone-reconstructed Au(111), we reversibly +and continuously control their magnetic state. Several regimes are obtained experimentally and explo- +red theoretically : from the integer spin limit, through intermediate magnetic states with renormalized +magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge +fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the +substrate Fermi sea. Our results open a route for the realization, tuning and experimental studies of novel +quantum magnetic states in molecule-surface hybrids. +KEYWORDS +spin-flip excitation, spin states, magnetic anisotropy, +Kondo, charge fluctuation, mixed-valence states, scanning +tunneling microscopy, transiton metal complexes +INTRODUCTION +Addressing and manipulating the spin state of molecular +species at interfaces is a challenge that could greatly bene- +fit spintronics [1], nanoelectronics [2, 3] and quantum electro- +nics [4] in the near future. When the valence of a magnetic +molecule deposited on a surface is integer, the description of +spin-polarized molecular orbitals can be done in the frame- +work of the atomic limit in terms of crystal field and spin-orbit +coupling : the spin state is simply interpreted as a quantum +magnet for which the Hund’s rule determines the fundamental +magnetic state. However, the atomic limit is no longer valid in +the mixed-valence regime which is the most general behavior +of an interacting magnetic impurity with an electron bath. +Among the most studied classes of magnetic molecules are +the transition metal phthalocyanine (Pc) and porphyrin (P) fa- +milies which are easily deposited at surface in vacuum and +studied by various local probe microscopies and spectrosco- +pies. In these molecules, the spin state is mainly given by +the spin polarization of the central transition metal ion d- +states [5, 6]. Several works have focused on the influence of +external parameters on the magnetic ground state such as the +influence of charge transfer to the orbitals of the molecule [7– +14], the effect of surface spin-orbit coupling and magnetic ani- +sotropy [15–17], the coupling to the substrate, [15, 18], the in- +teraction with attached and neighboring molecules [19, 20], +the structural deformation [21, 22] or the chemical substitu- +tion of ligands [23]. For all these studies, a systematic unders- +tanding of the effect of mixed valence and charge fluctuations +is still missing, although they have a strong influence on the +effect of magnetic anistropy. +Here +we +show +that +charge +fluctuations +in +Fe +5,15-di-4-pyridyl-10,20-di-4-bromophenyl +porphyrin +(Fe−DPyDBrPP) molecules adsorbed on the Br de- +corated Au(111) surface allow the magnetic state of the +molecule to be driven between high-spin (S=1) and Kondo- +screened states in a reversible and continuous manner through +the intermediate valence regimes. +RESULTS AND DISCUSSION +Structural and spectroscopic properties of monomers +Fe−DPyDBrPP were deposited in ultrahigh vacuum on +Au(111) and studied in situ by scanning tunneling microscopy +(STM) and spectroscopy (STS) at 1.3K (see Methods sec- +tion for more details). The molecules are randomly located on +hcp domains, fcc domains or stacking faults lines of the her- +ringbone reconstruction [24] of Au(111) and appear as bright +spots in constant-current topographic STM images in figures 1 +(a-f). The Fe−DPyDBrPP molecules do not exhibit a pla- +nar configuration on the Au(111) surface because two pyrrole +rings bend toward the vacuum and exhibit a higher height in +STM images; the other two pyrrole rings bend toward the sub- +strate, resulting in a lower height in images. Such deforma- +tion corresponds to the saddling distortion of porphyrin-based +molecules [25] that is quite commonly observed [17, 26–29]. +Thus, the shape of the molecules in STM images allows us +to determine the central position of the Fe-atom, the porphine +macrocycle and the bromophenyl and pyridyl ligands attached +to the macrocycle, as well as their location relative to the sur- +face reconstruction. Importantly, during deposition and annea- +ling, some Br-atoms detach from the molecules [30], migrate +at the surface, and get trapped by highly reactive elbows of the +Au(111) herringbone reconstruction [31, 32]. The intersection +arXiv:2301.01101v1 [cond-mat.mes-hall] 3 Jan 2023 + +2 +Bias Voltage (mV) +dI/dV (arb. units) +0.25 +0.50 +0.75 +1.00 +0 +-20 +-10 +10 +20 +Bias Voltage (mV) +dI/dV (arb. units) +0.6 +1.2 +1.8 +2.4 +3.0 +0 +-20 +-10 +10 +20 +(g) +(h) +(d) +(e) +(f) +(a) +(b) +(c) +FIGURE 1: Scanning tunneling study of Fe−DPyDBrPP mono- +mers. (a-f) Topography image of Fe−DPyDBrPP molecules at +various location of the reconstructed surface of gold. The intersec- +tion of the dotted lines indicates the location of the Br adatom which +decorates the elbow of the herringbone reconstruction. (g) Norma- +lized scanning tunneling spectra taken on upper pyrroles in images +(a-c) showing spin inelastic excitations depending on the location of +the molecule on the surface. (h) Normalized scanning tunneling spec- +tra taken on upper pyrroles in images (d-f), when the molecule is on +top of the Br-decorated elbow site of the reconstruction. These spec- +tra show an Abrikosov-Suhl resonance witnessing a Kondo mecha- +nism which does not depend on the in-plane rotation of the molecule. +The solid lines correspond to the fits of the data (see Methods sec- +tion). Experimental parameters : topography images : V = 125 mV, +Istab = 20 pA, size 10 × 10 nm2 ; spectroscopy : Vstab = 30 mV, +Istab = 200 pA, lock-in parameters : Vm = 0.2 mV, f = 750 Hz. +of the dotted lines in figures 1 (a-c) points to the position of +these elbows decorated by Br-adatoms. +Depending on their position on the surface, the molecules +exhibit different spectral signatures. When a molecule is loca- +ted on the hcp and fcc domains (figures 1 (a-c)), the tunneling +spectra show conductance steps characteristic of a spin = 1 +quantum magnet affected by the presence of magnetic anis- +tropy [16, 17, 29, 33, 34], figure 1 (g). The steps of conduc- +tance are due to the opening of additional spin-flip tunne- +ling channels trough inelastic excitations. This is in agree- +ment with the known behavior of Fe-Pc and Fe-P which be- +have as S=1 nanomagnets once deposited on the Au(111) sur- +face [15, 17, 20, 22, 29, 35]. The step-like spin-flip signatures +are recorded at both upper pyrrole and Fe-atom locations, pro- +viding evidence for hybridization of the molecular states of +the pyrrole with the Fe magnetic d-states [17, 29]. +When the molecule is located on the elbow of the recons- +truction, it behaves differently and exhibits a spectral reso- +nance at the Fermi level. The molecule rotation induced by +the microscope tip over the elbow site barely affects the shape +and amplitude of the spectral resonance, figures 1 (d-f, h). +In the following we show that the two distinct spectral si- +gnatures are fully controlled by the adsorption site of the mo- +lecule. To this end we have prepared chains of 3 covalently +bonded Fe−DPyDBrPP molecules by Ulmann’s coupling +(see Methods section). In figure 2, a trimer chain is moved by +the tip of the microscope to various positions of the recons- +tructed surface. The targeted locations are the hcp and fcc do- +mains and the Br-decorated elbow of the reconstruction. In the +first panel (I) of figure 2, the 3 molecules are located inside a +fcc domain. In panels (II-IV), the molecular chain is sequen- +tially repositioned with the microscope tip to move the iron +center of each molecule over the Br-decorated site. When the +molecules are located inside fcc and hcp domains, the spec- +tra exhibit inelastic excitations of independent spin 1 nano- +magnets in presence of magnetic anisotropy, similar to which +was already measured for monomers in figure 1. This observa- +tion means that, here, neither the nature of the covalent bonds +nor the substrate mediated interaction are efficient enough for +coupling the molecules together. The spectra usually display a +symmetric double-step structure. Following the standard ana- +lysis [34], the characteristic voltages of the steps is interpreted +to be related to the out of plane and in plane magnetic aniso- +tropy energies. Depending on adsorption sites, the out of plane +and in plane magnetic anisotropy energies can vary from 6.8 +to 10.0 meV and from 0 to 1.5 meV respectively. These aniso- +tropy parameters correspond to typical values of Fe porphy- +rin and phthalocyanine based magnetic molecules adsorbed +on gold [15–17, 22, 29]. In panels (II-IV), the molecules are +moved one by one above a Br-decorated elbow. In each case, +the molecule exhibits a spectral resonance at 0 bias similarly +to the monomer in figure 1. In figure 2, the resonance is found +to be reversible once the molecule is removed from the elbow +site and independent of the selected molecule. We identify the +spectral peak as an Abrikosov-Suhl resonance [36–38] (also +named Kondo peak) due to the many body Kondo interactions +of the Fe d states with the substrate electron bath. The charac- +teristic Kondo temperature, TK ≈ 11 K, evaluated by fitting +the lineshape with a Frota function [39, 40], is found to be +independent of the molecular orientation with respect to the +surface atomic lattice. We therefore expect that magnetic ani- +sotropy plays no role. +The Kondo effect originating from degenerate triplet +ground state is extremely sensitive to magnetic anisotropy +which tends to lift the degeneracy [21]. In the present case, +KBTK ≈ 0.9 meV is much smaller than the measured aniso- +tropy. Three possible phenomena can explain the robustness +of the Kondo effect on the magnetic anisotropy occurring at +the Br-decorated elbow site : 1. The charge fluctuations due to +the coupling of the Fe states with the substrate states overw- +helm the magnetic anisotropy energy at this location, effecti- +vely restoring the degeneracy and screening the magnetic S=1 +moment; 2. A sizable charge transfer from the substrate or +the ligands onto the Fe atom induces a spin reduction from +S = 1 to S = 1/2, resulting in a spin 1/2 Kondo effect which +is naturally immune against magnetic anisotropy [41]; 3. The +deformation of the molecule at this position induces the sup- +pression of the magnetic anistropy energy [21]. This last ex- +planation is not in agreement with our tunneling topography + +3 +FIGURE 2: Scanning tunneling study of Fe−DPyDBrPP chains +made by Ullman’s coupling. (a) topography images (I-IV) of a tri- +mer chain of molecules made by Ullman’s coupling which is ma- +nipulated by the tip of the microscope in order to position sequen- +tially the monomers above the Br-site. The intersection of the dotted +lines indicates the Br-site. The molecules are labeled as a function +of their spectroscopic signature measured in (b) : "SF" stands for +spin-flip and "K" for Kondo. Experimental parameters of images (I- +IV) : size 15×15 nm2, V = 125 mV, I = 20 pA. (b) related scanning +tunneling spectra taken above the left upper-pyrrole of each mole- +cule of the chain, showing the presence of the Kondo peak for the +molecules located above the Br-site which otherwise shows a spin- +flip signature. Vstab = 30 mV, Istab = 200 pA. Lock-in parameters : +Vm = 0.2 mV, f = 750 Hz. The solid lines correspond to the fits +of the data (see Methods section). (c) topographic zoom on a mole- +cule of the chain exhibiting a spin-flip spectroscopic signature. (d- +e) differential conductance image recorded simultaneously to image +(c) at −100 mV and 100 mV respectively showing the symmetry of +the frontier orbitals below and above the Fermi level. The red dotted +line delimits the molecule. Experimental parameters of (c-e), size +3 × 3 nm2, Vstab = 800 mV, Istab = 500 pA. Lock-in parameters : +Vm = 5 mV, f = 900 Hz. +studies which did not reveal a significant deformation of the +molecule whose shape is preserved on the Br-site. It has also +been shown that the anisotropic energy is not significantly af- +fected when a similar molecule is pressed onto the surface +with the tip of a microscope while staying away from the tip- +molecule contact [14, 15, 29]. As for scenarios 1 and 2, they +are both possible, but the DFT calculations and the theoreti- +cal interpretation that follow lean in the direction of the first +explanation. +Density Functional Theory analysis +DFT was used to study the electronic properties as a func- +tion of the distance of the molecule from the substrate. In or- +der to rationalize the effect of the Br-adatom on the electronic +properties of Fe−DPyDBrPP, two sets of situations were +simulated : 1. as a function of the distance to the genuine +Au surface 2. as a function of the distance to a Br adatom +on Au slabs positioned below the Fe atom of the molecule +Fe−DPyDBrPP. +The Fe 3d states are dominant in the coupling with the sub- +strate through the Br states. Fe dxz, dyz states are mainly hy- +bridized with the pyrroles molecular orbitals. Therefore, fur- +ther analysis will be discussed on the basis of the Fe 3d hy- +brids with molecular orbital. In particular the Fe dxz, dyz and +dz2 hybrid states were proven to be at the origin of the obser- +ved phenomena. +The DFT simulation shows that the magnetic polarization +(contrary to the total charge) of the Fe atom, figure 3 (b), de- +pends strongly on the molecule-surface distance when the sur- +face is decorated with a Br (or Au) adatom, whereas it is much +less sensitive when approaching the clean surface. When the +molecule is away from the Br site, the total occupancy and +magnetic moment are about 6.4 e− and 2µB which corres- +ponds to a configuration close to the spin 1 state (high spin +state) and the hybridization of the Fe d states with the sub- +strate is small. This is in good agreement with the measured +spectroscopic signature of a spin 1 quantum magnet when the +molecule is above fcc or hcp domains. Indeed, the lack of a +Kondo signature may be the result of weak hopping integrals +from Fe orbitals to surface orbitals when the molecule is far +away. Hybridization with the substrate cannot compete with +the magnetic anisotropy and the Kondo effect is prevented. +The magnetic anisotropy energy dominates the physics and +the experimental spectroscopic signature is that of a spin 1 +subjected to an anisotropy of a few meV. +Moving the molecule of 1 Å towards the Br adatom, from +5 to 4 Å, leaves the occupancy of the Fe states roughly un- +changed (only a minor reshuffling of the charge distribution +between the orbitals is observed (figure 3 (c)) - but induces a +strong reduction of the magnetic polarization from about 2µB +to about 1µB. The approximately constant charge suggests +that charge fluctuations are the cause of this reduction, which +is confirmed by the fact that the hybridization of the Fe and Br +states increases exponentially as the molecule is moved closer + +(a) (l) +() +SF +SF +SF +SF +SF +K +(I) +(IV) +SF +K +K +SF +SF +SF +(b) +(c) +(1) +(d) +(II) +(e) +(IV)4 +FIGURE 3: Theory analysis by DFT calculations. (a) Simulated adsorption geometry for the Iron(II) 5,15-(di-4-bromophenyl)-10,20-(di-4- +pyridyl) porphyrin molecule on a Au(111) surface. The (Au,Br) impurities are adsorbed on the hollow-hcp site. (b) polarizations as a function +of the distance from the substrate, computed for three different substrates, clean Au(111), Au(111) + a Au adatom and Au(111) + a Br adatom, +obtained via the same Mulliken analysis as in (c). (c) Orbitally-resolved Fe(3d) charge as a function of the distance from the substrate. The +charge and magnetization values have been obtained via a Mulliken analysis projecting the Kohn-Sham orbitals over the atomic states of the Fe +pseudopotential. (d) Calculated non-zero squared hoppings between the Fe(3d) and the Br(4s,4p) states in the low-spin (Fe-Au(111) distance += 4.0 Å, in blue) and high spin (Fe-Au(111) distance = 5.0 Å, in red) case. Only the squared average of the spin-up and spin-down hopping is +reported, since no significant difference has been found in the two channels. +to the surface (the squared hoppings that enters in this form in +the hybridization function between the impurity and the sub- +strate are plotted in the figure 3 (d)). The squared hopping in- +tegrals of the Fe states to the surface are indeed one order +of magnitude smaller when the molecule is far away. The Fe +3dz2 hybrids and Br 4s states, which have a almost perfect ro- +tational symmetry, are supposed to dominate the physics when +the molecule is closer (figure 3 (d)). This configuration is favo- +rable to the emergence of a charge transport that is insensitive +to magnetic anistropy and independent of the relative orienta- +tion between the molecule and the surface once the iron atom +is located just above the adsorbed Br atom, in perfect agree- +ment with observations. +The cases presented above are perfectly consistent with the +scenario in which the molecule evolves from a quasi-atomic +moment (spin 1) under the influence of magnetic anisotropy +to an Fe atom carrying a screened magnetic moment resul- +ting from a strong hybridization with the substrate. Finally, +the DFT calculations clearly indicate that the strength of the +charge fluctuations should vary with the distance to the Br +atom. Indeed the transition from spin 1 nanomagnet to Kondo +screening, through the mixed-valence regime has been expe- +rimentally probed in a reversible manner and summarized in +figure 4. +Crossover from spin 1 nanomagnet to Kondo-screened ground +state through the mixed-valence regime +It was possible to finely tune the electronic configuration of +the iron atom by using a chain of molecules in order to sta- +bilize positions for which a molecule deviates slightly from +the Br site. The studied position of the molecules are presen- +ted in topography images (a-d) of figure 4 and the density of +states close to the Fermi energy are measured by STS spectra +figure 4 (g)). The spin 1 signature is observed when the mole- +cule is far from the elbow site as already mentioned above, fi- +gure 4 (a). When the molecule is positioned in such a way that +the Br site is located below the upper pyrrole ring, image 4 +(b), the LDOS shows a broadened and asymmetric step like +shape originating from spin flip inelastic excitations but with +a lower characteristic energy, indicating a renormalization of +the anisotropy energy. At intermediate positions where the Br +adsorption-site is located in between the Fe site and the upper +pyrrole location, 4 (c), the spectroscopy shows a small anti- +resonance at the Fermi level with a Fano-like shape which +we believe is the extrapolation of the inelastic spin flip si- +gnature but for stronger charge fluctuations. When the mo- +lecule is strictly coinciding with the Br-adsorption site, fi- +gure 4 (d), it is exhibiting a Kondo peak. Therefore, the si- +tuation of images 4 (b) & (c) corresponds to two interme- +diate mixed-valence regimes between spin 1 nanomagnet and +Kondo-screened ground states. Indeed as shown by D. Jacob +in Ref. [41] the gradual increase of charge fluctuations alters +the spectroscopic signatures of the spin 1 nanomagnet by re- +normalizing the magnetic excitations to lower energy. This +gradually closes the gap and finally restores a Kondo peak +as in the case of image 4 (d). In this process, the absence of +particle-hole symmetry causes a typical Fano resonance to ap- +pear. The renormalization of the magnetic excitations is evi- +denced in pannels 4 (h-k) where differential conductance is +used to map the inelastic spin-flip probability density in the +real space in the same configuration as in (b). This situation +corresponds to the occurrence of one molecule in the inter- +mediate state and 2 molecules in the regime of the spin 1 na- +nomagnet. At ±9.3 mV, spin-flip channels are open in all 3 +molecules and the probability to induce a spin flip follows a +two-lobes spatial pattern in all three molecules. At ±3 mV, +panels (i) & (j) the spin-flip excitations are hindered by the +magnetic anisotropy in the molecules far from the Br-site. On +the contrary, the molecule in the intermediate regime shows +spin-flip processes already being developed at ±3 mV, indica- +ting the renormalization of the magnetic excitation energy to + +(a)5 +dI/dV (arb. units) +Bias Voltage (mV) +Upper-pyrrole +(e) +Bias Voltage (mV) +(g) +dI/dV (arb. units) +(f) +0 +10 +20 +-10 +-20 +(h) +-9.3mV +(i) +-3mV +(j) +3mV +(k) +9.3mV +(a) +(b) +(c) +(d) +-500 +-250 +500 +-250 +0 +dI/dV (arb. units) +Bias Voltage (mV) +Iron center +-500 +-250 +500 +-250 +0 +FIGURE 4: Crossover from spin 1 nanomagnet to Kondo screen ground state through the mixed-valence regime. (a-d) topography images +showing the position of the first molecule of a chain with respect to the Br-decorated elbow site of the gold reconstruction. (a) the molecule +is far from the Br site. (b) the upper pyrrole is centered on the Br-site. (c) the Br-site is located in between the center of the upper pyrole and +the Fe ion position. (d) the Fe atom is located just above the Br-site. (e) conductance spectra taken above the center of the upper pyrole. (f and +g) conductance spectra taken above the iron atom. red, green, blue and yellow colors correspond to the configurations of (a), (b), (c) and (d) +respectively. (h-k) Background subtracted (see Methods section) differential conductance images at V = −9.3 mV, V = −3.0 mV,V = 3 mV +and V = 9.3 mV respectively recorded in the configuration of image (b) where, the left molecule is in the mixed-valence intermediate state +(blue dashed line) and the two other molecules behave as spin 1 nanomagnets (e.g. red dashed line). Experimental parameters : (a) & (d) +V = 125 mV, I = 20 pA, scalebar = 2 nm; (b) & (c) V = 200 mV, I = 100 pA, scalebar = 2 nm; (e) & (f) Vstab = 800 mV, Istab = 500 pA, +lock-in parameters : Vm = 5 mV, f = 900 Hz; (g) Vstab = 30 mV, Istab = 200 pA, lock-in parameters : Vm = 0.2 mV, f = 750 Hz; (h-k) +Vstab = 30 mV, Istab = 200 pA, size 12×12 nm2, lock-in parameters : Vm = 0.2 mV, f = 750 Hz. All spectra are normalized. +a smaller scale. +This transition through a mixed-valence regime might be +due to a net increase of Fe charge while remaining still in a +regime of weak coupling with the substrate (our previously +outlined scenario 2). Our DFT calculations rather suggest that +the predominant effect is the drastic increase of the hopping +from/to the substrate (scenario 1), instead. Accordingly, the +spin crossover was found to be accompanied with an energy +shift of the frontier orbitals which are localized at the up- +per pyrrole rings (frontier orbital A, FOA) and at the iron +atom position (frontier orbital B, FOB). A carefully analysis +of figures 4 (e) & (f) allows to follow the evolution of FOA +and FOB energies when moving the molecule. FOA shows a +continuous evolution of density of states from the unoccupied +states towards occupied states when approaching the molecule +to the Br-site, indicating an increase of the orbital occupation. +FOB shows a reverse behavior with a shift from below the +Fermi level towards the unoccupied states. The gap between +the frontier orbitals is reducing when approaching the Br site +so the d level splitting tends to be weakened and could be +favoring a decrease of orbital momentum and a renormaliza- +tion of the magnetic anisotropy in agreement with the closing +of the steps of conductance due to spin-flip excitations in the +measured data of panel 4 (g) and figures 4 (h-k). +The conductance images presented figure 2 (c-e) support +the hybrid Fe 3dxz, dyz character of FOA and the strong Fe +3dz2 character of FOB in agreement with the orbital occupa- +tions in the DFT calculations (figure 3 (c)). It is interesting +to note that according to conductance images of figure 4 (h- +k), the spin-flip probability density is following the 3dxz, dyz +symmetry at energies above and below the Fermi energy (two- +lobes shape). On the contrary, the 3dz2 character of the exci- +tations (bright localized spot at the Fe site) is only visible at +negative bias, so for occupied states. This difference is explai- +ning the breaking of the electron-hole symmetry observed in +inelastic spectra. +The fano-like shape of the blue spectrum in figure 4 (g) oc- +curs when the frontier orbitals are overlapping at the Fermi +level, as visible in figure 4 (e) & (f) and when the charge fluc- +tuations between orbitals are expected to be strong. The hypo- +thesis of intermediate regimes driven by charge fluctuations is +well described by prediction in ref. [41] as well as the shape +of the spectrum. However in the present case the frontier or- +bitals, could also recover their degeneracy when overlapping +in the intermediate regimes, implying a possible Kondo SU(4) +effect [35, 42], although this is less likely in a molecular sys- +tem [43] and cannot be easily distinguished from the simple +effect of strong charge fluctuations [44]. Finally, when the iron +atom is located above the Br site, FOA migrates below the +Fermi level and FOB is washed out towards incoherent exci- +tation and only the Kondo resonance survives at EF. +CONCLUSION +We have revealed in experiments and DFT calculations that +the spin state switching is caused by the strong hybridiza- +tion potential at Br-decorated elbow sites which induce charge + +6 +fluctuation and a renormalization of the magnetic anisotropy +when molecules are adsorbed on these sites. +The direct consequence of charge fluctuations is to tune the +energies of two molecular frontier orbitals which are respec- +tively closest to the Fermi level in positive and negative ener- +gies. The energetic overlapping of these two frontier orbitals +gives rise to low-energy spin excitation channels near Fermi +level. Under the condition of relative small charge fluctua- +tions, the two frontier orbitals are far from Fermi level and +the overlapping is small, hence the molecule will have high +spin (S = 1) state, while under strong charge fluctuation these +two orbitals can cross Fermi level, resulting a renormalization +of the magnetic anisotropy and ultimately the Kondo screened +ground state. +Our work provides a new approach for tuning not only the +spin state but also the intermediate valence character/charge +fluctuation in hybrids made of molecules on reconstructed sur- +faces. +METHODS +Fe 5,15-di-4-pyridyl-10,20-di-4-bromophenyl porphyrin +molecules were ordered from Alpha Aesar company. Samples +were prepared under ultrahigh vacuum (base pressure 1 × +10−10 mbar) just before their scanning tunneling studies. The +gold substrate was prepared by repeated cycles of Ar ion sput- +tering followed by annealing at 900 K. The molecules were +deposited by organic molecular beam epitaxy (OMBE) when +the sample was kept at Room Temperature (Tcrucible=575K). +It was observed that the molecule source is also depositing Br +atoms on the surface of gold. We have attributed this conco- +mitant deposition of Br with Fe−DPyDBrPP to the stochas- +tic Br detaching from Fe−DPyDBrPP molecules inside the +crucible when heated at evaporation temperature. In-crucible +Br detaching form similar molecules was already reported in +ref. [30] at 590K. In our case, the low amount of deposited +Br atoms was seen to be enough for occupying all the elbow +sites of the herringbone reconstruction. Once the molecules +deposited, the sample temperature was quenched at liquid ni- +trogen temperature then at helium liquid temperature in less +than 20 minutes. For low coverage this procedure produces +single monomers scattered on the surface. A post annealing +at 400 K for 10 minutes was used for producing molecular +chains by Ullman’s coupling at the surface following recipes +in ref. [30, 45–47]. +STM/STS measurements were achieved in-situ in ultrahigh +vacuum by means of a modified "Tyto SPM" from SPECSTM +at a base temperature of 1.3 K; the tunneling bias was applied +to the sample. Mechanically cut PtIr tips were used. Soft la- +teral manipulation as follows was used for moving the mole- +cules 1) positioning the tip above the molecule to move 2) Tur- +ning off the microscope feedback loop and approaching the +tip towards molecule in order to increase tip-molecule inter- +action 2) Moving the tip to the destination in constant height +mode 3) Retracting the tip and engaging the feedback loop. +The analyses of the microscopy and spectroscopy data were +done with WSxM software [48] and homemade python proce- +dures respectively [49]. +The fit of spectra from figure 1 & 2 involved a large Gaus- +sian background mimicking the frontier orbital DOS plus a +specific function associated to spin-flips (step functions intro- +duced in [33]) or Kondo ground states (Frota function). Mar- +ginally, a convolution with a Gaussian function was used to +clean up the incoherent noise of all conductance spectra pre- +sented here. +The spin-polarized Density-Functional Theory (DFT) cal- +culations have been carried out with v.∼6.8 of the QUAN- +TUM ESPRESSO package [50, 51] within the Projector +Augmented-Wave (PAW) scheme [52] and using the Perdew- +Burke-Ernzerhof (PBE) functional [53]. PAW pseudopoten- +tials have been taken from the PSlibrary [54–56]. +The Au(111) surface has been modeled by a finite slab +consisting of 3 gold layers with 15 Åof vacuum between +periodic replicas along the z direction. The Au-Au nearest- +neighbor distance has been set to 2.93 Å, the PBE equili- +brium distance of the corresponding fcc bulk structure, which +is ≲ 2% larger than the experimental room-temperature va- +lue [57]. +Given the sizeable extension of the molecule, a 10×10 su- +percell of Au atoms on the xy plane has been used in order +to avoid interaction between its periodic replicas, for a total +of 300 Au atoms in the simulation cell. The molecule geo- +metry has been relaxed in the vacuum until all components +of the forces were smaller than 10−3 Ry/aB, with aB being +the Bohr radius. The projected density of states (pDoS) and +the Mulliken orbital occupations and polarizations have been +evaluated by projecting the Kohn-Sham orbitals on the atomic +states of the pseudopotentials. They have been computed by +considering different adsorption geometries between the mo- +lecule and three different substrates : the clean Au(111) sur- +face, the Au(111) surface with a Au impurity and the Au(111) +surface with a Br impurity. The impurities have been placed +at the preferred PBE adsorption site at the equilibrium dis- +tance, which has resulted in the hollow-hcp site for both the +Au and the Br impurity, respectively at 2.16 Åand 2.23 Åfrom +the Au(111) surface. All calculations have been performed +with and a plane-wave cutoff of ϵcut = 40 Ry on the wave- +functions and 320 Ry on the density. Brillouin zone integrals +have been evaluated at the Γ point using a gaussian smearing +of σ = 0.01 Ry. The hopping parameters have been computed +via the projection method as implemented in the WANNIER90 +package [58]. +ACKNOWLEDGEMENT +Cheryl Feuillet-Palma is acknowledged for her construc- +tive discussions. TG thanks Paolo Restuccia for fruitful dis- +cussions. LdM acknowledges Giorgio Sangiovanni for useful +discussions. SV, DR and SP acknowledge the French National +Research Agency for the support of the SHOGUN project, Re. + +7 +ANR-22-CE09-0028-01. TG and LdM are supported by the +European Commission through the ERC-CoG2016, Strong- +CoPhy4Energy, GA No724177. +∗ Electronic address: stephane.pons@espci.fr +[1] A. +A. +Khajetoorians, +M. +Valentyuk, +M. +Steinbrecher, +T. Schlenk, A. Shick, J. Kolorenc, A. I. Lichtenstein, +T. O. Wehling, R. Wiesendanger, and J. Wiebe, Nature +Nanotechnology 10, 958 (2015), ISSN 1748-3395, URL +https://doi.org/10.1038/nnano.2015.193. +[2] K. S. Kumar and M. Ruben, Coordination Chemistry Reviews +346, 176 (2017). +[3] G. Molnár, S. Rat, L. Salmon, W. Nicolazzi, and A. Boussek- +sou, Advanced Materials 30, 1703862 (2018). +[4] B. W. Heinrich, G. Ahmadi, V. L. Müller, L. Braun, J. I. Pascual, +and K. J. Franke, Nano Lett. 13, 4840 (2013), ISSN 1530-6984, +URL https://doi.org/10.1021/nl402575c. +[5] L. Tao, Y.-y. Zhang, and S. Du, Wiley Interdisciplinary Re- +views : Computational Molecular Science 12, e1591 (2022). +[6] Y. Y. Zhang, S. X. Du, and H.-J. Gao, Physical Review B +84, 125446 (2011), URL https://link.aps.org/doi/ +10.1103/PhysRevB.84.125446. +[7] C. Krull, R. Robles, A. Mugarza, and P. Gambardella, Nature +Materials 12, 337 (2013), ISSN 1476-4660, URL https:// +doi.org/10.1038/nmat3547. +[8] M. Garnica, D. Stradi, F. Calleja, S. Barja, C. Díaz, M. Alcamí, +A. Arnau, A. L. Vázquez de Parga, F. Martín, and R. Miranda, +Nano Lett. 14, 4560 (2014), ISSN 1530-6984, URL https: +//doi.org/10.1021/nl501584v. +[9] J. Granet, M. Sicot, I. C. Gerber, G. Kremer, T. Pierron, +B. Kierren, L. Moreau, Y. Fagot-Revurat, S. Lamare, F. Ché- +rioux, et al., J. Phys. Chem. C 124, 10441 (2020), ISSN 1932- +7447, URL https://doi.org/10.1021/acs.jpcc. +9b11141. +[10] S. Karan, N. Li, Y. Zhang, Y. He, I.-P. Hong, H. Song, J.-T. +Lü, Y. Wang, L. Peng, K. Wu, et al., Physical Review Let- +ters 116, 027201 (2016), URL https://link.aps.org/ +doi/10.1103/PhysRevLett.116.027201. +[11] A. Zhao, Z. Hu, B. Wang, X. Xiao, J. Yang, and J. G. Hou, +J. Chem. Phys. 128, 234705 (2008), ISSN 0021-9606, URL +https://doi.org/10.1063/1.2940338. +[12] X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma, X.- +L. Zou, W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Physical Review +Letters 101, 197208 (2008), URL https://link.aps. +org/doi/10.1103/PhysRevLett.101.197208. +[13] Q. Zhang, G. Kuang, R. Pang, X. Shi, and N. Lin, ACS Nano 9, +12521 (2015), ISSN 1936-0851, URL https://doi.org/ +10.1021/acsnano.5b06120. +[14] S. Karan, C. García, M. Karolak, D. Jacob, N. Lorente, +and R. Berndt, Nano Lett. 18, 88 (2018), ISSN 1530-6984, +URL +https://doi.org/10.1021/acs.nanolett. +7b03411. +[15] R. Hiraoka, E. Minamitani, R. Arafune, N. Tsukahara, S. Wa- +tanabe, M. Kawai, and N. Takagi, Nature Communications 8, +16012 (2017), ISSN 2041-1723, URL https://doi.org/ +10.1038/ncomms16012. +[16] N. Tsukahara, K.-i. Noto, M. Ohara, S. Shiraki, N. Ta- +kagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, +S. +Shin, +et +al., +Physical +Review +Letters +102, +167203 +(2009), URL https://link.aps.org/doi/10.1103/ +PhysRevLett.102.167203. +[17] C. Rubio-Verdú, A. Sarasola, D.-J. Choi, Z. Majzik, R. Ebe- +ling, M. R. Calvo, M. M. Ugeda, A. Garcia-Lekue, D. Sánchez- +Portal, and J. I. Pascual, Communications Physics 1, 15 +(2018), ISSN 2399-3650, URL https://doi.org/10. +1038/s42005-018-0015-6. +[18] J. Kügel, M. Karolak, A. Krönlein, D. Serrate, M. Bode, +and G. Sangiovanni, npj Quantum Materials 3, 53 (2018), +ISSN 2397-4648, URL https://doi.org/10.1038/ +s41535-018-0126-z. +[19] C. Isvoranu, B. Wang, E. Ataman, K. Schulte, J. Knud- +sen, +J. +N. +Andersen, +M.-L. +Bocquet, +and +J. +Schnadt, +The Journal of Chemical Physics 134, 114710 (2011), +https ://doi.org/10.1063/1.3563635, URL https://doi. +org/10.1063/1.3563635. +[20] Y. Wang, X. Li, X. Zheng, and J. Yang, J. Chem. Phys. 147, +134701 (2017), ISSN 0021-9606, URL https://doi.org/ +10.1063/1.4996970. +[21] J. +J. +Parks, +A. +R. +Champagne, +T. +A. +Costi, +W. +W. +Shum, +A. +N. +Pasupathy, +E. +Neuscamman, +S. +Flores- +Torres, P. S. Cornaglia, A. A. Aligia, C. A. Balseiro, +et +al., +Science +328, +1370 +(2010), +ISSN +0036-8075, +https ://science.sciencemag.org/content/328/5984/1370.full.pdf, +URL +https://science.sciencemag.org/ +content/328/5984/1370. +[22] R. Li, N. Li, H. Wang, A. Weismann, Y. Zhang, S. Hou, K. Wu, +and Y. Wang, Chem. Commun. 54, 9135 (2018), URL http: +//dx.doi.org/10.1039/C8CC02994F. +[23] J. Hou, Y. Wang, K. Eguchi, C. Nanjo, T. Takaoka, Y. Sainoo, +R. Arafune, K. Awaga, and T. Komeda, Communications Che- +mistry 3, 36 (2020), ISSN 2399-3669, URL https://doi. +org/10.1038/s42004-020-0282-5. +[24] J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. +B 42, 9307 (1990), URL https://link.aps.org/doi/ +10.1103/PhysRevB.42.9307. +[25] T. Ishizuka, N. Grover, C. J. Kingsbury, H. Kotani, M. O. Senge, +and T. Kojima, Chem. Soc. Rev. 51, 7560 (2022), URL http: +//dx.doi.org/10.1039/D2CS00391K. +[26] H. Kim, W.-j. Son, W. J. Jang, J. K. Yoon, S. Han, and +S.-J. Kahng, Physical Review B 80, 245402 (2009), URL +https://link.aps.org/doi/10.1103/PhysRevB. +80.245402. +[27] W. Wang, R. Pang, G. Kuang, X. Shi, X. Shang, P. N. Liu, +and N. Lin, Physical Review B 91, 045440 (2015), URL +https://link.aps.org/doi/10.1103/PhysRevB. +91.045440. +[28] M. H. Chang, Y. H. Chang, N.-Y. Kim, H. Kim, S.-H. Lee, +M.-S. Choi, Y.-H. Kim, and S.-J. Kahng, Physical Review +B 100, 245406 (2019), URL https://link.aps.org/ +doi/10.1103/PhysRevB.100.245406. +[29] X. +Meng, +J. +Möller, +M. +Mansouri, +D. Sánchez-Portal, +A. Garcia-Lekue, A. Weismann, C. Li, R. Herges, and +R. Berndt, ACS Nano (2022), ISSN 1936-0851, URL https: +//doi.org/10.1021/acsnano.2c09310. +[30] L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, and +S. Hecht, Nature nanotechnology 2, 687 (2007). +[31] J. Meyer, I. Baikie, E. Kopatzki, and R. Behm, Surface science +365, L647 (1996). +[32] S. Clair, S. Pons, S. Fabris, S. Baroni, H. Brune, K. Kern, and +J. V. Barth, J. Phys. Chem. B 110, 5627 (2006), ISSN 1520- +6106, URL https://doi.org/10.1021/jp057239s. +[33] J. Lambe and R. Jaklevic, Physical Review 165, 821 (1968). +[34] A. J. Heinrich, J. A. Gupta, L. C. P., and E. D. M., Science +306, 466 (2004), URL https://doi.org/10.1126/ + +8 +science.1101077. +[35] E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Ta- +kagi, and M. Kawai, Physical Review Letters 109, 086602 +(2012), URL https://link.aps.org/doi/10.1103/ +PhysRevLett.109.086602. +[36] A. A. Abrikosov, Physics Physique Fizika 2, 5 (1965), +URL +https://link.aps.org/doi/10.1103/ +PhysicsPhysiqueFizika.2.5. +[37] H. Suhl, Physical Review 138, A515 (1965), URL https:// +link.aps.org/doi/10.1103/PhysRev.138.A515. +[38] Y. Nagaoka, Physical Review 138, A1112 (1965), URL +https://link.aps.org/doi/10.1103/PhysRev. +138.A1112. +[39] H. Frota and L. Oliveira, Physical Review B 33, 7871 (1986). +[40] H. Frota, Physical Review B 45, 1096 (1992). +[41] D. Jacob, Physical Review B 97, 075428 (2018), URL +https://link.aps.org/doi/10.1103/PhysRevB. +97.075428. +[42] E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Ta- +kagi, and M. Kawai, Physical Review Letters 109, 086602 +(2012), URL https://link.aps.org/doi/10.1103/ +PhysRevLett.109.086602. +[43] J. Kügel, P.-J. Hsu, M. Böhme, K. Schneider, J. Senkpiel, +D. Serrate, M. Bode, and N. Lorente, Physical Review Let- +ters 121, 226402 (2018), URL https://link.aps.org/ +doi/10.1103/PhysRevLett.121.226402. +[44] J. Fernández, A. A. Aligia, and A. M. Lobos, EPL (Europhysics +Letters) 109, 37011 (2015), URL https://doi.org/10. +1209/0295-5075/109/37011. +[45] A. DiLullo, S.-H. Chang, N. Baadji, K. Clark, J.-P. Klöckner, +M.-H. Prosenc, S. Sanvito, R. Wiesendanger, G. Hoffmann, and +S.-W. Hla, Nano Lett. 12, 3174 (2012), ISSN 1530-6984, URL +https://doi.org/10.1021/nl301149d. +[46] L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, +F. Esch, S. Hecht, and L. Grill, 4, 215 (2012), ISSN 1755-4349, +URL https://doi.org/10.1038/nchem.1242. +[47] S. Clair and D. G. de Oteyza, Chem. Rev. 119, 4717 (2019), +ISSN 0009-2665, URL https://doi.org/10.1021/ +acs.chemrev.8b00601. +[48] I. Horcas, R. Fernández, J. Gomez-Rodriguez, J. Colchero, +J. Gómez-Herrero, and A. Baro, Review of scientific instru- +ments 78, 013705 (2007). +[49] Y. Z. Gao, To be determined (PSL Research University, 2022). +[50] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Ca- +vazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, +et al., J. Phys. : Condens. Matter 21, 395502 (2009), URL +http://www.quantum-espresso.org. +[51] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buon- +giorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ce- +resoli, M. Cococcioni, et al., J. Phys. : Condens. Matter 29, +465901 (2017). +[52] P. E. Blöchl, Physical review B 50, 17953 (1994). +[53] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, +3865 (1996), URL https://link.aps.org/doi/10. +1103/PhysRevLett.77.3865. +[54] A. Dal Corso, Computational Materials Science 95, 337 (2014). +[55] PSlibrary on github, +https://dalcorso.github.io/ +pslibrary/. +[56] Quantum ESPRESSO pseudopotential tables, +http: +//pseudopotentials.quantum-espresso.org/ +legacy_tables. +[57] W. P. Davey, Physical Review 25, 753 (1925). +[58] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géran- +ton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, et al., +Journal of Physics : Condensed Matter 32, 165902 (2020). + diff --git a/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/load_file.txt b/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..435385bb10adb0248a362f75c6d5b5f0fac6f617 --- /dev/null +++ b/YdAzT4oBgHgl3EQfKvs6/content/tmp_files/load_file.txt @@ -0,0 +1,920 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf,len=919 +page_content='Manipulation of the magnetic state of a porphyrin-based molecule on gold : From Kondo to quantum nanomagnet via the charge fluctuation regime Yingzheng Gao,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1 Sergio Vlaic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1 Tommaso Gorni,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1 Luca de’ Medici,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1 Sylvain Clair,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 Dimitri Roditchev,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 3 and Stéphane Pons1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' ∗ 1Laboratoire de Physique et d’Étude des Matériaux (LPEM),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' ESPCI Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Université PSL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' CNRS UMR8213,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sorbonne Université,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 75005 Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' France 2Aix Marseille Univ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' IM2NP,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Marseille,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' France 3Institut des Nanosciences de Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sorbonne Université,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' CNRS UMR7588,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 75005 Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' France (Dated: 4 janvier 2023) By moving individual Fe-Porphyrin-based molecules with the tip of Scanning Tunneling Microscope in the vicinity of a Br-atom containing elbow of the herringbone-reconstructed Au(111),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' we reversibly and continuously control their magnetic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Several regimes are obtained experimentally and explo- red theoretically : from the integer spin limit, through intermediate magnetic states with renormalized magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the substrate Fermi sea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Our results open a route for the realization, tuning and experimental studies of novel quantum magnetic states in molecule-surface hybrids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' KEYWORDS spin-flip excitation, spin states, magnetic anisotropy, Kondo, charge fluctuation, mixed-valence states, scanning tunneling microscopy, transiton metal complexes INTRODUCTION Addressing and manipulating the spin state of molecular species at interfaces is a challenge that could greatly bene- fit spintronics [1], nanoelectronics [2, 3] and quantum electro- nics [4] in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the valence of a magnetic molecule deposited on a surface is integer, the description of spin-polarized molecular orbitals can be done in the frame- work of the atomic limit in terms of crystal field and spin-orbit coupling : the spin state is simply interpreted as a quantum magnet for which the Hund’s rule determines the fundamental magnetic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' However, the atomic limit is no longer valid in the mixed-valence regime which is the most general behavior of an interacting magnetic impurity with an electron bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Among the most studied classes of magnetic molecules are the transition metal phthalocyanine (Pc) and porphyrin (P) fa- milies which are easily deposited at surface in vacuum and studied by various local probe microscopies and spectrosco- pies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In these molecules, the spin state is mainly given by the spin polarization of the central transition metal ion d- states [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Several works have focused on the influence of external parameters on the magnetic ground state such as the influence of charge transfer to the orbitals of the molecule [7– 14], the effect of surface spin-orbit coupling and magnetic ani- sotropy [15–17], the coupling to the substrate, [15, 18], the in- teraction with attached and neighboring molecules [19, 20], the structural deformation [21, 22] or the chemical substitu- tion of ligands [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' For all these studies, a systematic unders- tanding of the effect of mixed valence and charge fluctuations is still missing, although they have a strong influence on the effect of magnetic anistropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Here we show that charge fluctuations in Fe 5,15-di-4-pyridyl-10,20-di-4-bromophenyl porphyrin (Fe−DPyDBrPP) molecules adsorbed on the Br de- corated Au(111) surface allow the magnetic state of the molecule to be driven between high-spin (S=1) and Kondo- screened states in a reversible and continuous manner through the intermediate valence regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' RESULTS AND DISCUSSION Structural and spectroscopic properties of monomers Fe−DPyDBrPP were deposited in ultrahigh vacuum on Au(111) and studied in situ by scanning tunneling microscopy (STM) and spectroscopy (STS) at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3K (see Methods sec- tion for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The molecules are randomly located on hcp domains, fcc domains or stacking faults lines of the her- ringbone reconstruction [24] of Au(111) and appear as bright spots in constant-current topographic STM images in figures 1 (a-f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Fe−DPyDBrPP molecules do not exhibit a pla- nar configuration on the Au(111) surface because two pyrrole rings bend toward the vacuum and exhibit a higher height in STM images;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' the other two pyrrole rings bend toward the sub- strate, resulting in a lower height in images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Such deforma- tion corresponds to the saddling distortion of porphyrin-based molecules [25] that is quite commonly observed [17, 26–29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Thus, the shape of the molecules in STM images allows us to determine the central position of the Fe-atom, the porphine macrocycle and the bromophenyl and pyridyl ligands attached to the macrocycle, as well as their location relative to the sur- face reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Importantly, during deposition and annea- ling, some Br-atoms detach from the molecules [30], migrate at the surface, and get trapped by highly reactive elbows of the Au(111) herringbone reconstruction [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The intersection arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='01101v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='mes-hall] 3 Jan 2023 2 Bias Voltage (mV) dI/dV (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' units) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='00 0 20 10 10 20 Bias Voltage (mV) dI/dV (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' units) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='0 0 20 10 10 20 (g) (h) (d) (e) (f) (a) (b) (c) FIGURE 1: Scanning tunneling study of Fe−DPyDBrPP mono- mers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (a-f) Topography image of Fe−DPyDBrPP molecules at various location of the reconstructed surface of gold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The intersec- tion of the dotted lines indicates the location of the Br adatom which decorates the elbow of the herringbone reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (g) Norma- lized scanning tunneling spectra taken on upper pyrroles in images (a-c) showing spin inelastic excitations depending on the location of the molecule on the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (h) Normalized scanning tunneling spec- tra taken on upper pyrroles in images (d-f), when the molecule is on top of the Br-decorated elbow site of the reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' These spec- tra show an Abrikosov-Suhl resonance witnessing a Kondo mecha- nism which does not depend on the in-plane rotation of the molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The solid lines correspond to the fits of the data (see Methods sec- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Experimental parameters : topography images : V = 125 mV, Istab = 20 pA, size 10 × 10 nm2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' spectroscopy : Vstab = 30 mV, Istab = 200 pA, lock-in parameters : Vm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 mV, f = 750 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' of the dotted lines in figures 1 (a-c) points to the position of these elbows decorated by Br-adatoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Depending on their position on the surface, the molecules exhibit different spectral signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When a molecule is loca- ted on the hcp and fcc domains (figures 1 (a-c)), the tunneling spectra show conductance steps characteristic of a spin = 1 quantum magnet affected by the presence of magnetic anis- tropy [16, 17, 29, 33, 34], figure 1 (g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The steps of conduc- tance are due to the opening of additional spin-flip tunne- ling channels trough inelastic excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This is in agree- ment with the known behavior of Fe-Pc and Fe-P which be- have as S=1 nanomagnets once deposited on the Au(111) sur- face [15, 17, 20, 22, 29, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The step-like spin-flip signatures are recorded at both upper pyrrole and Fe-atom locations, pro- viding evidence for hybridization of the molecular states of the pyrrole with the Fe magnetic d-states [17, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the molecule is located on the elbow of the recons- truction, it behaves differently and exhibits a spectral reso- nance at the Fermi level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The molecule rotation induced by the microscope tip over the elbow site barely affects the shape and amplitude of the spectral resonance, figures 1 (d-f, h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In the following we show that the two distinct spectral si- gnatures are fully controlled by the adsorption site of the mo- lecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' To this end we have prepared chains of 3 covalently bonded Fe−DPyDBrPP molecules by Ulmann’s coupling (see Methods section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In figure 2, a trimer chain is moved by the tip of the microscope to various positions of the recons- tructed surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The targeted locations are the hcp and fcc do- mains and the Br-decorated elbow of the reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In the first panel (I) of figure 2, the 3 molecules are located inside a fcc domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In panels (II-IV), the molecular chain is sequen- tially repositioned with the microscope tip to move the iron center of each molecule over the Br-decorated site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the molecules are located inside fcc and hcp domains, the spec- tra exhibit inelastic excitations of independent spin 1 nano- magnets in presence of magnetic anisotropy, similar to which was already measured for monomers in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This observa- tion means that, here, neither the nature of the covalent bonds nor the substrate mediated interaction are efficient enough for coupling the molecules together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The spectra usually display a symmetric double-step structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Following the standard ana- lysis [34], the characteristic voltages of the steps is interpreted to be related to the out of plane and in plane magnetic aniso- tropy energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Depending on adsorption sites, the out of plane and in plane magnetic anisotropy energies can vary from 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='8 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='0 meV and from 0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='5 meV respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' These aniso- tropy parameters correspond to typical values of Fe porphy- rin and phthalocyanine based magnetic molecules adsorbed on gold [15–17, 22, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In panels (II-IV), the molecules are moved one by one above a Br-decorated elbow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In each case, the molecule exhibits a spectral resonance at 0 bias similarly to the monomer in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In figure 2, the resonance is found to be reversible once the molecule is removed from the elbow site and independent of the selected molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' We identify the spectral peak as an Abrikosov-Suhl resonance [36–38] (also named Kondo peak) due to the many body Kondo interactions of the Fe d states with the substrate electron bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The charac- teristic Kondo temperature, TK ≈ 11 K, evaluated by fitting the lineshape with a Frota function [39, 40], is found to be independent of the molecular orientation with respect to the surface atomic lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' We therefore expect that magnetic ani- sotropy plays no role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Kondo effect originating from degenerate triplet ground state is extremely sensitive to magnetic anisotropy which tends to lift the degeneracy [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In the present case, KBTK ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='9 meV is much smaller than the measured aniso- tropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Three possible phenomena can explain the robustness of the Kondo effect on the magnetic anisotropy occurring at the Br-decorated elbow site : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The charge fluctuations due to the coupling of the Fe states with the substrate states overw- helm the magnetic anisotropy energy at this location, effecti- vely restoring the degeneracy and screening the magnetic S=1 moment;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A sizable charge transfer from the substrate or the ligands onto the Fe atom induces a spin reduction from S = 1 to S = 1/2, resulting in a spin 1/2 Kondo effect which is naturally immune against magnetic anisotropy [41];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The deformation of the molecule at this position induces the sup- pression of the magnetic anistropy energy [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This last ex- planation is not in agreement with our tunneling topography 3 FIGURE 2: Scanning tunneling study of Fe−DPyDBrPP chains made by Ullman’s coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (a) topography images (I-IV) of a tri- mer chain of molecules made by Ullman’s coupling which is ma- nipulated by the tip of the microscope in order to position sequen- tially the monomers above the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The intersection of the dotted lines indicates the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The molecules are labeled as a function of their spectroscopic signature measured in (b) : "SF" stands for spin-flip and "K" for Kondo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Experimental parameters of images (I- IV) : size 15×15 nm2, V = 125 mV, I = 20 pA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (b) related scanning tunneling spectra taken above the left upper-pyrrole of each mole- cule of the chain, showing the presence of the Kondo peak for the molecules located above the Br-site which otherwise shows a spin- flip signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Vstab = 30 mV, Istab = 200 pA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lock-in parameters : Vm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 mV, f = 750 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The solid lines correspond to the fits of the data (see Methods section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (c) topographic zoom on a mole- cule of the chain exhibiting a spin-flip spectroscopic signature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (d- e) differential conductance image recorded simultaneously to image (c) at −100 mV and 100 mV respectively showing the symmetry of the frontier orbitals below and above the Fermi level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The red dotted line delimits the molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Experimental parameters of (c-e), size 3 × 3 nm2, Vstab = 800 mV, Istab = 500 pA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lock-in parameters : Vm = 5 mV, f = 900 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' studies which did not reveal a significant deformation of the molecule whose shape is preserved on the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' It has also been shown that the anisotropic energy is not significantly af- fected when a similar molecule is pressed onto the surface with the tip of a microscope while staying away from the tip- molecule contact [14, 15, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' As for scenarios 1 and 2, they are both possible, but the DFT calculations and the theoreti- cal interpretation that follow lean in the direction of the first explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Density Functional Theory analysis DFT was used to study the electronic properties as a func- tion of the distance of the molecule from the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In or- der to rationalize the effect of the Br-adatom on the electronic properties of Fe−DPyDBrPP, two sets of situations were simulated : 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' as a function of the distance to the genuine Au surface 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' as a function of the distance to a Br adatom on Au slabs positioned below the Fe atom of the molecule Fe−DPyDBrPP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Fe 3d states are dominant in the coupling with the sub- strate through the Br states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fe dxz, dyz states are mainly hy- bridized with the pyrroles molecular orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Therefore, fur- ther analysis will be discussed on the basis of the Fe 3d hy- brids with molecular orbital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In particular the Fe dxz, dyz and dz2 hybrid states were proven to be at the origin of the obser- ved phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The DFT simulation shows that the magnetic polarization (contrary to the total charge) of the Fe atom, figure 3 (b), de- pends strongly on the molecule-surface distance when the sur- face is decorated with a Br (or Au) adatom, whereas it is much less sensitive when approaching the clean surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the molecule is away from the Br site, the total occupancy and magnetic moment are about 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='4 e− and 2µB which corres- ponds to a configuration close to the spin 1 state (high spin state) and the hybridization of the Fe d states with the sub- strate is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This is in good agreement with the measured spectroscopic signature of a spin 1 quantum magnet when the molecule is above fcc or hcp domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Indeed, the lack of a Kondo signature may be the result of weak hopping integrals from Fe orbitals to surface orbitals when the molecule is far away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hybridization with the substrate cannot compete with the magnetic anisotropy and the Kondo effect is prevented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The magnetic anisotropy energy dominates the physics and the experimental spectroscopic signature is that of a spin 1 subjected to an anisotropy of a few meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Moving the molecule of 1 Å towards the Br adatom, from 5 to 4 Å, leaves the occupancy of the Fe states roughly un- changed (only a minor reshuffling of the charge distribution between the orbitals is observed (figure 3 (c)) - but induces a strong reduction of the magnetic polarization from about 2µB to about 1µB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The approximately constant charge suggests that charge fluctuations are the cause of this reduction, which is confirmed by the fact that the hybridization of the Fe and Br states increases exponentially as the molecule is moved closer (a) (l) () SF SF SF SF SF K (I) (IV) SF K K SF SF SF (b) (c) (1) (d) (II) (e) (IV)4 FIGURE 3: Theory analysis by DFT calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (a) Simulated adsorption geometry for the Iron(II) 5,15-(di-4-bromophenyl)-10,20-(di-4- pyridyl) porphyrin molecule on a Au(111) surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The (Au,Br) impurities are adsorbed on the hollow-hcp site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (b) polarizations as a function of the distance from the substrate, computed for three different substrates, clean Au(111), Au(111) + a Au adatom and Au(111) + a Br adatom, obtained via the same Mulliken analysis as in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (c) Orbitally-resolved Fe(3d) charge as a function of the distance from the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The charge and magnetization values have been obtained via a Mulliken analysis projecting the Kohn-Sham orbitals over the atomic states of the Fe pseudopotential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (d) Calculated non-zero squared hoppings between the Fe(3d) and the Br(4s,4p) states in the low-spin (Fe-Au(111) distance = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='0 Å, in blue) and high spin (Fe-Au(111) distance = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='0 Å, in red) case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Only the squared average of the spin-up and spin-down hopping is reported, since no significant difference has been found in the two channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' to the surface (the squared hoppings that enters in this form in the hybridization function between the impurity and the sub- strate are plotted in the figure 3 (d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The squared hopping in- tegrals of the Fe states to the surface are indeed one order of magnitude smaller when the molecule is far away.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Fe 3dz2 hybrids and Br 4s states, which have a almost perfect ro- tational symmetry, are supposed to dominate the physics when the molecule is closer (figure 3 (d)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This configuration is favo- rable to the emergence of a charge transport that is insensitive to magnetic anistropy and independent of the relative orienta- tion between the molecule and the surface once the iron atom is located just above the adsorbed Br atom, in perfect agree- ment with observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The cases presented above are perfectly consistent with the scenario in which the molecule evolves from a quasi-atomic moment (spin 1) under the influence of magnetic anisotropy to an Fe atom carrying a screened magnetic moment resul- ting from a strong hybridization with the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Finally, the DFT calculations clearly indicate that the strength of the charge fluctuations should vary with the distance to the Br atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Indeed the transition from spin 1 nanomagnet to Kondo screening, through the mixed-valence regime has been expe- rimentally probed in a reversible manner and summarized in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Crossover from spin 1 nanomagnet to Kondo-screened ground state through the mixed-valence regime It was possible to finely tune the electronic configuration of the iron atom by using a chain of molecules in order to sta- bilize positions for which a molecule deviates slightly from the Br site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The studied position of the molecules are presen- ted in topography images (a-d) of figure 4 and the density of states close to the Fermi energy are measured by STS spectra figure 4 (g)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The spin 1 signature is observed when the mole- cule is far from the elbow site as already mentioned above, fi- gure 4 (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the molecule is positioned in such a way that the Br site is located below the upper pyrrole ring, image 4 (b), the LDOS shows a broadened and asymmetric step like shape originating from spin flip inelastic excitations but with a lower characteristic energy, indicating a renormalization of the anisotropy energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' At intermediate positions where the Br adsorption-site is located in between the Fe site and the upper pyrrole location, 4 (c), the spectroscopy shows a small anti- resonance at the Fermi level with a Fano-like shape which we believe is the extrapolation of the inelastic spin flip si- gnature but for stronger charge fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' When the mo- lecule is strictly coinciding with the Br-adsorption site, fi- gure 4 (d), it is exhibiting a Kondo peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Therefore, the si- tuation of images 4 (b) & (c) corresponds to two interme- diate mixed-valence regimes between spin 1 nanomagnet and Kondo-screened ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Indeed as shown by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jacob in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [41] the gradual increase of charge fluctuations alters the spectroscopic signatures of the spin 1 nanomagnet by re- normalizing the magnetic excitations to lower energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This gradually closes the gap and finally restores a Kondo peak as in the case of image 4 (d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In this process, the absence of particle-hole symmetry causes a typical Fano resonance to ap- pear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The renormalization of the magnetic excitations is evi- denced in pannels 4 (h-k) where differential conductance is used to map the inelastic spin-flip probability density in the real space in the same configuration as in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This situation corresponds to the occurrence of one molecule in the inter- mediate state and 2 molecules in the regime of the spin 1 na- nomagnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' At ±9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3 mV, spin-flip channels are open in all 3 molecules and the probability to induce a spin flip follows a two-lobes spatial pattern in all three molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' At ±3 mV, panels (i) & (j) the spin-flip excitations are hindered by the magnetic anisotropy in the molecules far from the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' On the contrary, the molecule in the intermediate regime shows spin-flip processes already being developed at ±3 mV, indica- ting the renormalization of the magnetic excitation energy to (a)5 dI/dV (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' units) Bias Voltage (mV) Upper-pyrrole (e) Bias Voltage (mV) (g) dI/dV (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' units) (f) 0 10 20 10 20 (h) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3mV (i) 3mV (j) 3mV (k) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3mV (a) (b) (c) (d) 500 250 500 250 0 dI/dV (arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' units) Bias Voltage (mV) Iron center 500 250 500 250 0 FIGURE 4: Crossover from spin 1 nanomagnet to Kondo screen ground state through the mixed-valence regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (a-d) topography images showing the position of the first molecule of a chain with respect to the Br-decorated elbow site of the gold reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (a) the molecule is far from the Br site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (b) the upper pyrrole is centered on the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (c) the Br-site is located in between the center of the upper pyrole and the Fe ion position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (d) the Fe atom is located just above the Br-site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (e) conductance spectra taken above the center of the upper pyrole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (f and g) conductance spectra taken above the iron atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' red, green, blue and yellow colors correspond to the configurations of (a), (b), (c) and (d) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (h-k) Background subtracted (see Methods section) differential conductance images at V = −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3 mV, V = −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='0 mV,V = 3 mV and V = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3 mV respectively recorded in the configuration of image (b) where, the left molecule is in the mixed-valence intermediate state (blue dashed line) and the two other molecules behave as spin 1 nanomagnets (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' red dashed line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Experimental parameters : (a) & (d) V = 125 mV, I = 20 pA, scalebar = 2 nm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (b) & (c) V = 200 mV, I = 100 pA, scalebar = 2 nm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (e) & (f) Vstab = 800 mV, Istab = 500 pA, lock-in parameters : Vm = 5 mV, f = 900 Hz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (g) Vstab = 30 mV, Istab = 200 pA, lock-in parameters : Vm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 mV, f = 750 Hz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' (h-k) Vstab = 30 mV, Istab = 200 pA, size 12×12 nm2, lock-in parameters : Vm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2 mV, f = 750 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' All spectra are normalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' a smaller scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This transition through a mixed-valence regime might be due to a net increase of Fe charge while remaining still in a regime of weak coupling with the substrate (our previously outlined scenario 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Our DFT calculations rather suggest that the predominant effect is the drastic increase of the hopping from/to the substrate (scenario 1), instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Accordingly, the spin crossover was found to be accompanied with an energy shift of the frontier orbitals which are localized at the up- per pyrrole rings (frontier orbital A, FOA) and at the iron atom position (frontier orbital B, FOB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A carefully analysis of figures 4 (e) & (f) allows to follow the evolution of FOA and FOB energies when moving the molecule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' FOA shows a continuous evolution of density of states from the unoccupied states towards occupied states when approaching the molecule to the Br-site, indicating an increase of the orbital occupation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' FOB shows a reverse behavior with a shift from below the Fermi level towards the unoccupied states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The gap between the frontier orbitals is reducing when approaching the Br site so the d level splitting tends to be weakened and could be favoring a decrease of orbital momentum and a renormaliza- tion of the magnetic anisotropy in agreement with the closing of the steps of conductance due to spin-flip excitations in the measured data of panel 4 (g) and figures 4 (h-k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The conductance images presented figure 2 (c-e) support the hybrid Fe 3dxz, dyz character of FOA and the strong Fe 3dz2 character of FOB in agreement with the orbital occupa- tions in the DFT calculations (figure 3 (c)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' It is interesting to note that according to conductance images of figure 4 (h- k), the spin-flip probability density is following the 3dxz, dyz symmetry at energies above and below the Fermi energy (two- lobes shape).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' On the contrary, the 3dz2 character of the exci- tations (bright localized spot at the Fe site) is only visible at negative bias, so for occupied states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' This difference is explai- ning the breaking of the electron-hole symmetry observed in inelastic spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The fano-like shape of the blue spectrum in figure 4 (g) oc- curs when the frontier orbitals are overlapping at the Fermi level, as visible in figure 4 (e) & (f) and when the charge fluc- tuations between orbitals are expected to be strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The hypo- thesis of intermediate regimes driven by charge fluctuations is well described by prediction in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [41] as well as the shape of the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' However in the present case the frontier or- bitals, could also recover their degeneracy when overlapping in the intermediate regimes, implying a possible Kondo SU(4) effect [35, 42], although this is less likely in a molecular sys- tem [43] and cannot be easily distinguished from the simple effect of strong charge fluctuations [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Finally, when the iron atom is located above the Br site, FOA migrates below the Fermi level and FOB is washed out towards incoherent exci- tation and only the Kondo resonance survives at EF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' CONCLUSION We have revealed in experiments and DFT calculations that the spin state switching is caused by the strong hybridiza- tion potential at Br-decorated elbow sites which induce charge 6 fluctuation and a renormalization of the magnetic anisotropy when molecules are adsorbed on these sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The direct consequence of charge fluctuations is to tune the energies of two molecular frontier orbitals which are respec- tively closest to the Fermi level in positive and negative ener- gies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The energetic overlapping of these two frontier orbitals gives rise to low-energy spin excitation channels near Fermi level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Under the condition of relative small charge fluctua- tions, the two frontier orbitals are far from Fermi level and the overlapping is small, hence the molecule will have high spin (S = 1) state, while under strong charge fluctuation these two orbitals can cross Fermi level, resulting a renormalization of the magnetic anisotropy and ultimately the Kondo screened ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Our work provides a new approach for tuning not only the spin state but also the intermediate valence character/charge fluctuation in hybrids made of molecules on reconstructed sur- faces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' METHODS Fe 5,15-di-4-pyridyl-10,20-di-4-bromophenyl porphyrin molecules were ordered from Alpha Aesar company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Samples were prepared under ultrahigh vacuum (base pressure 1 × 10−10 mbar) just before their scanning tunneling studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The gold substrate was prepared by repeated cycles of Ar ion sput- tering followed by annealing at 900 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The molecules were deposited by organic molecular beam epitaxy (OMBE) when the sample was kept at Room Temperature (Tcrucible=575K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' It was observed that the molecule source is also depositing Br atoms on the surface of gold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' We have attributed this conco- mitant deposition of Br with Fe−DPyDBrPP to the stochas- tic Br detaching from Fe−DPyDBrPP molecules inside the crucible when heated at evaporation temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In-crucible Br detaching form similar molecules was already reported in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [30] at 590K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' In our case, the low amount of deposited Br atoms was seen to be enough for occupying all the elbow sites of the herringbone reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Once the molecules deposited, the sample temperature was quenched at liquid ni- trogen temperature then at helium liquid temperature in less than 20 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' For low coverage this procedure produces single monomers scattered on the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A post annealing at 400 K for 10 minutes was used for producing molecular chains by Ullman’s coupling at the surface following recipes in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [30, 45–47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' STM/STS measurements were achieved in-situ in ultrahigh vacuum by means of a modified "Tyto SPM" from SPECSTM at a base temperature of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3 K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' the tunneling bias was applied to the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Mechanically cut PtIr tips were used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Soft la- teral manipulation as follows was used for moving the mole- cules 1) positioning the tip above the molecule to move 2) Tur- ning off the microscope feedback loop and approaching the tip towards molecule in order to increase tip-molecule inter- action 2) Moving the tip to the destination in constant height mode 3) Retracting the tip and engaging the feedback loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The analyses of the microscopy and spectroscopy data were done with WSxM software [48] and homemade python proce- dures respectively [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The fit of spectra from figure 1 & 2 involved a large Gaus- sian background mimicking the frontier orbital DOS plus a specific function associated to spin-flips (step functions intro- duced in [33]) or Kondo ground states (Frota function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Mar- ginally, a convolution with a Gaussian function was used to clean up the incoherent noise of all conductance spectra pre- sented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The spin-polarized Density-Functional Theory (DFT) cal- culations have been carried out with v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='∼6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='8 of the QUAN- TUM ESPRESSO package [50, 51] within the Projector Augmented-Wave (PAW) scheme [52] and using the Perdew- Burke-Ernzerhof (PBE) functional [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' PAW pseudopoten- tials have been taken from the PSlibrary [54–56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Au(111) surface has been modeled by a finite slab consisting of 3 gold layers with 15 Åof vacuum between periodic replicas along the z direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The Au-Au nearest- neighbor distance has been set to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='93 Å, the PBE equili- brium distance of the corresponding fcc bulk structure, which is ≲ 2% larger than the experimental room-temperature va- lue [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Given the sizeable extension of the molecule, a 10×10 su- percell of Au atoms on the xy plane has been used in order to avoid interaction between its periodic replicas, for a total of 300 Au atoms in the simulation cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The molecule geo- metry has been relaxed in the vacuum until all components of the forces were smaller than 10−3 Ry/aB, with aB being the Bohr radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The projected density of states (pDoS) and the Mulliken orbital occupations and polarizations have been evaluated by projecting the Kohn-Sham orbitals on the atomic states of the pseudopotentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' They have been computed by considering different adsorption geometries between the mo- lecule and three different substrates : the clean Au(111) sur- face, the Au(111) surface with a Au impurity and the Au(111) surface with a Br impurity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The impurities have been placed at the preferred PBE adsorption site at the equilibrium dis- tance, which has resulted in the hollow-hcp site for both the Au and the Br impurity, respectively at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='16 Åand 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='23 Åfrom the Au(111) surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' All calculations have been performed with and a plane-wave cutoff of ϵcut = 40 Ry on the wave- functions and 320 Ry on the density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Brillouin zone integrals have been evaluated at the Γ point using a gaussian smearing of σ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='01 Ry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' The hopping parameters have been computed via the projection method as implemented in the WANNIER90 package [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' ACKNOWLEDGEMENT Cheryl Feuillet-Palma is acknowledged for her construc- tive discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' TG thanks Paolo Restuccia for fruitful dis- cussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' LdM acknowledges Giorgio Sangiovanni for useful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' SV, DR and SP acknowledge the French National Research Agency for the support of the SHOGUN project, Re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 7 ANR-22-CE09-0028-01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' TG and LdM are supported by the European Commission through the ERC-CoG2016, Strong- CoPhy4Energy, GA No724177.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' ∗ Electronic address: stephane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='pons@espci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='fr [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Khajetoorians, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Valentyuk, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Steinbrecher, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Schlenk, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shick, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kolorenc, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lichtenstein, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wehling, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wiesendanger, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wiebe, Nature Nanotechnology 10, 958 (2015), ISSN 1748-3395, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/nnano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [2] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kumar and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ruben, Coordination Chemistry Reviews 346, 176 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Molnár, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rat, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Salmon, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Nicolazzi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Boussek- sou, Advanced Materials 30, 1703862 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [4] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Heinrich, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ahmadi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Müller, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Braun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pascual, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Franke, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 13, 4840 (2013), ISSN 1530-6984, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/nl402575c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Tao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Du, Wiley Interdisciplinary Re- views : Computational Molecular Science 12, e1591 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Du, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gao, Physical Review B 84, 125446 (2011), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='125446.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Krull, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Robles, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Mugarza, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gambardella, Nature Materials 12, 337 (2013), ISSN 1476-4660, URL https:// doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/nmat3547.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Garnica, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Stradi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Calleja, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Barja, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Díaz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Alcamí, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Arnau, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Vázquez de Parga, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Martín, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Miranda, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 14, 4560 (2014), ISSN 1530-6984, URL https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/nl501584v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Granet, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sicot, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gerber, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kremer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pierron, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kierren, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Moreau, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fagot-Revurat, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lamare, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ché- rioux, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' C 124, 10441 (2020), ISSN 1932- 7447, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='jpcc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 9b11141.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Karan, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' He, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hong, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lü, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Peng, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', Physical Review Let- ters 116, 027201 (2016), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='027201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Xiao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Yang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 128, 234705 (2008), ISSN 0021-9606, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2940338.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [12] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ji, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Cheng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ma, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='- L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Duan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jia, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Xue, Physical Review Letters 101, 197208 (2008), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='197208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [13] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kuang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shi, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lin, ACS Nano 9, 12521 (2015), ISSN 1936-0851, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/acsnano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='5b06120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Karan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' García, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Karolak, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jacob, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lorente, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Berndt, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 18, 88 (2018), ISSN 1530-6984, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='nanolett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 7b03411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hiraoka, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Minamitani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Arafune, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Tsukahara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wa- tanabe, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kawai, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Takagi, Nature Communications 8, 16012 (2017), ISSN 2041-1723, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/ncomms16012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Tsukahara, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Noto, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ohara, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shiraki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ta- kagi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Takata, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Miyawaki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Taguchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chainani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', Physical Review Letters 102, 167203 (2009), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='167203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rubio-Verdú, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sarasola, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Choi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Majzik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ebe- ling, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Calvo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ugeda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Garcia-Lekue, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sánchez- Portal, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pascual, Communications Physics 1, 15 (2018), ISSN 2399-3650, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 1038/s42005-018-0015-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kügel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Karolak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Krönlein, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Serrate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Bode, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sangiovanni, npj Quantum Materials 3, 53 (2018), ISSN 2397-4648, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/ s41535-018-0126-z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Isvoranu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ataman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Schulte, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Knud- sen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Andersen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Bocquet, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Schnadt, The Journal of Chemical Physics 134, 114710 (2011), https ://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3563635, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3563635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zheng, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Yang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 147, 134701 (2017), ISSN 0021-9606, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='4996970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Parks, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Champagne, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Costi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shum, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pasupathy, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Neuscamman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Flores- Torres, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Cornaglia, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Aligia, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Balseiro, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', Science 328, 1370 (2010), ISSN 0036-8075, https ://science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='sciencemag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/content/328/5984/1370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='pdf, URL https://science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='sciencemag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ content/328/5984/1370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Li, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Weismann, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 54, 9135 (2018), URL http: //dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1039/C8CC02994F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [23] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Eguchi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Nanjo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Takaoka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sainoo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Arafune, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Awaga, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Komeda, Communications Che- mistry 3, 36 (2020), ISSN 2399-3669, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/s42004-020-0282-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Barth, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Brune, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ertl, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Behm, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' B 42, 9307 (1990), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='9307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [25] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ishizuka, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Grover, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kingsbury, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kotani, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Senge, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kojima, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 51, 7560 (2022), URL http: //dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1039/D2CS00391K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Son, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Yoon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Han, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kahng, Physical Review B 80, 245402 (2009), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='245402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kuang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Shang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Liu, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lin, Physical Review B 91, 045440 (2015), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='045440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Choi, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kahng, Physical Review B 100, 245406 (2019), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='245406.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [29] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Meng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Möller, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Mansouri, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sánchez-Portal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Garcia-Lekue, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Weismann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Li, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Herges, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Berndt, ACS Nano (2022), ISSN 1936-0851, URL https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/acsnano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2c09310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [30] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Grill, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Dyer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lafferentz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Persson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Peters, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hecht, Nature nanotechnology 2, 687 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [31] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Meyer, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Baikie, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kopatzki, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Behm, Surface science 365, L647 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [32] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Clair, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pons, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fabris, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Baroni, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Brune, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kern, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Barth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' B 110, 5627 (2006), ISSN 1520- 6106, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/jp057239s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [33] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lambe and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jaklevic, Physical Review 165, 821 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Heinrich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gupta, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', Science 306, 466 (2004), URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1126/ 8 science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1101077.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [35] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Minamitani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Tsukahara, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Matsunaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ta- kagi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kawai, Physical Review Letters 109, 086602 (2012), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='086602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Abrikosov, Physics Physique Fizika 2, 5 (1965), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/ PhysicsPhysiqueFizika.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [37] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Suhl, Physical Review 138, A515 (1965), URL https:// link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='A515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [38] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Nagaoka, Physical Review 138, A1112 (1965), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='A1112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [39] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Frota and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Oliveira, Physical Review B 33, 7871 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [40] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Frota, Physical Review B 45, 1096 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Jacob, Physical Review B 97, 075428 (2018), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='075428.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [42] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Minamitani, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Tsukahara, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Matsunaka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kim, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ta- kagi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kawai, Physical Review Letters 109, 086602 (2012), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/ PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='086602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [43] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Kügel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hsu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Böhme, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Schneider, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Senkpiel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Serrate, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Bode, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lorente, Physical Review Let- ters 121, 226402 (2018), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='226402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [44] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fernández, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Aligia, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lobos, EPL (Europhysics Letters) 109, 37011 (2015), URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 1209/0295-5075/109/37011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [45] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' DiLullo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Baadji, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Clark, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Klöckner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Prosenc, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Sanvito, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Wiesendanger, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hoffmann, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hla, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 12, 3174 (2012), ISSN 1530-6984, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/nl301149d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [46] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lafferentz, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Eberhardt, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Dri, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Africh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Comelli, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Esch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Hecht, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Grill, 4, 215 (2012), ISSN 1755-4349, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1038/nchem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [47] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Clair and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' de Oteyza, Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 119, 4717 (2019), ISSN 0009-2665, URL https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='1021/ acs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='chemrev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='8b00601.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [48] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Horcas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Fernández, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gomez-Rodriguez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Colchero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gómez-Herrero, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Baro, Review of scientific instru- ments 78, 013705 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [49] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gao, To be determined (PSL Research University, 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [50] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Giannozzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Baroni, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Bonini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ca- vazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ceresoli, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Chiarotti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Cococcioni, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Dabo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Matter 21, 395502 (2009), URL http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='quantum-espresso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [51] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Giannozzi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Andreussi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Brumme, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Bunau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Buon- giorno Nardelli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Calandra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Car, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Cavazzoni, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ce- resoli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Cococcioni, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Matter 29, 465901 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [52] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Blöchl, Physical review B 50, 17953 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [53] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Perdew, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Burke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Ernzerhof, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 77, 3865 (1996), URL https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' 1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='3865.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [54] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Dal Corso, Computational Materials Science 95, 337 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [55] PSlibrary on github, https://dalcorso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='io/ pslibrary/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [56] Quantum ESPRESSO pseudopotential tables, http: //pseudopotentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='quantum-espresso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content='org/ legacy_tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [57] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Davey, Physical Review 25, 753 (1925).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' [58] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Pizzi, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Vitale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Arita, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Blügel, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Freimuth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Géran- ton, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gibertini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Gresch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Johnson, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=' Koretsune, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} +page_content=', Journal of Physics : Condensed Matter 32, 165902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/YdAzT4oBgHgl3EQfKvs6/content/2301.01101v1.pdf'} diff --git a/ZtE1T4oBgHgl3EQfwgWm/content/tmp_files/2301.03412v1.pdf.txt b/ZtE1T4oBgHgl3EQfwgWm/content/tmp_files/2301.03412v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e9abf9062f46c7c45c506804c9acaf38b8c74162 --- /dev/null +++ b/ZtE1T4oBgHgl3EQfwgWm/content/tmp_files/2301.03412v1.pdf.txt @@ -0,0 +1,2119 @@ +Neighbor Auto-Grouping Graph Neural Networks for Handover Parameter +Configuration in Cellular Network +Mehrtash Mehrabi,1,2 Walid Masoudimansour,2 Yingxue Zhang,2 Jie Chuai,2 Zhitang Chen,2 +Mark Coates,3 Jianye Hao,1, 4 Yanhui Geng2 +1 Huawei Noah’s Ark Lab, 2 University of Alberta, 3 McGill University, 4 Tianjin University +{mehrtash.mehrabi, walid.masoudimansour, yingxue.zhang, chuaijie, chenzhitang2, +haojianye, geng.yanhui}@huawei.com, mark.coates@mcgill.ca +Abstract +The mobile communication enabled by cellular networks is +the one of the main foundations of our modern society. Op- +timizing the performance of cellular networks and providing +massive connectivity with improved coverage and user ex- +perience has a considerable social and economic impact on +our daily life. This performance relies heavily on the config- +uration of the network parameters. However, with the mas- +sive increase in both the size and complexity of cellular net- +works, network management, especially parameter configu- +ration, is becoming complicated. The current practice, which +relies largely on experts’ prior knowledge, is not adequate +and will require lots of domain experts and high mainte- +nance costs. In this work, we propose a learning-based frame- +work for handover parameter configuration. The key chal- +lenge, in this case, is to tackle the complicated dependencies +between neighboring cells and jointly optimize the whole net- +work. Our framework addresses this challenge in two ways. +First, we introduce a novel approach to imitate how the net- +work responds to different network states and parameter val- +ues, called auto-grouping graph convolutional network (AG- +GCN). During the parameter configuration stage, instead of +solving the global optimization problem, we design a local +multi-objective optimization strategy where each cell con- +siders several local performance metrics to balance its own +performance and its neighbors. We evaluate our proposed al- +gorithm via a simulator constructed using real network data. +We demonstrate that the handover parameters our model can +find, achieve better average network throughput compared to +those recommended by experts as well as alternative base- +lines, which can bring better network quality and stability. It +has the potential to massively reduce costs arising from hu- +man expert intervention and maintenance. +1 +Introduction +The rapid growth in the number of devices that need real +time, high quality connection to the internet (e.g., internet of +things (IoT) devices, health monitoring equipment, devices +used for online education and remote working, autonomous +vehicles, etc.) makes it essential to improve cellular network +performance. Unsatisfactory user experience and network +interruption have negative impacts in our modern society. +Thus, improving the cellular network has both economic and +Copyright © 2023, Association for the Advancement of Artificial +Intelligence (www.aaai.org). All rights reserved. +social impact towards achieving United Nations Sustainable +Development Goals (UNSDGs) (Weisenborn 2018; World +Economic Forum 2020). Moreover, it can highly contribute +to enhancing infrastructure, promoting sustainable indus- +trialization, fostering innovation, responsible consumption, +enabling sustainable cities and communities, and promot- +ing decent work and economic growth (Gohar and Nencioni +2021; Rao and Prasad 2018; Siriwardhana et al. 2021). +The performance of a cellular network relies heavily on +its parameter configurations and it is becoming more cru- +cial, as the number of mobile users continues to grow rapidly +(statista 2022). These parameters govern access control, +handover, and resource management (Dahlman et al. 2013; +Bhat et al. 2012). One of the factors that has a significant +impact on the quality of service (QoS) in such networks is +the handover parameter (Tekinay et al. 1991). We provide +more details concerning this parameter and its effects in the +supplementary materials, Sec. A.1. +Optimizing handover parameters is one of the most com- +mon approaches to guarantee minimum service delay or in- +terruption and improve coverage and throughput (Mu et al. +2014). However, with the massive increase in both the size +and complexity of cellular networks, parameter configura- +tion is becoming complicated. The current practice, which +relies largely on experts’ prior knowledge, is inadequate, re- +quiring many domain experts and leading to high mainte- +nance costs. +One of the key challenges in the network parameter op- +timization problem is the complex spatial and temporal de- +pendencies in the cellular network. Any employed algorithm +should be capable of tracking the non-stationary changes in +the environment, i.e., the fluctuations of user number, net- +work load, etc. (Agiwal et al. 2016). Also, due to the diverse +characteristics of cells across the network, the best parame- +ter configuration for one cell may not be optimal for another +and parameter configuration of one cell not only affects its +own performance, but also affects its neighbors’ (Dahlman +et al. 2013). Therefore, there are strong interactions between +neighboring cells which become extremely complicated in +heterogeneous network. Consequently, developing an algo- +rithm that can adapt to the temporal dynamics and cell diver- +sity in real networks is essential for parameter configuration +(Jiang et al. 2016). +The current cellular network deployments are highly de- +arXiv:2301.03412v1 [cs.NI] 29 Dec 2022 + +pendent on human designed rules or analytical models based +on domain knowledge and assumptions about the network +dynamics which is far from optimal. They only consider +a limited number of network states (e.g., user distribution, +channel quality, etc.) and parameters, and cannot capture the +complex relationships between network states, parameter +configurations and network performance. Also, the assump- +tions of the network dynamics, based on which the rules/- +models are developed, are often simplified without consider- +ing the non-stationary changes in real environments, which +degrades their performance. Finally, these rules/models may +not be able to deal with the cell diversities in the network +which makes them sub-optimal (Imran et al. 2014). +Recently, data-driven approaches based on machine learn- +ing (ML) have been extensively used for parameter con- +figuration and network management in cellular networks +(Yu et al. 2017; Tabrizi et al. 2012; Riihijarvi et al. 2018; +Chuai et al. 2019; Ye et al. 2013). It has been shown that +the multi-layer perceptron (MLP) can be considered as a +universal function approximator (Goodfellow et al. 2016). +Thus, in environments such as cellular networks where there +is lack of an accurate analytical model and the network is +highly dynamic, neural-network-based methods can be used +to achieve high-accuracy prediction. ML models can uti- +lize high dimensional information and approximate complex +functions to fully describe the relationship between network +states, parameter configurations and network performance +metrics, which cannot be achieved by human experience. +In order to address the above challenges, we investigate +two important questions: 1) Modeling: how to model the +spatial and temporal dependencies of the cellular network? +2) Decision-making: how to choose the parameter values to +jointly optimize the overall performance of interconnected +and interacting cells? We first, propose a ML-based model to +precisely imitate the cellular network environment and then, +use it to configure the parameters. +We demonstrate that the handover parameters recom- +mended by our model can achieve better average network +throughput compared to the existing methods and our ap- +proach can massively reduce costs from human expert in- +tervention and maintenance. It opens up the potential for +high-quality internet access to geographical areas that are +currently under-served by the cellular network. Besides, this +framework can bring new possibilities for important appli- +cations to under-developed regions including online educa- +tion, health monitoring devices by improving their real time +connection (Attaran 2021). +Our main contributions are summarized as follows. +• We propose a novel method to model the impact from the +neighbors of each cell in a distinguishable way to capture +the complex spatial dependencies of the network. +• We consider the changing dynamics of the network in our +reward model to better reflect the temporal dependencies. +• We introduce a multi-objective optimization strategy +based on the model to consider several performance met- +rics and improve the overall network throughput, which +has the potential for high social impact applications. +2 +Background and Related Work +The adjustment of handover parameters helps to balance the +traffic load in the network and it can dramatically affect the +network throughput. During the handover process in cellular +networks, in order to guarantee an acceptable service qual- +ity, a user equipment (UE) must monitor the reference signal +received power (RSRP) of the serving cell (3GPP TS36.331 +2016). As soon as the RSRP drops below a pre-defined +threshold (called A2-threshold), the UE starts to report mea- +surements to its serving cell and prepares for handover. In- +creasing the value of A2-threshold decreases the number of +UEs in the serving cell in which the handover is triggered, +and this spreads the serving cell’s load to its neighbors, re- +sulting in a significant change of throughput for the serving +cell and its neighbors. While improving the load balance of +the network, this can have adverse effects on the network +performance since it forces frequent handovers which re- +quires a considerable amount of bandwidth for measurement +reporting and causes a drop in network throughput. Decreas- +ing the value of A2-threshold, on the other hand, may cause +a poor experience for edge UEs and lead to repeated connec- +tion loss due to weak signal. In attempt to solve the problem +of optimization of the parameters of a wireless network, dif- +ferent techniques such as fuzzy systems, deep reinforcement +learning (DRL), and contextual bandit have been used in the +literature. (see Sec. A.2 for some details). +The use of graph convolutoinal networks (GCNs) (Hamil- +ton et al. 2017; Kipf et al. 2017; Fan et al. 2019) has also +yielded significantly well-designed models to predict the +network traffic and optimize the corresponding parameters. +For example, in (Zhang et al. 2020), the authors introduce a +novel handover strategy based on GCNs. The handover pro- +cess is modeled as a directed graph by which the user tries to +predict its future signal strength. Other works such as (Zhao +et al. 2020) introduce novel methods of network traffic pre- +diction combined with a greedy search or action configu- +ration method to optimize handover parameters. However, +these works fail to consider the heterogeneous aspect of the +cellular networks. +Despite being effective, none of the above-mentioned +methods uses the capacity of the neighbors’ information to +fully tailor the model to adapt to the spatial characteristics +of a cellular network, where the interaction is complex and +the network is heterogeneous. Also, despite the fact that +these techniques consider some important measures of op- +timization, none of them approaches the problem at hand +by considering two of the most important measures simul- +taneously (especially from the users’ perspective): load bal- +ancing and throughput. In this article, we propose an effec- +tive and efficient framework that models the network as a +heterogeneous graph where we learn an implicit interaction +type for each neighboring cell. Then, it incorporates the im- +pact of neighboring cells from each interaction group in a +unique way. Moreover, in contrast to the available methods +in the literature, we exploit two important measures in the +network simultaneously, to configure the parameters effec- +tively: throughput and load balancing, which are directly re- +lated to the user experience in the network. + +3 +Problem Formulation +Let us consider a network with N cells, and form N clusters +each composed of one of the network cells as its center cell +along with its neighboring cells. As an example, we choose +the optimization of the A2-threshold to investigate the per- +formance of our algorithm. According to the 3GPP standard +(3GPP TS36.331 2016), an A2 event is triggered when the +received power at user u from cell n, P u,n, satisfies +P u,n + Hys < Thresh, +(1) +where Hys is the hysteresis parameter to avoid frequent han- +dovers and Thresh is the A2-threshold we are optimizing. +We consider an online optimization process. In real prac- +tice, network operators are often conservative and only allow +a limited number of experiments. During the optimization +period of L days, and the A2-threshold can be adjusted once +for each cell at the beginning of each day. For day t, let Dt +be the total bits transmitted by all the cells, and Tt be the to- +tal transmission time. We would like to maximize the accu- +mulated network throughput of the optimization period, i.e., +max �L +t=1 +Dt +Tt . Maximizing the overall network throughput +by jointly optimizing the A2-threshold of all cells is diffi- +cult. The problem becomes even more complicated as the +network size increases, which makes a centralized solution +not scalable. The adjustment of the A2-threshold of one cell +only affects its local neighborhood and thus, we convert the +centralized problem into a local decision problem. That is, +each cell only examines its local performance metrics and +chooses its own parameter configuration value. +The adjustment of the A2-threshold affects the network +throughput via two means: better resource utilization by load +balancing, and improved cell throughput with less connec- +tion loss and measurement reporting. Consequently, in order +to configure it, these two metrics must be considered in the +local decision problem. The throughput of cell i on day t is +highly dependent on its A2-threshold, formulated as ai +t, de- +noted as αi +t(ai +t). The load balancing factor in the i-th cluster +with center cell i on day t with ai +t is defined as the ratio +of the center cell throughput to the average throughput of +its neighboring cells, denoted by βi +t(ai +t) and formulated as +βi +t(ai +t) = αi +t(ai +t)/¯αi +t, where ¯αi +t is the average throughput +of the neighbors of cell i with action ai +t and, denoting by +Nt(i) the set of all neighbors of cell i on day t, it can be +formulated as ¯αi +t = +1 +|Nt(i)| +� +j∈Nt(i) αj +t(aj +t). The through- +put ratio (rather than traffic/user ratio) is used since different +cells have different capacities. This value approaches 1 when +loads of different cells match their capacities. +Our goal is to maximize the overall network throughput +by optimizing the two important network performance met- +rics, namely, throughput ratio βi +t(ai +t) and cell throughput +αi +t(ai +t) for each cell i ∈ [1, Nt], where Nt is the total number +of cells on day t, at the same time. Therefore, we propose the +following optimization problem for tuning the A2-threshold +for cell i: +arg max +ai +t∈A +� +− +���1 − βi +t(ai +t) +��, αi +t(ai +t) +� +, +(2) +where A is the set of all possible values for the A2-threshold +in the cellular network. +The challenge of solving the above problem lies in sev- +eral folds. First, since the network performance function is +complex, dynamic and unknown, obtaining accurate βi +t(ai +t) +and αi +t(ai +t) is difficult. Instead, in this work, we adopt a +data-driven approach to learn reward models and estimate +the performance metrics. Second, in real-world cases, only +a limited experimental budget is allowed by network opera- +tors leading to insufficient diverse historical data (state, ac- +tion pairs) to train a data-driven learning model. In our de- +sign, we use a data augmentation technique in the form of +neighbor cell augmentation to enrich the features from each +cell. Third, the handover parameter configuration is affected +by adjacent cells. Thus, it is essential to model the informa- +tion coming from the adjacent cells to achieve accurate re- +ward modeling. Lastly, optimizing one performance metric +greedily might hinder another, thus, how to jointly optimize +different performance metrics needs careful consideration. +4 +Temporal Auto-Grouping GCN for +Reward Modeling +In order to better capture the dependency between each +cell and its neighboring cells, we first introduce our novel +method for neighboring cell feature aggregation. Second, we +propose a temporal feature aggregation step with recurrent +neural networks (RNN) to model the temporal correlation +from the historical sequence of the network states. Third, we +elaborate the overall training process, considering the im- +pact from the neighboring cells, the temporal correlation in +the network and the action we aim to optimize. +4.1 +Spatial Feature Modeling +The handover parameters heavily impact the learning prob- +lem on the graph of the center cells as well as the neighbor- +ing cells, hence, we aim to capture the neighboring cells in- +formation during our modeling process. Recently, message- +passing neural networks (MPNNs) in the form of graph neu- +ral networks (GNNs) have been introduced and showed to +be effective in modeling real world applications with struc- +tural information. The dependencies in the dataset are mod- +eled using a graph (Hamilton et al. 2017; Ying et al. 2018; +Wang et al. 2019). In each layer of a GNN, each node’s rep- +resentation includes the features from itself as well as the +features from its neighboring nodes (messages sent from the +neighborhood). We believe the GNN framework is suitable +for handling the dependencies between the center cell and +the neighboring cells in cellular networks. We present more +details on GNN and recent works on homogeneous and het- +erogeneous graphs in the Sec. A.3. +Graph-Based Cellular Network Modeling +We construct +a graph Gt=(Vt, Et, Xt) for day t, where each node v∈Vt +represents one cell and is associated with a feature vector +xv +t ∈ Rd (v-th column of Xt ∈ Rd×|Vt|), including the sta- +tistical properties of node v measured on day t. The sta- +tistical properties could include several features such as the +antenna transmission power, physical resource block (PRB) +usage ratio, the amount of data traffic, and the transmission +bandwidth. These features serve as the node attributes. The +edge set Et encodes the interactions between cells based on + +the handover events between pairs of cells. Based on his- +torical data, if any pair of cells has an average number of +handover events above a threshold τ, we assume an edge +between those two cells. The neighboring set for node v is +denoted as N g +t (v)={u|u ∈ Vt, (u, v) ∈ Et}. +Due to the heterogeneous nature of the cellular network, +the relationships between the neighboring cells can be com- +plex. Concretely, there might be an implicit M latent rela- +tionship types R = {r1, r2, · · · , rM} that can be learned +to better handle the complex interactions in the cellular net- +works. Assuming each cell is represented by its states such +as PRB usage, traffic, etc. in the network graph, we aim at +dividing the neighboring cells into different groups, each of +which will provide some information that is shared between +the neighbors in that group and help to better capture the +rich information from neighboring cells in a distinguishable +way. Thus, inspired by the above motivation and a recent +work (Pei et al. 2020), we propose a novel GCN approach +called auto-grouping GCN (AG-GCN) to characterize this +special property of cellular networks when handling the in- +teractions between neighboring cells. In the following, we +elaborate upon the detailed steps to realize our design. +Neighborhood Augmentation +In cellular network mod- +eling, since the experiment budget is limited, the historical +data (state-action pairs) is not diverse enough to train our +data-driven model. Besides, since we construct the graph +based on the handover events, there are cells that have a very +limited number of neighboring cells. Thus, in our design, we +use a data augmentation technique in the form of neighbor +cell augmentation based on the similarity between cells in a +latent space, to enrich the features of each cell. +We define a feature transformation function f(·) : Rd → +Rl which maps the input node feature xv +t ∈ Rd to a la- +tent space yv +t = f(xv +t ) ∈ Rl. In order to capture the long- +range dependencies and similarity in the cellular network, +we design an additional neighborhood in the latent repre- +sentation space based on Euclidean distance. For each node +v ∈ Vt, we form the augmented neighborhood Nt(v) = +N g +t (v) ∪ N s +t (v), where N g +t (v) and N s +t (v) are the neigh- +bors of node v in the original graph and in the latent space, +respectively. The neighbors in the latent space are selected +based on their Euclidean distance to the center cell. The n +nearest nodes in the latent space are selected to create N s +t (v) +for cell v, where the number of nodes we select based on the +feature similarity is equal to the neighborhood size in the +original graph |N g +t (v)|=|N s +t (v)|=n. The neighbor augmen- +tation module in Fig. 1 illustrates this process. +Neighborhood Auto-Grouping +Once we have obtained +the augmented neighborhood set, the neighbors in the +augmented neighborhood Nt(v) are divided into different +groups by a geometric operator γ. Consider node v and +its neighbor node u ∈ Nt(v). The relation between them +on day t is denoted as γ(yv +t , yu +t ) : (Rl, Rl) → R = +{r1, r2, · · · , rM}. This grouping aims at combining neigh- +bors’ information in groups with similar inter-group fea- +tures. For each group ri ∈ R, the neighborhood feature set +on day t is defined as N ri +t (v) = {u|u ∈ Nt(v), γ(yv +t , yu +t ) = +ri}. The auto-grouping module in Fig. 1 demonstrates this +process. Note that yellow neighbors (marked with *) are the +projected counterparts of the neighbors in the graph space, +while the green neighbors (marked with +) correspond to the +augmented neighbors from the latent space. +Conditional Message Passing +Since the order within +each neighbor group should not impact the output of the +representation, we apply a permutation invariant function +π(·) on the neighbors within each group (mean pooling +across each feature dimension) and aggregate them sepa- +rately. Fig. 1 shows an example of the AG-GCN, where +l = 2 and |R| = 4 and the representation after the per- +mutation invariant function π(·) is shown by black dashed +arrows ended to nodes 1, 2, 3, and 4. Then for each group +ri ∈ R, a non-linear transform is further applied as: +zv,ri +t += σ +� +Wv,ri +t +· π +� +{xu +t |u ∈ N ri +t (v)} +�� +, +(3) +where Wv,ri +t +is a learnable weight matrix for the neighbors +in group ri of node v on day t, and σ(·) is a non-linear +function, e.g., tanh. Then for each node we aim to aggre- +gate the transformed neighborhood features from their dif- +ferent groups of neighbors in a distinguishable way. The +vectors zv,ri +t +for ri ∈ R are further aggregated as hv +t = +[zv,r1 +t +; · · · ; zv,rM +t +], where [ ; ] represents concatenation. +4.2 +Temporal Feature Modeling +Capturing the trend in the evolution of the states of each cell +within a day properly can benefit the prediction of the per- +formance metric for the following day. We propose to use +additional temporal features for each center cell to extract +the changing dynamic pattern of its states within each day to +further improve the reward model performance. We assume +the samples of the center cell v on day t can be divided into +K groups by their temporal order. For all the samples in each +group k, we take the average network state for each group of +samples and denote it as xv +t,k. We use an RNN layer to cap- +ture this temporal dependency of the features from different +groups by feeding all the network states as an input sequence +Pv +t = +� +xv +t,1 +T ; xv +t,2 +T ; · · · ; xv +t,K +T �T ∈ RK×d, to obtain +cv +t = RNN(Pv +t , δ) ∈ Rd′, +(4) +where δ and d′ are the set of trainable parameters and the +output dimension of the RNN layer, respectively. +4.3 +Overall Training Pipeline +The main purpose of the model is to estimate the real +network‘s response, and predict the throughput ratio and +throughput of the center cell for the next day based on the +observed network states in the current day. These perfor- +mance metrics are not only affected by the current day’s +states, but also highly correlated with the action we choose +to configure for the next day. Thus, we also consider the ac- +tions of the next day. Furthermore, the throughput ratio and +throughput of the next day are highly dependent on the pre- +vious performance metrics. Hence, we consider the current +throughput ratio, i.e., βv +t , in the prediction process. +To make the final prediction, the learned representation of +the neighborhood by the AG-GCN aggregation, the tempo- +ral features of the center cell, and the throughput ratio of the + +RNN +Predict +Throughout +or +Throughput +Ratio +Neighbor +Augmentation Module +Auto-Grouping +Module +Daily Average +Graph Space +Euclidean Space +Embedding function +Group 1 +Group 2 +Group 3 +Group 4 +1 +4 +3 +2 +* ++ +Neighbors from graph space +Neighbors from Euclidean space +TAG-GCN +Neighbor Augmentation Module +Auto-Grouping Module +Capturing Spatial Information +Capturing Temporal Information +* ++ ++ ++ ++ +* +Temporal Feature +Modeling +Neighbor +Information +Modeling +Concatenation +Concatenation +Concatenation +Figure 1: The flow of information from graph structure to final prediction, used to form the training pipeline of two models for +predicting the throughput ˆα and the throughput ratio ˆβ for Tin = {1, 2, · · · , t − 1}. In this demo example, the auto-grouping +module constructs M = 4 groups of neighbors, where l = 2. Empty groups are filled with the average of other groups. +current day, i.e. βv +t , are concatenated to form the state vec- +tor of cell v as sv +t = Ψ(Wv +t · +� +βv +t ; cv +t ; hv +t +� +), where Wv +t is +a learnable weight matrix for node v on day t, and Ψ(·) is +a non-linear function, e.g., tanh. Since the final representa- +tion should be sensitive to the chosen input action (of which +the decision making process will be elaborated in Sec. 5), +the throughput ratio and throughput of the next day for cell +v are formulated as the output of a non-linear transformation +Λ(·) function of state and action: +ˆβv +t+1 = Λ +� +Wv +β.([sv +t ; av +t ]) +� +, +(5) +ˆαv +t+1 = Λ +� +Wv +α.([sv +t ; av +t ]) +� +, +(6) +where Wv +β and Wv +α are trainable matrices of node v for +throughput ratio and throughput models, respectively. The +overall flow of data from the graph structure to the final pre- +diction is represented in Fig. 1. Note that we train two sepa- +rate models for predicting the throughput and the throughput +ratio simultaneously. +In order to properly use the A2-threshold for the predic- +tion, we use the change in this parameter compared to the +previous day as the action av +t = A2v +t+1 −A2v +t , where A2v +t+1 +and A2v +t are the A2-thresholds for cell v on day t + 1 and t, +respectively. The reason for this design choice has twofold. +First, the original action space of A2 is large, but the range +of the change of action can be smaller by controlling the +adjustment steps, making it easier for the model to learn +and conduct the decision making step. Besides, the delta ac- +tion directly reflects the change in the cell coverage/loads, so +they are more sensitive to the performance metrics. To form +the training objective, we consider data of T + 1 consecu- +tive days and form the pairs (t, t + 1), t ∈ {1, 2, · · · , T}, +to predict the throughput ratio and throughput of the center +cell in day T + 1, trained by minimizing the following loss +functions respectively: +1 +T +T +� +t=1 +1 +Nt +Nt +� +v=1 +(ˆβv +t+1 − βv +t+1)2 + λ1||Θ1||2, +(7) +1 +T +T +� +t=1 +1 +Nt +Nt +� +v=1 +(ˆαv +t+1 − αv +t+1)2 + λ2||Θ2||2, +(8) +where λ1 and λ2 are the hyperparameters chosen for reg- +ularization. Θ1 and Θ2 represent all the trainable parame- +ters in the models. The trained reward model is now able to +mimic the real network and predict both throughput ratio and +throughput of each center cell for the coming day and can be +used to check the impact of actions towards the performance +metrics we are considering. +5 +Action Configuration +As discussed in the earlier sections the main objectives to +consider in the action configuration process are load balanc- +ing, identified by the throughput ratio, and the cell through- +put. Hence, the best action for cell v on day t, i.e. av +t ∈ A, is +the one that optimizes the problem in (2). In general, when +dealing with a multi-objective problem, different objectives +are often conflicting, and we may not be able to optimize +them simultaneously. One common way to tackle this prob- +lem is to give different objectives weights and optimize the +weighted objective value. However, in our scenario, it is dif- +ficult to determine the weights and different clusters may +require cluster-specific weights. Here we break the problem +in (2) into two sub-problems, and solve them sequentially. +We first optimize the action with respect to the predicted +throughput ratio, i.e., ˆβv +t+1(av +t ) for cell v on day t, where +av +t ∈ A, and then optimize the throughput ˆαv +t+1(av +t ). +Specifically, the throughput ratio is optimized and we find +the set of best c values for av +t , denoted Av +c, such that +min +av +t ∈Av +c +− +���1 − ˆβv +t+1(av +t ) +�� ≥ max +av +t ∈A−Avc +− +���1 − ˆβv +t+1(av +t ) +��. (9) +Then, our goal is to achieve the maximum possible through- +put for cell v on day t and this is through +ˆav +t = arg max +av +t ∈Av +c +ˆαv +t+1(av +t ). +(10) +ˆav +t is then the final recommended action for cell v on day t. +This procedure for all the Nt cells of the network on day t is +presented in Algorithm 1. +6 +Experimental Results +The experiments are conducted on a large-scale cellular net- +work simulator constructed from real-world data which pre- +sented in Sec. B.1. We use principal component analysis + +γ(yv +t , yu +t ) +yv +t [0] > yu +t [0] +yv +t [0] ≤ yu +t [0] +yv +t [1] ≤ yu +t [1] +2 +1 +yv +t [1] > yu +t [1] +3 +4 +Table 1: The relationship operator γ +Algorithm 1: TAG-GCN for Action Configuration +Input: Pv +t and xu +t where, u ∈ Nt(v) ∀v ∈ [1, Nt] +Output: av +t for ∀v ∈ [1, Nt] +1: Let v = 1 and ∀j ∈ [1, Nt] set Aj +c = ∅. +2: while v ≤ Nt do +3: +Feed the TAG-GCN model with Pv +t and xu +t , for all +neighbor u ∈ Nt(v). +4: +Freeze all inputs of TAG-GCN except actions and +predict the performance metrics ˆαv +t+1(·) and ˆβv +t+1(·) +for the input actions. +5: +for |Av +c| ≤ ν do +6: +x = arg maxa∈{A−Avc} − +���1 − ˆβv +t+1(a) +�� +7: +Av +c = Av +c ∪ {x} +8: +end for +9: +av +t = arg maxa∈Avc ˆαv +t+1(a) +10: +v = v + 1 +11: end while +12: return av +t for ∀v ∈ [1, Nt] +(PCA) as the mapping function f(·), as defined in Sec. 4, for +obtaining the latent representation in the AG-GCN step. It +transforms the original feature into a 2-dimensional space to +perform the neighborhood augmentation and the neighbors +group assignment process. After this transformation, the re- +lationship operator γ for the auto-grouping assigns a group +to each subset of points in each quadrant of this two dimen- +sional space presented in Table 1. The permutation-invariant +function π applied on each group of neighbors is average in +our experiments. +6.1 +Datasets +To perform our experiments and evaluate the proposed +model, two datasets are used in this study (see Sec. B.2 for +more details): +Dataset-A: +A real metropolitan cellular network contain- +ing around 1500 cells sampled hourly and collected from +Oct. 17 to Oct. 31, 2019. Each data sample contains infor- +mation such as the cell ID, sample time, configuration of cell +parameters, and measurements of the cell states. +Dataset-B: +Also a real metropolitan cellular network. The +network contains 1459 cells, and the data is collected from +Sep. 1 to Sep. 29, 2021. Each data sample contains similar +information as above. +6.2 +Reward Model Accuracy Evaluation +Dataset Generation +In order to evaluate the prediction ac- +curacy of our model, we use a simulator to modify Dataset-A +with a random policy to diversify our network configuration. +On each day, the A2-threshold for each cell is randomly se- +lected around the default action -100 dBm within the range +[−105, −95]. This approach provides us a fix data buffer +with diverse action dataset to train all models and have a fair +2019-10-22 +2019-10-23 +2019-10-24 +2019-10-25 +2019-10-28 +2019-10-29 +Time +6 +7 +8 +9 +10 +11 +Throughput MSE +MLP +GCN +AG-GCN +TAG-GCN +(a) +2021-09-05 2021-09-06 2021-09-07 2021-09-08 2021-09-09 2021-09-10 2021-09-11 2021-09-12 +Time +6 +7 +8 +9 +10 +11 +Throughput MSE +MLP +GCN +AG-GCN +TAG-GCN +(b) +Figure 2: Achieved MSE of the throughput for test data of +(a) Dataset-A and (b) Dataset-B for different methods +comparison of their accuracy. For Dataset-B, there exists a +reasonable amount of the diversity in the handover parame- +ter configuration, thus we directly use the raw dataset from +the live network to perform the training and evaluation. +Training Process and Metrics +As samples generated +hourly, we aggregate them within each day as described in +Sec. 4. To evaluate the model accuracy in predicting cell +throughput and throughput ratio, we train the model with +the generated pairs {(1, 2), · · · , (t − 1, t)} for t = 9 and 12 +days for Dataset-A and B, respectively. At each day t > 2, +data pairs {(1, 2), · · · , (t−2, t−1)} are used as training and +validation sets, and (t − 1, t) serves as testing set for eval- +uation across different models. We report the mean square +error (MSE) to measure the reward model performance. +Comparison with Benchmark Models +It is important to +note that, the social impact of this work has not been ad- +dressed by ML approaches the same way as we propose. +Due to the uniqueness of our problem, existing solutions +for optimizing handover parameters are either not appropri- +ate to solve it or there is no apparent way to directly adapt +them to our problem. For instance, traditional handover op- +timization methods rely on designing fuzzy rules based on +different measures of QoS in the network (Vasu et al. 2012), +however, designing proper rules is complex and cannot han- +dle the change in highly dynamic systems well. Instead, we +hope to use a data-driven approach, among which the (deep) +RL method gains the most attention (Cao et al. 2018; Wang +et al. 2018). However, in this type of problems, the network +provider only allows limited exploration of the parameter +values (e.g., allows changing the A2 value once a day) to en- +sure the stability of the network. Thus, we only have limited +days for exploring the best action. RL models, nevertheless, +usually need longer episodes to optimize the accumulated +return. Despite this fact, we made some preliminary attempt, +presented in Sec. B.3, to adapt the RL paradigm from the lit- +erature into our problem which did not show any advantage +over our simpler design. +In order to show the effectiveness of our proposed re- +ward model, we compare it with alternative designs for the +prediction model. It should be mentioned that all of these +models are our contribution. In the Sec. B.4, we summarize +our benchmarks and the properties of each model. The first +model is MLP, where we only use the features of the cen- +ter cells and ignore the neighboring cells’ features. In GCN +model, we follow the typical GCN formulation (Hamilton +et al. 2017) and process the network as a homogeneous + +Model +Action +Configuration +Simulator +𝐱𝑡 +𝑣, {𝐱𝑡 +𝑢|𝑢 ∈ 𝒩𝑡(𝑣)} +𝐱𝑡+1 +𝑣 +, {𝐱𝑡+1 +𝑢 +|𝑢 ∈ 𝒩𝑡+1(𝑣)} +𝑎𝑡 +𝑣 + 𝛽𝑡+1 +𝑣 +, 𝛼𝑡+1 +𝑣 +Figure 3: The process of action recommendation by the +trained model and the simulator +graph where the neighbor information is aggregated jointly +without distinction. The AG-GCN model ignores the tem- +poral dependencies of the data which we consider in TAG- +GCN model. In Fig. 2, we compare the prediction accuracy +of these models for throughput in Dataset-A and B. We ob- +serve on average the best accuracy for the test set is achieved +by AG-GCN and TAG-GCN, with TAG-GCN performing +marginally better on the average rank metric across the eval- +uation days, indicating that our neighbor aggregation and +temporal features extraction have a considerable impact on +the reward modeling for cellular networks. The same results +also achieved for the throughput ratio model. The same test +is performed for throughput ratio and included in the sup- +plementary materials in Fig. 10. +6.3 +Overall Parameter Optimization +Performance +The Action Recommendation Process +In the following +experiments we use the presented models to recommend the +actions for Dataset-A. The actions in day 1, i.e., Oct. 17, +has been set to the default action which is -100 dBm. Unless +otherwise stated, the action for the second day, i.e., Oct. 18, +is initialized by a set of random actions around the default +action in the range of [−105, −95]. The model is trained it- +eratively on each day and used to recommend actions for the +next day. The process is depicted in Fig. 3, where states of +the cells on day t are given to the trained model to predict +performance metrics of the network on day t + 1 and the +action av +t is adjusted for each cell based on the predictions. +Finally, the network states and performance measurements +for day t + 1 are computed according to the new selected +action by the cellular network simulator and used for model +training and action recommendation in the following day. +Baseline Performance Bounds +In addition to the result +achieved by the actions recommended by the models, we use +three baseline performance bounds achieved by the default +A2-threshold, the expert rule, and the optimal actions of the +simulator. As stated before the default A2-threshold value +is −100 dBm and this is used as the lower bound in the fol- +lowing experiments. The optimal actions in the simulator are +obtained by brute-force search and it introduces the upper +performance bound. The expert rule-based method provided +by experienced network operator is a simple rule presented +in the Sec. B.6. The performance achieved by the expert rule +is better than the default action. We hope to use our proposed +learning based framework to further fill the gap with the re- +ward achieved by optimal actions. +Results +In the following experiments, we compare the per- +formance of the network under the actions recommended +2019-10-17 2019-10-18 2019-10-21 2019-10-22 2019-10-23 2019-10-24 2019-10-25 2019-10-28 2019-10-29 2019-10-30 2019-10-31 +Time +1.00 +0.75 +0.50 +0.25 +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +Reward +MLP +GCN +AG-GCN +TAG-GCN +Best Action +Experts Actions +Default Action +Figure 4: Performance comparison of different models along +with optimal action curve initialized with random actions +by different models in terms of the network throughput as +defined in Sec. 3. We plot the trajectory of the throughput +difference to the default A2-threshold baseline (dash black +line) in Fig. 4. We repeat all the experiments 20 times for +all models, where each run uses the same set of random ac- +tions on the first action exploration day (Oct. 18) for all the +models. We also show the performance achieved through the +expert rule action recommendation, default action, and the +optimal actions of the simulator (random actions are also +used on Oct. 18 for the curve of the optimal action). The +quantitative results for Fig. 4 are summarized in Table 6 +in the supplementary materials. TAG-GCN can achieve bet- +ter average throughput in the final days which indicates the +importance of our auto-grouping GCN design to tailor the +heterogeneous property of the cellular networks. Besides, as +expected, all the learning-based models can beat the expert +rule algorithm which is highly dependent on human experi- +ence and is unable to recover from the performance degra- +dation due to bad random initialization on the first day. Fur- +thermore, to show the effectiveness of our proposed model +in terms of load balancing and enhancing cluster through- +put ratio, we illustrate the progress of this ratio achieved by +TAG-GCN for some selected severely unbalanced cells in +Fig.5. As it can be seen, the throughput ratio of the clusters +form a trajectory that converges to 1 which is the ideal target +value. More ablation studies are presented in Sec. B.7. +Based on the above experiments, our proposed ML-based +solutions can improve the network performance and opti- +mize the handover process compared to the conventional +methods such as using the default action or human experts +rule-based methods. Moreover, the automation of the param- +eter optimization process achieved by our ML-based solu- +tions reduces the domain expert’s intervention and, hence, +the management cost of network operators and improves the +maintenance efficiency of cellular networks. Consequently, +the proposed solutions open up the possibilities to provide +reliable and high-quality network access even to geograph- +ical areas that are currently underserved by the cellular net- +work. This can bring exciting new opportunities to these +regions such as remote education, remote working, health +monitoring, video streaming, etc. +7 +Conclusion +In this paper, we study the handover parameter configura- +tion problem in cellular networks. We propose a reward pre- +diction model to accurately imitate the cellular network and +estimate the performance metrics. Our proposed model, i.e., + +2019-10-17 2019-10-18 2019-10-21 2019-10-22 2019-10-23 2019-10-24 2019-10-25 2019-10-28 2019-10-29 2019-10-30 2019-10-31 +Time +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8 +Throughput Ratio +CELL_CELLNAME +cell132 +cell2575 +cell1304 +cell3141 +cell2955 +cell2790 +cell2250 +cell3872 +cell1015 +cell3140 +Figure 5: Trend of the throughput ratio for sample clusters +TAG-GCN, investigates the impact of the adjacent cells and +differentiate their impact on the center cell of each clus- +ter. We also consider the network changing dynamics in our +model to learn the temporal dependencies in the data. Based +on the reward model, a novel multi-objective parameter con- +figuration strategy is proposed to perform the optimization +for each cluster and balance the performance metrics in each +neighborhood. The conducted simulations shows the superi- +ority of TAG-GCN which has a huge potential social impact +by improving the cellular network parameters and providing +massive connectivity and high coverage with a balanced traf- +fic across the network. Hence, this can help the widespread +adaptation of new technologies to benefit many sectors such +as health and education. +References +3GPP TS36.331. 2016. Evolved Universal Terrestrial Radio +Access (E-UTRA);Radio Resource Control (RRC); Protocol +specification. +Agiwal, M.; et al. 2016. Next generation 5G wireless net- +works: A comprehensive survey. +IEEE Communications +Surveys & Tutorials, 18(3): 1617–1655. +Attaran, M. 2021. The impact of 5G on the evolution of +intelligent automation and industry digitization. Journal of +Ambient Intelligence and Humanized Computing, 1–17. +Bhat, P.; et al. 2012. LTE-advanced: an operator perspective. +IEEE Communications Magazine, 50(2): 104–114. +Cao, G.; et al. 2018. AIF:An Artificial Intelligence Frame- +work for Smart Wireless Network Management. IEEE Com- +munications Letters, 22(2): 400–403. +Chuai, J.; et al. 2019. A Collaborative Learning Based Ap- +proach for Parameter Configuration of Cellular Networks. In +IEEE Int. Conf. on Computer Communications. +Dahlman, E.; et al. 2013. 4G: LTE/LTE-advanced for mobile +broadband. Academic press. +Fan, W.; et al. 2019. Graph Neural Networks for Social Rec- +ommendation. In Proc. Int. Conf. World Wide Web. +Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and +Dahl, G. E. 2017. +Neural message passing for quantum +chemistry. In International conference on machine learn- +ing. +Gohar, A.; and Nencioni, G. 2021. The role of 5G technolo- +gies in a smart city: The case for intelligent transportation +system. Sustainability, 13(9): 5188. +Goodfellow, I.; et al. 2016. Deep learning. MIT press. +Hamilton, W. L.; et al. 2017. +Inductive Representation +Learning on Large Graphs. In Proc. Adv. Neural Inf. Proc. +Systems. +Imran, A.; et al. 2014. Challenges in 5G: how to empower +SON with big data for enabling 5G. IEEE Network, 28(6): +27–33. +Jiang, C.; et al. 2016. Machine learning paradigms for next- +generation wireless networks. IEEE Wireless Communica- +tions, 24(2): 98–105. +Jiang, N.; et al. 2020. +A decoupled learning strategy for +massive access optimization in cellular iot networks. IEEE +Journal on Selected Areas in Communications, 39(3): 668– +685. +Kipf, T. N.; et al. 2017. Semi-Supervised Classification with +Graph Convolutional Networks. In Proc. Int. Conf. Learning +Representations. +Koushik, A.; et al. 2017. Intelligent spectrum management +based on transfer actor-critic learning for rateless transmis- +sions in cognitive radio networks. +IEEE Transactions on +Mobile Computing, 17(5): 1204–1215. +Li, R.; et al. 2014. +TACT: A transfer actor-critic learn- +ing framework for energy saving in cellular radio access +networks. IEEE transactions on wireless communications, +13(4): 2000–2011. +Mu, P.; Barco, R.; Fortes, S.; et al. 2014. Conflict resolution +between load balancing and handover optimization in LTE +networks. +IEEE Communications Letters, 18(10): 1795– +1798. +Pei, H.; et al. 2020. Geom-GCN: Geometric Graph Convo- +lutional Networks. In International Conference on Learning +Representations (ICLR). +Rao, S. K.; and Prasad, R. 2018. Impact of 5G technologies +on industry 4.0. Wireless personal communications, 100(1): +145–159. +Riihijarvi, J.; et al. 2018. Machine learning for performance +prediction in mobile cellular networks. IEEE Computational +Intelligence Magazine, 13(1): 51–60. +Schlichtkrull, M.; et al. 2018. Modeling relational data with +graph convolutional networks. In European semantic web +conference, 593–607. Springer. +Siriwardhana, Y.; G¨ur, G.; Ylianttila, M.; and Liyanage, M. +2021. The role of 5G for digital healthcare against COVID- +19 pandemic: Opportunities and challenges. ICT Express, +7(2): 244–252. +statista. +2022. +Number +of +smartphone +users +worldwide +from +2016 +to +2027. +In +https://www.statista.com/statistics/330695/number-of- +smartphone-users-worldwide/. +Tabrizi, H.; et al. 2012. Dynamic handoff decision in het- +erogeneous wireless systems: Q-learning approach. In 2012 +IEEE International Conference on Communications (ICC), +3217–3222. +Tekinay, S.; et al. 1991. Handover and channel assignment in +mobile cellular networks. IEEE Communications magazine, +29(11): 42–46. + +Vasu, K.; et al. 2012. QoS-aware fuzzy rule-based vertical +handoff decision algorithm incorporating a new evaluation +model for wireless heterogeneous networks. EURASIP Jour. +on Wireless Comm. and Networking, 2012. +Wang, X.; et al. 2019. Neural Graph Collaborative Filter- +ing. In Proc. ACM Int. Conf. Research and Development in +Information Retrieval. +Wang, Z.; et al. 2018. Handover Control in Wireless Systems +via Asynchronous Multiuser Deep Reinforcement Learning. +IEEE Internet of Things Journal, 5(6): 4296–4307. +Wei, Y.; et al. 2018. Joint optimization of caching, comput- +ing, and radio resources for fog-enabled IoT using natural +actor–critic deep reinforcement learning. IEEE Internet of +Things Journal, 6(2): 2061–2073. +Weisenborn, G. 2018. United Nations Sustainable Develop- +ment Goals. +World Economic Forum. 2020. The Impact of 5G: Creating +New Value across Industries and Society. +Ye, Q.; et al. 2013. User Association for Load Balancing in +Heterogeneous Cellular Networks. IEEE Trans. on Wireless +Communications, 12(6). +Ying, R.; et al. 2018. +Graph Convolutional Neural Net- +works for Web-Scale Recommender Systems. In Proc. ACM +SIGKDD Int. Conf. Knowledge Discovery and Data Mining. +Yu, C.; et al. 2017. +Modeling User Activity Patterns for +Next-Place Prediction. IEEE Systems Journal, 11(2): 1060– +1071. +Zhang, C.; et al. 2019. Heterogeneous graph neural network. +In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and +Data Mining. +Zhang, C.; et al. 2020. +An AI-Based Optimization of +Handover Strategy in Non-Terrestrial Networks. +In 2020 +ITU Kaleidoscope: Industry-Driven Digital Transformation +(ITU K), 1–6. +Zhao, S.; et al. 2020. Cellular Network Traffic Prediction In- +corporating Handover: A Graph Convolutional Approach. In +2020 17th Annual IEEE International Conference on Sens- +ing, Communication, and Networking (SECON), 1–9. +Supplementary Materials +A +Extended Background and Related Work +A.1 +Handover in Cellular Networks +A cellular network is formed by many cells distributed over +land areas, each served by at least one fixed-location base +station (BS) providing wireless links with a wide geographic +area coverage to support many users. A cluster in a cellular +network (consisting of a cell and its neighboring cells) is +shown in Fig. 6 where, user u is crossing one cell’s cov- +erage area and monitors the received power from cell n to +check the handover criteria. The cell BS is responsible for +monitoring the strength of the signals received by served +users, which can degrade when a user travels from one cell +to another. The BS should trigger a handover process at the +proper moment to avoid any service interruption and trans- +fer the user to another cell BS that is receiving the strongest +signals (Bhat et al. 2012; Tekinay et al. 1991). +There are multiple parameters that impact handover in a +network. These parameters generally are grouped in three +categories. RSRP and RSRQ parameters are indicators of the +signal strength and quality of the serving station, respec- +tively, Hysteresis parameters act as a tolerance margin to +avoid the Ping Pong (PP) effect, and Time To Trigger (TTT) +parameters are set such that short term violations of han- +dover conditions are ignored to avoid the PP effect. Also, +different measures such as handover failure (HOF) rate, han- +dover frequency, Ping-Pong (PP) rate, network throughput, +and load balancing have been used in the literature to assess +the effectiveness of the proposed algorithms for optimizing +handover parameters. When performing optimization in a +real network, some of these measures may conflict. There- +fore, it is crucial to consider a combination of these quanti- +ties to find a solution that satisfies different requirements of +the network. +A.2 +Related Work +Different methods have been used in the literature for solv- +ing the problem of optimization of handover parameters in +a wireless network. Fuzzy system handover algorithms, for +example, have been used in (Vasu et al. 2012). Such tech- +niques, however, are not scalable despite being accurate and +stable. Deep reinforcement learning (DRL) is another tech- +nique that has been used to solve the handover optimization +problem. In (Cao et al. 2018), the authors propose a frame- +work based on DRL where actions are flexible and can be +chosen by the user, and the objective of the optimization +is the throughput and the handover count. In (Wang et al. +2018), the authors propose a framework in which the UEs +first are clustered based on their usage pattern and then the +handover process is optimized in each cluster by a DRL +method. Another newly introduced approach to the problem +of cellular network parameter optimization is the Contex- +tual Bandit model proposed in (Chuai et al. 2019)in which +the throughput of the cells is used as a performance metric +for optimizing some of the cell parameters. +The above mentioned methods, despite being effective, do +not exploit the information from the neighboring cells which + += 2 objects as higher-order tensors. The parity in- +dex, on the other hand, indicates how the tensor’s sign +changes under inversion of the coordinate system. In our +implementation of the Allegro model, these tensorial ob- +jects are handled by the e3nn python package [47] which +provides high-level classes that represent them and easy- +to-use functions to manipulate and combine them while +preserving symmetries and global equivariance. +In the following paragraphs, we describe how initial +two-body features are computed, how features from +neighbors are combined through Nlayers layers of interac- +tions to enrich them with many-body information and +how they are filtered at each layer to control the size of +the embedding. +Initial two-body features +The Allegro model starts by decomposing each inter- +atomic vector {⃗Rij}j∈N (i) into fingerprints that are more +suitably processed by the network. The interatomic dis- +tance Rij is projected onto a radial basis B(Rij) = +[B1(Rij), . . . , BNbasis(Rij)] (we use the Bessel basis func- +tion with a polynomial envelope [48] that we normalize +as in the original paper) and we compute the two-body +scalar embedding as: +x +2B +ij = MLP2B +�1(Zi) || 1(Zj) || B(Rij) +� +fc(Rij) +(2) +where || denotes concatenation, MLP2B is a multilayer +perceptron (i.e. a fully connected scalar neural network), +fc(Rij) is a cutoff function going smoothly to zero as Rij +approaches rc (we use the same polynomial envelope as +for the radial basis) and 1(Zi) (resp. 1(Zj)) is a vector +representing the chemical species of the source atom i +(resp. destination atom j). In the original paper 1(Zi) +is a direct one-hot encoding of the atomic number Zi, +meaning that one has to fix in advance the number of +species the model will be able to process (the one-hot en- +coding then defines a simple orthonormal basis which has +the same dimensions as the chosen number of species). In +section II A 2, we propose to modify this one-hot encod- +ing by a positional encoding of coordinates in the periodic +table which allows for more flexibility in the treatment +of atomic species. +We obtain the two-body equivariant features by pro- +jecting the unit vector ˆRij = ⃗Rij/Rij onto a basis of +real spherical harmonics Y lp +ij . We then mix them with +radial information with a linear embedding on Nchannels +channels: +V nlp,2B +ij += +� +MLP +2B +embed(x +2B +ij ) +�nlp Y lp +ij +(3) +Interaction with the local environment +The two-body embedding +� +x2B +ij , V nlp,2B +ij +� +is then pro- +cessed through multiple "interaction" layers that allow +to combine information with other atoms in the vicinity +of atom i. +Each interaction layer starts by building a +global equivariant neighborhood embedding for atom i +from the current scalar embeddings xik and the spherical +harmonics projections Y lp +ik : +Γnlp,(L) +i += +� +k∈N (i) +� +MLP (L) +embed(x(L−1) +ik +) +�nlp +Y lp +ik +(4) +with L = 1, . . . , Nlayers the layer index and x(0) +ik = x2B +ik and +V nlp,(0) +ij += V nlp,2B +ij +. The interaction is then performed via +a tensor product of Γnlp,(L) +i +with each equivariant em- +bedding V nlp,(L−1) +ij +(the tensor product is done indepen- +dently for each channel n). The resulting "latent space" +Lnmlp,(L) +ij += +� +Γnl1p1,(L) +i +⊗ V nl2p2,(L) +ij +�nmlp +(5) +contains all possible combinations of rotational and +parity indices that are allowed by symmetry (i.e. such +that |l1 − l2| ≤ l ≤ |l1 + l2| and p = p1p2). +Note +that since multiple combinations of (l1, p1), (l2, p2) may +produce outputs of indices (l, p), we need to add a +multiplicity index m that distinguishes these paths. +Feature filtering and channel mixing +Finally, the latent space is filtered to obtain the new pair- +wise embedding. The scalar embedding is combined with +the scalar part of the latent space (with every channels +and all multiplicities concatenated) to obtain: +x(L) +ij += α x(L−1) +ij ++ +� +1 − α2 fc(Rij) +× MLP (L) +latent +� +x(L−1) +ij +|| +n,m +Lnm01,(L) +ij +� +(6) +with 0 ≤ α < 1 a mixing coefficient that allows to easily +propagate scalar information from a layer to the next. In +our implementation, the value of α can be set as a hyper- +parameter (for example to the value α = 2/ +√ +5 proposed + +4 +in the original Allegro paper) or can be optimized inde- +pendently for each layer during the training procedure. +The new equivariant features are obtained by linearly +combining the elements of the latent space with same +indices (l, p) from all channels and multiplicities: +V nlp,(L) +ij += +� +n′,m +wnlp,(L) +n′,m +Ln′mlp,(L) +ij +(7) +which results in features with the same number of ele- +ments as the previous layer. +The weights wnlp,(L) +n′,m +are +optimized in the training procedure. +The +output +features +of +the +last +layer +� +x(Nlayers) +ij +, V nlp,(Nlayers) +ij +� +compose +the +many-body +embedding of our model which is passed to the output +module to predict the different atomic or pairwise +properties that the model is trained on. +2. +Positional encoding of chemical species +While a one-hot encoding allows to represent chemi- +cal species in a simple manner, it fixes from the start +the number of different species that the model can treat. +Thus, if more data becomes available for new species, one +would have to retrain the model from scratch in order to +accommodate for the new data. +Furthermore, in such +encoding, all species are treated equally and no similar- +ities between species (for example closeness in the peri- +odic table) are provided: the network must learn these +correlations purely from data. This encoding is thus suit- +able when targeting a specific system but might not be +the best choice when building a more general chemical +model. +In our implementation, the default encoding is a po- +sitional encoding (as defined in ref. [49]) that encodes +coordinates in the periodic table using sine and cosine +functions of different frequencies. For example, the col- +umn index c is encoded as a vector ec of dimension dcol +as: +∀k ∈ 0, . . . , dcol, (ec)k = +� +� +� +� +� +sin +� +c/γ2i/dcol +col +� +if k=2i +cos +� +c/γ2i/dcol +col +� +if k=2i+1 +(8) +and similarly for the row index with dimension drow and +frequency parameter γrow. In our implementation, the di- +mensions and frequency parameters are fixed at dcol = 10, +drow = 5, γcol = 1000 and γrow = 100. +These could +be also be treated as hyperparameters or even learned +during training. +The row and column encodings are +then concatenated to obtain the full encoding vector +1(Zi) = +� +erow(Zi) || ecol(Zi) +� +Figure 1 shows a heatmap +of the positional encoding of the species H,C,N,O and S +(from top to bottom). We see that the first five columns +are the same for all the heavy atoms as they represent +the row encoding (the second row of the periodic table +in this case) while they are different from the first line +FIG. 1. Heatmap of the positional encodings of the chemi- +cal species H,C,N,O,F (from top to bottom). The first five +columns represent the encoding of the row index in the peri- +odic table, while the last ten columns represent the encoding +of the column index. +corresponding to the Hydrogen. We also see that the last +ten columns are different for all the species shown here +as they are all on different columns of the periodic table. +The motivation behind using this positional encoding is +that we hypothesized that having similar encodings for +species sharing a row or a column might help with gen- +eralization and allow to transfer learned knowledge from +a species to another, thus requiring less training data. +Furthermore, as stated in ref. [49] the encoding for index +c+k can be represented as a linear function of the encod- +ing for index c, which might further help with inferring +similarities. +Additional features such as the ionization +state could be encoded in the same manner (though we +restrict ourselves to neutral atoms in this work, thus only +requiring the knowledge of chemical species). +B. +Output module +After computing the embedding from the Allegro +model, we use it as input for independent MLPs for each +target property. In the following, we will simply denote +� +xij, V nlp +ij +� +the output from the last Allegro layer (thus +dropping the (L) layer index). The current implementa- +tion also allows some modularity in the composition of +inputs and on the operations done on the outputs. For +example, the input can exploit either the scalar embed- +ding to obtain invariant properties via a standard MLP +as +oij = MLPout[xij] +(9) +, or both the scalar and tensorial embeddings via a linear +projection of V nlp +ij +Omlp +ij += +� +n +[MLPout(xij]mlp +n +V nlp +ij +(10) +. +For atom-wise properties, the pairwise outputs are +simply summed up on the central atom. For properties +that should sum up to zero (for example partial atomic +charges), the outputs oij and oji can be antisymmetrized +(which for partial charges is equivalent to charge ex- +change between neighbouring atom pairs). Futhermore, + +0 +1 +2 +3 +45 +in order to impose constraints on invariant outputs, a fi- +nal activation function can optionally be applied. This +is for example useful when the output targets a positive +quantity (for instance an atomic volume) for which we +can apply a softplus function, a probability for which +we may apply a sigmoid function or a discrete proba- +bility distribution (in the case of multidimensional oij) +for which a softmax function can be used. Finally, the +output is optionally shifted and scaled. +Further modifications can optionally be applied. For +instance, the input can be filtered according to an addi- +tional shorter-range cutoff for example one distinguish- +ing between bonded and non-bonded pairs. Finally, the +two-body embedding x2B +ij can be used in place of or con- +catenated to (as it is done in the FENNIX-OP1 model) +the final embedding to use as input. +This allows the +output MLP to easily access simple pairwise informa- +tion and should let the Allegro embedding specialize in +finer many-body correlations. +This compositional ap- +proach allows for a great flexibility in the model’s output, +which is especially useful when experimenting with a ML +parametrization of physical models. +The output module for the FENNIX-OP1 model is +composed of three targets: a local energy contribution +V NN +i += � +j∈N (i) V NN +ij +(which is a simple scalar out- +put), an atomic partial charge qNN +i += � +j∈N (i) ∆qij − +∆qji (through antisymmetrized charge exchange) and an +atomic volume vNN +i +(constrained to be positive). +C. +Physics module and energy functional form +Finally, the physics module uses the results from the +output module and feed them into physically-motivated +models to enrich the output. +In the case of FENNIX-OP1, the force field module is +composed of an electrostatic energy term V +elec,CP +ij +, and a +pairwise dispersion term V +disp +ij +. The functional form of +FENNIX-OP1 is then given by: +VOP1 = +� +i +V +NN +i ++ +� +i,j