jackkuo commited on
Commit
cc6597a
·
verified ·
1 Parent(s): 98ad057

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. 0tAzT4oBgHgl3EQfRPvU/content/tmp_files/2301.01214v1.pdf.txt +2052 -0
  3. 0tAzT4oBgHgl3EQfRPvU/content/tmp_files/load_file.txt +0 -0
  4. 1NAzT4oBgHgl3EQfDfoM/content/tmp_files/2301.00975v1.pdf.txt +1995 -0
  5. 1NAzT4oBgHgl3EQfDfoM/content/tmp_files/load_file.txt +0 -0
  6. 2NE0T4oBgHgl3EQfugGB/content/tmp_files/2301.02606v1.pdf.txt +0 -0
  7. 2NE0T4oBgHgl3EQfugGB/content/tmp_files/load_file.txt +0 -0
  8. 59AyT4oBgHgl3EQfpfhu/content/tmp_files/2301.00526v1.pdf.txt +1227 -0
  9. 59AyT4oBgHgl3EQfpfhu/content/tmp_files/load_file.txt +0 -0
  10. 69FAT4oBgHgl3EQfnx3V/content/tmp_files/2301.08631v1.pdf.txt +830 -0
  11. 69FAT4oBgHgl3EQfnx3V/content/tmp_files/load_file.txt +491 -0
  12. 6NAzT4oBgHgl3EQff_yv/content/tmp_files/2301.01462v1.pdf.txt +1754 -0
  13. 6NAzT4oBgHgl3EQff_yv/content/tmp_files/load_file.txt +0 -0
  14. 7tFLT4oBgHgl3EQfAi4b/content/tmp_files/2301.11966v1.pdf.txt +929 -0
  15. 7tFLT4oBgHgl3EQfAi4b/content/tmp_files/load_file.txt +0 -0
  16. A9E2T4oBgHgl3EQf8Qn_/content/tmp_files/2301.04218v1.pdf.txt +1993 -0
  17. A9E2T4oBgHgl3EQf8Qn_/content/tmp_files/load_file.txt +0 -0
  18. AtAyT4oBgHgl3EQfRvdA/content/2301.00071v1.pdf +3 -0
  19. BtE1T4oBgHgl3EQf9gZu/content/tmp_files/2301.03557v1.pdf.txt +1964 -0
  20. BtE1T4oBgHgl3EQf9gZu/content/tmp_files/load_file.txt +0 -0
  21. CNAyT4oBgHgl3EQfePiT/content/tmp_files/2301.00318v1.pdf.txt +456 -0
  22. CNAyT4oBgHgl3EQfePiT/content/tmp_files/load_file.txt +381 -0
  23. EdFKT4oBgHgl3EQfZy6F/content/tmp_files/2301.11805v1.pdf.txt +587 -0
  24. EdFKT4oBgHgl3EQfZy6F/content/tmp_files/load_file.txt +0 -0
  25. JtAzT4oBgHgl3EQfVPz7/content/tmp_files/load_file.txt +0 -0
  26. M9FAT4oBgHgl3EQfxh78/content/tmp_files/2301.08688v1.pdf.txt +663 -0
  27. M9FAT4oBgHgl3EQfxh78/content/tmp_files/load_file.txt +448 -0
  28. MtFQT4oBgHgl3EQfVjao/content/tmp_files/2301.13301v1.pdf.txt +2388 -0
  29. MtFQT4oBgHgl3EQfVjao/content/tmp_files/load_file.txt +0 -0
  30. NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf +0 -0
  31. NtFPT4oBgHgl3EQfmDWp/content/tmp_files/2301.13124v1.pdf.txt +173 -0
  32. NtFPT4oBgHgl3EQfmDWp/content/tmp_files/load_file.txt +171 -0
  33. PdFIT4oBgHgl3EQfeytv/content/tmp_files/2301.11276v1.pdf.txt +634 -0
  34. PdFIT4oBgHgl3EQfeytv/content/tmp_files/load_file.txt +0 -0
  35. Q9AyT4oBgHgl3EQf7vq-/content/tmp_files/2301.00845v1.pdf.txt +1667 -0
  36. Q9AyT4oBgHgl3EQf7vq-/content/tmp_files/load_file.txt +0 -0
  37. QtFRT4oBgHgl3EQf7Tgp/content/tmp_files/2301.13679v1.pdf.txt +1313 -0
  38. QtFRT4oBgHgl3EQf7Tgp/content/tmp_files/load_file.txt +0 -0
  39. TdE0T4oBgHgl3EQfUwDn/content/tmp_files/2301.02256v1.pdf.txt +0 -0
  40. TdE0T4oBgHgl3EQfUwDn/content/tmp_files/load_file.txt +0 -0
  41. VtE1T4oBgHgl3EQfIwPB/content/tmp_files/2301.02944v1.pdf.txt +1226 -0
  42. XNFOT4oBgHgl3EQf8TTm/content/tmp_files/2301.12966v1.pdf.txt +1257 -0
  43. XNFOT4oBgHgl3EQf8TTm/content/tmp_files/load_file.txt +0 -0
  44. YdE3T4oBgHgl3EQfcQoq/content/tmp_files/2301.04523v1.pdf.txt +962 -0
  45. YdE3T4oBgHgl3EQfcQoq/content/tmp_files/load_file.txt +0 -0
  46. _NE0T4oBgHgl3EQfxQFJ/content/tmp_files/2301.02643v1.pdf.txt +717 -0
  47. _NE0T4oBgHgl3EQfxQFJ/content/tmp_files/load_file.txt +376 -0
  48. _NE1T4oBgHgl3EQf8gXW/content/tmp_files/2301.03547v1.pdf.txt +466 -0
  49. _dFIT4oBgHgl3EQf9yvA/content/tmp_files/2301.11408v1.pdf.txt +1425 -0
  50. _dFIT4oBgHgl3EQf9yvA/content/tmp_files/load_file.txt +0 -0
.gitattributes CHANGED
@@ -209,3 +209,4 @@ h9E0T4oBgHgl3EQfpgF0/content/2301.02540v1.pdf filter=lfs diff=lfs merge=lfs -tex
209
  c9E3T4oBgHgl3EQfeQoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
210
  w9FJT4oBgHgl3EQfgiwX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
211
  X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
209
  c9E3T4oBgHgl3EQfeQoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
210
  w9FJT4oBgHgl3EQfgiwX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
211
  X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
212
+ AtAyT4oBgHgl3EQfRvdA/content/2301.00071v1.pdf filter=lfs diff=lfs merge=lfs -text
0tAzT4oBgHgl3EQfRPvU/content/tmp_files/2301.01214v1.pdf.txt ADDED
@@ -0,0 +1,2052 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Comparison of tree-based ensemble algorithms for merging satellite
2
+ and earth-observed precipitation data at the daily time scale
3
+ Georgia Papacharalampous1, Hristos Tyralis2, Anastasios Doulamis3, Nikolaos Doulamis4
4
+ 1 Department of Topography, School of Rural, Surveying and Geoinformatics Engineering,
5
+ National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
6
+ (papacharalampous.georgia@gmail.com, https://orcid.org/0000-0001-5446-954X)
7
+ 2 Department of Topography, School of Rural, Surveying and Geoinformatics Engineering,
8
+ National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
9
+ (montchrister@gmail.com,
10
+ hristos@itia.ntua.gr,
11
+ https://orcid.org/0000-0002-8932-
12
+ 4997)
13
+ 3 Department of Topography, School of Rural, Surveying and Geoinformatics Engineering,
14
+ National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
15
+ (adoulam@cs.ntua.gr, https://orcid.org/0000-0002-0612-5889)
16
+ 4 Department of Topography, School of Rural, Surveying and Geoinformatics Engineering,
17
+ National Technical University of Athens, Iroon Polytechniou 5, 157 80 Zografou, Greece
18
+ (ndoulam@cs.ntua.gr, https://orcid.org/0000-0002-4064-8990)
19
+ Abstract: Merging satellite products and ground-based measurements is often required
20
+ for obtaining precipitation datasets that simultaneously cover large regions with high
21
+ density and are more accurate than pure satellite precipitation products. Machine and
22
+ statistical learning regression algorithms are regularly utilized in this endeavour. At the
23
+ same time, tree-based ensemble algorithms for regression are adopted in various fields
24
+ for solving algorithmic problems with high accuracy and low computational cost. The
25
+ latter can constitute a crucial factor for selecting algorithms for satellite precipitation
26
+ product correction at the daily and finer time scales, where the size of the datasets is
27
+ particularly large. Still, information on which tree-based ensemble algorithm to select in
28
+ such a case for the contiguous United States (US) is missing from the literature. In this
29
+ work, we conduct an extensive comparison between three tree-based ensemble
30
+ algorithms, specifically random forests, gradient boosting machines (gbm) and extreme
31
+ gradient boosting (XGBoost), in the context of interest. We use daily data from the
32
+ PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial
33
+ Neural Networks) and the IMERG (Integrated Multi-satellitE Retrievals for GPM) gridded
34
+
35
+ 2
36
+
37
+ datasets. We also use earth-observed precipitation data from the Global Historical
38
+ Climatology Network daily (GHCNd) database. The experiments refer to the entire
39
+ contiguous US and additionally include the application of the linear regression algorithm
40
+ for benchmarking purposes. The results suggest that XGBoost is the best-performing tree-
41
+ based ensemble algorithm among those compared. They also suggest that IMERG is more
42
+ useful than PERSIANN in the context investigated.
43
+ Keywords: contiguous US; gradient boosting machines; IMERG; machine learning;
44
+ PERSIANN; random forests; remote sensing; satellite precipitation correction; spatial
45
+ interpolation; XGBoost
46
+ 1.
47
+ Introduction
48
+ Machine and statistical learning algorithms (e.g., those documented in Hastie et al. 2009;
49
+ James et al. 2013; Efron and Hastie 2016) are increasingly adopted for solving a variety of
50
+ practical problems in hydrology (Dogulu et al. 2015; Xu et al. 2018; Quilty et al. 2019;
51
+ Curceac et al. 2020; Jehn et al. 2020; Quilty and Adamowski 2020; Rahman et al. 2020;
52
+ Althoff et al. 2021; Fischer and Schumann 2021; Papacharalampous and Tyralis 2022b)
53
+ and beyond (Ahmed et al. 2010; García-Gutiérrez et al. 2015; Goetz et al. 2015; Asri et al.
54
+ 2016; Idowu et al. 2016; Bahl et al. 2018; Feng et al. 2020; Khanam and Foo 2021; Rustam
55
+ et al. 2021; Bamisile et al. 2022). Among the entire pool of such algorithms, the tree-based
56
+ ensemble ones (i.e., those combining decision trees under properly designed ensemble
57
+ learning strategies; Sagi and Rokach 2018) are of special interest for many practical
58
+ problems, as they can offer high predictive performance with low computational cost,
59
+ among their remaining benefits (Tyralis et al. 2019; Tyralis and Papacharalampous 2021).
60
+ Still, the known theoretical properties of the various tree-based ensemble algorithms
61
+ (including random forests, gradient boosting machines − gbm and extreme gradient
62
+ boosting – XGBoost; Breiman 2001, Friedman 2001, Chen and Guestrin 2016) cannot
63
+ support the selection of the most appropriate one among them for each practical problem.
64
+ Instead, such a selection could rely on attentively designed empirical comparisons. Thus,
65
+ such comparisons of tree-based ensemble algorithms are conducted with increasing
66
+ frequency in various scientific fields (Adler et al. 2011; Ahmad et al. 2018; Fan et al. 2018;
67
+ Besler et al. 2019; Ahmad and Zhang 2020; Ampomah et al. 2020; Liu et al. 2020; Rahaman
68
+ et al. 2021; Ziane et al. 2021; Khorrami et al. 2022; Mittendorf e al. 2022; Park and Kim
69
+ 2022; Wei et al. 2022; Yao et al. 2022).
70
+
71
+ 3
72
+
73
+ Tree-based ensemble algorithms are regularly applied and compared to other machine
74
+ and statistical learning algorithms for the task of merging satellite products and ground-
75
+ based measurements. This task is the general focus of this work, together with the general
76
+ concept of tree-based ensemble algorithms, and is commonly executed in the literature in
77
+ the direction of obtaining precipitation datasets that cover large geographical regions
78
+ with high density and, simultaneously, are more accurate than pure satellite precipitation
79
+ products. The importance of this same task could be perceived through the inspection of
80
+ the major research topics appearing in the hydrological literature (see, e.g., those
81
+ discussed in Montanari et al. 2013, Blöschl et al. 2019). Relevant examples of applications
82
+ and comparisons are available in He et al. (2016), Meyer et al. (2016), Baez-Villanueva et
83
+ al. (2020), Chen et al. 2021, Nguyen et al. (2021), Shen and Yong (2021), Zhang et al.
84
+ (2021), Fernandez-Palomino et al. (2022), Lei et al. (2022), Lin et al. (2022), Zandi et al.
85
+ (2022) and Militino et al. (2023).
86
+ These examples refer to various temporal resolutions and many different geographical
87
+ regions around the globe (see also the reviews by Hu et al. 2019 and Abdollahipour et al.
88
+ 2022), with the daily temporal resolution and the Unites States (US) being frequent cases.
89
+ Nonetheless, a relevant comparison of tree-based ensemble algorithms for the latter
90
+ temporal resolution and the latter geographical region is missing from the literature, with
91
+ the closest investigations at the moment being those available in the work by Lei et al.
92
+ (2022), which however focus on China. In this work, we fill this specific literature gap.
93
+ Notably, the selection of the most accurate regression algorithm from the tree-based
94
+ ensemble family could be particularly useful at the daily temporal scale, in which the size
95
+ of the datasets for large geographical areas might impose significant limitations on the
96
+ application of other accurate machine and statistical learning regression algorithms due
97
+ to their large computational cost.
98
+ The remainder of the paper is structured as follows: Section 2 describes the tree-based
99
+ ensemble algorithms compared in this work. It also describes a machine learning metric
100
+ that is utilized for ensuring some degree of explainability. Moreover, Section 3 presents
101
+ the data retrieved and utilized for the comparisons. The same section outlines the way in
102
+ which the tree-based ensemble algorithms are compared with each other. Furthermore,
103
+ Sections 4, 5 and 6 present the results, provide their discussion in light of the literature
104
+ and conclude the work, respectively. Lastly, Appendix A provides statistical software
105
+ information that assures the work’s reproducibility.
106
+
107
+ 4
108
+
109
+ 2.
110
+ Methods
111
+ Random forests, gradient boosting machines (gbm) and extreme gradient boosting
112
+ (XGBoost) were applied in a cross-validation setting (see Section 3.2) for conducting an
113
+ extensive comparison in the context of merging gridded satellite products and gauge-
114
+ based measurements at the daily time scale. Additionally, the linear regression algorithm
115
+ was applied in the same setting for benchmarking purposes. In this section, we provide
116
+ brief descriptions of the four afore-mentioned algorithms. Extended descriptions are out
117
+ of the scope of this work, as they are widely available in the machine and statistical
118
+ learning literature (e.g., in Hastie et al. 2009; James et al. 2013; Efron and Hastie 2016).
119
+ 2.1 Linear regression
120
+ The results of this work are reported in terms of relative scores (see Section 3.3). These
121
+ scores were computed with respect to the linear regression algorithm, which models the
122
+ dependent variable as a linear weighted sum of the predictor variables (Hastie et al. 2009,
123
+ pp 43–55). A squared error scoring function facilitates this algorithm’s fitting.
124
+ 2.2 Random forests
125
+ Random forests (Breiman 2001) are the most commonly used algorithm in the context of
126
+ merging gridded satellite products and gauge-based measurements (see the examples in
127
+ Hengl et al. 2018). A detailed description of this algorithm can be found in Tyralis et al.
128
+ (2019b), along with a systematic review of its application in water resources. Notably,
129
+ random forests are an ensemble learning algorithm and, more precisely, an ensemble of
130
+ regression trees that is based on bagging (acronym for “bootstrap aggregation”) but with
131
+ an additional randomization procedure. The latter aims at reducing overfitting. In this
132
+ work, random forests were implemented with all their hyperparameters kept as default.
133
+ For instance, the number of trees was equal to 500.
134
+ 2.3 Gradient boosting machines
135
+ Gradient boosting machines (Friedman 2001, Mayr et al. 2014) are also an ensemble
136
+ learning algorithm that is herein used with regression trees as base learners. The main
137
+ concept behind this ensemble algorithm and, more generally, behind all the boosting
138
+ algorithms (including the one described in Section 2.4) is the iterative training of new
139
+ base learners using the errors of previously trained base learners (Natekin and Knoll
140
+ 2013, Tyralis and Papacharalampous 2021). For gradient boosting machines, a gradient
141
+
142
+ 5
143
+
144
+ descent algorithm adapts the loss function for achieving optimal fitting. This loss function
145
+ is the squared error scoring function herein. Consistency with the respect to the
146
+ implementation of random forests is ensured by setting the number of trees equal to 500.
147
+ The remaining hyperparameters were kept as default.
148
+ 2.4 Extreme gradient boosting
149
+ Extreme gradient boosting (XGBoost; Chen and Guestrin 2016) consists the third tree-
150
+ based ensemble learning and the second boosting algorithm implemented in this work. In
151
+ the implementations of this work, all the hyperparameters were kept as default, except
152
+ for the maximum number of iterations that were set to 500.
153
+ Aside from applying XGBoost in a cross-validation setting for its comparison to the
154
+ remaining algorithms, we also utilized it with the same hyperparameter values for
155
+ assuring some degree of explainability in terms of variable importance under the more
156
+ general explainable machine learning culture (Linardatos et al. 2020, Roscher et al. 2020,
157
+ Belle and Papantonis 2021). Specifically, we computed the gain importance metric, which
158
+ is available in the XGBoost algorithm. This metric assesses the “fractional contribution of
159
+ each feature to the model based on the total gain of this feature’s splits”, with higher values
160
+ indicating more important features (Chen et al. 2022c).
161
+ 3.
162
+ Data and application
163
+ 3.1 Data
164
+ For our experiments, we retrieved and used daily earth-observed precipitation, gridded
165
+ satellite precipitation and elevation data for the gauged locations and grid points shown
166
+ in Figures 1 and 2.
167
+
168
+ 6
169
+
170
+
171
+ Figure 1. Map of the geographical locations of the earth-located stations that offered data
172
+ for this work.
173
+
174
+ -120
175
+ -100
176
+ -80
177
+ Longitude (°)3itude97
178
+
179
+
180
+
181
+ Figure 2. Maps of the geographical locations of the points composing the (a) PERSIANN
182
+ and (b) IMERG grids utilized in this work.
183
+
184
+ -120
185
+ -100
186
+ 80
187
+ Longitude (°)(b)8(a)&58
188
+
189
+ 3.1.1 Earth-observed precipitation data
190
+ Daily precipitation totals from the Global Historical Climatology Network daily (GHCNd)
191
+ (Durre et al. 2008, 2010, Menne et al. 2012) were used for comparing the algorithms.
192
+ More precisely, data from 7 264 earth-located stations spanning across the contiguous
193
+ United States (see Figure 1) were extracted. This data cover the two-year time period
194
+ 2014−2015. Data retrieval was made from the website of the NOAA National Climatic Data
195
+ Center (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily; assessed on 2022-02-27).
196
+ 3.1.2 Satellite precipitation data
197
+ For comparing the algorithms, we additionally used gridded satellite daily precipitation
198
+ data from the current operational PERSIANN (Precipitation Estimation from Remotely
199
+ Sensed Information using Artificial Neural Networks) system (see the geographical
200
+ locations of the extracted PERSIANN grid with a spatial resolution of 0.25 degree x 0.25
201
+ degree in Figure 2a) and the GPM IMERG (Integrated Multi-satellitE Retrievals) Late
202
+ Precipitation L3 1 day 0.1 degree x 0.1 degree V06 (see the geographical locations of the
203
+ extracted IMERG grid in Figure 2b). These two gridded satellite precipitation databases
204
+ were developed by the Centre for Hydrometeorology and Remote Sensing (CHRS) at the
205
+ University of California, Irvine (UCI) and the NASA Goddard Earth Sciences (GES) Data
206
+ and Information Services Center (DISC), respectively. More precisely, the PERSIANN data
207
+ were retrieved from the website of the Center for Hydrometeorology and Remote Sensing
208
+ (CHRS) (https://chrsdata.eng.uci.edu; assessed on 2022-03-07) and the IMERG data were
209
+ retrieved from the website of NASA (National Aeronautics and Space Administration)
210
+ Earth Data (https://doi.org/10.5067/GPM/IMERGDL/DAY/06; assessed on 2022-12-
211
+ 10). The extracted data cover the entire contiguous United States at the two-year time
212
+ period 2014−2015.
213
+ 3.1.3 Elevation data
214
+ Elevation is a key predictor variable for many hydrological processes (Xiong et al. 2022).
215
+ Therefore, we estimated its value for all the geographical locations shown in Figures 1
216
+ and 2. For this estimation, we relied on the Amazon Web Services (AWS) Terrain Tiles
217
+ (https://registry.opendata.aws/terrain-tiles; assessed on 2022-09-25).
218
+ 3.2 Validation setting and predictor variables
219
+ To formulate the regression settings of this work, we first defined earth-observed daily
220
+
221
+ 9
222
+
223
+ total precipitation at a point of interest (which could be station 1 in Figure 3) as the
224
+ dependent variable. Then, we adopted procedures proposed in Papacharalampous et al.
225
+ (2023) to compute the observations of possible predictor variables. Separately for each
226
+ of the two satellite precipitation grids (see Figure 2), we determined the closest four grid
227
+ points to each ground-based station from those depicted in Figure 1. We also computed
228
+ the distances di, i = 1, 2, 3, 4 from these grid points and indexed the latter as Si, i = 1, 2, 3,
229
+ 4 based on the following order: d1 < d2 <d3 < d4 (see Figure 3). Throughout this work, the
230
+ distances di, i = 1, 2, 3, 4 are also respectively called “PERSIANN distances 1−4” or “IMERG
231
+ distances 1−4” (depending on whether we refer to the PERSIANN grid or the IMERG grid)
232
+ and the daily precipitation values at the grid points 1−4 are called “PERSIANN values 1−4”
233
+ or “IMERG values 1−4” (depending on whether we refer to the PERSIANN grid or the
234
+ IMERG grid).
235
+
236
+ Figure 3. Setting of the regression problem. Note that the term “grid point” is used to
237
+ describe the geographical locations with satellite data, while the term “station” is used to
238
+ describe the geographical locations with ground-based measurements. Note also that,
239
+ throughout this work, the distances di, i = 1, 2, 3, 4 are also respectively called “PERSIANN
240
+ distances 1−4” or “IMERG distances 1−4” (depending on whether we refer to the
241
+ PERSIANN grid or the IMERG grid) and the daily precipitation values at the grid points
242
+ 1−4 are called “PERSIANN values 1−4” or “IMERG values 1−4” (depending on whether we
243
+ refer to the PERSIANN grid or the IMERG grid).
244
+ Based on the above, the predictor variables for the technical problem of interest could
245
+ include the PERSIANN values 1−4, the IMERG values 1−4, the PERSIANN distances 1−4,
246
+ the IMERG distances 1−4 and the station’s elevation. We defined and examined three sets
247
+
248
+ grid point 2
249
+ grid point 4d
250
+ station 1
251
+ dSatellite data grid
252
+ Gauge station
253
+ Distance, d, i = 1, 2, 3, 4
254
+ d<d<d<d
255
+ grid point 1
256
+ grid point 310
257
+
258
+ of predictor variables (see Table 1). Each of them defines a different regression setting
259
+ that includes 4 833 007 samples. These samples were exploited under a two-fold cross-
260
+ validation scheme for comparing the three tree-based ensemble algorithms outlined in
261
+ Section 2 in the context of merging gridded satellite precipitation products and gauge-
262
+ based precipitation measurements at the daily temporal scale. The same samples were
263
+ explored by estimating the Spearman correlation (Spearman 1904) for the various pairs
264
+ of variables and by ranking the predictor variables based on their importance in the
265
+ regression. The latter methodological step was made by applying explainable machine
266
+ learning procedures offered by the XGBoost algorithm (see Section 2.4).
267
+ Table 1. Inclusion of predictor variables in the predictor sets examined in this work.
268
+ Predictor variable
269
+ Predictor set 1
270
+ Predictor set 2
271
+ Predictor set 3
272
+ PERSIANN value 1
273
+
274
+ ×
275
+
276
+ PERSIANN value 2
277
+
278
+ ×
279
+
280
+ PERSIANN value 3
281
+
282
+ ×
283
+
284
+ PERSIANN value 4
285
+
286
+ ×
287
+
288
+ IMERG value 1
289
+ ×
290
+
291
+
292
+ IMERG value 2
293
+ ×
294
+
295
+
296
+ IMERG value 3
297
+ ×
298
+
299
+
300
+ IMERG value 4
301
+ ×
302
+
303
+
304
+ PERSIANN distance 1
305
+
306
+ ×
307
+
308
+ PERSIANN distance 2
309
+
310
+ ×
311
+
312
+ PERSIANN distance 3
313
+
314
+ ×
315
+
316
+ PERSIANN distance 4
317
+
318
+ ×
319
+
320
+ IMERG distance 1
321
+ ×
322
+
323
+
324
+ IMERG distance 2
325
+ ×
326
+
327
+
328
+ IMERG distance 3
329
+ ×
330
+
331
+
332
+ IMERG distance 4
333
+ ×
334
+
335
+
336
+ Station elevation
337
+
338
+
339
+
340
+ 3.3 Performance metrics and assessment
341
+ The performance assessment relied on procedures proposed by Papacharalampous et al.
342
+ (2023). These procedures are reported in what follows. First, we computed the median of
343
+ the squared error function, separately for each set {algorithm, predictor set, test fold}.
344
+ Note that the squared error scoring function can adequately support our performance
345
+ comparisons, as it is consistent for the mean functional of the predictive distributions
346
+ (Gneiting 2011). Subsequently, two relative scores (which are else referred to as “relative
347
+ improvements” throughout this work) were computed for each set {algorithm, predictor
348
+ set}. For that, the two median squared error (MedSE) values offered by each set
349
+ {algorithm, predictor set} (each corresponding to a different test fold) were utilized,
350
+
351
+ 11
352
+
353
+ together with their corresponding MedSE values offered by the reference modelling
354
+ approach, which was defined as the linear regression when run with the same predictor
355
+ set as the modelling approach to which the relative score referred. More precisely, the
356
+ relative score was computed as the difference between the score of the set {algorithm,
357
+ predictor set} minus the score of the reference modelling approach, multiplied with 100
358
+ and divided by the score of the reference modelling approach. Then, mean relative scores
359
+ (which are else referred to as “mean relative improvements” throughout this work) were
360
+ computed by averaging, separately for each set {algorithm, predictor set}, the relative
361
+ scores. The procedures for computing the relative scores and the mean relative scores
362
+ were repeated by considering the set {linear regression, predictor set 1} as the reference
363
+ modelling approach for all the sets {algorithm, predictor set}.
364
+ Mean rankings of the machine and statistical learning algorithms were also computed.
365
+ For that, and separately for each set {case, predictor set, test fold}, we first ranked the four
366
+ algorithms based on their squared errors. Then, we averaged these rankings, separately
367
+ for each set {predictor set, test fold}. Lastly, we obtained the mean rankings reported by
368
+ averaging the two previously computed mean ranking values corresponding to the same
369
+ predictor set. We also computed the rankings collectively for all the predictor sets.
370
+ 4.
371
+ Results
372
+ 4.1 Regression setting exploration
373
+ Regression setting explorations can facilitate interpretations of the results of prediction
374
+ experiments, at least to some extent. Therefore, in Figure 4, we present the Spearman
375
+ correlation estimates for the various variable pairs appearing in the regression settings
376
+ examined in this work. As it could be expected, the magnitude of the relationships
377
+ between the predictand (i.e., the precipitation quantity observed at the earth-located
378
+ stations, which is referred to as “true value” in Figure 4) and the 17 predictor variables
379
+ seems to depend, to some extent, on the satellite rainfall product. Indeed, the Spearman
380
+ correlation estimates made for the relationships between the predictand and
381
+ precipitation quantities from the IMERG grid are equal to 0.45, while the corresponding
382
+ estimates for the case of the RERSIANN grid are equal to 0.40. The remaining relationships
383
+ between the predictand and predictor variables are far less intense, almost negligible,
384
+ based on the Spearman correlation statistic. Still, they could also provide information in
385
+ the regression settings.
386
+
387
+ 12
388
+
389
+
390
+ Figure 4. Heatmap of the Spearman correlation estimates for the various variable pairs
391
+ appearing in the regression settings of this work.
392
+ The relationships between the predictor variables also exhibit various intensities. The
393
+ most intense among them, according to the Spearman correlation statistic, are the
394
+ relationships between the PERSIANN values, for which the estimates obtained are equal
395
+ to 0.90, 0.91, 0.92 and 0.93. The relationships between the IMERG values are also intense,
396
+ with the corresponding Spearman correlation estimates being equal to 0.80, 0.82, 0.83,
397
+ 0.84 and 0.85. The Spearman correlation estimates referring to the relationships between
398
+ the distances, as well as those referring to the relationships between the distances and
399
+ the earth-located station’s elevation (with the latter being referred to as “station
400
+ elevation” in the visualizations), are either positive or negative and smaller (in absolute
401
+ terms) than the Spearman correlation estimates referring to the relationships between
402
+ the PERSIANN values and the relationships between the IMERG values. Still, some of them
403
+ are of similar magnitude as those referring to the relationships between the PERSIANN
404
+ and IMERG values.
405
+
406
+ sIP
407
+ True
408
+ G
409
+ sip
410
+ 1sip
411
+ IMERG
412
+ IMERG
413
+ Station e
414
+ N
415
+ PERSIANN
416
+ PERSIANN
417
+ PERSIANN
418
+ Variable0.4
419
+ 0.93
420
+ 0.93
421
+ 0.91
422
+ 0.58
423
+ 0.58
424
+ 0.580.58
425
+ -0.01 -0.02 -0.02 -0.03
426
+ -0.01 -0.01 -0.01 -0.02
427
+ -0.01
428
+ 0.4
429
+ 0.4
430
+ 0.4
431
+ 0.4
432
+ 0.45
433
+ 0.45
434
+ 0.45
435
+ 0.45
436
+ 0
437
+ -0.01 -0.01 -0.01
438
+ -0.01 -0.01 -0.01 -0.02
439
+ -0.04
440
+ PERSIANN
441
+ value
442
+ T
443
+ T
444
+ T
445
+ T
446
+
447
+ T
448
+ T
449
+ T
450
+ T
451
+ 3
452
+ 3
453
+ True
454
+ ?
455
+ 3
456
+
457
+ e
458
+ ce
459
+ ue
460
+ ue
461
+ lue
462
+ ce
463
+ lue
464
+ ationvalu
465
+ 0.4
466
+ 0.91
467
+ 0.91
468
+ 0.92
469
+ 0.58
470
+ 0.58
471
+ 0.58
472
+ 0.58
473
+ -0.01 -0.02 -0.02 -0.02-0.01 -0.01 -0.01 -0.02
474
+ -0.01
475
+ 0.4
476
+ 0.93
477
+ 0.9
478
+ 0.92
479
+ 0.58
480
+ 0.58
481
+ 0.58
482
+ 0.57
483
+ -0.01 -0.02 -0.02 -0.03-0.01 -0.01 -0.01 -0.02
484
+ 2-0.01
485
+ 0.4
486
+ 0.93
487
+ 0.9
488
+ 0.91
489
+ 0.58
490
+ 0.58
491
+ 0.58
492
+ 0.58
493
+ -0.01 -0.02 -0.02 -0.03
494
+ -0.01-0.01-0.01-0.02
495
+ -0.01
496
+ ue0.45
497
+ 0.58
498
+ 0.58
499
+ 0.58
500
+ 0.58
501
+ 0.84
502
+ 0.8
503
+ 0.83
504
+ 0
505
+ -0.01 -0.01 -0.01-0.01 -0.01 -0.01 -0.02
506
+ 0
507
+ value
508
+ 2
509
+ 0.45
510
+ 0.58
511
+ 0.58
512
+ 0.58
513
+ 0.58
514
+ 0.85
515
+ 0.8
516
+ 0.82
517
+ -0.01 -0.01 -0.01 -0.01-0.01 -0.01 -0.02 -0.02
518
+ 0.01
519
+ IMERG
520
+ value
521
+ .G
522
+ 0.45
523
+ 0.58
524
+ 0.58
525
+ 0.58
526
+ 0.58
527
+ 0.85
528
+ 0.840.82
529
+ 0
530
+ -0.01 -0.01 -0.01
531
+ -0.01 -0.01 -0.01 -0.02
532
+ 0.01N
533
+ 0.05
534
+ -0.2
535
+ 0.8
536
+ 0.00
537
+ 0.591-0.51
538
+ -0.19
539
+ -0.01
540
+ -0.02 -0.02 -0.02-0.02-
541
+ -0.01 -0.01 -0.01 -0.01-0.28
542
+ 1
543
+ -0.2
544
+ 0.04
545
+ -0.3
546
+ 0.34
547
+ 0.27
548
+ 0.34
549
+ -0.18
550
+ dist
551
+ NN
552
+ e
553
+ 0
554
+ 0.01 -0.01 -0.01 -0.01
555
+ 0
556
+ -0.01
557
+ 0
558
+ 0
559
+ -0.28-0.35-0.43
560
+ -0.4
561
+ -0.3
562
+ 0.560.52
563
+ -0.09
564
+ SIAN
565
+ distance
566
+ ari
567
+ NN
568
+ tance
569
+ 0.45
570
+ 0.58
571
+ 0.580.570.580.820.820.83
572
+ 0
573
+ -0.01-0.01 -0.01
574
+ -0.01 -0.01 -0.01 -0.02
575
+ 0-0.01
576
+ -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
577
+ -0.3
578
+ 0.34
579
+ 0.26
580
+ 0.31
581
+ -0.41
582
+ -0.34 -0.08
583
+ -0.09
584
+ -0.01
585
+ 0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
586
+ -0.4
587
+ -0.3
588
+ 0.56
589
+ 0.51
590
+ -0.41-0.49
591
+ -0.6
592
+ -0.04
593
+ IMERG
594
+ -0.01
595
+ -0.03 -0.03 -0.03 -0.02-0.01 -0.01 -0.01 -0.01
596
+ 1-0.43
597
+ 0.04
598
+ 0.8
599
+ 0.51
600
+ 0.31
601
+ -0.56
602
+ 0.45
603
+ -0.23
604
+ ERG elevation
605
+ -0.04
606
+ 0.01 -0.01 -0.01 -0.01
607
+ 0.01 0.01
608
+ 0
609
+ 0
610
+ -0.09
611
+ 9-0.18-0.19-0.23
612
+ -0.04 -0.09 -0.08
613
+ -0.1
614
+ -0.02
615
+ 0.02 -0.02 -0.02 -0.02
616
+ -0.02 -0.02 -0.02 -0.02
617
+ 0.52
618
+ 0.34
619
+ -0.57
620
+ -0.45
621
+ -0.6
622
+ -0.08
623
+ 0.79
624
+ -0.1
625
+ -0.01
626
+ 0.01 -0.01 -0.01 -0.01
627
+ -0.01 -0.02 -0.01 -0.01
628
+ 0.56
629
+ 0.27
630
+ -0.59-0.56
631
+ -0.49
632
+ 9-0.34
633
+ 0.79
634
+ -0.08
635
+ distance
636
+ RG
637
+ anceSpearman
638
+ correlation -1.0
639
+ -0.5
640
+ 0.0
641
+ 0.5
642
+ 1.013
643
+
644
+ Furthermore, Figure 5 presents the importance scores and rankings computed for the
645
+ 17 predictor variables through the extreme gradient boosting (XGBoost) algorithm and
646
+ by considering all of these predictor variables in the regression setting. The four IMERG
647
+ values are found to be the most important predictor variables. Moreover, the fifth and
648
+ sixth most important predictors are PERSIANN value 1 and station elevation, respectively,
649
+ and PERSIANN values 2−4 follow in the line, while the eight distances are the eight least
650
+ important predictor variables. Notably, the fact that station elevation is more important
651
+ than three of the four PERSIANN values could not be expected by inspecting the Spearman
652
+ correlation estimates (see again Figure 4).
653
+
654
+ Figure 5. Barplot of the gain scores computed for the predictor variables by utilizing the
655
+ extreme gradient boosting algorithm. The predictor variables are presented from the
656
+ most to the least important ones (from top to bottom) based on the same scores.
657
+ 4.2 Algorithm comparison
658
+ Figure 6 facilitates the comparison of the four machine and statistical learning algorithms
659
+ in terms of the square error function, separately for each predictor set. The mean relative
660
+ improvements (see Figure 6a) suggest that extreme gradient boosting (XGBoost) is the
661
+ best algorithm for all the predictor sets. For predictor set 1 (which incorporates, among
662
+ others, information from the PERSIANN gridded precipitation dataset; see Table 1),
663
+ random forests exhibits quite close performance to that of XGBoost. At the same time, for
664
+ predictor set 2 (which incorporates, among others, information from the IMERG gridded
665
+ precipitation dataset; see Table 1), gradient boosting machines (gbm) are those exhibiting
666
+ quite close performance to that of XGBoost. Also notably, the mean rankings (see Figure
667
+
668
+ PERSIANN distance 1
669
+ TMERG distance 1
670
+ IMERG distance 4
671
+ 0.0
672
+ 0.1
673
+ 0.2
674
+ 0.3
675
+ 0.4
676
+ GainPredic
677
+ PERSIANN distance 3
678
+ TMERG distance 2
679
+ PERSIANN distance 2
680
+ PERSIANN distance 4Station elevation :
681
+ tor variable
682
+ PERSIANN value 2
683
+ PERSIANN value 4 :
684
+ PERSIANN value 3 :IMERG value 1
685
+ IMERG value 2
686
+ IMERG value 3
687
+ IMERG value 4 :
688
+ PERSAMNae :14
689
+
690
+ 6b) of random forests and XGBoost are of similar magnitude. In terms of the same
691
+ criterion, gbm scores much closer to random forests and XGBoost than to linear
692
+ regression.
693
+
694
+
695
+ Figure 6. Heatmaps of the: (a) relative improvement (%) in terms of the median square
696
+ error metric, averaged across the two folds, as this improvement was provided by each
697
+ tree-based ensemble algorithm with respect to the linear regression algorithm; and (b)
698
+ mean ranking of each machine and statistical learning algorithm, averaged across the two
699
+ folds. The computations were made separately for each prediction set. The more reddish
700
+ the colour, the better the predictions on average.
701
+ Moreover, Figure 7 facilitates more detailed comparisons with respect the frequency
702
+ with which each algorithm appeared in the various positions from the first to the fourth
703
+ in the experiments. Here again, the comparisons can be made both across algorithms and
704
+ across predictor sets. The respective results are somewhat similar across predictor sets.
705
+ Indeed, linear regression is much more likely to be found at the fourth (i.e., the last) place
706
+ than at any other place. It is also more likely to be found at the first place than at the
707
+ second and third places. At the same time, random forests are more likely to be ranked
708
+ first than second, third and fourth, and gbm appears most often in the second and third
709
+ positions. The last position is the least likely for both gbm and XGBoost. The latter
710
+ algorithm is more likely to be ranked second; yet, the first and third positions are also far
711
+ more likely than the last.
712
+
713
+ Line
714
+ regressic
715
+ Rando
716
+ fores
717
+ Gradie
718
+ boostir
719
+ machine
720
+ Extrem
721
+ gradie
722
+ boostir
723
+ Algorithm
724
+ Mean ranking
725
+ 2.4
726
+ 2.6
727
+ 2.8
728
+ 3.0(b) Mean ranking
729
+ Predictor set 1
730
+ 2.97
731
+ 2.31
732
+ 2.45
733
+ 2.27
734
+ Predictor set 2
735
+ 3.05
736
+ 2.24
737
+ 2.43
738
+ 2.27
739
+ Predictor set 3 -
740
+ 3.05
741
+ 2.27
742
+ 2.43
743
+ 2.26
744
+ ms
745
+ mgs
746
+ emgLine
747
+ regressic
748
+ Rando
749
+ fores
750
+ Gradie
751
+ boostir
752
+ machine
753
+ Extrem
754
+ gradie
755
+ boostir
756
+ Algorithm
757
+ Mean relative
758
+ improvement
759
+ 60
760
+ 40
761
+ 20
762
+ 0(a) Mean relative improvement
763
+ set
764
+ Predictor set 1 :
765
+ 0
766
+ 53.99
767
+ 34.72
768
+ 56.26
769
+ Predictor s
770
+ Predictor set 2 :
771
+ 0
772
+ 54.39
773
+ 62.61
774
+ 64.55
775
+ Predictor set 3 :
776
+ 0
777
+ 37.57
778
+ 47.99
779
+ 52.66
780
+ ms
781
+ mgs
782
+ eug15
783
+
784
+
785
+
786
+ Figure 7. Heatmaps of the percentages (%) with which the four machine and statistical
787
+ learning algorithms were ranked from 1 to 4 for the predictor sets (a−c) 1−3. The rankings
788
+ summarized with this figure were computed separately for each pair {case, prediction
789
+ set}. The darker the colour, the higher the percentage.
790
+ Lastly, Figures 8 and 9 allow us to compare the degree of information that is offered by
791
+ the two gridded precipitation products within the context of our regression problem,
792
+ further than the comparisons already allowed by the variable importance explorations
793
+ using the gain metric incorporated into the XGBoost algorithm (see again Figure 5).
794
+ Overall, the IMERG dataset was proven to be far more information-rich than the
795
+ PERSIANN dataset, in terms of both mean relative improvement (see Figure 8a) and mean
796
+ ranking (see Figure 8b). Indeed, the relative improvements with respect to the linear
797
+ regression algorithm run with the predictor set 1 are much larger for the tree-based
798
+ algorithms when these algorithms are run with predictor set 2 than when they are run
799
+ with predictor set 1. Also, predictor set 3 (which contains information from both gridded
800
+ precipitation datasets) does not improve the performances notably in terms of mean
801
+ relative improvements with respect to predictor set 2, although it does in terms of mean
802
+ ranking. While the best modelling choice is {XGBoost, predictor set 3}, random forests
803
+ were ranked in the two first positions more often than any other algorithm for predictor
804
+ sets 2 and 3, when the ranking was made collectively for all the predictor sets (see Figure
805
+ 9). Still, for the same predictor sets, XGBoost appeared in the last few positions much less
806
+ often and achieved the best performance in terms of mean ranking when run with
807
+ predictor set 3.
808
+
809
+ Line
810
+ regressic
811
+ Rando
812
+ fores
813
+ Gradie
814
+ boostil
815
+ machine
816
+ Extrem
817
+ gradie
818
+ boostir
819
+ Algorithm
820
+ Percentage
821
+ 10
822
+ 20
823
+ 30
824
+ 40
825
+ 50(c) Predictor set 3
826
+ 1
827
+ 21.66
828
+ 37.97
829
+ 16.6
830
+ 23.77
831
+ 2
832
+ 9.12
833
+ 19.66
834
+ 33.53
835
+ 37.7
836
+ 3
837
+ 12.18
838
+ 19.54
839
+ 40.54
840
+ 27.74
841
+ 4
842
+ 57.05
843
+ 22.83
844
+ 9.33
845
+ 10.79
846
+ -
847
+ ms
848
+ mgs
849
+ egLine
850
+ regressic
851
+ Rando
852
+ fores
853
+ Gradie
854
+ boostil
855
+ machine
856
+ Extrem
857
+ gradie
858
+ boostir
859
+ Algorithm
860
+ Percentage
861
+ 10
862
+ 20
863
+ 30
864
+ 40
865
+ 50(b) Predictor set 2
866
+ 1
867
+ 23.17
868
+ 39.16
869
+ 16.07
870
+ 21.6
871
+ 2
872
+ 7.44
873
+ 18.82
874
+ 34.28
875
+ 39.46
876
+ 3
877
+ 10.11
878
+ 20.86
879
+ 40.06
880
+ 28.97
881
+ 4
882
+ 59.27
883
+ 21.16
884
+ 9.59
885
+ 9.97
886
+ T
887
+ ms
888
+ mgs
889
+ emgLine
890
+ regressic
891
+ Rando
892
+ fores
893
+ Gradie
894
+ boosti
895
+ machine
896
+ Extrem
897
+ gradie
898
+ boostir
899
+ Algorithm
900
+ Percentage
901
+ 20
902
+ 30
903
+ 40
904
+ 50(a) Predictor set 1
905
+ 23.74
906
+ 31.44
907
+ 19.94
908
+ 24.88
909
+ Ranking
910
+ 2
911
+ 10.71
912
+ 26.34
913
+ 28.74
914
+ 34.22
915
+ 3
916
+ 10.28
917
+ 22.06
918
+ 37.94
919
+ 29.72
920
+ 4
921
+ 55.27
922
+ 20.16
923
+ 13.38
924
+ 11.19
925
+ ms
926
+ gs
927
+ eg16
928
+
929
+
930
+
931
+ Figure 8. Heatmaps of the: (a) relative improvement (%) in terms of the median square
932
+ error metric, averaged across the two folds, as this improvement was provided by each
933
+ tree-based ensemble algorithm with respect to the linear regression algorithm, with this
934
+ latter algorithm being run with the predictor set 1; and (b) mean ranking of each machine
935
+ and statistical learning algorithm, averaged across the two folds. The computations were
936
+ made collectively for all the predictor sets. The more reddish the colour, the better the
937
+ predictions on average.
938
+
939
+
940
+ Figure 9. Heatmaps of the percentages (%) with which the four machine and statistical
941
+ learning algorithms were ranked from 1 to 12 for the predictor sets (a−c) 1−3. The
942
+ rankings summarized with this figure were computed separately for each case and
943
+ collectively for all the predictor sets.
944
+ 5.
945
+ Discussion
946
+ Overall, extreme gradient boosting (XGBoost) was proven to perform notably better than
947
+ random forests and gradient boosting machines (gbm) when merging gridded satellite
948
+ precipitation products and ground-based precipitation measurements for the contiguous
949
+
950
+ Linear
951
+ regression
952
+ Random
953
+ forests
954
+ Gradient
955
+ boosting
956
+ machines
957
+ Extreme
958
+ gradient
959
+ boosting
960
+ Algorithm
961
+ Percentage
962
+ 5
963
+ 10 15
964
+ 20
965
+ 256
966
+ 7.07
967
+ 7.64
968
+ 15.59
969
+ 10.81
970
+ 7.
971
+ 9.86
972
+ 7.13
973
+ 13.62
974
+ 9.52
975
+ 8 -
976
+ 12.03
977
+ 7.57
978
+ 7.55
979
+ 7.85
980
+ - 6
981
+ 13.78
982
+ 6.19
983
+ 4.94
984
+ 5.43
985
+ 10-
986
+ 26.84
987
+ 5.01
988
+ 3.48
989
+ 3.41
990
+ 11-
991
+ 2.32
992
+ 6.04
993
+ 2.59
994
+ 2.25
995
+ 12 -
996
+ 0.61
997
+ 5.36
998
+ 1.19
999
+ 1.85(c) Predictor set 3
1000
+ 1:
1001
+ 2.92
1002
+ 20.83
1003
+ 5.78
1004
+ 10.02
1005
+ 2 -
1006
+ 5.03
1007
+ 11.22
1008
+ 7.11
1009
+ 9.26
1010
+ 3 -
1011
+ 5.62
1012
+ 7.78
1013
+ 10.48
1014
+ 13.19
1015
+ 4 -
1016
+ 5.71
1017
+ 7.9
1018
+ 12.71
1019
+ 13.69
1020
+ 5 -
1021
+ 8.21
1022
+ 7.34
1023
+ 14.97
1024
+ 12.7210 -
1025
+ 6.67
1026
+ 4.88
1027
+ 5.42
1028
+ 5.68
1029
+ 11
1030
+ 34.08
1031
+ 6.13
1032
+ 4.78
1033
+ 5.33
1034
+ 12
1035
+ 7.3
1036
+ 10.1
1037
+ 3.92
1038
+ 4.07
1039
+ Linear
1040
+ regression
1041
+ Random
1042
+ forests
1043
+ Gradient
1044
+ boosting
1045
+ machines
1046
+ Extreme
1047
+ gradient
1048
+ boosting
1049
+ Algorithm
1050
+ Percentage
1051
+ 10
1052
+ 20
1053
+ 30(b) Predictor set 2
1054
+ 1
1055
+ 5.93
1056
+ 14.38
1057
+ 4.37
1058
+ 7.54
1059
+ 2
1060
+ 5.33
1061
+ 17.59
1062
+ 8.02
1063
+ 10.93
1064
+ 3 -
1065
+ 3.98
1066
+ 8.35
1067
+ 9.88
1068
+ 11.22
1069
+ 4
1070
+ 3.9
1071
+ 7.09
1072
+ 10.64
1073
+ 11.05
1074
+ 5 .
1075
+ 4.38
1076
+ 6.36
1077
+ 10.22
1078
+ 10.55
1079
+ - 9
1080
+ 7.55
1081
+ 6.3
1082
+ 10.18
1083
+ 9.6
1084
+ 7 -
1085
+ 7.92
1086
+ 6.38
1087
+ 11.32
1088
+ 8.52
1089
+ 8 -
1090
+ 6.86
1091
+ 6.43
1092
+ 13.31
1093
+ 8.1
1094
+ F 6
1095
+ 6.1
1096
+ 6.02
1097
+ 7.92
1098
+ 7.42Linear
1099
+ regression
1100
+ Random
1101
+ forests
1102
+ Gradient
1103
+ boosting
1104
+ machines
1105
+ Extreme
1106
+ gradient
1107
+ boosting
1108
+ Algorithm
1109
+ Percentage
1110
+ 10
1111
+ 20
1112
+ 30Rankir
1113
+ 2.74
1114
+ 7.84
1115
+ 6.47
1116
+ 8.22
1117
+ 7-
1118
+ 2.97
1119
+ 8.32
1120
+ 7.12
1121
+ 7.33
1122
+ 8
1123
+ 4.1
1124
+ 8.2
1125
+ 8.44
1126
+ 9.56
1127
+ 9
1128
+ 9.82
1129
+ 8.87
1130
+ 11.77
1131
+ 11.74
1132
+ 10
1133
+ 8.4
1134
+ 6.4
1135
+ 15.17
1136
+ 8.64
1137
+ 11 -
1138
+ 11.36
1139
+ 7
1140
+ 8.52
1141
+ 9.6
1142
+ 12
1143
+ 37.94
1144
+ 12.98
1145
+ 8.41
1146
+ 6.27(a) Predictor set 1
1147
+ 1
1148
+ 7.14
1149
+ 8.23
1150
+ 5.67
1151
+ 7.2
1152
+ 2
1153
+ 3.67
1154
+ 6.95
1155
+ 6.66
1156
+ 8.23
1157
+ 4.25
1158
+ 8.72
1159
+ 8.32
1160
+ 8.21
1161
+ 4 -
1162
+ 4.54
1163
+ 8.57
1164
+ 6.97
1165
+ 7.24
1166
+ 5 -
1167
+ 3.07
1168
+ 7.93
1169
+ 6.48
1170
+ 7.77
1171
+ gLine
1172
+ regressic
1173
+ Rando
1174
+ fores
1175
+ Gradie
1176
+ boosti
1177
+ machine
1178
+ Extrem
1179
+ gradie
1180
+ boostir
1181
+ Algorithm
1182
+ Mean ranking
1183
+ 6
1184
+ 7
1185
+ 8(b) Mean ranking
1186
+ Predictorset 1
1187
+ 8.83
1188
+ 6.7
1189
+ 7.13
1190
+ 6.66
1191
+ Predictor set 2
1192
+ 8.06
1193
+ 5.6
1194
+ 6.16
1195
+ 5.73
1196
+ Predictor set 3 -
1197
+ 7.27
1198
+ 5.28
1199
+ 5.48
1200
+ 5.11
1201
+ emgLine
1202
+ regressic
1203
+ Rando
1204
+ fores
1205
+ Gradie
1206
+ boostir
1207
+ machine
1208
+ Extrem
1209
+ gradie
1210
+ boostir
1211
+ Algorithm
1212
+ Mean relative
1213
+ improvement
1214
+ 60
1215
+ 40
1216
+ 20
1217
+ 0(a) Mean relative improvement
1218
+ Predictor set
1219
+ Predictor set 1 :
1220
+ 0
1221
+ 53.99
1222
+ 34.72
1223
+ 56.26
1224
+ Predictor set 2 :
1225
+ 21.94
1226
+ 64.4
1227
+ 70.81
1228
+ 72.33
1229
+ Predictor set 3 :
1230
+ 43.14
1231
+ 64.5
1232
+ 70.43
1233
+ 73.08
1234
+ ms
1235
+ mgs
1236
+ eug17
1237
+
1238
+ United States at the daily time scale. Also, the variable importance scores and the
1239
+ predictive performance comparison across predictor sets indicate that the IMERG
1240
+ product offers more useful predictors than the PERSIANN product for the same time scale.
1241
+ In summary, when the former of these products is utilized (either alone or together with
1242
+ the latter of them), random forests are far behind of both XGBoost and gbm in terms of
1243
+ accuracy. On the other hand, when PERSIANN is utilized, without IMERG being utilized as
1244
+ well, gbm is far behind of both XGBoost and random forests.
1245
+ This latter result agrees, to some extent, with results obtained for the monthly time
1246
+ scale in Papacharalampous et al. (2023), although the relative scores with respect to the
1247
+ linear regression algorithm were found to be somewhat lower therein. Of course, the
1248
+ comparison in this latter work relied on the PERSIANN satellite dataset only. Still, it is
1249
+ accurate to deduce that the improvements in performance with respect to the linear
1250
+ regression algorithm offered by XGBoost, gbm and random forests, when all these four
1251
+ algorithms are run with the same predictor variables, are very large (i.e., from
1252
+ approximately 25% to approximately 65%) for both the daily and monthly time scales.
1253
+ Notably, even larger improvements could be achieved by combining predictions of
1254
+ diverge algorithms in advanced or even simple ensemble learning frameworks, following
1255
+ research efforts made in various fields (e.g., those by Wolpert 1992, Lichtendahl et al.
1256
+ 2013, Bogner et al. 2017, Sagi and Rokach 2018, Yao et al. 2018, Papacharalampous et al.
1257
+ 2019, Tyralis et al. 2019a, Kim et al. 2021, Lee and Ahn 2021, Tyralis et al. 2021, Granata
1258
+ et al. 2022, Li and Yang 2022).
1259
+ As the main concepts behind the boosting and random forest families of algorithms are
1260
+ different (see Section 2, for brief summaries of these concepts), their combinations could
1261
+ be investigated in the direction of achieving these further improvements with a low
1262
+ computational cost. Moreover, their combination with the linear regression algorithm
1263
+ could also be investigated. Indeed, in some contexts, even the least accurate algorithms
1264
+ could benefit ensemble learning solutions (see, e.g., the relevant comparison outcome in
1265
+ Papacharalampous and Tyralis 2020). In cases where the computational cost does not
1266
+ constitute a limiting factor in algorithm selection, neural network (Cheng and Titterington
1267
+ 1994, Jain et al. 1996, Paliwal and Kumar 2009) and deep learning (LeCun et al. 2015,
1268
+ Schmidhuber 2015) regression algorithms could be added to the ensembles. Lastly,
1269
+ instead of aiming at providing accurate mean-value predictions, one could aim at
1270
+ providing accurate median-value predictions coupled with useful uncertainty estimates.
1271
+
1272
+ 18
1273
+
1274
+ This would require working on machine and statistical learning methods, such as those
1275
+ summarized and popularized in the reviews by Papacharalampous and Tyralis (2022a)
1276
+ and Tyralis and Papacharalampous (2022a).
1277
+ 6.
1278
+ Conclusions
1279
+ Precipitation datasets that simultaneously cover large regions with high density and are
1280
+ more accurate than satellite precipitation products can be obtained by correcting such
1281
+ products using earth-observed datasets together with machine and statistical learning
1282
+ regression algorithms. Tree-based ensemble algorithms are adopted in various fields for
1283
+ solving algorithmic problems with high accuracy and lower computational cost compared
1284
+ to other algorithms. Still, information on which tree-based ensemble algorithm to select
1285
+ when the merging is conducted for the contiguous United States (US) and at the daily time
1286
+ scale, at which the computational requirements might constitute a crucial factor to
1287
+ consider along with accuracy, is missing from the literature of satellite precipitation
1288
+ product correction.
1289
+ Herein, we work towards filling this methodological gap. We conduct an extensive
1290
+ comparison between three tree-based ensemble algorithms, specifically random forests,
1291
+ gradient boosting machines (gbm) and extreme gradient boosting (XGBoost). We exploit
1292
+ daily information from the PERSIANN (Precipitation Estimation from Remotely Sensed
1293
+ Information using Artificial Neural Networks) and the IMERG (Integrated Multi-satellitE
1294
+ Retrievals for GPM) gridded datasets, and daily earth-observed information from the
1295
+ Global Historical Climatology Network daily (GHCNd) database. The entire contiguous US
1296
+ is examined and results that are generalizable are obtained. These results indicate that
1297
+ XGBoost is more accurate than random forests and gbm. They also indicate that IMERG is
1298
+ more useful than PERSIANN in the context investigated.
1299
+ Conflicts of interest: The authors declare no conflict of interest.
1300
+ Author contributions: GP and HT conceptualized and designed the work with input from
1301
+ AD and ND. GP and HT performed the analyses and visualizations, and wrote the first
1302
+ draft, which was commented and enriched with new text, interpretations and discussions
1303
+ by AD and ND.
1304
+ Funding: This work was conducted in the context of the research project BETTER RAIN
1305
+ (BEnefiTTing from machine lEarning algoRithms and concepts for correcting satellite
1306
+ RAINfall products). This research project was supported by the Hellenic Foundation for
1307
+
1308
+ 19
1309
+
1310
+ Research and Innovation (H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to
1311
+ support Post-Doctoral Researchers” (Project Number: 7368).
1312
+ Appendix A
1313
+ Statistical software
1314
+ We used the R programming language (R Core Team 2022) to implement the algorithms,
1315
+ and to report and visualize the results.
1316
+ For data processing and visualizations, we used the contributed R packages caret
1317
+ (Kuhn 2022), data.table (Dowle and Srinivasan 2022), elevatr (Hollister 2022),
1318
+ ncdf4 (Pierce 2021), rgdal (Bivand et al. 2022), sf (Pebesma 2018, 2022), spdep
1319
+ (Bivand 2022, Bivand and Wong 2018, Bivand et al. 2013), tidyverse (Wickham et al.
1320
+ 2019, Wickham 2022).
1321
+ The algorithms were implemented by using the contributed R packages gbm
1322
+ (Greenwell et al. 2022), ranger (Wright 2022, Wright and Ziegler 2017), xgboost
1323
+ (Chen et al. 2022c).
1324
+ The performance metrics were computed by implementing the contributed R package
1325
+ scoringfunctions (Tyralis and Papacharalampous 2022a, 2022b).
1326
+ Reports were produced by using the contributed R packages devtools (Wickham et
1327
+ al. 2022), knitr (Xie 2014, 2015, 2022), rmarkdown (Allaire et al. 2022, Xie et al. 2018,
1328
+ 2020).
1329
+ References
1330
+ [1]
1331
+ Abdollahipour A, Ahmadi H, Aminnejad B (2022) A review of downscaling
1332
+ methods of satellite-based precipitation estimates. Earth Science Informatics
1333
+ 15(1). https://doi.org/10.1007/s12145-021-00669-4.
1334
+ [2]
1335
+ Adler W, Potapov S, Lausen B (2011) Classification of repeated measurements
1336
+ data
1337
+ using
1338
+ tree-based
1339
+ ensemble
1340
+ methods.
1341
+ Computational
1342
+ Statistics
1343
+ 26(2):355−369. https://doi.org/10.1007/s00180-011-0249-1.
1344
+ [3]
1345
+ Ahmad T, Zhang D (2020) Novel deep regression and stump tree-based ensemble
1346
+ models
1347
+ for
1348
+ real-time
1349
+ load
1350
+ demand
1351
+ planning
1352
+ and
1353
+ management. IEEE
1354
+ Access 8:48030−48048. https://doi.org/10.1109/ACCESS.2020.2978937.
1355
+ [4]
1356
+ Ahmad MW, Mouraud A, Rezgui Y, Mourshed M (2018) Deep highway networks
1357
+ and tree-based ensemble for predicting short-term building energy consumption.
1358
+ Energies 11(12):3408. https://doi.org/10.3390/en11123408.
1359
+ [5]
1360
+ Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H (2010) An empirical comparison of
1361
+ machine learning models for time series forecasting. Econometric Reviews
1362
+ 29(5−6):594−621. https://doi.org/10.1080/07474938.2010.481556.
1363
+
1364
+ 20
1365
+
1366
+ [6]
1367
+ Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J,
1368
+ Chang W, Iannone R (2022) rmarkdown: Dynamic documents for R. R package
1369
+ version 2.17. https://CRAN.R-project.org/package=rmarkdown.
1370
+ [7]
1371
+ Althoff D, Rodrigues LN, Bazame HC (2021) Uncertainty quantification for
1372
+ hydrological models based on neural networks: The dropout ensemble.
1373
+ Stochastic Environmental Research and Risk Assessment 35(5):1051−1067.
1374
+ https://doi.org/10.1007/s00477-021-01980-8.
1375
+ [8]
1376
+ Ampomah EK, Qin Z, Nyame G (2020) Evaluation of tree-based ensemble machine
1377
+ learning models in predicting stock price direction of movement. Information
1378
+ 11(6):332. https://doi.org/10.3390/info11060332.
1379
+ [9]
1380
+ Asri H, Mousannif H, Al Moatassime H, Noel T (2016) Using machine learning
1381
+ algorithms for breast cancer risk prediction and diagnosis. Procedia Computer
1382
+ Science 83:1064−1069. https://doi.org/10.1016/j.procs.2016.04.224.
1383
+ [10]
1384
+ Baez-Villanueva OM, Zambrano-Bigiarini M, Beck HE, McNamara I, Ribbe L,
1385
+ Nauditt A, Birkel C, Verbist K, Giraldo-Osorio JD, Xuan Thinh N (2020) RF-MEP: A
1386
+ novel random forest method for merging gridded precipitation products and
1387
+ ground-based measurements. Remote Sensing of Environment 239:111606.
1388
+ https://doi.org/10.1016/j.rse.2019.111606.
1389
+ [11]
1390
+ Bahl M, Barzilay R, Yedidia AB, Locascio NJ, Yu L, Lehman CD (2018) High-risk
1391
+ breast lesions: a machine learning model to predict pathologic upgrade and
1392
+ reduce
1393
+ unnecessary
1394
+ surgical
1395
+ excision. Radiology 286(3):810−818.
1396
+ https://doi.org/10.1148/radiol.2017170549.
1397
+ [12]
1398
+ Bamisile O, Oluwasanmi A, Ejiyi C, Yimen N, Obiora S, Huang Q (2022)
1399
+ Comparison of machine learning and deep learning algorithms for hourly
1400
+ global/diffuse solar radiation predictions. International Journal of Energy
1401
+ Research 46(8):10052−10073. https://doi.org/10.1002/er.6529.
1402
+ [13]
1403
+ Belle V, Papantonis I (2021) Principles and practice of explainable machine
1404
+ learning.
1405
+ Frontiers
1406
+ in
1407
+ Big
1408
+ Data
1409
+ 4:688969.
1410
+ https://doi.org/10.3389/fdata.2021.688969.
1411
+ [14]
1412
+ Besler E, Wang YC, Chan TC, Sahakian AV (2019) Real-time monitoring
1413
+ radiofrequency
1414
+ ablation
1415
+ using
1416
+ tree-based
1417
+ ensemble
1418
+ learning
1419
+ models. International
1420
+ Journal
1421
+ of
1422
+ Hyperthermia 36(1):427−436.
1423
+ https://doi.org/10.1080/02656736.2019.1587008.
1424
+ [15]
1425
+ Bivand RS (2022) spdep: Spatial dependence: Weighting schemes, statistics. R
1426
+ package version 1.2-7. https://CRAN.R-project.org/package=spdep.
1427
+ [16]
1428
+ Bivand RS, Wong DWS (2018) Comparing implementations of global and local
1429
+ indicators
1430
+ of
1431
+ spatial
1432
+ association.
1433
+ TEST
1434
+ 27(3):716−748.
1435
+ https://doi.org/10.1007/s11749-018-0599-x.
1436
+ [17]
1437
+ Bivand RS, Pebesma E, Gómez-Rubio V (2013) Applied Spatial Data Analysis with
1438
+ R: Second Edition. Springer New York, NY. https://doi.org/10.1007/978-1-4614-
1439
+ 7618-4.
1440
+ [18]
1441
+ Bivand RS, Keitt T, Rowlingson B (2022) rgdal: Bindings for the ‘Geospatial’
1442
+ data abstraction library. R package version 1.5-32. https://CRAN.R-
1443
+ project.org/package=rgdal.
1444
+ [19]
1445
+ Blöschl G, Bierkens MFP, Chambel A, Cudennec C, Destouni G, Fiori A, Kirchner
1446
+ JW, McDonnell JJ, Savenije HHG, Sivapalan M, et al. (2019) Twenty-three unsolved
1447
+ problems in hydrology (UPH)–A community perspective. Hydrological Sciences
1448
+ Journal 64(10):1141–1158. https://doi.org/10.1080/02626667.2019.1620507.
1449
+
1450
+ 21
1451
+
1452
+ [20]
1453
+ Bogner K, Liechti K, Zappa M (2017) Technical note: Combining quantile forecasts
1454
+ and predictive distributions of streamflows. Hydrology and Earth System
1455
+ Sciences 21:5493–5502. https://doi.org/10.5194/hess-21-5493-2017.
1456
+ [21]
1457
+ Breiman
1458
+ L
1459
+ (2001)
1460
+ Random
1461
+ forests.
1462
+ Machine
1463
+ Learning
1464
+ 45(1):5–32.
1465
+ https://doi.org/10.1023/A:1010933404324.
1466
+ [22]
1467
+ Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. In:
1468
+ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
1469
+ Discovery
1470
+ and
1471
+ Data
1472
+ Mining.
1473
+ pp
1474
+ 785–794.
1475
+ https://doi.org/10.1145/2939672.2939785.
1476
+ [23]
1477
+ Chen C, Hu B, Li Y (2021) Easy-to-use spatial random-forest-based downscaling-
1478
+ calibration method for producing precipitation data with high resolution and
1479
+ high accuracy. Hydrology and Earth System Sciences 25(11):5667–5682.
1480
+ https://doi.org/10.5194/hess-25-5667-2021.
1481
+ [24]
1482
+ Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, Mitchell R, Cano I,
1483
+ Zhou T, Li M, Xie J, Lin M, Geng Y, Li Y, Yuan J (2022c) xgboost: Extreme gradient
1484
+ boosting.
1485
+ R
1486
+ package
1487
+ version
1488
+ 1.6.0.1.
1489
+ https://CRAN.R-
1490
+ project.org/package=xgboost.
1491
+ [25]
1492
+ Cheng B, Titterington DM (1994) Neural networks: A review from a statistical
1493
+ perspective. Statistical Science9(1):2−30.
1494
+ [26]
1495
+ Curceac S, Atkinson PM, Milne A, Wu L, Harris P (2020) Adjusting for conditional
1496
+ bias in process model simulations of hydrological extremes: An experiment using
1497
+ the North Wyke Farm Platform. Frontiers in Artificial Intelligence 3:82.
1498
+ https://doi.org/10.3389/frai.2020.565859.
1499
+ [27]
1500
+ Dogulu N, López López P, Solomatine DP, Weerts AH, Shrestha DL (2015)
1501
+ Estimation of predictive hydrologic uncertainty using the quantile regression and
1502
+ UNEEC methods and their comparison on contrasting catchments. Hydrology and
1503
+ Earth System Sciences 19(7):3181−3201. https://doi.org/10.5194/hess-19-
1504
+ 3181-2015.
1505
+ [28]
1506
+ Dowle M, Srinivasan A (2022) data.table: Extension of 'data.frame'. R package
1507
+ version 1.14.4. https://CRAN.R-project.org/package=data.table.
1508
+ [29]
1509
+ Durre I, Menne MJ, Vose RS (2008) Strategies for evaluating quality assurance
1510
+ procedures. Journal of Applied Meteorology and Climatology 47(6):1785–1791.
1511
+ https://doi.org/10.1175/2007JAMC1706.1.
1512
+ [30]
1513
+ Durre I, Menne MJ, Gleason BE, Houston TG, Vose RS (2010) Comprehensive
1514
+ automated quality assurance of daily surface observations. Journal of Applied
1515
+ Meteorology
1516
+ and
1517
+ Climatology
1518
+ 49(8):1615-1633.
1519
+ https://doi.org/10.1175/2010JAMC2375.1.
1520
+ [31]
1521
+ Efron B, Hastie T (2016) Computer age statistical inference. Cambridge
1522
+ University Press, New York. https://doi.org/10.1017/CBO9781316576533.
1523
+ [32]
1524
+ Fan J, Yue W, Wu L, Zhang F, Cai H, Wang X, Lu X, Xiang Y (2018) Evaluation of
1525
+ SVM, ELM and four tree-based ensemble models for predicting daily reference
1526
+ evapotranspiration using limited meteorological data in different climates of
1527
+ China. Agricultural
1528
+ and
1529
+ Forest
1530
+ Meteorology 263:225−241.
1531
+ https://doi.org/10.1016/j.agrformet.2018.08.019.
1532
+ [33]
1533
+ Feng DC, Liu ZT, Wang XD, Chen Y, Chang JQ, Wei DF, Jiang ZM (2020) Machine
1534
+ learning-based compressive strength prediction for concrete: An adaptive
1535
+ boosting
1536
+ approach. Construction
1537
+ and
1538
+ Building
1539
+ Materials
1540
+ 230:117000.
1541
+ https://doi.org/10.1016/j.conbuildmat.2019.117000.
1542
+
1543
+ 22
1544
+
1545
+ [34]
1546
+ Fernandez-Palomino CA, Hattermann FF, Krysanova V, Lobanova A, Vega-Jácome
1547
+ F, Lavado W, Santini W, Aybar C, Bronstert A (2022) A novel high-resolution
1548
+ gridded precipitation dataset for Peruvian and Ecuadorian watersheds:
1549
+ Development and hydrological evaluation. Journal of Hydrometeorology
1550
+ 23(3):309–336. https://doi.org/10.1175/JHM-D-20-0285.1.
1551
+ [35]
1552
+ Fischer S, Schumann AH (2021) Regionalisation of flood frequencies based on
1553
+ flood type-specific mixture distributions. Journal of Hydrology X 13:100107.
1554
+ https://doi.org/10.1016/j.hydroa.2021.100107.
1555
+ [36]
1556
+ Friedman JH (2001) Greedy function approximation: A gradient boosting
1557
+ machine.
1558
+ The
1559
+ Annals
1560
+ of
1561
+ Statistics
1562
+ 29(5):1189–1232.
1563
+ https://doi.org/10.1214/aos/1013203451.
1564
+ [37]
1565
+ García-Gutiérrez J, Martínez-Álvarez F, Troncoso A, Riquelme JC (2015) A
1566
+ comparison of machine learning regression techniques for LiDAR-derived
1567
+ estimation
1568
+ of
1569
+ forest
1570
+ variables.
1571
+ Neurocomputing
1572
+ 167:24−31.
1573
+ https://doi.org/10.1016/j.neucom.2014.09.091.
1574
+ [38]
1575
+ Gneiting T (2011) Making and evaluating point forecasts. Journal of the American
1576
+ Statistical
1577
+ Association
1578
+ 106(494):746–762.
1579
+ https://doi.org/10.1198/jasa.2011.r10138.
1580
+ [39]
1581
+ Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning
1582
+ and statistical prediction techniques for landslide susceptibility modeling.
1583
+ Computers
1584
+ and
1585
+ Geosciences
1586
+ 81:1−11.
1587
+ https://doi.org/10.1016/j.cageo.2015.04.007.
1588
+ [40]
1589
+ Granata F, Di Nunno F, de Marinis G (2022) Stacked machine learning algorithms
1590
+ and bidirectional long short-term memory networks for multi-step ahead
1591
+ streamflow forecasting: A comparative study. Journal of Hydrology 613:128431.
1592
+ https://doi.org/10.1016/j.jhydrol.2022.128431
1593
+ [41]
1594
+ Greenwell B, Boehmke B, Cunningham J, et al. (2022) gbm: Generalized boosted
1595
+ regression
1596
+ models.
1597
+ R
1598
+ package
1599
+ version
1600
+ 2.1.8.1.
1601
+
1602
+ https://CRAN.R-
1603
+ project.org/package=gbm.
1604
+ [42]
1605
+ Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning.
1606
+ Springer, New York. https://doi.org/10.1007/978-0-387-84858-7.
1607
+ [43]
1608
+ He X, Chaney NW, Schleiss M, Sheffield J (2016) Spatial downscaling of
1609
+ precipitation using adaptable random forests. Water Resources Research
1610
+ 52(10):8217–8237. https://doi.org/10.1002/2016WR019034.
1611
+ [44]
1612
+ Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler B (2018) Random
1613
+ forest as a generic framework for predictive modeling of spatial and spatio-
1614
+ temporal variables. PeerJ 6(8):e5518. https://doi.org/10.7717/peerj.5518.
1615
+ [45]
1616
+ Hollister JW (2022) elevatr: Access elevation data from various APIs. R
1617
+ package version 0.4.2. https://CRAN.R-project.org/package=elevatr.
1618
+ [46]
1619
+ Hu Q, Li Z, Wang L, Huang Y, Wang Y, Li L (2019) Rainfall spatial estimations: A
1620
+ review from spatial interpolation to multi-source data merging. Water 11(3):579.
1621
+ https://doi.org/10.3390/w11030579.
1622
+ [47]
1623
+ Idowu S, Saguna S, Åhlund C, Schelén O (2016) Applied machine learning:
1624
+ Forecasting heat load in district heating system. Energy and Buildings
1625
+ 133:478−488. https://doi.org/10.1016/j.enbuild.2016.09.068.
1626
+ [48]
1627
+ Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: A
1628
+ tutorial. Computer 29(3):31−44. https://doi.org/10.1109/2.485891
1629
+ [49]
1630
+ James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical
1631
+ Learning. Springer, New York. https://doi.org/10.1007/978-1-4614-7138-7.
1632
+
1633
+ 23
1634
+
1635
+ [50]
1636
+ Jehn FU, Bestian K, Breuer L, Kraft P, Houska T (2020) Using hydrological and
1637
+ climatic catchment clusters to explore drivers of catchment behavior. Hydrology
1638
+ and Earth System Sciences 24(3):1081–1100. https://doi.org/10.5194/hess-24-
1639
+ 1081-2020.
1640
+ [51]
1641
+ Khanam JJ, Foo SY (2021) A comparison of machine learning algorithms for
1642
+ diabetes
1643
+ prediction.
1644
+ ICT
1645
+ Express
1646
+ 7(4):432−439.
1647
+ https://doi.org/10.1016/j.icte.2021.02.004.
1648
+ [52]
1649
+ Khorrami M, Khorrami M, Farhangi F (2022) Evaluation of tree-based ensemble
1650
+ algorithms for predicting the big five personality traits based on social media
1651
+ photos: Evidence from an Iranian sample. Personality and Individual Differences
1652
+ 188:111479. https://doi.org/10.1016/j.paid.2021.111479.
1653
+ [53]
1654
+ Kim D, Lee H, Beighley E, Tshimanga RM (2021) Estimating discharges for poorly
1655
+ gauged river basin using ensemble learning regression with satellite altimetry
1656
+ data and a hydrologic model. Advances in Space Research 68(2):607−618.
1657
+ https://doi.org/10.1016/j.asr.2019.08.018
1658
+ [54]
1659
+ Kuhn M (2022) caret: Classification and regression training. R package version
1660
+ 6.0-93. https://CRAN.R-project.org/package=caret.
1661
+ [55]
1662
+ LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436−444.
1663
+ https://doi.org/10.1038/nature14539
1664
+ [56]
1665
+ Lee DG, Ahn KH (2021) A stacking ensemble model for hydrological post-
1666
+ processing to improve streamflow forecasts at medium-range timescales over
1667
+ South
1668
+ Korea. Journal
1669
+ of
1670
+ Hydrology 600:126681.
1671
+ https://doi.org/10.1016/j.jhydrol.2021.126681
1672
+ [57]
1673
+ Lei H, Zhao H, Ao T (2022) A two-step merging strategy for incorporating multi-
1674
+ source precipitation products and gauge observations using machine learning
1675
+ classification and regression over China. Hydrology and Earth System Sciences
1676
+ 26(11):2969−2995. https://doi.org/10.5194/hess-26-2969-2022.
1677
+ [58]
1678
+ Li S, Yang J (2022) Improved river water-stage forecasts by ensemble
1679
+ learning. Engineering with Computers:1−19. https://doi.org/10.1007/s00366-
1680
+ 022-01751-1
1681
+ [59]
1682
+ Lichtendahl Jr. KC, Grushka-Cockayne Y, Winkler RL (2013) Is it better to average
1683
+ probabilities
1684
+ or
1685
+ quantiles?.
1686
+ Management
1687
+ Science
1688
+ 59(7):1594−1611.
1689
+ https://doi.org/10.1287/mnsc.1120.1667.
1690
+ [60]
1691
+ Lin Q, Peng T, Wu Z, Guo J, Chang W, Xu Z (2022) Performance evaluation, error
1692
+ decomposition and tree-based machine learning error correction of GPM IMERG
1693
+ and TRMM 3B42 products in the Three Gorges reservoir area. Atmospheric
1694
+ Research 268:105988. https://doi.org/10.1016/j.atmosres.2021.105988.
1695
+ [61]
1696
+ Linardatos P, Papastefanopoulos V, Kotsiantis S (2020) Explainable AI: A review
1697
+ of
1698
+ machine
1699
+ learning
1700
+ interpretability
1701
+ methods.
1702
+ Entropy
1703
+ 23(1):18.
1704
+ https://doi.org/10.3390/e23010018.
1705
+ [62]
1706
+ Liu C, Zhou S, Wang YG, Hu Z (2020) Natural mortality estimation using tree-
1707
+ based
1708
+ ensemble
1709
+ learning
1710
+ models. ICES
1711
+ Journal
1712
+ of
1713
+ Marine
1714
+ Science 77(4):1414−1426. https://doi.org/10.1093/icesjms/fsaa058.
1715
+ [63]
1716
+ Mayr A, Binder H, Gefeller O, Schmid M (2014) The evolution of boosting
1717
+ algorithms: From machine learning to statistical modelling. Methods of
1718
+ Information in Medicine 53(6):419–427. https://doi.org/10.3414/ME13-01-
1719
+ 0122.
1720
+
1721
+ 24
1722
+
1723
+ [64]
1724
+ Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the
1725
+ Global Historical Climatology Network-Daily database. Journal of Atmospheric
1726
+ and Oceanic Technology 29(7):897−910. https://doi.org/10.1175/JTECH-D-11-
1727
+ 00103.1.
1728
+ [65]
1729
+ Meyer H, Kühnlein M, Appelhans T, Nauss T (2016) Comparison of four machine
1730
+ learning algorithms for their applicability in satellite-based optical rainfall
1731
+ retrievals.
1732
+ Atmospheric
1733
+ Research
1734
+ 169:424–433.
1735
+ https://doi.org/10.1016/j.atmosres.2015.09.021.
1736
+ [66]
1737
+ Militino AF, Ugarte MD, Pérez-Goya U (2023) Machine learning procedures for
1738
+ daily interpolation of rainfall in Navarre (Spain). Studies in Systems, Decision and
1739
+ Control 445:399–413. https://doi.org/10.1007/978-3-031-04137-2_34.
1740
+ [67]
1741
+ Mittendorf M, Nielsen UD, Bingham HB (2022) Data-driven prediction of added-
1742
+ wave resistance on ships in oblique waves—A comparison between tree-based
1743
+ ensemble
1744
+ methods
1745
+ and
1746
+ artificial
1747
+ neural
1748
+ networks. Applied
1749
+ Ocean
1750
+ Research 118:102964. https://doi.org/10.1016/j.apor.2021.102964.
1751
+ [68]
1752
+ Montanari A, Young G, Savenije HHG, Hughes D, Wagener T, Ren LL,
1753
+ Koutsoyiannis D, Cudennec C, Toth E, Grimaldi S, et al. (2013) “Panta Rhei—
1754
+ Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade
1755
+ 2013–2022.
1756
+ Hydrological
1757
+ Sciences
1758
+ Journal
1759
+ 58(6):1256–1275.
1760
+ https://doi.org/10.1080/02626667.2013.809088.
1761
+ [69]
1762
+ Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Frontiers in
1763
+ Neurorobotics 7:21. https://doi.org/10.3389/fnbot.2013.00021.
1764
+ [70]
1765
+ Nguyen GV, Le X-H, Van LN, Jung S, Yeon M, Lee G (2021) Application of random
1766
+ forest algorithm for merging multiple satellite precipitation products across
1767
+ South
1768
+ Korea.
1769
+ Remote
1770
+ Sensing
1771
+ 13(20):4033.
1772
+ https://doi.org/10.3390/rs13204033.
1773
+ [71]
1774
+ Paliwal M, Kumar UA (2009) Neural networks and statistical techniques: A
1775
+ review
1776
+ of
1777
+ applications. Expert
1778
+ Systems
1779
+ with
1780
+ Applications 36(1):2−17.
1781
+ https://doi.org/10.1016/j.eswa.2007.10.005.
1782
+ [72]
1783
+ Papacharalampous G, Tyralis H (2020) Hydrological time series forecasting using
1784
+ simple combinations: Big data testing and investigations on one-year ahead river
1785
+ flow
1786
+ predictability.
1787
+ Journal
1788
+ of
1789
+ Hydrology
1790
+ 590:125205.
1791
+ https://doi.org/10.1016/j.jhydrol.2020.125205.
1792
+ [73]
1793
+ Papacharalampous G, Tyralis H (2022a) A review of machine learning concepts
1794
+ and methods for addressing challenges in probabilistic hydrological post-
1795
+ processing
1796
+ and
1797
+ forecasting.
1798
+ Frontiers
1799
+ in
1800
+ Water
1801
+ 4:961954.
1802
+ https://doi.org/10.3389/frwa.2022.961954.
1803
+ [74]
1804
+ Papacharalampous G, Tyralis H (2022b) Time series features for supporting
1805
+ hydrometeorological explorations and predictions in ungauged locations using
1806
+ large datasets. Water 14(10):1657. https://doi.org/10.3390/w14101657.
1807
+ [75]
1808
+ Papacharalampous G, Tyralis H, Langousis A, Jayawardena AW, Sivakumar B,
1809
+ Mamassis N, Montanari A, Koutsoyiannis D (2019) Probabilistic hydrological
1810
+ post-processing at scale: Why and how to apply machine-learning quantile
1811
+ regression
1812
+ algorithms.
1813
+ Water
1814
+ 11(10):2126.
1815
+ https://doi.org/10.3390/w11102126.
1816
+ [76]
1817
+ Papacharalampous G, Tyralis H, Doulamis A, Doulamis N (2023) Comparison of
1818
+ machine learning algorithms for merging gridded satellite and earth-observed
1819
+ precipitation data. Preprint submitted to arXiv and to be announced soon.
1820
+
1821
+ 25
1822
+
1823
+ [77]
1824
+ Park S, Kim C (2022) Comparison of tree-based ensemble models for
1825
+ regression. Communications
1826
+ for
1827
+ Statistical
1828
+ Applications
1829
+ and
1830
+ Methods 29(5):561−589. https://doi.org/10.29220/CSAM.2022.29.5.561.
1831
+ [78]
1832
+ Pebesma E (2018) Simple features for R: Standardized support for spatial vector
1833
+ data. The R Journal 10 (1):439−446. https://doi.org/10.32614/RJ-2018-009.
1834
+ [79]
1835
+ Pebesma E (2022) sf: Simple features for R. R package version 1.0-8.
1836
+ https://CRAN.R-project.org/package=sf.
1837
+ [80]
1838
+ Pierce D (2021) ncdf4: Interface to Unidata netCDF (version 4 or earlier) format
1839
+ data files. R package version 1.19. https://CRAN.R-project.org/package=ncdf4.
1840
+ [81]
1841
+ Quilty J, Adamowski J (2020) A stochastic wavelet-based data-driven framework
1842
+ for forecasting uncertain multiscale hydrological and water resources processes.
1843
+ Environmental
1844
+ Modelling
1845
+ and
1846
+ Software
1847
+ 130:104718.
1848
+ https://doi.org/10.1016/j.envsoft.2020.104718.
1849
+ [82]
1850
+ Quilty J, Adamowski J, Boucher MA (2019) A stochastic data-driven ensemble
1851
+ forecasting framework for water resources: A case study using ensemble
1852
+ members derived from a database of deterministic wavelet-based models. Water
1853
+ Resources Research 55(1):175–202. https://doi.org/10.1029/2018WR023205.
1854
+ [83]
1855
+ R Core Team (2022) R: A language and environment for statistical computing. R
1856
+ Foundation for Statistical Computing, Vienna, Austria. https://www.R-
1857
+ project.org.
1858
+ [84]
1859
+ Rahaman MSA, Vasant P, Ul Haq I, Padmanabhan E, Jufar SR, Sokkalingam R,
1860
+ Watada J (2021) Evaluation of tree-based ensemble learning algorithms to
1861
+ estimate total organic carbon from wireline logs. International Journal of
1862
+ Innovative
1863
+ Computing,
1864
+ Information
1865
+ and
1866
+ Control
1867
+ 17(3):807−829.
1868
+ https://doi.org/10.24507/ijicic.17.03.807.
1869
+ [85]
1870
+ Rahman ATMS, Hosono T, Kisi O, Dennis B, Imon AHMR (2020) A minimalistic
1871
+ approach for evapotranspiration estimation using the Prophet model.
1872
+ Hydrological
1873
+ Sciences
1874
+ Journal
1875
+ 65(12):1994−2006.
1876
+ https://doi.org/10.1080/02626667.2020.1787416.
1877
+ [86]
1878
+ Roscher R, Bohn B, Duarte MF, Garcke J (2020) Explainable machine learning for
1879
+ scientific
1880
+ insights
1881
+ and
1882
+ discoveries. IEEE
1883
+ Access 8:42200–42216.
1884
+ https://doi.org/10.1109/ACCESS.2020.2976199.
1885
+ [87]
1886
+ Rustam F, Khalid M, Aslam W, Rupapara V, Mehmood A, Choi GS (2021) A
1887
+ performance comparison of supervised machine learning models for Covid-19
1888
+ tweets
1889
+ sentiment
1890
+ analysis.
1891
+ PLoS
1892
+ ONE
1893
+ 16(2):e0245909.
1894
+ https://doi.org/10.1371/journal.pone.0245909.
1895
+ [88]
1896
+ Sagi O, Rokach L (2018) Ensemble learning: A survey. Wiley Interdisciplinary
1897
+ Reviews:
1898
+ Data
1899
+ Mining
1900
+ and
1901
+ Knowledge
1902
+ Discovery
1903
+ 8(4):e1249.
1904
+ https://doi.org/10.1002/widm.1249.
1905
+ [89]
1906
+ Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural
1907
+ Networks 61:85−117. https://doi.org/10.1016/j.neunet.2014.09.003
1908
+ [90]
1909
+ Shen Z, Yong B (2021) Downscaling the GPM-based satellite precipitation
1910
+ retrievals using gradient boosting decision tree approach over Mainland China.
1911
+ Journal
1912
+ of
1913
+ Hydrology
1914
+ 602:126803.
1915
+ https://doi.org/10.1016/j.jhydrol.2021.126803.
1916
+ [91]
1917
+ Spearman C (1904) The proof and measurement of association between two
1918
+ things.
1919
+ The
1920
+ American
1921
+ Journal
1922
+ of
1923
+ Psychology
1924
+ 15(1):72–101.
1925
+ https://doi.org/10.2307/1412159.
1926
+
1927
+ 26
1928
+
1929
+ [92]
1930
+ Tyralis H, Papacharalampous G (2021) Boosting algorithms in energy research:
1931
+ A systematic review. Neural Computing and Applications 33(21):14101-14117.
1932
+ https://doi.org/10.1007/s00521-021-05995-8.
1933
+ [93]
1934
+ Tyralis H, Papacharalampous G (2022a) A review of probabilistic forecasting and
1935
+ prediction with machine learning. https://arxiv.org/abs/2209.08307.
1936
+ [94]
1937
+ Tyralis H, Papacharalampous G (2022b) scoringfunctions: A collection of
1938
+ scoring
1939
+ functions
1940
+ for
1941
+ assessing
1942
+ point
1943
+ forecasts.
1944
+ https://CRAN.R-
1945
+ project.org/package=scoringfunctions.
1946
+ [95]
1947
+ Tyralis H, Papacharalampous G, Burnetas A, Langousis A (2019a) Hydrological
1948
+ post-processing using stacked generalization of quantile regression algorithms:
1949
+ Large-scale application over CONUS. Journal of Hydrology 577:123957.
1950
+ https://doi.org/10.1016/j.jhydrol.2019.123957.
1951
+ [96]
1952
+ Tyralis H, Papacharalampous G, Langousis A (2019b) A brief review of random
1953
+ forests for water scientists and practitioners and their recent history in water
1954
+ resources. Water 11(5):910. https://doi.org/10.3390/w11050910.
1955
+ [97]
1956
+ Tyralis H, Papacharalampous G, Langousis A (2021) Super ensemble learning for
1957
+ daily streamflow forecasting: Large-scale demonstration and comparison with
1958
+ multiple machine learning algorithms. Neural Computing and Applications
1959
+ 33(8):3053-3068. https://doi.org/10.1007/s00521-020-05172-3.
1960
+ [98]
1961
+ Wei A, Yu K, Dai F, Gu F, Zhang W, Liu Y (2022) Application of Tree-Based
1962
+ Ensemble Models to Landslide Susceptibility Mapping: A Comparative
1963
+ Study. Sustainability 14(10):6330. https://doi.org/10.3390/su14106330.
1964
+ [99]
1965
+ Wickham H (2022) tidyverse: Easily install and load the 'Tidyverse'. R package
1966
+ version 1.3.2. https://CRAN.R-project.org/package=tidyverse.
1967
+ [100]
1968
+ Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund
1969
+ G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K,
1970
+ Ooms J, Robinson D, Paige Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C,
1971
+ Woo K, Yutani H (2019) Welcome to the tidyverse. Journal of Open Source
1972
+ Software 4(43):1686. https://doi.org/10.21105/joss.01686.
1973
+ [101]
1974
+ Wickham H, Hester J, Chang W, Bryan J (2022) devtools: Tools to make
1975
+ developing R packages easier. R package version 2.4.5. https://CRAN.R-
1976
+ project.org/package=devtools.
1977
+ [102]
1978
+ Wolpert DH (1992) Stacked generalization. Neural Networks 5(2):241–259.
1979
+ https://doi.org/10.1016/S0893-6080(05)80023-1.
1980
+ [103]
1981
+ Wright MN (2022) ranger: A fast implementation of random forests. R package
1982
+ version 0.14.1. https://CRAN.R-project.org/package=ranger.
1983
+ [104]
1984
+ Wright MN, Ziegler A (2017) ranger: A fast implementation of random forests for
1985
+ high dimensional data in C++ and R. Journal of Statistical Software 77(1):1−17.
1986
+ https://doi.org/10.18637/jss.v077.i01.
1987
+ [105]
1988
+ Xie Y (2014) knitr: A Comprehensive Tool for Reproducible Research in R. In:
1989
+ Stodden V, Leisch F, Peng RD (Eds) Implementing Reproducible Computational
1990
+ Research. Chapman and Hall/CRC.
1991
+ [106]
1992
+ Xie Y (2015) Dynamic Documents with R and knitr, 2nd edition. Chapman and
1993
+ Hall/CRC.
1994
+ [107]
1995
+ Xie Y (2022) knitr: A general-purpose package for dynamic report generation
1996
+ in R. R package version 1.40. https://CRAN.R-project.org/package=knitr.
1997
+ [108]
1998
+ Xie Y, Allaire JJ, Grolemund G (2018) R Markdown: The Definitive Guide. Chapman
1999
+ and Hall/CRC. ISBN 9781138359338. https://bookdown.org/yihui/rmarkdown.
2000
+
2001
+ 27
2002
+
2003
+ [109]
2004
+ Xie Y, Dervieux C, Riederer E (2020) R Markdown Cookbook. Chapman and
2005
+ Hall/CRC. ISBN 9780367563837. https://bookdown.org/yihui/rmarkdown-
2006
+ cookbook.
2007
+ [110]
2008
+ Xiong L, Li S, Tang G, Strobl J (2022) Geomorphometry and terrain analysis: Data,
2009
+ methods, platforms and applications. Earth-Science Reviews 233:104191.
2010
+ https://doi.org/10.1016/j.earscirev.2022.104191.
2011
+ [111]
2012
+ Xu L, Chen N, Zhang X, Chen Z (2018) An evaluation of statistical, NMME and
2013
+ hybrid models for drought prediction in China. Journal of Hydrology 566:235–
2014
+ 249. https://doi.org/10.1016/j.jhydrol.2018.09.020.
2015
+ [112]
2016
+ Yao Y, Vehtari A, Simpson D, Gelman A (2018) Using stacking to average Bayesian
2017
+ predictive
2018
+ distributions.
2019
+ Bayesian
2020
+ Analysis
2021
+ 13(3):917–1003.
2022
+ https://doi.org/10.1214/17-BA1091.
2023
+ [113]
2024
+ Yao W, Li D, Gao L (2022) Fault detection and diagnosis using tree-based
2025
+ ensemble learning methods and multivariate control charts for centrifugal
2026
+ chillers. Journal
2027
+ of
2028
+ Building
2029
+ Engineering 51:104243.
2030
+ https://doi.org/10.1016/j.jobe.2022.104243.
2031
+ [114]
2032
+ Zandi O, Zahraie B, Nasseri M, Behrangi A (2022) Stacking machine learning
2033
+ models versus a locally weighted linear model to generate high-resolution
2034
+ monthly precipitation over a topographically complex area. Atmospheric
2035
+ Research 272:106159. https://doi.org/10.1016/j.atmosres.2022.106159.
2036
+ [115]
2037
+ Zhang L, Li X, Zheng D, Zhang K, Ma Q, Zhao Y, Ge Y (2021) Merging multiple
2038
+ satellite-based precipitation products and gauge observations using a novel
2039
+ double machine learning approach. Journal of Hydrology 594:125969.
2040
+ https://doi.org/10.1016/j.jhydrol.2021.125969.
2041
+ [116]
2042
+ Ziane A, Dabou R, Necaibia A, Sahouane N, Mostefaoui M, Bouraiou A, Khelifi S,
2043
+ Rouabhia A, Blal M (2021) Tree-based ensemble methods for predicting the
2044
+ module temperature of a grid-tied photovoltaic system in the desert.
2045
+ International
2046
+ Journal
2047
+ of
2048
+ Green
2049
+ Energy
2050
+ 18(13):1430−1440.
2051
+ https://doi.org/10.1080/15435075.2021.1904945.
2052
+
0tAzT4oBgHgl3EQfRPvU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NAzT4oBgHgl3EQfDfoM/content/tmp_files/2301.00975v1.pdf.txt ADDED
@@ -0,0 +1,1995 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Surveillance Face Anti-spoofing
3
+ Hao Fang, Ajian Liu, Jun Wan, Senior Member, IEEE, Sergio Escalera, Senior Member, IEEE
4
+ Chenxu Zhao, Xu Zhang, Stan Z. Li, Fellow , IEEE, Zhen Lei, Senior Member, IEEE
5
+ Abstract—Face Anti-spoofing (FAS) is essential to secure face
6
+ recognition systems from various physical attacks. However,
7
+ recent research generally focuses on short-distance applications
8
+ (i.e., phone unlocking) while lacking consideration of long-
9
+ distance scenes (i.e., surveillance security checks). In order to
10
+ promote relevant research and fill this gap in the community,
11
+ we collect a large-scale Surveillance High-Fidelity Mask (SuHi-
12
+ FiMask) dataset captured under 40 surveillance scenes, which has
13
+ 101 subjects from different age groups with 232 3D attacks (high-
14
+ fidelity masks), 200 2D attacks (posters, portraits, and screens),
15
+ and 2 adversarial attacks. In this scene, low image resolution
16
+ and noise interference are new challenges faced in surveillance
17
+ FAS. Together with the SuHiFiMask dataset, we propose a
18
+ Contrastive Quality-Invariance Learning (CQIL) network to
19
+ alleviate the performance degradation caused by image quality
20
+ from three aspects: (1) An Image Quality Variable module
21
+ (IQV) is introduced to recover image information associated
22
+ with discrimination by combining the super-resolution network.
23
+ (2) Using generated sample pairs to simulate quality variance
24
+ distributions to help contrastive learning strategies obtain robust
25
+ feature representation under quality variation. (3) A Separate
26
+ Quality Network (SQN) is designed to learn discriminative
27
+ features independent of image quality. Finally, a large number
28
+ of experiments verify the quality of the SuHiFiMask dataset and
29
+ the superiority of the proposed CQIL.
30
+ Index Terms—Face anti-spoofing, Dataset, Surveillance scenes.
31
+ I. INTRODUCTION
32
+ F
33
+ ACE Presentation Attack Detection (PAD) technology is
34
+ a crucial step to enhance the security of face recognition
35
+ systems and plays an increasingly important role in resisting
36
+ malicious attacks, such as print-attack [1], replay-attack [2], or
37
+ face-mask [3]. Although current works [4]–[13] have achieved
38
+ satisfactory performance in short-distance applications, such
39
+ as phone unlocking, face payment, and access authentication,
40
+ they are still sensitive to face quality and fail in long-distance
41
+ applications, which hinders the expansion of FAS to surveil-
42
+ lance scenarios.
43
+ With the popularity of remote cameras and the improvement
44
+ of surveillance networks, the development of smart cities
45
+ Corresponding author: Jun Wan (e-mail: jun.wan@ia.ac.cn).
46
+ Hao Fang, Ajian Liu, Jun Wan and Zhen Lei are with the National Laboratory
47
+ of Pattern Recognition (NLPR), Institute of Automation Chinese Academy of
48
+ Sciences (CASIA) and School of Artificial Intelligence, University of Chi-
49
+ nese Academy of Sciences (UCAS), Beijing, China (e-mail: {fanghao2021,
50
+ ajian.liu, jun.wan, zhen.lei}@ia.ac.cn).
51
+ Xu Zhang is with Beijing Normal University School of Artificial Intelligence,
52
+ Beijing, China (e-mail: xuzhang0908@mail.bnu.edu.cn).
53
+ Chenxu Zhao is with the SailYond Technology, Beijing, China ( e-mail:
54
+ zhaochenxu@sailyond.com).
55
+ Sergio Escalera is with the Universitat de Barcelona (UB), Barcelona,
56
+ Computer Vision Center (CVC), and Aalborg University (AAU) (e-mail:
57
+ sergio@maia.ub.es).
58
+ Stan
59
+ Z.
60
+ Li
61
+ is
62
+ with
63
+ Westlake
64
+ University,
65
+ Hangzhou,
66
+ China
67
+ (e-mail:
68
+ stan.zq.li@westlake.edu.cn).
69
+ Fig. 1. Performance comparisons on the SiW, HiFiMask, OULU-NPU, and
70
+ proposed SuHiFiMask dataset using the same ResNet18 network. It shows
71
+ significant performance degradation under surveillance FAS.
72
+ has put forward higher requirements for traditional visual
73
+ technologies in surveillance. Benefited from the release of face
74
+ recognition datasets [14]–[16] in the surveillance scene and
75
+ driven by related algorithms [17]–[19], the face recognition
76
+ system has gradually got rid of the constraint of verification
77
+ distance, and can use the surveillance camera to complete
78
+ real-time capture, self-service access control, and self-service
79
+ supermarket payment. However, the FAS community is still
80
+ stuck in the protection of the face recognition system under
81
+ short-distance conditions, and cannot serve for the detection
82
+ of spoofing faces under a long-distance natural behavior. We
83
+ analyze two reasons that hinder the development of PAD tech-
84
+ nologies: (1) Lack of a dataset that can truly simulate the
85
+ attack in surveillance. The existing FAS datasets, whether 2D
86
+ print or replay attacks [4], [20], [21], or 3D mask attacks [3],
87
+ [22]–[25], require the subjects to face the acquisition device
88
+ under distance constraints. However, diversified surveillance
89
+ scenes, rich spoofing types, and natural human behavior are
90
+ important assessment factors for the surveillance FAS dataset
91
+ collection. (2) Low-quality faces in the surveillance scenar-
92
+ ios cannot meet the requirements of fine-grained feature-
93
+ based FAS tasks. The existing FAS algorithms, whether based
94
+ on color-texture feature learning [26]–[29], face depth struc-
95
+ ture fitting [4], [6], or remote photoplethysmography (rPPG)-
96
+ based detection [30]–[32], require high-quality image details
97
+ to ensure high performances. As illustrated in Fig. 1, the
98
+ resolution of faces under long-distance surveillance is small
99
+ and contains noise from motion blur, occlusion, bad weather,
100
+ and other bad factors. These are new challenges for algorithm
101
+ arXiv:2301.00975v1 [cs.CV] 3 Jan 2023
102
+
103
+ Long Distance Scene
104
+ Low Resolution Natural Weather Real Behavior
105
+ ResNet18
106
+ 12.58
107
+ ACER%
108
+ 12
109
+ 10
110
+ 8
111
+ 6
112
+ 4
113
+ 2.20
114
+ 2.23
115
+ 2
116
+ 0.21
117
+ 0
118
+ Siw
119
+ HiFiMask
120
+ SuHiFiMask(Ours)
121
+ OULU-NPU2
122
+ design in surveillance FAS.
123
+ In order to fill the gap in surveillance scenes of the FAS
124
+ community, we target to solve two challenging problems an-
125
+ alyzed above from two aspects: data collection and algorithm
126
+ design. In Tab. I, we collect a large-scale FAS dataset based on
127
+ surveillance scenes, namely SuHiFiMask. It has the following
128
+ advantages: (a) Rich surveillance scenes. It includes 40 real
129
+ surveillance scenes, such as movie theaters, security gates,
130
+ and parking lots, which cover most face recognition scenes
131
+ as much as possible. (b) Realistic distribution of human
132
+ faces and natural behavior. It involves 101 participants of
133
+ different ages, and genders distribution participating in the data
134
+ collection. These subjects perform natural behaviors in daily
135
+ life. (c) Rich spoofing Attacks. It has 232 high-fidelity masks
136
+ (i.e. resin, plaster, silicone, headgear, head mold), 200 2D
137
+ attacks (i.e. posters, portraits, and screens), and 2 adversarial
138
+ attacks. (d) Realistic lighting and diverse weather. We collect
139
+ data under real outdoor scenes with different weather (i.e.,
140
+ sunny, snowy day) and light (i.e., day and night).
141
+ For the algorithm design, the Contrastive Quality-Invariance
142
+ Learning network (CQIL) is proposed in Fig. 5, which includes
143
+ an Image Quality Variable (IQV) module and a two-stream
144
+ framework consisting of a contrastive learning branch and a
145
+ Separate Quality Network (SQN) branch. The IQV module is
146
+ used to recover discriminative information related to FAS in
147
+ the picture by super-resolution and deliver quality differences
148
+ in contrast to the contrastive learning network backbone and
149
+ SQN branch. The contrastive learning backbone [38] contains
150
+ the online network and the target network. The online network
151
+ continuously fits the target network during training, learning to
152
+ approximate the same class with different quality distributions
153
+ in the shared potential space. The SQN consists of a Quality-
154
+ Invariance backbone network (CQI) (composed of a central
155
+ differential convolution operator [7]), a quality discrimina-
156
+ tor for separating quality, and the main classifier. CQI can
157
+ effectively extract fine-grained features under environmental
158
+ changes. The sample pairs generated by IQV are fed into CQI
159
+ through adversarial learning, which allows CQI to focus on
160
+ encoding features related to liveness while separating out the
161
+ interference caused by quality. The main contributions of this
162
+ paper are summarized below:
163
+ • To the best of our knowledge, this is the first work
164
+ to extend FAS to real surveillance scenes rather than
165
+ mimicking low-resolution images and surveillance envi-
166
+ ronments. We promote the development of this scenario
167
+ through data collection and algorithm design.
168
+ • We collect a large-scale surveillance FAS dataset, SuHi-
169
+ FiMask, including 101 participants of different ages, 232
170
+ masks and 200 2D attacks. A total of 10, 195 videos were
171
+ collected by 7 mainstream cameras in 40 real scenes.
172
+ • We
173
+ propose
174
+ a
175
+ novel
176
+ Contrastive
177
+ Quality-Invariance
178
+ Learning (CQIL) network to enhance the detection of face
179
+ attacks in surveillance. Among them, an Image Quality
180
+ Variable (IQV) module is designed to recover the FAS
181
+ information in images and construct sample pairs to
182
+ simulate face quality differences in realistic surveillance.
183
+ A contrastive learning branch to obtain features robust
184
+ to quality changes. And a Separate Quality Network
185
+ (SQN) branch based on adversarial learning is introduced
186
+ to further guide the model to learn quality-independent
187
+ liveness features.
188
+ • Extensive experiments are conducted on the SuHiFiMask
189
+ and three other public datasets to demonstrate the chal-
190
+ lenges of the SuHiFiMask and the effectiveness of the
191
+ proposed method.
192
+ II. RELATED WORK
193
+ In this section, we review the current FAS works in con-
194
+ strained environments and some preliminary attempts in the
195
+ surveillance scenes.
196
+ FAS under constrained Environments.
197
+ Face spoofing (e.g., presentation attacks) is the typical
198
+ physical attack to deceive the face recognition systems, where
199
+ attackers present faces from spoof mediums, such as a pho-
200
+ tograph, screen, or mask, instead of a living human. Ac-
201
+ cording to the spoof mediums, we can roughly classify the
202
+ existing attacks into 2D [4], [20], [21] and 3D attacks [3],
203
+ [25]. Replay-Attack [2] and CASIA-FASD [1] are early FAS
204
+ datasets, commonly used as benchmark for domain gener-
205
+ alization evaluation. The spoof medium of the former is an
206
+ electronic screen, while the latter introduces additional paper
207
+ mediums based on different resolutions. With the advancement
208
+ of acquisition equipment in mobile phones, there are also some
209
+ high-resolution datasets recorded by replaying face video with
210
+ a smartphone, such as Replay-Mobile [39], OULU-NPU [20],
211
+ and SiW [4]. CelebA-Spoof [40] introduces rich attribute
212
+ annotation information, which can be used as an auxiliary
213
+ task to improve the generalization of the model in various
214
+ attacks. Recently, with the cost reduction of multi-spectral
215
+ sensors and the popularity of use scenes, some new sensors
216
+ have been introduced to provide more possibilities for FAS
217
+ methods. Holger et al. [23] use multi-spectral short wave
218
+ infrared (SWIR) imaging to ensure the authenticity of a face
219
+ even in the presence of partial disguises and masks. Zhang et
220
+ al. [21] collect a CASIA-SURF dataset with 3 modalities (i.e.,
221
+ RGB, Depth and NIR) using Intel RealSense SR300 camera,
222
+ and propose a multi-modal multi-scale fusion method for FAS.
223
+ Similarly, Liu et al. [41] introduce a CASIA-SURF CeFA
224
+ dataset, covering 3 ethnicities, 1, 607 subjects, and 23, 538
225
+ videos with 1280 × 720 resolution. As attack techniques are
226
+ constantly upgraded, some new types of attacks have emerged,
227
+ e.g., face mask [3], [25], [29]. Nesli et al. [3] provide a
228
+ 3DMAD which is recorded using the Microsoft Kinect sensor
229
+ and consists of Depth and RGB modalities with 3D masks.
230
+ George et al. [29] introduce a WMCA database with four
231
+ channels, e.g., color, depth, near-infrared, and thermal, for
232
+ face PAD which contains a wide variety of 2D and 3D
233
+ presentation attacks, and propose MC-CNN method aiming
234
+ to detect sophisticated attacks with multiple channels informa-
235
+ tion. Heusch et al. [42] collect an HQ-WMCA database, which
236
+ can be viewed as an extension of the WMCA [29] database via
237
+ adding a new sensor acting in the shortwave infrared (SWIR)
238
+ spectrum. A large-scale High-Fidelity Mask dataset, namely
239
+ CASIA-SURF HiFiMask (briefly HiFiMask) was collected by
240
+
241
+ 3
242
+ TABLE I
243
+ COMPARISON OF PUBLIC FACE ANTI-SPOOFING DATASETS. * NOTES THAT SUHIFIMASK IS FOCUSED ON SURVEILLANCE SCENES WHERE BOTH REAL
244
+ PEOPLE AND FAKE ATTACKS APPEAR AT THE SAME TIME. THEREFORE, THE NUMBER OF REAL VIDEOS AND THE NUMBER OF FAKE VIDEOS ARE BOTH
245
+ 10195.
246
+ Dataset, Year
247
+ #sub.
248
+ Distance
249
+ (Long/Short)
250
+ Materials
251
+ Scenes
252
+ Light, Weather
253
+ Attacks
254
+ Devices
255
+ #Videos
256
+ (#Live/#Fake)
257
+ 3DMAD [33], 2013
258
+ 17
259
+ Short
260
+ Paper, Resin
261
+ Constrained scenes
262
+ Adjustment
263
+ 2D/2.5D image
264
+ Kinect
265
+ 255(170/85)
266
+ 3DFS-DB [22], 2016
267
+ 26
268
+ Short
269
+ Plastic
270
+ Office
271
+ Adjustment
272
+ 2D/2.5D image, 3D Mask
273
+ Kinect, Carmine 1.09
274
+ 520(260/260)
275
+ BRSU [23], 2016
276
+ 137
277
+ Short
278
+ Silicone, Plastic,
279
+ Resin, Latex
280
+ Disguise,
281
+ Counterfeiting
282
+ Adjustment
283
+ 2D image
284
+ SWIR, Color
285
+ 141(0/141)
286
+ MARsV2 [34], 2016
287
+ 12
288
+ Short
289
+ ThatsMyFace,
290
+ REAL-F
291
+ Office
292
+ Six directions of light
293
+ 3D Mask
294
+ Logitech C920, Industrial Cam,
295
+ EOS M3, Nexu 4, IPhone 6,
296
+ Samsung S7, Sony Tablet S
297
+ 1008
298
+ (504/504)
299
+ SMAD [35], 2017
300
+ Online
301
+ Short
302
+ Silicone
303
+ -
304
+ Varying light
305
+ 2D image, 3D Mask
306
+ Varying Cam
307
+ 130(65/65)
308
+ MLFP [36], 2017
309
+ 10
310
+ Short
311
+ Latex, Paper
312
+ Indoor, Outdoor
313
+ Daylight
314
+ 2D image
315
+ Visible,
316
+ Near infrared, Thermal
317
+ 1350
318
+ (150/1200)
319
+ ERPA [37], 2017
320
+ 5
321
+ Short
322
+ Resin, Silicone
323
+ Indoor
324
+ Room light
325
+ 3D Mask
326
+ Xenic Gobi, Thermal Cam
327
+ 86
328
+ WMCA [29], 2019
329
+ 72
330
+ Short
331
+ Plastic,
332
+ Silicone, Paper
333
+ Indoor
334
+ Office/LED/Day light
335
+ 2D image, 3D Mask
336
+ Intel RealSense SR 300,
337
+ Seek Thermal, Compact PRO
338
+ 1670
339
+ (347/1332)
340
+ 3DMask [26], 2020
341
+ 48
342
+ Short
343
+ Plaster
344
+ Indoor, Outdoor
345
+ Six directions of light
346
+ 2D image, 3D Mask
347
+ Apple, Huawei, Samsung
348
+ 1152
349
+ (288/864)
350
+ HiFiMask [25], 2021
351
+ 75
352
+ Short
353
+ Transparent,
354
+ Plaster, Resin
355
+ White, Green,
356
+ Tricolor, Sunshine,
357
+ Shadow, Motion
358
+ Six directions of light
359
+ 2D image, 3D Mask
360
+ IPhone 11, IPhone X,
361
+ MI10, P40, S20, Vivo, HJIM
362
+ 54,600
363
+ (13,650/40,950)
364
+ SuHiFiMask (ours), 2022
365
+ 101
366
+ Long
367
+ Resin, Plaster,
368
+ Silicone, Paper
369
+ Security check lane,
370
+ Theater, Parking lot 1
371
+ Day/Night light,
372
+ Sunny/Windy/
373
+ Cloudy/Snowy day
374
+ 2D image, Video replay,
375
+ 3D Mask
376
+ Surveillance cameras2
377
+ 10,195*
378
+ (10,195/10,195)
379
+ 1 40 real surveillance environments, including indoor as well as outdoor. Please see Fig.2 in Appendix for more details.
380
+ 2 dahua: DH-IPC-HFW4843M, DH-P80A1-SA; HIKVISION: DS-2CD3T87WD-L, DS-2CD3T86FWDV2-I3S; TP-LINK: TL-IPC586FP, TL-IPC586HP;
381
+ ZHONGDUN: ZD5920-Gi4N (Brand name: Camera model) .
382
+ Liu et al. [25]. Specifically, it consists of a total amount of
383
+ 54, 600 videos which are recorded from 75 subjects with 7
384
+ kinds of sensors. Although the resolution and fidelity of these
385
+ datasets are increasing high (i.e., resolution from 320×240 [2]
386
+ to 1, 920 × 1, 080 [4], and spoofing types from print [1] to
387
+ mask [25]), they are all oriented to FAS in a close constrained
388
+ environment, ignoring the application requirements of remote
389
+ surveillance scenes.
390
+ The essence of FAS is a defensive measure for face recog-
391
+ nition systems and has been studied for over a decade. Early
392
+ works were mainly based on color texture [2], [43] and motion
393
+ analysis [44]. The former is based on the consideration that
394
+ the fake face is different from the live face in texture details,
395
+ such as color distortions, and specular highlights, due to the
396
+ intervention of spoofing mediums. However, these algorithms
397
+ are not accurate enough because of the use of handcrafted
398
+ features, such as LBP [2], HoG [45], and SURF [46]. The
399
+ latter analyzes the attack samples as static or non-rigid motion
400
+ compared with live faces from the perspective of motion.
401
+ Unfortunately, these methods become vulnerable if someone
402
+ presents a replay attack or a print attack with cut eye/mouth
403
+ regions. Instead of using pre-defined features such as LBP
404
+ and HOG, CNN-based methods [47], [48] design a unified
405
+ framework of feature extraction and classification in an end-to-
406
+ end manner. However, they treat FAS as a binary classification
407
+ task, and will highly depend on the liveness-unrelated cues,
408
+ such as color distortion, shape deformation, or background
409
+ information. Intuitively, the live faces in any scene have con-
410
+ sistent face-like geometry. Inspired by this, some works [4],
411
+ [7], [49] leverage the physical-based depth information instead
412
+ of binary classification loss as supervision, which are more
413
+ faithful attack clues in any domain. Another works [8], [9],
414
+ [50]–[52] treat FAS as a feature disentangled representation
415
+ learning. Although these CNN-based methods achieve near-
416
+ perfect performance under known attack clues, they still show
417
+ poor generalization in the face of unknown attacks. To solve
418
+ this problem, there are also some methods [53]–[56] that focus
419
+ on improving the generalization of FAS in unknown domains.
420
+ Examples are MADDG [5], SSDG [57], are SSAN [58], which
421
+ aim to learn a generalized feature space via adversarial training
422
+ and triplet loss strategies. In the case of FMeta [59], MT-
423
+ FAS [60], D2AM [11], and SDA [61], they aim to find the
424
+ generalized feature directions via meta-learning strategies.
425
+ FAS in Surveillance Environments. The task of face recogni-
426
+ tion in surveillance has been widely concerned by researchers,
427
+ including data collection and algorithm design. SCface [16]
428
+ was the first face recognition dataset released to simulate
429
+ research in surveillance scenes, which contains 4, 160 still
430
+ images captured by five different quality cameras. The QMUL-
431
+ Survface dataset [14] further complements the low-resolution
432
+ face recognition dataset by collecting 463, 507 face images
433
+ from 15, 573 different identities in the real world using surveil-
434
+ lance cameras. Then, IJB-C [15] aims to improve the repre-
435
+ sentation of the global population by adding a list of names
436
+ containing specific occupations such as artists, public speakers,
437
+ and journalists from different countries to the surveillance
438
+ scenario. In addition, based on these datasets, face recognition
439
+ algorithms for surveillance scenes have been in full swing.
440
+ Li et al. [18] introduce the adversarial generative networks
441
+ and fully convolutional architectures to recognize ground-
442
+ resolution faces in supervised discriminative learning. Consid-
443
+ ering the incompleteness of these datasets, Zhong et al. [19]
444
+ propose a sigmoid-constrained hypersphere loss (SFace) to
445
+ reduce the intra-class distance of high-quality samples while
446
+ preventing over-fitting label noise. Kim et al. [17] propose
447
+ an adaptive marginal function to adjust the importance of
448
+ different samples by emphasizing the role of clean samples
449
+ in classification.
450
+ In the FAS community, Chen et al. [62] explore the face
451
+ anti-spoofing in surveillance scenes for the first time and
452
+ proposed a dataset and benchmark. As for the dataset, they
453
+ release the GREAT-FASD-S, which is first collected by two
454
+
455
+ 4
456
+ multi-modal cameras, and then processed into low-quality
457
+ images. And for the method, they propose the DAM-SE
458
+ module to select the most informative channels and recover
459
+ the image with the nearest neighbor interpolation algorithm.
460
+ Aravena et al. [63] demonstrates that discarding a suitable
461
+ percentage of low-quality samples can effectively improve
462
+ the performance of the PAD algorithm. However, the nearest
463
+ neighbor interpolation algorithm can not recover the original
464
+ information by filling pixels with low-resolution images, and
465
+ the method of directly discarding low-quality samples does
466
+ not directly face the challenge of FAS in surveillance scenes.
467
+ Fig. 2.
468
+ An overview of some characteristics of SuHiFiMask. From top to
469
+ bottom: forms of attack, diverse weather, and surveillance scenes.
470
+ III. SUHIFIMASK
471
+ In order to fill the gap in the face anti-spoofing dataset
472
+ of surveillance scenes and promote the research of related
473
+ algorithms, we collected the SuHiFiMask dataset that has the
474
+ following advantages over existing datasets:
475
+ Advantage 1: To the best of our knowledge, SuHiFiMask
476
+ is the first dataset collected based on real surveillance scenes,
477
+ rather than the low-quality datasets obtained by manual degra-
478
+ dation, such as GREAT-FASD-S [62]. Compared to previous
479
+ PAD datasets in controlled environments, the one we present
480
+ inevitably introduces low-resolution face, pedestrian occlusion,
481
+ changeable posture, motion blur, and other challenging situ-
482
+ ations, which greatly increases the challenge of FAS tasks.
483
+ In addition, as shown in the third column of the Tab. I, we
484
+ define the dataset with the distance between the camera and
485
+ the subject less than one meter as the short distance dataset,
486
+ while the dataset with the distance between the camera and
487
+ the subject greater than three meters is defined as the long-
488
+ distance type. Advantage 2: SuHiFiMask considers the most
489
+ comprehensive attack types, each of which contains diverse
490
+ spoofing methods. As shown in Tab. I, 2D image, video
491
+ replay and 3D mask all appear in SuHiFiMask to evaluate
492
+ the algorithm’s perception of changes for paper color, screen
493
+ moire and face structure in surveillance scenes. Different from
494
+ the attack type under classical more constrained environments,
495
+ as shown in Fig. 2, we introduce paper posters, humanoid
496
+ stand-ups in 2D image, and headgear, head mold in the 3D
497
+ mask to minimize the spoofing trace in the surveillance scenes.
498
+ In order to effectively prevent criminals from hiding their
499
+ identities through local occlusion during security inspection,
500
+ we introduce two most effective adversarial attacks (ADV),
501
+ instead of simply masking the face with paper classes [29]
502
+ and partial paper [64]. Advantage 3:
503
+ We designed 40 common real-world surveillance scenes,
504
+ including daily life scenes (e.g., cafes, cinemas, and theaters)
505
+ and security check scenes (e.g., security check lanes and park-
506
+ ing lots) for deploying face recognition systems. In fact, the
507
+ rich natural behaviors in different surveillance scenes greatly
508
+ increase the difficulty of PAD due to pedestrian occlusion and
509
+ non-frontal views. Advantage 4: We collect data in four types
510
+ of weather (e.g., Sunny, Windy, Cloudy and Snowy days) and
511
+ natural lighting (e.g., Day and Night lights) to fully simulate
512
+ the complex and changeable surveillance scenes. Different
513
+ weather and light bring diverse image style information and
514
+ image artifacts, which will put forward higher requirements
515
+ for the generalization of PAD technology.
516
+ Based on the above acquisition advantages, our SuHiFiMask
517
+ contains 10, 195 videos from 101 subjects of different age
518
+ groups, which are collected by 7 mainstream surveillance
519
+ cameras and see Fig.1 in Appendix for more details. In
520
+ particular, as shown in the second and third rows of Fig. 2,
521
+ SuHiFiMask is focused on surveillance scenes, and both real
522
+ and fake attacks appear at the same time.
523
+ As shown in the Fig. 3, the existing FAS dataset of a video
524
+ contains only one real person or one type of attack. The subject
525
+ faces the camera and remains stationary during the shooting
526
+ to ensure the clarity of the collected data. In contrast, videos
527
+ based on a surveillance scene contain multiple real people and
528
+ multiple types of attacks. Subjects are not required to face the
529
+ camera and move randomly in the scene while filming. This
530
+ leads to low-resolution of face images, pedestrian occlusions,
531
+ non-frontal poses, and other disturbances that affect the stabil-
532
+ ity and generalization of the algorithm. Thus, the surveillance
533
+ scene-based FAS dataset poses a greater challenge than the
534
+ existing FAS dataset.
535
+ Fig. 3. Comparison of the existing FAS dataset and the surveillance scene-
536
+ based dataset. The left image is from MARsV2 and the right image is from
537
+ the proposed SuHiFiMask.
538
+ A. Acquisition Details of SuHiFiMask.
539
+ Scenes and props. In order to cover real surveillance
540
+ environments as much as possible, we carefully selected
541
+ and rented 40 real-world scenarios that include daily places,
542
+ such as cafes, yoga studios, and movie theaters, as well as
543
+ security checkpoints, such as security lanes, parking lots, and
544
+ entrance/exit gates. We provide 232 masks as the candidate
545
+
546
+ Resin
547
+ Plaster
548
+ Silicone
549
+ Headgear Head mold
550
+ ADV
551
+ Cardboard
552
+ Poster
553
+ Screen
554
+ Attack
555
+ Cloudy Day
556
+ Snowy Day
557
+ Windy Day
558
+ Sunny Day
559
+ Weather
560
+ Sidewalk
561
+ Cinema
562
+ Corridor
563
+ Theater
564
+ Security lane
565
+ SceneExisting FAS dataset
566
+ Surveillance scene based FAS dataset
567
+ Number of Subject: One
568
+ Number of Subject: : Many
569
+ Number of real or attack : Multiple real
570
+ Number of real or attack : One
571
+ people and multiple types of attacks
572
+ Face Resolution : Low resolution
573
+ Face Resolution : High resolution
574
+ Posture and movement: Not facing the
575
+ Posture and movement: Face the camera
576
+ and remain still
577
+ camera and moving freely5
578
+ TABLE II
579
+ STATISTICAL INFORMATION FOR EACH PROTOCOL OF THE PROPOSED SUHIFIMASK DATASET. NOTE THAT 1, 2, 3 IN THE FOURTH COLUMN MEAN RESIN,
580
+ SILICONE, AND PLASTER. 4 REPRESENTS HEADGEAR AND HEAD MOLD.
581
+ Pro.
582
+ Subset
583
+ #Subject
584
+ Mask
585
+ Quality score
586
+ #Live
587
+ #Mask
588
+ #Other attack
589
+ #All
590
+ 1
591
+ Train
592
+ 40
593
+ 1&2&3&4
594
+ [0, 1]
595
+ 118,520
596
+ 60,715
597
+ 22,333
598
+ 201,568
599
+ Dev
600
+ 10
601
+ 1&2&3&4
602
+ [0, 1]
603
+ 23,304
604
+ 11,856
605
+ 5663
606
+ 40,823
607
+ Test
608
+ 51
609
+ 1&2&3&4
610
+ [0, 1]
611
+ 69,878
612
+ 42,569
613
+ 19,743
614
+ 132,190
615
+ 2.1
616
+ Train
617
+ 101
618
+ 1&2&3
619
+ [0, 1]
620
+ 100,990
621
+ 40,454
622
+ 0
623
+ 141,444
624
+ Dev
625
+ 101
626
+ 1&2&3
627
+ [0, 1]
628
+ 20,521
629
+ 19,608
630
+ 0
631
+ 40,129
632
+ Test
633
+ 101
634
+ 4
635
+ [0, 1]
636
+ 42,539
637
+ 21,199
638
+ 0
639
+ 63,738
640
+ 2.2
641
+ Train
642
+ 101
643
+ 1&2&4
644
+ [0, 1]
645
+ 78,961
646
+ 36,829
647
+ 0
648
+ 115,790
649
+ Dev
650
+ 101
651
+ 1&2&4
652
+ [0, 1]
653
+ 20,505
654
+ 19,052
655
+ 0
656
+ 39,557
657
+ Test
658
+ 101
659
+ 3
660
+ [0, 1]
661
+ 42,521
662
+ 28,366
663
+ 0
664
+ 70,887
665
+ 2.3
666
+ Train
667
+ 101
668
+ 1&3&4
669
+ [0, 1]
670
+ 77,952
671
+ 28,994
672
+ 0
673
+ 106,946
674
+ Dev
675
+ 101
676
+ 1&3&4
677
+ [0, 1]
678
+ 20,594
679
+ 17,714
680
+ 0
681
+ 38,308
682
+ Test
683
+ 101
684
+ 2
685
+ [0, 1]
686
+ 42,498
687
+ 44,104
688
+ 0
689
+ 86,602
690
+ 2.4
691
+ Train
692
+ 101
693
+ 2&3&4
694
+ [0, 1]
695
+ 79,102
696
+ 29,087
697
+ 0
698
+ 108,189
699
+ Dev
700
+ 101
701
+ 2&3&4
702
+ [0, 1]
703
+ 20,627
704
+ 18,068
705
+ 0
706
+ 38,695
707
+ Test
708
+ 101
709
+ 1
710
+ [0, 1]
711
+ 42,513
712
+ 42,887
713
+ 0
714
+ 85,400
715
+ 3
716
+ Train
717
+ 101
718
+ 1&2&3&4
719
+ [0.4, 1]
720
+ 64,276
721
+ 35,898
722
+ 58,889
723
+ 159,063
724
+ Dev
725
+ 101
726
+ 1&2&3&4
727
+ [0.3, 0.4)
728
+ 37,990
729
+ 24,031
730
+ 27,255
731
+ 89,276
732
+ Test
733
+ 101
734
+ 1&2&3&4
735
+ [0, 0.3)
736
+ 84,368
737
+ 43,820
738
+ 36,369
739
+ 164,557
740
+ pool for selection according to the scene requirements. Among
741
+ them, some high-fidelity plaster and resin masks are from
742
+ HiFiMask [25], and silicone material headgear and head mold
743
+ masks are new additions to reduce the forgery traces exposed
744
+ in the monitoring perspective, where the numbers of plaster
745
+ masks, resin masks, silicone masks, headgear, and head mold
746
+ were 93, 93, 23, 10, and 13, respectively. In addition to mask
747
+ attacks, we printed 2D images of 50 subject in the form
748
+ of humanoid upright cards and posters and provided video
749
+ attacks by displaying images on a movable TV. In particular, in
750
+ order to effectively prevent criminals from hiding their identity
751
+ information during security checks in surveillance scenes, we
752
+ crafted adversarial mask [65] and adversarial hat [66] that can
753
+ induce face recognition systems to categorize the registered
754
+ identity as unknown identity, aiming to increase the challenge
755
+ to algorithm stability.
756
+ Data collection and processing rules. To ensure the quality
757
+ and challenge of data, we implemented the following criteria
758
+ before each shot: a) Device adjustment. We adjusted the
759
+ positions and angles of each camera to ensure that the entire
760
+ scene is captured. b) Sample balance. We arranged a consistent
761
+ number of live and fake subjects to ensure sample balance
762
+ in SuHiFiMask. c) Static 2D attacks. We deployed posters
763
+ and humanoid upright-card and electronic screen-based photos
764
+ with the same identity as the subjects at random locations.
765
+ We also considered the following criteria during each shot:
766
+ a) We designed specific movement routes for each subject
767
+ to ensure adequate pedestrian occlusion, versatile posture
768
+ and comprehensive perspective. b) We requested subjects in
769
+ different scenes to perform scene-related behaviors, such as
770
+ eating and chatting in daily scenes, and self-service check-in
771
+ security check scenes.
772
+ After data collection, we performed the following pre-
773
+ processing: a) Face detection. We used RetinaFace [67] to
774
+ detect the face in each frame of the original video, and
775
+ discarded those frames where the face could not be detected.
776
+ b) Face tracking. We use face similarity to track the position
777
+ of faces in consecutive frames and name each of the different
778
+ face tracking boxes. c) Video sampling. We sample each video
779
+ in 10-frame intervals and store the cropped face image in the
780
+ corresponding face tracking box folder. d) Dataset naming
781
+ rules. We named the folder of this video according to the
782
+ following rule: Group Scene Camera Epoch Time.
783
+ Ethical and legal considerations. Since we collected our
784
+ filming scenes from real-world environments, we have a
785
+ responsibility to maintain the public environment and protect
786
+ pedestrian safety. We commissioned two companies to legally
787
+ authorize the scenes for data collection. SuHiFiMask is a
788
+ dataset consisting of videos taken from subjects of different
789
+ age groups, and although this is not a subject explicitly
790
+ modeled for human behavior, the relevant challenge factors
791
+ are related to humans. Based on the consideration of the
792
+ protection of human rights and legal interests, our collection
793
+ process follows a strictly ethical procedure. We commission
794
+ a data acquisition company to develop strict standards and
795
+ obtain the signature authorization of all human subjects. The
796
+ collected images and videos will be used to develop, train
797
+ and optimize face anti-spoofing technologies to the extent
798
+ permitted by Chinese laws. The dataset is balanced in terms of
799
+ gender and age, that is, there is no hazard in terms of ethics.
800
+ B. Evaluation protocol and Statistics.
801
+ We define three protocols for SuHiFiMask to fully evaluate
802
+ the performance in surveillance environments: Protocol 1-ID,
803
+ Protocol 2-Mask, and Protocol 3-quality.
804
+ Protocol 1-ID. Protocol 1 aims to evaluate the comprehen-
805
+ sive performance of the algorithm being migrated to long-
806
+ distance surveillance scenes. Compared with the classical
807
+ constrained environment datasets, protocol 1 includes various
808
+ unique factors in surveillance scenes, such as low resolution,
809
+ pedestrian occlusion, changeable posture, motion blur, and
810
+ other complex weather, which pose greater challenges to
811
+ algorithm design. As shown in Tab. II, we divide the training
812
+ set, development set, and testing set according to the identity
813
+ information, including 40, 10, and 50 subjects, respectively.
814
+ Protocol 2-Mask. Protocol 2 evaluates the generalization
815
+ of the algorithm for the ‘unseen’ 3D facial mask type. The
816
+ diversity and unpredictability of mask materials are important
817
+ characteristics of spoofing means and are easily interfered with
818
+
819
+ 6
820
+ by other liveness-unrelated factors. Thus, the generalization
821
+ to mask materials is an important evaluation index. In this
822
+ work, we divide protocol 2 into four sub-protocols by using the
823
+ ‘leave-one-type-out testing’ method, in which one unknown
824
+ 3D mask material is divided into the testing set for each sub-
825
+ protocol. As shown in Tab. II, ‘1’, ‘2’, ‘3’, and ‘4’ in the fourth
826
+ column indicate that the 3D mask material is headgear/head
827
+ mold, resin, silicone, and plaster, respectively.
828
+ Fig. 4.
829
+ Some samples from protocol 3. The number below the image
830
+ represents the quality score of the faces. Samples with different score intervals
831
+ are proportionally categorized as the training set, development set, and testing
832
+ set.
833
+ Protocol 3-Quality. Protocol 3 evaluates the robustness of
834
+ the algorithm to image quality degradation. Variable quality
835
+ and disturbances are factors that affect the stability of the
836
+ algorithm. Therefore, the robustness of the algorithm to quality
837
+ degradation is an important metric to be evaluated. In this
838
+ work, as shown in Fig. 4, we use the SER-FIQ [68] algorithm
839
+ to calculate the image quality score which ranges from 0 to
840
+ 1. As shown in the fifth column of Tab. II, we assign images
841
+ with scores [0.4, 1] as the training set, scores [0.3, 0.4) as the
842
+ development set, and scores [0, 0.3) as the testing set.
843
+ IV. METHODOLOGY
844
+ In this section, we present a Contrastive Quality-Invariance
845
+ Learning (CQIL) network for FAS tasks based on long-
846
+ distance surveillance scenes. As shown in Fig. 5, CQIL
847
+ contains an Image Quality Variable module (IQV) and a dual-
848
+ stream framework with a contrastive learning branch and a
849
+ Separate Quality Network (SQN) branch. IQV processes low-
850
+ quality images into high-quality images by super-resolution
851
+ and sends them to the contrastive learning branch and the SQN
852
+ branch. The contrastive learning branch trains the network
853
+ by using high-quality and low-quality images as input to
854
+ the online network and the target network, respectively. The
855
+ SQN branch makes the features extracted by the encoder
856
+ independent of quality by adversarial learning. In addition,
857
+ CQI uses high-quality images after super-resolution as input
858
+ to extract richer discriminative features.
859
+ Image Quality Variable Module (IQV). In contrast to the
860
+ classical constrained environment, the difficulty of the FAS
861
+ task based on surveillance scenes is the low resolution and
862
+ variable quality of the images, which leads to insufficient
863
+ information contained in the images and severely interferes
864
+ with the extraction of robust features. To solve this problem,
865
+ a possible solution is to increase the resolution of the image
866
+ and extract robust invariant features. Inspired by CSRI [69],
867
+ we introduce the Image Quality Variable (IQV) module to
868
+ improve the image resolution of SuHiFiMask and recover
869
+ information relevant to the FAS task. In addition, IQV tags
870
+ the images processed by the SR network with label 0 and
871
+ the original images with label 1. Then IQV sends them to
872
+ the contrastive learning branch and the SQN branch. Since
873
+ SuHiFiMask is the first unconstrained PAD dataset, there is
874
+ no high-quality image as ground truth to optimize the super-
875
+ resolution network. Thus, we use the existing high-definition
876
+ PAD dataset to train the super-resolution network. As shown in
877
+ Fig. 5, this process can be expressed as follows: 1) We degrade
878
+ the high-fidelity dataset OULU-NPU [20] into a low-quality
879
+ dataset using pre-processing methods such as interpolation and
880
+ gaussian blurring. 2) We feed degraded low-resolution images
881
+ into an SR network and use its original data for supervision
882
+ to train the SR network. 3) We use the SR network with
883
+ shared parameters to process SuHiFiMask’s images into high-
884
+ quality images. Unlike the standalone super-resolution tasks,
885
+ we combine the SR tasks with the FAS tasks by integrating
886
+ the IQV module into the framework with the following two
887
+ advantages below:
888
+ • Training the FAS network with SR network-boosted
889
+ resolution images can improve the performance of the
890
+ FAS network.
891
+ • The improved performance of other networks in CQIL
892
+ can better guide the SR network to recover information
893
+ related to the FAS task in the image.
894
+ Finally, MSE loss is used to constrain the super-resolution
895
+ network:
896
+ Lmse = 1
897
+ n
898
+
899
+ (ˆyi − yi)2
900
+ (1)
901
+ where n represents the number of pixels in the image, ˆyi, yi
902
+ denote the pixel value of the image after super-resolution and
903
+ the pixel value of ground truth respectively.
904
+ Contrastive Learning Branch. To improve the robustness of
905
+ FAS networks in a quality-variant surveillance environment,
906
+ we propose a branch based on contrastive learning. Inspired
907
+ by the BYOL [38], this branch obtains robustness to quality
908
+ variations by fitting the distribution of potential features for
909
+ different quality pictures. Specifically, during the training
910
+ process, due to the constraints of Eq. 2 and Eq. 3, the online
911
+ network will gradually fit the target network by closing the
912
+ same class in the potential feature space for pairs of images
913
+ of different quality, which makes it to obtain a powerful
914
+
915
+ Train
916
+ 0.72
917
+ 0.63
918
+ 0.54
919
+ Dev
920
+ 0.39
921
+ 0.34
922
+ 0.31
923
+ Test
924
+ 0.22
925
+ 0.12
926
+ 0.037
927
+ Fig. 5. Contrastive Quality-Invariance Learning (CQIL) network. IQV recovers information from the images and constructs sample pairs of different qualities.
928
+ Sample pairs are sent to the contrastive learning branch and the SQN branch. The contrastive learning branch consists of an online network (encoder, projector,
929
+ predictor) and a target network (encoder, projector). Above the image the SQN branch is shown, which contains the discriminator, CQI, GRL, and the main
930
+ classifier.
931
+ feature representation while ignoring the negative impact from
932
+ different quality distributions.
933
+ Lθ,ξ ≜
934
+ ��qθ (zθ) − ¯z′
935
+ ξ
936
+ ��2
937
+ 2 = 2 − 2 ·
938
+
939
+ qθ (zθ) , z′
940
+ ξ
941
+
942
+ ∥qθ (zθ)∥2 ·
943
+ ���z′
944
+ ξ
945
+ ���
946
+ 2
947
+ (2)
948
+ Lcontra = Lθ,ξ + �Lθ,ξ
949
+ (3)
950
+ where qθ (zθ) is the prediction of the online network output
951
+ and z′
952
+ ξ is the projection of the target network output, then we
953
+ use ℓ2-normalize to turn qθ (zθ) and z′
954
+ ξ into qθ (zθ) and ¯z′
955
+ ξ.
956
+ In addition, �Lθ,ξ is the result of Lθ,ξ symmetrization.
957
+ As shown in Fig. 5, image pairs of different quality gen-
958
+ erated by IQV are sent to the online and target networks.
959
+ The online network is composed of an encoder network
960
+ (Interchangeable backbone networks), a projector (Projection
961
+ of extracted features into the latent space), and a predictor
962
+ (with the same multi-layer perceptron structure). Similarly, the
963
+ target network has an encoder and a projector with different
964
+ weights from the online network. Unlike the weight update of
965
+ the online network, the parameters of the target network are
966
+ not updated in gradient descent [38], and the process can be
967
+ expressed as follows:
968
+ ξ←τξ + (1 − τ)θ
969
+ (4)
970
+ The parameters ξ and θ represent the parameters to be updated
971
+ for the target network and the online network, respectively.
972
+ The parameters θ of the online network are updated by the
973
+ optimization of the loss function, the parameters ξ of the target
974
+ network are updated by perceiving an exponential moving-
975
+ average [70] of the online parameters and we perform the
976
+ moving-average after each step by target decay rate τ.
977
+ Separate Quality Network (SQN). For FAS data in surveil-
978
+ lance scenes, which contains many variations (e.g., environ-
979
+ ment, light, weather), we need operators that are more robust
980
+ to variations to describe the required fine-grained information.
981
+ Inspired by central differential convolution (CDC) [7], we use
982
+ CDC to form a quality-independent backbone network (CQI)
983
+ in the second branch, exploiting its powerful representation
984
+ ability to extract fine-grained features under environmental
985
+ variations. In addition, we use cross-entropy loss as a supervi-
986
+ sion of CQI, so that this network can capture the cues related
987
+ to liveness more robustly.
988
+ The sample pairs generated by the IQV module have the
989
+ following characteristics: 1) Both the super-resolution network
990
+ processed images and the original images contain the object of
991
+ the face (live or attack) in the center of their images, so even
992
+ samples with very different quality share the same semantic
993
+ feature space. 2) Although the quality of each image is differ-
994
+ ent, they all contain discriminative information. Therefore, we
995
+ make the discriminative features extracted by CQI independent
996
+ of quality by adversarial learning. Specifically, we use the
997
+ adversarial loss to optimize the backbone network CQI. And
998
+ the gradient reversal layer (GRL) [71] allows the parameters
999
+ of the quality discriminator to be optimized in the reverse
1000
+ direction. This process can be formulated as follows:
1001
+ min
1002
+ D max
1003
+ C Ladv(C, D) =
1004
+ − E(x.y)∼(X,YQ)
1005
+ N
1006
+
1007
+ i=1
1008
+ 1[i = y]logD(C(x))
1009
+ (5)
1010
+ where YQ is the set of quality labels, N is the number of
1011
+ images of different quality, C stands for the CQI network
1012
+ backbone where we extracted the liveness-related information,
1013
+ and D represents the quality discriminator. Finally, we con-
1014
+ catenate the features extracted by CQI with those extracted by
1015
+ the contrastive learning branch and input them to the classifier
1016
+ for classification.
1017
+
1018
+ SQN
1019
+ Contrastive learning
1020
+ cdc
1021
+ L
1022
+ cls
1023
+ Feature
1024
+ GRL
1025
+ Discriminator
1026
+ CQI
1027
+ Classifier
1028
+ ady
1029
+ concat
1030
+ Online network
1031
+ IQV
1032
+ SuHiFiMask LR
1033
+ qe(z)
1034
+ face images
1035
+ Encoder
1036
+ Projector
1037
+ Predictor
1038
+ Resize
1039
+ Moving
1040
+ average
1041
+ contra
1042
+ i Shared
1043
+ Degraded LR face
1044
+ images
1045
+ GT
1046
+ Encoder
1047
+ Projector
1048
+ sg
1049
+ mse
1050
+ Target network8
1051
+ Algorithm 1 Contrastive Quality-Invariance Learning (CQIL)
1052
+ Input: image set X, label set Y , HD image set H.
1053
+ 1: Initialize: encoder fθ, projector gθ, predictor qθ
1054
+ 2: Initialize: encoder f ′
1055
+ ξ, projector g′
1056
+ ξ
1057
+ 3: Initialize: network n of IQV, encoder c of CQI
1058
+ 4: while not end of training do
1059
+ 5:
1060
+ sample batch A ← {xi ∼ X}N
1061
+ i=1, B ← {yi ∼ Y }N
1062
+ i=1
1063
+ 6:
1064
+ sample batch H ← {hi ∼ H}N
1065
+ i=1
1066
+ 7:
1067
+ for xi ∈ A do
1068
+ 8:
1069
+ li ← hi
1070
+ ▷ Degradation into lq images
1071
+ 9:
1072
+ compute Lmse, see Eq. 1
1073
+ 10:
1074
+ xi1 ← n(xi), xi2 ← xi
1075
+ ▷ Generate image pairs
1076
+ 11:
1077
+ yi1, yi2 ← xi1, xi2
1078
+ ▷ Generate quality labels
1079
+ 12:
1080
+ z1 ← gθ (fθ (xi1)), z2 ← gθ (fθ (xi2))
1081
+ 13:
1082
+ z′
1083
+ 1 ← gθ (fθ (xi2)), z2′ ← gθ (fθ (xi1))
1084
+ 14:
1085
+ compute Lcontra, see Eq. 2, Eq. 3
1086
+ 15:
1087
+ X ← [xi1, xi2], Y ← [yi1, yi2], Z ← c(X)
1088
+ 16:
1089
+ compute Ladv, by Eq. 5
1090
+ 17:
1091
+ z3 ← c(xi), z4 ← fθ(xi)
1092
+ 18:
1093
+ compute Lcls, Lcdc, Ltotal, by Eq. 6
1094
+ 19:
1095
+ end for
1096
+ 20: end while
1097
+ 21: ∆θ = backward (Ltotal)
1098
+ 22: θ ← θ−learningrate · ∆θ
1099
+ 23: update ξ by Eq. 4
1100
+ 24: update network n, encoder c
1101
+ Overall Loss. As mentioned, CQI is used to extract quality-
1102
+ independent discriminative features, and these features are
1103
+ concatenated with the robust features extracted from the con-
1104
+ trastive learning branch and fed to the main classifier. There-
1105
+ fore, the cross-entropy loss Lcdc and Lcls is well constrained
1106
+ for both CQI and the main classifier. In summary, the overall
1107
+ loss function Ltotal for stable and reliable training can be
1108
+ formulated as follows:
1109
+ Ltotal = λ1 · Lcls + λ2 · Lcontrast + λ3 · Ladv
1110
+ +λ4 · Lcdc + λ5 · Lmse
1111
+ (6)
1112
+ whereλ1, λ2, λ3, λ4 and λ5 are five hyper-parameters to
1113
+ balance the proportion of the different loss functions.
1114
+ V. EXPERIMENTS
1115
+ A. Experiments Settings
1116
+ Dataset and Protocols. In experiments, a total of five
1117
+ datasets were used: OULU-NPU [20], CASIA-MFSD [1],
1118
+ RepalyAttack [2], MARsV2 [34] and the SuHiFiMask dataset.
1119
+ First, we conducted ablation experiments on three protocols of
1120
+ the proposed SuHiFiMask to demonstrate the effectiveness of
1121
+ each component of the proposed CQIL. Second, we present
1122
+ the respective baselines for the different protocols for the
1123
+ proposed dataset. Finally, we design several different cross-
1124
+ testing experiments to demonstrate the importance of the
1125
+ proposed dataset and the effectiveness of the method.
1126
+ Training Setting. Our proposed method is implemented
1127
+ with Pytorch. In the training stage, models are trained with
1128
+ Adam optimizer and the initial learning rate is 2e − 4. The
1129
+ batch size is set to 6 for CQIL. The epoch of the intra-testing
1130
+ is set to 10, and the lr decreases by 0.2 times per epoch. The
1131
+ epoch of the inter-testing is 300, and lr decreases by 0.2 times
1132
+ per 50 epochs. λ1, λ2, λ3, λ4 and λ5 are set to 2, 1.5, 0.5,
1133
+ 1.5, 0.5 respectively.
1134
+ Performance Metrics and Implementation Details. We
1135
+ accept the Attack Presentation Classification Error Rate
1136
+ (APCER), Bonafide Presentation Classification Error Rate
1137
+ (BPCER), and ACER [72] as the evaluation metrics in our
1138
+ experiments. The ACER on each testing set is determined by
1139
+ the threshold value of the performance on the development
1140
+ set. In cross-testing experiments, we use Half Total Error
1141
+ Rate (HTER) [73] and Area Under Curve (AUC) as evalu-
1142
+ ation metrics. We use the ResNet18 [48], ViT [74], and the
1143
+ CDCN [7] network as the backbone, and report their results
1144
+ in experiments.
1145
+ B. Ablation Study.
1146
+ Here we conduct ablation experiments to verify the con-
1147
+ tribution of each module of the proposed CQIL on the three
1148
+ protocols of the SuHiFiMask dataset.
1149
+ TABLE III
1150
+ THE ABLATION STUDY OF DIFFERENT COMPONENTS. THE EVALUATION
1151
+ METRIC IS ACER (%).
1152
+ Method
1153
+ Prot.1
1154
+ Prot.2
1155
+ Prot.3
1156
+ ResNet18
1157
+ 12.58
1158
+ 16.55±51.71
1159
+ 17.64
1160
+ CQIL-Model-1
1161
+ 11.97
1162
+ 16.01±50.23
1163
+ 17.45
1164
+ CQIL-Model-2
1165
+ 11.75
1166
+ 15.67±48.12
1167
+ 16.54
1168
+ CQIL-Model-3
1169
+ 10.90
1170
+ 15.14±46.66
1171
+ 16.13
1172
+ CQIL-Model-4
1173
+ 10.69
1174
+ 14.90±45.92
1175
+ 15.98
1176
+ Advantage of the proposed architecture. We compare four
1177
+ architectures with ResNet18 to demonstrate the advantages of
1178
+ each module of the proposed method. The CQIL-model-1 is a
1179
+ contrastive learning network with ResNet18 as its backbone.
1180
+ Since the training of the contrastive learning network requires
1181
+ the output of the IQV module, we use images processed by cu-
1182
+ bic interpolation and nearest-neighbor interpolation to mimic
1183
+ samples of different quality to eliminate the impact of the IQV
1184
+ module on performance. In addition, we additionally supervise
1185
+ the training of the online encoder using cross-entropy loss. In
1186
+ the testing phase, we use the features extracted by the online
1187
+ encoder for classification. As shown in Tab. III, CQIL-model-
1188
+ 1 has a significant improvement in performance on all three
1189
+ protocols compared to ResNet18, which demonstrates that the
1190
+ contrastive learning branch using quality change as a contrast
1191
+ improves the robustness of the network in surveillance scenes.
1192
+ Advantage of SQN branch. Our proposed SQN branch
1193
+ takes sample pairs of different qualities generated by the
1194
+ IQV module as input and lets the discriminative features
1195
+ extracted by the encoder CQI be independent of the quality by
1196
+ adversarial learning. CQIL-model-2 extends the SQN branch
1197
+ on the basis of CQIL-model-1. In the testing phase, we
1198
+ concatenate the features extracted by the contrastive learning
1199
+ branch with the features extracted from CQI in the SQN
1200
+
1201
+ 9
1202
+ branch for classification. As shown in Tab. III, the performance
1203
+ of CQIL-model-2 is significantly improved on all three proto-
1204
+ cols, and the performance improvement is especially obvious
1205
+ in protocol 3, which verifies that SQN trained with samples
1206
+ of different quality have the ability to extract discriminative
1207
+ features independent of quality.
1208
+ Advantage of IQV module. CQIL-model-3 extends the
1209
+ complete IQV module based on CQIL-model-2 but uses low-
1210
+ quality original images to train the CQI encoder. CQIL-model-
1211
+ 4 extends CQIL-model-3 by training CQI encoders using
1212
+ high-quality images generated by SR networks. The improved
1213
+ performance of CQIL-model-3 in Tab. III demonstrates that
1214
+ the sample pairs constructed by IQV more closely match
1215
+ the quality variation in the surveillance scene and IQV can
1216
+ effectively improve the performance of the SQN branch and
1217
+ contrastive learning branch. The improved performance of
1218
+ CQIL-Model-4 further validates the two advantages of IQV
1219
+ modules: 1) The SR network processed images can be used
1220
+ for CQI encoder training, thus improving the performance
1221
+ of the FAS task. 2) The performance-improved FAS network
1222
+ can better guide the SR network to recover the discriminative
1223
+ information of the images.
1224
+ C. Intra-Testing.
1225
+ Here, we conduct experiments on three different protocols
1226
+ of SuHiFiMask, showing that SuHiFiMask poses a challenge
1227
+ to existing FAS studies while also testing the performance of
1228
+ our proposed CQIL method in different data distributions.
1229
+ TABLE IV
1230
+ THE RESULTS OF INTRA-TESTING ON THREE PROTOCOLS OF
1231
+ SUHIFIMASK.
1232
+ Prot.
1233
+ Method
1234
+ APCER%
1235
+ BPCER%
1236
+ ACER%
1237
+ 1
1238
+ ResNet18
1239
+ 13.59
1240
+ 11.57
1241
+ 12.58
1242
+ ViT
1243
+ 13.45
1244
+ 9.89
1245
+ 11.67
1246
+ CDCN
1247
+ 20.46
1248
+ 18.95
1249
+ 20.41
1250
+ CQIL (ours)
1251
+ 11.09
1252
+ 10.29
1253
+ 10.69
1254
+ 2
1255
+ ResNet18
1256
+ 20.46±184.60
1257
+ 12.74±1.43
1258
+ 16.60±51.05
1259
+ ViT
1260
+ 19.56±181.71
1261
+ 12.25±0.42
1262
+ 15.89±45.01
1263
+ CDCN
1264
+ 24.88±55.77
1265
+ 24.44±12.51
1266
+ 24.66±16.46
1267
+ CQIL (ours)
1268
+ 18.83±169.37
1269
+ 10.88±0.34
1270
+ 14.86±46.04
1271
+ 3
1272
+ ResNet18
1273
+ 21.04
1274
+ 13.64
1275
+ 17.64
1276
+ ViT
1277
+ 19.61
1278
+ 13.95
1279
+ 16.78
1280
+ CDCN
1281
+ 28.70
1282
+ 25.89
1283
+ 27.30
1284
+ CQIL (ours)
1285
+ 19.14
1286
+ 12.82
1287
+ 15.98
1288
+ Experiments on Protocol 1-ID. In protocol 1, the data
1289
+ distribution is similar for different sets. The training set,
1290
+ development set, and testing set contain all attack types,
1291
+ and also contain data for all quality scores. The protocol is
1292
+ appropriate to evaluate the performance of the FAS algorithm
1293
+ in long-distance surveillance scenes. As shown in Tab. IV,
1294
+ the proposed CQIL ranks first for three performance metrics
1295
+ (11.09%, 10.29%, 10.69%, respectively) compared to the
1296
+ generic network backbone ResNet, ViT, and the FAS task
1297
+ network CDCN with robust feature representation on the
1298
+ Protocol 1, showing that the proposed method performs well in
1299
+ the FAS task based on surveillance scene with low resolution
1300
+ and many interferences.
1301
+ Experiments on Protocol 2-Mask. We verify the algo-
1302
+ rithm’s ability to discriminate between different types of masks
1303
+ by protocol 2. As shown in Tab. V, our proposed CQIL
1304
+ achieved good results except for the APCER on protocol 2.1
1305
+ and protocol 2.2 which was not the highest performance,
1306
+ which proves that our method can extract discriminative
1307
+ features in low-quality mask images. It is worth mentioning
1308
+ that the testing set of protocol 2.1 is composed of headgear
1309
+ and head mold. These two types of masks are very similar
1310
+ to the human head structure, so the algorithm can no longer
1311
+ use features such as mask contours as a basis for prediction.
1312
+ Thus, the performance of CQIL on protocol 2.1 demonstrates
1313
+ the importance of CQI encoders that can extract fine-grained
1314
+ features.
1315
+ TABLE V
1316
+ THE RESULTS OF INTRA-TESTING ON FOUR SUB-PROTOCOLS OF
1317
+ SUHIFIMASK PROTOCOL 2.
1318
+ Prot.
1319
+ Method
1320
+ APCER%
1321
+ BPCER%
1322
+ ACER%
1323
+ 2.1
1324
+ ResNet18
1325
+ 43.33
1326
+ 13.96
1327
+ 28.65
1328
+ ViT
1329
+ 42.54
1330
+ 12.05
1331
+ 27.29
1332
+ CDCN
1333
+ 35.47
1334
+ 20.69
1335
+ 28.08
1336
+ CQIL (Ours)
1337
+ 41.18
1338
+ 11.81
1339
+ 26.49
1340
+ 2.2
1341
+ ResNet18
1342
+ 8.50
1343
+ 11.58
1344
+ 10.04
1345
+ ViT
1346
+ 8.56
1347
+ 11.40
1348
+ 9.98
1349
+ CDCN
1350
+ 14.72
1351
+ 21.41
1352
+ 18.06
1353
+ CQIL (Ours)
1354
+ 8.88
1355
+ 10.26
1356
+ 9.57
1357
+ 2.3
1358
+ ResNet18
1359
+ 17.52
1360
+ 11.51
1361
+ 14.52
1362
+ ViT
1363
+ 13.70
1364
+ 12.33
1365
+ 13.02
1366
+ CDCN
1367
+ 26.62
1368
+ 29.20
1369
+ 27.91
1370
+ CQIL (Ours)
1371
+ 13.61
1372
+ 10.92
1373
+ 12.27
1374
+ 2.4
1375
+ ResNet18
1376
+ 12.48
1377
+ 13.90
1378
+ 13.19
1379
+ ViT
1380
+ 13.33
1381
+ 13.20
1382
+ 13.26
1383
+ CDCN
1384
+ 22.72
1385
+ 26.47
1386
+ 24.59
1387
+ CQIL (Ours)
1388
+ 11.64
1389
+ 10.54
1390
+ 11.09
1391
+ TABLE VI
1392
+ THE RESULTS OF CROSS-DATASET TESTING FOR CASIA-MFSD,
1393
+ REPLAY-ATTACK AND SUHIFIMASK. THE EVALUATION METRIC IS
1394
+ HTER(%).
1395
+ Method
1396
+ Train
1397
+ CASIA-MFSD
1398
+ ReplayAttack
1399
+ Test
1400
+ Replay-
1401
+ Attack
1402
+ SuHiFi-
1403
+ Mask (Ours)
1404
+ CASIA-
1405
+ MFSD
1406
+ SuHiFi-
1407
+ Mask(Ours)
1408
+ ResNet18
1409
+ 36.3
1410
+ 44.5
1411
+ 50.9
1412
+ 42.1
1413
+ ViT
1414
+ 34.9
1415
+ 42.8
1416
+ 44.8
1417
+ 45.9
1418
+ CDCN
1419
+ 15.6
1420
+ 45.9
1421
+ 32.6
1422
+ 41.4
1423
+ AUX.(Depth)
1424
+ 27.6
1425
+ 43.8
1426
+ 28.4
1427
+ 39.6
1428
+ TABLE VII
1429
+ CROSS-TESTING RESULTS ON THE MARSV2 DEGRADED WITH DIFFERENT
1430
+ SIZE OF THE GAUSSIAN KERNEL WHEN TRAINED ON THE PROPOSED
1431
+ SUHIFIMASK.
1432
+ Method
1433
+ Train
1434
+ SuHiFiMask (ours)
1435
+ Test
1436
+ MARsV2
1437
+ MARsV2-3×3
1438
+ MARsV2-5×5
1439
+ Metric HTER(%)↓ AUC(%)↑ HTER (%)↓ AUC (%)↑ HTER(%)↓ AUC (%)↑
1440
+ ResNet18
1441
+ 27.2
1442
+ 79.6
1443
+ 29.5
1444
+ 79.2
1445
+ 32.5
1446
+ 75.5
1447
+ CDCN
1448
+ 37.6
1449
+ 66.8
1450
+ 41.6
1451
+ 61.7
1452
+ 51.2
1453
+ 52.7
1454
+ AUX.(Depth)
1455
+ 26.8
1456
+ 79.4
1457
+ 41.1
1458
+ 63.7
1459
+ 48.7
1460
+ 54.5
1461
+ CQIL (ours)
1462
+ 21.8
1463
+ 87.5
1464
+ 26.2
1465
+ 81.4
1466
+ 30.9
1467
+ 74.0
1468
+ Experiments on Protocol 3-Quality. Protocol 3 evaluates
1469
+ the stability of the algorithm to image quality degradation.
1470
+ Since the training, development, and testing sets of this pro-
1471
+ tocol differ only in quality, the algorithm is needed to learn a
1472
+ general feature extraction method on data with different quality
1473
+
1474
+ 10
1475
+ distributions. As shown in Tab. IV, our algorithm ranks first on
1476
+ protocol 3 (APCER, BPCER, and ACER are 19.14%, 12.82%,
1477
+ 15.98%, respectively), which proves that our algorithm is
1478
+ effective in extracting discriminative features independent of
1479
+ quality.
1480
+ D. Inter-Testing.
1481
+ To evaluate the difficulty of surveillance-based FAS tasks
1482
+ and the effectiveness of CQIL working on low-quality datasets,
1483
+ we design a number of cross-testing experiments.
1484
+ Cross-dataset. To further evaluate the difficulty of the long-
1485
+ distance PAD task based on surveillance scenes, we design
1486
+ two cross-dataset experiments. (1) We train the model on the
1487
+ CASIA-MFSD dataset and perform the cross-test evaluation
1488
+ on the proposed SuHiFiMask and ReplayAttack datasets. (2)
1489
+ We train the model on the ReplayAttack dataset and evaluate
1490
+ it on the SuHiFiMask and CASIA-MFSD datasets for cross-
1491
+ testing. As shown in Tab. VI, the performance of the model
1492
+ tested on the proposed SuHiFiMask is significantly degraded
1493
+ relative to the performance testing on ReplayAttack or CASIA-
1494
+ MFSD. For example, the HTER (%) of the CDCN trained
1495
+ on CASIA-MFSD was increased by 30.3% for the test on
1496
+ the proposed dataset compared to the test on ReplayAttack.
1497
+ This shows the performance of existing algorithms degrades
1498
+ significantly when they encounter negative factors such as low
1499
+ resolution, motion blur, and occlusion. In particular, CQIL is
1500
+ a PAD method based on low-quality data and requires low-
1501
+ resolution images as input. So the generality of the method
1502
+ will be evaluated in the next subsection.
1503
+ Cross-quality. To demonstrate the generality of our method
1504
+ to low-quality datasets, we design a series of experiments
1505
+ across the quality. We train the different methods on the
1506
+ proposed SuHiFiMask and test them on MARsV2 after the
1507
+ degradation of gaussian kernels of different sizes. Specifically,
1508
+ since no existing work has provided available low-quality
1509
+ PAD datasets, we simulate low-quality datasets with different
1510
+ degrees of degradation by means of a gaussian kernel to verify
1511
+ the generality of different methods on low-quality datasets.
1512
+ Fig. 6 shows several samples of MARsV2 after treatment with
1513
+ gaussian kernels of different sizes. As shown in Tab. VII, our
1514
+ CQIL achieves good performance on the MARsV2 dataset at
1515
+ all degradation degrees. This demonstrates that our method can
1516
+ encode quality-independent discriminative features. However,
1517
+ there is a domain gap between the manually degraded low-
1518
+ quality dataset and the dataset based on the surveillance
1519
+ scenes. This results in CQIL not being able to take full
1520
+ advantage of encoders trained on low-quality data in real
1521
+ surveillance scenes.
1522
+ Fig. 6. MARsV2 with different sizes of the gaussian kernel processing.
1523
+ E. Visualization Analysis
1524
+ In this section, we further visualize the difficulties that low-
1525
+ quality data poses to FAS work and the performance of CQIL
1526
+ in surveillance scenes. First, we compare the features learned
1527
+ by ResNet18 on protocol 1 of HiFiMask, a dataset for the
1528
+ constrained environment, and on protocol 1 of SuHiFiMask, a
1529
+ proposed surveillance scene-based dataset. As shown in Fig 7,
1530
+ the performance of the algorithm degrades significantly on
1531
+ SuHiFiMask, which indicates that the low-quality data in the
1532
+ surveillance scenes add difficulties to the FAS work. Next,
1533
+ we compare the features learned by CQIL and ResNet18
1534
+ on protocol 3 of the proposed SuHiFiMask. Compared with
1535
+ ResNet18, the proposed CQIL is able to better distinguish
1536
+ between real faces and attacks, which demonstrates the better
1537
+ discriminative representation capacity of the proposed CQIL
1538
+ in surveillance scenes.
1539
+ Fig. 7. Feature distribution comparison on HiFiMask and SuHiFiMask using
1540
+ t-SNE [75]. The points with different colors denote features from different
1541
+ classes (blue: real faces; red: attack samples).
1542
+ VI. CONCLUSION
1543
+ In this paper, we release the first large-scale FAS dataset
1544
+ based on surveillance scenes, SuHiFiMask, with three chal-
1545
+ lenging protocols. We hope that this will fill the gap in FAS
1546
+ research in long-distance surveillance scenes. In addition, we
1547
+ propose a Contrastive Quality-Invariance Learning (CQIL)
1548
+ network to recover image information using super-resolution
1549
+ and enhance the robustness of the algorithm to quality vari-
1550
+ ations by fitting the quality variance distribution. Finally, we
1551
+ conduct comprehensive experiments on SuHiFiMask and three
1552
+ other datasets to verify the importance of the datasets for the
1553
+ FAS task and the effectiveness of the proposed method.
1554
+ REFERENCES
1555
+ [1] Z. Zhang, J. Yan, S. Liu, Z. Lei, D. Yi, and S. Z. Li, “A face anti-
1556
+ spoofing database with diverse attacks,” in 2012 5th IAPR international
1557
+ conference on Biometrics (ICB).
1558
+ IEEE, 2012, pp. 26–31.
1559
+
1560
+ Live
1561
+ Attack
1562
+ MARsV2
1563
+ Original image
1564
+ ks=3×3
1565
+ ks=5×5
1566
+ Original image
1567
+ ks= 3×3
1568
+ ks=5×5Dataset Comparison
1569
+ ResNet18
1570
+ ResNet18
1571
+ SuHiFiMask-P1
1572
+ HiFiMask-P1
1573
+ Method Comparison
1574
+ CQIL(Ours)
1575
+ ResNet18
1576
+ SuHiFiMask-P3
1577
+ SuHiFiMask-P311
1578
+ [2] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
1579
+ binary patterns in face anti-spoofing,” in 2012 BIOSIG-proceedings
1580
+ of the international conference of biometrics special interest group
1581
+ (BIOSIG).
1582
+ IEEE, 2012, pp. 1–7.
1583
+ [3] E. Nesli and S. Marcel, “Spoofing in 2d face recognition with 3d masks
1584
+ and anti-spoofing with kinect,” in IEEE 6th International Conference
1585
+ on Biometrics: Theory, Applications and Systems (BTAS’13), 2013, pp.
1586
+ 1–8.
1587
+ [4] Y. Liu, A. Jourabloo, and X. Liu, “Learning deep models for face anti-
1588
+ spoofing: Binary or auxiliary supervision,” in Proceedings of the IEEE
1589
+ conference on computer vision and pattern recognition, 2018, pp. 389–
1590
+ 398.
1591
+ [5] R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative
1592
+ deep domain generalization for face presentation attack detection,” in
1593
+ Proceedings of the IEEE/CVF Conference on Computer Vision and
1594
+ Pattern Recognition, 2019, pp. 10 023–10 031.
1595
+ [6] A. George and S. Marcel, “Deep pixel-wise binary supervision for
1596
+ face presentation attack detection,” in 2019 International Conference
1597
+ on Biometrics (ICB).
1598
+ IEEE, 2019, pp. 1–8.
1599
+ [7] Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G. Zhao,
1600
+ “Searching central difference convolutional networks for face anti-
1601
+ spoofing,” in Proceedings of the IEEE/CVF Conference on Computer
1602
+ Vision and Pattern Recognition, 2020, pp. 5295–5305.
1603
+ [8] K.-Y. Zhang, T. Yao, J. Zhang, Y. Tai, S. Ding, J. Li, F. Huang, H. Song,
1604
+ and L. Ma, “Face anti-spoofing via disentangled representation learning,”
1605
+ in European Conference on Computer Vision. Springer, 2020, pp. 641–
1606
+ 657.
1607
+ [9] Y. Liu, J. Stehouwer, and X. Liu, “On disentangling spoof trace
1608
+ for generic face anti-spoofing,” in European Conference on Computer
1609
+ Vision.
1610
+ Springer, 2020, pp. 406–422.
1611
+ [10] B. Yang, J. Zhang, Z. Yin, and J. Shao, “Few-shot domain expansion
1612
+ for face anti-spoofing,” arXiv preprint arXiv:2106.14162, 2021.
1613
+ [11] Z. Chen, T. Yao, K. Sheng, S. Ding, Y. Tai, J. Li, F. Huang, and X. Jin,
1614
+ “Generalizable representation learning for mixture domain face anti-
1615
+ spoofing,” arXiv preprint arXiv:2105.02453, 2021.
1616
+ [12] A. Liu, Z. Tan, J. Wan, Y. Liang, Z. Lei, G. Guo, and S. Z. Li, “Face anti-
1617
+ spoofing via adversarial cross-modality translation,” IEEE Transactions
1618
+ on Information Forensics and Security, vol. 16, pp. 2759–2772, 2021.
1619
+ [13] X. Li, J. Wan, Y. Jin, A. Liu, G. Guo, and S. Z. Li, “3dpc-net: 3d point
1620
+ cloud network for face anti-spoofing,” in 2020 IEEE International Joint
1621
+ Conference on Biometrics (IJCB).
1622
+ IEEE, 2020, pp. 1–8.
1623
+ [14] Z. Cheng, X. Zhu, and S. Gong, “Surveillance face recognition chal-
1624
+ lenge,” arXiv preprint arXiv:1804.09691, 2018.
1625
+ [15] H. Nada, V. A. Sindagi, H. Zhang, and V. M. Patel, “Pushing the
1626
+ limits of unconstrained face detection: a challenge dataset and baseline
1627
+ results,” in 2018 IEEE 9th International Conference on Biometrics
1628
+ Theory, Applications and Systems (BTAS).
1629
+ IEEE, 2018, pp. 1–10.
1630
+ [16] M. Grgic, K. Delac, and S. Grgic, “Scface–surveillance cameras face
1631
+ database,” Multimedia tools and applications, vol. 51, no. 3, pp. 863–
1632
+ 879, 2011.
1633
+ [17] M. Kim, A. K. Jain, and X. Liu, “Adaface: Quality adaptive margin
1634
+ for face recognition,” in Proceedings of the IEEE/CVF Conference
1635
+ on Computer Vision and Pattern Recognition (CVPR), June 2022, pp.
1636
+ 18 750–18 759.
1637
+ [18] P. Li, L. Prieto, D. Mery, and P. J. Flynn, “On low-resolution face recog-
1638
+ nition in the wild: Comparisons and new techniques,” IEEE Transactions
1639
+ on Information Forensics and Security, vol. 14, no. 8, pp. 2000–2012,
1640
+ 2019.
1641
+ [19] Y. Zhong, W. Deng, J. Hu, D. Zhao, X. Li, and D. Wen, “Sface:
1642
+ Sigmoid-constrained hypersphere loss for robust face recognition,” IEEE
1643
+ Transactions on Image Processing, vol. 30, pp. 2587–2598, 2021.
1644
+ [20] Z. Boulkenafet, J. Komulainen, L. Li, X. Feng, and A. Hadid, “Oulu-npu:
1645
+ A mobile face presentation attack database with real-world variations,”
1646
+ in 2017 12th IEEE international conference on automatic face & gesture
1647
+ recognition (FG 2017).
1648
+ IEEE, 2017, pp. 612–618.
1649
+ [21] S. Zhang, A. Liu, J. Wan, Y. Liang, G. Guo, S. Escalera, H. J. Escalante,
1650
+ and S. Z. Li, “Casia-surf: A large-scale multi-modal benchmark for face
1651
+ anti-spoofing,” IEEE Transactions on Biometrics, Behavior, and Identity
1652
+ Science, vol. 2, no. 2, pp. 182–193, 2020.
1653
+ [22] J. Galbally and R. Satta, “Three-dimensional and two-and-a-half-
1654
+ dimensional face recognition spoofing using three-dimensional printed
1655
+ models,” IET Biometrics, 2016.
1656
+ [23] H. Steiner, A. Kolb, and N. Jung, “Reliable face anti-spoofing using mul-
1657
+ tispectral swir imaging,” in 2016 international conference on biometrics
1658
+ (ICB).
1659
+ IEEE, 2016, pp. 1–8.
1660
+ [24] S. Liu, B. Yang, P. C. Yuen, and G. Zhao, “A 3d mask face anti-
1661
+ spoofing database with real world variations,” in Proceedings of the
1662
+ IEEE conference on computer vision and pattern recognition workshops,
1663
+ 2016, pp. 100–106.
1664
+ [25] A. Liu, C. Zhao, Z. Yu, J. Wan, A. Su, X. Liu, Z. Tan, S. Escalera,
1665
+ J. Xing, Y. Liang et al., “Contrastive context-aware learning for 3d high-
1666
+ fidelity mask face presentation attack detection,” IEEE Transactions on
1667
+ Information Forensics and Security, vol. 17, pp. 2497–2507, 2022.
1668
+ [26] Z. Yu, J. Wan, Y. Qin, X. Li, S. Z. Li, and G. Zhao, “Nas-fas: Static-
1669
+ dynamic central difference network search for face anti-spoofing,” IEEE
1670
+ transactions on pattern analysis and machine intelligence, vol. 43, no. 9,
1671
+ pp. 3005–3023, 2020.
1672
+ [27] S. Jia, G. Guo, and Z. Xu, “A survey on 3d mask presentation attack
1673
+ detection and countermeasures,” Pattern recognition, vol. 98, p. 107032,
1674
+ 2020.
1675
+ [28] S. Jia, X. Li, C. Hu, G. Guo, and Z. Xu, “3d face anti-spoofing with
1676
+ factorized bilinear coding,” IEEE Transactions on Circuits and Systems
1677
+ for Video Technology, vol. 31, no. 10, pp. 4031–4045, 2020.
1678
+ [29] A. George, Z. Mostaani, D. Geissenbuhler, O. Nikisins, A. Anjos, and
1679
+ S. Marcel, “Biometric face presentation attack detection with multi-
1680
+ channel convolutional neural network,” IEEE Transactions on Informa-
1681
+ tion Forensics and Security, vol. 15, pp. 42–55, 2019.
1682
+ [30] S.-Q. Liu, X. Lan, and P. C. Yuen, “Remote photoplethysmography cor-
1683
+ respondence feature for 3d mask face presentation attack detection,” in
1684
+ Proceedings of the European Conference on Computer Vision (ECCV),
1685
+ 2018, pp. 558–573.
1686
+ [31] B. Lin, X. Li, Z. Yu, and G. Zhao, “Face liveness detection by rppg
1687
+ features and contextual patch-based cnn,” in Proceedings of the 2019
1688
+ 3rd international conference on biometric engineering and applications,
1689
+ 2019, pp. 61–68.
1690
+ [32] S.-Q. Liu, X. Lan, and P. C. Yuen, “Multi-channel remote photoplethys-
1691
+ mography correspondence feature for 3d mask face presentation attack
1692
+ detection,” IEEE Transactions on Information Forensics and Security,
1693
+ vol. 16, pp. 2683–2696, 2021.
1694
+ [33] N. Erdogmus and S. Marcel, “Spoofing 2d face recognition systems with
1695
+ 3d masks,” in 2013 International Conference of the BIOSIG Special
1696
+ Interest Group (BIOSIG).
1697
+ IEEE, 2013, pp. 1–8.
1698
+ [34] S. Liu, P. C. Yuen, S. Zhang, and G. Zhao, “3d mask face anti-
1699
+ spoofing with remote photoplethysmography,” in European Conference
1700
+ on Computer Vision.
1701
+ Springer, 2016, pp. 85–100.
1702
+ [35] I. Manjani, S. Tariyal, M. Vatsa, R. Singh, and A. Majumdar, “Detecting
1703
+ silicone mask-based presentation attack via deep dictionary learning,”
1704
+ IEEE Transactions on Information Forensics and Security, vol. 12, no. 7,
1705
+ pp. 1713–1723, 2017.
1706
+ [36] A. Agarwal, D. Yadav, N. Kohli, R. Singh, M. Vatsa, and A. Noore,
1707
+ “Face presentation attack with latex masks in multispectral videos,” in
1708
+ Proceedings of the IEEE Conference on Computer Vision and Pattern
1709
+ Recognition Workshops, 2017, pp. 81–89.
1710
+ [37] S. Bhattacharjee and S. Marcel, “What you can’t see can help you-
1711
+ extended-range imaging for 3d-mask presentation attack detection,” in
1712
+ 2017 International Conference of the Biometrics Special Interest Group
1713
+ (BIOSIG).
1714
+ IEEE, 2017, pp. 1–7.
1715
+ [38] J.-B. Grill, F. Strub, F. Altch´e, C. Tallec, P. Richemond, E. Buchatskaya,
1716
+ C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,
1717
+ “Bootstrap your own latent-a new approach to self-supervised learning,”
1718
+ Advances in neural information processing systems, vol. 33, pp. 21 271–
1719
+ 21 284, 2020.
1720
+ [39] A. Costa-Pazo, S. Bhattacharjee, E. Vazquez-Fernandez, and S. Marcel,
1721
+ “The replay-mobile face presentation-attack database,” in 2016 Interna-
1722
+ tional Conference of the Biometrics Special Interest Group (BIOSIG).
1723
+ IEEE, 2016, pp. 1–7.
1724
+ [40] Y. Zhang, Z. Yin, Y. Li, G. Yin, J. Yan, J. Shao, and Z. Liu, “Celeba-
1725
+ spoof: Large-scale face anti-spoofing dataset with rich annotations,” in
1726
+ European Conference on Computer Vision.
1727
+ Springer, 2020, pp. 70–85.
1728
+ [41] A. Liu, Z. Tan, J. Wan, S. Escalera, G. Guo, and S. Z. Li, “Casia-surf
1729
+ cefa: A benchmark for multi-modal cross-ethnicity face anti-spoofing,”
1730
+ in Proceedings of the IEEE/CVF Winter Conference on Applications of
1731
+ Computer Vision, 2021, pp. 1179–1187.
1732
+ [42] G. Heusch, A. George, D. Geissb¨uhler, Z. Mostaani, and S. Marcel,
1733
+ “Deep models and shortwave infrared information to detect face presen-
1734
+ tation attacks,” IEEE Transactions on Biometrics, Behavior, and Identity
1735
+ Science, vol. 2, no. 4, pp. 399–409, 2020.
1736
+ [43] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face antispoofing using
1737
+ speeded-up robust features and fisher vector encoding,” IEEE Signal
1738
+ Processing Letters, vol. 24, no. 2, pp. 141–145, 2016.
1739
+ [44] G. Pan, L. Sun, Z. Wu, and S. Lao, “Eyeblink-based anti-spoofing in face
1740
+ recognition from a generic webcamera,” in 2007 IEEE 11th international
1741
+ conference on computer vision.
1742
+ IEEE, 2007, pp. 1–8.
1743
+
1744
+ 12
1745
+ [45] W. R. Schwartz, A. Rocha, and H. Pedrini, “Face spoofing detection
1746
+ through partial least squares and low-level descriptors,” in 2011 Inter-
1747
+ national Joint Conference on Biometrics (IJCB).
1748
+ IEEE, 2011, pp. 1–8.
1749
+ [46] Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detec-
1750
+ tion using colour texture analysis,” IEEE Transactions on Information
1751
+ Forensics and Security, vol. 11, no. 8, pp. 1818–1830, 2016.
1752
+ [47] J. Yang, Z. Lei, and S. Z. Li, “Learn convolutional neural network for
1753
+ face anti-spoofing,” arXiv preprint arXiv:1408.5601, 2014.
1754
+ [48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
1755
+ recognition,” in Proceedings of the IEEE conference on computer vision
1756
+ and pattern recognition, 2016, pp. 770–778.
1757
+ [49] Z. Wang, Z. Yu, C. Zhao, X. Zhu, Y. Qin, Q. Zhou, F. Zhou, and
1758
+ Z. Lei, “Deep spatial gradient and temporal depth learning for face anti-
1759
+ spoofing,” in Proceedings of the IEEE/CVF Conference on Computer
1760
+ Vision and Pattern Recognition, 2020, pp. 5042–5051.
1761
+ [50] A. Jourabloo, Y. Liu, and X. Liu, “Face de-spoofing: Anti-spoofing
1762
+ via noise modeling,” in Proceedings of the European conference on
1763
+ computer vision (ECCV), 2018, pp. 290–306.
1764
+ [51] A. Liu, J. Wan, N. Jiang, H. Wang, and Y. Liang, “Disentangling facial
1765
+ pose and appearance information for face anti-spoofing,” in 2022 26th
1766
+ International Conference on Pattern Recognition (ICPR).
1767
+ IEEE, 2022,
1768
+ pp. 4537–4543.
1769
+ [52] J. Stehouwer, A. Jourabloo, Y. Liu, and X. Liu, “Noise modeling, synthe-
1770
+ sis and classification for generic object anti-spoofing,” in Proceedings of
1771
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1772
+ 2020, pp. 7294–7303.
1773
+ [53] G. Wang, H. Han, S. Shan, and X. Chen, “Cross-domain face pre-
1774
+ sentation attack detection via multi-domain disentangled representation
1775
+ learning,” in Proceedings of the IEEE/CVF Conference on Computer
1776
+ Vision and Pattern Recognition, 2020, pp. 6678–6687.
1777
+ [54] S. Liu, K.-Y. Zhang, T. Yao, M. Bi, S. Ding, J. Li, F. Huang, and L. Ma,
1778
+ “Adaptive normalized representation learning for generalizable face anti-
1779
+ spoofing,” in Proceedings of the 29th ACM International Conference on
1780
+ Multimedia, 2021, pp. 1469–1477.
1781
+ [55] S. Liu, K.-Y. Zhang, T. Yao, K. Sheng, S. Ding, Y. Tai, J. Li, Y. Xie, and
1782
+ L. Ma, “Dual reweighting domain generalization for face presentation
1783
+ attack detection,” arXiv preprint arXiv:2106.16128, 2021.
1784
+ [56] H.-P. Huang, D. Sun, Y. Liu, W.-S. Chu, T. Xiao, J. Yuan, H. Adam, and
1785
+ M.-H. Yang, “Adaptive transformers for robust few-shot cross-domain
1786
+ face anti-spoofing,” arXiv preprint arXiv:2203.12175, 2022.
1787
+ [57] Y. Jia, J. Zhang, S. Shan, and X. Chen, “Single-side domain generaliza-
1788
+ tion for face anti-spoofing,” in Proceedings of the IEEE/CVF Conference
1789
+ on Computer Vision and Pattern Recognition, 2020, pp. 8484–8493.
1790
+ [58] Z. Wang, Z. Wang, Z. Yu, W. Deng, J. Li, T. Gao, and Z. Wang, “Domain
1791
+ generalization via shuffled style assembly for face anti-spoofing,” in
1792
+ Proceedings of the IEEE/CVF Conference on Computer Vision and
1793
+ Pattern Recognition, 2022, pp. 4123–4133.
1794
+ [59] R. Shao, X. Lan, and P. C. Yuen, “Regularized fine-grained meta face
1795
+ anti-spoofing,” in Proceedings of the AAAI Conference on Artificial
1796
+ Intelligence, vol. 34, no. 07, 2020, pp. 11 974–11 981.
1797
+ [60] Y. Qin, Z. Yu, L. Yan, Z. Wang, C. Zhao, and Z. Lei, “Meta-teacher for
1798
+ face anti-spoofing,” IEEE transactions on pattern analysis and machine
1799
+ intelligence, 2021.
1800
+ [61] J. Wang, J. Zhang, Y. Bian, Y. Cai, C. Wang, and S. Pu, “Self-
1801
+ domain adaptation for face anti-spoofing,” in Proceedings of the AAAI
1802
+ Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 2746–
1803
+ 2754.
1804
+ [62] X. Chen, S. Xu, Q. Ji, and S. Cao, “A dataset and benchmark towards
1805
+ multi-modal face anti-spoofing under surveillance scenarios,” IEEE
1806
+ Access, vol. 9, pp. 28 140–28 155, 2021.
1807
+ [63] C. Aravena, D. Pasmino, J. E. Tapia, and C. Busch, “Impact of
1808
+ face image quality estimation on presentation attack detection,” arXiv
1809
+ preprint arXiv:2209.15489, 2022.
1810
+ [64] Y. Liu, J. Stehouwer, A. Jourabloo, and X. Liu, “Deep tree learning
1811
+ for zero-shot face anti-spoofing,” in Proceedings of the IEEE/CVF
1812
+ Conference on Computer Vision and Pattern Recognition, 2019, pp.
1813
+ 4680–4689.
1814
+ [65] A. Zolfi, S. Avidan, Y. Elovici, and A. Shabtai, “Adversarial mask: Real-
1815
+ world adversarial attack against face recognition models,” arXiv preprint
1816
+ arXiv:2111.10759, 2021.
1817
+ [66] S. Komkov and A. Petiushko, “Advhat: Real-world adversarial attack
1818
+ on arcface face id system,” in 2020 25th International Conference on
1819
+ Pattern Recognition (ICPR).
1820
+ IEEE, 2021, pp. 819–826.
1821
+ [67] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “Retinaface:
1822
+ Single-shot multi-level face localisation in the wild,” in Proceedings of
1823
+ the IEEE/CVF conference on computer vision and pattern recognition,
1824
+ 2020, pp. 5203–5212.
1825
+ [68] P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper, “Ser-
1826
+ fiq: Unsupervised estimation of face image quality based on stochastic
1827
+ embedding robustness,” in Proceedings of the IEEE/CVF conference on
1828
+ computer vision and pattern recognition, 2020, pp. 5651–5660.
1829
+ [69] Z. Cheng, X. Zhu, and S. Gong, “Low-resolution face recognition,” in
1830
+ Asian Conference on Computer Vision.
1831
+ Springer, 2018, pp. 605–621.
1832
+ [70] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
1833
+ for unsupervised visual representation learning,” in Proceedings of the
1834
+ IEEE/CVF conference on computer vision and pattern recognition, 2020,
1835
+ pp. 9729–9738.
1836
+ [71] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
1837
+ propagation,” in International conference on machine learning. PMLR,
1838
+ 2015, pp. 1180–1189.
1839
+ [72] international organization for standardization, “Iso/iec jtc 1/sc 37 bio-
1840
+ metrics: Information technology biometric presentation attack detection
1841
+ part 1: Framework.” in https://www.iso.org/obp/ui/iso, 2016.
1842
+ [73] S. Bengio and J. Mari´ethoz, “A statistical significance test for person
1843
+ authentication,” in Proceedings of Odyssey 2004: The Speaker and
1844
+ Language Recognition Workshop, no. CONF, 2004.
1845
+ [74] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
1846
+ T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
1847
+ “An image is worth 16x16 words: Transformers for image recognition
1848
+ at scale,” arXiv preprint arXiv:2010.11929, 2020.
1849
+ [75] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
1850
+ of machine learning research, vol. 9, no. 11, 2008.
1851
+
1852
+ 13
1853
+ Appendix
1854
+ A. Sample of faces
1855
+ As shown in the Fig. 8, we have listed some samples of
1856
+ pre-processed face images. The figure contains six sections,
1857
+ which are listed as close-up samples of real people, resin
1858
+ masks, silicone masks, plaster masks, headgear, head molds
1859
+ and other forms of attacks. Each column in the first five
1860
+ sections of the figure represents a mainstream surveillance
1861
+ camera, where C1 to C7 represents DS-2CD3T87WD-L, DS-
1862
+ 2CD3T86FWDV2-I3S, TL-IPC586HP, TL-IPC586FP, DH-
1863
+ IPC-HFW4843M, DH-P80A1-SA, and ZD5920-Gi4N cam-
1864
+ eras. Each row in the first five sections of the figure represents
1865
+ a weather or shooting time, with samples taken on sunny days,
1866
+ cloudy days, windy days, snowy days, and nights, respectively.
1867
+ The sixth section of the figure lists head molds and other forms
1868
+ of attack, from left to right, in each column are adversarial
1869
+ masks, adversarial hats, replay attacks in electronic screens,
1870
+ posters, cardboards, and head molds.
1871
+ B. Sample of scenes
1872
+ As shown in the Fig. 9, we have listed all 40 scenes included
1873
+ in the SuHiFiMask, which include daily life scenes (e.g., cafes,
1874
+ cinemas, and theaters) and security check scenes (e.g., security
1875
+ check lanes and parking lots) for deploying face recognition
1876
+ systems. On the left side of the figure is the number of each
1877
+ scene in the row, which is the basis for naming the videos in
1878
+ the dataset. In addition, we need to increase the relevance of
1879
+ the data content and surveillance scenes by asking the subjects
1880
+ do scene-related behaviors in the scenes, such as asking the
1881
+ subjects sit around a coffee table and drink coffee in the coffee
1882
+ shop scenes. It is worth mentioning that some scenes in real
1883
+ life are vulnerable to attack in both day and night, so we
1884
+ identify the day and night of this scene as two different scenes,
1885
+ such as parking lot (day) and parking lot (night).
1886
+
1887
+ 14
1888
+ Fig. 8. We show some samples taken on snowy, cloudy, windy, sunny and night time days. Among them, C1 to C7 represents the surveillance cameras with
1889
+ DS-2CD3T87WD-L, DS-2CD3T86FWDV2-I3S, TL-IPC586HP, TL-IPC586FP, DH-IPC-HFW4843M, DH-P80A1-SA, and ZD5920-Gi4N, respectively.
1890
+
1891
+ Live
1892
+ Resin
1893
+ C2
1894
+ C3
1895
+ C5
1896
+ C4
1897
+ C4
1898
+ C6
1899
+ C2
1900
+ C1
1901
+ Sunny
1902
+ Cloudy
1903
+ Windy
1904
+ Snowy
1905
+ Night
1906
+ Silicone
1907
+ Plaster
1908
+ C5
1909
+ C2
1910
+ C1
1911
+ C3
1912
+ C4
1913
+ C6
1914
+ C5
1915
+ C4
1916
+ C6
1917
+ C7
1918
+ G
1919
+ Cloudy
1920
+ Windy
1921
+ Snowy
1922
+ Night
1923
+ Headgear
1924
+ Head mold and other attacks
1925
+ C1
1926
+ C2
1927
+ C3
1928
+ C4
1929
+ C5
1930
+ C6
1931
+ C7
1932
+ Cardboard
1933
+ ADV1
1934
+ ADV2
1935
+ Screen
1936
+ Poster
1937
+ Head mold
1938
+ Sunny
1939
+ Cloudy
1940
+ Windy
1941
+ Snowy
1942
+ Nighi15
1943
+ Fig. 9. We show the 40 surveillance scenes included in SuHiFiMask, S1-S40 on the left side of the figure are the numbers of each scene.
1944
+
1945
+ Surveillance scenes
1946
+ S1-S5
1947
+ Gate(outdoor)
1948
+ Side Hall(day)
1949
+ Side Hall(night)
1950
+ Yoga Room
1951
+ Gate(indoor)
1952
+ S6-S10
1953
+ Café
1954
+ Rotating staircase
1955
+ Security check lanes
1956
+ Screening Room
1957
+ Game Room
1958
+ S11-S15
1959
+ Sidewalk(day)
1960
+ Road1( night)
1961
+ Sidewalk(night)
1962
+ Road1(day)
1963
+ Road2( day)
1964
+ S16-S20
1965
+ Road2(night)
1966
+ Restaurant
1967
+ Corridor
1968
+ Hall
1969
+ Escape routes
1970
+
1971
+ S21-S25
1972
+ Bedroom
1973
+ Balcony(outdoor)
1974
+ Balcony(indoor)
1975
+ Theater
1976
+ Lounge
1977
+ 0
1978
+ S26-S30
1979
+ Malls
1980
+ Florist
1981
+ Washroom
1982
+ Escalator entrance
1983
+ Mall Lobby
1984
+ S31-S35
1985
+ Construction Sites
1986
+ Ticketing area
1987
+ Billboard
1988
+ Cinemas
1989
+ Commercial Street
1990
+ S36-S40
1991
+ Parking lot(day)
1992
+ Parking lot(night)
1993
+ Stairway entrance
1994
+ Neighborhood(night)
1995
+ Neighborhood2(night)
1NAzT4oBgHgl3EQfDfoM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE0T4oBgHgl3EQfugGB/content/tmp_files/2301.02606v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE0T4oBgHgl3EQfugGB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59AyT4oBgHgl3EQfpfhu/content/tmp_files/2301.00526v1.pdf.txt ADDED
@@ -0,0 +1,1227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ 1
3
+ Unusual acceleration and size effects in grain boundary migration with shear coupling
4
+
5
+ Liang Yanga, Xinyuan Songb, Tingting Yuc, Dahai Liua*, Chuang Dengb,*
6
+ a School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang
7
+ 330063, China
8
+ b Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
9
+ c School of Aviation and Mechanical Engineering, Changzhou Institute of Technology, Changzhou,
10
+ Jiangsu 213032, China.
11
+ * Corresponding author: dhliu@nchu.edu.cn(D. Liu), Chuang.Deng@umanitoba.ca (C. Deng)
12
+
13
+
14
+ Graphical abstract
15
+
16
+
17
+ acceleration and size effect
18
+ mechanism
19
+ 50
20
+ 80
21
+ 30
22
+ Lx- Ly Lz
23
+ 25
24
+ 2Lx
25
+ Lx- 2 0L, 2 0Lz
26
+ 40
27
+ 20
28
+ 2L-3L,-3Lz
29
+ 60
30
+ 8Lx
31
+ 20
32
+ aDisplacement (n)
33
+ 30
34
+ (eV)
35
+ 40
36
+ 20
37
+ 20
38
+ 1010
39
+ Original
40
+ -10
41
+ Fitted
42
+ -20
43
+ -15
44
+ :2
45
+ 0
46
+ 4
47
+ 6
48
+ 10
49
+ 12
50
+ 0
51
+ 200
52
+ 400
53
+ 0
54
+ 50
55
+ 100
56
+ Time (ps)
57
+ Time (ps)
58
+ Displacement (nm)150
59
+ 12
60
+ 140
61
+ topfullyfixed
62
+ 第0ps
63
+ 120
64
+ 120-
65
+ nm)
66
+ 100e
67
+ 90
68
+ bottomfree
69
+ 80
70
+ er
71
+ E
72
+ ien
73
+ 60.
74
+ 0g
75
+ 2L
76
+ 40
77
+ 30
78
+ 20x
79
+ 0
80
+ 0
81
+ 0
82
+ 20
83
+ 40
84
+ 60
85
+ 80
86
+ 0
87
+ 200
88
+ 400
89
+ 600
90
+ 800
91
+ Time (ps)
92
+ Time (ps)
93
+ attempt to alleviate acceleration and size effect
94
+ 2
95
+ Abstract
96
+ Grain boundary (GB) migration is widely believed to maintain a linear relation between its
97
+ displacement and time under a constant driving force. In this study, we investigated the migration
98
+ behaviors of a set of GBs in Ni by applying the synthetic driving force and shear stress via atomistic
99
+ simulations. It was found that the displacements of some shear-coupling GBs do not exhibit a linear or
100
+ approximately linear relation with the time, as widely assumed, but evidently exhibit an acceleration
101
+ tendency. Moreover, the boundary velocity significantly decreases when increasing the bicrystal size
102
+ perpendicular to the GB plane. These behaviors were verified to be independent of the magnitude and
103
+ type of driving force but closely related to the temperature and revealed to be unique to
104
+ shear-coupling GBs exhibiting a rise in the kinetic energy component along the shear direction.
105
+ Moreover, after many attempts, we found that the acceleration in migration and size effect can be
106
+ largely alleviated by adopting one specific kind of boundary condition. Nevertheless, the continuous
107
+ rise of kinetic energy still exists and leads to the true driving force for GB migration lower than the
108
+ nominally applied value. For that reason, a technique is proposed to extract the true driving force
109
+ based on a quantitative analysis of the work-energy relation in the bicrystal system. Accordingly, the
110
+ calculated true mobility shows that the recently proposed mobility tensor may not be symmetric at
111
+ relatively large driving forces.
112
+ Keywords: grain boundary migration; shear-coupling; size effect; mobility; atomistic simulation.
113
+
114
+ 1. Introduction
115
+ Grain boundary (GB) migration is crucial to a variety of behaviors (e.g., grain growth,
116
+ recrystallization, and plastic deformation) and mechanical properties (e.g., strength and ductility) in
117
+ polycrystalline materials [1]. Up to now abundant and deep insights have been gained into the
118
+ characters and underlying mechanisms of GB migration based on theoretical and experimental
119
+ investigations [2-9]. Thereinto, dramatic attentions were paid to GB mobility M, which can be defined
120
+ as the coefficient relating to migration velocity v and driving force P (i.e., M = v/P) and is considered
121
+ an intrinsic GB property (i.e., only depending on material parameters, temperature, and boundary
122
+
123
+
124
+ 3
125
+ crystallography) [10-12].
126
+ Nevertheless, computational studies [13-15] have revealed that the magnitude of driving force
127
+ can leave significant influences on mobility, owing to the force-induced variation of boundary
128
+ structure and/or migration mechanism. For example, Deng and Schuh [13] found that for both
129
+ symmetrical and inclined Ni Σ5 100 tilt GBs, their mobilities agree well with the intrinsic values
130
+ obtained by the thermal fluctuation method [16] only when the applied driving force is sufficiently
131
+ low; increasing the driving force will lead to diffusive-to-ballistic transition in the migration
132
+ mechanism and enlarge the discrepancy between the extracted and intrinsic mobility values. Moreover,
133
+ for shear-coupling migration GBs (i.e., simultaneous translation in GB plane during the migration
134
+ along the boundary normal direction), Han and coworkers [7,17,18] demonstrated that both GB
135
+ mobility and shear-coupling factor (ratio of GB sliding and migration rates) do not only strongly
136
+ depend on the magnitude but also the source of driving force (stress or a jump in chemical potential
137
+ across the boundary). They further revealed that the mobility traditionally defined as a scalar should
138
+ be a symmetrical second-rank tensor [18]. The tensor components can be extracted by applying
139
+ driving forces in the directions perpendicular and tangent to the boundary plane, respectively [18].
140
+ In addition to the driving force, GB motion may also strongly depend on the size of simulation
141
+ cell. Zhou et al. [19] reported that the mobility of a Ni 100 tilt GB decreased monotonically with
142
+ decreasing the cell thickness (the size along the tilt axis), due to the interference between the free
143
+ surface and the collective rearrangement of atoms during boundary motion driven by an external
144
+ stress. A similar size-dependency of mobility was also observed in Ref. [20]. Race et al. [21] revealed
145
+ that the boundary area of a flat 111 tilt GB should reach the meso-scale or a large-enough value to
146
+ yield a converged migration velocity under the synthetic driving force (SDF). Meanwhile, simulations
147
+ for stress-driven [22,23] and SDF-driven [24] migration further discovered that the energy barrier for
148
+ disconnection nucleation or the driving force for GB migration would converge when the boundary
149
+ area was large enough for shear-coupling GBs. The energy barrier was also found to firstly decrease
150
+ and then keep steady with the increase of cell size in GB normal direction for 53.1º Σ5 100 tilt GB
151
+ [24]. Existing studies concerning the size effect on GB migration overall reached a consensus that the
152
+
153
+
154
+ 4
155
+ system size should be large enough to yield physically reliable results and conclusions. This agrees
156
+ well with the general understanding related to the size effect in modeling and simulation.
157
+ Although GB migration has been reported to suffer influences from various factors (e.g.,
158
+ crystallography [11,25], temperature [13,26], driving force [10,14], pressure [27,28] and impurity
159
+ [29,30]), the mobility values extracted from M = v/P in these studies were all based on a basic premise
160
+ that the boundary velocity will maintain constant or approximately constant during the whole
161
+ migration process under a fixed driving force, i.e., the boundary displacement exhibiting a linear or
162
+ approximately linear relation with the migration time. This character has been widely observed in
163
+ existing research concerning GB migration (e.g., Refs. [3,31-34]). Nevertheless, in this study, we
164
+ found that velocities of some GBs did not keep constant during migration but exhibited an unusual
165
+ acceleration feature, i.e., the velocity varying significantly with GB relative position in the simulation
166
+ cell. This signifies a strong dependency of migration on the cell size in the direction perpendicular to
167
+ GB plane, which has not yet been discovered before.
168
+ The first effort of the present work was therefore to investigate the underlying mechanisms for
169
+ the acceleration in GB migration and effects of model size in GB normal direction on migration,
170
+ based on atomistic simulations of several GBs driven by the external stress and SDF. After the
171
+ corresponding conditions and mechanisms for these two phenomena were clarified, attentions were
172
+ paid to effectively alleviate the size effect and to extract the true driving force and mobility in the
173
+ presence of acceleration.
174
+ 2. Methodology
175
+ In this study, the acceleration in GB migration, size effect and other related contents were
176
+ investigated based on atomistic simulations of several GBs in Ni. First, we simulated the migration of
177
+ Ni Σ5 100{310}, Σ29 100 {10 4 0} and Σ55 211 {952} symmetrical tilt GBs, which correspond
178
+ to P1, P148 and P233 GBs in the 388 GBs dataset constructed by Olmsted et al. [11], to reveal the
179
+ phenomena of acceleration and dependency of migration on the cell size in the direction perpendicular
180
+ to GB plane. These simulations were performed at 500 K and an SDF of 0.06 eV when increasing the
181
+ normal cell size for each GB. Additional simulations were carried out at lower SDF (i.e., 0.025 eV for
182
+
183
+
184
+ 5
185
+ P1 and 0.003–0.006 eV for P233) and under the external shear stress τext (τext = 250 MPa for P1 and τext
186
+ = 50 MPa for P233) to test whether the above phenomena are affected by the magnitude and type of
187
+ driving force, respectively. Second, we simulated the migration behaviors for Ni Σ3 110 twist GB
188
+ (i.e., P5) at 500 – 1000 K and 0.006 – 0.06 eV, Σ21 210 general GB (i.e., P81) at 1000 K and 0.001 –
189
+ 0.06 eV, P1 at 1000 K and 0.06 – 0.003 eV. These simulations were aimed to explore the physical
190
+ causes for the acceleration and size-dependency from the aspects of shear coupling and work-energy
191
+ relation in the bicrystal system. Third, we chose the P1 GB as the representative example to attempt
192
+ approaches for inhibiting or alleviating the size effect by performing simulations adopting various
193
+ boundary conditions (BCs) and/or manipulating the internal stress in the system. The corresponding
194
+ results were compared with those reported in existing studies whenever possible. Finally, we still
195
+ chose P1 as the example to discuss how to extract the true driving force for GBs exhibiting
196
+ acceleration when the true driving force was not equal to the value nominally applied through the
197
+ SDF method or the external shear stress.
198
+ All simulations stated above were performed using the Large-scale Atomic/Molecular Massively
199
+ Parallel Simulator (LAMMPS) software package [35] with the embedded atom method potential
200
+ developed for Ni [36]. As shown in Fig. 1(a), a bicrystal simulation cell was used to construct a flat
201
+ GB, which was in y-z plane with y and z directions being periodic. Nevertheless, the boundary
202
+ conditions in x direction (parallel to the boundary normal direction) might be quite different,
203
+ depending on the simulation tests. For the above first and second groups of simulations, in order to
204
+ avoid translation of the whole bicrystal in GB normal direction, a slab of atoms (1nm thickness) near
205
+ the bottom surface were partially fixed (i.e., only the velocity and force components along the x
206
+ direction being set as zero) while the top surface was set free. For the third group of simulations, the
207
+ boundary conditions in x direction might be periodic, fully fixed, free, or one surface free while the
208
+ other fixed. When exploring the size effect on boundary migration, the cell size in the GB normal
209
+ direction (i.e., the grain size) or in the boundary plane (i.e., the boundary area) was varied accordingly.
210
+ The minimum cell size for each above GB was the same as those constructed by Olmsted in Ref. [11].
211
+ For example, the minimum cell size for P1 was Lx = 18.3 nm, Ly = 3.2 nm, and Lz = 3.3 nm.
212
+
213
+
214
+ 6
215
+ When the bicrystal system of each GB was constructed, its energy was minimized at 0 K
216
+ following the scheme introduced in Ref. [11]. Subsequently, the system was elevated to and
217
+ sufficiently relaxed at test temperatures (500 K or 1000 K) under the isothermal-isobaric ensemble
218
+ (NPT) for about 0.15–7 ns (depending on the temperature, GB, and cell size) with a default time step
219
+ of 5 fs. After the system was fully equilibrated, the boundary was driven to migrate under a jump in
220
+ chemical potential across the boundary or a shear stress. Thereinto, the former was realized by the
221
+ CROP-SDF method [14] while the latter by applying a shear force to individual atoms near the
222
+ bottom surface (1 nm thickness in x direction) in Fig. 1(a). The GB displacement under the SDF and
223
+ stress was computed by tracking the overall change of the potential energy artificially added to the
224
+ bicrystal system and by tracking atoms with the centro-symmetry parameters close to the maximum
225
+ value in the system, respectively. For the above four groups of simulations, the NPT ensemble was
226
+ also used during the boundary migration for each case, if not otherwise specified, to control the
227
+ internal normal stress components as close to 0 GPa as possible. For some specific simulations, the
228
+ internal shear stress along the shear direction also needed to be controlled at 0 GPa. The structure of
229
+ bicrystal model, if needed, was visualized by Ovito package [37]. Note that some results concerning
230
+ this study were presented in the Supplementary Material.
231
+ 3. Results and discussion
232
+ 3.1 Acceleration in migration and size effect
233
+ Fig. 1(b-e) represents the migration data of Σ5 100 {310} tilt GB (i.e., P1 GB) when increasing
234
+ the cell size along different directions while under a constant external driving force. Two features can
235
+ be readily observed. First, the boundary velocities (slope of displacement curve) under various cell
236
+ sizes all gradually increase with the proceeding of boundary migration, suggesting a clear dependency
237
+ of migration velocity on the relative GB position along the boundary normal direction in the
238
+ simulation cell. In contrast, the boundary displacement was widely observed and commonly assumed
239
+ to exhibit a linear or approximately linear relation with the migration time (e.g., Refs. [3,31]). After a
240
+ detailed survey of existing studies, the acceleration in migration was only found in the work by
241
+ Coleman et al. [38], who simulated the migration of Ni Σ37 100 symmetrical tilt by applying the
242
+
243
+
244
+ 7
245
+ synthetic driving force and shear strain at 300 and 400 K. Unfortunately, the focus in Ref. [38] was
246
+ the atomic mechanisms of migration and no attention was paid to the acceleration.
247
+
248
+ Fig. 1 (a) Schematic of the bicrystal simulation cell. GB displacement vs. time for P1 GB simulated at 500 K
249
+ and under a synthetic force of 0.06 eV, when increasing the cell size along (b) x, (c) y, (d) z and (e) all three
250
+ directions. To avoid translation of the whole bicrystal along the x direction, the bottom surface was partially
251
+ fixed (i.e., setting the velocity and force components along x for atoms near the surface as zero) while the top
252
+ surface was set free.
253
+
254
+ Second, the velocity is independent of the cell size in GB plane (i.e., the boundary area or lateral
255
+ cell size) (see Fig. 1c-e) but strongly and negatively related to the size in the boundary normal
256
+ direction (x direction in this study) (see Fig. 1b and e). Nevertheless, the velocity of flat boundary has
257
+ been previously reported to show a strong and complex dependence on the boundary area [21]. In
258
+ addition to the velocity, the boundary area has also been reported to cause significant influence on GB
259
+ mobility [19,20] and the energy barrier of disconnection nucleation for GB migration [22-24].
260
+ Moreover, these properties concerning GB migration exhibited a consistency in their dependency on
261
+ the boundary area, i.e., the boundary area should be sufficiently large to yield a converged property
262
+ value. The negative dependency of velocity on the cell size along the boundary normal (i.e., vertical
263
+ cell size) here is partially similar to the trend regarding the threshold driving force of disconnection
264
+ nucleation for Cu Σ5 100 {210} tilt GB (i.e., P6 GB in Ref. [11]) at 10 K revealed by Deng and
265
+ Deng [24], who found the threshold driving force, which in practice can be qualitatively regarded as
266
+ the reverse of GB mobility [9], overall declines when increasing the vertical cell size. Therefore, the
267
+ size effects regarding the boundary area are different between the present and existing studies, but a
268
+
269
+
270
+ 8
271
+ similarity appears in the dependency on the vertical cell size.
272
+ As a typical of low-period and high-angle CSL boundary, the migration behaviors of P1 GB have
273
+ been widely studied through atomistic simulations [6,10,11,13,14,17,34,39-41], but why the above
274
+ two features were not reported before? This can be attributed to multiple factors. First of all, there has
275
+ been no research adopting various vertical cell sizes for this GB up to now, and accordingly no insight
276
+ into the size effect was obtained. In studies adopting fixed vertical size [10,11,14,17,34,39], the
277
+ acceleration might also exist, though the displacement-time data was not directly provided in these
278
+ studies. Nevertheless, we deem that the acceleration might have been disregarded on the grounds that
279
+ the main attentions and efforts were focusing on exploring the intended objectives of individual
280
+ studies, as in our previous work [14,34]. Meanwhile, the disappearance of acceleration can also be
281
+ attributed to the relatively high temperatures (e.g., 1000, 1200 and 1400 K) tested in Refs. [10,11,39]
282
+ (see discussion in Section 3.2). In addition, the periodic boundary condition imposed along the
283
+ boundary normal direction will prevent the presence of acceleration in work [13,40]. This boundary
284
+ condition has been confirmed to inhibit the shear-coupling migration [21,41], which is a necessary but
285
+ not a sufficient condition for acceleration migration (see following discussion concerning Figs. 2 and
286
+ 3). When exploring the shear coupling migration of Cu P1 GB, Cahn et al. [6] directly presented a
287
+ displacement-time data up to 1 nm, simulated by applying a constant shear strain 1 m/s at 800 K (see
288
+ Fig. 6 in Ref. [6]). To our understanding, 1 nm data may not be sufficiently long to evidently illustrate
289
+ the acceleration feature, in comparison with the displacement data in Fig. 1. Another
290
+ displacement-time data (up to 6 nm) was provided by Schartt and Mohles [41], who simulated the
291
+ migration of Ni P1 under 300–1000 K with free end boundary conditions and a synthetic force of 0.06
292
+ eV imposed through the ECO-SDF method. Nevertheless, the acceleration feature was still not
293
+ observed in Ref. [41] though it shows up in our re-tests of simulations in Fig. 1 by using the
294
+ ECO-SDF method. Therefore, the discrepancy concerning the acceleration should not be attributed to
295
+ the different versions of SDF method (i.e., CROP-SDF [14] or ECO-SDF [41]) utilized in the present
296
+ study and Ref. [41]. Since the temperature dependency of migration velocity and shear coupling
297
+ factor  in the range of 300-700 K in [41] also appears different from those previously reported
298
+ [6,9,13,17], we deem that the discrepancy may be resulted from the difference in the metastable
299
+
300
+
301
+ 9
302
+ structures for P1 GB adopted for various studies.
303
+ To evaluate whether the acceleration in migration or the corresponding size effect is unique to P1
304
+ GB or not, Fig. 2 show the results simulated for some other GBs or under simulation settings different
305
+ from Fig. 1. As shown in Fig. 2(a) and (b), the two features can also be observed for P148 and P233
306
+ GBs when adopting the same settings as for P1 in Fig. 1. Since the driving force applied in Figs. 1,
307
+ 2(a) and (b) is a relatively high value (i.e., 0.06 eV ≈ 0.87 GPa) in comparison with experimentally
308
+ applied values, we tested lower forces for P1 and P233 GBs. It can be seen from in Fig. 2(c) and (d)
309
+ that these features still hold on for P1 GB at 0.025 eV (lower than KT = 0.043 eV, K Boltzmann
310
+ constant and T temperature) and for P233 GB at 0.003 eV which approaches typical experimental
311
+ values. Note that lower forces have also been tried for P1 but failed to yield continuous boundary
312
+ migration, agreeing with the threshold driving force of boundary migration determined for this GB at
313
+ 500 K by Yu et al. [9]. It is important to note from Fig. 2(e) and (f) that the acceleration and size effect
314
+ still show up for P1 and P233 GBs when applying the external shear stress to drive the GB migration.
315
+ Therefore, while the shear coupling mode may be strongly influenced by both the magnitude and type
316
+ of the driving force [17], the acceleration and size effect does not exhibit such dependency.
317
+ The above analysis suggests that the acceleration in migration and negative dependency on the
318
+ vertical cell size are relatively common features for force-driven GB migration. The following content
319
+ will further reveal that the latter feature is resulted from the former one. These two features extend our
320
+ current understandings of size-effect on GB migration, which almost all focused on the size in the
321
+ boundary plane [19-23]. They also remind us that attentions should be taken for GBs exhibiting such
322
+ features when extracting the boundary velocity or mobility under a constant driving force, during
323
+ which the migration displacement and time were almost always assumed to keep a linear relation.
324
+
325
+
326
+ 10
327
+
328
+ Fig. 2 Other results simulated at 500 K supporting the acceleration in migration and size effect. Displacement
329
+ data in (a-d) were all simulated under the applied synthetic force while (e, f) under the external shear stress.
330
+ The shear stress was applied to a slab of atoms (1 nm thickness) near the top surface, as illustrated in Fig. 1,
331
+ while a slab of atoms near the bottom surface was set as a grid body.
332
+ 3.2 Underlying mechanism for acceleration and size effects
333
+ The acceleration in boundary migration and vertical size effect have been revealed in the above
334
+ section, then for what types of GB or under what kinds of condition that such phenomenon will occur?
335
+ A preliminary analysis of the three GBs tested in Figs. 1 and 2 indicates that they are all
336
+ shear-coupling migration GBs and with  > 0.5. Fig. 3(a) chooses P5 (Ni Σ3 110 twist) GB as an
337
+ example to show the displacement-time (S-t) data and size-dependency of GBs without shear-coupling.
338
+ It can be seen that the displacement is linearly related to the migration time and the corresponding
339
+ velocities are the same under different vertical sizes, irrespective of temperature and magnitude of
340
+ driving force. These results seemingly indicate that only shear-coupling GBs will exhibit acceleration
341
+
342
+
343
+ 11
344
+ migration and negative size-dependency. However, as shown in Fig. 3(b) for P81 GB, the linear S-t
345
+ relation and constant v under different sizes can be observed also for shear-coupling GBs at various
346
+ temperatures and driving forces. Furthermore, the acceleration migration and size effect observed at
347
+ 500 K for P1 GB (Fig. 1) unexpectedly transfers into uniform migration when raising the temperature
348
+ to 1000 K at which the shear coupling still exists, regardless of the magnitude of driving force (see
349
+ Fig. 3(c)). This kind of transition induced by the temperature also occurs for other shear-coupling GBs
350
+ (see Fig. s1 in the Supplementary file). To our understanding, the transition can be attributed to the
351
+ temperature-induced variation of disconnections mediated for GB migration, which has been widely
352
+ observed [7,23]. Based on these analyses, we conclude that the shear coupling is a necessary but not a
353
+ sufficient condition for the acceleration in migration and therefore the size effect, which may suffer
354
+ strong influence from the temperature.
355
+
356
+ Fig. 3 Examples of uniform migration for GBs with or without shear-coupling: (a) P5; (b) P81; (c) P1. (d) and
357
+ (e) presents kinetic energy E for P1 with cell size Lx, simulated at 500 K and 1000 K, respectively.
358
+
359
+ To further explore the fundamental mechanisms for acceleration, Fig. 3(d) compares the relative
360
+
361
+
362
+ 12
363
+ variation of kinetic energy (Ei, i = x, y or z) to the initial state for P1 GB at 500 and 1000 K, at which
364
+ the boundary exhibits accelerated (Fig. 1(b)) and uniform (Fig. 3(c)) migration, respectively. At 1000
365
+ K, all three components of the kinetic energy remain almost unchanged (i.e., Ex = Ey = Ez ≈ 0)
366
+ with the proceeding of migration. In contrast, at 500 K, although Ex and Ey still remain unchanged,
367
+ Ez firstly increases and then decreases (the final Ez is still much higher than zero). Note that the
368
+ shear movement is parallel to z direction. The comparison suggests that the work (Wext) done by the
369
+ external driving force (Pext) only contributes to shear-coupling migration at 1000 K, but to both
370
+ shear-coupling migration and a rise in the shear kinetic energy (Ez) at 500 K. This difference reminds
371
+ us that the accelerated and uniform migration can be qualitatively justified from the aspect of true
372
+ driving force (Ptrue) for boundary migration, which can be influenced by Wext and Ez.
373
+ During the process of boundary migration, the work and kinetic energy for the bicrystal system
374
+ meet the relation of Wext = Wtrue + E. Wtrue is the work done by Ptrue, i.e., Wtrue = PtrueꞏSꞏAGB, S and AGB
375
+ stand for the GB displacement and area, respectively. Considering Ex = Ey ≈ 0 in the case of both
376
+ accelerated and uniform migration, the relation can be given as Wext = Wtrue + Ez. At one specific
377
+ moment of migration, the work-energy relation can be further described as dPextꞏdS = dPtrueꞏdS +
378
+ d(Ez)/AGB, and the instant true driving force is dPtrue = dPext – (d(Ez)/dS)/AGB, where dPext is a fixed
379
+ value for the SDF method. Therefore, dPtrue will be constant when Ez keeps unchanged (e.g., 1000 K
380
+ at Fig. 3(d)), i.e., dPtrue = dPext. In such case, the boundary will accordingly exhibit uniform migration
381
+ (i.e., a linear S-t relation) and thus consistent velocities when adopting distinct vertical sizes but the
382
+ same Pext (e.g., Fig. 3(c)). Nevertheless, in the case of accelerated migration (i.e., Ez ≠ 0, see Fig.
383
+ 3(d)), dPtrue depends on both dPext and d(Ez)/dS. From the d(Ez)/dS vs. S curve (the red curve) at
384
+ 500 K for P1 GB shown in Fig. 4, we can observe that d(Ez)/dS continuously descends with the
385
+ boundary migration, suggesting a continuous rise in dPtrue and thus in migration velocity. Moreover, it
386
+ is conceivable that when applying the same dPext to bicrystal systems with different vertical sizes (e.g.,
387
+ Fig. 1(b)), dPtrue will be lower (i.e., lower velocities) for larger systems due to higher d(Ez), which
388
+ can be further attributed to more atoms involving shear movement for larger systems. When applying
389
+ this interpretation to justify the size effect for systems with different sizes in the boundary plane (e.g.,
390
+
391
+
392
+ 13
393
+ Fig. 1(c)), the contribution of GB area to dPtrue must also be considered. In summary, the above
394
+ analysis suggests that the acceleration in migration and negative dependency of velocity on the
395
+ vertical size are unique to shear-coupling GBs exhibiting a rise in the kinetic energy component along
396
+ the shear direction and can be justified from the aspect of true driving force based on the work-energy
397
+ relation in the bicrystal system.
398
+ 80
399
+ 30
400
+
401
+ Fig. 4 Variation of d(Ez)/dS with the boundary displacement for P1 GB, calculated based on the Ez-S curve
402
+ (blue curve) obtained by the least-square fitting of the original data at 500 K and 0.06 eV, given in Fig. 3(d).
403
+ 3.3 Attempts to alleviate acceleration
404
+ Although the acceleration in migration has been demonstrated as a relatively common feature for
405
+ force-driven migration of flat GBs in Section 3.1, it is undesired if the purpose is to compute a GB
406
+ mobility by assuming v = MP. Then, is it possible to inhibit or alleviate the acceleration? For this
407
+ purpose, we have carried out a series of simulations by manipulating the boundary conditions and
408
+ internal stress in each bicrystal system (see Figs. 5-7).
409
+ Firstly, we tried to adopt periodic boundary condition in the GB normal direction (x direction in
410
+ Fig. 1(a)), which is one kind of boundary conditions widely used in previous studies [13,31,41]. It can
411
+ be seen from Fig. 5(a) that the boundary displacements under various vertical sizes all nearly exhibit a
412
+ linear relation with the time; the velocity nevertheless keeps increasing when enlarging the vertical
413
+ size, in contrast to a negative size dependency of velocity in Fig. 1. Meanwhile, in comparison with
414
+ 0.06 and 0.025 eV applied for the boundary condition adopted in Figs. 1 and 2c, much larger driving
415
+ force (i.e., 0.15eV) must be applied to initiate the boundary movement for all cell sizes, suggesting a
416
+
417
+
418
+ 14
419
+ significant effect of boundary condition. Under the present boundary condition, the internal shear
420
+ stress sharply increases with the initiation of GB migration, and then experiences a short descending
421
+ and finally fluctuates around a very high value (see Fig. 5(b)). Furthermore, the shear stress is
422
+ obviously lower under larger cell size. The higher velocity under larger size in Fig. 5(a) is therefore
423
+ resulted from this tendency of shear stress, which can be attributed to more elastic energy released
424
+ with the boundary migration due to larger space along the GB normal. As shown in Fig. 5(c), the
425
+ periodic surface strongly inhibits the overall relative shear movement between two grains, as revealed
426
+ in Refs. [13,41]), but only enables local shear movement which is more evident for larger cells. This
427
+ precisely accounts for the linear S-t relation under various sizes in Fig. 5(a), according to the
428
+ discussion concerning mechanism for acceleration in Section 3.2. Evidently, the periodic boundary
429
+ can effectively eliminate the acceleration but not the size effect by significantly constraining the shear
430
+ movement.
431
+
432
+ Fig. 5 Migration results vs. vertical size for P1 GB, simulated at 500 K and 0.15 eV by adopting periodic
433
+ boundary conditions along the GB normal direction: (a) displacement data; (b) shear stress; (c) snapshot of
434
+ boundary migration. Red and white arrows in (c) illustrate the migration and shear directions, respectively.
435
+ Atoms are colored by atom type to visualize the shear-coupling migration using the Ovito software [37].
436
+
437
+ Secondly, we tried to set the top and bottom surfaces to be fully fixed. It can be seen from Fig. 6
438
+ that most of the results are similar to those under periodic boundary in Fig. 5, e.g., much larger
439
+ driving force, linear S-t and very high shear stress. Additionally, displacements are nearly independent
440
+ of the system size (Fig. 6(a)), though the normal stress continues to rise with the boundary movement
441
+ (see the example shown for cell size of Lx in Fig. 6(b)). The corresponding velocity is much lower
442
+ than that at 0.06 eV in Fig. 1 while close to that at 0.15 eV and Lx in Fig. 5. In consistency with the
443
+
444
+ Initialnitia]
445
+ 2L
446
+ 8L
447
+ 20LC
448
+ GBGB
449
+ 15
450
+ periodic boundary, the boundary condition of fixed ends also inhibits the global shear movement and
451
+ enables only local shear. Fig. 6(c) shows that the local shear-coupling mode may change even switch
452
+ under fixed ends, as already observed in Ref. [42].
453
+ 0
454
+ 50
455
+ 100
456
+ 150
457
+ 200
458
+ 250
459
+ 0
460
+ 5
461
+ 10
462
+ 15
463
+ 20
464
+ Time (ps)
465
+ Displacement (nm)
466
+ Lx
467
+ 2Lx
468
+ 8Lx
469
+ 20Lx
470
+ 500 K, 0 15 eV
471
+ .
472
+ 25
473
+ (a)
474
+ Lx
475
+
476
+
477
+ Fig. 6 Migration results for P1 GB simulated at 500 K and 0.15 eV while setting the top and bottom surfaces
478
+ to be fully fixed: (a) displacement data; (b) shear stress and normal stress under cell size Lx; (c) snapshot of
479
+ boundary migration. The red and yellow atoms colored in (c) are aimed to visualize the local shear movement
480
+ and shear-switching.
481
+
482
+ Thirdly, considering the impeding effect of the high internal shear stress on shear movement, we
483
+ performed simulations that controlling the stress as close to 0 GPa as possible under periodic
484
+ boundary (see Fig. 7). Although shear stresses are well controlled especially for larger systems (Fig.
485
+ 7(b)), acceleration and size effect still exist (Fig. 7(a)). Moreover, the boundary stagnates long before
486
+ reaching the other end, and the final displacement value under each size is nearly half of the feasibly
487
+ maximum value (compare Figs. 5(a) and 7(a)). The inclined line displayed by the yellow atoms in
488
+ Figs. 7(c) illustrates that the shear movement is inhomogeneous along the GB normal direction, and
489
+ the top and bottom parts of the blue grain make shear along two opposite directions (see the white
490
+ arrows). These results should be resulted from the cell inclination when controlling shear stress (Fig.
491
+ 7(c)), which leads to the variation of crystallographic orientation and thus erroneous exertion of the
492
+ orientation-dependent driving force for shear-coupling migration. We have also tried to control shear
493
+ stress for fixed and free boundary conditions but as well obtained cell inclination and other results
494
+ similar to those by using periodic boundary. Evidently, the above three attempts all failed to achieve
495
+ our anticipated objectives of effectively alleviating the acceleration and size effect.
496
+
497
+
498
+ CGB
499
+ 200ps:
500
+ 150ps
501
+ 150psInitiaInitial
502
+ 27
503
+ 8L
504
+ 201
505
+ 16
506
+
507
+
508
+ Fig. 7 Migration results vs. vertical cell size for P1 GB, simulated at 500 K and 0.06 eV by adopting periodic
509
+ boundary while controlling shear stress close to 0 GPa: (a) displacement data; (b) shear stress; (c) snapshot of
510
+ boundary migration.
511
+ Finally, considering the inhibition of overall shear movement by periodic and fixed boundaries,
512
+ we performed simulations adopting two free boundaries or setting one boundary as free while the
513
+ other as fixed. It can be seen from Fig. 8(a) that the displacement data under two free boundaries and
514
+ one free while another partially fixed are consistent and exhibiting an acceleration tendency (as
515
+ observed in Fig. 1(b-e)), because the two grains across the GB are free to shear under these two
516
+ boundary conditions. When the bottom surface is fully fixed (i.e., the grain near this surface is not
517
+ allowed to shear), significant acceleration is observed through the whole migration process (the blue
518
+ curve in Fig. 8(a)). Nevertheless, in the case of fully fixed top surface, acceleration is only significant
519
+ at the early migration stage and gradually turns into uniform migration at the later stage (see the green
520
+ curve and black dashed line in Fig. 8(a)), suggesting a gradual weakening of acceleration. This
521
+ tendency can be justified from the similarity between the variations of Ez–t and S-t curves in Fig. 8(b)
522
+ and from the relation dPtrue = dPext – (d(Ez)/dS)/AGB. Moreover, as illustrated by the inset snapshots
523
+ in Fig. 8(b), the overall shear and coupling factor are not influenced by this boundary condition.
524
+ Furthermore, Fig. 8(c) presents the comparison of the linear S-t segments extracted from the complete
525
+ displacement data under various sizes. Interestingly, velocities are consistent for different cell sizes.
526
+ Therefore, the size effect for shear-coupling GB can be considered as being eliminated if only
527
+ focusing on the uniform migration stage. With these attempts, we may conclude that setting the top
528
+ surface (i.e., in the forward direction of GB migration) of the bicrystal as fully fixed while the bottom
529
+ surface (the backward direction of migration) as free is a relatively effective way to largely alleviate
530
+
531
+ 0 ps
532
+ 5 ps
533
+ 15 ps
534
+ 25 ps
535
+ 17
536
+ acceleration migration and thus size-dependency.
537
+
538
+
539
+ 0
540
+ 200
541
+ 400
542
+ 600
543
+ 800
544
+ 0
545
+ 20
546
+ 40
547
+ 60
548
+ 80
549
+ 100
550
+ 120
551
+ 140
552
+ Time (ps)
553
+ Displacement (nm)
554
+
555
+
556
+ Lx
557
+ 2Lx
558
+ 8Lx
559
+ 20Lx
560
+ (c)
561
+
562
+ Fig. 8 Attempts to alleviate acceleration by adopting one or two free boundaries for P1 GB with normal size
563
+ Lx, simulated at 500 K and 0.06 eV. (a) Comparison of displacement data under different boundary conditions.
564
+ (b) Variation of displacement, kinetic energy and snapshot with the time when setting the bottom surface as
565
+ free while the top one as fully fixed. (c) Comparison of the linear S-t segments extracted from the complete
566
+ displacement data under various cell sizes, simulated by adopting the same boundary condition as in (b).
567
+ When the surface is partially (as in Fig. 1) or fully (setting all force and velocity components for atoms near
568
+ the surface as zero) fixed, the grain near this surface can or can not make overall shear movement. The
569
+ complete displacement data for (c) can be found in Fig. s2 in the Supplementary file.
570
+ 3.4 Extraction of true driving force and mobility
571
+ Although the accelerated migration and size effect for shear-coupling GBs can be effectively
572
+ weaken by adopting one special boundary condition, the kinetic energy of the system Ez still continues
573
+ to rise during the boundary migration (see Fig. 8(b)), and thus the true driving force Ptrue does not
574
+ equal to the externally applied value Pext and depends on the variation of Ez (see discussion in Section
575
+ 3.2). Therefore, efforts should be paid to extract Ptrue and the corresponding true mobility Mtrue. As
576
+ already discussed in Section 3.2, Ptrue can be determined based on a quantitative analysis of the
577
+
578
+ (b) 150
579
+ 12
580
+ top fullv fixedps
581
+ 120Isp
582
+ 58 ps90
583
+ acen
584
+ bottom freee
585
+ 60nm300
586
+ 20
587
+ 00
588
+ 80
589
+ Time (ps)
590
+ 18
591
+ work-energy relation in the bicrystal system. Meanwhile, considering the continuous rise of Ez with
592
+ boundary migration, we may not obtain a constant but a time dependent Ptrue(t), and therefore the
593
+ quantitative analysis should be carried out for individual steps of GB migration. The artificial energy
594
+ added to the system by the SDF method in time interval dt can be written as:
595
+ dE = eꞏdn (1)
596
+ where e denotes the maximum potential energy added to a single atom (e.g., 0.06 eV in Fig. 1) and
597
+ dn indicates the number of atoms whose corresponding crystallography changed as the boundary
598
+ migrates. dn can be calculated by dn = (N/Lx)ꞏv(t)ꞏdt. Here, N and v(t) represent the total number of
599
+ atoms in the system and the instant migration velocity perpendicular to GB plane, respectively.
600
+ However, due to the continuous rise of Ez, the actual energy to drive boundary movement is
601
+ dE' = dE – dEz = dE – czꞏdt (2)
602
+ where cz is variation rate of dEz with respect to time. We can thus deduce the true maximum energy
603
+ imposed on per atom e'(t) as:
604
+ e'(t) = (dE – dEz)/dn = e – cz/(vꞏN/Lx) (3)
605
+ For the SDF method, e is normally considered as Pext [11,13,41] and thus e'(t) can also be treated as
606
+ Ptrue(t), which then can be further used to calculate Mtrue.
607
+ From the internal stress data in Fig. 9(a), one can observe that the normal stress fluctuates around
608
+ 0 GPa while the internal shear stress τxz roughly keeps a positive value and gradually declines when
609
+ adopting the boundary condition of a fully fixed top surface. This means that the normal stress leaves
610
+ no influence on GB migration, but one part of dE may be used to overcome the impeding effect of τxz
611
+ on migration, which can be quantitatively described in the form of shear strain energy Ess =
612
+ 0.5Vꞏ
613
+ 2
614
+ xz
615
+
616
+ /G. V and G stand for the volume and shear modulus for bicrystal system, respectively.
617
+ However, Ess is essentially a type of elastic energy and will be dynamically stored and released with
618
+ the continuous migration of the GB, as supported by Fig. 9(b) which indicates that this energy
619
+ increment dEss also fluctuates around 0 eV (i.e., the long-time average of dEss equaling zero).
620
+ Therefore, Ess should make no contribution to the overall work-energy relation in the system and the
621
+ potential influence of τxz on GB migration does not need to be considered. Accordingly, Eq. (3) still
622
+
623
+
624
+ 19
625
+ holds for extracting Ptrue.
626
+
627
+ Fig. 9 Variation of (a) the internal stress and (b) dEss with the migration time for P1 GB simulated in Fig. 8(b)
628
+ Table 1 presents the calculated Ptrue and Mtrue for P1 GB at 500 K according to Eq. (3). In contrast
629
+ to the early migration stage, the velocity, driving force and mobility at the later stage (e.g., t > 50 ps
630
+ for Lx and t > 400 ps for 8Lx) all only rise slightly and are nearly consistent under Lx and 8Lx systems.
631
+ If we calculate the average value for v, Ptrue and Mtrue at the later stage, we can get the average v, Ptrue
632
+ and Mtrue for Lx system as 0.163 nm/ps, 0.0486 eV and 3.341nm/(ps eV) while v = 0.162 nm/ps, Ptrue =
633
+ 0.0485 eV and Mtrue = 3.353 nm/(ps eV) for 8Lx. The relative differences of these three data between
634
+ the two systems are all lower than 1%. These results and comparisons again emphasize that the
635
+ acceleration and size-effect in the GB migration velocity have been nearly eliminated through
636
+ applying one special boundary condition. More importantly, they also signify that we can obtain
637
+ consistent true mobility values for systems with distinct vertical sizes if further considering the
638
+ correction of true driving force.
639
+ It should be noted that the above principle of correcting the driving force should also be
640
+ applicable to the shear-coupled migration driven by an external shear stress τext (i.e., applicable to Fig.
641
+ 2(e) and (f)). As shown in the inset of Fig. 10(a) for τext-driven migration, Ex and Ey remain
642
+ unchanged while Ez overall increases linearly with time, in consistency with the tendency shown for
643
+ the SDF-driven migration in Fig. 8(b). The corresponding correction equation of Ptrue can be given as:
644
+ z
645
+ true
646
+ ext
647
+ z
648
+ GB
649
+ c
650
+ P
651
+ v
652
+ A
653
+
654
+
655
+
656
+
657
+ (4)
658
+ where vz stands for the shear velocity of GB along the z direction.
659
+
660
+
661
+ 20
662
+ Table 1 True driving forces and mobility values extracted based on Eq. (3) for P1 GB, simulated at 500 K and
663
+ 0.06 eV when setting the bottom surface as free while the top one as fully fixed. Both cz and v were obtained by
664
+ the least-square fitting into discrete Ek and S data.
665
+ Lx
666
+ 8Lx
667
+ t
668
+ (ps)
669
+ v
670
+ (nm ps‒1)
671
+ Ptrue
672
+ (eV)
673
+ Mtrue
674
+ (nm ps‒1 eV‒1)
675
+ t
676
+ (ps)
677
+ v
678
+ (nm ps‒1)
679
+ Ptrue
680
+ (eV)
681
+ Mtrue
682
+ (nm ps‒1 eV‒1)
683
+ 5*
684
+ 0.030
685
+ -0.0016 -18.906
686
+ 40*
687
+ 0.035
688
+ 0.0068
689
+ 5.187
690
+ 10
691
+ 0.061
692
+ 0.0299
693
+ 2.054
694
+ 80
695
+ 0.065
696
+ 0.0313
697
+ 2.090
698
+ 15
699
+ 0.086
700
+ 0.0386
701
+ 2.237
702
+ 120
703
+ 0.089
704
+ 0.0390
705
+ 2.292
706
+ 20
707
+ 0.106
708
+ 0.0426
709
+ 2.489
710
+ 160
711
+ 0.108
712
+ 0.0427
713
+ 2.538
714
+ 25
715
+ 0.121
716
+ 0.0447
717
+ 2.707
718
+ 200
719
+ 0.123
720
+ 0.0447
721
+ 2.747
722
+ 30
723
+ 0.133
724
+ 0.0461
725
+ 2.879
726
+ 240
727
+ 0.134
728
+ 0.0460
729
+ 2.914
730
+ 35
731
+ 0.141
732
+ 0.0469
733
+ 3.010
734
+ 280
735
+ 0.142
736
+ 0.0468
737
+ 3.041
738
+ 40
739
+ 0.148
740
+ 0.0475
741
+ 3.109
742
+ 320
743
+ 0.149
744
+ 0.0474
745
+ 3.137
746
+ 45
747
+ 0.152
748
+ 0.0479
749
+ 3.182
750
+ 360
751
+ 0.153
752
+ 0.0477
753
+ 3.208
754
+ 50
755
+ 0.156
756
+ 0.0481
757
+ 3.237
758
+ 400
759
+ 0.157
760
+ 0.0480
761
+ 3.261
762
+ 55
763
+ 0.159
764
+ 0.0483
765
+ 3.279
766
+ 440
767
+ 0.159
768
+ 0.0482
769
+ 3.301
770
+ 60
771
+ 0.161
772
+ 0.0485
773
+ 3.314
774
+ 480
775
+ 0.161
776
+ 0.0484
777
+ 3.334
778
+ 65
779
+ 0.163
780
+ 0.0486
781
+ 3.345
782
+ 520
783
+ 0.163
784
+ 0.0485
785
+ 3.361
786
+ 70
787
+ 0.165
788
+ 0.0488
789
+ 3.375
790
+ 560
791
+ 0.164
792
+ 0.0486
793
+ 3.385
794
+ 75
795
+ 0.167
796
+ 0.0489
797
+ 3.405
798
+ 600
799
+ 0.166
800
+ 0.0487
801
+ 3.406
802
+ 80
803
+ 0.168
804
+ 0.0490
805
+ 3.435
806
+ 640
807
+ 0.167
808
+ 0.0487
809
+ 3.423
810
+ * Extracted Ptrue and Mtrue are erroneous due to the low velocity and kinetic energy at the very early stage of
811
+ migration
812
+
813
+ To compute the true mobility under an external shear stress, Fig. 10 still chooses the P1 GB as an
814
+ example and the shear stress has been carefully tuned so that the GB migrated at the same velocity as
815
+ that under the SDF, as shown in Fig. 10(a). Firstly, in comparison with Fig. 2(e), the acceleration in
816
+ migration is only significant at the early migration stage and turns into uniform migration at the later
817
+ stage for the current simulation (see blue curve in Fig. 10(a)). Secondly, the true mobility calculated
818
+ based on the corrected Ptrue according to Eq. (4) experiences a continuous rise and then becomes
819
+ nearly stable (see the blue square data in Fig. 10(b)). These results do reveal that the accelerated
820
+ migration under external shear stress can also be largely alleviated by the boundary condition as
821
+ utilized in Fig. 8(b) for the SDF-driven migration, and that the principle of correcting Ptrue is also
822
+ applicable to the case of τext-driven migration.
823
+ What is more, although the displacements or velocities are nearly the same under the SDF and
824
+ shear stress, the corresponding mobility values under the two types of driving force are significantly
825
+
826
+
827
+ 21
828
+ different (see Fig. 10(b)). Mtrue by SDF is on average 57.6% lower than that by τext. According to the
829
+ theory recently proposed by Chen et al. [18], the mobility values extracted by applying the driving
830
+ forces perpendicular and parallel to GB plane can be unified in a mobility tensor as following:
831
+
832
+ y
833
+
834
+
835
+
836
+
837
+
838
+
839
+ xx
840
+ xy
841
+ xz
842
+ x
843
+ y
844
+ x
845
+ yy
846
+ yz
847
+ y
848
+ z
849
+ zx
850
+ zy
851
+ zz
852
+ z
853
+ M
854
+ M
855
+ M
856
+ v
857
+ v
858
+ M
859
+ M
860
+ M
861
+ v
862
+ M
863
+ M
864
+ M
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+  
881
+
882
+
883
+
884
+
885
+
886
+
887
+
888
+
889
+
890
+
891
+
892
+
893
+
894
+
895
+
896
+
897
+
898
+ (5)
899
+ Here x is perpendicular to GB plane while y and z are parallel to GB plane, φ is the driving force applied
900
+ along GB normal (e.g., the synthetic driving force [14,41]), and τy and τz are shear stresses. Moreover,
901
+ the GB mobility tensor should be symmetric according to the Onsager relation [18], i.e., Mxz = Mzx.
902
+
903
+
904
+ Fig. 10 Migration results for P1 GB at 500 K when driven under τext : (a) displacement along GB normal; (b)
905
+ true mobility calculated based on the corrected Ptrue. The inset in (a) presents the variation of kinetic energy
906
+ Ei (i = x, y, z). To provide a better comparison of true mobility values between SDF-driven and τext-driven
907
+ migration, the magnitude of τext was chosen deliberately to ensure the corresponding displacement data as
908
+ close to that by SDF in Fig. 8(b) as possible. The shear stress was applied by adding a shear force 0.0037
909
+ eV/Å to a slab of atoms (1 nm thickness) near the bottom surface along z direction, while the top surface was
910
+ set as fully fixed.
911
+
912
+ As shown in Fig. 10(a),  equals 1.0 under both SDF and shear stress, indicating that vx = vz holds
913
+ under both types of driving force. In such case, we can deduce Mxx = Mzx for SDF and Mzz = Mxz for
914
+ shear stress. Nevertheless, the mobility data presented in Fig. 10(b) reveals Mzz ≈ 1.6Mxx, i.e., Mxz ≈
915
+ 1.6Mzx. Therefore, the symmetry of mobility tensor does not hold in the present study, seemingly
916
+ contradicting to the conclusion in Ref. [18]. Recently, we have systematically investigated the GB
917
+ mobility tensor and the effects of temperature and external driving force on its symmetry based on
918
+
919
+
920
+ 22
921
+ atomistic simulations of force-driven and force-free migration for the twist Ni Σ15 (2 1 1) (P14) GB
922
+ [43]. It is found that the symmetry holds at low driving force limit while fails at high driving forces.
923
+ Therefore, the non-equal Mxz and Mzx as shown in Fig. 10(b) is due to the relatively large driving
924
+ forces that have been applied in the current study, which is also consistent with the previous studies
925
+ that large driving forces can significantly change the underlying mechanisms for GB migration [13].
926
+ 4. Conclusions
927
+ In this work, we investigated the migration behaviors of several GBs in Ni by atomistic
928
+ simulation. Based on that, the acceleration in GB migration and vertical size effects were revealed.
929
+ Then attentions were paid to reveal the concerning mechanisms for these phenomena and to
930
+ effectively alleviate them through manipulating the boundary conditions and internal stress in the
931
+ bicrystal system. At last, a method was proposed to extract the true driving force and true mobility,
932
+ based on which the symmetry of mobility tensor was discussed. The following conclusions can be
933
+ drawn based on this study:
934
+ (1) The migration displacements of some GBs driven under a constant external driving force are not
935
+ linearly related to the migration time, as widely assumed. The corresponding velocity nevertheless
936
+ gradually increases with the proceeding of boundary migration and is overall negatively related to
937
+ the cell size perpendicular to GB plane, irrespective of the magnitude and type of driving force.
938
+ These tendencies suggest that some previously published migration results for such GBs without
939
+ considering the acceleration and size effect may need to be calibrated.
940
+ (2) The acceleration and vertical size effect in migration are unique to shear-coupling GBs exhibiting
941
+ a rise in the kinetic energy component along the shear direction. It is precisely the rise of kinetic
942
+ energy that results in the true driving force for GB migration being lower than the nominally
943
+ applied value but continuing to increase, and thus leads to the accelerated migration. With the
944
+ increase of tested temperatures, the acceleration will transfer into uniform migration and the size
945
+ effect will accordingly disappear.
946
+ (3) Among the various attempts to eliminate or alleviate the acceleration and size-dependency in
947
+ migration, setting the cell surface in the forward direction of GB migration as being fully fixed
948
+
949
+
950
+ 23
951
+ while the surface in the backward direction as free is a relatively sample but effective way, which
952
+ is applicable to both shear stress and SDF-driven migration and does not change the
953
+ shear-coupling behaviors and migration mechanism.
954
+ (4) Based on a quantitative analysis of the work-energy relation in the bicrystal system, the true
955
+ driving force can be determined for GBs exhibiting accelerated migration. Under the coupling
956
+ effects of adopting one specific kind of boundary condition and correcting the true driving force,
957
+ we can obtain consistent true mobility values for such GBs with distinct vertical sizes.
958
+ Furthermore, the calculated true mobility suggests that the symmetry of the mobility tensor may
959
+ fail when the driving forces are too large.
960
+
961
+ Acknowledgment
962
+ The authors thank Dr. David L Olmsted for sharing the 388 Ni GB structure database. This
963
+ research was supported by the National Natural Science Foundation of China (Grant No.
964
+ 52065045) and NSERC Discovery Grant (RGPIN-2019-05834), Canada, and the use of
965
+ computing resources provided by Compute/Calcul Canada.
966
+ References:
967
+ [1] G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in metals: thermo-dynamics, kinetics,
968
+ Applications, CRC press, 2009.
969
+ [2] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, G. Gottstein, Misorientation dependence of
970
+ intrinsic grain boundary mobility: simulation and experiment, Acta Mater. 47 (1999) 3901–3914.
971
+ [3] J.E. Brandenburg, D.A. Molodov, On shear coupled migration of low angle grain boundaries, Scr.
972
+ Mater. 163(2019) 96–100.
973
+ [4] Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, S.X. Mao, In situ atomistic observation of
974
+ disconnection-mediated grain boundary migration, Nat. Commun. 10 (2019) 156.
975
+ [5] H. Zhang, D.J. Srolovitz, Simulation and analysis of the migration mechanism of Σ5 tilt grain
976
+ boundaries in an fcc metal, Acta Mater. 54 (2006) 623–633.
977
+ [6] J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation, Acta
978
+ Mater. 54 (2006) 4953–4975.
979
+ [7] J. Han, S.L. Thomas, D.J. Srolovitz, Grain-boundary kinetics: A unified approach, Prog. Mater. Sci.
980
+
981
+
982
+ 24
983
+ 98 (2018) 386–476.
984
+ [8] E.R. Homer, O.K. Johnson, D. Britton, J.E. Patterson, E.T. Sevy, G.B. Thompson, A classical
985
+ equation that accounts for observations of non-Arrhenius and cryogenic grain boundary
986
+ migration, npj Comput. Mater. 8 (2022) 1–9.
987
+ [9] T. Yu, S. Yang, C. Deng, Survey of grain boundary migration and thermal behavior in Ni at low
988
+ homologous temperatures, Acta Mater. 177 (2019) 151–159.
989
+ [10] D.L. Olmsted, S.M. Foiles, E.A. Holm, Grain boundary interface roughening transition and its
990
+ effect on grain boundary mobility for non-faceting boundaries, Scr. Mater. 57 (2007) 1161–1164.
991
+ [11] D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in
992
+ face-centered cubic metals—II: Grain boundary mobility, Acta Mater. 57 (2009) 3704–3713.
993
+ [12] M.I. Mendelev, C. Deng, C.A. Schuh, D.J. Srolovitz, Comparison of molecular dynamics
994
+ simulation methods for the study of grain boundary migration, Model. Simul. Mater. Sci. Eng. 21
995
+ (2013) 045017.
996
+ [13] C. Deng, C.A. Schuh, Diffusive-to-ballistic transition in grain boundary motion studied by
997
+ atomistic simulations, Phys. Rev. B. 84 (2011) 214102.
998
+ [14] L. Yang, S.Y. Li, A modified synthetic driving force method for molecular dynamics simulation
999
+ of grain boundary migration, Acta Mater. 100 (2015) 107–117.
1000
+ [15] M.J. Rahman, H.S. Zurob, J.J. Hoyt, A comprehensive molecular dynamics study of low-angle
1001
+ grain boundary mobility in a pure aluminum system, Acta Mater. 74 (2014) 39–48.
1002
+ [16] Z.T. Trautt, M. Upmanyu, A. Karma, Interface mobility from interface random walk, Science 314
1003
+ (2006) 632–635.
1004
+ [17] K. Chen, J. Han, S. L. Thomas, D. J. Srolovitz, Grain boundary shear coupling is not a grain
1005
+ boundary property, Acta Mater. 167 (2019) 241–247.
1006
+ [18] K. Chen, J. Han, X. Pan, D.J. Srolovitz, The grain boundary mobility tensor, Proc. Natl. Acad.
1007
+ Sci. 117 (2020) 4533–4538.
1008
+ [19] L. Zhou, H. Zhang, D.J. Srolovitz, A size effect in grain boundary migration: A molecular
1009
+ dynamics study of bicrystal thin films, Acta Mater. 53 (2005) 5273–5279.
1010
+ [20] J. Humberson, E.A. Holm, Anti-thermal mobility in the Σ3 [111] 60°{11 8 5} grain boundary in
1011
+ nickel: mechanism and computational considerations, Scr. Mater. 130 (2017) 1–6.
1012
+ [21] C.P. Race, J. von Pezold, J. Neugebauer, Role of the mesoscale in migration kinetics of flat grain
1013
+ boundaries, Phys. Rev. B 899 (2014) 214110.
1014
+ [22] A. Rajabzadeh, F. Mompiou, M. Legros, N. Combe, Elementary mechanisms of shear-coupled
1015
+ grain boundary migration, Phys. Rev. Lett. 110 (2013) 265507.
1016
+ [23] N. Combe, F. Mompiou, M. Legros, Disconnections kinks and competing modes in
1017
+ shear-coupled grain boundary migration, Phys. Rev. B. 93 (2016) 024109.
1018
+ [24] Y. Deng, C. Deng, Size and rate dependent grain boundary motion mediated by disconnection
1019
+ nucleation, Acta Mater. 131 (2017) 400–409.
1020
+
1021
+
1022
+ 25
1023
+ [25] T. Gorkaya, D.A. Molodov, G. Gottstein, Stress-driven migration of symmetrical <100> tilt grain
1024
+ boundaries in Al bicrystals, Acta Mater. 57(2009) 5396–5405.
1025
+ [26] G. Gottstein, L.S. Shvindlerman, The compensation effect in thermally activated interface
1026
+ processes, Interface Sci. 6 (1998) 267–278.
1027
+ [27] H. Hahn, H. Gleiter, The effect of pressure on grain growth and boundary mobility, Scr. Metall.
1028
+ 13(1979) 3–6.
1029
+ [28] D.A. Molodov, B.B. Straumal, L.S. Shvindlerman, The effect of pressure on migration of <001>
1030
+ tilt grain boundaries in tin bicrystals, Scr. Metall. 18(1984) 207–211.
1031
+ [29] J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall. 10(1962) 789–798.
1032
+ [30] G. Gottstein, L.S. Shvindlerman, On the orientation dependence of grain boundary migration, Scr.
1033
+ Metall. Mater. 27 (1992) 1515–1520.
1034
+ [31] F. Ulomek, V. Mohles, Separating grain boundary migration mechanisms in molecular dynamics
1035
+ simulations, Acta Mater. 103 (2016) 424–432.
1036
+ [32] H. Zhang, M.I. Mendelev, D.J. Srolovitz, Computer simulation of the elastically driven migration
1037
+ of a flat grain boundary, Acta Mater. 52 (2004) 2569–2576.
1038
+ [33] D. Farkas, S. Mohanty, J. Monk, Linear grain growth kinetics and rotation in nanocrystalline Ni,
1039
+ Phys. Rev. Lett. 98 (2007) 165502.
1040
+ [34] L. Yang, C. Lai, S.Y. Li, A survey of the crystallography-dependency of twist grain boundary
1041
+ mobility in Al based on atomistic simulations, Mater. Lett. 263 (2020) 127293.
1042
+ [35] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117
1043
+ (1995) 1–19.
1044
+ [36] S.M. Foiles, J.J. Hoyt, Computation of grain boundary stiffness and mobility from boundary
1045
+ fluctuations, Acta Mater. 54 (2006) 3351–3357.
1046
+ [37] A. Stukowski, Visualization and analysis of atomistic simulation data with ovito–the open
1047
+ visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 015012.
1048
+ [38] S.P. Coleman, D.E. Spearot, S.M. Foiles, The effect of synthetic driving force on the atomic
1049
+ mechanisms associated with grain boundary motion below the interface roughening temperature,
1050
+ Comput. Mater. Sci. 86 (2014) 38–42.
1051
+ [39] E.R. Homer, S.M. Foiles, E.A. Holm, D.L. Olmsted, Phenomenology of shear-coupled grain
1052
+ boundary motion in symmetric tilt and general grain boundaries, Acta Mater. 61 (2013)
1053
+ 1048–1060.
1054
+ [40] C. Deng, C.A. Schuh, Atomistic simulation of slow grain boundary motion, Phys. Rev. Lett. 106
1055
+ (2011) 045503.
1056
+ [41] A.A. Schratt, V. Mohles, Efficient calculation of the ECO driving force for atomistic simulations
1057
+ of grain boundary motion, Comput. Mater. Sci. 182 (2020) 109774.
1058
+ [42] S.L. Thomas, K. Chen, J. Han, P.K. Purohit, D.J. Srolovitz, Reconciling grain growth and
1059
+ shear-coupled grain boundary migration, Nat. Commun. 8 (2017) 1764.
1060
+
1061
+
1062
+ 26
1063
+ [43] X.Y. Song, L. Yang, C. Deng, Computing the intrinsic grain boundary mobility tensor,
1064
+ https://doi.org/10.48550/arXiv.2212.11462.
1065
+
1066
+
1067
+ 1
1068
+ Supplemental Material:
1069
+ Unusual acceleration and size effects in grain boundary migration with shear coupling
1070
+
1071
+ Liang Yanga, Xinyuan Songb, Tingting Yuc, Dahai Liua*, Chuang Dengb,*
1072
+ a School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang
1073
+ 330063, China
1074
+ b Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
1075
+ c School of Aviation and Mechanical Engineering, Changzhou Institute of Technology, Changzhou,
1076
+ Jiangsu 213032, China.
1077
+ * Corresponding author: dhliu@nchu.edu.cn(D. Liu), Chuang.Deng@umanitoba.ca (C. Deng)
1078
+
1079
+ 1. Supporting results for the transition of acceleration migration into uniform migration
1080
+ In Fig. 1 of the main text, we can readily observe the accelerated migration and negative
1081
+ dependency of velocity on the vertical cell size for P1 GB at 500 K. Nevertheless, when raising the
1082
+ temperature to 1000 K, both the acceleration and size effect disappear though the shear coupling still
1083
+ exists. The results in Fig. s1 for P148 GB suggest that the transition from accelerated into uniform
1084
+ migration, induced by the temperature, does also exist for other shear-coupling GBs, regardless of the
1085
+ magnitude of driving force.
1086
+ 0
1087
+ 100
1088
+ 200
1089
+ 300
1090
+ 0
1091
+ 10
1092
+ 20
1093
+ 30
1094
+ 40
1095
+ 50
1096
+ (a)
1097
+ Time (ps)
1098
+ Displacement (nm)
1099
+
1100
+
1101
+ Lx
1102
+ 2Lx
1103
+ 8Lx
1104
+ 500 K
1105
+ 0.060 eV
1106
+ β = 0.86
1107
+ 0
1108
+ 200
1109
+ 400
1110
+ 0
1111
+ 10
1112
+ 20
1113
+ 30
1114
+ 40
1115
+ 50
1116
+ 60
1117
+ (b)
1118
+ Time (ps)
1119
+
1120
+
1121
+ 1000 K
1122
+ 0.060 eV
1123
+ β = 0.22
1124
+ 0
1125
+ 2000
1126
+ 4000
1127
+ 6000
1128
+ 8000
1129
+ 0
1130
+ 10
1131
+ 20
1132
+ 30
1133
+ 40
1134
+ 50
1135
+ 60
1136
+ (c)
1137
+ Time (ps)
1138
+
1139
+
1140
+ 1000 K
1141
+ 0.006 eV
1142
+ β = 0.22
1143
+
1144
+ Fig. s1 Variation of GB displacement with the vertical size for P148 GB, simulated under
1145
+ distinct temperatures and driving forces. Concerning simulation settings were the same as
1146
+ Fig. 1 in the main text.
1147
+
1148
+
1149
+ 2
1150
+ 2. Supporting results for the effective alleviation of acceleration in migration
1151
+ When adopting one special kind of boundary condition for GBs exhibiting acceleration, i.e.,
1152
+ setting the bottom surface as free while the top one as fully fixed, the acceleration will only be
1153
+ significant at the early migration stage and gradually turn into uniform migration at the later stage. In
1154
+ such case, both the acceleration in migration and size effect can be effectively alleviated. Nevertheless,
1155
+ we only present the complete displacement and kinetic energy data for Lx system due to the limited
1156
+ scope of the main text. Here Fig. s2 shows the complete data for all four distinct systems considered
1157
+ in the main text to support the above conclusion.
1158
+
1159
+
1160
+
1161
+
1162
+
1163
+ Fig. s2 GB displacement and shear kinetic energy data for P1 GB with different vertical sizes,
1164
+ simulated under 500 K and 0.06 eV when setting the bottom surface as free while the top one
1165
+ as fully fixed.
1166
+
1167
+
1168
+ (a) 150
1169
+ 12(b) 300
1170
+ 25ZL
1171
+ 250-
1172
+ x
1173
+ 20
1174
+ Lsp)
1175
+ 200-15
1176
+ ace10100-
1177
+ (nm50-0
1178
+ 80
1179
+ 120
1180
+ 160
1181
+ Time (ps)(c) 1200
1182
+ 100
1183
+ 81x
1184
+ 120-OL
1185
+ 1000-
1186
+ x
1187
+ 80
1188
+ D1spl
1189
+ 800-60
1190
+ cem
1191
+ 600N
1192
+ 40007200-
1193
+ 200
1194
+ 0
1195
+ 0
1196
+ 200
1197
+ 400
1198
+ 600
1199
+ 800100
1200
+ Time (ps)(d) 3500
1201
+ 2013000
1202
+ xispl2500
1203
+ 1200
1204
+ spl
1205
+ lac150
1206
+ eme
1207
+ e
1208
+ len
1209
+ 500N
1210
+ E
1211
+ 100
1212
+ nm
1213
+ 100050
1214
+ 5000
1215
+ 00
1216
+ 800
1217
+ 1200
1218
+ 1600
1219
+ 2000
1220
+ Time (ps)90
1221
+ ace
1222
+ e
1223
+ en60.(nm300
1224
+ 20
1225
+ 60
1226
+ 80
1227
+ Time (ps)
59AyT4oBgHgl3EQfpfhu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69FAT4oBgHgl3EQfnx3V/content/tmp_files/2301.08631v1.pdf.txt ADDED
@@ -0,0 +1,830 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Superconductivity in type II layered Weyl semi-metals
2
+ B. Rosenstein1 and B. Ya.
3
+ Shapiro2
4
+ 1Department of Electrohysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, R.O.C.
5
+ 2Department of Physics, Institute of Superconductivity, Bar-Ilan University, 52900 Ramat-Gan, Israel.
6
+ Novel ”quasi two dimensional” typically layered (semi) metals offer a unique opportunity to
7
+ control the density and even the topology of the electronic matter. In intercalated MoTe2 type
8
+ II Weyl semi - metal the tilt of the dispersion relation cones is so large that topologically of the
9
+ Fermi surface is distinct from a more conventional type I. Superconductivity observed recently in
10
+ this compound [Zhang et al, 2D Materials 9, 045027 (2022)] demonstrated two puzzling phenomena:
11
+ the gate voltage has no impact on critical temperature, Tc, in wide range of density, while it is very
12
+ sensitive to the inter - layer distance. The phonon theory of pairing in a layered Weyl material
13
+ including the effects of Coulomb repulsion is constructed and explains the above two features in
14
+ MoTe2.
15
+ The first feature turns out to be a general one for any type II topological material, while
16
+ the second reflects properties of the intercalated materials affecting the Coulomb screening.
17
+ arXiv:2301.08631v1 [cond-mat.supr-con] 20 Jan 2023
18
+
19
+ 2
20
+ INTRODUCTION.
21
+ The 3D and 2D topological quantum materials, such as topological insulators and Weyl semi - metals (WSM),
22
+ attracted much interests due to their rich physics and promising prospects for application in electronic and spinotronic
23
+ devices. The band structure in the so called type I WSM like graphene[1], is characterized by appearance linear
24
+ dispersion relation (cones around several Dirac points) due to the band inversion. This is qualitatively distinct from
25
+ conventional metals, semi - metals or semiconductors, in which bands are typically parabolic. In type-II WSM [2], the
26
+ cones have such a strong tilt, κ, so that they exhibit a nearly flat band and the Fermi surface ”encircles” the Brillouin
27
+ zone, Fig.1b, Fig.1c. It is topologically distinct from conventional ”pockets”, see Fig.1a. This in turn leads to exotic
28
+ electronic properties different from both the those in both the conventional and in the type I WSM. Examples include
29
+ the collapse of the Landau level spectrum in magnetoresistance [3], and novel quantum oscillations [4].
30
+ The type II topology of the Fermi surface was achieved in particular in transition metal dichalcogenides [5]. Very
31
+ recentlyMoTe2 layers intercalated by ionic liquid cations were studied[6]. The tilt value was estimated to as high
32
+ as κ = 1.3 that places it firmly within the type II WSM class. The measurements included the Hall effect and the
33
+ resistivity at low temperatures demonstrating appearance of superconductivity. They discovered two intriguing facts
34
+ that are currently under discussion. First changing the gate voltage (chemical potential) surprisingly has no impact
35
+ on critical temperature, Tc, in wide range of density of the electron gas. Second Tc turned out to be very sensitive to
36
+ the inter - layer distance d: it increases from 10.5A to 11.7A, while the critical temperature jumps from 4.2K to 7K.
37
+ In the present paper we propose a theoretical explanation of these observations based on appropriate generalization
38
+ of the conventional superconductivity theory applied to these materials.
39
+ Although early on unconventional mechanisms of superconductivity in WSM have been considered, accumulated
40
+ experimental evidence points towards the conventional phonon mediated one [7–9]. In the previous paper[11] and a
41
+ related work[10] a continuum theory of conventional superconductivity in WSM was developed. Magnetic response
42
+ in the superconducting state was calculated[10][12]. The model was too ”mesoscopic” to describe the type II phase
43
+ since the global topology of the Brillouin zone was beyond the scope of the continuum approach. Therefore we go
44
+ beyond the continuum model in the present paper by modeling a type II layered WSM using a tight binding approach.
45
+ The in-plane electron liquid model is similarl to that of graphene oxide[13] and other 2D WSM. It possesses a chiral
46
+ symmetry between two Brave sublattices for all values of the tilt parameter κ, but lacks hexagonal symmetry. The
47
+ second necessary additional feature is inclusion of Coulomb repulsion.
48
+ It turns out that the screened Coulomb repulsion significantly opposes the phonon mediated pairing. Consequently
49
+ a detailed RPA theory of screening in a layered material[14] is applied. We calculate the superconducting critical
50
+ temperature taking into consideration the modification of the Coulomb interaction due to the dielectric constant of
51
+ intercalator material and the inter-layered spacing d. The Gorkov equations for the two sublattices system are solved
52
+ without resorting to the mesoscopic approach. Moreover since screening of Coulomb repulsion plays a much more
53
+ profound role in quasi 2D materials the pseudo-potential simplification developed by McMillan[15] is not valid.
54
+ Rest of the paper is organized as follows. In Section II the microscopic model of the layered WSM is described. The
55
+ RPA calculation of both the intra- and inter - layer screening is presented. In Section III the Gorkov equations for the
56
+ optical phonon mediated intra- layer pairing for a multiband system including the Coulomb repulsion is derived and
57
+ solved numerically. In Section IV the phonon theory of pairing including the Coulomb repulsion for a layered material
58
+ is applied to recent extensive experiments on MoTe2. The effect of intercalation and density on superconductivity is
59
+ studied. This explains the both remarkable features of Tc observed[6] in MoTe2. The last Section contains conclusions
60
+ and discussion.
61
+ A ”GENERIC” LATTICE MODEL OF LAYERED WEYL SEMI-METALS
62
+ Intra- layer hopping
63
+ A great variety of tight binding models were used to describe Weyl (Dirac) semimetals in 2D. Historically the
64
+ first was graphene (type I, κ = 0) , in which electrons hope between the neighboring cites of the honeycomb lattice.
65
+ We restrict the discussion to systems with the minimal two cones of opposite chirality and negligible spin orbit
66
+ coupling. The two Dirac cones appear in graphene at K and K′ crystallographic points in BZ. Upon modification
67
+ (more complicated molecules like graphene oxide, stress, intercalation) the hexagonal symmetry is lost, however a
68
+ discrete chiral symmetry between two sublattices, denoted by I = A, B, ensures the WSM. The tilted type I and even
69
+ type II (for which typically κ > 1) crystals can be described by the same Hamiltonian with the tilt term added. This
70
+
71
+ 3
72
+ FIG. 1. Two distict topologies of the Fermi surface in 2D. Topology of the 2D Brillouin zone is that of the surface of 3D
73
+ torroid. On the left the “conventional” type I pocket is shown. In the ceter and on the right the type II topology is shown
74
+ schematically. The filled states are in blue and envelop the torus. Despite the large difference in density of the two the Fermi
75
+ surface properties like density of states are the same.
76
+ 2D model is extended to a layered system with inter - layer distance d. Physically the 2D WSM layers are separated
77
+ by a dielectric material with inter - layer hopping neglected, so that they are coupled electromagnetically only[14].
78
+ The lateral atomic coordinates are still considered on the honeycomb lattice are rn = n1a1 + n2a2, where lattice
79
+ vectors are:
80
+ a1 = a
81
+ 2
82
+
83
+ 1,
84
+
85
+ 3
86
+
87
+ ; a2 = a
88
+ 2
89
+
90
+ 1, −
91
+
92
+ 3
93
+
94
+ ,
95
+ (1)
96
+ despite the fact that hopping energies are different for jumps between nearest neighbors. Each site has three neighbors
97
+ separated by δ1 = 1
98
+ 3 (a1 − a2) , δ2 = − 1
99
+ 3 (2a1 + a2) and δ3 = 1
100
+ 3 (a1 + 2a2), in different directions. The length of the
101
+ lattice vectors a will be taken as the length unit and we set ℏ = 1. The hopping Hamiltonian including the tilt term
102
+ is[13, 16]:
103
+ K =
104
+
105
+ 3
106
+ 4
107
+
108
+ nl
109
+
110
+ γ
111
+
112
+ ψsA†
113
+ nl ψsB
114
+ rn+δ1,l + ψsA†
115
+ nl ψsB
116
+ rn+δ2,l + tψsA†
117
+ nl ψsB
118
+ rn+δ3,l
119
+
120
+ + h.c. − κψsI†
121
+ nl ψsI
122
+ rn+a1,l − µnn,l
123
+
124
+ .
125
+ (2)
126
+ Here an integer l labels the layers. Operator ψsA†
127
+ nl
128
+ is the creation operators with spin s =↑, ↓, while the density
129
+ operator is defined as nnl = ψsI†
130
+ nl ψsI
131
+ nl. The chemical potential is µ, while γ is the hopping energy for two neighbors
132
+ at δ1, δ2 . Since the the system does not possesses hexagonal symmetry (only the chiral one), the third jump has the
133
+ different hopping[13] tγ. Dimensionless parameter κ determines the tilt of the Dirac cones along the a1direction[16].
134
+ In the 2D Fourier space, ψsA
135
+ nl = N −2
136
+ s
137
+
138
+ k ψsA
139
+ kl e−ik·rn, one obtains for Hamiltonian (for finite discrete reciprocal lattice
140
+ Ns × Ns):
141
+ K = N −2
142
+ s
143
+
144
+ kl ψs†
145
+ klMkψs
146
+ kl.
147
+ (3)
148
+ Here k = k1
149
+ Ns b1 + k2
150
+ Ns b2 (reciprocal lattice vectors are given in Appendix A) and matrix Mk = dxσx + dyσy + d0I in
151
+ terms of Pauli matrices has components:
152
+ dx = 2t
153
+
154
+ 3 cos
155
+ � 2π
156
+ 3Ns
157
+ (k1 − k2)
158
+
159
+ + 4
160
+
161
+ 3 cos
162
+ � π
163
+ Ns
164
+ (k1 + k2)
165
+
166
+ cos
167
+
168
+ − π
169
+ 3Ns
170
+ (k1 − k2)
171
+
172
+ ;
173
+ (4)
174
+ dy = − 2t
175
+
176
+ 3 sin
177
+ � 2π
178
+ 3Ns
179
+ (k1 − k2)
180
+
181
+ + 4
182
+
183
+ 3 cos
184
+ � π
185
+ Ns
186
+ (k1 + k2)
187
+
188
+ sin
189
+ � π
190
+ 3Ns
191
+ (k1 − k2)
192
+
193
+ ;
194
+ d0 =
195
+ 2
196
+
197
+ 3
198
+
199
+ −κ cos
200
+ � 2π
201
+ Ns
202
+ k1
203
+
204
+ − µ
205
+
206
+ .
207
+
208
+ 4
209
+ Using γ as our energy unit from now on, the free electrons part of the Matsubara action for Grassmanian fields
210
+ ψ∗sI
211
+ kln is:
212
+ Se = 1
213
+ T
214
+
215
+ kln ψ∗sI
216
+ kln
217
+ ��
218
+ −iωn + d0
219
+ k
220
+
221
+ δIJ + σIJ
222
+ i di
223
+ k
224
+
225
+ ψsJ
226
+ kln.
227
+ (5)
228
+ where ωn = πT (2n + 1) is the Matsubara frequency. The Green Function of free electrons has the matrix form
229
+ gkn =
230
+ ��
231
+ −iωn + d0
232
+ k
233
+
234
+ I + σidi
235
+ k
236
+ �−1 =
237
+
238
+ −iωn + d0
239
+ k
240
+
241
+ I − σidi
242
+ k
243
+ (iωn − d0
244
+ k)2 − dx2
245
+ k − dy2
246
+ k
247
+ .
248
+ (6)
249
+ Now we turn to the spectrum of this model.
250
+ FIG. 2. The topological phase diagram of the Weyl semimetal at large tilt parameter (κ = 1.3). Chemical potential (in units
251
+ of γ = 500 meV) is marked on each contour. The electron type I topology at low values of µ undergoes transition to the type
252
+ II at µ = µ1
253
+ c = 0.8 meV. At yet larger µ > µ2
254
+ c = 1.35. the Fermi surface becomes again type I. This time the excitations are
255
+ hole rather than electrons.
256
+ The range of the topological type II phase at large κ
257
+ The spectrum of Hamiltonian of Eqs.(4) consists of two branches. The upper branch for µ = 0.9eV is given in Fig.
258
+ 2. The lower branch for a reasonable choice of parameters appropriate to MoTe2 is significantly below the Fermi
259
+ surface and is not plotted. Blue regions represent the filled electron states. One observes a ”river” from one boundary
260
+ to the other of the Brillouin zone (in coordinates k1 and k2, in terms of the original kx, ky it is a rhomb) characteristic
261
+ to type II Fermi surface. Topologically this is akin to Fig.1b.
262
+ In Fig. 3 the Fermi surfaces in a wide range of densities n = 7.×1013−4.5×1014cm−2 are given. Topologically they
263
+ separate into three phases. At chemical potentials below µ1
264
+ c = 0.796 eV , corresponding to densities n < n1
265
+ c = 8.×1013
266
+ cm−2 , the Fermi surface consists of one compact electron pocket similar to Fig.1a, so that the electronic matter
267
+ is of the (”customary”) topological type I. The density is determined from the (nearly linear) relation between the
268
+
269
+ 5
270
+ 0.5
271
+ 0.6975
272
+ 0.6975
273
+ 0.9
274
+ 0.9
275
+ 1.2
276
+ 1.2
277
+ 1.2
278
+ 1.2
279
+ 1.35
280
+ 1.35
281
+ 1.35
282
+ 1.35
283
+ 1.5
284
+ 1.5
285
+ 1.5
286
+ 1.5
287
+ I (electron)
288
+ II
289
+ II
290
+ II
291
+ I (hole)
292
+ k1 (π/a)
293
+ k2 (π/a)
294
+ FIG. 3. Dispersion relation of WSM with κ = 1.3. The blue plane corresponds to chemical potentia lµ = 0.8 eV so that the
295
+ Fermi surface has the type II topology.
296
+ chemical potential and density given in Fig. 4 (blue line, scale on the right). In the range µ1
297
+ c < µ < µ2
298
+ c = 1.35eV
299
+ the Fermi surface consists of two banks of a ”river” (blue color represents filled electron states) in Fig.2 and can be
300
+ viewed topologically as in Fig.1b and Fig1c. The second critical density is n2
301
+ c = 3.6 × 1014 cm−2. In this range the
302
+ shape of both pieces of the Fermi surface largely does not depend on the density that is proportional to the area of
303
+ the blue part of the surface.
304
+ To make this purely topological observation quantitative, we present in Fig. 4 (green line, scale on the left) the
305
+ density of states (DOS) as a function of chemical potential. One observes that it nearly constant away from the two
306
+ topological I to II transitions where it peaks.
307
+ Coulomb repulsion
308
+ The electron-electron repulsion in the layered WSM can be presented in the form,
309
+ V = e2
310
+ 2
311
+
312
+ nln′l′ nnlvC
313
+ n−n′,l−l′nn′l′ =
314
+ e2
315
+ 2N 2s
316
+
317
+ qll′ nqln−ql′vC
318
+ q,l−l′,
319
+ (7)
320
+ where vC
321
+ n−n′,l−l′ is the ”bare” Coulomb interaction between electrons with Fourier transform vC
322
+ q,l−l′ = v2D
323
+ q e−dq|l−l′|,
324
+ v2D
325
+ q
326
+ = 2πe2/qϵ. Here ϵ is the dielectric constant of the intercalator material
327
+ The long range Coulomb interaction is effectively taken into account using the RPA approximation.
328
+ SCREENING IN LAYERED WSM.
329
+ The screening in the layered system can be conveniently partitioned into the screening within each layer described
330
+ by the polarization function Πqn and electrostatic coupling to carriers in other layers. We start with the former.
331
+
332
+ 6
333
+ I
334
+ II
335
+ I
336
+ 0.6
337
+ 0.8
338
+ 1.0
339
+ 1.2
340
+ 1.4
341
+ 0
342
+ 1
343
+ 2
344
+ 3
345
+ 4
346
+ chemical potential (ev)
347
+ DOS(2 1014cm-2 ev-1)
348
+ density (1014cm-2)
349
+ FIG. 4. Electron density and DOS as function of the chemical potential µ.of WSM with κ = 1.3. DOS has cusps at both I to
350
+ II transitions. Between the transitions it is nearly constant in the range of densities from 1.1 × 1014/cm2 to 4. × 1014/cm2.
351
+ Polarization function of the electron gas in Layered WSM
352
+ In a simple Fermi theory of the electron gas in normal state with Coulomb interaction between the electrons in
353
+ RPA approximation the Matsubara polarization is calculated as a simple minus ”fish” diagram [14] in the form:
354
+ Πqn = −
355
+
356
+ −2TTr
357
+
358
+ pm gpmgp+q,m+n
359
+
360
+ .
361
+ (8)
362
+ Using the GF of Eq.(6), one obtain:
363
+ Πqn = 4T
364
+
365
+ pm
366
+ (iωm + A) (iωm + B) + C
367
+
368
+ (iωm + A)2 − α2
369
+ � �
370
+ (iωm + B)2 − β2
371
+ �,
372
+ (9)
373
+ where
374
+ A = −d0
375
+ p; B = iωn − d0
376
+ p+q;
377
+ C = dx
378
+ pdx
379
+ p+q + dy
380
+ pdy
381
+ p+q;
382
+ (10)
383
+ α2 = dx2
384
+ p + dy2
385
+ p ;
386
+ β2 = dx2
387
+ p+q + dy2
388
+ p+q.
389
+ Performing summation over m, one obtains:
390
+ Πqn = −
391
+
392
+ p
393
+
394
+
395
+
396
+ α2−α(A−B)+C
397
+ α[(A−B−α)2−β2] tanh α−A
398
+ 2T
399
+ +
400
+ a2+α(A−B)+C
401
+ α[(A−B+α)2−β2] tanh α+A
402
+ 2T
403
+ + β2+β(A−B)+C
404
+ β[(A−B+β)2−α2] tanh β−B
405
+ 2T
406
+ +
407
+ β2−β(A−B)+C
408
+ β[(A−B−β)2−α2] tanh β+B
409
+ 2T
410
+
411
+
412
+ � .
413
+ (11)
414
+ Now we turn to screening due to other layers.
415
+ Screening in a layered system
416
+ Coulomb repulsion between electrons in different layers l and l′ within the RPA approximation is determined by
417
+ the following integral equation:
418
+
419
+ 7
420
+ V RP A
421
+ q,l−l′,n = vC
422
+ q,l−l′ + Πqn
423
+
424
+ l′′ vC
425
+ q,l−l′′V RP A
426
+ q,l′′−l′,n.
427
+ (12)
428
+ The polarization function Πqn in 2D was calculated in the previous subsection. This set of equations is decoupled by
429
+ the Fourier transform in the z direction,
430
+ V RP A
431
+ q,qz,n =
432
+ vC
433
+ q,qz
434
+ 1 − ΠqnvC
435
+ q,qz
436
+ ,
437
+ (13)
438
+ where
439
+ vC
440
+ q,qz =
441
+
442
+ l v2D
443
+ q eiqzl−qd|l| = v2D
444
+ q
445
+ sinh [qd]
446
+ cosh [qd] − cos [dqz].
447
+ (14)
448
+ The screened interaction in a single layer therefore is is given by the inverse Fourier transform [14]:
449
+ V RP A
450
+ q,l−l′,n = d
451
+
452
+ � π/d
453
+ qz=−π/d
454
+ eiqzd(l−l′)
455
+ vC
456
+ q,qz
457
+ 1 − ΠqnvC
458
+ q,qz
459
+ .
460
+ (15)
461
+ Considering screened Coulomb potential at the same layer l = l′, the integration gives,
462
+ V RP A
463
+ qn
464
+ = v2D
465
+ q
466
+ sinh [qd]
467
+
468
+ b2qn − 1
469
+ ,
470
+ (16)
471
+ where bqn = cosh [dq] − v2D
472
+ q Πqn sinh [dq]. This formula is reliable only away from plasmon region bqn > 1. It turns
473
+ out that to properly describe superconductivity, one can simplify the calculation at low temperature by considering
474
+ the static limit Πqn ≃ Πq0. Consequently the potential becomes static: V RP A
475
+ q
476
+ ≡ V RP A
477
+ q,n=0.
478
+ SUPERCONDUCTIVITY
479
+ Superconductivity in WSM is caused by a conventional phonon pairing. The leading mode is an optical phonon
480
+ mode assumed to be dispersionless. with energy Ω. The effective electron-electron attraction due to the electron -
481
+ phonon attraction opposed by Coulomb repulsion (pseudo - potential) mechanism creates pairing below Tc. Further
482
+ we assume the singlet s-channel electron-phonon interaction and neglect the inter-layers electrons pairing.
483
+ In order
484
+ to describe superconductivity, one should ”integrate out” the phonon and the spin fluctuations degrees of freedom to
485
+ calculate the effective electron - electron interaction. We start with the phonons. The Matsubara action for effective
486
+ electron-electron interaction via in-plane phonons and direct Coulomb repulsion calculated in the previous Section.
487
+ It important to note that unlike in metal superconductors where a simplified pseudo - potential approach due to
488
+ McMillan and other [15], in 2D and layered WSM, one have to resort to a more microscopic approach.
489
+ Effective attraction due to phonon exchange opposed by the effective Coulomb repulsion
490
+ The free and the interaction parts of the effective electron action (”integrating phonons”+RPA Coulomb interaction)
491
+ in the quasi - momentum - Matzubara frequency representation, S = Se + Sint,
492
+ Sint = 1
493
+ 2T
494
+
495
+ qll′mm′ nqln
496
+
497
+ δll′V ph
498
+ q,m−m′ + V RP A
499
+ q,l−l′
500
+
501
+ n−q,−l′,−n′.
502
+ (17)
503
+ Here nqln = �
504
+ p ψ∗sI
505
+ plnψsI
506
+ q−p,l,n the Fourier transform of the electron density and Se was defined in Eq.(5). The effective
507
+ electron - electron coupling due to phonons is:
508
+ V ph
509
+ qm = −
510
+ �√
511
+ 3
512
+ 2
513
+ �2
514
+ g2Ω
515
+ ωb2
516
+ m + Ω2 ,
517
+ (18)
518
+ where the bosonic frequencies are ωb
519
+ m = 2πmT.
520
+
521
+ 8
522
+ Gorkov Green’s functions and the s-wave gap equations
523
+ Normal and anomalous (Matsubara) intra - layer Gorkov Green’s functions are defined by expectation value of the
524
+ fields,
525
+
526
+ ψIs
527
+ knlψ∗s′J
528
+ knl
529
+
530
+ = δss′GIJ
531
+ kn and
532
+
533
+ ψIs
534
+ knlψJs′
535
+ −k,−n,l
536
+
537
+ = εss′F IJ
538
+ kn, while the gap function is
539
+ ∆IJ
540
+ qn =
541
+
542
+ pm Vq−p,n−mF IJ
543
+ pm,
544
+ (19)
545
+ where Vqn = V ph
546
+ qn + V RP A
547
+ qn
548
+ is a sublattice scalar. The gap equations in the sublattice matrix form are derived from
549
+ Gorkov equations in Appendix B:
550
+ ∆qn = −
551
+
552
+ pm Vq−p,n−mgpm
553
+
554
+ I + ∆pmgt
555
+ −p,−m∆∗
556
+ −p,−mgpm
557
+ �−1 ∆pmgt
558
+ −p,−m.
559
+ (20)
560
+ In numerical simulation the gap equation was solved iteratively. Relatively large space cutoff Ns = 256 is required.
561
+ The frequency cutoff Nt = 128 was required due to low temperatures approached. Typically 15 − 25 iterations were
562
+ required. The parameters used were Ω = 16meV . The electron - phonon coupling g = 20meV . Now we turn to
563
+ results concentrating on two puzzling experimental results of ref.[6].
564
+ Independence of Tc on density in topological type II phase
565
+ In Fig.5 the critical temperature for various values of density are plotted. The blue points are for dielectric
566
+ constant[6], ε = 16, describing the intercalated imidazole cations [C2MIm] [17].
567
+ The inter - layer distance was
568
+ kept at d = 10.5A.
569
+ ϵ=50
570
+ ϵ=∞
571
+ ϵ=16
572
+ 0.8
573
+ 0.9
574
+ 1.0
575
+ 1.1
576
+ 1.2
577
+ 0
578
+ 5
579
+ 10
580
+ 15
581
+ chemical potential (ev)
582
+ Tc (K)
583
+ FIG. 5. Critical temperature of transition to superconducting state in type II layered WSM is shown as function of chemical
584
+ potential (can be translated into carrier density via Fig.4). Three values of dielectric constant of the intercalant for fixed
585
+ interlayer distance are shown. Parameters of the electron gas are the same as in previous figures.
586
+ The significance and generatiozation of the observation are discussed below.
587
+ Increase of Tc with dielectric constant of intercalator materials
588
+ The main idea of the paper is that the difference in Tc between different intercalators is attributed not to small
589
+ variations in the inter - layer spacing d, but rather to large differences in the dielectric constant of the intercalating
590
+ materials due to its effect on the screening. In experiment of ref.[6] the imidazole cations [C2MIm]+ (1- ethyl - 3 -
591
+ methyl - imidazolium) are short molecules[17] have ϵ = 16, while [C6MIm]+ (1- hexy l - 3 - methy l - imidazolium)
592
+ are long molecules[18] with a larger value ϵ ≃ 50. The inter - layer distance d is slightly dependent intercalators
593
+
594
+ 9
595
+ changing from 10.5˚
596
+ A to 11.7˚
597
+ A . The blue points in Fig 5 describe a material with dielectric constant ε = 16 should.
598
+ This is contrasted[18] with the ε = 50 material, see the red point. Neglecting the Coulomb repulsion, see the green
599
+ points, critical temperature (a much simpler calculation of Tc in this case similar to that in ref.[11] is needed in
600
+ this case) becomes yet higher. This demonstrate the importance of the Coulomb repulsion in a quasi 2D system.
601
+ Superconductivity is weaker for monolayer on substrate since both air and substrate have smaller dielectric constants
602
+ and hence weaker screen the Coulomb repulsion.
603
+ DISCUSSION AND CONCLUSION
604
+ To summarize we have developed a theory of superconductivity in layered type II Weyl semi-metals that properly
605
+ takes into account the Coulomb repulsion. The generalization goes beyond the simplistic pseudo - potential approach
606
+ due to McMillan[15] and others and depends essentially on the intercalating material. The theory allows to explain
607
+ the two puzzling phenomena observed recently in layered intercalated MoTe2 WSW compound [6]
608
+ The first experimental observation is that the gate voltage (changes in the chemical potential or equivalently in
609
+ density) has no impact on critical temperature Tc. For the 3D density range 8. × 1020cm−3 − 3.6 × 1021cm−3 the
610
+ temperature changes within 5%. For the intercalating material [C2MIm]+ with inter - layer distance d = 10.5A the
611
+ 2D density range translates into 8.4×1013cm−2 −3.8×1014cm−2 wth slightly larger spacings d = 11.7A shown in Figs
612
+ 2-5. This feature is explained purely topologically, see schematic Fig.1. In the type II density range the shape of both
613
+ pieces of the Fermi surface (the blue - yellow boundaries in Fig1b and Fig1c) largely does not depend on the density
614
+ (that is proportional to the area of the blue part of the surface) leading, see Fig. 4 to approximate independence of
615
+ the density of states (DOS) N (0) of chemical potential µ. This feature is akin to the DOS independence on µ for a
616
+ parabolic (topologically type I like in Fig.1a) band in purely 2D materials, but has completely difficult origin.
617
+ Using the somewhat naive BCS formula
618
+ Tc ≃ Ω e−N(0)g2
619
+ eff .
620
+ (21)
621
+ Here Ω is the phonon frequency and geff the effective electron - phonon coupling. Assuming that both Ω and g do
622
+ not depend on the density one arrives at a conclusion that in the type II topological phase the critical temperature is
623
+ density independent .
624
+ The second experimental observation[6] was that Tc is in fact very sensitive to the intercalating material. For
625
+ imidazole cations [C2MIm]+ the critical temperature is Tc = 4.2K, while for [C6MIm]+ the temperature jumps
626
+ to Tc = 6.6K or 6.9K depending on the intercalation method. The inter - layer distance d is slightly dependent
627
+ intercaltors increasing from 10.5˚
628
+ A to 11.7˚
629
+ A . Our calculation demonstrates that the difference in Tc between different
630
+ intercalators cannot be attributed to small variations in the inter - layer spacing d. On the contrary there are large
631
+ differences in the dielectric constant of the intercalating materials.
632
+ While [C2MIm]+ have[17] a relatively small
633
+ dielectric constant ϵ = 16, [C6MIm]+ is estimated[18] in the range ϵ = 40 − 60. Our theory accounts the difference
634
+ in Tc due to changes in the screening of the Coulomb potential due to the inter - layer insulator.
635
+ ACKNOWLEDGEMENTS.
636
+ This work was supported by NSC of R.O.C. Grants No. 101-2112-M-009-014-MY3.
637
+ APPENDIX A. DETAILS OF THE MODEL
638
+ The system considered in the paper is fitted for the following values of the hipping and the tilt parameter. The
639
+ dimensionless tilt parameter was taken from ref.[6] κ = 1.3. The hopping γ = 500 meV and t = 2. The calculations
640
+ were performed on the discrete reciprocal lattice k1, k2 = 1, ...Ns with Ns = 256. Reciprocal lattice basis vectors are,
641
+ b1 = 2π
642
+
643
+ 1, 1
644
+
645
+ 3
646
+
647
+ ;
648
+ b2 = 2π
649
+
650
+ 1, − 1
651
+
652
+ 3
653
+
654
+ ,
655
+ (22)
656
+
657
+ 10
658
+ so that a convenient representation is k = k1
659
+ Ns b1 + k2
660
+ Ns b2 with
661
+ kx = 2π
662
+ Ns
663
+ (k1 + k2) ,
664
+ ky =
665
+
666
+
667
+ 3Ns
668
+ (k1 − k2) .
669
+ (23)
670
+ APPENDIX B. DERIVATION OF THE TWO SUBLATTICE GAP EQUATION
671
+ Green’s functions and the s-wave Gorkov equations
672
+ We derive the Gorkov’s equations (GE) within the functional integral approach[19] starting from the effective
673
+ electron action for grassmanian fields ψ∗X, ψY .
674
+ S = 1
675
+ T
676
+
677
+ ψ∗X �
678
+ G−1
679
+ 0
680
+ �XY ψY + 1
681
+ 2ψ∗Y ψY V Y Xψ∗XψX
682
+
683
+ ,
684
+ (24)
685
+ where X, Y denote space coordinate, sublattices (pseudospin) and spin of the electron. Finite temperature properties
686
+ of the condensate are described at temperature T by the normal and the anomalous Matsubara Greens functions for
687
+ spin singlet state.
688
+ The GE in functional form are:
689
+
690
+ ψAψ∗B�
691
+ δ
692
+ δψ∗C
693
+ � δS
694
+ δψ∗B
695
+
696
+ +
697
+
698
+ ψAψB�
699
+ δ
700
+ δψ∗C
701
+ � δS
702
+ δψB
703
+
704
+ = 0;
705
+ (25)
706
+
707
+ ψAψ∗B�
708
+ δ
709
+ δψC
710
+ � δS
711
+ δψ∗B
712
+
713
+ +
714
+
715
+ ψAψB�
716
+ δ
717
+ δψC
718
+ � δS
719
+ δψB
720
+
721
+ = δAC.
722
+ (26)
723
+ Performing the calculations and using the normal and anomalous Green functions in the form F AB =
724
+
725
+ ψAψB�
726
+ ; GAB =
727
+
728
+ ψAψ∗B�
729
+ , one obtains:
730
+ F AX ��
731
+ G−1
732
+ 0
733
+ �CX − vXCGCX + vCXGXX�
734
+ + GAXvXCF XC = 0.
735
+ (27)
736
+ Skipping second and third terms in bracket in this expression and defining, superconducting gap ∆AB = vABF AB,
737
+ one rewrites as a matrix products:
738
+
739
+ G−1
740
+ 0
741
+ �CX F XA = GAX∆XC.
742
+ (28)
743
+ The first GE (multiplied from left by G0) is,
744
+ F AB = −GAXGBY
745
+ 0
746
+ ∆XY ,
747
+ (29)
748
+ while the second GE similarly is:
749
+ GAB − GAX∆XY GZY
750
+ 0
751
+ ∆∗ZUGUB
752
+ 0
753
+ = GAB
754
+ 0
755
+ .
756
+ (30)
757
+ Frequency-quasi-momentum and the spin-sublattice decomposition
758
+ The generalized index A contains the space variables (space + Matsubara time, a), spin s and the sublattice I.
759
+ After performing the Fourier series with combined quasi - momentum - frequency α:
760
+ F s1s2IJ
761
+ ab
762
+ = ϵs1s2 �
763
+ α eiα(a−b)F IJ
764
+ α ;
765
+ ∆s1s2IJ
766
+ ab
767
+ = ϵs1s2 �
768
+ α eiα(a−b)∆IJ
769
+ α ;
770
+ (31)
771
+ Gs1s2IJ
772
+ 0ab
773
+ = δs1s2 �
774
+ α eiα(a−b)gIJ
775
+ α ;
776
+ V s1s2IJ
777
+ ab
778
+ =
779
+
780
+ α eiα(a−b)vα.
781
+
782
+ 11
783
+ Substituting spins into Eq.(29,30), one obtains in the sublattice matrix form
784
+ Fα = −Gα∆αgt
785
+ −α;
786
+ (32)
787
+ Gα = G0α
788
+
789
+ I + ∆αgt
790
+ −α∆∗
791
+ −αG0α
792
+ �−1 ,
793
+ Convoluting the first GE by vν one obtains:
794
+ ∆ω = −
795
+
796
+ ν vω−νGν∆νgt
797
+ −ν.
798
+ (33)
799
+ The solution of the second GE for G is:
800
+ Gα = gα
801
+
802
+ I + ∆αgt
803
+ −α∆∗
804
+ −αgα
805
+ �−1 .
806
+ (34)
807
+ Substituting into the first GE one obtain Eq.(20) in the text.
808
+ [1] Katsnelson M.I. 2012 The Physics of Graphene, (Cambridge, Cambridge University Press).
809
+ [2] Soluyanov A. A. , Gresch D. ,Wang Z. ,Wu Q. ,Troyer M. ,Dai X. & Bernevig B. A. 2015, Nature 527, 495.
810
+ [3] Yu Z.-M. , Yao Y. , and Yang S. A. 2016 Phys. Rev. Lett. 117, 077202.
811
+ [4] O’Brien T. E. ,Diez M. , and Beenakker C. W. J. , 2016 Phys.Rev. Lett. 116, 236401.
812
+ [5] Wang C. et al. 2018 Nature, 555, 231; Lin, Z. et al. 2018 Nature, 562, 254; Huang H.,Zhou S. and DuanW., 2016 Phys.Rev.B
813
+ 94 121117; Yan M. et al, Nature Comm. 2017 8, 257; Furue Y. 2021 et al Phys. Rev. B 104,144510.
814
+ [6] Zhang H. , Rousuli A. ,Zhang K. ,Zhong H. ,Wu Y. ,Yu P. ,Zhou S. 2022 2D Materials 9 045027.
815
+ [7] Das Sarma S. andLi Q. 2013 Phys. Rev. B 88, 081404(R);Brydon P.M.R. ,Das Sarma S. ,Hui H.-Y. and Sau J. D. 2014
816
+ Phys. Rev. B 90, 184512;Li D. ,Rosenstein B. ,Shapiro B. Ya. , andShapiro I. 2014 Phys. Rev. B 90 054517.
817
+ [8] Fu L. and Berg E. 2010 Phys. Rev. Lett. 105, 097001.
818
+ [9] Zhang J.-L. et al. 2012 Front. Phys., 7, 193.
819
+ [10] Alidoust M. , Halterman K. , and Zyuzin A. A. 2017 Phys. Rev. B 95, 155124.
820
+ [11] Li D. , Rosenstein B. , Shapiro B. Ya. , and Shapiro I. 2017 Phys. Rev. B 95, 094513.
821
+ [12] Shapiro B Ya , Shapiro I , Li D. and Rosenstein B. 2018 J. Phys.:Condens. Matter 30 335403.
822
+ [13] Wang S. T. et al. 2012 Appl. Phys. Let. 101, 183110.
823
+ [14] Hawrylak P. , Eliasson G. , and Quinn J. J., 1988 Phys. Rev. B 37 10187.
824
+ [15] Bilbro G. and McMillan L. 1976 Phys. Rev. B 14 1887.
825
+ [16] Katayama S. ,Kobayashi A. ,Suzumura Y. 2006 J. Phys. Soc. Japan 75, 054705;Goerbig M. O. , Fuchs J. -N.,Montambaux
826
+ G. , Pi´echon F. 2008 Phys. Rev. B 78, 045415; Hirata M. et al. 2016 Nature Commun. 7 12666.
827
+ [17] Beal A R and Hughes H P 1979 J. Phys. C: Solid State Phys. 12 881 .
828
+ [18] Yang L., Fishbine B. H. , Migliori A. and Pratt L.R., 2010 J. Chem. Phys. 132 044701.
829
+ [19] Negele J.W. and Orlando H. , Quantum Many Particle Systems, 1998 Aspen, Advanced Book Classics, Westview Press.
830
+
69FAT4oBgHgl3EQfnx3V/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf,len=490
2
+ page_content='Superconductivity in type II layered Weyl semi-metals B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
3
+ page_content=' Rosenstein1 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
4
+ page_content=' Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
5
+ page_content=' Shapiro2 1Department of Electrohysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
6
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
7
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
8
+ page_content=' 2Department of Physics, Institute of Superconductivity, Bar-Ilan University, 52900 Ramat-Gan, Israel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
9
+ page_content=' Novel ”quasi two dimensional” typically layered (semi) metals offer a unique opportunity to control the density and even the topology of the electronic matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
10
+ page_content=' In intercalated MoTe2 type II Weyl semi - metal the tilt of the dispersion relation cones is so large that topologically of the Fermi surface is distinct from a more conventional type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
11
+ page_content=' Superconductivity observed recently in this compound [Zhang et al, 2D Materials 9, 045027 (2022)] demonstrated two puzzling phenomena: the gate voltage has no impact on critical temperature, Tc, in wide range of density, while it is very sensitive to the inter - layer distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
12
+ page_content=' The phonon theory of pairing in a layered Weyl material including the effects of Coulomb repulsion is constructed and explains the above two features in MoTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
13
+ page_content=' The first feature turns out to be a general one for any type II topological material, while the second reflects properties of the intercalated materials affecting the Coulomb screening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
14
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
15
+ page_content='08631v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
16
+ page_content='supr-con] 20 Jan 2023 2 INTRODUCTION.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
17
+ page_content=' The 3D and 2D topological quantum materials, such as topological insulators and Weyl semi - metals (WSM), attracted much interests due to their rich physics and promising prospects for application in electronic and spinotronic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
18
+ page_content=' The band structure in the so called type I WSM like graphene[1], is characterized by appearance linear dispersion relation (cones around several Dirac points) due to the band inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
19
+ page_content=' This is qualitatively distinct from conventional metals, semi - metals or semiconductors, in which bands are typically parabolic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
20
+ page_content=' In type-II WSM [2], the cones have such a strong tilt, κ, so that they exhibit a nearly flat band and the Fermi surface ”encircles” the Brillouin zone, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
21
+ page_content='1b, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
22
+ page_content='1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
23
+ page_content=' It is topologically distinct from conventional ”pockets”, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
24
+ page_content='1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
25
+ page_content=' This in turn leads to exotic electronic properties different from both the those in both the conventional and in the type I WSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
26
+ page_content=' Examples include the collapse of the Landau level spectrum in magnetoresistance [3], and novel quantum oscillations [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
27
+ page_content=' The type II topology of the Fermi surface was achieved in particular in transition metal dichalcogenides [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
28
+ page_content=' Very recentlyMoTe2 layers intercalated by ionic liquid cations were studied[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
29
+ page_content=' The tilt value was estimated to as high as κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
30
+ page_content='3 that places it firmly within the type II WSM class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
31
+ page_content=' The measurements included the Hall effect and the resistivity at low temperatures demonstrating appearance of superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
32
+ page_content=' They discovered two intriguing facts that are currently under discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
33
+ page_content=' First changing the gate voltage (chemical potential) surprisingly has no impact on critical temperature, Tc, in wide range of density of the electron gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
34
+ page_content=' Second Tc turned out to be very sensitive to the inter - layer distance d: it increases from 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
35
+ page_content='5A to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
36
+ page_content='7A, while the critical temperature jumps from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
37
+ page_content='2K to 7K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
38
+ page_content=' In the present paper we propose a theoretical explanation of these observations based on appropriate generalization of the conventional superconductivity theory applied to these materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
39
+ page_content=' Although early on unconventional mechanisms of superconductivity in WSM have been considered, accumulated experimental evidence points towards the conventional phonon mediated one [7–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
40
+ page_content=' In the previous paper[11] and a related work[10] a continuum theory of conventional superconductivity in WSM was developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
41
+ page_content=' Magnetic response in the superconducting state was calculated[10][12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
42
+ page_content=' The model was too ”mesoscopic” to describe the type II phase since the global topology of the Brillouin zone was beyond the scope of the continuum approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
43
+ page_content=' Therefore we go beyond the continuum model in the present paper by modeling a type II layered WSM using a tight binding approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
44
+ page_content=' The in-plane electron liquid model is similarl to that of graphene oxide[13] and other 2D WSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
45
+ page_content=' It possesses a chiral symmetry between two Brave sublattices for all values of the tilt parameter κ, but lacks hexagonal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
46
+ page_content=' The second necessary additional feature is inclusion of Coulomb repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
47
+ page_content=' It turns out that the screened Coulomb repulsion significantly opposes the phonon mediated pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
48
+ page_content=' Consequently a detailed RPA theory of screening in a layered material[14] is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
49
+ page_content=' We calculate the superconducting critical temperature taking into consideration the modification of the Coulomb interaction due to the dielectric constant of intercalator material and the inter-layered spacing d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
50
+ page_content=' The Gorkov equations for the two sublattices system are solved without resorting to the mesoscopic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
51
+ page_content=' Moreover since screening of Coulomb repulsion plays a much more profound role in quasi 2D materials the pseudo-potential simplification developed by McMillan[15] is not valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
52
+ page_content=' Rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
53
+ page_content=' In Section II the microscopic model of the layered WSM is described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
54
+ page_content=' The RPA calculation of both the intra- and inter - layer screening is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
55
+ page_content=' In Section III the Gorkov equations for the optical phonon mediated intra- layer pairing for a multiband system including the Coulomb repulsion is derived and solved numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
56
+ page_content=' In Section IV the phonon theory of pairing including the Coulomb repulsion for a layered material is applied to recent extensive experiments on MoTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
57
+ page_content=' The effect of intercalation and density on superconductivity is studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
58
+ page_content=' This explains the both remarkable features of Tc observed[6] in MoTe2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
59
+ page_content=' The last Section contains conclusions and discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
60
+ page_content=' A ”GENERIC” LATTICE MODEL OF LAYERED WEYL SEMI-METALS Intra- layer hopping A great variety of tight binding models were used to describe Weyl (Dirac) semimetals in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
61
+ page_content=' Historically the first was graphene (type I, κ = 0) , in which electrons hope between the neighboring cites of the honeycomb lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
62
+ page_content=' We restrict the discussion to systems with the minimal two cones of opposite chirality and negligible spin orbit coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
63
+ page_content=' The two Dirac cones appear in graphene at K and K′ crystallographic points in BZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
64
+ page_content=' Upon modification (more complicated molecules like graphene oxide, stress, intercalation) the hexagonal symmetry is lost, however a discrete chiral symmetry between two sublattices, denoted by I = A, B, ensures the WSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
65
+ page_content=' The tilted type I and even type II (for which typically κ > 1) crystals can be described by the same Hamiltonian with the tilt term added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
66
+ page_content=' This 3 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
67
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
68
+ page_content=' Two distict topologies of the Fermi surface in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
69
+ page_content=' Topology of the 2D Brillouin zone is that of the surface of 3D torroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
70
+ page_content=' On the left the “conventional” type I pocket is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
71
+ page_content=' In the ceter and on the right the type II topology is shown schematically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
72
+ page_content=' The filled states are in blue and envelop the torus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
73
+ page_content=' Despite the large difference in density of the two the Fermi surface properties like density of states are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
74
+ page_content=' 2D model is extended to a layered system with inter - layer distance d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
75
+ page_content=' Physically the 2D WSM layers are separated by a dielectric material with inter - layer hopping neglected, so that they are coupled electromagnetically only[14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
76
+ page_content=' The lateral atomic coordinates are still considered on the honeycomb lattice are rn = n1a1 + n2a2, where lattice vectors are: a1 = a 2 � 1, √ 3 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
77
+ page_content=' a2 = a 2 � 1, − √ 3 � , (1) despite the fact that hopping energies are different for jumps between nearest neighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
78
+ page_content=' Each site has three neighbors separated by δ1 = 1 3 (a1 − a2) , δ2 = − 1 3 (2a1 + a2) and δ3 = 1 3 (a1 + 2a2), in different directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
79
+ page_content=' The length of the lattice vectors a will be taken as the length unit and we set ℏ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
80
+ page_content=' The hopping Hamiltonian including the tilt term is[13, 16]: K = √ 3 4 � nl � γ � ψsA† nl ψsB rn+δ1,l + ψsA† nl ψsB rn+δ2,l + tψsA† nl ψsB rn+δ3,l � + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
81
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
82
+ page_content=' − κψsI† nl ψsI rn+a1,l − µnn,l � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
83
+ page_content=' (2) Here an integer l labels the layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
84
+ page_content=' Operator ψsA† nl is the creation operators with spin s =↑, ↓, while the density operator is defined as nnl = ψsI† nl ψsI nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
85
+ page_content=' The chemical potential is µ, while γ is the hopping energy for two neighbors at δ1, δ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
86
+ page_content=' Since the the system does not possesses hexagonal symmetry (only the chiral one), the third jump has the different hopping[13] tγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
87
+ page_content=' Dimensionless parameter κ determines the tilt of the Dirac cones along the a1direction[16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
88
+ page_content=' In the 2D Fourier space, ψsA nl = N −2 s � k ψsA kl e−ik·rn, one obtains for Hamiltonian (for finite discrete reciprocal lattice Ns × Ns): K = N −2 s � kl ψs† klMkψs kl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
89
+ page_content=' (3) Here k = k1 Ns b1 + k2 Ns b2 (reciprocal lattice vectors are given in Appendix A) and matrix Mk = dxσx + dyσy + d0I in terms of Pauli matrices has components: dx = 2t √ 3 cos � 2π 3Ns (k1 − k2) � + 4 √ 3 cos � π Ns (k1 + k2) � cos � − π 3Ns (k1 − k2) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
90
+ page_content=' (4) dy = − 2t √ 3 sin � 2π 3Ns (k1 − k2) � + 4 √ 3 cos � π Ns (k1 + k2) � sin � π 3Ns (k1 − k2) � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
91
+ page_content=' d0 = 2 √ 3 � −κ cos � 2π Ns k1 � − µ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
92
+ page_content=' 4 Using γ as our energy unit from now on, the free electrons part of the Matsubara action for Grassmanian fields ψ∗sI kln is: Se = 1 T � kln ψ∗sI kln �� −iωn + d0 k � δIJ + σIJ i di k � ψsJ kln.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
93
+ page_content=' (5) where ωn = πT (2n + 1) is the Matsubara frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
94
+ page_content=' The Green Function of free electrons has the matrix form gkn = �� −iωn + d0 k � I + σidi k �−1 = � −iωn + d0 k � I − σidi k (iωn − d0 k)2 − dx2 k − dy2 k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
95
+ page_content=' (6) Now we turn to the spectrum of this model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
96
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
97
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
98
+ page_content=' The topological phase diagram of the Weyl semimetal at large tilt parameter (κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
99
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
100
+ page_content=' Chemical potential (in units of γ = 500 meV) is marked on each contour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
101
+ page_content=' The electron type I topology at low values of µ undergoes transition to the type II at µ = µ1 c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
102
+ page_content='8 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
103
+ page_content=' At yet larger µ > µ2 c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
104
+ page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
105
+ page_content=' the Fermi surface becomes again type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
106
+ page_content=' This time the excitations are hole rather than electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
107
+ page_content=' The range of the topological type II phase at large κ The spectrum of Hamiltonian of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
108
+ page_content=' (4) consists of two branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
109
+ page_content=' The upper branch for µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
110
+ page_content='9eV is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
111
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
112
+ page_content=' The lower branch for a reasonable choice of parameters appropriate to MoTe2 is significantly below the Fermi surface and is not plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
113
+ page_content=' Blue regions represent the filled electron states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
114
+ page_content=' One observes a ”river” from one boundary to the other of the Brillouin zone (in coordinates k1 and k2, in terms of the original kx, ky it is a rhomb) characteristic to type II Fermi surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
115
+ page_content=' Topologically this is akin to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
116
+ page_content='1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
117
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
118
+ page_content=' 3 the Fermi surfaces in a wide range of densities n = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
119
+ page_content='×1013−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
120
+ page_content='5×1014cm−2 are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
121
+ page_content=' Topologically they separate into three phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
122
+ page_content=' At chemical potentials below µ1 c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
123
+ page_content='796 eV , corresponding to densities n < n1 c = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
124
+ page_content='×1013 cm−2 , the Fermi surface consists of one compact electron pocket similar to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
125
+ page_content='1a, so that the electronic matter is of the (”customary”) topological type I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
126
+ page_content=' The density is determined from the (nearly linear) relation between the 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
127
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
128
+ page_content='6975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
129
+ page_content='6975 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
130
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
131
+ page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
132
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
133
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
134
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
135
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
136
+ page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
137
+ page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
138
+ page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
139
+ page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
140
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
141
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
142
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
143
+ page_content='5 I (electron) II II II I (hole) k1 (π/a) k2 (π/a) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
144
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
145
+ page_content=' Dispersion relation of WSM with κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
146
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
147
+ page_content=' The blue plane corresponds to chemical potentia lµ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
148
+ page_content='8 eV so that the Fermi surface has the type II topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
149
+ page_content=' chemical potential and density given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
150
+ page_content=' 4 (blue line, scale on the right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
151
+ page_content=' In the range µ1 c < µ < µ2 c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
152
+ page_content='35eV the Fermi surface consists of two banks of a ”river” (blue color represents filled electron states) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
153
+ page_content='2 and can be viewed topologically as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
154
+ page_content='1b and Fig1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
155
+ page_content=' The second critical density is n2 c = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
156
+ page_content='6 × 1014 cm−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
157
+ page_content=' In this range the shape of both pieces of the Fermi surface largely does not depend on the density that is proportional to the area of the blue part of the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
158
+ page_content=' To make this purely topological observation quantitative, we present in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
159
+ page_content=' 4 (green line, scale on the left) the density of states (DOS) as a function of chemical potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
160
+ page_content=' One observes that it nearly constant away from the two topological I to II transitions where it peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
161
+ page_content=' Coulomb repulsion The electron-electron repulsion in the layered WSM can be presented in the form, V = e2 2 � nln′l′ nnlvC n−n′,l−l′nn′l′ = e2 2N 2s � qll′ nqln−ql′vC q,l−l′, (7) where vC n−n′,l−l′ is the ”bare” Coulomb interaction between electrons with Fourier transform vC q,l−l′ = v2D q e−dq|l−l′|, v2D q = 2πe2/qϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
162
+ page_content=' Here ϵ is the dielectric constant of the intercalator material The long range Coulomb interaction is effectively taken into account using the RPA approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
163
+ page_content=' SCREENING IN LAYERED WSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
164
+ page_content=' The screening in the layered system can be conveniently partitioned into the screening within each layer described by the polarization function Πqn and electrostatic coupling to carriers in other layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
165
+ page_content=' We start with the former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
166
+ page_content=' 6 I II I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
167
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
168
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
169
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
170
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
171
+ page_content='4 0 1 2 3 4 chemical potential (ev) DOS(2 1014cm-2 ev-1) density (1014cm-2) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
172
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
173
+ page_content=' Electron density and DOS as function of the chemical potential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
174
+ page_content='of WSM with κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
175
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
176
+ page_content=' DOS has cusps at both I to II transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
177
+ page_content=' Between the transitions it is nearly constant in the range of densities from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
178
+ page_content='1 × 1014/cm2 to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
179
+ page_content=' × 1014/cm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
180
+ page_content=' Polarization function of the electron gas in Layered WSM In a simple Fermi theory of the electron gas in normal state with Coulomb interaction between the electrons in RPA approximation the Matsubara polarization is calculated as a simple minus ”fish” diagram [14] in the form: Πqn = − � −2TTr � pm gpmgp+q,m+n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
181
+ page_content=' (8) Using the GF of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
182
+ page_content=' (6), one obtain: Πqn = 4T � pm (iωm + A) (iωm + B) + C � (iωm + A)2 − α2 � � (iωm + B)2 − β2 �, (9) where A = −d0 p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
183
+ page_content=' B = iωn − d0 p+q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
184
+ page_content=' C = dx pdx p+q + dy pdy p+q;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
185
+ page_content=' (10) α2 = dx2 p + dy2 p ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
186
+ page_content=' β2 = dx2 p+q + dy2 p+q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
187
+ page_content=' Performing summation over m, one obtains: Πqn = − � p � � � α2−α(A−B)+C α[(A−B−α)2−β2] tanh α−A 2T + a2+α(A−B)+C α[(A−B+α)2−β2] tanh α+A 2T + β2+β(A−B)+C β[(A−B+β)2−α2] tanh β−B 2T + β2−β(A−B)+C β[(A−B−β)2−α2] tanh β+B 2T � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
188
+ page_content=' (11) Now we turn to screening due to other layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
189
+ page_content=' Screening in a layered system Coulomb repulsion between electrons in different layers l and l′ within the RPA approximation is determined by the following integral equation: 7 V RP A q,l−l′,n = vC q,l−l′ + Πqn � l′′ vC q,l−l′′V RP A q,l′′−l′,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
190
+ page_content=' (12) The polarization function Πqn in 2D was calculated in the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
191
+ page_content=' This set of equations is decoupled by the Fourier transform in the z direction, V RP A q,qz,n = vC q,qz 1 − ΠqnvC q,qz , (13) where vC q,qz = � l v2D q eiqzl−qd|l| = v2D q sinh [qd] cosh [qd] − cos [dqz].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
192
+ page_content=' (14) The screened interaction in a single layer therefore is is given by the inverse Fourier transform [14]: V RP A q,l−l′,n = d 2π � π/d qz=−π/d eiqzd(l−l′) vC q,qz 1 − ΠqnvC q,qz .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
193
+ page_content=' (15) Considering screened Coulomb potential at the same layer l = l′, the integration gives, V RP A qn = v2D q sinh [qd] � b2qn − 1 , (16) where bqn = cosh [dq] − v2D q Πqn sinh [dq].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
194
+ page_content=' This formula is reliable only away from plasmon region bqn > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
195
+ page_content=' It turns out that to properly describe superconductivity, one can simplify the calculation at low temperature by considering the static limit Πqn ≃ Πq0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
196
+ page_content=' Consequently the potential becomes static: V RP A q ≡ V RP A q,n=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
197
+ page_content=' SUPERCONDUCTIVITY Superconductivity in WSM is caused by a conventional phonon pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
198
+ page_content=' The leading mode is an optical phonon mode assumed to be dispersionless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
199
+ page_content=' with energy Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
200
+ page_content=' The effective electron-electron attraction due to the electron - phonon attraction opposed by Coulomb repulsion (pseudo - potential) mechanism creates pairing below Tc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
201
+ page_content=' Further we assume the singlet s-channel electron-phonon interaction and neglect the inter-layers electrons pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
202
+ page_content=' In order to describe superconductivity, one should ”integrate out” the phonon and the spin fluctuations degrees of freedom to calculate the effective electron - electron interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
203
+ page_content=' We start with the phonons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
204
+ page_content=' The Matsubara action for effective electron-electron interaction via in-plane phonons and direct Coulomb repulsion calculated in the previous Section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
205
+ page_content=' It important to note that unlike in metal superconductors where a simplified pseudo - potential approach due to McMillan and other [15], in 2D and layered WSM, one have to resort to a more microscopic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
206
+ page_content=' Effective attraction due to phonon exchange opposed by the effective Coulomb repulsion The free and the interaction parts of the effective electron action (”integrating phonons”+RPA Coulomb interaction) in the quasi - momentum - Matzubara frequency representation, S = Se + Sint, Sint = 1 2T � qll′mm′ nqln � δll′V ph q,m−m′ + V RP A q,l−l′ � n−q,−l′,−n′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
207
+ page_content=' (17) Here nqln = � p ψ∗sI plnψsI q−p,l,n the Fourier transform of the electron density and Se was defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
208
+ page_content='(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
209
+ page_content=' The effective electron - electron coupling due to phonons is: V ph qm = − �√ 3 2 �2 g2Ω ωb2 m + Ω2 , (18) where the bosonic frequencies are ωb m = 2πmT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
210
+ page_content=' 8 Gorkov Green’s functions and the s-wave gap equations Normal and anomalous (Matsubara) intra - layer Gorkov Green’s functions are defined by expectation value of the fields, � ψIs knlψ∗s′J knl � = δss′GIJ kn and � ψIs knlψJs′ −k,−n,l � = εss′F IJ kn, while the gap function is ∆IJ qn = � pm Vq−p,n−mF IJ pm, (19) where Vqn = V ph qn + V RP A qn is a sublattice scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
211
+ page_content=' The gap equations in the sublattice matrix form are derived from Gorkov equations in Appendix B: ∆qn = − � pm Vq−p,n−mgpm � I + ∆pmgt −p,−m∆∗ −p,−mgpm �−1 ∆pmgt −p,−m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
212
+ page_content=' (20) In numerical simulation the gap equation was solved iteratively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
213
+ page_content=' Relatively large space cutoff Ns = 256 is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
214
+ page_content=' The frequency cutoff Nt = 128 was required due to low temperatures approached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
215
+ page_content=' Typically 15 − 25 iterations were required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
216
+ page_content=' The parameters used were Ω = 16meV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
217
+ page_content=' The electron - phonon coupling g = 20meV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
218
+ page_content=' Now we turn to results concentrating on two puzzling experimental results of ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
219
+ page_content=' [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
220
+ page_content=' Independence of Tc on density in topological type II phase In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
221
+ page_content='5 the critical temperature for various values of density are plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
222
+ page_content=' The blue points are for dielectric constant[6], ε = 16, describing the intercalated imidazole cations [C2MIm] [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
223
+ page_content=' The inter - layer distance was kept at d = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
224
+ page_content='5A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
225
+ page_content=' ϵ=50 ϵ=∞ ϵ=16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
226
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
227
+ page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
228
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
229
+ page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
230
+ page_content='2 0 5 10 15 chemical potential (ev) Tc (K) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
231
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
232
+ page_content=' Critical temperature of transition to superconducting state in type II layered WSM is shown as function of chemical potential (can be translated into carrier density via Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
233
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
234
+ page_content=' Three values of dielectric constant of the intercalant for fixed interlayer distance are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
235
+ page_content=' Parameters of the electron gas are the same as in previous figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
236
+ page_content=' The significance and generatiozation of the observation are discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
237
+ page_content=' Increase of Tc with dielectric constant of intercalator materials The main idea of the paper is that the difference in Tc between different intercalators is attributed not to small variations in the inter - layer spacing d, but rather to large differences in the dielectric constant of the intercalating materials due to its effect on the screening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
238
+ page_content=' In experiment of ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
239
+ page_content=' [6] the imidazole cations [C2MIm]+ (1- ethyl - 3 - methyl - imidazolium) are short molecules[17] have ϵ = 16, while [C6MIm]+ (1- hexy l - 3 - methy l - imidazolium) are long molecules[18] with a larger value ϵ ≃ 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
240
+ page_content=' The inter - layer distance d is slightly dependent intercalators 9 changing from 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
241
+ page_content='5˚ A to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
242
+ page_content='7˚ A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
243
+ page_content=' The blue points in Fig 5 describe a material with dielectric constant ε = 16 should.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
244
+ page_content=' This is contrasted[18] with the ε = 50 material, see the red point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
245
+ page_content=' Neglecting the Coulomb repulsion, see the green points, critical temperature (a much simpler calculation of Tc in this case similar to that in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
246
+ page_content=' [11] is needed in this case) becomes yet higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
247
+ page_content=' This demonstrate the importance of the Coulomb repulsion in a quasi 2D system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
248
+ page_content=' Superconductivity is weaker for monolayer on substrate since both air and substrate have smaller dielectric constants and hence weaker screen the Coulomb repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
249
+ page_content=' DISCUSSION AND CONCLUSION To summarize we have developed a theory of superconductivity in layered type II Weyl semi-metals that properly takes into account the Coulomb repulsion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
250
+ page_content=' The generalization goes beyond the simplistic pseudo - potential approach due to McMillan[15] and others and depends essentially on the intercalating material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
251
+ page_content=' The theory allows to explain the two puzzling phenomena observed recently in layered intercalated MoTe2 WSW compound [6] The first experimental observation is that the gate voltage (changes in the chemical potential or equivalently in density) has no impact on critical temperature Tc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
252
+ page_content=' For the 3D density range 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
253
+ page_content=' × 1020cm−3 − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
254
+ page_content='6 × 1021cm−3 the temperature changes within 5%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
255
+ page_content=' For the intercalating material [C2MIm]+ with inter - layer distance d = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
256
+ page_content='5A the 2D density range translates into 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
257
+ page_content='4×1013cm��2 −3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
258
+ page_content='8×1014cm−2 wth slightly larger spacings d = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
259
+ page_content='7A shown in Figs 2-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
260
+ page_content=' This feature is explained purely topologically, see schematic Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
261
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
262
+ page_content=' In the type II density range the shape of both pieces of the Fermi surface (the blue - yellow boundaries in Fig1b and Fig1c) largely does not depend on the density (that is proportional to the area of the blue part of the surface) leading, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
263
+ page_content=' 4 to approximate independence of the density of states (DOS) N (0) of chemical potential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
264
+ page_content=' This feature is akin to the DOS independence on µ for a parabolic (topologically type I like in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
265
+ page_content='1a) band in purely 2D materials, but has completely difficult origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
266
+ page_content=' Using the somewhat naive BCS formula Tc ≃ Ω e−N(0)g2 eff .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
267
+ page_content=' (21) Here Ω is the phonon frequency and geff the effective electron - phonon coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
268
+ page_content=' Assuming that both Ω and g do not depend on the density one arrives at a conclusion that in the type II topological phase the critical temperature is density independent .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
269
+ page_content=' The second experimental observation[6] was that Tc is in fact very sensitive to the intercalating material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
270
+ page_content=' For imidazole cations [C2MIm]+ the critical temperature is Tc = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
271
+ page_content='2K, while for [C6MIm]+ the temperature jumps to Tc = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
272
+ page_content='6K or 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
273
+ page_content='9K depending on the intercalation method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
274
+ page_content=' The inter - layer distance d is slightly dependent intercaltors increasing from 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
275
+ page_content='5˚ A to 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
276
+ page_content='7˚ A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
277
+ page_content=' Our calculation demonstrates that the difference in Tc between different intercalators cannot be attributed to small variations in the inter - layer spacing d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
278
+ page_content=' On the contrary there are large differences in the dielectric constant of the intercalating materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
279
+ page_content=' While [C2MIm]+ have[17] a relatively small dielectric constant ϵ = 16, [C6MIm]+ is estimated[18] in the range ϵ = 40 − 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
280
+ page_content=' Our theory accounts the difference in Tc due to changes in the screening of the Coulomb potential due to the inter - layer insulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
281
+ page_content=' ACKNOWLEDGEMENTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
282
+ page_content=' This work was supported by NSC of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
283
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
284
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
285
+ page_content=' Grants No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
286
+ page_content=' 101-2112-M-009-014-MY3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
287
+ page_content=' APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
288
+ page_content=' DETAILS OF THE MODEL The system considered in the paper is fitted for the following values of the hipping and the tilt parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
289
+ page_content=' The dimensionless tilt parameter was taken from ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
290
+ page_content=' [6] κ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
291
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
292
+ page_content=' The hopping γ = 500 meV and t = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
293
+ page_content=' The calculations were performed on the discrete reciprocal lattice k1, k2 = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
294
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
295
+ page_content='Ns with Ns = 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
296
+ page_content=' Reciprocal lattice basis vectors are, b1 = 2π � 1, 1 √ 3 � ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
297
+ page_content=' b2 = 2π � 1, − 1 √ 3 � , (22) 10 so that a convenient representation is k = k1 Ns b1 + k2 Ns b2 with kx = 2π Ns (k1 + k2) , ky = 2π √ 3Ns (k1 − k2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
298
+ page_content=' (23) APPENDIX B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
299
+ page_content=' DERIVATION OF THE TWO SUBLATTICE GAP EQUATION Green’s functions and the s-wave Gorkov equations We derive the Gorkov’s equations (GE) within the functional integral approach[19] starting from the effective electron action for grassmanian fields ψ∗X, ψY .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
300
+ page_content=' S = 1 T � ψ∗X � G−1 0 �XY ψY + 1 2ψ∗Y ψY V Y Xψ∗XψX � , (24) where X, Y denote space coordinate, sublattices (pseudospin) and spin of the electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
301
+ page_content=' Finite temperature properties of the condensate are described at temperature T by the normal and the anomalous Matsubara Greens functions for spin singlet state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
302
+ page_content=' The GE in functional form are: � ψAψ∗B� δ δψ∗C � δS δψ∗B � + � ψAψB� δ δψ∗C � δS δψB � = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
303
+ page_content=' (25) � ψAψ∗B� δ δψC � δS δψ∗B � + � ψAψB� δ δψC � δS δψB � = δAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
304
+ page_content=' (26) Performing the calculations and using the normal and anomalous Green functions in the form F AB = � ψAψB� ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
305
+ page_content=' GAB = � ψAψ∗B� , one obtains: F AX �� G−1 0 �CX − vXCGCX + vCXGXX� + GAXvXCF XC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
306
+ page_content=' (27) Skipping second and third terms in bracket in this expression and defining, superconducting gap ∆AB = vABF AB, one rewrites as a matrix products: � G−1 0 �CX F XA = GAX∆XC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
307
+ page_content=' (28) The first GE (multiplied from left by G0) is, F AB = −GAXGBY 0 ∆XY , (29) while the second GE similarly is: GAB − GAX∆XY GZY 0 ∆∗ZUGUB 0 = GAB 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
308
+ page_content=' (30) Frequency-quasi-momentum and the spin-sublattice decomposition The generalized index A contains the space variables (space + Matsubara time, a), spin s and the sublattice I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
309
+ page_content=' After performing the Fourier series with combined quasi - momentum - frequency α: F s1s2IJ ab = ϵs1s2 � α eiα(a−b)F IJ α ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
310
+ page_content=' ∆s1s2IJ ab = ϵs1s2 � α eiα(a−b)∆IJ α ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
311
+ page_content=' (31) Gs1s2IJ 0ab = δs1s2 � α eiα(a−b)gIJ α ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
312
+ page_content=' V s1s2IJ ab = � α eiα(a−b)vα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
313
+ page_content=' 11 Substituting spins into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
314
+ page_content=' (29,30), one obtains in the sublattice matrix form Fα = −Gα∆αgt −α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
315
+ page_content=' (32) Gα = G0α � I + ∆αgt −α∆∗ −αG0α �−1 , Convoluting the first GE by vν one obtains: ∆ω = − � ν vω−νGν∆νgt −ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
316
+ page_content=' (33) The solution of the second GE for G is: Gα = gα � I + ∆αgt −α∆∗ −αgα �−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
317
+ page_content=' (34) Substituting into the first GE one obtain Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
318
+ page_content=' (20) in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
319
+ page_content=' [1] Katsnelson M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
320
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
321
+ page_content=' 2012 The Physics of Graphene, (Cambridge, Cambridge University Press).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
322
+ page_content=' [2] Soluyanov A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
323
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
324
+ page_content=' , Gresch D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
325
+ page_content=' ,Wang Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
326
+ page_content=' ,Wu Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
327
+ page_content=' ,Troyer M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
328
+ page_content=' ,Dai X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
329
+ page_content=' & Bernevig B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
330
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
331
+ page_content=' 2015, Nature 527, 495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
332
+ page_content=' [3] Yu Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
333
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
334
+ page_content=' , Yao Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
335
+ page_content=' , and Yang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
336
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
337
+ page_content=' 2016 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
338
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
339
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
340
+ page_content=' 117, 077202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
341
+ page_content=' [4] O’Brien T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
342
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
343
+ page_content=' ,Diez M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
344
+ page_content=' , and Beenakker C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
345
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
346
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
347
+ page_content=' , 2016 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
348
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
349
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
350
+ page_content=' 116, 236401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
351
+ page_content=' [5] Wang C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
352
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
353
+ page_content=' 2018 Nature, 555, 231;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
354
+ page_content=' Lin, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
355
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
356
+ page_content=' 2018 Nature, 562, 254;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
357
+ page_content=' Huang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
358
+ page_content=',Zhou S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
359
+ page_content=' and DuanW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
360
+ page_content=', 2016 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
361
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
362
+ page_content='B 94 121117;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
363
+ page_content=' Yan M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
364
+ page_content=' et al, Nature Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
365
+ page_content=' 2017 8, 257;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
366
+ page_content=' Furue Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
367
+ page_content=' 2021 et al Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
368
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
369
+ page_content=' B 104,144510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
370
+ page_content=' [6] Zhang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
371
+ page_content=' , Rousuli A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
372
+ page_content=' ,Zhang K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
373
+ page_content=' ,Zhong H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
374
+ page_content=' ,Wu Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
375
+ page_content=' ,Yu P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
376
+ page_content=' ,Zhou S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
377
+ page_content=' 2022 2D Materials 9 045027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
378
+ page_content=' [7] Das Sarma S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
379
+ page_content=' andLi Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
380
+ page_content=' 2013 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
381
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
382
+ page_content=' B 88, 081404(R);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
383
+ page_content='Brydon P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
384
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
385
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
386
+ page_content=' ,Das Sarma S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
387
+ page_content=' ,Hui H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
388
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
389
+ page_content=' and Sau J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
390
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
391
+ page_content=' 2014 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
392
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
393
+ page_content=' B 90, 184512;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
394
+ page_content='Li D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
395
+ page_content=' ,Rosenstein B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
396
+ page_content=' ,Shapiro B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
397
+ page_content=' Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
398
+ page_content=' , andShapiro I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
399
+ page_content=' 2014 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
400
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
401
+ page_content=' B 90 054517.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
402
+ page_content=' [8] Fu L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
403
+ page_content=' and Berg E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
404
+ page_content=' 2010 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
405
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
406
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
407
+ page_content=' 105, 097001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
408
+ page_content=' [9] Zhang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
409
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
410
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
411
+ page_content=' 2012 Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
412
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
413
+ page_content=', 7, 193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
414
+ page_content=' [10] Alidoust M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
415
+ page_content=' , Halterman K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
416
+ page_content=' , and Zyuzin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
417
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
418
+ page_content=' 2017 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
419
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
420
+ page_content=' B 95, 155124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
421
+ page_content=' [11] Li D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
422
+ page_content=' , Rosenstein B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
423
+ page_content=' , Shapiro B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
424
+ page_content=' Ya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
425
+ page_content=' , and Shapiro I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
426
+ page_content=' 2017 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
427
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
428
+ page_content=' B 95, 094513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
429
+ page_content=' [12] Shapiro B Ya , Shapiro I , Li D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
430
+ page_content=' and Rosenstein B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
431
+ page_content=' 2018 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
432
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
433
+ page_content=':Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
434
+ page_content=' Matter 30 335403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
435
+ page_content=' [13] Wang S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
436
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
437
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
438
+ page_content=' 2012 Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
439
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
440
+ page_content=' Let.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
441
+ page_content=' 101, 183110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
442
+ page_content=' [14] Hawrylak P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
443
+ page_content=' , Eliasson G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
444
+ page_content=' , and Quinn J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
445
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
446
+ page_content=', 1988 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
447
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
448
+ page_content=' B 37 10187.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
449
+ page_content=' [15] Bilbro G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
450
+ page_content=' and McMillan L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
451
+ page_content=' 1976 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
452
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
453
+ page_content=' B 14 1887.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
454
+ page_content=' [16] Katayama S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
455
+ page_content=' ,Kobayashi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
456
+ page_content=' ,Suzumura Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
457
+ page_content=' 2006 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
458
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
459
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
460
+ page_content=' Japan 75, 054705;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
461
+ page_content='Goerbig M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
462
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
463
+ page_content=' , Fuchs J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
464
+ page_content=' -N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
465
+ page_content=',Montambaux G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
466
+ page_content=' , Pi´echon F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
467
+ page_content=' 2008 Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
468
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
469
+ page_content=' B 78, 045415;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
470
+ page_content=' Hirata M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
471
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
472
+ page_content=' 2016 Nature Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
473
+ page_content=' 7 12666.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
474
+ page_content=' [17] Beal A R and Hughes H P 1979 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
475
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
476
+ page_content=' C: Solid State Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
477
+ page_content=' 12 881 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
478
+ page_content=' [18] Yang L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
479
+ page_content=', Fishbine B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
480
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
481
+ page_content=' , Migliori A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
482
+ page_content=' and Pratt L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
483
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
484
+ page_content=', 2010 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
485
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
486
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
487
+ page_content=' 132 044701.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
488
+ page_content=' [19] Negele J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
489
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
490
+ page_content=' and Orlando H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
491
+ page_content=' , Quantum Many Particle Systems, 1998 Aspen, Advanced Book Classics, Westview Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69FAT4oBgHgl3EQfnx3V/content/2301.08631v1.pdf'}
6NAzT4oBgHgl3EQff_yv/content/tmp_files/2301.01462v1.pdf.txt ADDED
@@ -0,0 +1,1754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ A Stochastic Multi-Objective Optimization
3
+ Framework for Planning and Scheduling of
4
+ Community Energy Storage Systems
5
+ K.B.J. Anuradha, Student Member, IEEE, and Chathurika P. Mediwaththe, Member, IEEE
6
+ Abstract—This paper explores a methodology to optimize the
7
+ planning and the scheduling of a community energy storage
8
+ (CES) considering the uncertainty of real power consumption
9
+ and solar photovoltaic (SPV) generation of the customers in low
10
+ voltage (LV) distribution networks. To this end, we develop a
11
+ stochastic multi-objective optimization framework which mini-
12
+ mizes the investment and the operation costs of the CES provider,
13
+ and the social costs of the customers (i.e. cost of customers for
14
+ trading energy with the grid and the CES). The uncertainty
15
+ of SPV generation and real power consumption are modelled
16
+ to follow the beta and normal distributions, respectively. Then,
17
+ the roulette wheel mechanism (RWM) is exploited to formulate a
18
+ scenario-based stochastic program. The initial scenarios obtained
19
+ from the RWM, are then reduced by using the K-Means clus-
20
+ tering algorithm, to keep the problem tractability. A case study
21
+ highlights our model provides 10-21% more cumulative economic
22
+ benefits for the customers and the CES provider, compared with
23
+ the models that optimize only the CES scheduling. Also, the
24
+ simulation results for different energy price schemes of the CES
25
+ provider reflect, the customers change their power exchange with
26
+ the CES and the grid significantly, to minimize their social costs.
27
+ Index
28
+ Terms—Community
29
+ energy
30
+ storage
31
+ (CES),
32
+ multi-
33
+ objective optimization, planning and scheduling, power flow,
34
+ roulette wheel mechanism (RWM), scenarios, uncertainty
35
+ I. INTRODUCTION
36
+ T
37
+ HE integration of solar photovoltaic (SPV) systems in
38
+ low voltage (LV) distribution networks, has undergone
39
+ a rapid upsurge over the last few decades. However, the
40
+ intermittent and non-dispatchable nature of SPV generation,
41
+ may restrict their beneficiaries such as the customers from
42
+ exploiting the merits of SPV fully. These issues can be
43
+ efficiently alleviated by exploiting energy storage systems.
44
+ Community energy storage (CES) devices are an emerging
45
+ type of battery system, which is gaining increasing interest in
46
+ the industry, as they can enable increased community access
47
+ and network hosting capacity for renewable energy [1].
48
+ An energy management framework which aims at optimiz-
49
+ ing only the scheduling of a CES such as its charging and
50
+ discharging pattern, may not deliver the expected rewards
51
+ from a CES completely. Hence, it is imperative that the
52
+ planning aspects including the location, the capacity and the
53
+ rated power of a CES are optimized concurrently with its
54
+ K. B. J. Anuradha is with The Australian National University, Canberra,
55
+ ACT 0200, Australia (email: u7146121@anu.edu.au).
56
+ Chathurika P. Mediwaththe is with The Australian National University,
57
+ Canberra, ACT 0200, Australia, and also with the Commonwealth Scientific
58
+ and Industrial Research Organisation, Canberra, ACT 2601, Australia (email:
59
+ chathurika.mediwaththe@csiro.au).
60
+ scheduling. Several studies have presented deterministic opti-
61
+ mization frameworks to find the optimal CES planning and/or
62
+ the scheduling, and thus achieve the objectives of different
63
+ stakeholders [2]–[4]. Here, the authors have assumed both real
64
+ power consumption and SPV generation of the customers are
65
+ perfectly known ahead from their forecasts. However, due to
66
+ the uncertainty of SPV generation and real power consumption
67
+ of the customers, their forecast errors can be quite high at
68
+ times. Eventually, this may result the optimization models de-
69
+ scribed in [2]–[4] unable to achieve the objectives effectively.
70
+ Also, different stakeholders have distinct objectives for them.
71
+ Thus, a multi-objective optimization framework can reflect the
72
+ trade-offs between those objectives comprehensively.
73
+ In this paper, we examine the extent to which the optimal
74
+ planning and scheduling of a CES benefit different stakehold-
75
+ ers. To this end, we develop an energy management framework
76
+ between the customers, the CES and the grid, by incorporating
77
+ the uncertainty of real power consumption and SPV generation
78
+ of the customers. Additionally, we leverage a linearized power
79
+ flow model with our energy management framework to formu-
80
+ late a mixed integer linear program (MILP). In summary, the
81
+ main contributions of this paper can be highlighted as follows.
82
+ • We develop a stochastic multi-objective optimization
83
+ framework which optimizes both planning and scheduling
84
+ of a CES for benefiting (i) the CES provider by minimiz-
85
+ ing the investment and the operation costs of the CES,
86
+ and (ii) the customers by minimizing their social costs.
87
+ • The proposed optimization framework is capable of pro-
88
+ viding significantly higher economic benefits for the CES
89
+ provider and the customers than in the models which
90
+ arbitrarily choose the CES connected node.
91
+ • A case study compares our proposed stochastic model
92
+ with its corresponding deterministic model for different
93
+ energy price schemes of the CES provider. This study
94
+ enables to understand how the economic benefits for
95
+ the CES provider, and for the customers change due
96
+ to the uncertainty of real power consumption and SPV
97
+ generation of the customers, and the energy price scheme
98
+ of the CES provider.
99
+ Prior research work have presented optimization frame-
100
+ works which focus on the scheduling of the CES [2], [3], and
101
+ both planning and scheduling of CES [4]–[7]. For instance, the
102
+ authors of [2] have presented a method for CES scheduling, to
103
+ minimize the social costs of the customers while maximizing
104
+ the revenue of the CES provider. In [3], an optimization
105
+ arXiv:2301.01462v1 [eess.SY] 4 Jan 2023
106
+
107
+ 2
108
+ framework is presented to schedule the CES, to minimize the
109
+ real energy losses, and energy trading costs with the grid by
110
+ the CES provider and the customers. The authors of [4] and
111
+ [5] have presented models to optimize the CES planning and
112
+ scheduling simultaneously, to enhance the hosting capacity of
113
+ LV networks, and to mitigate the voltage excursions in three
114
+ phase unbalanced LV networks, respectively. Also, analytical
115
+ methods for optimizing the CES planning and scheduling have
116
+ been discussed in [6], [7]. A common feature of [2]–[7] is
117
+ that the authors have used deterministic models, assuming
118
+ the SPV generation and the real power consumption of the
119
+ customers are known ahead with no uncertainty. Hence, those
120
+ models may not be efficient in providing realistic planning and
121
+ operation decisions.
122
+ The uncertainty of real power consumption and generation
123
+ from SPV have been taken into account in [8], [9] for
124
+ CES management problems. For instance, the authors of [8]
125
+ have presented a method for optimizing both planning and
126
+ scheduling of CES to accomplish multiple objectives. Here,
127
+ the authors have used the normal distribution and the RWM
128
+ to model the uncertainty of real power consumption and SPV
129
+ generation. In [9], the authors of have investigated how the
130
+ CES location impacts the voltage profile and real power losses
131
+ in LV networks. For this, they have arbitrarily allocated the
132
+ CES at different nodes. In contrast to [2]–[7], our paper opti-
133
+ mizes both planning and scheduling aspects of the CES taking
134
+ into account the uncertainty of real power consumption and
135
+ SPV generation. Thus, our approach models the CES planning
136
+ and its scheduling problem more realistically. Also, compared
137
+ to [8], [9], we present a method to minimize the personal costs
138
+ of the CES provider and the customers concurrently.
139
+ This paper is structured as follows. Notations used in this
140
+ paper are detailed in Section II. The system models of the CES,
141
+ the customers and the network power flow are presented in
142
+ Section III. The stochastic models of SPV generation and real
143
+ power consumption of the customers are given in Section IV.
144
+ The formulation of the multi-objective optimization framework
145
+ is described in Section V. Section VI presents the validation of
146
+ the results, and Section VII gives the conclusion of the paper.
147
+ II. NOTATIONS
148
+ A.
149
+ Stochastic Model-related Notations
150
+ To formulate a scenario-based stochastic program, the un-
151
+ certainty of SPV generation and real power consumption of
152
+ the customers are modelled using known probability density
153
+ functions. Here, a scenario represents a possible combination
154
+ of SPV generation and real power consumption of all the
155
+ customers together with their corresponding probabilities at
156
+ a given time. The initial set of scenarios is denoted by
157
+ R, and r ∈ R. Due to the computational complexity of
158
+ stochastic programs which use scenarios, it is imperative to
159
+ use a scenario reduction approach to reduce the number of
160
+ scenarios, and keep the problem tractability. Thus, a scenario
161
+ reduction technique is used in this paper, and the set composed
162
+ by the reduced scenarios is given by S, where s ∈ S.
163
+ The implementation of the scenario-based stochastic program
164
+ including the scenario reduction are discussed in Section IV.
165
+ Fig. 1: Mutual power exchanges between the CES, the grid
166
+ and a customer in scenario s at time t
167
+ B. Network and Power Flow-related Notations
168
+ In this paper, a distribution network with a radial topology
169
+ is considered. It is described by the graph G = (V, E), where
170
+ V = {0, 1, ..., N} is the set of all nodes, and E = {(i, j)} ⊂
171
+ V×V is the set of all lines in the network. Node 0 (slack node)
172
+ represents the secondary side of the distribution transformer.
173
+ The resistance and the reactance of line (i, j) are rij (in Ω)
174
+ and xij (in Ω), respectively. The set of customers at node j
175
+ is represented by Cj, and c ∈ Cj ∀j ∈ V\ {0}. Also, t ∈ T ,
176
+ where T is the set of time intervals, and ∆t is the difference
177
+ between two adjacent time instances (in hours). The real and
178
+ reactive power flow from i to j node in scenario s at time t
179
+ are represented by Pij,s(t) (in kW) and Qij,s(t) (in kVAR),
180
+ respectively. Also, ∀j ∈ V\ {0}, t∈ T , s∈ S, the real power
181
+ absorption, reactive power absorption, voltage and squared
182
+ voltage are given by pj,s(t) (in kW), qj,s(t) (in kVAR), Vj,s(t)
183
+ (in V ) and Uj,s(t) (in V 2), respectively.
184
+ III. SYSTEM MODELS
185
+ This section first presents the network power flow model,
186
+ followed by the power exchange model of the customers, and
187
+ the CES model. We consider each customer, the CES and the
188
+ grid can exchange power with each entity as shown in Fig. 1.
189
+ A. Power Flow Model of the Network
190
+ In this work, we consider the power absorption for the
191
+ nodes as positive, and the power injections from the nodes as
192
+ negative. Additionally, it is considered that there are multiple
193
+ customers at each node. To model the network power flows,
194
+ we use the linearized power flow equations (1) and (2) from
195
+ the Distflow model in [10].
196
+ Pij,s(t) = pj,s(t) +
197
+
198
+ k:j→k
199
+ Pjk,s(t)
200
+ ∀(i, j) ∈ E, , t∈ T , s∈ S
201
+ (1)
202
+ Qij,s(t) = qj,s(t)+
203
+
204
+ k:j→k
205
+ Qjk,s(t)
206
+ ∀(i, j) ∈ E, , t∈ T , s∈ S
207
+ (2)
208
+
209
+ External Grid
210
+ Grid
211
+ pCES,s(t) < 0
212
+ pCES,s(t) ≥ 0
213
+ 0 > (0)sgd
214
+ pejs(t) > 0
215
+ pcS(t) > 0
216
+ 田田
217
+ pCS (t) < 0
218
+ cth Customer
219
+ CES
220
+ at node j3
221
+ The real and reactive power absorbed by the node j at time t
222
+ in scenario s, can be expressed as (3) and (4). The real power
223
+ absorption for the CES installed node is governed by (3a),
224
+ while for all the other nodes (except slack node), it is (3b).
225
+ Th equation (4) handles the reactive power absorption for all
226
+ nodes, and we assume the CES and the SPV devices operate
227
+ at unity power factor. The real power consumption, reactive
228
+ power consumption and SPV generation of the customer c at
229
+ node j at time t in scenario s are given by pL
230
+ cj,s(t) (in kW),
231
+ qL
232
+ cj,s(t) (in kVAR) and pP V
233
+ cj,s(t) (in kW), respectively. For j ∈
234
+ V\ {0} , t∈ T , s∈ S, the CES charging and discharging power
235
+ are represented by pCES,ch
236
+ j,s
237
+ (t) and pCES,dis
238
+ j,s
239
+ (t), respectively.
240
+ pj,s(t) =
241
+
242
+ c∈Cj
243
+ pL
244
+ cj,s(t)−
245
+
246
+ c∈Cj
247
+ pP V
248
+ cj,s(t)+pCES,ch
249
+ j,s
250
+ (t)−pCES,dis
251
+ j,s
252
+ (t)
253
+ (3a)
254
+ pj,s(t) =
255
+
256
+ c∈Cj
257
+ pL
258
+ cj,s(t)−
259
+
260
+ c∈Cj
261
+ pP V
262
+ cj,s(t)
263
+ ∀j ∈ V\ {0} , t∈ T , s∈ S
264
+ (3b)
265
+ qj,s(t) =
266
+
267
+ c∈Cj
268
+ qL
269
+ cj,s(t)
270
+ ∀j ∈ V\ {0} , t∈ T , s∈ S
271
+ (4)
272
+ The linearized Distflow equations described in (1)-(2) can
273
+ be explicitly written as (5), where U0 = |V0|2 and U=|V(t)|2
274
+ are the vectors of the squared voltage magnitude of the slack
275
+ node, and the squared voltage magnitudes of all other nodes,
276
+ respectively. 1 symbolizes a vector of all ones. Moreover, p
277
+ and q are the vectors of real and reactive power absorption at
278
+ each node. The matrices ˜R and ˜X ∈ RN×N have the elements
279
+ Rij = 2 �
280
+ (m,n)∈Li∩Lj rmn and Xij = 2 �
281
+ (m,n)∈Li∩Lj xmn,
282
+ respectively, where Li is the set of lines on the path which
283
+ connects node 0 and i [2], [10]. Also, (6) ensures the squared
284
+ voltage magnitude at each node is within its allowable voltage
285
+ magnitude limits. Here, Umin =
286
+ ��V 2
287
+ min
288
+ �� 1 and Umax =
289
+ ��V 2
290
+ max
291
+ �� 1, where Vmin and Vmax are the allowable lower and
292
+ upper bound of voltage, respectively.
293
+ U = U01 − ˜Rp − ˜Xq
294
+ ∀t∈ T , s∈ S
295
+ (5)
296
+ Umin ≤ U ≤ Umax
297
+ ∀t∈ T , s∈ S
298
+ (6)
299
+ B. Power Exchange Model of the Customers
300
+ According to Fig. 1, pG
301
+ cj,s(t) and pCES
302
+ cj,s (t) denote the real
303
+ power exchange with the grid and the CES by the customer c at
304
+ node j at time t in scenario s, respectively. When pG
305
+ cj,s(t) > 0,
306
+ it suggests a power import from the grid by a customer. On
307
+ the contrary, when that customer exports power back to the
308
+ grid, it will be pG
309
+ cj,s(t) < 0. The same sign convention is used
310
+ for customer power exchanges with the CES, and CES power
311
+ exchange with the grid pG
312
+ CES,s(t) (in kW).
313
+ When a customer’s SPV generation is insufficient to fulfill
314
+ its real power consumption, that deficit is attained by importing
315
+ power from the grid and the CES. This is mathematically
316
+ represented by (7a). Nevertheless, the imported power from
317
+ each entity should be within the deficit quantity. This is
318
+ ensured by (7b) and (7c). Besides, when that customer has
319
+ excess SPV generation, it exports its surplus to the grid and
320
+ the CES, which is mathematically interpreted by (8a). Similar
321
+ to (7b) and (7c), the exported power to the CES and the grid
322
+ should not exceed the mismatch of the SPV generation and
323
+ the real power consumption. This is demonstrated by (8b) and
324
+ (8c). Considering the ability of the CES to exchange power
325
+ with the grid and the customers, pG
326
+ CES,s(t) can be expressed
327
+ in terms of pCES
328
+ cj,s , pCES,ch
329
+ j,s
330
+ (t) and pCES,dis
331
+ j,s
332
+ (t) as in (9).
333
+ If pL
334
+ cj,s(t) ≥ pP V
335
+ cj,s(t):
336
+ 0 ≤ pG
337
+ cj,s(t) + pCES
338
+ cj,s (t) = pL
339
+ cj,s(t) − pP V
340
+ cj,s(t)
341
+ (7a)
342
+ 0 ≤ pG
343
+ cj,s(t) ≤ pL
344
+ cj,s(t) − pP V
345
+ cj,s(t)
346
+ (7b)
347
+ 0 ≤ pCES
348
+ cj,s (t) ≤ pL
349
+ cj,s(t) − pP V
350
+ cj,s(t)
351
+ (7c)
352
+ Otherwise:
353
+ pG
354
+ cj,s(t) + pCES
355
+ cj,s (t) = pL
356
+ cj,s(t) − pP V
357
+ cj,s(t) ≤ 0
358
+ (8a)
359
+ pL
360
+ cj,s(t) − pP V
361
+ cj,s(t) ≤ pG
362
+ cj,s(t) ≤ 0
363
+ (8b)
364
+ pL
365
+ cj,s(t) − pP V
366
+ cj,s(t) ≤ pCES
367
+ cj,s (t) ≤ 0
368
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , s∈ S
369
+ (8c)
370
+ pG
371
+ CES,s(t) = �N
372
+ j=1
373
+ ��
374
+ c∈Cj pCES
375
+ cj,s (t) + pCES,ch
376
+ j,s
377
+ (t) − pCES,dis
378
+ j,s
379
+ (t)
380
+
381
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , s∈ S
382
+ (9)
383
+ C. Community Energy Storage Model
384
+ In this paper, we assume the CES is owned by a third
385
+ party, and we designate the owner as the CES provider. The
386
+ planning constraints of the CES are given by (10)-(12), and the
387
+ operation of the CES is mathematically modeled by (13)-(16).
388
+ The equation (10) finds the optimal CES node, and we use
389
+ a binary variable Lj, in which Lj = 1 suggests node j as
390
+ the optimal CES node, and Lj = 0 means there is no CES at
391
+ node j. Also, (10) guarantees only a single CES is installed in
392
+ the network. The inequalities in (11) and (12) find the optimal
393
+ CES capacity Ecap
394
+ j
395
+ (in kWh) and its rated power pRate
396
+ j
397
+ (in
398
+ kW) at node j, respectively. Here, Ecap
399
+ min (in kWh) and Ecap
400
+ max
401
+ (in kWh) are the minimum and maximum CES capacity limits,
402
+ and pRate
403
+ max is the maximum CES rated power limit.
404
+ N
405
+
406
+ j=1
407
+ Lj = 1
408
+ ∀j ∈ V\ {0} , Lj ∈ {0, 1}
409
+ (10)
410
+
411
+ 4
412
+ LjECap
413
+ min ≤ ECap
414
+ j
415
+ ≤ LjECap
416
+ max
417
+ ∀j ∈ V\ {0} , Lj ∈ {0, 1}
418
+ (11)
419
+ 0 ≤ pRate
420
+ j
421
+ ≤ LjpRate
422
+ max
423
+ ∀j ∈ V\ {0} , Lj ∈ {0, 1}
424
+ (12)
425
+ The inequality described in (13) avoids simultaneous charg-
426
+ ing and discharging of the CES, while guaranteeing the CES
427
+ charging and discharging power does not exceed its optimal
428
+ rated power pRate
429
+ j
430
+ . For this, a binary variable Bj and two
431
+ additional variables namely, y and z are used. Here, Bj ∈ [0, 1]
432
+ and y, z ∈ R+ such that these variables also satisfy (13). When
433
+ the CES is charging, Bj = 1. Hence, z = pCES,dis
434
+ j,s
435
+ (t) = 0 ac-
436
+ cording to (13d) and (13e). Also, as stated in (13c), y = pRate
437
+ j
438
+ and thus, 0 ≤ pCES,ch
439
+ j,s
440
+ (t) ≤ y = pRate
441
+ j
442
+ ≤ pRate
443
+ max . When the
444
+ CES discharges, Bj = 0, and hence, y = pCES,ch
445
+ j,s
446
+ (t) = 0
447
+ according to (13a) and (13b). In this instance, z = pRate
448
+ j
449
+ ,
450
+ which generates the inequality 0 ≤ pCES,dis
451
+ j,s
452
+ (t) ≤ z =
453
+ pRate
454
+ j
455
+ ≤ pRate
456
+ max . The equation (14) illustrates how the CES
457
+ energy level changes with time t, where ECES
458
+ j,s
459
+ (t) (in kWh) is
460
+ the energy level of the CES at node j at time t in scenario s.
461
+ Additionally, ηch and ηdis are the charging and discharging
462
+ efficiency of the CES, respectively. Furthermore, the CES
463
+ energy level should be maintained with in the minimum and
464
+ maximum state of charge (SoC) levels. This is regulated by
465
+ (15), where ηmin and ηmax represent minimum and maximum
466
+ percentage coefficients of the CES capacity, respectively. Also,
467
+ it is required to guarantee the continuity of the CES operation
468
+ over the next day, and thus, the CES energy level at the end
469
+ of the day should be kept approximately same as the initial
470
+ energy level at the start of the day . This is managed by (16)
471
+ [2], [11]. Here, ε is a small positive number (in kWh), and
472
+ tn ∈ TN where TN = {1, 2, ...., |T | /24}.
473
+ 0 ≤ pCES,ch
474
+ j,s
475
+ (t) ≤ y
476
+ (13a)
477
+ pCES,ch
478
+ j,s
479
+ (t) ≤ y ≤ pRate
480
+ max Bj
481
+ (13b)
482
+ −pRate
483
+ max (1 − Bj) ≤ y − pRate
484
+ j
485
+ ≤ 0
486
+ (13c)
487
+ 0 ≤ pCES,dis
488
+ j,s
489
+ (t) ≤ z
490
+ (13d)
491
+ pCES,dis
492
+ j,s
493
+ (t) ≤ z ≤ pRate
494
+ max (1 − Bj)
495
+ (13e)
496
+ −pRate
497
+ max Bj ≤ z − pRate
498
+ j
499
+ ≤ 0
500
+ ∀j ∈ V\ {0} , t∈ T , s∈ S
501
+ (13f)
502
+ ECES
503
+ j,s
504
+ (t) = ECES
505
+ j,s
506
+ (t − 1) + (ηchpCES,ch
507
+ j,s
508
+ (t)
509
+ − 1
510
+ ηdis pCES,dis
511
+ j,s
512
+ (t))∆t
513
+ ∀j ∈ V\ {0} , t∈ T , s∈ S
514
+ (14)
515
+ ηminECap
516
+ j
517
+ ≤ ECES
518
+ j,s
519
+ (t) ≤ ηmaxECap
520
+ j
521
+ ∀j ∈ V\ {0} , t∈ T , s∈ S
522
+ (15)
523
+ ��ECES
524
+ j,s
525
+ (24tn) − ECES
526
+ j,s
527
+ (0)
528
+ �� ≤ ε
529
+ ∀j ∈ V\ {0} , tn∈ T N, s∈ S
530
+ (16)
531
+ IV. STOCHASTIC MODELS
532
+ In this section, the uncertainty modeling of real power
533
+ consumption and SPV generation are presented. Similar to
534
+ [12], [13], the uncertainty of real power consumption and SPV
535
+ generation are modelled by the probability density functions
536
+ (PDFs) of normal and beta distributions, respectively.
537
+ A. Uncertainty of the Real Power Consumption
538
+ The uncertainty of real power consumption of the customers
539
+ follows the probability density function of normal distribution
540
+ PDFL(.) given in (17) [12], [14]. The forecasted real power
541
+ consumption of the customer c at node j at time t is consid-
542
+ ered as the mean real power consumption µL,t
543
+ cj
544
+ of PDFL(.)
545
+ [12], [14]. The standard deviation and a sample real power
546
+ consumption are denoted by σL,t
547
+ cj
548
+ and XL,t
549
+ cj , respectively.
550
+ PDFL(X) =
551
+ 1
552
+ σL,t
553
+ cj
554
+
555
+
556
+ e
557
+ −0.5
558
+
559
+ XL,t
560
+ cj
561
+ −µL,t
562
+ cj
563
+ σL,t
564
+ cj
565
+ �2
566
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T
567
+ (17)
568
+ B. Uncertainty of the SPV Generation
569
+ As mentioned in [12], [13], the uncertainty of SPV gener-
570
+ ation of the customers mimic the probability density function
571
+ of beta distribution PDFP V (.) as given in (18a). Also, the
572
+ forecasted SPV generation of the customer c at node j at time t
573
+ is taken as the mean SPV generation µP V,t
574
+ cj
575
+ of PDFP V (.). The
576
+ equations (18a)-(18d) describe the relationship between the
577
+ shape parameters αt
578
+ cj, βt
579
+ cj, a sample SPV generation XP V,t
580
+ cj
581
+ ,
582
+ SPV capacity of a customer PVcap,cj, the mean µP V,t
583
+ cj
584
+ and the
585
+ standard deviation σP V,t
586
+ cj
587
+ of PDFP V (.) [12], [13]. Also, Γ(.)
588
+ represents the gamma function.
589
+ PDFP V (X) =
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+
601
+
602
+
603
+ Γ(α+β)
604
+ Γ(α)Γ(β)
605
+
606
+ XP V,t
607
+ cj
608
+ �αt
609
+ cj−1 �
610
+ 1 − XP V,t
611
+ cj
612
+ �βt
613
+ cj−1
614
+
615
+ 0 < XP V,t
616
+ cj
617
+ < 1
618
+ αt
619
+ cj, βt
620
+ cj ≥ 0
621
+ 0
622
+ Otherwise
623
+ (18a)
624
+ µP V,t
625
+ cj
626
+ =
627
+ αt
628
+ cj
629
+ αt
630
+ cj + βt
631
+ cj
632
+ (18b)
633
+ (σP V,t
634
+ cj
635
+ )2 =
636
+ αt
637
+ cjβt
638
+ cj
639
+
640
+ αt
641
+ cj + βt
642
+ cj
643
+ �2 �
644
+ αt
645
+ cj + βt
646
+ cj + 1
647
+
648
+ (18c)
649
+ σP V,t
650
+ cj
651
+ =
652
+ 0.2µP V,t
653
+ cj
654
+ PVcap,cj
655
+ + 0.21
656
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T
657
+ (18d)
658
+
659
+ 5
660
+ C. Scenario-based Stochastic Program
661
+ Since the normal and beta distributions are continuous
662
+ PDFs, they represent infinite number of realizations of the
663
+ random variables. Here, a realization refers to a sample real
664
+ power consumption or SPV generation of a customer at a given
665
+ time. A large number of realizations can model the uncertainty
666
+ better at the expense of a large computational burden. But,
667
+ continuous PDFs approximated as discrete functions by a
668
+ finite number of realizations, as given in [15], can be used
669
+ to eliminate the similar and less probable real power con-
670
+ sumption or SPV generation values. Hence, the discretization
671
+ of continuous PDFs, reduces the complexity of uncertainty
672
+ modelling. Thus, both normal and beta PDFs are approximated
673
+ as discrete functions by 7 realizations. Here, the approximated
674
+ discrete functions are constructed to have 7 intervals, with
675
+ every interval having a width of a standard deviation σ. The
676
+ midpoint of an interval is a possible realization. For instance,
677
+ when the forecasted real power consumption is µ, the intervals
678
+ 1-7 are centered around the 7 realizations µ, µ + σ, µ − σ,
679
+ µ + 2σ, µ − 2σ, µ + 3σ and µ − 3σ as done in [16], [17]. The
680
+ steps of scenario generation and reduction are given below.
681
+ • Do Step 1 to Step 5 ∀t ∈ T , j ∈ V\ {0}, c ∈ Cj
682
+ Step 1: Find the model parameters in (18) namely, σP V,t
683
+ cj
684
+ αt
685
+ cj and βt
686
+ cj, by using the forecasted SPV generation µP V,t
687
+ cj
688
+ .
689
+ It is assumed that PVcap,cj ∀j ∈ V\ {0} , c ∈ Cj are known
690
+ prior. The standard deviation σL,t
691
+ cj
692
+ in (17) is taken as 4% of
693
+ the mean real power consumption µL,t
694
+ cj
695
+ of PDFL(.) [12].
696
+ Step 2: Discretize the normal and beta distributions de-
697
+ scribed in (17) and (18) into 7 intervals. For this, 7 possible
698
+ realizations for each PDF are calculated as µ, µ + σ, µ − σ,
699
+ µ + 2σ, µ − 2σ, µ + 3σ and µ − 3σ. Then, their respective
700
+ probability densities are calculated from (17) and (18). Once
701
+ the probability densities are available, the probability for the
702
+ occurrence of each SPV generation and real power consump-
703
+ tion is found by taking the product of probability density and
704
+ the width of each discrete interval (i.e. σ).
705
+ Step 3: Normalize the calculated probabilities of real power
706
+ consumption and SPV generation. This is done by taking the
707
+ sum of the probabilities, and dividing each probability by the
708
+ sum [8], [16], [17]. This should be done for the 7 realizations
709
+ obtained from each PDF separately. Since the continuous PDFs
710
+ are approximated by discretization, sum of the 7 probabilities
711
+ will only be close to unity but not exactly equal to 1. Hence,
712
+ the normalization guarantees that the sum of the probabilities
713
+ will be precisely equal to unity [8], [16], [17].
714
+ Step 4: Use the roulette wheel mechanism (RWM) explained
715
+ in [8], [16], [17] to construct two roulette wheels in the range
716
+ [0,1], each having 7 intervals. For this, assign the normalized
717
+ 7 probabilities obtained from each PDF to [0,1] range. Hence,
718
+ each interval has a width of the normalized probability of the
719
+ respective real power consumption or SPV generation.
720
+ Step 5: Generate Nr = |R| number of random numbers
721
+ between 0 and 1, which follow the uniform distribution. Here,
722
+ the random numbers are obtained from a uniform distribution,
723
+ to guarantee they are generated without any bias.
724
+ • Do Step 6 ∀t ∈ T , j ∈ V\ {0}, c ∈ Cj, r ∈ R
725
+ Step 6: Assign each random number to the two roulette
726
+ wheels according to their magnitudes. Select φL,t
727
+ cj,r, φP V,t
728
+ cj,r ,
729
+ pL
730
+ cj,r(t) and pP V
731
+ cj,r(t) from the roulette wheels corresponding to
732
+ the value of the random number, where φL,t
733
+ cj,r and φP V,t
734
+ cj,r are the
735
+ normalized probabilities of pL
736
+ cj,r(t) and pP V
737
+ cj,r(t), respectively.
738
+ In this way, the initial set of scenarios are obtained.
739
+ • Do Step 7 ∀t ∈ T , j ∈ V\ {0}, c ∈ Cj
740
+ Step 7: A scenario reduction approach is essential in sce-
741
+ nario based stochastic programs to keep the problem tractabil-
742
+ ity, while sustaining a fair approximation for the uncertainty.
743
+ Thus, the initially generated scenarios in R, are then reduced
744
+ to Ns = |S| number of scenarios to form a new scenario set
745
+ S, by using the K-Means clustering algorithm [8], [18]. This
746
+ will generate a new set of values for the probabilities and their
747
+ realizations as φL,t
748
+ cj,s, φP V,t
749
+ cj,s , pL
750
+ cj,s(t), pP V
751
+ cj,s(t) ∀s ∈ S. The K-
752
+ Means clustering method is illustrated in Algorithm 1.
753
+ Algorithm 1 K-Means Clustering Algorithm
754
+ 1: Input φL,t
755
+ cj,r ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , r∈ R
756
+ 2: for each t in T do
757
+ 3:
758
+ for each j in V\ {0} do
759
+ 4:
760
+ for each c in Cj do
761
+ 5:
762
+ Randomly initialize the centroids of K-Means clus-
763
+ ters as Z =
764
+
765
+ φL,t
766
+ cj,1, ..., φL,t
767
+ cj,s, ..., φL,t
768
+ cj,Ns
769
+
770
+ , where
771
+ |Z| = Ns
772
+ 6:
773
+ for each s in S do
774
+ 7:
775
+ As ← ∅
776
+ 8:
777
+ end for
778
+ 9:
779
+ while centroids of clusters do not change do
780
+ 10:
781
+ for each r in R do
782
+ 11:
783
+ s∗ ← argmin
784
+ s
785
+ ���φL,t
786
+ cj,r − φL,t
787
+ cj,s
788
+ ���
789
+ 12:
790
+ As∗ ← As∗ ∪
791
+
792
+ φL,t
793
+ cj,r
794
+
795
+ 13:
796
+ end for
797
+ 14:
798
+ for each s in S do
799
+ 15:
800
+ φL,t
801
+ cj,s ←
802
+ 1
803
+ |As|
804
+
805
+ φL,t
806
+ cj,r∈As φL,t
807
+ cj,r
808
+ 16:
809
+ end for
810
+ 17:
811
+ end while
812
+ 18:
813
+ end for
814
+ 19:
815
+ end for
816
+ 20: end for
817
+ 21: Repeat Step 1 to Step 20 for the inputs φP V,t
818
+ cj,r , pL
819
+ cj,r(t) and
820
+ pP V
821
+ cj,r(t), separately ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , r∈ R
822
+ 22: Return φL,t
823
+ cj,s, φP V,t
824
+ cj,s , pL
825
+ cj,s(t), pP V
826
+ cj,s(t) ∀j ∈ V\ {0} , c ∈
827
+ Cj, t∈ T , s∈ S
828
+ • Do Step 8 ∀t ∈ T , s ∈ S
829
+ Step 8: Calculate the overall probability ωs,t in (19), which
830
+ gives the probability for the occurrence of scenario s at time
831
+ t. The numerical values found for ωs,t, pL
832
+ cj,s(t), and pP V
833
+ cj,s(t)
834
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , s∈ S are then fed into the system
835
+ models and optimization framework in Section III and V.
836
+ ωs,t =
837
+ ��N
838
+ j=1
839
+ ��
840
+ c∈Cj φL,t
841
+ cj,sφP V,t
842
+ cj,s
843
+ ��
844
+ �Ns
845
+ s=1
846
+ ��N
847
+ j=1
848
+ ��
849
+ c∈Cj φL,t
850
+ cj,sφP V,t
851
+ cj,s
852
+ ��
853
+ (19)
854
+
855
+ 6
856
+ V. MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK
857
+ In this paper, it is aimed to minimize the investment cost of
858
+ the CES as a planning objective, and minimize the CES opera-
859
+ tion cost and the social costs of the customers as the operation
860
+ objectives. Thus, a multi-objective function is formulated by
861
+ combining both planning and operation objectives.
862
+ A. Objective Functions
863
+ 1) Minimizing the Investment Cost of the CES: The in-
864
+ vestment cost for a CES can be expressed as (20) [8], [19].
865
+ The first term of (20) relates the investment cost for the rated
866
+ power of the CES, and latter for the capacity of the CES. Since
867
+ minimizing the investment cost is a planning objective, it is not
868
+ impacted by the uncertainty of the real power consumption and
869
+ the SPV generation. Thus, (20) is independent of the scenarios.
870
+ fInv,cost = ρCES(CCES,Inv
871
+ Rate
872
+ pRate
873
+ j
874
+ + CCES,Inv
875
+ Cap
876
+ ECap
877
+ j
878
+ ) (20)
879
+ Here, ρCES =
880
+ d(1+d)τ
881
+ (1+d)τ −1, where ρCES, d, and τ are the
882
+ annual cost of the CES, discount rate and the CES life time
883
+ (in years), respectively. Also, CCES,Inv
884
+ Rate
885
+ and CCES,Inv
886
+ Cap
887
+ are
888
+ the CES investment cost per kW (in AUD/kW) and the CES
889
+ investment cost per kWh (in AUD/kWh), respectively.
890
+ 2) Minimizing the Operation Cost of the CES: The cost for
891
+ operating the CES is given by (21) [8]. Since (21) illustrates
892
+ an operation objective, it is also a function of the scenarios.
893
+ fop,cost =
894
+
895
+ t∈T
896
+ � Ns
897
+
898
+ s=1
899
+ ωs,t
900
+
901
+ CCES,oppCES
902
+ j,s
903
+ (t)
904
+
905
+
906
+ (21)
907
+ where pCES
908
+ j,s
909
+ (t) = ηchpCES,ch
910
+ j,s
911
+ (t) −
912
+ 1
913
+ ηdis pCES,dis
914
+ j,s
915
+ (t) and
916
+ CCES,op is the CES operation cost per kW (in AUD/kW).
917
+ 3) Minimizing the Social Costs of the Customers: Cus-
918
+ tomers incur a cost or earn a revenue for trading energy with
919
+ the CES and the grid, which is jointly named as the social
920
+ costs as given in (22). Its first term denotes the energy trading
921
+ cost with the grid, and latter for trading energy with the CES.
922
+ Similar to (21), as the social costs of the customers is also an
923
+ operation objective, fC,cost is a function of the scenarios.
924
+ fC,cost =
925
+
926
+ t∈T
927
+ Ns
928
+
929
+ s=1
930
+ ωs,t
931
+
932
+ λG(t)
933
+ N
934
+
935
+ j=1
936
+
937
+ c∈Cj
938
+ pG
939
+ cj,s(t)
940
+ + λCES(t)
941
+ N
942
+
943
+ j=1
944
+
945
+ c∈Cj
946
+ pCES
947
+ cj,s (t)
948
+
949
+ ∆t
950
+ (22)
951
+ Here, λG(t) and λCES(t) are the grid energy price and CES
952
+ provider’s energy price at time t, respectively. We adopt a one-
953
+ for-one non-dispatchable energy buyback method for λG(t), to
954
+ value energy imports and exports from/to the grid equally [20].
955
+ B. Optimization Problem
956
+ The three objective functions which determine the CES
957
+ planning and its operation, are combined together to form
958
+ a multi-objective function as given in (23). The objective
959
+ functions are normalized by their corresponding nadir and
960
+ utopia points to attain a Pareto optimal solution for each
961
+ objective compatible with the weights assigned for them [21].
962
+ x∗ = argmin
963
+ x∈X
964
+ w1
965
+
966
+ fInv,cost−f utopia
967
+ Inv,cost
968
+ f Nadir
969
+ Inv,cost−f utopia
970
+ Inv,cost
971
+
972
+ + w2
973
+
974
+ fop,cost−f utopia
975
+ op,cost
976
+ f Nadir
977
+ op,cost−f utopia
978
+ op,cost
979
+
980
+ +w3
981
+
982
+ fC,cost−f utopia
983
+ C,cost
984
+ f Nadir
985
+ C,cost−f utopia
986
+ C,cost
987
+
988
+ (23)
989
+ Here,
990
+ x = (Lj, pRate
991
+ j
992
+ , ECap
993
+ j
994
+ , pCES,ch
995
+ j
996
+ , pCES,dis
997
+ j
998
+ , pCES
999
+ cj
1000
+ , pG
1001
+ cj)
1002
+ (24)
1003
+ where x is the decision variable vector. Here, Lj, Ecap
1004
+ j
1005
+ and pRate
1006
+ j
1007
+ are the vectors of the optimal CES location, CES
1008
+ capacity and its rated power, respectively. Vectors of the CES
1009
+ charging power, CES discharging power, power exchange with
1010
+ the CES and the grid by the customers are given by pCES,ch
1011
+ j
1012
+ ,
1013
+ pCES,dis
1014
+ j
1015
+ , pCES
1016
+ cj
1017
+ and pG
1018
+ cj, respectively. The feasible set is
1019
+ given by X, which is constrained by (1)-(16). Furthermore, the
1020
+ calculation of the utopia and nadir values for each objective
1021
+ function are done in line with the techniques mentioned in
1022
+ [21]. Also, w1, w2 and w3 are the weight coefficients of
1023
+ each objective function. The implementation of the overall
1024
+ optimization framework is succinctly given in Algorithm 2.
1025
+ Algorithm 2 Algorithm to Run the Stochastic Multi-Objective
1026
+ Optimization
1027
+ 1: Input µL,t
1028
+ cj , µP V,t
1029
+ cj
1030
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T
1031
+ 2: Initialize the model parameters used.
1032
+ 3: Execute Step 1 to Step 8 detailed in Section IV-C, in-
1033
+ cluding the Algorithm 1, to model the uncertainty of the
1034
+ real power consumption and the SPV generation of the
1035
+ customers.
1036
+ 4: Return ωs,t, pL
1037
+ cj,s(t), and pP V
1038
+ cj,s(t) ∀j ∈ V\ {0} , c ∈
1039
+ Cj, t∈ T , s∈ S.
1040
+ 5: Solve the multi-objective function in (23), subject to the
1041
+ set of constraints (1) - (16), as a MILP.
1042
+ VI. NUMERICAL AND SIMULATION RESULTS
1043
+ In the simulations, a radial distribution network with 7-
1044
+ nodes given in Fig. 2 was considered, and its line data
1045
+ can be found in [22]. The forecasted SPV generation and
1046
+ real power consumption data of 30 residential customers in
1047
+ an Australian community, for a period of 1 year, measured
1048
+ in 1-hour time intervals were used for simulations [23].
1049
+ Here, all the residential customers generate SPV power and
1050
+ consume real power. Nevertheless, due to the lack of real
1051
+ data on customers’ reactive power consumption, it was not
1052
+ considered for the simulations. Also, we randomly assigned
1053
+ the 30 customers for all the nodes except for the slack
1054
+
1055
+ 7
1056
+ Fig. 2: The 7-Node LV radial feeder with the number of
1057
+ customers marked at each node
1058
+ Fig. 3: Variation of the grid energy price λG(t) with time
1059
+ node (see Fig. 2). Therefore, �N
1060
+ j=1 |Cj| = 30. Additionally,
1061
+ |V0|
1062
+ =
1063
+ 1p.u., |Vmin|
1064
+ =
1065
+ 0.95p.u., |Vmax|
1066
+ =
1067
+ 1.05p.u.,
1068
+ pRate
1069
+ max = 200kW, ECap
1070
+ min = 50kWh, ECap
1071
+ max = 1000kWh,
1072
+ ηch
1073
+ = 0.98, ηdis
1074
+ = 1.02, ηmin
1075
+ = 0.05, ηmax
1076
+ = 1,
1077
+ ε = 0.0001kWh, ∆t = 1h, d = 0.1, τ = 12.5 years,
1078
+ CCES,Inv
1079
+ Rate
1080
+ = 463AUD/kW, CCES,Inv
1081
+ Cap
1082
+ = 795AUD/kWh
1083
+ and CCES,op = 0.69AUD/kW. Moreover, the PV capacities
1084
+ of the customers (i.e. PVcap,cj) were obtained from [23]. Also,
1085
+ the values for CCES,Inv
1086
+ Rate
1087
+ , CCES,Inv
1088
+ Cap
1089
+ and CCES,op were taken
1090
+ assuming Li-ion as the CES technology [19].
1091
+ The three objectives of the multi-objective function in (23),
1092
+ were weighted according to their importance. For this, we
1093
+ used the analytic hierarchy process (AHP) illustrated in [24].
1094
+ We assigned an equal importance for fInv,cost and fop,cost,
1095
+ and a strong importance for fC,cost compared to fInv,cost and
1096
+ fop,cost. Therefore, the values of w1, w2, w3 were calculated
1097
+ as 1/7, 1/7, 5,7, respectively [24]. After computing the weight
1098
+ coefficients, the simulations were done over a period of 1 year
1099
+ (i.e. |T | = 8760) using the CPLEX solver in Python-Pyomo.
1100
+ A. Case Study I: Comparison of the Proposed Optimization
1101
+ Framework With its Corresponding Deterministic Model
1102
+ To understand the impact of uncertainty on the optimal
1103
+ planning and scheduling decisions of a CES, we compared
1104
+ the results of the proposed stochastic optimization framework
1105
+ and its corresponding deterministic model. The simulations
1106
+ were done for our stochastic model by considering 50 initial
1107
+ scenarios, which is then reduced to 10 (i.e. Ns = 10) by using
1108
+ the K-Means clustering algorithm. Simulations for the deter-
1109
+ ministic model were obtained by neglecting the uncertainty of
1110
+ real power consumption and SPV generation of the customers.
1111
+ The same set of constraints and the multi-objective function
1112
+ used for the proposed stochastic model (i.e. (1)-(16) and (23) ),
1113
+ were used for the deterministic model as well, while excluding
1114
+ the scenario dependency of (1)-(9), (13)-(16) and (23).
1115
+ In the simulations, a time-of-use (TOU) grid energy price
1116
+ λg(t) shown in Fig. 3 was used [25]. Due to the lack of
1117
+ accurate real data about the CES provider’s energy price
1118
+ λCES(t), we assumed three different energy price schemes
1119
+ for it as (i) λCES(t) = λG(t), (ii) λCES(t) = 0 and (iii)
1120
+ λCES(t) = λG,avg ,where λG,avg =
1121
+ �24
1122
+ t=1 λG(t)
1123
+ 24
1124
+ . A summary
1125
+ of the numerical results obtained for the two types of the
1126
+ optimization models are given in Table I. For the three energy
1127
+ price schemes of λCES(t), in both deterministic and proposed
1128
+ stochastic models, the optimal CES location is node 7.
1129
+ The pRate
1130
+ j
1131
+ and ECap
1132
+ j
1133
+ in the stochastic model are higher than
1134
+ their values in the deterministic model. In the stochastic model,
1135
+ due to the impact of the higher values of the realizations with
1136
+ respect to µL,t
1137
+ cj , µP V,t
1138
+ cj
1139
+ ∀j ∈ V\ {0} , c ∈ Cj, t∈ T , both pRate
1140
+ j
1141
+ and ECap
1142
+ j
1143
+ will be greater than their values in the deterministic
1144
+ model. Moreover, in both models, the values of the planning
1145
+ decisions namely, Lj, pRate
1146
+ j
1147
+ and ECap
1148
+ j
1149
+ for their respective
1150
+ models have not changed irrespective of the CES provider’s
1151
+ energy price scheme. This has happened, as the planning
1152
+ decisions are independent from operation variables, and thus
1153
+ from λCES(t). Hence, the investment costs in the deterministic
1154
+ and stochastic models are AUD 32228 and 33695, respectively,
1155
+ irrespective of the CES provider’s energy price scheme.
1156
+ The operation objectives consider minimizing the CES
1157
+ operation cost fop,cost, and the social costs of the customers
1158
+ fC,cost. According to Table I, fop,cost is same for the deter-
1159
+ ministic model regardless of the CES provider’s energy price
1160
+ scheme. This is resulted as fop,cost is a function independent
1161
+ of λCES(t) (see (21). Besides, when λCES(t) = λG(t) and
1162
+ λCES(t) = λG,avg(t), fop,cost in the stochastic model is
1163
+ higher than the corresponding deterministic model values.
1164
+ Since the stochastic model takes into account the uncer-
1165
+ tainty of SPV generation and real power consumption of
1166
+ the customers, the costs in the stochastic model are higher
1167
+ than the ones in the deterministic model. This behaviour
1168
+ is seen for fC,cost as well when λCES(t) = λG(t) and
1169
+ λCES(t) = λG,avg(t). Additionally, as fC,cost < 0 when
1170
+ λCES(t) = 0, it implies that the customers earn a revenue. The
1171
+ customers minimize their social costs by importing power only
1172
+ from the CES as λCES(t) = 0. Also, the customers export
1173
+ power solely to the grid to maximize their social revenue. This
1174
+ is the intuition for fC,cost being negative when λCES(t) = 0
1175
+ for both deterministic and stochastic models. This is discussed
1176
+ in detail in Section VI-B-2. In the proposed stochastic model,
1177
+ fop,cost for the three energy price schemes of λCES(t) are
1178
+ different from each other. As the set of random numbers
1179
+ generated during stochastic modelling are unique and different
1180
+ for every execution of Algorithm 2, a unique set of values
1181
+ for ωs,t, pL
1182
+ cj,s(t), and pP V
1183
+ cj,s(t) ∀j ∈ V\ {0}, c ∈ Cj, t∈ T ,
1184
+ s∈ S are obtained. This results in getting different values for
1185
+ fop,cost, irrespective of fop,cost being independent of λCES(t).
1186
+
1187
+ 2
1188
+ 6
1189
+ External
1190
+ Transformer
1191
+ IC2l = 4
1192
+ IC6l = 4
1193
+ Grid
1194
+ 22/0.4 kvV
1195
+ 0
1196
+ 1
1197
+ 3
1198
+ 4
1199
+ L80
1200
+ ICil = 3
1201
+ IC3/ = 5
1202
+ IC4l = 6
1203
+ ICzl = 5
1204
+ 5
1205
+ ICsl = 30.55
1206
+ 0.50
1207
+ 0.45
1208
+ 0.40
1209
+ 0.35
1210
+ 0.30
1211
+ 0.25
1212
+ T2
1213
+ T3
1214
+ T4 T5
1215
+ 0.20
1216
+ 0
1217
+ 5
1218
+ 10
1219
+ 15
1220
+ 20
1221
+ 25
1222
+ Time Duration (24 Hours)8
1223
+ TABLE I: RESULTS OF THE DETERMINISTIC AND PROPOSED STOCHASTIC MODELS
1224
+ Optimal
1225
+ CES Node
1226
+ Lj
1227
+ Optimal CES
1228
+ Rated Power1
1229
+ pRate
1230
+ j
1231
+ (kW)
1232
+ Optimal CES
1233
+ Capacity1
1234
+ ECap
1235
+ j
1236
+ (kWh)
1237
+ CES Investment
1238
+ Cost1 (AUD)
1239
+ fInv,cost
1240
+ CES Operation
1241
+ Cost1(AUD)
1242
+ fop,cost
1243
+ Social
1244
+ Costs1 (AUD)
1245
+ fC,cost
1246
+ Deterministic
1247
+ λCES(t) = λG(t)
1248
+ 7
1249
+ 72
1250
+ 240
1251
+ 32228
1252
+ 24674
1253
+ 124830
1254
+ Model
1255
+ λCES(t) = 0
1256
+ 7
1257
+ 72
1258
+ 240
1259
+ 32228
1260
+ 24674
1261
+ -94681
1262
+ λCES(t) = λG,avg
1263
+ 7
1264
+ 72
1265
+ 240
1266
+ 32228
1267
+ 24674
1268
+ 70810
1269
+ Proposed Stochastic
1270
+ Model (Ns = 10)
1271
+ λCES(t) = λG(t)
1272
+ 7
1273
+ 78 (7.69%)
1274
+ 249 (3.61%)
1275
+ 33695 (4.35%)
1276
+ 27266 (9.51%)
1277
+ 129429 (3.55%)
1278
+ λCES(t) = 0
1279
+ 7
1280
+ 78 (7.69%)
1281
+ 249 (3.61%)
1282
+ 33695 (4.35%)
1283
+ 29712 (16.96%)
1284
+ -98201 (3.58%)
1285
+ λCES(t) = λG,avg
1286
+ 7
1287
+ 78 (7.69%)
1288
+ 249 (3.61%)
1289
+ 33695 (4.35%)
1290
+ 29347 (15.92%)
1291
+ 75263 (5.92%)
1292
+ 1 Increment percentage values are computed with respect to their corresponding values found in the deterministic model
1293
+ Fig. 4: (a) Total power exchange with the grid and the CES by
1294
+ customers, (b) CES charging/discharging power and temporal
1295
+ variation of CES energy - When Ns = 10, λCES(t) = λG(t)
1296
+ B. Analysis of the Results of CES Scheduling and Mutual
1297
+ Power Exchanges Between the CES, the Grid and Customers
1298
+ The results obtained for the proposed stochastic optimiza-
1299
+ tion framework, for different energy price schemes of the CES
1300
+ provider are detailed next. Here, we do the analysis for a
1301
+ randomly selected a day, for a duration of 24 hours.
1302
+ 1) When λCES(t)=λG(t): Fig. 4(a) depicts the total power
1303
+ exchange with the grid (brown plot) and the CES (orange plot)
1304
+ by the customers. As the customers do not have sufficient
1305
+ SPV generation during T1, T3 T4 and T5, they import power
1306
+ from the grid and the CES. Besides, the customers export their
1307
+ excess generation to the CES and the grid during T2. Since
1308
+ λCES(t)=λG(t), the customers do not have any preference
1309
+ whether to exchange power with the grid or the CES. The
1310
+ charging and discharging pattern of the CES (red plot), and the
1311
+ CES energy level variation (green plot) with time are shown
1312
+ in Fig. 4(b). During T1, the CES charges, and by the end of
1313
+ T1, it discharges completely. The CES is fully discharged by
1314
+ the end of T1 to exploit its full capacity to charge from the
1315
+ excess SPV generation during T2. This is evident as the CES
1316
+ energy level has reached its full capacity of 249 kWh during
1317
+ T2. During T3, the CES exports its power to the customers,
1318
+ and at the end of the day, CES reaches its initial energy level.
1319
+ Fig. 5: (a) Total power exchange with the grid and the CES by
1320
+ customers, (b) CES charging/discharging power and temporal
1321
+ variation of CES energy - When Ns = 10, λCES(t) = 0
1322
+ 2) When λCES(t)=0: In this case, as λCES(t)=0, the
1323
+ customers neither incur a cost nor earn a revenue when trading
1324
+ energy with the CES. According to Fig. 5(a), during T1, the
1325
+ customers import power only from the CES, as the customers
1326
+ do not incur a cost for importing power from the CES. The
1327
+ same trend is followed by the customers during T3, T4 and T5.
1328
+ During T2, the customers export the excess SPV generation
1329
+ to the grid. Also, as λCES(t)=0, the customers do not export
1330
+ power to the CES as they cannot earn a revenue from the
1331
+ CES provider. Hence, when λCES(t) = 0, the customers do
1332
+ not incur a cost for all time. Instead, they earn a revenue from
1333
+ the grid which is shown in Table I as a negative value for
1334
+ fC,cost. Fig. 5(b) shows the charging and discharging pattern
1335
+ of the CES, including its energy level variation with time.
1336
+ 3) When λCES(t)=λG,avg:
1337
+ In this paper, λG,avg
1338
+ =
1339
+ 0.34180 AUD/kWh. Hence, during T3 λCES(t) < λG(t),
1340
+ and during T1, T2 T4, T5 λCES(t) > λG(t). As seen in Fig.
1341
+ 6(a), during T1, the customers import power only from the
1342
+ grid. Since λCES(t) > λG(t) during this time period, it is not
1343
+ economically beneficial for the customers to import expensive
1344
+ power from the CES. During T2, in which the time period
1345
+ with high SPV generation, the customers export the excess
1346
+ SPV generation to the CES as λCES(t) > λG(t). Hence, the
1347
+ customers can earn a higher revenue from the CES provider.
1348
+
1349
+ (a)
1350
+ 100
1351
+ Power (kW)
1352
+ -100
1353
+ 0
1354
+ 10
1355
+ 15
1356
+ oZ
1357
+ 25
1358
+ Discharging Power (kW)
1359
+ (b)
1360
+ CES Charging and,
1361
+ 50
1362
+ CES Energy (kWh)
1363
+ 200
1364
+ 0
1365
+ 100
1366
+ 50
1367
+ 0
1368
+ 5
1369
+ 10
1370
+ 15
1371
+ 25
1372
+ Time Duration (24 hours)
1373
+ pa. (t)
1374
+ /= 1c E G
1375
+ 5=1
1376
+ pa5(t)
1377
+ /= 1cE G
1378
+ -(a)
1379
+ Power (kw)
1380
+ 0
1381
+ -200
1382
+ 0
1383
+ n
1384
+ 10
1385
+ 15
1386
+ 20
1387
+ 25
1388
+ Discharging Power (kW)
1389
+ (b)
1390
+ CES Charging and.
1391
+ 50
1392
+ Energy (kWh)
1393
+ 200
1394
+ 0
1395
+ 100
1396
+ 50
1397
+ CES
1398
+ 0
1399
+ -5
1400
+ 10
1401
+ 15
1402
+ 20
1403
+ 25
1404
+ Time Duration (24 hours)
1405
+ pa. (t)
1406
+ 5 = 1
1407
+ /= 1c E G
1408
+ 5=1
1409
+ M
1410
+ Zpas(t)
1411
+ 5 = 1
1412
+ /= 1cE G
1413
+ 5 = 19
1414
+ TABLE II: RESULTS OF PROPOSED STOCHASTIC MODEL AND CASE I-IV - (WITH Ns = 10, λCES(t) = λG,avg)
1415
+ Case / CES Node
1416
+ Optimal CES
1417
+ Rated Power1
1418
+ pRate
1419
+ j
1420
+ (kW)
1421
+ Optimal CES
1422
+ Capacity1 ECap
1423
+ j
1424
+ (kWh)
1425
+ CES Investment
1426
+ Cost1 (AUD)
1427
+ fInv,cost
1428
+ CES Operation
1429
+ Cost1 (AUD)
1430
+ fop,cost
1431
+ Social
1432
+ Costs1 (AUD)
1433
+ fC,cost
1434
+ Cumulative Cost1
1435
+ (AUD)
1436
+ Proposed Model- 7 (optimal)
1437
+ 78
1438
+ 249
1439
+ 33695
1440
+ 29347
1441
+ 75263
1442
+ 138305
1443
+ Case I - 3 (chosen)
1444
+ 124 (37.10%)
1445
+ 380 (34.47%)
1446
+ 51688 (34.81%)
1447
+ 44900 (34.64%)
1448
+ 77703 (3.14%)
1449
+ 174291 (20.65%)
1450
+ Case II - 4 (chosen)
1451
+ 98 (20.41%)
1452
+ 303 (17.82%)
1453
+ 41217 (18.25%)
1454
+ 36723 (20.09%)
1455
+ 76973 (2.22%)
1456
+ 154913 (10.72%)
1457
+ Case III - 5 (chosen)
1458
+ 127 (38.58%)
1459
+ 366 (31.97%)
1460
+ 50258 (32.96%)
1461
+ 39093 (24.93%)
1462
+ 77024 (2.29%)
1463
+ 166375 (16.87%)
1464
+ Case IV - 6 (chosen)
1465
+ 96 (18.75%)
1466
+ 310 (19.68%)
1467
+ 41837 (19.46%)
1468
+ 35578 (17.51%)
1469
+ 76491 (1.61%)
1470
+ 153906 (10.14%)
1471
+ 1 Increment percentage values are computed with respect to their corresponding values found in the proposed model
1472
+ Fig. 6: (a) Total power exchange with the grid and the CES by
1473
+ customers, (b) CES charging/discharging power and temporal
1474
+ variation of CES energy - When Ns = 10, λCES(t) = λG,avg
1475
+ Since λCES(t) < λG(t) during T3, the customers import
1476
+ power from the CES, so that they have to pay less for the
1477
+ imported power. During T4 and T5, the customers import
1478
+ power only from the grid as λCES(t) > λG(t). Fig. 6(b)
1479
+ shows the charging and discharging pattern, and the temporal
1480
+ variation of the CES energy level with time.
1481
+ C. Case Study II: Proposed Optimization Framework Vs Mod-
1482
+ els With Arbitrary CES Locations
1483
+ The merits of a CES may be fully exploited if its both
1484
+ planning and scheduling are optimized simultaneously. To
1485
+ test this, we compared our proposed model with four dif-
1486
+ ferent cases that randomly choose the CES location, with
1487
+ λCES(t) = λG,avg(t), Ns = 10, and taking into account the
1488
+ uncertainty of real power consumption and SPV generation.
1489
+ As given in Table II, the CES is allocated for nodes 3, 4,
1490
+ 5 and 6 which represent Case I, II, III and IV, respectively.
1491
+ For Case I-IV, we considered the constraints (1)-(16), and
1492
+ the objective function in (23). Additionally, Lj = 1 where
1493
+ j ∈ {3, 4, 5, 6} in (10)-(12) for Case I-IV, respectively. In
1494
+ Case I-IV, pRate
1495
+ j
1496
+ and ECap
1497
+ j
1498
+ are significantly higher than in our
1499
+ proposed stochastic model. This has resulted in a substantial
1500
+ increase of the CES investment and operation costs. But,
1501
+ the social costs show only a minor increase for Case I-IV
1502
+ compared with the increase of the investment and operation
1503
+ costs of the CES. This can be explained in terms of the weight
1504
+ coefficients used for weighting the objective functions in (20)-
1505
+ (22). Since w1, w2 and w3 are 1/7, 1/7 and 5/7, respectively,
1506
+ the highest importance is given for minimizing the social costs.
1507
+ Hence, the optimization solver tries to maintain the social costs
1508
+ as much as close to fC,cost obtained in our proposed model.
1509
+ However, this comes at an expense as fInv,cost and fop,cost
1510
+ which have a less significance, increase significantly. But, the
1511
+ cumulative cost (i.e. sum of fInv,cost, fop,cost and fC,cost )
1512
+ is the least for the proposed model, while for Case I-IV, it is
1513
+ about 10-21% higher than the cost in our proposed model.
1514
+ D. Case Study III: Impact of Scenario Reduction Approaches
1515
+ In this section, we present a comparison of the results
1516
+ obtained for our optimization model utilizing two scenario re-
1517
+ duction methods namely, backward scenario reduction (BSR)
1518
+ method and K-Means clustering algorithm. In BSR method,
1519
+ the initial number of scenarios are reduced by minimizing the
1520
+ Monge-Kantorovich distance between the scenarios in both
1521
+ initial and reduced scenarios sets. Thereby, the initial scenarios
1522
+ are eliminated iteratively one by one, until the desired number
1523
+ of elements in the reduced scenario set is reached. Further
1524
+ explanation about the BSR method can be found in [12].
1525
+ In this case study, we considered λCES(t) = λG,avg, and
1526
+ the initial number of scenarios as 50. The proposed opti-
1527
+ mization framework was implemented under the two scenario
1528
+ reduction approaches by taking Ns = 10 and Ns = 30 for each
1529
+ method. The numerical results obtained for this case study are
1530
+ summarized in Table III. Note that, for all the cases, node 7
1531
+ was recorded as the optimal CES location.
1532
+ The costs for all the three objectives are the highest for the
1533
+ model which did not use a scenario reduction method. This is
1534
+ because, the model with Ns = 50 captures more uncertainty
1535
+ of the real power consumption and SPV generation, so that the
1536
+ optimal CES rated power and the capacity are higher than the
1537
+ models with a lesser number of scenarios. For both K-Means
1538
+ and BSR methods, even with a different number of reduced
1539
+ scenarios (i.e. Ns = 10 and Ns = 30), the CES planning
1540
+ aspects have not changed. This occurs as the planning aspects
1541
+ are independent of the number of scenarios. Nevertheless, as
1542
+ the operation decisions are scenario dependent, the operation
1543
+ cost of the CES, and the customers’ social costs have changed
1544
+ according to Ns. This trend is observed in the results obtained
1545
+ for the model which used the BSR method as well.
1546
+
1547
+ (a)
1548
+ Power (kW)
1549
+ 100
1550
+ 0
1551
+ 100
1552
+ -200
1553
+ 0
1554
+ n
1555
+ 10
1556
+ 15
1557
+ 20
1558
+ 25
1559
+ Discharging Power (kW)
1560
+ (b)
1561
+ CES Charging and,
1562
+ CES Energy (kWh)
1563
+ 200
1564
+ 0
1565
+ 100
1566
+ 50
1567
+ 0
1568
+ 5
1569
+ 10
1570
+ 15
1571
+ 20
1572
+ Time Duration (24 hours)
1573
+ pa. (t)
1574
+ 5= 1
1575
+ /= 1c E G
1576
+ 5=1
1577
+ MN
1578
+ pa5(t)
1579
+ ws, EE5(t)
1580
+ /=1cE G
1581
+ -10
1582
+ TABLE III: RESULTS FOR DIFFERENT SCENARIO REDUCTION METHODS - (WITH λCES(t) = λG,avg)
1583
+ No. of
1584
+ scenarios
1585
+ Computational
1586
+ time1
1587
+ (min)
1588
+ Optimal CES
1589
+ Rated Power1
1590
+ pRate
1591
+ j
1592
+ (kW)
1593
+ Optimal CES
1594
+ Capacity1
1595
+ ECap
1596
+ j
1597
+ (kWh)
1598
+ CES Investment
1599
+ Cost1 (AUD)
1600
+ fInv,cost
1601
+ CES Operation
1602
+ Cost1 (AUD)
1603
+ fop,cost
1604
+ Social
1605
+ Costs1 (AUD)
1606
+ fC,cost
1607
+ Without Scenario
1608
+ Reduction
1609
+ Ns = 50
1610
+ 91
1611
+ 79
1612
+ 257
1613
+ 34573
1614
+ 38434
1615
+ 91321
1616
+ K-Means
1617
+ Clustering Algorithm
1618
+ Ns = 10
1619
+ 38 (58.24%)
1620
+ 78 (1.27%)
1621
+ 249 (3.11%)
1622
+ 33695 (2.54%)
1623
+ 29347 (23.64%)
1624
+ 75263 (17.58%)
1625
+ Ns = 30
1626
+ 53 (41.76%)
1627
+ 78 (1.27%)
1628
+ 249 (3.11%)
1629
+ 33695 (2.54%)
1630
+ 30019 (21.89%)
1631
+ 89425 (2.08%)
1632
+ Backward Scenario
1633
+ Reduction Method
1634
+ Ns = 10
1635
+ 41 (54.95%)
1636
+ 78 (1.27%)
1637
+ 250 (2.72%)
1638
+ 33735 (2.42%)
1639
+ 29785 (22.50%)
1640
+ 75709 (17.10%)
1641
+ Ns = 30
1642
+ 57 (37.36%)
1643
+ 78 (1.27%)
1644
+ 250 2.72%)
1645
+ 33735 (2.42%)
1646
+ 30664 (20.22%)
1647
+ 89981 (1.47%)
1648
+ 1 Decrement percentage values are computed with respect to their corresponding values found without scenario reduction
1649
+ The models with reduced number of scenarios have con-
1650
+ verged for a solution in a lesser time than the case with
1651
+ Ns = 50. Scenario reduction methods like K-Means clustering
1652
+ algorithm and BSR method play a key role in reducing the
1653
+ computational time while maintaining the problem tractability.
1654
+ However, according to the results obtained for the models
1655
+ which used the K-Means and the BSR method, it is not
1656
+ conclusive to claim which scenario reduction method is better,
1657
+ as there is no any significant difference between the results.
1658
+ VII. CONCLUSION & FUTURE WORK
1659
+ In this paper, we have explored how the optimization of the
1660
+ planning and scheduling of a community energy storage (CES)
1661
+ benefit the CES provider by minimizing the CES investment
1662
+ and operation costs, and the customers by minimizing their
1663
+ social costs. The uncertainty of real power consumption and
1664
+ solar photovoltaic (SPV) generation of the customers have
1665
+ been accounted to formulate a scenario-based stochastic op-
1666
+ timization program. To reduce the computational burden of
1667
+ the stochastic model, we have used the K-Means clustering
1668
+ algorithm. It has been shown that, both the customers and the
1669
+ CES provider can significantly minimize their personal costs
1670
+ by optimizing both the CES planning and its scheduling.
1671
+ Future work includes extending the proposed model for
1672
+ unbalanced distribution networks, developing optimization
1673
+ models for networks with multiple CES, and considering the
1674
+ reactive power regulation capabilities of CES and SPV.
1675
+ REFERENCES
1676
+ [1] M. Shaw, B. Sturmberg, C.P. Mediwaththe, H. Ransan-Cooper, D. Tay-
1677
+ lor and L. Blackhall, “Community batteries: a cost/benefit analysis,”
1678
+ Technical Report, Australian National University, 2020.
1679
+ [2] C.P. Mediwaththe, and L. Blackhall, “Network-Aware Demand-Side
1680
+ Management Framework With A Community Energy Storage System
1681
+ Considering Voltage Constraints,” IEEE Trans. Power Syst., vol. 36,
1682
+ no. 2, pp. 1229–1238, 2021.
1683
+ [3] C.P. Mediwaththe, and L. Blackhall, “Community Energy Storage-based
1684
+ Energy Trading Management for Cost Benefits and Network Support,”
1685
+ in Proc. Int. Conf. Smart Grids and Energy Syst., 2020, pp. 516–521.
1686
+ [4] P.H. Divshali, and L. S¨oder, “Improving Hosting Capacity of Rooftop
1687
+ PVs by Quadratic Control of an LV-Central BSS,” IEEE Trans. Smart
1688
+ Grid, vol. 10, no. 1, pp. 919–927, 2019.
1689
+ [5] M.J.E. Alam, K.M. Muttaqi, and D. Sutanto, “Community Energy
1690
+ Storage for Neutral Voltage Rise Mitigation in Four-Wire Multigrounded
1691
+ LV Feeders With Unbalanced Solar PV Allocation,” IEEE Trans. Smart
1692
+ Grid, vol. 6, no. 6, pp. 2845–2855, 2015.
1693
+ [6] D.Q. Hung , and N. Mithulananthan, “Community energy storage and
1694
+ capacitor allocation in distribution systems,” in Proc. Aus. Uni. Power
1695
+ Eng. Conf., 2011, pp. 1–6.
1696
+ [7] M. B¨ohringer , S. Choudhury, S. Weck and J. Hanson, “Sizing and
1697
+ Placement of Community Energy Storage Systems using Multi-Period
1698
+ Optimal Power Flow,” in Proc. IEEE Mad. PowerTech, 2021, pp. 1–6.
1699
+ [8] V.B. Pamshetti, and S.P. Singh, “Coordinated allocation of BESS and
1700
+ SOP in high PV penetrated distribution network incorporating DR and
1701
+ CVR schemes,” IEEE Syst. J., vol. 16, no. 1, pp. 420–430, 2022.
1702
+ [9] M. Mahmoodi, M. Shaw and L. Blackhall, “Voltage behaviour and
1703
+ distribution network performance with Community Energy Storage
1704
+ Systems and high PV uptake,” in Proc. ACM Int. Conf. Future Energy
1705
+ Syst., 2020, pp. 388–390.
1706
+ [10] W. Lin, and E. Bitar, “Decentralized stochastic control of distributed
1707
+ energy resources,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 888–
1708
+ 900, 2017.
1709
+ [11] I. Atzeni, G. Scutari, D.P. Palomar and J.R. Fonollosa, “Demand-side
1710
+ management via distributed energy generation and storage optimization,”
1711
+ IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 866–876, 2012.
1712
+ [12] R. Zafar, J. Ravishankar, J.E. Fletcher and H.R. Pota, “Multi-Timescale
1713
+ Model Predictive Control of Battery Energy Storage System Using
1714
+ Conic Relaxation in Smart Distribution Grids,” IEEE Trans. Power Syst.,
1715
+ vol. 33, no. 6, pp. 7152–7161, 2018.
1716
+ [13] Y. Xu, Z.Y. Dong, R. Zhang and D.J. Hill, “Multi-timescale coordinated
1717
+ voltage/var control of high renewable-penetrated distribution systems,”
1718
+ IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4398–4408, 2017.
1719
+ [14] S.M.M. Bonab, and A. Rabiee, “Optimal reactive power dispatch: a
1720
+ review, and a new stochastic voltage stability constrained multi-objective
1721
+ model at the presence of uncertain wind power generation,” IET Gener.
1722
+ Transm. Distrib, vol. 11, no. 4, pp. 815–829, 2017.
1723
+ [15] C. Li , and I.E. Grossmann, “A review of stochastic programming
1724
+ methods for optimization of process systems under uncertainty,” Front.
1725
+ Chem. Eng., vol. 2, 2021.
1726
+ [16] J. Aghaei, M. Karami, K.M. Muttaqi, H.A. Shayanfar and A. Ahmadi,
1727
+ “MIP-based stochastic security-constrained daily hydrothermal genera-
1728
+ tion scheduling,” IEEE Syst. J., vol. 9, no. 2, pp. 615–628, 2015.
1729
+ [17] N. Amjady, J. Aghaei, and H.A. Shayanfar, “Stochastic multiobjective
1730
+ market clearing of joint energy and reserves auctions ensuring power
1731
+ system security,” IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1841–
1732
+ 1854, 2009.
1733
+ [18] F. Scarlatache, G. Grigoras¸, G. Chicco and G. Cˆart¸in˘a, “Using k-
1734
+ means clustering method in determination of the optimal placement of
1735
+ distributed generation sources in electrical distribution systems,” in Proc.
1736
+ IEEE Int. Conf. Opti. Elect. Electron. Equip., 2012, pp. 953–958.
1737
+ [19] B. Zakeri, and S. Syri, “Electrical energy storage systems: A comparative
1738
+ life cycle cost analysis,” Renew. Sust. Rev., vol. 42, pp. 569–596, 2015.
1739
+ [20] J. Martin,“1-to-1 solar buyback vs solar feed-in tariffs: The eco-
1740
+ nomics,”2012. [Online]. Available: https://www.solarchoice.net.au/blog/
1741
+ the-economics-of-a-1-to-1-solar-buyback-vs-solar-feed-in-tariffs/”
1742
+ [21] O. Grodzevich , and O. Romanko, “Normalization and other topics in
1743
+ multi-objective optimization,” in Fields MITACS Ind. Workshop, 2006.
1744
+ [22] M. Zeraati, M.E. Hamedani Golshan, and J.M. Guerrero, “Distributed
1745
+ control of battery energy storage systems for voltage regulation in
1746
+ distribution networks with high pv penetration,” IEEE Trans. Smart Grid,
1747
+ vol. 9, no. 4, pp. 3582–3593, 2018.
1748
+ [23] “Solar Home Electricity Data,” [Online]. Available: https://www.ausgrid
1749
+ .com.au/Industry/Research/Data-to-share/Solar-home-electricity-data/.”
1750
+ [24] T.L. Saaty, “Decision making — the analytic hierarchy and Network
1751
+ Processes,” J. Syst. Sci. Syst. Eng., vol. 13, no. 1, pp. 1–35, 2004.
1752
+ [25] “Origin, “VIC residential energy price fact sheet,” 2018.” [Online].
1753
+ Available: shorturl.at/gkmV5”
1754
+
6NAzT4oBgHgl3EQff_yv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7tFLT4oBgHgl3EQfAi4b/content/tmp_files/2301.11966v1.pdf.txt ADDED
@@ -0,0 +1,929 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11966v1 [quant-ph] 27 Jan 2023
2
+ Generalized Uncertainty Principle for Entangled
3
+ States of Two Identical Particles
4
+ K. C. Lemos Filho∗1, B. B. Dilem†2, J. C. Fabris‡1,3, and J. A.Nogueira§1
5
+ 1Universidade Federal do Esp´ırito Santo – Ufes, Vit´oria, Esp´ırito Santo,
6
+ 29.075-910, Brasil
7
+ 2Instituto Federal do Esp´ırito Santo – Ifes, Alegre, Esp´ırito Santo,
8
+ 29.520-000, Brasil
9
+ 3National Research Nuclear University MEPhI, Kashirskoe sh. 31,
10
+ Moscow 115409, Russia
11
+ Abstract
12
+ In this work we determine the consequences of the quantum en-
13
+ tanglement of a system of two identical particles when the generalized
14
+ uncertainty principle (GUP) is considered. GUP is usually associated
15
+ with the existence of a minimal length. We focus on the main formu-
16
+ lations of the GUP and then we determine the minimal uncertainties in
17
+ position induced by those modified GUP’s. Our results point out that
18
+ the minimal uncertainty is reduced by half of its usual value indepen-
19
+ dently of the GUP employed. This implies that the minimal length is
20
+ also reduced by half. On the other hand, it is generally expected that the
21
+ minimal length must not depend on physical system. We overcome this
22
+ apparent paradox by realizing that the entangled system is composed by
23
+ two particles so that an effective parameter related to the minimal length
24
+ must be employed.
25
+ PACS numbers: 04.60.-m, 03.65.Ud, 03.65.Ta
26
+ Keywords: Minimal length; generalized uncertainty principle; quantum entanglement.
27
+ ∗kim.vasco@gmail.com
28
+ †bernardob@ifes.edu.br
29
+ ‡julio.fabris@cosmo-ufes.org
30
+ §jose.nogueira@ufes.br
31
+ 1
32
+
33
+ 1
34
+ Introduction
35
+ Amongst the (many) new concepts introduced by the quantum mechanics, the quantum
36
+ entanglement [1, 2] is one that, probably, more contradicts our common sense. Although,
37
+ in the beginning, the quantum entanglement were only associated to theoretical aspects
38
+ of quantum mechanics, specially those related to the non-locality or the complementarity
39
+ (hidden variables) [3], nowadays it is a key component of the applications and experiments
40
+ on quantum information, quantum computation and quantum teleportation [4, 5].
41
+ The uncertainty principle is one of the fundamental cornerstones of the quantum me-
42
+ chanics. Nevertheless, it is a principle: its correct form can not be proven. That opens
43
+ the way to the possibility that its canonical form, described by the Heisenberg’s uncer-
44
+ tainty principle (HUP), can be generalized. An example of the possible generalizations
45
+ of HUP, whose origin can be traced back to quantum gravity, is given by introducing a
46
+ non-zero minimal uncertainty in the measurement of position. That non-zero minimal
47
+ uncertainty in position is, then, understood as a minimal-length scale, below which the
48
+ necessary amount of energy to probe the position of a particle is so hight that it disturbs
49
+ the space-time so that the concept of a length measurement loses its meaning. Hence, the-
50
+ ories searching to describe a quantum approach for gravity lead generally to the existence
51
+ of a minimal length. In fact, a minimal length actually appears in almost all proposed
52
+ theories of the quantum gravity. For this reason theories formulated in a minimal-length
53
+ scenario are considered to be effective theories of quantum gravity [6, 7, 8, 9].
54
+ In 1999, Yoon-Ho Kim and Yanhua Shih conducted an experiment whose results ap-
55
+ parently suggested a violation of the HUP [10]. However, G. Rigolin pointed out that
56
+ in fact there is no violation of the HUP, because the HUP is derived for particles non-
57
+ correlated (non-entangled). In the Kim and Shih’s experiment, the photons of the pair
58
+ are correlated (entangled) when one of the physical slits is replaced by a virtual slit1:
59
+ the canonical HUP is no longer applicable since the quantum entanglement modifies the
60
+ canonical HUP [11, 12].
61
+ An immediate question arising from the previous considerations is how the quantum
62
+ entanglement modifies a generalized uncertainty principle (GUP), in others words, which
63
+ is the effect of the quantum entanglement in the minimal-length scale. The answer for
64
+ that question is important in order to know the role of the quantum entanglement at
65
+ the minimal-length scale (maybe appearing in the Planck scale) or in the early Universe.
66
+ Unfortunately, this issue has been little considered in the literature. In [13], G. Blado,
67
+ F. Herrera and J. Erwin have studied the inseparability conditions with the most usual
68
+ GUP correction, whereas D. Park has used a coupled harmonic oscillator in order to find
69
+ the effects of the quantum entanglement with a linear GUP in [14].
70
+ The purpose of this work is to answer that question considering the main proposals of
71
+ generalization for the HUP which take into account the existence of a minimal length in
72
+ nature. With this goal in mind, we will analyze the modifications in the HUP arising from
73
+ the quantum entanglement of two identical particles determining the minimal uncertainty
74
+ 1The interaction of the photon with a physical slit destroys the correlation between the photons of the
75
+ pair.
76
+ 2
77
+
78
+ associated to them.
79
+ The outline of this paper is as follows. In Section 2 we obtain an expression of the
80
+ uncertainty principle for entangled states which is independent of the chosen GUP. In
81
+ Section 3 we find the modified uncertainty principle for a pair of identical particles re-
82
+ garding the main proposals of GUP’s: Kempf, Mangano and Mann GUP (KMM-GUP),
83
+ Ali, Das and Vagenas GUP (ADV-GUP), Pedram GUP and exponential all orders GUP.
84
+ In Section 4 we estimate an upper bound for the minimal-length value. We present our
85
+ conclusions in the Section 5.
86
+ 2
87
+ Uncertainty principle for entangled states
88
+ The Hilbert space of the state vectors E of a system of N particles is given by the
89
+ tensor product of the Hilbert spaces of the state vectors Ei of each particle [15, 16],
90
+ E = E1 ⊗ · · · ⊗ EN.
91
+ (1)
92
+ The position and momentum linear operators of the i-th particle which act on the state
93
+ vectors |ψ⟩ ∈ E are the extensions ˜Qi and ˜Pi defined as
94
+ ˜Qi = I1 ⊗ · · · ⊗ ˆxi ⊗ · · · ⊗ IN,
95
+ (2)
96
+ ˜Pi = I1 ⊗ · · · ⊗ ˆpi ⊗ · · · ⊗ IN,
97
+ (3)
98
+ where Ii is the identity operator in Ei and ˆxi and ˆpi are the position and the momentum
99
+ operators of the i-th particle acting on the state vectors |ψi⟩ ∈ Ei.
100
+ The extensions ˜Qi and ˜Pi do not satisfy the canonical uncertainty principle (HUP),
101
+ because ˜Qi and ˜Pi are not physical observables [11, 12, 15, 16].
102
+ Physical observables
103
+ are operators which commute with every permutation operators of the particles system.
104
+ Hence, the operators ˜Q and ˜P, defined as
105
+ ˜Q :=
106
+ N
107
+
108
+ i=1
109
+ ˜Qi
110
+ (4)
111
+ and
112
+ ˜P :=
113
+ N
114
+
115
+ i=1
116
+ ˜Pi,
117
+ (5)
118
+ are physical observables and they satisfy the relation
119
+ (∆Q)2 (∆P)2 ≥ 1
120
+ 4
121
+ ���⟨[ ˜Q, ˜P]⟩
122
+ ���
123
+ 2
124
+ .
125
+ (6)
126
+ The relation (6) is general. It does not depend whether the system of particle is entangled
127
+ or not.
128
+ 3
129
+
130
+ As it was showed by G. Rigolin [11, 12], if the state of the particles system is entangled
131
+ then the operators ˜Qi and ˜Pi do not satisfy the canonical Heisenberg uncertainty principle
132
+ (HUP) - as previously stated.
133
+ We briefly review the Rigolin’s result for a two particles system. From the definitions
134
+ of ∆Q and ∆P we have2
135
+ (∆ψQ)2 =
136
+
137
+ ψ| ˜Q2|ψ
138
+
139
+
140
+
141
+ ψ| ˜Q|ψ
142
+ �2
143
+ .
144
+ (7)
145
+ From now on we omit the subscript ψ for the sake of simplicity, whenever this does not
146
+ cause any confusion. Thus,
147
+ (∆Q)2 = (∆Q1)2 + (∆Q2)2 + 2
148
+ ��
149
+ ˜Q1 ˜Q2
150
+
151
+
152
+
153
+ ˜Q1
154
+ � �
155
+ ˜Q2
156
+ ��
157
+ .
158
+ (8)
159
+ In the same way,
160
+ (∆P)2 = (∆P1)2 + (∆P2)2 + 2
161
+ ��
162
+ ˜P1 ˜P2
163
+
164
+
165
+
166
+ ˜P1
167
+ � �
168
+ ˜P2
169
+ ��
170
+ .
171
+ (9)
172
+ Using the results (8) and (9) into Eq. (6) we obtain
173
+
174
+ (∆Q1)2 + (∆Q2)2 + 2
175
+ ��
176
+ ˜Q1 ˜Q2
177
+
178
+
179
+
180
+ ˜Q1
181
+ � �
182
+ ˜Q2
183
+ ���
184
+ ×
185
+
186
+ (∆P1)2 + (∆P2)2 + 2
187
+ ��
188
+ ˜P1 ˜P2
189
+
190
+
191
+
192
+ ˜P1
193
+ � �
194
+ ˜P2
195
+ ���
196
+ ≥ 1
197
+ 4
198
+ ���⟨[ ˜Q, ˜P]⟩
199
+ ���
200
+ 2
201
+ .
202
+ (10)
203
+ We now use the functions
204
+ CQ(1, 2)
205
+ :=
206
+
207
+ ˜Q1 ˜Q2
208
+
209
+
210
+
211
+ ˜Q1
212
+ � �
213
+ ˜Q2
214
+
215
+ ,
216
+ (11)
217
+ CP(1, 2)
218
+ :=
219
+
220
+ ˜P1 ˜P2
221
+
222
+
223
+
224
+ ˜P1
225
+ � �
226
+ ˜P2
227
+
228
+ ,
229
+ (12)
230
+ which are called quantum covariance functions (QCF). By definition, QCF’s vanish if and
231
+ only if the system is separable [17]. Therefore (11) and (12) are zero for any not entangled
232
+ quantum system.
233
+ Using the QCF’s (11) and (12) we have
234
+
235
+ (∆Q1)2 + (∆Q2)2 + 2CQ(1, 2)
236
+ � �
237
+ (∆P1)2 + (∆P2)2 + 2CP(1, 2)
238
+
239
+ ≥ 1
240
+ 4
241
+ ���⟨[ ˜Q, ˜P]⟩
242
+ ���
243
+ 2
244
+ ,
245
+ (13)
246
+ or
247
+ 2
248
+
249
+ i,j=1
250
+ CQ(i, j)
251
+ 2
252
+
253
+ k,l=1
254
+ CP(k, l) ≥ 1
255
+ 4
256
+ ���⟨[ ˜Q, ˜P]⟩
257
+ ���
258
+ 2
259
+ ,
260
+ (14)
261
+ since CQ(i, i) = (∆Qi)2, CP(i, i) = (∆Pi)2, CQ(i, j) = CQ(j, i) and CP(i, j) = CP(j, i).
262
+ 2Note that [ ˜Q1, ˜Q2] = 0 and [ ˜P1, ˜P2] = 0.
263
+ 4
264
+
265
+ In this work, we concern with the case of an entangled system of two identical particles,
266
+ so we are going to handle Eq. (13) in order to express it in a more appropriate way. For
267
+ this end, we define
268
+ |ψ′⟩ :=
269
+
270
+ ˜Q1 − ˜Q2
271
+
272
+ |ψ⟩,
273
+ (15)
274
+ with |ψ′⟩, |ψ⟩ ∈ E and ⟨ψ | ψ⟩ = 1. Therefore,
275
+ ⟨ψ′ | ψ′⟩ = (∆ψQ1)2 + (∆ψQ2)2 − 2
276
+
277
+ ˜Q1 ˜Q2
278
+
279
+ ψ +
280
+
281
+ ˜Q1
282
+ �2
283
+ ψ +
284
+
285
+ ˜Q2
286
+ �2
287
+ ψ .
288
+ (16)
289
+ Now, using the Schwarz inequality, ⟨ψ | ψ⟩ ⟨ψ′ | ψ′⟩ ≥ ⟨ψ | ψ′⟩ ⟨ψ′ | ψ⟩, we have
290
+ (∆ψQ1)2 + (∆ψQ2)2 ≥ 2
291
+ ��
292
+ ˜Q1 ˜Q2
293
+
294
+ ψ −
295
+
296
+ ˜Q1
297
+
298
+ ψ
299
+
300
+ ˜Q2
301
+
302
+ ψ
303
+
304
+ .
305
+ (17)
306
+ In the same way
307
+ (∆ψP1)2 + (∆ψP2)2 ≥ 2
308
+ ��
309
+ ˜P1 ˜P2
310
+
311
+ ψ −
312
+
313
+ ˜P1
314
+
315
+ ψ
316
+
317
+ ˜P2
318
+
319
+ ψ
320
+
321
+ .
322
+ (18)
323
+ Finally, from inequalities (17), (18) and (13) we obtain
324
+
325
+ (∆Q1)2 + (∆Q2)2� �
326
+ (∆P1)2 + (∆P2)2�
327
+ ≥ 1
328
+ 16
329
+ ���⟨[ ˜Q, ˜P]⟩
330
+ ���
331
+ 2
332
+ .
333
+ (19)
334
+ In the case where (∆Q1)2 = (∆Q2)2 and (∆P1)2 = (∆P2)2 the inequality (19) becomes
335
+ ∆Qi∆Pi ≥ 1
336
+ 8
337
+ ���⟨[ ˜Q, ˜P]⟩
338
+ ��� .
339
+ (20)
340
+ It is worth noting that the expression of the inequality (20) is independent of the
341
+ chosen uncertainty principle that does not take into account the quantum correlation.
342
+ This uncertainty principle is related to the commutation relation [ ˜Q, ˜P].
343
+ 3
344
+ Uncertainty principle for entangled states in different minimal-
345
+ length scenarios
346
+ In this section we consider a system of two entangled identical particles whose momenta
347
+ have the same value but opposite directions, that is, ⃗p1 = −⃗p2, just as in the Kim
348
+ and Shih’s experiment [10]. Therefore, in this case ⟨ˆp1⟩ + ⟨ˆp2⟩ = 0. Moreover, such a
349
+ consideration also allows us to estimate, in the next section, an upper bound for the value
350
+ of the minimal length based on the experimental results obtained by Kim and Shih.
351
+ 5
352
+
353
+ 3.1
354
+ Heisenberg uncertainty principle
355
+ Before we consider a minimal-length scenario it is appropriate to determine the change
356
+ in the canonical HUP, that is, in a scenario in which effects of quantum gravity are not
357
+ present. The canonical HUP for states of one simple-particle is
358
+ ∆x∆p ≥ ℏ
359
+ 2.
360
+ (21)
361
+ The commutation relation related to the HUP is
362
+ [ˆx, ˆp] = iℏ.
363
+ (22)
364
+ Hence
365
+ [ ˜Q, ˜P] = [ ˜Q1 + ˜Q2, ˜P1 + ˜P2] = 2iℏ.
366
+ (23)
367
+ Substituting Eq. (23) into Eq. (20) we get
368
+ ∆Qi∆Pi ≥ ℏ
369
+ 4.
370
+ (24)
371
+ The result (24) shows that for a system of two entangled identical particles the HUP is
372
+ modified. Such an outcome is not new, it was already obtained by G. Rigolin in 2002 [11]
373
+ and then in 2016 [12].
374
+ From a quick glance at the result (24) and recalling that dimensionally (∆Q)min ∝ ℏ,
375
+ we expect the minimal uncertainty in the position will be reduced by half for all GUP’s.
376
+ 3.2
377
+ KMM GUP
378
+ The GUP
379
+ ∆xi∆pi ≥ ℏ
380
+ 2
381
+
382
+ 1 + β (∆pi)2 + β ⟨ˆpi⟩2�
383
+ ,
384
+ (25)
385
+ where β is a parameter related to the minimal length, has been proposed by A. Kempf,
386
+ G. Mangano an R. B. Mann (KMM-GUP) [18] and it is the most used in the literature.
387
+ The commutation relation related to it is given by
388
+ [ˆxi, ˆpi] = iℏ
389
+
390
+ 1 + βˆp2
391
+ i
392
+
393
+ .
394
+ (26)
395
+ Hence
396
+ [ ˜Q, ˜P] = iℏ
397
+
398
+ 1 + β
399
+
400
+ ˜P 2
401
+ 1 + ˜P 2
402
+ 2
403
+ ��
404
+ = iℏ
405
+
406
+ 1 + 2β ˜P 2
407
+ i
408
+
409
+ .
410
+ (27)
411
+ Substituting Eq. (27) into Eq. (20) we get
412
+ ∆Qi∆Pi ≥ ℏ
413
+ 4
414
+
415
+ 1 + β (∆Pi)2 + γ
416
+
417
+ ,
418
+ (28)
419
+ where γ := β
420
+
421
+ ˜Pi
422
+ �2
423
+ .
424
+ 6
425
+
426
+ The modified KMM-GUP (28) induces the existence of a minimal uncertainty given
427
+ by
428
+ (∆Qi)min = ℏ
429
+ 2
430
+
431
+ β.
432
+ (29)
433
+ The result above shows that the non-zero minimal uncertainty in position induced by
434
+ the KMM-GUP for two entangled identical particles is twice smaller than for a separable
435
+ system of two identical particles (non-entangled).
436
+ 3.3
437
+ ADV GUP
438
+ A. Farag Ali, S. Das and E. C. Vagenas have proposed a GUP related to a commutation
439
+ relation which has a linear and a quadratic term in the momentum operator [19],
440
+ [ˆxi, ˆpi] = iℏ
441
+
442
+ 1 − 2αˆpi + 4α2ˆp2
443
+ i
444
+
445
+ ,
446
+ (30)
447
+ where α is a parameter related to the minimal length. Besides the existence of a minimal
448
+ length this linear approach induces a maximal uncertainty in the momentum, too. Then,
449
+ from Eq. (30) we get
450
+ [ ˜Q, ˜P] = 2iℏ
451
+
452
+ 1 − α
453
+
454
+ ˜P1 + ˜P2
455
+
456
+ + 2α2 �
457
+ ˜P 2
458
+ 1 + ˜P 2
459
+ 2
460
+ ��
461
+ .
462
+ (31)
463
+ Therefore,
464
+ ⟨[ ˜Q, ˜P]⟩ = 2iℏ
465
+
466
+ 1 − α
467
+ ��
468
+ ˜P1
469
+
470
+ +
471
+
472
+ ˜P2
473
+ ��
474
+ + 2α2 ��
475
+ ˜P 2
476
+ 1
477
+
478
+ +
479
+
480
+ ˜P 2
481
+ 2
482
+ ���
483
+ ,
484
+ (32)
485
+ ⟨[ ˜Q, ˜P]⟩ = 2iℏ
486
+
487
+ 1 + 4α2 �
488
+ ˜P 2
489
+ i
490
+ ��
491
+ ,
492
+ (33)
493
+ Substituting Eq. (33) into Eq. (20) we obtain
494
+ ∆Qi∆Pi ≥ ℏ
495
+ 4
496
+
497
+ 1 + 4α2 (∆Pi)2 + γ′
498
+
499
+ ,
500
+ (34)
501
+ where γ′ := 4α2 �
502
+ ˜Pi
503
+ �2
504
+ .
505
+ The modified ADV-GUP (34) induces the existence of a non-zero minimal uncertainty
506
+ given by
507
+ (∆Qi)min = ℏα,
508
+ (35)
509
+ which once again is twice smaller than for a non-entangled system of two particles.
510
+ It is important to note that the linear GUP (ADV-GUP) becomes non-linear in this
511
+ case and consequently a maximal uncertainty in the momentum is no longer induced.
512
+ 7
513
+
514
+ 3.4
515
+ Pedram GUP
516
+ In order to overcome some problems arising from KMM-GUP and ADV-GUP - such
517
+ as incorporation of a maximal momentum required in doubly special relativity (DSR)
518
+ theories, commutative geometry and an approach valid for all order in the parameter
519
+ related to the minimal length - P. Pedram has proposed a GUP [20, 21] based on the
520
+ commutation relation given by
521
+ [ˆxi, ˆpi] =
522
+ iℏ
523
+ 1 − βˆp2
524
+ i
525
+ .
526
+ (36)
527
+ Hence
528
+ [ ˜Q, ˜P] =
529
+ iℏ
530
+ 1 − β ˜P 2
531
+ 1
532
+ +
533
+ iℏ
534
+ 1 − β ˜P 2
535
+ 2
536
+ .
537
+ (37)
538
+ Using the so-called Jensen’s Inequality [22] we have
539
+ ⟨[ ˜Q, ˜P]⟩ ≥
540
+ iℏ
541
+ 1 − β
542
+
543
+ ˜P 2
544
+ 1
545
+ � +
546
+ iℏ
547
+ 1 − β
548
+
549
+ ˜P 2
550
+ 2
551
+
552
+ .
553
+ (38)
554
+ Substituting Eq. (38) into Eq. (20) we obtain
555
+ ∆Qi∆Pi ≥ ℏ
556
+ 4
557
+ 1
558
+
559
+ 1 − β (∆Pi)2 − γ
560
+ �.
561
+ (39)
562
+ Therefore, the modified Pedram-GUP (39) introduces a non-zero minimal uncertainty
563
+ given by
564
+ (∆Qi)min = 3ℏ
565
+ 8
566
+
567
+ 3β,
568
+ (40)
569
+ which is also twice smaller than for a non-entangled system of a pair of identical particles.
570
+ 3.5
571
+ Exponential all orders GUP
572
+ In the canonical field theory in the context of non-commutative coherent states repre-
573
+ sentation and field theory on non-anticommutative superspace the Feynman propagator
574
+ displays an ultra-violet (UV) cut-off of the form e−βp2 [23, 24, 25, 26]. In consequence, K.
575
+ Nouicer has proposed an exponential all orders GUP [27, 28] based on the commutation
576
+ relation given by
577
+ [ˆxi, ˆpi] = iℏeβˆp2
578
+ i .
579
+ (41)
580
+ Hence
581
+ [ ˜Q, ˜P] = iℏ
582
+
583
+ eβ ˜P 2
584
+ 1 + eβ ˜P 2
585
+ 2
586
+
587
+ .
588
+ (42)
589
+ Again, using the so-called Jensen’s Inequality [22] we have
590
+ ⟨[ ˜Q, ˜P]⟩ ≥ iℏ
591
+
592
+ eβ⟨ ˜P 2
593
+ 1⟩ + eβ⟨ ˜P 2
594
+ 2⟩�
595
+ .
596
+ (43)
597
+ 8
598
+
599
+ Substituting Eq. (42) into Eq. (20) we get
600
+ ∆Qi∆Pi ≥ ℏ
601
+ 4eβ(∆Pi)2+γ.
602
+ (44)
603
+ Therefore, the modified exponential all order GUP (44) introduces a minimal uncer-
604
+ tainty given by
605
+ (∆Qi)min = ℏ
606
+ 2
607
+
608
+
609
+ 2 .
610
+ (45)
611
+ Finally, we note that (∆Qi)min is also twice smaller than for a non-entangled system of a
612
+ pair of identical particles, as we have already said.
613
+ 3.6
614
+ Minimal length
615
+ If a non-zero minimal uncertainty in position can be interpreted as a minimal length then
616
+ the previous results show that the minimal length for two entangled identical particles
617
+ can be twice smaller than for a separable system. It is clear this statement must be taken
618
+ with care because a minimal length should be a constant, that is, it must not depend on
619
+ the physical system, it is a quantum gravitation effect. In fact, the minimal length should
620
+ be an invariant as well as the light speed is. The answer for that apparent contradiction
621
+ is possibly because the system is made up of two particles. In references [29], C. Quesne
622
+ and V. M. Tkachuck have claimed that for a system composed by N particles the effective
623
+ parameter related to the minimal length, β, is reduced by a factor
624
+ 1
625
+ N2. Hence, ℏ
626
+ 2
627
+ √β is not
628
+ the correct minimal uncertainty in position (∆Qi)min for the modified KMM-GUP, but
629
+
630
+ 2
631
+ √βi, where [29, 30]
632
+ β = βi
633
+ 22.
634
+ (46)
635
+ Consequently, we find that (∆Qi)min = ℏ√β, therefore lmin = ℏ√β, as we expected3. In
636
+ the same way for others GUP’s.
637
+ The reader might want to claim that the minimal length is actually described by the
638
+ minimal uncertainty of the entangled system. However, according to reference [12] we
639
+ can presume that the minimal uncertainty for a system of N entangled identical particles
640
+ is reduced by
641
+ 1
642
+ N . Since, in principle, there is no limit for the number of particles for a
643
+ entangled system, there would also be no limit for the minimal length.
644
+ 4
645
+ Upper bound for the minimal-length value
646
+ In the Kim and Shih’s experiment entangled identical pairs of photons were produced
647
+ by spontaneous parametric down conversion (SPDC) with momentum conservation. A
648
+ narrow physical slit was placed along the trajectory of one of the photons, whereas the
649
+ 3It is worth noting that if the minimal uncertainty was greater for the entangled system, we could sup-
650
+ pose that the quantum entanglement decreases the accuracy of a position measurement thereby increasing
651
+ the minimal uncertainty.
652
+ 9
653
+
654
+ other photon of the pair (called 2) passed through a virtual slit. The ghost image exper-
655
+ imental technique [31] ensured that the quantum correlation between the pair of photons
656
+ was not destroyed. Then simultaneous detection of photons of the pairs were performed
657
+ and data just for coincidence events were obtained in case when the photon 2 passed
658
+ through a virtual slit (non-slit case) and in case when the photon 2 passed through a
659
+ physical slit (slit case).
660
+ From the experimental data obtained by Kim and Shih one gets that [12]
661
+ ∆P ns
662
+ 2
663
+ ∆P s
664
+ 2
665
+ = 1.25
666
+ 2.15,
667
+ (47)
668
+ where ∆P ns
669
+ 2
670
+ is uncertainty in momentum of the photon 2 in the non-slit case and ∆P s
671
+ 2 is
672
+ uncertainty in momentum of the photon 2 in slit case. Since the width of the slit was 0.16
673
+ mm (∆Q2 = 0.16 mm), the uncertainty in momentum in the slit case for KMM-GUP can
674
+ be find from4
675
+ 0.16∆P s
676
+ 2 = ℏ
677
+ 2
678
+
679
+ 1 + 4β (∆P s
680
+ i )2 + γ
681
+
682
+ .
683
+ (48)
684
+ Eq. (48) has real roots only if β ≤ 0.162
685
+ ℏ2η , where η := 1 + γ. Thus,
686
+ ∆P s
687
+ 2+ = 0.32
688
+ ℏβ − ℏη
689
+ 0.32 − β ℏ3η2
690
+ 0.323
691
+ (49)
692
+ and
693
+ ∆P s
694
+ 2− = ℏη
695
+ 0.32 + β ℏ3η2
696
+ 0.323,
697
+ (50)
698
+ Now, using the above results we can estimate an upper bound for the minimal-length
699
+ value induced by KMM-GUP. Hence, substituting the root (49) into Eq. (28) we have
700
+ that
701
+ β ≤ 3.58 × 10−2
702
+ ℏ2η
703
+ .
704
+ (51)
705
+ Therefore,
706
+ lmin ≤ ℏ
707
+
708
+ 3.58 × 10−2
709
+ ℏ2η
710
+ ≤ ℏ
711
+
712
+ 3.58 × 10−2
713
+ ℏ2
714
+ = 1.9 × 10−4m.
715
+ (52)
716
+ The substitution of the root (50) hold the inequality (28) for all β > 0.
717
+ Consequently, the upper bound for the minimal-length value is order 10−4 m. There-
718
+ fore, using the experiment described above a result with less restrictions than those re-
719
+ ported in the literature is obtained [30, 32, 33, 34, 35, 36, 37, 38].
720
+ 4Note that in with-slit case the correlation between the photons of the pair was destroyed, therefore
721
+ the photons were not entangled and the usual KMM-GUP, Eq. (25), is held.
722
+ 10
723
+
724
+ 5
725
+ Conclusion
726
+ In this work we find the non-zero minimal uncertainties induced by the main proposals
727
+ of GUP’s (KMM, ADV, Pedram and exponential) which are modified due to the quantum
728
+ entanglement of a system of two identical particles. In principle, our results have pointed
729
+ out that the minimal uncertainties are reduced at half for a system of two entangled
730
+ identical particles independently of the GUP. Hence, if a non-zero minimal uncertainty in
731
+ position can be interpreted as a minimal length then the quantum entanglement reduces
732
+ by half the minimal length. However, the minimal length must not depend on the phys-
733
+ ical system. We overcome this apparent paradox by using the Quesne and Tkachuck’s
734
+ proposal for a system composed. Consequently, despite the quantum entanglement to
735
+ change the GUP, the minimal length does not change. Based on our results and using
736
+ the reference [12] we can expect that the apparent minimal uncertainty for a system of
737
+ N entangled identical particles is reduced by
738
+ 1
739
+ N , nonetheless the minimal length does not
740
+ change because the effective parameter β is also reduced by a factor
741
+ 1
742
+ N2.
743
+ Finally, we have estimated from the data obtained from the Kim and Shih’s experiment
744
+ an upper bound value for the minimal length of the order of 10−4 m. Consequently, it is
745
+ rather an inexpressive value (in the sense of leading to poor predictive power) as compared
746
+ to ones have been found in the literature. This is due to the high imprecision of the
747
+ experiment on the entangled system described above. However, we may expect that more
748
+ refined version of the experiment may lead to more stringent bounds on the minimum
749
+ length.
750
+ Acknowledgements
751
+ We would like to thank FAPES, CAPES and CNPq (Brazil) for financial support.
752
+ References
753
+ [1] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki “Quantum entangle-
754
+ ment”, Rev. Mod. Phys. 81(2), 865 (2009). doi.org/10.1103/RevModPhys.81.865
755
+ [2] J. Brody QUANTUM ENTANGLEMENT, (MIT Press, Cambridge, Massachusetts,
756
+ 2020.)
757
+ [3] A. Eisntein, B. Podolsky and N. Rose, “Can Quantum-Mechanical Description
758
+ of Physics Reality Be Considered Complete?”, Phys. Rev. 47(10), 777 (1935).
759
+ doi.org/10.1103/PhysRev.47.777
760
+ [4] M. A. Nielsen and I. Chung, “Quantum Computation and Quantum Information”,
761
+ Am. J. Phys. 70(5), 558 (2002). doi.org/10.1119/1.1463744
762
+ 11
763
+
764
+ [5] M. A. Nielsen and I. Chung, Quantum Computation and Quantum Information, 10th
765
+ Anniversary edition, (Cambridge University Press, Cambridge, 2010.)
766
+ [6] S. Hossenfelder, “A note on theories with a minimal length”, Class. Quantum Grav.
767
+ 23, 1815 (2006). doi.org/10.1088/0264-9381/23/5/N01
768
+ [7] M. Kober, “Generalized Uncertainty Principle in Canonical Quantum Gravity and
769
+ Application to Quantum Cosmology”, Int. J. Mod. Phys. A 27(20), 1250106 (2012).
770
+ doi.org/10.1142/S0217751X12501060
771
+ [8] Y. Sabri and Kh. Nouicer, “Phase transitions of a GUP-corrected Schwarzschild
772
+ black hole within isothermal cavities”, Class. Quantum Grav. 29(21), 215015 (2012).
773
+ doi:10.1088/0264-9381/29/21/215015.
774
+ [9] Y. C. Ong and Y. Yao, “Generalized uncertainty principle and white dwarfs re-
775
+ dux: How the cosmological constant protects the Chandrasekhar limit”, Phys. Rev.
776
+ D 98(12), 126018 (2018). doi.org/10.1103/PhysRevD.98.126018
777
+ [10] Yoon-Ho Kim and Y. Shih, “Experimental Realization of Popper’s Experiment:
778
+ Violation of the Uncertainty Principle?”, Found. Phys. 29(12),
779
+ 1849 (1999).
780
+ doi.org/10.1023/A:1018890316979
781
+ [11] G. Rigolin, “Uncertainty Relations for Entangled States”, Found. Phys. Lett. 15(3),
782
+ 293 (2002). doi.org/10.1023/A:1021039822206
783
+ [12] G. Rigolin, “Entanglement, Identical Particles and the Uncertainty Principle”, Com-
784
+ mun. Theor. Phys. 66, 201 (2016). doi.org/10.1088/0253-6102/66/2/201
785
+ [13] G. Blado, F. Herrera and J. Erwin, “Entanglement and the generalized uncertainty
786
+ principle”, Phys. Essays 31(4), 397 (2018). doi.org/10.4006/0836-1398-31.4.397
787
+ [14] D. Park, “Quantum entanglement with generalized uncertainty principle”, Nucl. Phys.
788
+ B 977(7), 115736 (2022). doi.org/10.1016/j.nuclphysb.2022.115736
789
+ [15] C. Cohen-Tannoudji, B. Dui and F. laloe, Quantum Mechanics, (Jhon Wiley and
790
+ Sons, Paris, 1977).
791
+ [16] A. Messiah, Quantum Mechanics, (North-Holland Publishing, Amsterdan, 1965).
792
+ [17] A. C. de la Torre, P. Catuogno and S. Ferrando, “Uncertainty and nonseparability”,
793
+ Found. Phys. Lett. 2, 235 (1989). doi.org/10.1007/BF00692669
794
+ [18] A. Kempf, G. Mangano and R. B. Mann, “Hilbert Space Representation Of
795
+ The Minimal Length Uncertainty Relation”, Phys. Rev. D 52(2), 1108 (1995).
796
+ doi.org/10.1103/PhysRevD.52.1108
797
+ 12
798
+
799
+ [19] A.
800
+ Farag
801
+ Ali,
802
+ S.
803
+ Das
804
+ and
805
+ E.
806
+ C.
807
+ Vagenas,
808
+ “Discreteness
809
+ of
810
+ space
811
+ from
812
+ the
813
+ generalized
814
+ uncertainty
815
+ principle”,
816
+ Phys.
817
+ Lett.
818
+ B
819
+ 678(5),
820
+ 497
821
+ (2009).
822
+ doi.org/10.1016/j.physletb.2009.06.061
823
+ [20] P. Pedram, “A higher order GUP with minimal length uncertainty and maximal mo-
824
+ mentum”, Phys. Lett. B 714(2-5), 317 (2012). doi.org/10.1016/j.physletb.2012.07.005
825
+ [21] P.
826
+ Pedram,
827
+ “A
828
+ higher
829
+ order
830
+ GUP
831
+ with
832
+ minimal
833
+ length
834
+ uncertainty
835
+ and
836
+ maximal
837
+ momentum
838
+ II:
839
+ Applications”,
840
+ Phys.
841
+ Lett.
842
+ B
843
+ 718(2),
844
+ 638
845
+ (2012).
846
+ doi.org/10.1016/j.physletb.2012.10.059
847
+ [22] J. L. W. V. Jensen “Sur les fonctions convexes et les in´egalit´es entre les valeurs
848
+ moyennes”, Acta Math. 30, 175 (1906). doi.org/10.1007/BF02418571
849
+ [23] J. W. Moffat, “Noncommutative and non-anticommutative quantum field theory”,
850
+ Phys. Lett. B 506(1-2), 193 (2001). doi.org/10.1016/S0370-2693(01)00409-9
851
+ [24] A. Smailagic and E. Spallucci, “Feynman path integral on the non-commutative
852
+ plane”,
853
+ J. Phys. A: Math. Gen. 36(33),
854
+ L467 (2003). doi.org/10.1088/0305-
855
+ 4470/36/33/101
856
+ [25] A. Smailagic and E. Spallucci, “UV divergence-free QFT on noncommutative plane”,
857
+ J. Phys. A: Math. Gen. 36(39), L517 (2003). doi.org/10.1088/0305-4470/36/39/103
858
+ [26] A. Smailagic and E. Spallucci, “Lorentz invariance, unitarity and UV-finiteness of
859
+ QFT on noncommutative spacetime”, J. Phys. A: Math. Gen. 37(28), 7169 (2004).
860
+ doi.org/10.1088/0305-4470/37/28/008
861
+ [27] Kh.
862
+ Nouicer,
863
+ “Quantum-corrected
864
+ black
865
+ hole
866
+ thermodynamics
867
+ to
868
+ all
869
+ orders
870
+ in
871
+ the
872
+ Planck
873
+ length”,
874
+ Phys.
875
+ Lett.
876
+ B
877
+ 626(2-3),
878
+ 63
879
+ (2007).
880
+ doi.org/10.1016/j.physletb.2006.12.072
881
+ [28] Kh. Nouicer, “Black hole thermodynamics to all orders in the Planck length in ex-
882
+ tra dimensions”, Class. Quantum Grav. 24(23), 5917 (2007). doi.org/10.1088/0264-
883
+ 9381/24/23/014
884
+ [29] C. Quesne and V. M. Tkachuk, “Composite system in deformed space with minimal”,
885
+ Phys. Rev. A 81, 012106 (2010). doi.org/ 10.1103/PhysRevA.81.012106
886
+ [30] T. S. Quintela Jr., J. C. Fabris and J. A. Nogueira “The Harmonic Oscillator in
887
+ the Classical Limit of a Minimal-Length Scenario”, Braz. J. Phys. 46, 777 (2016).
888
+ doi.org/10.1007/s13538-016-0457-9
889
+ [31] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging
890
+ by means of two-photon quantum entanglement”, Phys. Rev. A 52(5), R3429 (1995).
891
+ doi.org/10.1103/PhysRevA.52.R3429
892
+ 13
893
+
894
+ [32] M. Hemeda, H. Alshal, A. F. Ali, E. C. Vagenas “Gravitational Observations and
895
+ LQGUP”, [arXiv:gr-qc/arXiv:2208.04686v1]. doi.org/10.48550/arXiv.2208.04686
896
+ [33] S. Sen, S. Bhattacharyya and S. Gangopadhyay “Probing the generalized uncertainty
897
+ principle through quantum noises in optomechanical systems”, Class. Quantum Grav.
898
+ 39(7), 075020 (2022). doi.org/10.1088/1361-6382/abe758
899
+ [34] S. Bhattacharyya, S. Gangopadhyay and A. Saha “Generalized uncertainty principle
900
+ in resonant detectors of gravitational waves”, Class. Quantum Grav. 37(19), 195006
901
+ (2020). doi.org/10.1088/1361-6382/abac45
902
+ [35] M. F. Gusson,
903
+ A. Oakes O. Gon¸calves,
904
+ R. O. Francisco,
905
+ R. G. Furtado,
906
+ J. C. Fabris, J. A. Nogueira “Dirac δ-function potential in quasiposition rep-
907
+ resentation of a minimal-length scenario”, Eur. Phys. J. C 78, 179 (2018).
908
+ doi.org/10.1140/epjc/s10052-018-5659-6
909
+ [36] K. Zeynali, F. Darabi and H. Motavalli, “Probing Planck-scale physics with quantum
910
+ optics”, Nat. Phys. 12, 033 (2012). doi.org/10.1088/1475-7516/2012/12/033
911
+ [37] I.
912
+ Pikovski,
913
+ M.
914
+ R.
915
+ Vanner,
916
+ M Aspelmeyer,
917
+ M.
918
+ S.
919
+ Kim
920
+ and
921
+ C.
922
+ Brukner
923
+ “Probing Planck-scale physics with quantum optics”, Nat. Phys. 8, 393 (2012).
924
+ doi.org/10.1038/nphys2262
925
+ [38] F. L. Antonacci Oakes, R. O. Francisco, J. C. Fabris and J. A. Nogueira, “Ground
926
+ state of the hydrogen atom via Dirac equation in a minimal-length scenario”, Eur.
927
+ Phys. J. C 73, 2495 (2013). doi.org/10.1140/epjc/s10052-013-2495-6
928
+ 14
929
+
7tFLT4oBgHgl3EQfAi4b/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9E2T4oBgHgl3EQf8Qn_/content/tmp_files/2301.04218v1.pdf.txt ADDED
@@ -0,0 +1,1993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Diffusion Models For Stronger Face Morphing
3
+ Attacks
4
+ Zander Blasingame and Chen Liu
5
+ Department of Electrical and Computer Engineering
6
+ Clarkson University, Potsdam, New York, USA
7
+ {blasinzw; cliu}@clarkson.edu
8
+ Abstract—Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the
9
+ biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby
10
+ presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed
11
+ image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing
12
+ attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and improve the ability of the morphing attack
13
+ to represent characteristics from both identities. We demonstrate the high fidelity of the proposed attack by evaluating its visual fidelity
14
+ via the Fr´echet Inception Distance. Extensive experiments are conducted to measure the vulnerability of FR systems to the proposed
15
+ attack. The proposed attack is compared to two state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks.
16
+ The ability of a morphing attack detector to detect the proposed attack is measured and compared against the other attacks.
17
+ Additionally, a novel metric to measure the relative strength between morphing attacks is introduced and evaluated.
18
+ Index Terms—Biometrics, Morphing Attack, GAN, Vulnerability Analysis, Face Recognition, Diffusion Models
19
+ !
20
+ 1
21
+ INTRODUCTION
22
+ F
23
+ ACE recognition (FR) systems have become one of the most
24
+ common biometric modalities used for identity verification
25
+ across a wide range of modern-day applications, from trivial tasks
26
+ such as unlocking a smart phone to official businesses such as
27
+ banking, e-commerce, and law enforcement. Unfortunately, while
28
+ FR systems can often reach low false rejection and acceptance
29
+ rates [1], they are especially vulnerable to a new class of emerging
30
+ attacks, known as the face morphing attack [2], [3], [4], [5]. The
31
+ face morphing attack aims to compromise a fundamental property
32
+ of biometric security, i.e., the one-to-one mapping from biometric
33
+ data to the associated identity. This compromise is achieved
34
+ by creating a morphed face which contains biometric data of
35
+ both identities in such a manner that presenting one morphed
36
+ image triggers a match with two disjoint identities, violating the
37
+ fundamental principle.
38
+ This poses a significant threat towards FR systems, especially
39
+ the applications of e-passports and border access. Notably the e-
40
+ passport scenario, wherein the applicant submits a passport photo
41
+ either in digital or printed form, is especially vulnerable to face
42
+ morphing attack. Moreover, digital morphs can be easily generated
43
+ hence offer a low-cost attack in the digital domain. It is not un-
44
+ common for a digital image submitted to a document submission
45
+ portal to not have its authenticity verified by a human agent [6].
46
+ Critically, an adversary who is blacklisted from accessing a certain
47
+ system can create a morph with a non-blacklisted individual to
48
+ gain access. This is especially relevant for countries such as New
49
+ Zealand, Estonia, and Ireland, where e-passports are used for both
50
+ issuance and renewal of documents [7]. In 2018 a German activist
51
+ was reported to have received a German passport with a photo of
52
+ his faced morphed with an Italian politician [8].
53
+ Due to the severity of face morphing attacks, an abundance of
54
+ algorithms have been developed to identify these attacks [2], [9],
55
+ [10], [11]. Methods for Morphing Attack Detection (MAD) can
56
+ be broadly characterized into two classes based on the manner in
57
+ which they obtain the features used for detection, i.e., handcrafted
58
+ features or deep features. Handcrafted features are used in the
59
+ so-called classical algorithms which seek to find evidence of the
60
+ morphing attack in the pixel domain, whether that is evidence
61
+ of degradation in image quality [10], residual noise left from
62
+ the morphing attack [12], or local geometric features such as
63
+ Local Binary Patterns (LBP) [13], Binarized Statisical Image
64
+ Feature (BSIF) [14], and Local Phase Quantitization (LPQ) [4].
65
+ Conversely, deep features are used with deep learning based algo-
66
+ rithms. These features are often extracted by a deep Convolutional
67
+ Neural Network (CNN) often from a pre-trained network such as
68
+ ResNet150 [6], [15]. Generally, the best success has been found
69
+ using deep CNN-based features in comparison to handcrafted
70
+ features on both digital and print-scan face data [16].
71
+ Comparatively, there has been less research on face mor-
72
+ phing attack algorithms. Similar to the two classes of MAD
73
+ algorithms, there exist two broad classes of face morphing at-
74
+ tacks: Landmark-based attacks and deep learning-based attacks.
75
+ Landmark-based morphing attacks use local features to create the
76
+ morphed image by warping and aligning the landmarks within
77
+ each face to then create a morphed face by pixel-wise compositing.
78
+ Landmark-based attacks have been shown to be effective against
79
+ FR systems [17]. Recent work has enhanced the effectiveness of
80
+ Landmark-based attacks by using adversarial perturbation [18].
81
+ In contrast, deep learning-based morphing attacks use a machine
82
+ learning model to embed the original bona fide faces into a
83
+ semantic representation which are then combined to produce a
84
+ new representation which should contain information from both
85
+ identities. This is new representation is then used to generate a
86
+ morphed face.
87
+ However, nearly all state-of-the-art deep learning based morph
88
+ methods were based on the Generative Adversarial Network
89
+ arXiv:2301.04218v1 [cs.CV] 10 Jan 2023
90
+
91
+ 2
92
+ (a) Identity a
93
+ (b) Morphed image
94
+ (c) Identity b
95
+ Fig. 1: Diffusion-based morphing attack. Samples are from FRLL dataset.
96
+ (GAN) framework [19], [20] with the primary difference being
97
+ architectural improvements such as using the StyleGAN2 [21]
98
+ architecture over the vanilla GAN architecture or changes to
99
+ the morph generation pipeline as seen in the Morphing through
100
+ Identity Driven Prior GAN (MIPGAN) [22]. At the same time,
101
+ there exists a handful of alternative state-of-the-art deep generative
102
+ models which offer their own advantages in terms of visual
103
+ fidelity, semantic representation capabilities, and inference speed.
104
+ In particular, a class of generative models collectively known
105
+ as “Diffusion models” haven been shown to possess high visual
106
+ fidelity, beating even state-of-the-art GANs in visual fidelity [23],
107
+ at the cost of increased inference time. As visual fidelity and
108
+ semantic representation abilities are far more important for the
109
+ potency of a potential morphing attack than inference speed, we
110
+ present a novel methodology for generating strong face morphing
111
+ attacks by leveraging Diffusion-based methods. Figure 1 shows a
112
+ morphed image generated by the proposed attack constructed from
113
+ two identities from the FRLL dataset [24]. We present a summary
114
+ of contributions of the proposed work as shown below:
115
+
116
+ We propose a novel method for generating morphed faces
117
+ by using a Diffusion-based model which calculates twin
118
+ embeddings, one for the semantic details and one for
119
+ the stochastic details, to generate images of high visual
120
+ fidelity.
121
+
122
+ The proposed morphing attack is evaluated against four
123
+ other morphing attacks by the Fr´echet Inception Distance,
124
+ a quantitative measure of visual fidelity.
125
+
126
+ We evaluated our proposed attack against four other mor-
127
+ phing attacks with extensive experiments assessing the
128
+ vulnerability of two FR systems across three different
129
+ datasets.
130
+
131
+ The proposed attack is further evaluated its ability to
132
+ evade detection from MAD algorithms trained against
133
+ other morphing attacks.
134
+
135
+ We introduce and evaluate a novel metric to measure the
136
+ relative strength from one morphing attack to another.
137
+
138
+ A small study on the impact of the pre-processing in
139
+ the FR pipeline on the vulnerability of FR systems to
140
+ morphing attacks is presented.
141
+
142
+ Four variants of the proposed morphing attack are com-
143
+ pared against each other, resulting in the creation of over
144
+ 10,000 new morphed images between them.
145
+ 2
146
+ PRIOR WORK
147
+ Several face morphing attacks have been developed by researchers
148
+ with the morph generating process generally using face land-
149
+ marks or deep learning. In particular we compare our proposed
150
+ Diffusion-based attack against four state-of-the-art morphing at-
151
+ tacks, two deep learning-based and two Landmark-based; namely,
152
+ the OpenCV, FaceMorpher, StyleGAN2, and MIPGAN-II face
153
+ morphing attacks. These were chosen as they represent several
154
+ types of morphing attacks and provide a substantial baseline to
155
+ measure the performance of the proposed Diffusion-based attack.
156
+ To the best of our knowledge all deep learning-based attacks
157
+ generate the morphed images via a type of GAN architecture [17],
158
+ [19], [22], [25].
159
+ 2.1
160
+ Landmark-Based Morphing Attacks
161
+ The FaceMorpher and OpenCV attacks were chosen to represent
162
+ the Landmark-based attacks as they are commonly used to repre-
163
+ sent this class of attack [11], [17], [26].
164
+ FaceMorpher is an open-source algorithm that uses the
165
+ STASM landmark detector [27], [28]. From the landmarks on the
166
+ images Delaunay triangles are formed, which are then warped and
167
+ blended together. The areas outside the landmarks are averaged,
168
+ typically introducing strong artifacts in the neck and hair regions
169
+ of the image [29].
170
+ OpenCV is a morphing attack which uses the open-source
171
+ OpenCV library with a 68-point annotator from the Dlib li-
172
+ brary [30]. The images and associated landmarks are used to form
173
+ Delaunay triangles. Then, in a similar manner to FaceMorpher,
174
+ the landmarks are warped and blended. In contrast to the approach
175
+ of FaceMorpher, the areas outside the landmarks do not consist
176
+ of an averaged image, but rather additional Delaunay triangles.
177
+ However, these morphs also exhibit strong artifacts outside the
178
+ facial area due to the missing landmarks [29].
179
+ 2.2
180
+ GAN-Based Morphing Attacks
181
+ As mentioned earlier, prior deep learning-based attacks have used
182
+ a GAN architecture for the morph generation process [26], [31].
183
+ GANs are a type of deep generative model which seeks to learn
184
+ the sampling process for some data distribution Pdata on X , i.e.,
185
+ given some simple distribution Z ∼ p(z) on Z, the generator G :
186
+ Z → X is to learn G(Z) ∼ Pdata. A discriminator, sometimes
187
+
188
+ 3
189
+ Fig. 2: Proposed architecture for Diffusion-based morphs, where the green traces indicate variables associated with identity a, likewise
190
+ red traces denote identity b, and blue traces for the morphed identity ab.
191
+ called the critic, D : X → [0, 1] is trained adversarially against
192
+ the generator in a minimax game described by
193
+ min
194
+ G max
195
+ D
196
+ E
197
+ x∼Pdata log D(x) +
198
+ E
199
+ z∼p(z) log(1 − (D ◦ G)(z)) (1)
200
+ where the discriminator attempts to get better at distinguishing
201
+ synthetic samples from genuine samples, while the generator tries
202
+ to get better at deceiving the discriminator. For a GAN-based mor-
203
+ phing attack it is necessary for an encoding algorithm E : X → Z
204
+ to exist, which can embed images in the latent space such that the
205
+ inversion has low distortion (G ◦ E)(x) ≈ x. The latent codes
206
+ for two identities are then averaged to produce a new latent code
207
+ representing the morphed face which is passed to the generator.
208
+ Notably, there exists a trade-off between the inversion distortion
209
+ and editability of the latent embeddings [32] Damer et al. proposed
210
+ to use the GAN architecture for generating morphs by combining
211
+ two latent codes encoded from two real identities to create a
212
+ morphed code [19]. This proposed attack, known as MorGAN,
213
+ was based on a modification to the vanilla GAN architecture
214
+ by the addition of an explicitly defined encoder architecture that
215
+ was trained jointly with the generator via a modified adversarial
216
+ loss formulation. Since then the StyleGAN2 [17] and MIPGAN-
217
+ II [22] attacks have improved upon the MorGAN formulation by
218
+ improving the GAN architecture, loss formulation, or encoding
219
+ algorithm.
220
+ StyleGAN2 morphs offer promising results as shown in Damer
221
+ et al. [19]. StyleGAN2 offers a host of improvements over the
222
+ standard GAN implementation that enables the architecture to
223
+ achieve state of the art image quality when generating high resolu-
224
+ tion images. The StyleGAN2 model was pre-trained on the Flickr-
225
+ Faces-HQ (FFHQ) dataset [33]. The faces were then cropped to
226
+ possess the same landmark alignment as in the FFHQ dataset.
227
+ Following the approach in [21], the images, xa, xb, are embedded
228
+ by optimizing an initial latent code through stochastic gradient
229
+ descent, minimizing the perceptual loss between the generated
230
+ image and target image. After each embedded latent code, za, zb,
231
+ is found, a morphed latent code is created by linearly interpolating
232
+ between the two, zab = lerp(za, zb; 0.5). Lastly, the interpolated
233
+ latent code is passed to the StyleGAN2 synthesis network to get
234
+ the morphed image xab. The StyleGAN2 morphs are strong when
235
+ used with images containing a uniform background, which makes
236
+ them especially powerful when used in conjunction with the Face
237
+ Research Lab London (FRLL) dataset [24].
238
+ Fig. 3: The forward and reverse Diffusion processes.
239
+ MIPGAN-II proposes an extension on StyleGAN2 by adding
240
+ an optimization procedure for the latent vector used in creating
241
+ the morphed image [22]. The StyleGAN2 portion of MIPGAN-
242
+ II was pre-trained on the FFHQ dataset. The two bona fide
243
+ images are embedded into the latent space using the StyleGAN2
244
+ optimization procedure. The latent code is initially constructed
245
+ as z0 = lerp(za, zb; 0.5). For n epochs the latent code is
246
+ optimized to minimize a combination of perceptual loss, identity
247
+ loss, identity difference loss, and Multi-Scale Structural Similarity
248
+ loss, finding a fully optimized latent zn. The latent code zn is then
249
+ passed to the StyleGAN2 synthesis network to create the morphed
250
+ image. As MIPGAN-II presents a refinement on StyleGAN2 for
251
+ the application of morphing attack, it possesses similar advantages
252
+ and disadvantages that StyleGAN2 morphs offer.
253
+ 3
254
+ DIFFUSION-BASED MORPHING ATTACK
255
+ Unlike GANs which learn the sampling process for the data
256
+ distribution through adversarial training between the generator
257
+ and the critic, diffusion-based and score-based generative models
258
+ learn the data distribution by learning a denoising process for
259
+ varying noise levels. Diffusion-based models can achieve image
260
+ fidelity superior to state-of-the-art generative models, matching
261
+ even the acclaimed BigGAN-deep [34] model, while maintaining
262
+ better coverage of the data distribution [23]. For these reasons we
263
+ propose a morphing attack that uses Diffusion-based methods as
264
+ the generative process.
265
+ 3.1
266
+ Diffusion Models
267
+ Given data distribution q(x0) on data space X , the goal is to
268
+ learn a model pθ(x0) approximating q(x0) which can be easily
269
+ sampled. Denoising Diffusion Probabilistic Models (DDPMs) [35]
270
+ are latent variable models of the form
271
+ pθ(x0) =
272
+
273
+ pθ(x0:T ) dx1:T
274
+ (2)
275
+
276
+ (x, x)
277
+ lz(za, Zb)
278
+ E(xo)
279
+ q(XtXt-1, z)
280
+ lx(x(), x)
281
+ pe(Xt-1|xt, z)XT
282
+ Xt
283
+ Xt-1
284
+ X04
285
+ Algorithm 1 Diffusion Morphing Algorithm.
286
+ Require: Bona fide images, x(a)
287
+ 0 , x(b)
288
+ 0
289
+ ∈ X , image space preprocessing function, ξ : X ×X → X , image space interpolation function,
290
+ ℓX : X × X × [0, 1] → X , and latent space interpolation function, ℓZ : Z × Z × [0, 1] → Z.
291
+ procedure DIFFUSIONMORPH(x(a)
292
+ 0 , x(b)
293
+ 0 )
294
+ za ← E(x(a)
295
+ 0 )
296
+ ▷ Calculate semantic latent codes
297
+ zb ← E(x(b)
298
+ 0 )
299
+ x(a)
300
+ 0
301
+ ← ξ(x(a)
302
+ 0 , x(b)
303
+ 0 )
304
+ ▷ Preprocess images passed to stochastic encoder
305
+ x(b)
306
+ 0
307
+ ← ξ(x(b)
308
+ 0 , x(a)
309
+ 0 )
310
+ t ← 0
311
+ while t < T do
312
+ x(a)
313
+ t+1 ← √αt+1f (t)
314
+ θ (x(a)
315
+ t
316
+ , za) + √1 − αt+1ϵ(t)
317
+ θ (x(a)
318
+ t
319
+ , za)
320
+ ▷ Forward pass of diffusion algorithm
321
+ x(b)
322
+ t+1 ← √αt+1f (t)
323
+ θ (x(b)
324
+ t , zb) + √1 − αt+1ϵ(t)
325
+ θ (x(b)
326
+ t , zb)
327
+ t ← t + 1
328
+ end while
329
+ x(ab)
330
+ T
331
+ ← ℓX (x(a)
332
+ T , x(b)
333
+ T ; 0.5)
334
+ ▷ Stochastic code interpolation
335
+ zab ← ℓZ(za, zb; 0.5)
336
+ ▷ Semantic code interpolation
337
+ t ← T
338
+ while t > 0 do
339
+ x(ab)
340
+ t−1 ← √αt−1f (t)
341
+ θ (x(ab)
342
+ t
343
+ , zab) + √1 − αt−1ϵ(t)
344
+ θ (x(ab)
345
+ t
346
+ , zab)
347
+ ▷ Diffusion generative process
348
+ t ← t − 1
349
+ end while
350
+ return x(ab)
351
+ 0
352
+ end procedure
353
+ where {xt}T
354
+ t=1 ∈ X are latent variables and T ∈ N. The reverse
355
+ process is a Markov chain starting at pθ(xT ) = N(0, I), i.e., a
356
+ normal distribution with mean vector 0 and variance I (the identity
357
+ matrix), with Gaussian transitions
358
+ pθ(x0:T ) = pθ(x0)
359
+ T
360
+
361
+ t=1
362
+ pθ(xt−1|xt)
363
+ (3)
364
+ The diffusion (forward) process is fixed to a Markov chain that
365
+ gradually adds Gaussian noise to the original sample x0 according
366
+ to variance schedule {βt}T
367
+ t=1, such that
368
+ q(x1:T , x0) =
369
+ T
370
+
371
+ t=1
372
+ q(xt|xt−1)
373
+ (4)
374
+ and q(xt|xt−1) = N(√1 − βtxt−1, βtI). See Figure 3 for an
375
+ illustration of this process. The transition probability p(xt−1|xt)
376
+ is likely to be very complex, unless the gap between t and t − 1 is
377
+ very small, i.e., T → ∞. In this case, p(xt−1|xt) can be modelled
378
+ as N(µ(t)
379
+ θ (xt), σt), where µ(t)
380
+ θ
381
+ : X → X is an estimator at step
382
+ t parameterized by θ. Ho et al. [35] proposes to use the following
383
+ form:
384
+ µ(t)
385
+ θ (xt) =
386
+ 1
387
+ √αt
388
+
389
+ xt −
390
+ βt
391
+ √1 − ¯αt
392
+ ϵ(t)
393
+ θ (xt)
394
+
395
+ (5)
396
+ where αt = 1 − βt, ¯αt = �t
397
+ s=1 αs, and ϵ(t)
398
+ θ
399
+ : X → X is a
400
+ function approximator parameterized by θ, which learns to predict
401
+ the noise added to x0 to get xt. This is achieved by using a U-Net,
402
+ a type of CNN consisting of several skip connections formed at
403
+ each resolution size in the architecture to model ϵ(t)
404
+ θ
405
+ [36].
406
+ Like with Variational Autoencoders, the model is trained by
407
+ optimizing the variational bound on the negative log likelihood:
408
+ E[− log pθ(x0)] ≤ E
409
+
410
+ − log pθ(xT ) −
411
+ T
412
+
413
+ t=1
414
+ log pθ(xt−1|xt)
415
+ q(xt|xt−1)
416
+
417
+ Relaxing the constraint that the inference process has to be
418
+ Markovian leads to another kind of diffusion model known as the
419
+ Denoising Diffusion Implicit Model (DDIM) as proposed by Song
420
+ et al. [37]. This model has the benefit of a deterministic generative
421
+ process such that:
422
+ xt−1 = √αt−1f (t)
423
+ θ (xt) +
424
+
425
+ 1 − αt−1ϵ(t)
426
+ θ (xt)
427
+ (6)
428
+ where
429
+ f (t)
430
+ θ (xt) =
431
+ 1
432
+ √αt
433
+ (xt −
434
+
435
+ 1 − αtϵ(t)
436
+ θ (xt))
437
+ (7)
438
+ which allows for deterministic embedding of the image x0 into a
439
+ latent representation xT . However, xT does not contain high-level
440
+ semantics, which is a necessary property for deep learning-based
441
+ morphing attacks.
442
+ 3.2
443
+ Diffusion Autoencoders
444
+ Preechakul et al. [38] proposed a Diffusion Autoencoder by
445
+ employing a conditional DDIM. The DDIM is conditioned on a
446
+ semantic representation z ∈ Z by modifying ϵ(t)
447
+ θ
448
+ to take z as an
449
+ additional input. Training is done via a simplified loss [35] defined
450
+ as:
451
+ L =
452
+ T
453
+
454
+ t=1
455
+ E
456
+ x0∼q(x0)
457
+ ϵt∼N (0,I)
458
+ ||ϵ(t)
459
+ θ (xt, z) − ϵt||2
460
+ 2
461
+ (8)
462
+ Therefore, Equation (6) functions as a decoder network from latent
463
+ code (xT , z). Let E : X → Z be the semantic encoder network
464
+ such that
465
+ z = E(x0)
466
+ which
467
+ provides
468
+ the
469
+ information
470
+ necessary
471
+ for
472
+ decoder
473
+ pθ(xt−1|xt, z) to properly denoise images. Likewise, the stochas-
474
+ tic encoder can be thought of as a reversal of Equation (6) such
475
+ that
476
+ xt+1 = √αt+1f (t)
477
+ θ (xt, z) +
478
+
479
+ 1 − αt+1ϵ(t)
480
+ θ (xt, z)
481
+ (9)
482
+
483
+ 5
484
+ where xT is encouraged to encode only stochastic details left out
485
+ from the semantic representation z.
486
+ 3.3
487
+ Proposed Morphing Algorithm
488
+ We propose a novel process for the creation of morphed images
489
+ by employing both the stochastic and semantic encoders. In
490
+ particular, let xa, xb ∈ X be two bona fide images of identities
491
+ a, b, and let x(a)
492
+ 0
493
+ = xa and x(b)
494
+ 0
495
+ = b. Algorithm 1 outlines the
496
+ structure of the proposed Diffusion-based attack, hereafter called
497
+ the Diffusion attack for simplicity, with additional illustration
498
+ provided in Figure 2
499
+ Beyond the core components of the DDIM and semantic
500
+ encoder, three additional functions are added to the architec-
501
+ ture. Namely, these are the image space preprocessing func-
502
+ tion, ξ : X × X → X , image space interpolation function,
503
+ ℓX : X ×X ×[0, 1] → X , and latent space interpolation function,
504
+ ℓZ : Z × Z × [0, 1] → Z.
505
+ The interpolation functions are used to interpolate between
506
+ the semantic and stochastic values by some factor γ ∈ [0, 1].
507
+ The image space preprocessing function is used to prepare the
508
+ image passed to the semantic encoder. The simplest form of
509
+ the interpolation function is the linear interpolation function,
510
+ lerp(a, b; γ) = γa+(1−γ)b, where linear interpolation was found
511
+ to be the best choice for ℓZ. However, for ℓX Song et al. [37]
512
+ suggests the usage of spherical linear interpolation. For a vector
513
+ space V and two vectors u, v ∈ V the spherical interpolation by
514
+ a factor of γ is given as
515
+ slerp(u, v; γ) = sin((1 − γ)θ)
516
+ sin θ
517
+ u + sin(γθ)
518
+ sin θ v
519
+ (10)
520
+ where θ = arccos(u·v)
521
+ ||u|| ||v|| .
522
+ While the semantic code provides most of the fundamental
523
+ information, such as positioning of facial features, the stochastic
524
+ code is used to provide information on the details not explicitly
525
+ associated with the identity, but are necessary for realism of the
526
+ generated image. By altering the stochastic code, details such as
527
+ direction of strands of hair, clothing, etc., are altered whilst the
528
+ identity of the image is preserved [38]. Unlike the rather straight-
529
+ forward nature of linearly interpolating between the semantic
530
+ codes to produce an image with key identifying characteristics of
531
+ both identities, the nature of the stochastic code can lead to images
532
+ of low visual fidelity if the interpolation is not done carefully.
533
+ In particular, linear interpolation between two stochastic codes
534
+ is does guarantee a smooth interpolation between the stochastic
535
+ details in the images. For this reason the preprocessing function,
536
+ ξ, is used to prepare the image passed to the stochastic encoder.
537
+ One strategy is to “pre-morph” the image when extracting the
538
+ stochastic details, i.e., ξ performs an image space morph of the
539
+ image with the goal of reducing the artifacts induced by stochastic
540
+ interpolation.
541
+ 4
542
+ EXPERIMENTAL SETUP
543
+ To evaluate the effectiveness of the proposed morphing attack, the
544
+ attack is evaluated on three datasets against two different state-of-
545
+ the-art FR systems. All training, optimization, and evaluation was
546
+ conducted on a system with dual Intel Xeon Silver 4114 CPUs
547
+ and a NVIDIA Tesla V100 32GB GPU with CUDA version 10.1
548
+ and CUDNN version 8.4. The proposed morphing attack, MAD
549
+ algorithm, and the FR systems are implemented in PyTorch [39].
550
+ 4.1
551
+ Face Recognition Systems
552
+ In order to evaluate the strength of the proposed morphing attack,
553
+ two publicly available FR systems are used, specifically, the
554
+ FaceNet and VGGFace2 models. These models are widely used
555
+ and representative recognition systems with state-of-the-art face
556
+ verification performance [40], [41]. For both models the last fully
557
+ connected layer is used to provid a rich feature representation
558
+ of the input image. Then for a presented face, its feature vector
559
+ is compared with that of the feature vector belonging to the
560
+ target face. If the distance between these two representations is
561
+ sufficiently “small”, the presented face is then said to have the
562
+ same identity as the target face. The VGGFace2 model improves
563
+ upon acclaimed VGGFace [42] by using an improved training
564
+ dataset, also called VGGFace2. Cao et al. [40] present the SENet
565
+ architecture—the Squeeze and Excitation Network (SENet) was
566
+ introduced by Hu et al. [43]—as the optimal choice when used
567
+ with the VGGFace2 dataset. Google’s FaceNet model consists of
568
+ an Inception-ResNet V1 architecture which is pre-trained on the
569
+ VGGFace2 dataset [41].
570
+ Additionally, the two FR systems use a different pre-
571
+ processing pipeline. As all datasets the images and generated
572
+ morphs are cropped as to be appropriate for passport photos, a
573
+ face extractor such as MTCNN [44], is omitted in the verification
574
+ pipeline. The FaceNet model resizes the image such that the short
575
+ side of the image is 180 pixels long and then the image is cropped
576
+ to a 160 × 160 resolution. Lastly, the images are normalized to
577
+ [−1, 1]. The VGGFace2 model resizes the image such that the
578
+ short side of the image is 256 pixels long and then crops the
579
+ image to 224 × 224 pixels. The mean RGB vector1 is subtracted
580
+ from the cropped image to normalize the image.
581
+ 4.2
582
+ Datasets
583
+ In this work, the FERET [45], FRLL [24], and FRGC v2.0 [46]
584
+ datasets were used to evaluate the proposed technique, as they
585
+ are commonly used in MAD with a large number of different
586
+ identities [17], [26]. Notably, the FRLL dataset consists of high
587
+ quality close-up frontal images at a 1350 × 1350 resolution
588
+ with 189 facial landmarks—a large number of landmarks. The
589
+ StyleGAN2, MIPGAN-II, and diffusion models were all trained on
590
+ the FFHQ dataset, which contains 70,000 images at a 1024×1024
591
+ resolution [33]. Morphs using OpenCV, FaceMorpher, and Style-
592
+ GAN2 were created by Sarkar et al. [17] on the FRLL, FERET,
593
+ and FRGC datasets. Additionally, Zhang et al. [22] created morphs
594
+ via MIPGAN-II on the three datasets.
595
+ In order to create a morphed face, two component identities are
596
+ needed. Naturally, if the two component identities are disparate,
597
+ the resulting morph is likely to be very weak. To rectify this and
598
+ for evaluation purposes the component identity pairs were selected
599
+ by following the existing protocol offered by Sarkar et al. [17].
600
+ These pairings resulted in 1222 unique morphs on FRLL, 964 on
601
+ FRGC, and 529 on FERET.
602
+ 5
603
+ RESULTS
604
+ The proposed morphing attack is compared to state-of-the-art
605
+ techniques drawing from both GAN-based and Landmark-based
606
+ methods. The effectiveness of the proposed method is quantita-
607
+ tively measured on three fronts, these are: the visual fidelity of
608
+ 1. The mean vector is specifically ⟨131.0912, 103.8827, 91.4953⟩ for the
609
+ red, green, and blue channels.
610
+
611
+ 6
612
+ (a) Identity a
613
+ (b) OpenCV
614
+ (c) StyleGAN2
615
+ (d) Diffusion
616
+ (e) MIPGAN-II
617
+ (f) FaceMorpher
618
+ (g) Identity b
619
+ Fig. 4: Different generated morphs from two identities from the FRLL dataset.
620
+ (a) Diffusion
621
+ (b) MIPGAN-II
622
+ Fig. 5: Comparison of Diffusion and MIPGAN-II morphed faces
623
+ on FRGC. Images are resized to 256 × 256 and cropped to 224 ×
624
+ 224 to match VGGFace2 pre-processing pipeline.
625
+ the generated morphed images, the vulnerability of state-of-the-art
626
+ FR systems to the morphing attack, and the detection potential of
627
+ the morphing attack, respectively. Furthermore, an exploration of
628
+ interpolation techniques for the stochastic latent code is provided.
629
+ 5.1
630
+ Evaluation of Visual Fidelity
631
+ The visual fidelity of the Diffusion attack is compared against
632
+ other morphing attacks. Whilst on first glance it may appear that
633
+ the ability to deceive a FR system should imply a high level of
634
+ visual fidelity, this is not a simple assertion. We posit two reasons
635
+ for this discrepancy:
636
+ 1)
637
+ The image pre-processing pipeline for an FR system may
638
+ crop out a significant portion of artifacts in the original
639
+ morphed image.
640
+ 2)
641
+ The FR system is vulnerable to forms of adversarial
642
+ attacks which can degrade the performance of the FR sys-
643
+ tem while injecting noticeable artifacts into the morphed
644
+ image.
645
+ This can lead to a situation wherein the FR system is fooled by a
646
+ morphed image; however, it would be trivial for a human agent to
647
+ TABLE 1: FID across different morphing attacks. Lower is better.
648
+ Morphing Attack
649
+ FRLL
650
+ FRGC
651
+ FERET
652
+ StyleGAN2
653
+ 45.19
654
+ 86.41
655
+ 41.91
656
+ FaceMorpher
657
+ 91.97
658
+ 88.14
659
+ 79.58
660
+ OpenCV
661
+ 85.71
662
+ 100.02
663
+ 91.94
664
+ MIPGAN-II
665
+ 66.41
666
+ 115.96
667
+ 70.88
668
+ Diffusion
669
+ 42.63
670
+ 64.16
671
+ 50.45
672
+ notice the artifacts present in the image. Moreover, a deep learning
673
+ system could be specifically trained to notice such artifacts, greatly
674
+ reducing the potential of such an attack to go undetected.
675
+ To quantitatively assess the visual fidelity of the generated
676
+ images the Fr´echet Inception Distance (FID) is employed, as it has
677
+ shown to correlate well with human assessment of fidelity [47].
678
+ The FID is a measure of distance between the generated and
679
+ target distributions, therefore, the lower the FID metric the more
680
+ similar the generated distribution is to the target distribution which
681
+ correlates well with visual fidelity. The metric is defined as the
682
+ Fr´echet distance, or 2-Wasserstein metric2, between two Gaussian
683
+ distributions each representing the activations the deepest layer of
684
+ an Inception v3 network induced by images from the generated
685
+ and target distributions.
686
+ Table 1 shows the FID metric between the generated images
687
+ from different morphing attacks and bona fide samples from
688
+ the dataset the morphing attack is drawn from. The FID met-
689
+ ric is calculated using pytorch-fid [48] Morphed images
690
+ generated from the Diffusion attack generally had the lowest
691
+ FID with the StyleGAN2-based attack following closely behind.
692
+ Both Landmark-based morphs—OpenCV and FaceMorpher—had
693
+ noticeably higher FIDs than the deep learning-based morphs.
694
+ These results correlate well with visual inspection of the morphs as
695
+ both Figure 4b and Figure 4f exhibit prominent artifacts outside
696
+ the central face region. Likewise, the MIPGAN-II attack seems
697
+ to struggle with some distortion outside the central face region,
698
+ see Figure 4e. Interestingly, on the FRLL dataset the StyleGAN2
699
+ morphing pipeline consistently darkens morphs relative to its com-
700
+ ponent images; however, the visual fidelity is relatively high albeit
701
+ with noticeable darkening. Importantly, stochastic details, such as
702
+ hair, seem to be modelled well by the Diffusion attack whereas
703
+ other attacks distort such details, the OpenCV, FaceMorpher, and
704
+ MIPGAN-II attacks, or present details that have little similarity
705
+ to both identities, the StyleGAN2 attack. While exhibiting the far
706
+ less visual artifacts than other morphing techniques, the Diffusion
707
+ attack does tend to slightly smooth out the skin texture. Overall,
708
+ the Diffusion attack exhibits the highest consistent visual fidelity
709
+ among all the presented attacks.
710
+ Strangely, MIPGAN-II exhibited a much higher FID than the
711
+ StyleGAN2 morphs. This is a surprising result as the MIPGAN-
712
+ II attack was positioned as an improvement over the StyleGAN2
713
+ attack. Figure 5 compares two morphed faces generated by the
714
+ 2. The 2-Wasserstein metric between two probability measures µ, ν with
715
+ finite moments on Rn is defined as
716
+ W2(µ, ν) =
717
+
718
+ inf
719
+ π∈Π(µ,ν)
720
+
721
+ Rn×Rn ||x − y||2
722
+ 2 dπ(x, y)
723
+ � 1
724
+ 2
725
+ where Π(µ, ν) is the set of all distributions with marginals µ and ν.
726
+
727
+ 二二7
728
+ TABLE 2: The APCER at specific BPCER values. Higher is better.
729
+ Dataset
730
+ FR System
731
+ Morphing Attack
732
+ APCER @ BPCER = 0.1%
733
+ APCER @ BPCER = 1%
734
+ APCER @ BPCER = 5%
735
+ FRLL
736
+ FaceNet
737
+ StyleGAN2
738
+ 0.99
739
+ 0.05
740
+ 0
741
+ FRLL
742
+ FaceNet
743
+ FaceMorpher
744
+ 2.25
745
+ 0.14
746
+ 0.05
747
+ FRLL
748
+ FaceNet
749
+ OpenCV
750
+ 3.24
751
+ 0.33
752
+ 0
753
+ FRLL
754
+ FaceNet
755
+ MIPGAN-II
756
+ 8.87
757
+ 0.47
758
+ 0.09
759
+ FRLL
760
+ FaceNet
761
+ Diffusion
762
+ 8.83
763
+ 0.99
764
+ 0.23
765
+ FRLL
766
+ VGGFace2
767
+ StyleGAN2
768
+ 0.05
769
+ 0.05
770
+ 0
771
+ FRLL
772
+ VGGFace2
773
+ FaceMorpher
774
+ 1.36
775
+ 1.08
776
+ 0.23
777
+ FRLL
778
+ VGGFace2
779
+ OpenCV
780
+ 2.35
781
+ 2.11
782
+ 0.28
783
+ FRLL
784
+ VGGFace2
785
+ MIPGAN-II
786
+ 1.31
787
+ 0.99
788
+ 0.23
789
+ FRLL
790
+ VGGFace2
791
+ Diffusion
792
+ 2.68
793
+ 2.07
794
+ 0.52
795
+ FRGC
796
+ FaceNet
797
+ StyleGAN2
798
+ 74.04
799
+ 36.69
800
+ 17.73
801
+ FRGC
802
+ FaceNet
803
+ FaceMorpher
804
+ 87.9
805
+ 38.85
806
+ 14.9
807
+ FRGC
808
+ FaceNet
809
+ OpenCV
810
+ 84.1
811
+ 31.43
812
+ 11.36
813
+ FRGC
814
+ FaceNet
815
+ MIPGAN-II
816
+ 96.54
817
+ 61.9
818
+ 33.48
819
+ FRGC
820
+ FaceNet
821
+ Diffusion
822
+ 91.73
823
+ 48.86
824
+ 24.95
825
+ FRGC
826
+ VGGFace2
827
+ StyleGAN2
828
+ 81.42
829
+ 46.22
830
+ 26.7
831
+ FRGC
832
+ VGGFace2
833
+ FaceMorpher
834
+ 95.42
835
+ 63.65
836
+ 38.18
837
+ FRGC
838
+ VGGFace2
839
+ OpenCV
840
+ 95.31
841
+ 64.62
842
+ 39.4
843
+ FRGC
844
+ VGGFace2
845
+ MIPGAN-II
846
+ 91.92
847
+ 57.8
848
+ 30.84
849
+ FRGC
850
+ VGGFace2
851
+ Diffusion
852
+ 93.71
853
+ 58.25
854
+ 32.18
855
+ FERET
856
+ FaceNet
857
+ StyleGAN2
858
+ 15.65
859
+ 9.35
860
+ 2.49
861
+ FERET
862
+ FaceNet
863
+ FaceMorpher
864
+ 10.71
865
+ 5.1
866
+ 0.91
867
+ FERET
868
+ FaceNet
869
+ OpenCV
870
+ 8.79
871
+ 3.06
872
+ 0.17
873
+ FERET
874
+ FaceNet
875
+ MIPGAN-II
876
+ 21.03
877
+ 10.77
878
+ 2.21
879
+ FERET
880
+ FaceNet
881
+ Diffusion
882
+ 24.04
883
+ 13.95
884
+ 4.99
885
+ FERET
886
+ VGGFace2
887
+ StyleGAN2
888
+ 54.08
889
+ 18.42
890
+ 5.73
891
+ FERET
892
+ VGGFace2
893
+ FaceMorpher
894
+ 80.5
895
+ 32.65
896
+ 12.7
897
+ FERET
898
+ VGGFace2
899
+ OpenCV
900
+ 81.01
901
+ 32.6
902
+ 12.87
903
+ FERET
904
+ VGGFace2
905
+ MIPGAN-II
906
+ 66.5
907
+ 18.14
908
+ 5.84
909
+ FERET
910
+ VGGFace2
911
+ Diffusion
912
+ 80.9
913
+ 35.2
914
+ 14.34
915
+ Diffusion and MIPGAN-II attacks on the FRGC dataset. Numer-
916
+ ous high frequency artifacts are present in Figure 5b, particularly,
917
+ near the hairline and transition between hair and the background.
918
+ Comparing Figure 5a and Figure 5b the hair generated by the
919
+ MIPGAN-II attack looks unnatural with a strange texture as
920
+ though an image sharpening filter has been applied to the image,
921
+ greatly enhancing the magnitude of high frequency content, which
922
+ aligns with the observation in Figure 4. Moreover, the MIPGAN-
923
+ II images seem to be desaturated when compared to images
924
+ produced by other attacks leading to a washed out appearance.
925
+ Perhaps the low visual fidelity can be explained by the identity
926
+ loss overpowering the perceptual quality loss leading to morphed
927
+ images with low visual fidelity but high effectiveness against FR
928
+ systems.
929
+ 5.2
930
+ Vulnerability of FR Systems
931
+ The strength of the proposed face morphing algorithm is further
932
+ evaluated by measuring the ability of the morph to fool a FR
933
+ system. The attack success is quantitatively verified against two
934
+ state-of-the-art FR systems. To ensure a valid comparison between
935
+ the five different morphing attacks the same pairs of component
936
+ identities were used in evaluating every morphing attack, i.e., for
937
+ every pair of component identities a morphed image was created
938
+ for each of the five attacks. For both the FaceNet and VGGFace2
939
+ FR systems the False Match Rate (FMR) is set at 0.1% following
940
+ the guidelines of Frontex [49]. Additionally, the distance between
941
+ faces is measured using the L2 distance between the outputs of
942
+ the FR model.
943
+ The vulnerability of FR systems to morphing attacks is as-
944
+ sessed by comparing the error rates in detection, specifically,
945
+ the Attack Presentation Classification Error Rate (APCER)3 is
946
+ measured at specific Bona fide Presentation Classification Error
947
+ Rate (BPCER)4 values. In Table 2 the APCER values for the five
948
+ different morphing attacks is presented across all three datasets
949
+ evaluated on three different BPCER values of 0.1%, 1%, and 5%.
950
+ Due to a variety of factors—such as image quality and number
951
+ of bona fide images per identity—the results vary between the
952
+ different datasets; while there is some variance between both
953
+ FR systems, they tend to agree more closely. Noticeably, all
954
+ attacks performed rather poorly on the FRLL dataset, although
955
+ the Diffusion-based morphing attack performed the best among
956
+ them, which could be attributed to the limited number of bona
957
+ fide images per identity; for in the FRLL dataset there are only
958
+ two bona fide images per identity: a neutral face (used to create
959
+ the morph) and a smiling face. Both FR systems on the FRLL
960
+ dataset tend to give close relative rankings between the morphing
961
+ attacks with the StyleGAN2-based attack being noticeably weaker
962
+ than the rest. Both FR systems were much more vulnerable when
963
+ evaluated on the FRGC dataset. The MIPGAN-II attack performed
964
+ very well against FaceNet which makes sense as this technique
965
+ was refined on the FRGC dataset in particular [22]. The attack was
966
+ not as strong on VGGFace2 and instead that FR system was more
967
+ vulnerable to OpenCV and FaceMorpher, this could possibly be
968
+ attributed to the different pre-processing pipelines. The Diffusion-
969
+ based generally performs close to the top performer on either FR
970
+ system. As with FRGC, on the FERET dataset VGGFace2 is more
971
+ 3. APCER is the proportion of attack presentations incorrectly classified as
972
+ bona fide presentations.
973
+ 4. BPCER is the proportion of bona fide presentations incorrectly classified
974
+ as attack presentations.
975
+
976
+ 8
977
+ TABLE 3: MMPMR at FMR = 0.1% across diffrent morphing attacks. Higher is better.
978
+ FRLL
979
+ FRGC
980
+ FERET
981
+ Morphing Attack
982
+ FaceNet
983
+ VGGFace2
984
+ FaceNet
985
+ VGGFace2
986
+ FaceNet
987
+ VGGFace2
988
+ Geometric Mean
989
+ StyleGAN2
990
+ 4.69
991
+ 6.05
992
+ 0.18
993
+ 0.85
994
+ 0.54
995
+ 0.76
996
+ 1.10
997
+ FaceMorpher
998
+ 11.26
999
+ 36.4
1000
+ 0.51
1001
+ 9.15
1002
+ 2.3
1003
+ 10.78
1004
+ 6.02
1005
+ OpenCV
1006
+ 17.34
1007
+ 40.93
1008
+ 0.14
1009
+ 12.16
1010
+ 1.69
1011
+ 11.12
1012
+ 5.32
1013
+ MIPGAN-II
1014
+ 30.96
1015
+ 26.74
1016
+ 3.12
1017
+ 7.94
1018
+ 6
1019
+ 5.39
1020
+ 9.34
1021
+ Diffusion
1022
+ 28.14
1023
+ 35.37
1024
+ 2.68
1025
+ 8.47
1026
+ 6.47
1027
+ 13.03
1028
+ 11.13
1029
+ vulnerable to landmark-based attacks, OpenCV and FaceMorpher,
1030
+ than FaceNet. Diffusion-based morphs pose the greatest threat on
1031
+ FERET consistently having high APCER values. In general the
1032
+ following observations can be drawn from Table 2:
1033
+
1034
+ Among the five different attacks, FR systems are most vul-
1035
+ nerable to Diffusion attacks. Moreover, Diffusion attacks
1036
+ always rank in the top three in terms of performance.
1037
+
1038
+ FR systems are the least vulnerable to the StyleGAN2 at-
1039
+ tack. The StyleGAN2 attack is always outperformed by its
1040
+ successor, MIPGAN-II, and the other deep learning-based
1041
+ attack, Diffusion, while often falling behind landmark-
1042
+ based attacks.
1043
+ In addition to using the error rates to assess the vulnerability
1044
+ of FR systems the Mated Morphed Presentation Match Rate
1045
+ (MMPMR) [50] is used as a measure of vulnerability. Scherhag et
1046
+ al. [50] propose two variants of the MMPMR metric for the
1047
+ scenario in which there multiple bona fide images of an identity
1048
+ used in morph process, excluding the image used to create the
1049
+ morph, called the MinMax-MMPMR and ProdAvg-MMPMR.
1050
+ The MinMax-MMPMR metric is especially likely to increase the
1051
+ number of accepted morphs as the number of bona fide images
1052
+ per identity increases. Therefore, the ProdAvg-MMPMR is the
1053
+ specific MMPMR variant used to assess the vulnerability of FR
1054
+ systems, any mention hereafter to MMPMR refers specifically to
1055
+ ProdAvg-MMPMR unless stated otherwise.
1056
+ Let PM ∈ P(X) be the distribution of morphed images such
1057
+ that for some xab ∼ PM, xab denotes a morphed image made
1058
+ from identities a, b, where P(X) denotes the set of all probability
1059
+ measures on X . Let Pk ∈ P(X) denote the distribution of bona
1060
+ fide images of identity k. Then with abuse of notation Pk\xab is
1061
+ the distribution of bona fide images of identity k excluding those
1062
+ images used in creating the morph xab. The MMPMR metric for
1063
+ a particular threshold, γ > 0, equipped with FR system F : X →
1064
+ V is then defined as
1065
+ M(γ) =
1066
+ E
1067
+ xab∼PM
1068
+
1069
+
1070
+ k∈{a,b}
1071
+ E
1072
+ x∼Pk\xab
1073
+
1074
+ ||F(xab)−F(x)||2 < γ
1075
+ ��
1076
+ i.e., the expected success rate of the morphing attack to fool the
1077
+ FR system. The product term is the joint probability of successful
1078
+ verification of both identities
1079
+ Table 3 presents the MMPMR metric when the FMR is set
1080
+ at 0.1% for all datasets and FR systems. Interestingly, the FRLL
1081
+ dataset had the highest overall MMPMR metrics in contrast to
1082
+ the results from Table 2. This can likely be attributed to limited
1083
+ number of bona fide images per identity and FRLL in contrast
1084
+ with other datasets as the particular choice of MMPMR metric
1085
+ heavily punishes failed verifications in either identity, thus having
1086
+ only one possible image per identity could boost the metric for
1087
+ FRLL. On average the Diffusion attack greatly outperforms the
1088
+ TABLE 4: APCER at FMR = 0.1% across different margin sizes
1089
+ on the FaceNet FR system. Higher is Better.
1090
+ Margin Size
1091
+ Dataset
1092
+ Morphing Attack
1093
+ 0
1094
+ 20
1095
+ 40
1096
+ 80
1097
+ FRLL
1098
+ MIPGAN-II
1099
+ 54.84
1100
+ 56.53
1101
+ 57.18
1102
+ 58.03
1103
+ FRLL
1104
+ StyleGAN2
1105
+ 15.12
1106
+ 15.57
1107
+ 17.14
1108
+ 25.11
1109
+ FRLL
1110
+ FaceMorpher
1111
+ 74.48
1112
+ 75.26
1113
+ 73.86
1114
+ 47.91
1115
+ FRLL
1116
+ OpenCV
1117
+ 76.21
1118
+ 75.82
1119
+ 74.96
1120
+ 48.4
1121
+ FRLL
1122
+ Diffusion
1123
+ 51.25
1124
+ 54.47
1125
+ 57.07
1126
+ 59.02
1127
+ FERET
1128
+ MIPGAN-II
1129
+ 19.33
1130
+ 21.71
1131
+ 22.11
1132
+ 26.36
1133
+ FERET
1134
+ StyleGAN2
1135
+ 14.12
1136
+ 17.57
1137
+ 18.14
1138
+ 22.17
1139
+ FERET
1140
+ FaceMorpher
1141
+ 36.11
1142
+ 36.45
1143
+ 36.28
1144
+ 17.8
1145
+ FERET
1146
+ OpenCV
1147
+ 36.11
1148
+ 38.44
1149
+ 37.64
1150
+ 13.89
1151
+ FERET
1152
+ Diffusion
1153
+ 23.24
1154
+ 26.02
1155
+ 25.91
1156
+ 30.39
1157
+ FRGC
1158
+ MIPGAN-II
1159
+ 12.33
1160
+ 14.3
1161
+ 16.2
1162
+ 20.97
1163
+ FRGC
1164
+ StyleGAN2
1165
+ 7.18
1166
+ 8.71
1167
+ 9.74
1168
+ 14.42
1169
+ FRGC
1170
+ FaceMorpher
1171
+ 17.5
1172
+ 18.87
1173
+ 20.39
1174
+ 9.07
1175
+ FRGC
1176
+ OpenCV
1177
+ 17.02
1178
+ 18.47
1179
+ 19.91
1180
+ 6.6
1181
+ FRGC
1182
+ Diffusion
1183
+ 9.7
1184
+ 10.71
1185
+ 12.27
1186
+ 15.62
1187
+ other attacks; conversely, the Landmark-based attacks, on average,
1188
+ exhibit mediocre performance. In agreement with Table 2 the
1189
+ StyleGAN2 attack shows abysmal performance in comparison
1190
+ with the other attacks.
1191
+ 5.2.1
1192
+ The Effect of Pre-processing on a FR System
1193
+ The impact of the pre-processing pipeline on the vulnerability of
1194
+ a FR system is examined, in particular the cropping process is
1195
+ further explored. To study this an additional margin size is added
1196
+ to the image after a initial face extraction and cropping performed
1197
+ by MTCNN, such that a margin size N adds back at most N pixels
1198
+ to the cropped image in both dimensions. Therefore, the larger N
1199
+ is the less tightly cropped the image passed to the FR system
1200
+ is. Table 4 shows the illustrates the impact of the margin size
1201
+ on the APCER metric on the FaceNet FR system. Generally, as
1202
+ the margin size increases the performance of the Landmark-based
1203
+ attacks decreases and the performance of the deep learning-based
1204
+ attacks increases. As illustrated in Figure 4 the Landmark-based
1205
+ attacks have noticeable artifacts outside the central face region;
1206
+ conversely, the deep learning-based morphs have less artifacts in
1207
+ the outside regions and generally look more realistic to a human
1208
+ observer. This observation aligns the visual fidelity results from
1209
+ Table 1. Therefore, a MAD algorithm or FR system which uses
1210
+ less tightly cropped faces would be more resilient against attacks
1211
+ with visual artifacts outside the core face region.
1212
+ 5.2.2
1213
+ General Remarks on the Vulnerability Study
1214
+ The poor performance of the StyleGAN2 attack could be at-
1215
+ tributed to the darkening of images with light backgrounds, see
1216
+ Figure 4, and due to aliasing effects latent to the StyleGAN2
1217
+ generation pipeline which is addressed by Karras et al. [51].
1218
+
1219
+ 9
1220
+ TABLE 5: Ablation study on the impact morphing attack on validation accuracy.
1221
+ Training Attack
1222
+ Validation Attack
1223
+ Dataset
1224
+ Diffusion
1225
+ FaceMorpher
1226
+ MIPGAN-II
1227
+ OpenCV
1228
+ StyleGAN2
1229
+ Diffusion
1230
+ FaceMorpher
1231
+ MIPGAN-II
1232
+ OpenCV
1233
+ StyleGAN2
1234
+ FERET
1235
+ 
1236
+ 
1237
+ 
1238
+ 
1239
+ 
1240
+ 72.73
1241
+ 99.23
1242
+ 100
1243
+ 99.95
1244
+ 99.33
1245
+ FERET
1246
+ 
1247
+ 
1248
+ 
1249
+ 
1250
+ 
1251
+ 99.9
1252
+ 76.39
1253
+ 100
1254
+ 99.85
1255
+ 99.64
1256
+ FERET
1257
+ 
1258
+ 
1259
+ 
1260
+ 
1261
+ 
1262
+ 99.69
1263
+ 99.38
1264
+ 100
1265
+ 99.95
1266
+ 99.54
1267
+ FERET
1268
+ 
1269
+ 
1270
+ 
1271
+ 
1272
+ 
1273
+ 99.74
1274
+ 99.48
1275
+ 100
1276
+ 99.74
1277
+ 99.43
1278
+ FERET
1279
+ 
1280
+ 
1281
+ 
1282
+ 
1283
+ 
1284
+ 99.74
1285
+ 98.56
1286
+ 99.9
1287
+ 99.74
1288
+ 87.89
1289
+ FRGC
1290
+ 
1291
+ 
1292
+ 
1293
+ 
1294
+ 
1295
+ 75.89
1296
+ 99.98
1297
+ 99.97
1298
+ 99.9
1299
+ 99.93
1300
+ FRGC
1301
+ 
1302
+ 
1303
+ 
1304
+ 
1305
+ 
1306
+ 99.95
1307
+ 99.48
1308
+ 100
1309
+ 99.9
1310
+ 99.95
1311
+ FRGC
1312
+ 
1313
+ 
1314
+ 
1315
+ 
1316
+ 
1317
+ 99.83
1318
+ 99.85
1319
+ 99.82
1320
+ 99.8
1321
+ 99.85
1322
+ FRGC
1323
+ 
1324
+ 
1325
+ 
1326
+ 
1327
+ 
1328
+ 99.93
1329
+ 100
1330
+ 100
1331
+ 99.23
1332
+ 99.93
1333
+ FRGC
1334
+ 
1335
+ 
1336
+ 
1337
+ 
1338
+ 
1339
+ 99.93
1340
+ 99.93
1341
+ 99.94
1342
+ 99.88
1343
+ 97.83
1344
+ FRLL
1345
+ 
1346
+ 
1347
+ 
1348
+ 
1349
+ 
1350
+ 13.96
1351
+ 99.58
1352
+ 99.32
1353
+ 99.65
1354
+ 99.65
1355
+ FRLL
1356
+ 
1357
+ 
1358
+ 
1359
+ 
1360
+ 
1361
+ 99.23
1362
+ 99.09
1363
+ 98.91
1364
+ 99.37
1365
+ 99.44
1366
+ FRLL
1367
+ 
1368
+ 
1369
+ 
1370
+ 
1371
+ 
1372
+ 99.09
1373
+ 98.95
1374
+ 98.24
1375
+ 99.02
1376
+ 99.09
1377
+ FRLL
1378
+ 
1379
+ 
1380
+ 
1381
+ 
1382
+ 
1383
+ 99.51
1384
+ 99.44
1385
+ 99.19
1386
+ 99.16
1387
+ 99.58
1388
+ FRLL
1389
+ 
1390
+ 
1391
+ 
1392
+ 
1393
+ 
1394
+ 99.93
1395
+ 99.86
1396
+ 99.86
1397
+ 99.93
1398
+ 95.02
1399
+ Moreover, the structure of the StyleGAN2 latent space can make
1400
+ exploration in the space difficult which could possibly explain
1401
+ the poor performance in attacking the FR system compared to
1402
+ other attacks. MIPGAN-II, on the other hand, likely avoids these
1403
+ pitfalls due its explicit latent optimization process for fooling a FR
1404
+ system. The Diffusion attack utilizes an entirely different latent
1405
+ representation scheme which seems to yield an advantage in the
1406
+ task of generating morphed faces. The pre-processing pipeline of
1407
+ the FR system seems to mostly mitigate the artifacts latent to the
1408
+ Landmark-based attacks; however, such artifacts could easily be
1409
+ detected by a human observer.
1410
+ 5.3
1411
+ Detectability of Morphing Attacks
1412
+ The performance of the proposed attack is further evaluated by the
1413
+ ability of Morphing Attack Detection (MAD) algorithms trained
1414
+ against other attacks to detect an unseen attack. To quantita-
1415
+ tively assess the detectability of a particular morphing attack a
1416
+ SE-ResNeXt101-32x4d model pre-trained on ImageNet [52] by
1417
+ NVIDIA is trained to detect morphing attacks. SE-ResNeXt101-
1418
+ 32x4d is a state-of-the-art image recognition model based on the
1419
+ ResNeXt101-32x4d model [53] with the addition of the Squeeze-
1420
+ and-Excitation architecture [43]. For all experiments a 5-fold strat-
1421
+ ified k-fold cross validation strategy is employed, thus preserving
1422
+ the class balance between morphed and bona fide images in each
1423
+ fold. The model is fine-tuned on a collection of morphing attacks
1424
+ for 5 training epochs using exponential learning rate scheduler
1425
+ with differential learning rates in order to mitigate overfitting of
1426
+ the model.
1427
+ 5.3.1
1428
+ Ablation Study
1429
+ To study the impact of a particular morphing attack on the ability
1430
+ of a MAD algorithm to detect morphing attacks an ablation
1431
+ study was conducted where the SE-ResNeXt101-32x4d model
1432
+ was trained on all the morphing attacks except for one holdout.
1433
+ Table 5 shows the validation accuracy of each morphing attack
1434
+ when different morphing attacks were withheld from the training
1435
+ process. Due to the similar natures between the OpenCV and
1436
+ FaceMorpher attacks the absence of one of these attacks does not
1437
+ greatly impact the validation accuracy. Interestingly, the absence
1438
+ of MIPGAN-II does not significantly change the validation accu-
1439
+ racy of the attacks; however, the omission of StyleGAN2 during
1440
+ training does decrease the performance of the StyleGAN2 during
1441
+ validation despite the presence of the MIPGAN-II. Notably, the
1442
+ Diffusion attack is very difficult to detect as a novel attack, which
1443
+ can be partially attributed to its unique morph generation process
1444
+ in contrast with the other morphing attacks.
1445
+ 5.3.2
1446
+ A Metric For Relative Strength
1447
+ In this section we introduce a metric to measure the relative
1448
+ strength from one morph to another. We say a morph α is “strong”
1449
+ relative to a morph β if the following conditions are satisfied:
1450
+ 1)
1451
+ It is easy to detect β when a detector is trained on α, i.e.,
1452
+ high transferability.
1453
+ 2)
1454
+ It is hard to detect α when a detector is trained on β, i.e.,
1455
+ low detectability.
1456
+ Additionally, the relative strength metric, ∆(α||β), should be
1457
+ positive when α is stronger than β and negative when α is weaker.
1458
+ A relative strength of 0 would denote that the two morphing
1459
+ attacks are equally strong.
1460
+ As some of the morphing attacks are not deterministic but
1461
+ probabilistic, we chose to represent a morphing attack α by
1462
+ the random variable Xα : Ω → X such that P(Xα|xa, xb)
1463
+ denotes the distribution of morphs generated from images xa, xb.
1464
+ Moreover, we suppose there exists a detector f α : X → {0, 1}
1465
+ trained to distinguish between bona fide presentations and mor-
1466
+ phed presentations generated by α; wherein 0 denotes a bona fide
1467
+ presentation and 1 denotes a morphed presentation. The transfer-
1468
+ ability of a morphing attack α to β is defined as the probability the
1469
+ detector f α is able to detect the attack β given the probability f α
1470
+ detects α, i.e., T(α, β) = P(f α(Xβ) = 1|f α(Xα) = 1). This
1471
+ metric can be represented as a ratio of expectations taken over the
1472
+ pairs of component bona fide images:
1473
+ T(α, β) = P(f α(Xβ) = 1, f α(Xα) = 1)
1474
+ P(f α(Xα) = 1)
1475
+ = Exa,xb[P(f α(Xβ) = 1, f α(Xα) = 1|xa, xb)]
1476
+ Exa,xb[P(f α(Xα) = 1|xa, xb)]
1477
+ (11)
1478
+ Let {xα
1479
+ i }N
1480
+ i=1 denote a collection of N samples drawn from
1481
+ P(Xα|xa, xb) such that xα
1482
+ i denotes the morph generated from
1483
+ i-th pair of bona fide identities (ai, bi), and likewise for β. Then
1484
+ the metric in Equation (11) can be closely approximated by
1485
+ T(α, β) ≈
1486
+ �N
1487
+ i=1
1488
+
1489
+ f α(xβ
1490
+ i ) = 1 ∧ f α(xα
1491
+ i ) = 1
1492
+
1493
+ �N
1494
+ i=1
1495
+
1496
+ f α(xα
1497
+ i ) = 1
1498
+
1499
+ (12)
1500
+
1501
+ 10
1502
+ (a) RSM on FRGC
1503
+ (b) RSM on FERET
1504
+ (c) RSM on FRLL
1505
+ Fig. 6: Blue indicates higher strength and red indicates weak
1506
+ strength.
1507
+ i.e., the number of morphs from both α and β detected over the
1508
+ number of morphs detected from α.
1509
+ The relative strength metric (RSM) from α to β is defined
1510
+ as the log ratio of the transferability metrics between the two
1511
+ morphing attacks:
1512
+ ∆(α||β) = log
1513
+ �T(α, β)
1514
+ T(β, α)
1515
+
1516
+ (13)
1517
+ The log of the ratio is chosen such that ∆(α||β) the RSM takes
1518
+ (a) Variant A
1519
+ (b) Variant B
1520
+ (c) Variant C
1521
+ (d) Variant D
1522
+ Fig. 7: Morphed image generated by different Diffusion attack
1523
+ variants on FRLL.
1524
+ positive values when α is “stronger” than β and negative values
1525
+ when weaker—with a value of zero denoting equal strength.
1526
+ Additionally, there is an antisymmetry such that ∆(α||β) =
1527
+ −∆(β||α).
1528
+ In contrast to the ablation study, the SE-ResNeXt101-32x4d
1529
+ model is only trained on a single attack per k-fold. The RSM is
1530
+ calculated between all attacks with the results shown in Figure 6.
1531
+ From Figure 6 it is observed that the RSM between the Landmark-
1532
+ based morphs and the RSM between the StyleGAN-based morphs
1533
+ is very small. As these attacks have similar morph generation
1534
+ pipelines it makes sense that the transferability between the attacks
1535
+ is near identical. In general, the Landmark-based attacks seem to
1536
+ be stronger than the StyleGAN-based attacks, in particular the
1537
+ FaceMorpher attack. The MIPGAN-II attack is generally weaker
1538
+ than the other attacks. Overall, the Diffusion attack is the least
1539
+ detectable among the attacks along with generally being the
1540
+ strongest attack across the three datasets.
1541
+ The results from Figure 6 corroborate with the results from
1542
+ Table 5 demonstrating the difficulty in detecting Diffusion attacks.
1543
+ From the perspective of training a MAD system including samples
1544
+ from the FaceMorpher, StyleGAN, and Diffusion attacks would
1545
+ greatly increase the ability for the system to detect unknown
1546
+ attacks. Additionally, Table 5 and Figure 6 demonstrates a par-
1547
+ ticular vulnerability existing MAD systems may have to the new
1548
+ Diffusion attack.
1549
+ 5.4
1550
+ Study of the Diffusion-based Morphing Process
1551
+ The diffusion morphing algorithm leverages both a stochastic
1552
+ and semantic representation of an image. While the semantic
1553
+ representation contains many of the key “identifying” features,
1554
+ the stochastic representation represents many of the details nec-
1555
+ essary for high visual fidelity. Due to the importance of the
1556
+ stochastic code for high fidelity, we investigated several methods
1557
+ for finding the morphed stochastic latent code, x(ab)
1558
+ T
1559
+ . The first
1560
+
1561
+ 3.517
1562
+ StyleGAN2
1563
+ OpenCv
1564
+ Attack
1565
+ Training A
1566
+ MIPGAN-II
1567
+ 0.000
1568
+ FaceMorpher
1569
+ Diffusion
1570
+ 3.517
1571
+ OP
1572
+ eGAN2
1573
+ ValidationAttack2.734
1574
+ StyleGAN2
1575
+ OpenCv
1576
+ Attack
1577
+ Training A
1578
+ MIPGAN-II
1579
+ 0.000
1580
+ FaceMorpher
1581
+ Diffusion
1582
+ 2.734
1583
+ OR
1584
+ MIPGAN-II
1585
+ ValidationAttack18.2
1586
+ StyleGAN2
1587
+ Opencv
1588
+ Training Attack
1589
+ MIPGAN-II
1590
+ 0.0
1591
+ FaceMorpher
1592
+ Diffusion
1593
+ 18.2
1594
+ MIPGAN-II
1595
+ OR
1596
+ GAN
1597
+ Validation Attack11
1598
+ TABLE 6: MMPMR at FMR = 0.1% across different configurations. Higher is better. † indicates our default choices.
1599
+ FRLL
1600
+ FRGC
1601
+ FERET
1602
+ Variant
1603
+ ℓX
1604
+ ξ(x, y)
1605
+ FaceNet
1606
+ VGGFace2
1607
+ FaceNet
1608
+ VGGFace2
1609
+ FaceNet
1610
+ VGGFace2
1611
+ Geometric Mean
1612
+ A
1613
+ slerp
1614
+ x, y �→ x
1615
+ 32.97
1616
+ 34.71
1617
+ 3.2
1618
+ 9.59
1619
+ 7.17
1620
+ 11.54
1621
+ 11.95
1622
+ B
1623
+ lerp
1624
+ x, y �→ x
1625
+ 10.81
1626
+ 11
1627
+ 1.17
1628
+ 2.17
1629
+ 2.33
1630
+ 4.69
1631
+ 3.86
1632
+ C†
1633
+ slerp
1634
+ x, y �→ 1
1635
+ 2 (x + y)
1636
+ 28.14
1637
+ 35.37
1638
+ 2.68
1639
+ 8.47
1640
+ 6.47
1641
+ 13.03
1642
+ 11.13
1643
+ D
1644
+ slerp
1645
+ x, y �→ OpenCV(x, y)
1646
+ 9.14
1647
+ 9.34
1648
+ 0
1649
+ 1.37
1650
+ 0.14
1651
+ 1.42
1652
+ 0
1653
+ TABLE 7: FID across different configurations. Lower is better.
1654
+ † indicates our default choices.
1655
+ Variant
1656
+ ℓX
1657
+ ξ(x, y)
1658
+ FRLL
1659
+ FRGC
1660
+ FERET
1661
+ A
1662
+ slerp
1663
+ x, y �→ x
1664
+ 48.13
1665
+ 52.97
1666
+ 55.66
1667
+ B
1668
+ lerp
1669
+ x, y �→ x
1670
+ 82.05
1671
+ 119.33
1672
+ 97.75
1673
+ C†
1674
+ slerp
1675
+ x, y �→ 1
1676
+ 2 (x + y)
1677
+ 42.63
1678
+ 64.16
1679
+ 50.45
1680
+ D
1681
+ slerp
1682
+ x, y �→ OpenCV(x, y)
1683
+ 93.85
1684
+ 84.51
1685
+ 108.49
1686
+ variant, variant A, is the baseline implementation with ℓZ using
1687
+ linear interpolation, ℓX using spherical linear interpolation, and
1688
+ ξ does not perform any “pre-morphing”. Conversely, in variant B
1689
+ the stochastic codes are interpolated via linear interpolation. In
1690
+ variants C and D, instead of using the original image to calculate
1691
+ the stochastic code, the function ξ is used to construct the “pre-
1692
+ morph” passed to the stochastic encoder. Specifically, in variant
1693
+ C the two images are averaged pixel-wise and presented to the
1694
+ stochastic encoder; in contrast, in variant D the OpenCV morph is
1695
+ presented to the stochastic encoder.
1696
+ In Table 7 the FID is calculated between the generated morphs
1697
+ and the bona fide samples for each particular dataset. Variant
1698
+ C generally presents the lowest FID score closely followed by
1699
+ variant A. Both variants B and D exhibit clear degradation in
1700
+ performance when compared to variants A and C. Furthermore,
1701
+ the FID scores seems to correlate well to human assessment
1702
+ of the generated samples, see Figure 7. Noticeably, the linear
1703
+ interpolation in variant B results in an overly smoothed face and
1704
+ generally darker image, greatly degrading visual fidelity. Variant
1705
+ D has prominent visual artifacts, similar to the artifacts found in
1706
+ the OpenCV morphs. Moreover, the poor performance seems to
1707
+ be aided by an issue of differing alignment strategies between the
1708
+ OpenCV and diffusion pipeline.
1709
+ Notably, variant C often removes many of the high frequency
1710
+ artifacts found in variant A. This is likely due to the difficulty
1711
+ in smoothly interpolating between points in the stochastic latent
1712
+ space in contrast with the semantic latent space. As such, variant
1713
+ C which performs a pixel-wise average of the two source images
1714
+ before using the stochastic encoder seems to greatly improve
1715
+ the ability to smoothly interpolate between different stochastic
1716
+ representations. This appears to be the primary reason variant C
1717
+ has a generally lower FID when compared to variant A. Both
1718
+ Figure 7 and Table 7 demonstrate the large importance that the
1719
+ stochastic code plays in creating high fidelity morphed images.
1720
+ Due to the high fidelity exhibited by variant C, this particular
1721
+ diffusion process was used in evaluation against other morphing
1722
+ attacks.
1723
+ The MMPMR metric is calculated for each variant, see Ta-
1724
+ ble 6. Variant A is slightly stronger than variant C, with variants
1725
+ B and D falling far behind likely due to the high number of visual
1726
+ distortions. These results stand in contrast to the assessment of vi-
1727
+ sual fidelity wherein variant C outperforms variant A. This, again,
1728
+ illustrates a trade-off between visual fidelity and ability to fool
1729
+ the FR system; however, in this case the trade-off effectiveness
1730
+ against the FR system is relatively small in comparison to the
1731
+ gains in visual fidelity. Due to its excellent visual fidelity and
1732
+ strong MMPMR results variant C was chosen to be the default
1733
+ configuration for the Diffusion attack.
1734
+ 6
1735
+ CONCLUSION
1736
+ By addressing some of the key limitations of prior deep-learning
1737
+ based morphing attacks, namely, the trade-off between visual
1738
+ fidelity and effectiveness against FR systems, we have proposed
1739
+ a novel morphing attack using Diffusion-based methods for the
1740
+ generative process. The proposed attack consistently generates
1741
+ realistic morphed images with high visual fidelity while also
1742
+ being able to strongly threaten FR systems. To evaluate the attack
1743
+ potential of the proposed attack, we evaluated the vulnerability
1744
+ of two FR systems over three distinct datasets and created over
1745
+ 10,000 new morphs between the four variants, with the strongest
1746
+ variant achieving state-of-the-art performance. We conducted an
1747
+ additional study on the impact the pre-processing pipeline has on
1748
+ the vulnerability of an FR system to morphing attacks. A novel
1749
+ metric to assess the strength of morphing attacks relative to each
1750
+ other has been introduced. Moreover, the proposed attack was
1751
+ evaluated by its detection performance against a state-of-the-art
1752
+ MAD system. The Diffusion attack was shown to be very difficult
1753
+ to detect if not specifically trained against presenting showing
1754
+ the proposed attack can greatly threaten preexisting FR systems.
1755
+ The images generated by the Diffusion attack possess high visual
1756
+ fidelity, can fool state-of-the-art FR systems, and are difficult for
1757
+ MAD mechanisms to detect.
1758
+ REFERENCES
1759
+ [1]
1760
+ L. J. Spreeuwers, A. J. Hendrikse, and K. J. Gerritsen, “Evaluation of
1761
+ automatic face recognition for automatic border control on actual data
1762
+ recorded of travellers at schiphol airport,” in Proc. of the Int’l Conf. of
1763
+ Biometrics Special Interest Group (BIOSIG), 2012, pp. 1–6.
1764
+ [2]
1765
+ M.
1766
+ Ferrara,
1767
+ A.
1768
+ Franco,
1769
+ and
1770
+ D.
1771
+ Maltoni,
1772
+ On
1773
+ the
1774
+ Effects
1775
+ of
1776
+ Image Alterations on Face Recognition Accuracy.
1777
+ Cham: Springer
1778
+ International Publishing, 2016, pp. 195–222. [Online]. Available:
1779
+ https://doi.org/10.1007/978-3-319-28501-6 9
1780
+ [3]
1781
+ D. J. Robertson, R. S. S. Kramer, and A. M. Burton, “Fraudulent id
1782
+ using face morphs: Experiments on human and automatic recognition,”
1783
+ PLOS ONE, vol. 12, no. 3, pp. 1–12, 03 2017. [Online]. Available:
1784
+ https://doi.org/10.1371/journal.pone.0173319
1785
+ [4]
1786
+ R. Raghavendra, K. B. Raja, and C. Busch, “Detecting morphed face
1787
+ images,” in IEEE 8th Int’l Conf. on Biometrics Theory, Applications and
1788
+ Systems (BTAS), 2016, pp. 1–7.
1789
+ [5]
1790
+ J. T. A. Andrews, T. Tanay, and L. D. Griffin, “Multiple-identity
1791
+ image attacks against face-based identity verification,” CoRR, vol.
1792
+ abs/1906.08507, 2019. [Online]. Available: http://arxiv.org/abs/1906.
1793
+ 08507
1794
+ [6]
1795
+ S. Venkatesh, R. Ramachandra, K. Raja, L. Spreeuwers, R. Veldhuis, and
1796
+ C. Busch, “Morphed face detection based on deep color residual noise,”
1797
+ in the 9th Int’l Conf. on Image Pr. Theory, Tools and Applications (IPTA),
1798
+ 2019, pp. 1–6.
1799
+
1800
+ 12
1801
+ [7]
1802
+ R. Raghavendra, K. Raja, S. Venkatesh, and C. Busch, “Face morphing
1803
+ versus face averaging: Vulnerability and detection,” IEEE Int’l Joint
1804
+ Conf. on Biometrics (IJCB), pp. 555–563, 2017.
1805
+ [8]
1806
+ C. Burt, “Face morphing threat to biometric identity credentials’ trust-
1807
+ worthiness a growing problem,” BiometricUpdate.com.
1808
+ [9]
1809
+ U. Scherhag, R. Raghavendra, K. B. Raja, M. Gomez-Barrero,
1810
+ C. Rathgeb, and C. Busch, “On the vulnerability of face recognition sys-
1811
+ tems towards morphed face attacks,” in 2017 5th International Workshop
1812
+ on Biometrics and Forensics (IWBF), 2017, pp. 1–6.
1813
+ [10] U. Scherhag, L. Debiasi, C. Rathgeb, C. Busch, and A. Uhl, “Detection
1814
+ of face morphing attacks based on prnu analysis,” IEEE Transactions on
1815
+ Biometrics, Behavior, and Identity Science, vol. 1, no. 4, pp. 302–317,
1816
+ 2019.
1817
+ [11] Z. Blasingame and C. Liu, “Leveraging adversarial learning for the de-
1818
+ tection of morphing attacks,” 2021 IEEE International Joint Conference
1819
+ on Biometrics (IJCB), pp. 1–8, 2021.
1820
+ [12] S. Venkatesh, R. Ramachandra, K. Raja, and C. Busch, “Face Morphing
1821
+ Attack Generation & Detection: A Comprehensive Survey,” arXiv e-
1822
+ prints arXiv:2011.02045, Nov. 2020.
1823
+ [13] T. Ojala, M. Pietik¨ainen, and D. Harwood, “A comparative study of
1824
+ texture measures with classification based on featured distributions,”
1825
+ Pattern Recognit., vol. 29, pp. 51–59, 1996.
1826
+ [14] J. Kannala and E. Rahtu, “Bsif: Binarized statistical image features,” in
1827
+ Proceedings of the 21st Int’l Conf. on Pattern Recognition (ICPR2012),
1828
+ 2012, pp. 1363–1366.
1829
+ [15] C. Seibold, W. Samek, A. Hilsmann, and P. Eisert, “Detection of face
1830
+ morphing attacks by deep learning,” in Digital Forensics and Water-
1831
+ marking, C. Kraetzer, Y.-Q. Shi, J. Dittmann, and H. J. Kim, Eds., 2017,
1832
+ pp. 107–120.
1833
+ [16] U. Scherhag, C. Rathgeb, J. Merkle, and C. Busch, “Deep face represen-
1834
+ tations for differential morphing attack detection,” IEEE Transactions on
1835
+ Information Forensics and Security, vol. 15, pp. 3625–3639, 2020.
1836
+ [17] E. Sarkar, P. Korshunov, L. Colbois, and S. Marcel, “Vulnerability anal-
1837
+ ysis of face morphing attacks from landmarks and generative adversarial
1838
+ networks,” ArXiv, vol. abs/2012.05344, 2020.
1839
+ [18] K. O’Haire, S. Soleymani, B. Chaudhary, P. Aghdaie, J. Dawson, and
1840
+ N. M. Nasrabadi, “Adversarially perturbed wavelet-based morphed face
1841
+ generation,” in 2021 16th IEEE International Conference on Automatic
1842
+ Face and Gesture Recognition (FG 2021), 2021, pp. 01–05.
1843
+ [19] N. Damer, A. M. Saladi´e, A. Braun, and A. Kuijper, “Morgan: Recog-
1844
+ nition vulnerability and attack detectability of face morphing attacks
1845
+ created by generative adversarial network,” in 2018 IEEE 9th Int’l Conf.
1846
+ on Biometrics Theory, Applications and Systems (BTAS), 2018, pp. 1–10.
1847
+ [20] S. Venkatesh, H. Zhang, R. Ramachandra, K. Raja, N. Damer, and
1848
+ C. Busch, “Can gan generated morphs threaten face recognition systems
1849
+ equally as landmark based morphs? - vulnerability and detection,” in
1850
+ 2020 8th International Workshop on Biometrics and Forensics (IWBF),
1851
+ 2020, pp. 1–6.
1852
+ [21] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
1853
+ “Analyzing and improving the image quality of stylegan,” in 2020
1854
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition
1855
+ (CVPR), 2020, pp. 8107–8116.
1856
+ [22] H. Zhang, S. Venkatesh, R. Ramachandra, K. Raja, N. Damer, and
1857
+ C. Busch, “Mipgan—generating strong and high quality morphing at-
1858
+ tacks using identity prior driven gan,” IEEE Transactions on Biometrics,
1859
+ Behavior, and Identity Science, vol. 3, no. 3, pp. 365–383, 2021.
1860
+ [23] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
1861
+ synthesis,” in Advances in Neural Information Processing Systems,
1862
+ M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
1863
+ Vaughan, Eds., vol. 34.
1864
+ Curran Associates, Inc., 2021, pp. 8780–
1865
+ 8794. [Online]. Available: https://proceedings.neurips.cc/paper/2021/file/
1866
+ 49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf
1867
+ [24] L. DeBruine and B. Jones, “Face research lab london set.”
1868
+ [25] S. Venkatesh, H. Zhang, R. Ramachandra, K. Raja, N. Damer, and
1869
+ C. Busch, “Can gan generated morphs threaten face recognition systems
1870
+ equally as landmark based morphs? – vulnerability and detection,” 2020.
1871
+ [26] E. Sarkar, P. Korshunov, L. Colbois, and S. Marcel, “Are gan-based
1872
+ morphs threatening face recognition?” in ICASSP 2022 - 2022 IEEE
1873
+ International Conference on Acoustics, Speech and Signal Processing
1874
+ (ICASSP), 2022, pp. 2959–2963.
1875
+ [27] A. Quek, “Facemorpher,” 2019.
1876
+ [28] S. Milborrow and F. Nicolls, “Active shape models with sift descriptors
1877
+ and mars,” in 2014 International Conference on Computer Vision Theory
1878
+ and Applications (VISAPP), vol. 2, 2014, pp. 380–387.
1879
+ [29] U. Scherhag, J. Kunze, C. Rathgeb, and C. Busch, “Face morph detection
1880
+ for unknown morphing algorithms and image sources: a multi-scale block
1881
+ local binary pattern fusion approach,” IET Biometrics, vol. 9, pp. 278–
1882
+ 289, 11 2020.
1883
+ [30] D. E. King, “Dlib-ml: A machine learning toolkit,” J. Mach. Learn. Res.,
1884
+ vol. 10, p. 1755–1758, Dec. 2009.
1885
+ [31] L. Colbois and S. Marcel, “On the detection of morphing attacks
1886
+ generated by gans,” in 2022 International Conference of the Biometrics
1887
+ Special Interest Group (BIOSIG), 2022, pp. 1–5.
1888
+ [32] D. Roich, R. Mokady, A. H. Bermano, and D. Cohen-Or, “Pivotal tuning
1889
+ for latent-based editing of real images,” ACM Transactions on Graphics
1890
+ (TOG), 2021.
1891
+ [33] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
1892
+ for generative adversarial networks,” in 2019 IEEE/CVF Conference on
1893
+ Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4396–4405.
1894
+ [34] A.
1895
+ Brock,
1896
+ J.
1897
+ Donahue,
1898
+ and
1899
+ K.
1900
+ Simonyan,
1901
+ “Large
1902
+ scale
1903
+ GAN
1904
+ training for high fidelity natural image synthesis,” in International
1905
+ Conference on Learning Representations, 2019. [Online]. Available:
1906
+ https://openreview.net/forum?id=B1xsqj09Fm
1907
+ [35] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
1908
+ models,” in Advances in Neural Information Processing Systems,
1909
+ H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
1910
+ Eds.,
1911
+ vol.
1912
+ 33.
1913
+ Curran
1914
+ Associates,
1915
+ Inc.,
1916
+ 2020,
1917
+ pp.
1918
+ 6840–
1919
+ 6851. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
1920
+ file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
1921
+ [36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
1922
+ for biomedical image segmentation,” in Medical Image Computing and
1923
+ Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Horneg-
1924
+ ger, W. M. Wells, and A. F. Frangi, Eds.
1925
+ Cham: Springer International
1926
+ Publishing, 2015, pp. 234–241.
1927
+ [37] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
1928
+ in
1929
+ International
1930
+ Conference
1931
+ on
1932
+ Learning
1933
+ Representations,
1934
+ 2021.
1935
+ [Online]. Available: https://openreview.net/forum?id=St1giarCHLP
1936
+ [38] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn,
1937
+ “Diffusion autoencoders: Toward a meaningful and decodable represen-
1938
+ tation,” in Proceedings of the IEEE/CVF Conference on Computer Vision
1939
+ and Pattern Recognition (CVPR), June 2022, pp. 10 619–10 629.
1940
+ [39] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
1941
+ A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
1942
+ pytorch,” 2017.
1943
+ [40] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
1944
+ A dataset for recognising faces across pose and age,” in 2018 13th IEEE
1945
+ International Conference on Automatic Face & Gesture Recognition (FG
1946
+ 2018), 2018, pp. 67–74.
1947
+ [41] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
1948
+ ding for face recognition and clustering,” in 2015 IEEE Conference on
1949
+ Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–823.
1950
+ [42] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in
1951
+ BMVC, 2015.
1952
+ [43] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
1953
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition,
1954
+ 2018, pp. 7132–7141.
1955
+ [44] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and align-
1956
+ ment using multitask cascaded convolutional networks,” IEEE Signal
1957
+ Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.
1958
+ [45] P. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The feret database
1959
+ and evaluation procedure for face-recognition algorithms,” Image Vis.
1960
+ Comput., vol. 16, pp. 295–306, 1998.
1961
+ [46] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman,
1962
+ J. Marques, J. Min, and W. Worek, “Overview of the face recognition
1963
+ grand challenge,” in 2005 IEEE Computer Society Conference on Com-
1964
+ puter Vision and Pattern Recognition (CVPR’05), vol. 1, 2005, pp. 947–
1965
+ 954 vol. 1.
1966
+ [47] M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly, “Are
1967
+ gans created equal? a large-scale study,” in Proceedings of the 32nd
1968
+ International Conference on Neural Information Processing Systems,
1969
+ ser. NIPS’18.
1970
+ Red Hook, NY, USA: Curran Associates Inc., 2018,
1971
+ p. 698–707.
1972
+ [48] M. Seitzer, “pytorch-fid: FID Score for PyTorch,” https://github.com/
1973
+ mseitzer/pytorch-fid, August 2020, version 0.2.1.
1974
+ [49] “Best practice technical guidelines for automated border control abc
1975
+ systems,” 2015.
1976
+ [50] U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. N. J.
1977
+ Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel,
1978
+ R. Breithaupt, R. Ramachandra, and C. Busch, “Biometric systems under
1979
+ morphing attacks: Assessment of morphing techniques and vulnerability
1980
+ reporting,” in 2017 International Conference of the Biometrics Special
1981
+ Interest Group (BIOSIG), 2017, pp. 1–7.
1982
+
1983
+ 13
1984
+ [51] T. Karras, M. Aittala, S. Laine, E. H¨ark¨onen, J. Hellsten, J. Lehtinen, and
1985
+ T. Aila, “Alias-free generative adversarial networks,” in Proc. NeurIPS,
1986
+ 2021.
1987
+ [52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
1988
+ A large-scale hierarchical image database,” in IEEE conf. on computer
1989
+ vision and pattern recognition, 2009, pp. 248–255.
1990
+ [53] S. Xie, R. B. Girshick, P. Doll´ar, Z. Tu, and K. He, “Aggregated residual
1991
+ transformations for deep neural networks,” 2017 IEEE Conference on
1992
+ Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995, 2017.
1993
+
A9E2T4oBgHgl3EQf8Qn_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtAyT4oBgHgl3EQfRvdA/content/2301.00071v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:546142dc50c2fb25ba5e9e8601fccf8a7e76b8fba03ea42562f2cc5c568abf63
3
+ size 268126
BtE1T4oBgHgl3EQf9gZu/content/tmp_files/2301.03557v1.pdf.txt ADDED
@@ -0,0 +1,1964 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03557v1 [math.DS] 9 Jan 2023
2
+ USING PREY ABUNDANCE TO SYNCHRONIZE TWO
3
+ CHAOTIC GLV MODELS
4
+ SHUBHANGI DWIVEDI
5
+ E-MAIL: SHUBHANGI.DWIVEDI176@GMAIL.COM
6
+ , NITU KUMARI
7
+ E-MAIL: NITU@IITMANDI.AC.IN
8
+ SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, KAMAND, INDIAN
9
+ INSTITUTE OF TECHNOLOGY, MANDI-HIMACHAL PRADESH, 175005, INDIA
10
+ , AND RANJIT KUMAR UPADHYAY
11
+ DEPARTMENT OF APPLIED MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY
12
+ (ISM), DHANBAD-JHARKHAND, 826004 , INDIA
13
+ E-MAIL: RANJIT.CHAOS@GMAIL.COM
14
+ ( Accepted: 02 November 2021 )
15
+ Abstract.
16
+ The concept of superfluous prey, or an excess of prey in certain areas within
17
+ a patchy ecosystem, has significant implications for the synchronization of the predator
18
+ population.
19
+ These areas, known as ”hotspots,” have a higher density of prey compared
20
+ to other areas and attract a higher concentration of predators.
21
+ As a result, the preda-
22
+ tor population becomes more stable and predictable, as they are less likely to migrate to
23
+ other areas in search of food. This phenomenon can have important consequences for both
24
+ the predators and their prey, as well as the overall functioning of the ecosystem.
25
+ This
26
+ work investigates the synchronization between two chaotic food webs using the general-
27
+ ized Lotka-Volterra (GLV) model consisting of one prey and two predator populations.
28
+ We, first, examine the impact of three functional responses (linear, Holling type II, and
29
+ Holling type III) on system dynamics For the study, we consider the model with a linear
30
+ functional response consisting of chaotic oscillations and apply controllers to stabilize its
31
+ unstable fixed points.
32
+ This research contributes to the understanding of how to apply
33
+ chaotic ecological models to predict the population of competing species in one habitat
34
+ using information about similar populations in another system. To do this, we configure a
35
+ drive-response system where prey acts as the driving variable and both predators depend
36
+ only on the prey. We use active and adaptive control methods to synchronize two coupled
37
+ GLV models and verify the analytical results through numerical simulations.
38
+ AMS Classification: —
39
+ Keywords:
40
+ Lyapunov exponents, slow manifold equation, chaos control, complete
41
+ replacement synchronization, active and adaptive control techniques
42
+ JOURNAL OF DYNAMICAL SYSTEMS & GEOMETRIC THEORIES
43
+ ©TARU PUBLICATIONS
44
+ 1
45
+
46
+ 2
47
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
48
+ 1. Introduction
49
+ In ancient philosophy and mythology, the word chaos meant the disordered state
50
+ of unformed matter supposed to have existed before the ordered universe. In the
51
+ course of its journey to truth, science has met with startling phenomena called chaos.
52
+ Since the 1960s, with the discovery of chaotic systems, chaos has set a nonlinear
53
+ dynamics research boom. Chaos theory is attributed to the work of Edward Lorenz.
54
+ His 1963 paper, “Deterministic Non-periodic Flow” [1], is credited for laying the
55
+ foundation for chaos theory. Hunt and Ott [2] reviewed the problem and proposed a
56
+ computationally feasible entropy-based good definition of chaos. They define chaos
57
+ as “ the existence of positive Expansion Entropy (EE) (equal to topological entropy
58
+ for infinitely differentiable maps) on a given restraining region (bounded positive
59
+ volume subset),” which confirms both the notions (COS as well as OS). Since EE
60
+ enjoys the properties of simplicity, computability, and generality, so they call it a
61
+ “ good ” definition of chaos. Chaotic systems are sensitive to initial conditions,
62
+ topologically mixing and with dense periodic orbits [3], [4]. Because of slightest dif-
63
+ ference, chaotic dynamical systems can lead to entirely different trajectories. The
64
+ main characteristic of chaos is that the system does not repeat its past behaviour.
65
+ Mathematically, chaotic dynamical systems are classified as non-linear dynamical
66
+ systems having at least one positive Lyapunov exponent[5].
67
+ Chaos theory is not just about chaos - it has two sides to it: chaos control and chaos
68
+ synchronization. The study of chaos control and understanding chaotic model be-
69
+ haviour has gained significant interest, with applications in various fields such as
70
+ secure communications, biology, neural networks, finance, and more. Whereas chaos
71
+ synchronization refers to the alignment in time of different chaotic processes. At
72
+ first glance, chaotic systems may seem to defy synchronization, but it has been
73
+ observed and studied in various contexts.
74
+ In 1665, Dutch physicist Huygens observed the adjustment of rhythms via a cou-
75
+ pling.
76
+ He noticed that pendulum clocks suspended from the same beam would
77
+ slowly adjust their phases. In 1984, Kuramoto set theory for the onset of sync, and
78
+ Pecora and Carroll [6] reviewed the area of synchronization in chaotic systems and
79
+ presented a more geometric view using synchronization manifold. In 1999, Blasius
80
+ explained the theoretical analysis of seasonally synchronized chaotic population cy-
81
+ cles [7]. All these contributions help the researcher think that synchronization is
82
+
83
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
84
+ 3
85
+ an essential phenomenon in physical and biological systems. In literature, this phe-
86
+ nomenon has been nominated by various types, such as phase locking, frequency
87
+ pulling, generalized synchrony, and complete locking, depending on the degree or
88
+ type of synchronization.
89
+ Synchronization of chaotic systems can be achieved by configuring drive and re-
90
+ sponse systems, with the goal of using the output of the drive system to control
91
+ the response system so that the output tracks the drive system asymptotically.
92
+ However, creating identical chaotic synchronized ecological systems is questionable
93
+ as it has a potential threat to biodiversity. As discovered in Pecora and Carroll’s
94
+ pioneering work, another way of achieving complete synchronization between two
95
+ systems is what is now called the technique of complete replacement. The complete
96
+ replacement synchronization is helpful in a network of patchy ecosystems as it can
97
+ help in identifying the underlying mechanism that derive the group co-ordination
98
+ in the present of severely chaotic oscillations. In population biology, the chaotic
99
+ dynamics may synchronize if populations are coupled through environmental or bi-
100
+ ological interactions.
101
+ From the ecological aspect, it is crucial to figure out the ecologically feasible cou-
102
+ pling scheme that guarantee the permanence and global attractiveness of all species
103
+ in a multi-patch ecosystem. Upadhyay and Rai [8] have demonstrated that the
104
+ two non-identical chaotic ecological systems having different kinds of top-predators
105
+ can be synchronized using an algorithm proposed by Lu and Cao[9]. The idea of
106
+ this approach is that it takes care of the uncertainties involved in the parameter
107
+ estimation. There are many methods in control theory for synchronizing chaotic
108
+ systems, including the Adaptive Control Method, Back-stepping Method, Active
109
+ Control Method, Time-Delay feedback approach, and others.
110
+ Among above-listed methods, the linear active control technique for chaos syn-
111
+ chronization is popular and effective for synchronizing identical and non-identical
112
+ chaotic systems. In this work, we will use the active and adaptive control meth-
113
+ ods for achieving synchronization of chaos within either identical or non-identical
114
+ systems. The Active control method was first used for chaos synchronization by
115
+ E.W. Bai and K.E. Lonngren [10], [11]. In this method, non-linear controllers are
116
+ designed based on the Lyapunov stability theory to achieve synchronization in cou-
117
+ pled systems using the known parameters of the drive and response systems.
118
+
119
+ 4
120
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
121
+ Since we will be dealing with an ecological model, the system’s parameters cannot be
122
+ precisely known. The adaptive control is one of the popular technique for controlling
123
+ and synchronizing non-linear systems with uncertain parameters [12]. The method
124
+ allows the model to adapt data assimilation along the way that may be useful for
125
+ predicting the real system’s future behaviour [13], [14]. In this method, control law
126
+ and parameter update law are designed in such a way that the chaotic response
127
+ system to behave like chaotic drive systems. This scheme maintains the consistent
128
+ performance of a system in the presence of uncertainty, variations in parameters.
129
+ Consequently, asymptotically global synchronization control of the chaotic system
130
+ guarantees to converge the error dynamics to the equilibrium point.
131
+ In this article, we investigate the three-dimensional chaotic generalized Lotka-Volterra
132
+ system, a more general model than the competitive predator-prey examples of
133
+ Lotka-Volterra types. We examine the properties of the model, including equilib-
134
+ rium analysis, dissipative properties, the maximum Lyapunov exponent, and slow
135
+ manifold analysis. We use linear feedback control to stabilize the model at its equi-
136
+ librium points. Our goal is to synchronize two identical GLV models with the same
137
+ drive variable and different initial conditions using complete replacement synchro-
138
+ nization in an ecological context. Prey population is assumed to be in abundance in
139
+ such a way that predators from nearby patches also feed upon it. To maintain syn-
140
+ chronization indefinitely with only small adjustments within a two-patch system,
141
+ we design the active control law(when system parameters are known) and adaptive
142
+ control law (when system parameters are unknown) mathematically and validate
143
+ the analytical results through numerical simulation.
144
+ 2.
145
+ The Model
146
+ The generalized Lotka-Volterra equations are autonomous and deterministic.
147
+ The dynamics of the model in a more generalized form are defined as
148
+ ˙xi(t) = xi(t)(ri + fi(x1, x2, . . . , xn)),
149
+ with initial condition
150
+ xi(0) = x(i,0), for i ∈ {1, 2, . . ., n}.
151
+ where n represents the number of species, xi(t) is the size of population i, ˙xi(t) is
152
+ the time derivative of species i, t is the time variable, x(i,0) is the initial population
153
+
154
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
155
+ 5
156
+ of species i, ri is the self-growth of species i, and fi(x1, x2, x3, . . . , xn) is the nonlin-
157
+ ear multi-variable function with intra and inter-species competition terms for each
158
+ i. Although the populations are usually measured in integer numbers, xi(t) is real
159
+ for each i and can be interpreted as density, biomass or some other measure which
160
+ correlates with the number of species. Let Rn denotes the Euclidean space and the
161
+ function fi is a continuous, smooth and real-valued function for each i. We make
162
+ the following assumptions on fi for i ∈ {1, 2, . . ., n} [15].
163
+ (i) fi, for each i ∈ {1, 2, . . ., n} is bounded on a domain D ⊂ Rn.
164
+ (ii) There exist constant Ki > 0 for each i ∈ {1, 2, . . ., n} such that
165
+ ||fi(X) − fi(Y )|| ≤ Ki ||X − Y ||
166
+
167
+ X, Y ∈ D ⊂ Rn.
168
+ 2.1. Model with linear functional response. The generalized Lotka Volterra
169
+ (GLV) model and its variant have been studied by many authors [16],[17],[18]. Our
170
+ main focus is on three-dimensional GLV chaotic system, which has been devised by
171
+ Samardzija and Greller in 1988 [19]. We assume that the vector field for the model
172
+ holds the above mentioned properties and takes the following form
173
+ ˙x1 = x1(1 − x2 + rx1 − px3x1),
174
+ ˙x2 = x2(−1 + x1),
175
+ ˙x3 = x3(−q + px2
176
+ 1).
177
+ (1)
178
+ where x1, x2, x3 are the state variables representing prey, middle predator and
179
+ top predator populations respectively. Here p, q, r are positive parameters. Au-
180
+ thors [18] found the system chaotic in particular parametric range p = 2.9851, q =
181
+ 3, r = 2 and shown interesting complex dynamical behaviour.
182
+ For this set of
183
+ parameter values, the orbit of all three states for two different initial conditions
184
+ ((1.0023, 1.0589, 0.6503) and (1.0023 + 10−3, 1.0589 + 10−3, 0.6503 + 10−3)) has sen-
185
+ sitive dependence on initial conditions (SDIC) which is displayed in figure 2.1. Fig-
186
+ ure 2.1 characterizes the SDIC in the system where the trajectories with initial
187
+ condition (1.0023 + 10−3, 1.0589 + 10−3, 0.6503 + 10−3)) dominate over trajectories
188
+ with initial condition ((1.0023, 1.0589, 0.6503) in long run.
189
+ Further, we display the dynamics of GLV system for three different set of parame-
190
+ ters to characterize its parameter- sensitivity. Different sets of parameters involved
191
+
192
+ 6
193
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
194
+ 0
195
+ 500
196
+ 1000
197
+ 1500
198
+ 2000
199
+ 2500
200
+ 3000
201
+ 3500
202
+ 4000
203
+ 4500
204
+ 5000
205
+ Time
206
+ 0.6
207
+ 0.8
208
+ 1
209
+ 1.2
210
+ 1.4
211
+ 1.6
212
+ Prey
213
+ IC: (1.0023, 1.0589, 0.6503)
214
+ IC: (1.0033, 1.0599, 0.6513)
215
+ (a)
216
+ 0
217
+ 500
218
+ 1000
219
+ 1500
220
+ 2000
221
+ 2500
222
+ 3000
223
+ 3500
224
+ 4000
225
+ 4500
226
+ 5000
227
+ Time
228
+ 0.7
229
+ 0.8
230
+ 0.9
231
+ 1
232
+ 1.1
233
+ 1.2
234
+ 1.3
235
+ 1.4
236
+ Middle Predator
237
+ IC: (1.0023, 1.0589, 0.6503)
238
+ IC: (1.0033, 1.0599, 0.6513)
239
+ (b)
240
+ 0
241
+ 500
242
+ 1000
243
+ 1500
244
+ 2000
245
+ 2500
246
+ 3000
247
+ 3500
248
+ 4000
249
+ 4500
250
+ 5000
251
+ Time
252
+ 0.2
253
+ 0.4
254
+ 0.6
255
+ 0.8
256
+ 1
257
+ 1.2
258
+ 1.4
259
+ Top Predator
260
+ IC: (1.0023, 1.0589, 0.6503)
261
+ IC: (1.0033, 1.0599, 0.6513)
262
+ (c)
263
+ Figure 1.
264
+ (a), (b) and (c): Time series of x1, x2, and x3 for
265
+ two nearby initial conditions ((1.0023, 1.0589, 0.6503) and (1.0023+
266
+ 10−3, 1.0589 + 10−3, 0.6503 + 10−3)).
267
+ in the system are taken as
268
+ (p, q, r) ∈ {(2.0451, 2.129, 2), (2.9851, 2.99, 2.1), (2.98098, 2.9799, 2)}.
269
+ For simulation, we fix the initial condition at x1(0) = 1.0023, x2(0) = 1.0589, x3(0) =
270
+ 0.6503 for the GLV system. Figures 2, 3 and 4 show three dimensional attractor
271
+ and two dimensional projections of the system on (x1, x2), (x1, x3) and (x2, x3)
272
+
273
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
274
+ 7
275
+ planes. From these figures, it can be inferred that the sensitivity of the system on
276
+ parameters can help in restoring the hidden order out of its chaotic dynamics.
277
+ (a)
278
+ (b)
279
+ (c)
280
+ (d)
281
+ Figure 2. (a): 3D attractor; (b), (c) and (d): 2D projections of
282
+ the attractor on (x1, x2), (x1, x3) and (x2, x3) planes respectively
283
+ for (p, q, r) = (2.0451, 2.129, 2).
284
+ Next subsections presents two other variants of GLV model with different func-
285
+ tional responses.
286
+ 2.2. Model with Cyrtoid type (HT II) functional response. To elucidate
287
+ the role of functional response, we replace the linear interaction term between prey
288
+ and middle predator with Holling type II functional response ( (
289
+ x1
290
+ x1+d)x2).
291
+ The
292
+ ecological meaning of the non-linear interaction of prey with middle predator is
293
+ that the prey’s contribution to the middle predator growth rate is x1x2
294
+ x1+d. Using type
295
+ II functional response, the dynamics of new GLV model are proposed as
296
+ ˙x1 = x1 − x1x2
297
+ x1 + d + rx2
298
+ 1 − px1
299
+ 2x3,
300
+ ˙x2 = −x2 + ( x2x1
301
+ x1 + d),
302
+ ˙x3 = −qx3 + px3x2
303
+ 1.
304
+ (2)
305
+ For simulation, we take the parametric values and initial condition as p = 2.514, q =
306
+ 2.9089, r = 2.1990507, d = .00198 and x1(0) = 1.78, x2(0) = 0.5020, x3(0) = 1.01
307
+
308
+ (X2,x3) plane2D projection of the attractor on
309
+ 1.8
310
+ 1.6
311
+ 1.4.1
312
+ 1.2
313
+ 1.31.2
314
+ 3
315
+ X
316
+ 1
317
+ 0.8
318
+ 0.6
319
+ 0.4
320
+ 0.7
321
+ 0.8
322
+ 0.9
323
+ 1(X,,x,) plane2D projection of the attractor on
324
+ 1.8
325
+ 1.6
326
+ 1.41.3
327
+ 1.4
328
+ 1.5
329
+ 1.61.2
330
+ X
331
+ 1
332
+ 0.8
333
+ 0.6
334
+ 0.4
335
+ 0.6
336
+ 0.7
337
+ 0.8
338
+ 0.9
339
+ 1
340
+ 1.1
341
+ 1.2(x,X2) plane2D projection of the attractor on
342
+ 1.3
343
+ 1.21.3
344
+ 1.4
345
+ 1.5
346
+ 1.60.9
347
+ 0.8
348
+ 0.7
349
+ 0.6
350
+ 0.7
351
+ 0.8
352
+ 0.9
353
+ 1
354
+ 1.1
355
+ 1.2 AttractorThe Generalised Lotka Volterr1.6
356
+ 1.4
357
+ 1.2
358
+ 1
359
+ X
360
+ 11.5
361
+ 3
362
+ X
363
+ 0.5
364
+ 1.2
365
+ 1.1
366
+ 1
367
+ 0.9
368
+ 0.8
369
+ 0.8
370
+ 0.68
371
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
372
+ (a)
373
+ (b)
374
+ (c)
375
+ (d)
376
+ Figure 3. (a): 3D attractor ; (b), (c) and (d): 2D projections of
377
+ the attractor on (x1, x2), (x1, x3) and (x2, x3) planes respectively
378
+ for (p, q, r) = (2.9851, 2.99, 2.1).
379
+ respectively. Figure 5 displays the three-dimensional phase portrait of GLV system
380
+ with HT II functional response which is a ‘stable focus’. Thus, a change in functional
381
+ response in GLV system can lead to stable dynamics for a suitable set of parameter
382
+ values and initial conditions.
383
+ 2.3.
384
+ Model with Sigmoid type (HT III) functional response. Next, we
385
+ change interaction term between prey and top predator population with Holling
386
+ type III functional response. The inclusion of Holling type III functional response
387
+ increases the search activity of top-predator for prey. With assumption of increasing
388
+ prey density, the dynamics of new GLV model with Holling type III functional
389
+ response are proposed as
390
+ ˙x1 = x1 − x1x2 + rx2
391
+ 1 − p x2
392
+ 1x3
393
+ x2
394
+ 1 + d,
395
+ ˙x2 = −x2 + x1x2,
396
+ ˙x3 = −qx3 + p x2
397
+ 1x3
398
+ x2
399
+ 1 + d.
400
+ (3)
401
+
402
+ (X2,X3) plane2D projection of the attractor on
403
+ 0.9
404
+ 0.81.04
405
+ 1.06
406
+ 1.08
407
+ 1.10.7
408
+ 0.6
409
+ 0.5
410
+ 0.9
411
+ 0.92
412
+ 0.94
413
+ 0.96
414
+ 0.98
415
+ 1
416
+ 1.02
417
+ 2(X,x) plane2D projection of the attractor on
418
+ 0.9
419
+ 0.81.1
420
+ 1.15
421
+ 1.20.6
422
+ 0.5
423
+ 0.85
424
+ 0.9
425
+ 0.95
426
+ 1.05
427
+ X(X,X2) plane2D projection of the attractor on
428
+ 1.1
429
+ 1.051.1
430
+ 1.15
431
+ 1.20.95
432
+ 0.9
433
+ 0.85
434
+ 0.9
435
+ 0.95
436
+ 1.05AttractorThe Generalised Lotka Volterr
437
+ 0.9
438
+ 0.81.2
439
+ 1.1
440
+ 1
441
+ X
442
+ 10.6 ~
443
+ 0.5
444
+ 1.1
445
+ 1.05
446
+ 1
447
+ 0.95
448
+ 0.9
449
+ 0.9
450
+ 0.8SYNCHRONIZATION OF CHAOS IN ECOLOGY
451
+ 9
452
+ (a)
453
+ (b)
454
+ (c)
455
+ (d)
456
+ Figure 4. (a): 3D attractor; (b), (c) and (d): 2D projections of
457
+ the attractor on (x1, x2), (x1, x3) and (x2, x3) planes respectively
458
+ for (p, q, r) = (2.98098, 2.9799, 2).
459
+ (a)
460
+ Figure 5. (a) Three-dimensional attractor of GLV equations with
461
+ HT II functional response.
462
+ For parameter values p = 7.34, q = 2.0, r = 0.507, d = 3.198, the system (3) has
463
+ ‘limit cycle’-like attractor which means model (3) has stable dynamics.
464
+ For each variation, we have found different parameters values for which models (1),
465
+ (2), and (3) show completely different dynamics. We infer that the GLV model’s
466
+ unstable dynamics with linear function response can be turned into stable dynamics
467
+ when linear functional response is altered by HT II or HT III. However, this may
468
+
469
+ tional ResponseThe GL Attractor with HT II Fun2
470
+ 1.5
471
+ X
472
+ 1X
473
+ 0.5
474
+ 0
475
+ 0.6
476
+ 0.4
477
+ 0.2
478
+ 0
479
+ 0.5(X2,X3) plane2D projection of the attractor on
480
+ 0.74
481
+ 0.72
482
+ 0.71
483
+ 1.05
484
+ 1.10.68
485
+ 3
486
+ X
487
+ 0.66
488
+ 0.64
489
+ 0.62
490
+ 0.6
491
+ 0.8
492
+ 0.85
493
+ 0.9
494
+ 0.95(Xj,X3) plane2D projection of the attractor on
495
+ 0.74
496
+ 0.72
497
+ 0.7.02
498
+ 1.04
499
+ 1.060.68
500
+ 3
501
+ X
502
+ 0.66
503
+ 0.64
504
+ 0.62
505
+ 0.6
506
+ 0.94
507
+ 0.96
508
+ 0.98
509
+ 1
510
+ 1(x,x,) plane2D projection of the attractor on
511
+ 1.1
512
+ 1.05.02
513
+ 1.04
514
+ 1.06x2 0.95
515
+ 0.9
516
+ 0.85
517
+ 0.8
518
+ 0.94
519
+ 0.96
520
+ 0.98
521
+ 1
522
+ 1 AttractorThe Generalised Lotka Volterr
523
+ 0.751.05
524
+ 1
525
+ X
526
+ 10.7
527
+ 3
528
+ 0.65
529
+ 0.6
530
+ 1.1
531
+ 1
532
+ 0.9
533
+ 0.8
534
+ 0.9510
535
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
536
+ Figure
537
+ 6. Three-dimensional attractor of
538
+ generalised Lotka
539
+ Volterra equations with HT III functional response.
540
+ not be very effective for arbitrarily given scenario. A case in point- predators usu-
541
+ ally do not follow predation rate as HT II or HT III functional response when the
542
+ prey population is in abundance. To overcome this problem, we control chaos in the
543
+ model (1) through synchronization and achieve complete replacement synchroniza-
544
+ tion in two coupled GLV models following linear functional response. Since GLV
545
+ system has been shown to have a chaotic attractor for various set of parameters.
546
+ Out of these sets, we pick the set of parameters p = 2.9851, q = 3, r = 2 as in [18]
547
+ for further study.
548
+ 3.
549
+ Mathematical Properties
550
+ In this section, we discuss the dynamical and analytical properties of system
551
+ (1) including positive Lyapunov exponent, equation of slow manifold, in-variance,
552
+ dissipation, stability of feasible equilibrium points, and control of instability of
553
+ unstable equilibrium points.
554
+ 3.1.
555
+ Lyapunov exponents. For three-dimensional system, the local behaviour
556
+ of the dynamics varies along three orthogonal directions in state space. In a given
557
+ chaotic system , nearby initial conditions may be moving apart along one axis,
558
+ and moving together along another. The Lyapunov exponent describes the average
559
+ rate of separation between two nearby trajectories with different initial conditions
560
+ subject to a flow [3]. Where a positive Lyapunov exponent confirms chaos in the
561
+ system. For simulation, we take the parameter values of the system (1) as p =
562
+
563
+ The Generalised Lotka Volterra Attractor with Holling Type Ill Functional Response
564
+ 1.4
565
+ 1.22.4
566
+ 2.2
567
+ 2
568
+ 1.8
569
+ 1.6
570
+ 1.4
571
+ 1.20.8~
572
+ 3
573
+ 0.6
574
+ 0.4
575
+ 0.2
576
+ 0>
577
+ 1.3
578
+ 1.2
579
+ 1.1
580
+ 1
581
+ 0.9
582
+ 0.8
583
+ 0.7
584
+ 1
585
+ 0.6
586
+ 0.8
587
+ 0.6
588
+ X2
589
+ 0.5
590
+ 0.4SYNCHRONIZATION OF CHAOS IN ECOLOGY
591
+ 11
592
+ 2.0451, q = 2.129, r = 2. The dynamics of Lyapunov exponents are shown in figure
593
+ 7. The Lyapunov exponents of model (1) are as follows
594
+ Figure 7. Dynamics of Lyapunov spectrum of system (1).
595
+ L1 = 0.0138667 > 0, L2 = −0.275762 < 0, L3 = −0.293347 < 0.
596
+ where L1 is the indicator of chaos in the system (1).
597
+ 3.2. Equation of slow manifold. The infusion of geometric and topological tech-
598
+ niques in chaos theory motivates mathematicians to study the underlying geometric
599
+ structures. In this line, expression of slow manifold permits to restore a part of the
600
+ deterministic property of the system that was lost because of SDIC. To find an
601
+ equation of slow manifold, we consider the system (1) as slow-fast autonomous dy-
602
+ namical system (S-FADS). In S-FADS, variables are separated into two groups:, one
603
+ is group of fast variable and other is of slow variables where slow variables are used
604
+ to determine the behaviour of whole system. To get the equation, we consider that
605
+ the slow manifold is locally defined by a plane orthogonal to tangent system’s left
606
+ fast eigenvector. Under the set of parameter values p = 2.9851, q = 3, r = 2, the
607
+
608
+ onents
609
+ -L,=0.0138667
610
+ -L,=-0.275762
611
+ L.=-0.293347
612
+ 3Dynamics of Lyapunov Exp
613
+ 2
614
+ nents800
615
+ 1000Lyapunov Expo
616
+ 0
617
+ -3
618
+ 0
619
+ 200
620
+ 400
621
+ 600
622
+ Time12
623
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
624
+ equations of GLV model (1) can be given as
625
+ (4)
626
+ ˙x1 = x1(1 − x2 + 2x1 − 2.9851x3x1),
627
+ ˙x2 = x2(−1 + x1),
628
+ ˙x3 = x3(−3 + 2.9851x2
629
+ 1).
630
+ The Jacobian matrix J at point x = (x1, x2, x3)T is obtained as
631
+ J =
632
+
633
+ 
634
+ 1 − x2 + 4x1 − 5.9702x1x3
635
+ −x1
636
+ −2.9851x2
637
+ 1
638
+ x2
639
+ −1 + x1
640
+ 0
641
+ 5.9702x1x3
642
+ 0
643
+ −3 + 2.9851x2
644
+ 1
645
+
646
+ 
647
+ Let λ1(x1, x2, x3) be a real, negative and dominant Eigen value ( i.e, fast Eigen
648
+ value) for Jacobian matrix in a large part of attractor’s phase space domain.
649
+ Furthermore, we assume that λ2(x1, x2, x3) and λ3(x1, x2, x3) be two slow Eigen
650
+ values. Then Eigen vector ZT
651
+ λ1 corresponding to fast Eigen value λ1 of JT (x1, x2, x3)
652
+ is given by
653
+ (5)
654
+ |J − λ1I| Zλ1 = 0.
655
+ where I is 3 × 3 identity matrix. Equation (6) gives,
656
+ ZT
657
+ λ1 =
658
+
659
+ 
660
+ (−1 + x1 − λ1)(−3 + 2.9851x2
661
+ 1 − λ1)
662
+ x1(−3 + 2.9851x1)2)
663
+ 2.9851x2
664
+ 1(−1 + x1 − λ1)
665
+
666
+  .
667
+ On the attractive parts of phase space (where J(x) has a fast Eigen value λ1), the
668
+ equation of the slow manifold is given by
669
+ (6)
670
+ ˙x(t).ZT
671
+ λ1 = 0.
672
+ We use the equation (7) to define the equation of slow manifold. With the substi-
673
+ tution of ˙x(t) and ZT
674
+ λ1 in the equation (7), we write the equation of slow manifold
675
+ as
676
+ λ2
677
+ 1(x1 − x1x2 + 2x2
678
+ 1 − 2.9851x2
679
+ 1x3) + λ1(−4x1 + 7x2
680
+ 1 − 4.9851x3
681
+ 1 − 3x1x2 + 2.9851x3
682
+ 1x2−
683
+ 5.97020x4
684
+ 1 − 2.985100x2
685
+ 1x3 + 2.9851x3
686
+ 1x3) + (3x1 + x2
687
+ 1 − 8.985100x3
688
+ 1 − 2.9851x4
689
+ 1 + 5.970200x5
690
+ 1
691
+ + 8.95530x1x3 − 17.910600x2
692
+ 1x3 − 0.044478x3
693
+ 1x3 + 17.821644x4
694
+ 1x3 − 8.91082x3
695
+ 1x3) = 0.
696
+ (7)
697
+
698
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
699
+ 13
700
+ where λ1 is fast Eigen value of J(x). Because λ1(x1, x2, x3) is uncertain Eigen value,
701
+ it is not easy to use this implicit equation to draw a slow manifold representation
702
+ in the three dimensional phase space.
703
+ 3.3. Invariance property.
704
+ Theorem 3.1. Let the system in vector notation is given as
705
+ (8)
706
+ ˙x(t) = H(x(t)) =
707
+
708
+ 
709
+ H1(x1, x2, x3)
710
+ H2(x1, x2, x3)
711
+ H3(x1, x2, x3)
712
+
713
+ 
714
+ H1(x1, x2, x3) = x1(1 − x2 + rx1 − px3x1),
715
+ H2(x1, x2, x3) = x2(−1 + x1),
716
+ H3(x1, x2, x3) = x3(−q + px1
717
+ 2).
718
+ where H1, H2 and H3 are continuously differentiable. Assume that H is locally
719
+ Lipschitz and generates a flow φt(x). Let
720
+ L : D ⊂ R3 → R3
721
+ be a continuously differentiable function on a domain D ⊂ R3 such that ˙L(x) ≤ 0
722
+ in D, then the largest invariant set Σ ⊂ D is the set; where ∇L.H(x) = 0 ∀x ∈ Σ.
723
+ Proof. Consider
724
+ L : D ⊂ R3 → R3
725
+ be a continuously differentiable function on a domain D ⊂ R3 and defined as
726
+ (9)
727
+ L(x1, x2, x3) = x2
728
+ 1 + x2
729
+ 2 + x2
730
+ 3
731
+ 2
732
+ .
733
+ Equation (9) gives,
734
+ (10)
735
+ ˙L(x1, x2, x3) = x1 ˙x1 + x2 ˙x2 + x3 ˙x3.
736
+ The set D ⊂ R3 is said to be an invariant set under the flow φt if for any point
737
+ x ∈ D
738
+ φt(x) ∈ D ∀ t ∈ R.
739
+ Let Σ be a smooth closed surface without boundary in D ⊂ R3 and suppose that
740
+ n is a normal vector to the surface Σ at (x1, x2, x3). If we have
741
+ (11)
742
+ n. < ˙x1, ˙x2, ˙x3 >= 0 ∀ (x1, x2, x3) ∈ Σ.
743
+
744
+ 14
745
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
746
+ Let us consider Σ be the x1x2 plane i.e. x3 = 0. Note that the vector (0, 0, 1) is
747
+ always normal to Σ and at the point (x1, x2, 0) ∈ Σ. So we have,
748
+ ( ˙x1, ˙x2, ˙x3) = (x1(1 − x2 + rx1 − px3x1), x2(−1 + x1), 0).
749
+ Thus,
750
+ ⟨(0, 0, 1).(x1(1 − x2 + rx1 − px3x1), x2(−1 + x1), 0)⟩ = 0.
751
+ Similar arguments can be verified for x1 and x2 planes which directs that each
752
+ coordinate plane is an invariant subset. It implies that for any given positive initial
753
+ condition, x1(t), x2(t) and x3(t) are positive for all t that is any trajectory starting
754
+ in R3
755
+ + can not cross the co-ordinate planes and it shows that R3
756
+ + is an invariant set
757
+ for the system.
758
+
759
+ 3.4. Dissipation.
760
+ Theorem 3.2. Consider the autonomous vector field
761
+ ˙x(t) = H(x) for x ∈ R3,
762
+ and assume that it generates a flow φt(x).
763
+ Let D0 is a domain in R3 which is
764
+ supposed to have a volume V0, and φt(D0) is its evolution under the flow. If V (t)
765
+ is the volume of Dt, then the time rate of change of volume is given as
766
+ |dV
767
+ dt |t=0 =
768
+
769
+ D0
770
+ ∇.Hdx.
771
+ The system (1) is dissipative if its time-t map decreases volume for all t > 0.
772
+ Proof. Dissipation in any dynamical system manifests itself as contraction of the
773
+ phase volume on average. To check this, we express the volume V (t) in the following
774
+ form using the definition of the Jacobian of transformation as
775
+ (12)
776
+ V (t) =
777
+
778
+ D0
779
+ |dφt(x)
780
+ dx
781
+ |dx.
782
+ Expanding φt(x) in the neighbourhood of t = 0.
783
+ Since the vector field H(x) is
784
+ smooth enough to have a tangent plane in each point on R3 so we can expand φt(x)
785
+ by Taylor series expansion. Hence we get,
786
+ (13)
787
+ φt(x) = x + ˙xt + O(t2) for t → 0
788
+ Since
789
+ (14)
790
+ ˙x(t) = H(x),
791
+
792
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
793
+ 15
794
+ The equation (15) gives,
795
+ (15)
796
+ φt(x) = x + H(x)t + O(t2) for t → 0.
797
+ It follows that
798
+ ∂φ
799
+ ∂x = I + ∂H
800
+ ∂x t + O(t2),
801
+ (16)
802
+ |∂φ
803
+ ∂x| = |I + ∂H
804
+ ∂x t| + O(t2).
805
+ Here I is 3 × 3 identity matrix so det I will be equal to 1.
806
+ By expanding the
807
+ expression (17) by using expansion of determinant, we get the following
808
+ (17)
809
+ |∂φ
810
+ ∂x| = 1 + trace(∂H
811
+ ∂x )t + O(t2).
812
+ Note that
813
+ (18)
814
+ trace(∂H
815
+ ∂x ) = ∇.H,
816
+ therefore, we have
817
+ (19)
818
+ V (t) = V0 +
819
+
820
+ D0
821
+ ((∇.H)t + O(t2))dx.
822
+ It gives
823
+ (20)
824
+ |dV
825
+ dt |t=0 =
826
+
827
+ D0
828
+ ∇.Hdx,
829
+ i.e. if the volume shrinks then divergence of vector field will be strictly negative [3].
830
+ Now considering the equations of model (1) in vector notation and computing its
831
+ Jacobian
832
+ (21)
833
+ J(x1, x2, x3) = ∂H
834
+ ∂x .
835
+ The Jacobian J(x1, x2, x3) of the model is given by
836
+ (22)
837
+
838
+ 
839
+ 1 − x2 + 2rx1 − 2px1x3
840
+ −x1
841
+ −px12
842
+ x2
843
+ −1 + x1
844
+ 0
845
+ 2px1x3
846
+ 0
847
+ −q + px2
848
+ 1
849
+
850
+  ,
851
+ we take the parameter values as
852
+ (23)
853
+ p = 2.9851,
854
+ q = 3,
855
+ r = 2.
856
+
857
+ 16
858
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
859
+ The above argument shows that the G.L.V dynamical system will be dissipative if
860
+ the generalized divergence should be less than zero, i.e.
861
+ (24)
862
+
863
+ i
864
+ ∂Hi
865
+ ∂xi
866
+ < 0.
867
+ where Einstein summation has been used. The divergence of vector field H on R3
868
+ is as follows
869
+ (25)
870
+ ∇.H = ∂H1
871
+ ∂x1 + ∂H2
872
+ ∂x2 + ∂H3
873
+ ∂x3 ,
874
+ ∇.H = −q − x2 + (2r + 1 + px1 − 2px3)x1.
875
+ Hence system (1) will be dissipative if the following condition is satisfied,
876
+ (26)
877
+ (2r + 1 + px1 − 2px3)x1 < q + x2.
878
+
879
+ 3.5. Existence and uniqueness of solution. Since we are dealing with a popula-
880
+ tion dynamics model, hence, the existence of at least one solution is must. However,
881
+ the uniqueness of existed solution will give more appropriate results. Here we men-
882
+ tion two theorems for which solutions of the system (1) uniquely exist for all t > 0
883
+ (complete detail of the proof can be seen in [18]).
884
+ Theorem 3.3. If the functions f1, f2 and f3 satisfy assumptions (1) and (2),
885
+ mentioned in section , then continuity of functions fi for i ∈ {1, 2, 3} assures that
886
+ atleast one solution exists for the dynamics of system (1) in region D × I where
887
+ I = (0, T ] and the spatial boundary of region D ⊂ R3 is defined as
888
+ D = {x = (x1, x2, x3) : max|xi| ≤ M, for i ∈ {1, 2, 3}}
889
+ where M > 0.
890
+ Theorem 3.4. Let D be a closed subspace of complete normed linear space R3.
891
+ Consider H : D ⊂ R3 → D is Lipschitz continuous so that there exist 0 < K < 1
892
+ such that
893
+ ||H(χ) − H(ψ)|| < K||χ − ψ||
894
+ with
895
+ K = T.max(1 + 2M + 2rM + 4pM 2, 1 + 2M, q + 2pM 2)
896
+ For 0 < K < 1, H(t) will be a contraction map. With the help of Banach fixed point
897
+ theorem, it can be ensured that 0 < K < 1 is sufficient condition for uniqueness of
898
+ solution of the system (1).
899
+
900
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
901
+ 17
902
+ 3.6.
903
+ Stability of feasible equilibrium points. The equilibrium points of system
904
+ (1) are solutions of following algebraic equations
905
+ xx1(1 − x2 + rx1 − px3x1) = 0,
906
+ x2(−1 + x1) = 0,
907
+ x3(−q + px2
908
+ 1) = 0.
909
+ (27)
910
+ We obtain five equilibrium points by solving the system (27),
911
+ (28)
912
+ X∗
913
+ 0 =
914
+
915
+ 
916
+ 0
917
+ 0
918
+ 0
919
+
920
+  ,
921
+ X∗
922
+ 1 =
923
+
924
+ 
925
+ 1
926
+ 1 + r
927
+ 0
928
+
929
+  , X∗
930
+ 2 =
931
+
932
+ 
933
+
934
+ q
935
+ p
936
+ 0
937
+ 1+r√ q
938
+ p
939
+ √pq
940
+
941
+  , X∗
942
+ 3 =
943
+
944
+ 
945
+ − 1
946
+ r
947
+ 0
948
+ 0
949
+
950
+  , X∗
951
+ 4 =
952
+
953
+ 
954
+
955
+
956
+ q
957
+ p
958
+ 0
959
+ −1+r√ q
960
+ p
961
+ √pq
962
+
963
+  .
964
+ From an ecological point of view, negative population density is not realistic as
965
+ the population can not be negative, therefore, we take the vector x = (x1, x2, x3)
966
+ as an element of R3
967
+ +. R3
968
+ + is defined as
969
+ (29)
970
+ R3
971
+ + = {X ∈ R3 : xi ≥ 0 for i ∈ {1, 2, 3}}.
972
+ Since equilibrium points X∗
973
+ 0, X∗
974
+ 1 and X∗
975
+ 2 are elements of the set Int(R3
976
+ +), therefore,
977
+ we study the local stability of ecologically feasible equilibrium points X∗
978
+ 0, X∗
979
+ 1 and
980
+ X∗
981
+ 2.
982
+ (I) Stability of Trivial Equilibrium Point X∗
983
+ 0.
984
+ Theorem 3.5. Consider the dynamics of the model (1) in the following form
985
+ (30)
986
+ ˙x = H(x) = Ax + f(x) for x ∈ R3.
987
+ If following three conditions are satisfied
988
+ (i) Constant matrix A3×3 has 3 Eigen-values with non-zero real part,
989
+ (ii) f(x) is smooth and
990
+ (iii) lim||x||→0
991
+ ||f(x)||
992
+ ||x||
993
+ = 0,
994
+ then in a neighbourhood of the critical point X∗
995
+ 0 = (0, 0, 0), there exists stable
996
+ and unstable manifolds Ws and Wu with the same dimensions ns and nu as
997
+ the stable and unstable manifolds Es and Eu of the system
998
+ ˙Z(t) = AZ.
999
+ In x = 0, Es and Eu are tangent to Ws and Wu[20].
1000
+
1001
+ 18
1002
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1003
+ Proof. For GLV system, X∗
1004
+ 0 = (0, 0, 0) is trivial equilibrium point. Here we
1005
+ check all three mentioned conditions of theorem I.
1006
+ (i) Note that for model (1), the constant matrix A3×3 is
1007
+ A =
1008
+
1009
+
1010
+
1011
+
1012
+ 1
1013
+ 0
1014
+ 0
1015
+ 0
1016
+ −1
1017
+ 0
1018
+ 0
1019
+ 0
1020
+ −q
1021
+
1022
+
1023
+
1024
+
1025
+ The determinant of the matrix A is non zero if q ̸= 0. Since, we have
1026
+ taken q = 3, therefore, all Eigen values of A have non zero real part.
1027
+ (ii) Since functions f1(x1, x2, x3), f2(x1, x2, x3) and f3(x1, x2, x3) for model
1028
+ (1) are considered as
1029
+ x1(−x2 + rx1 − px3x1)
1030
+ = f1(x1, x2, x3),
1031
+ x2x1
1032
+ = f2(x1, x2, x3),
1033
+ x3(px2
1034
+ 1)
1035
+ = f3(x1, x2, x3).
1036
+ All three functions are continuous and have continuous partial derivative
1037
+ for all x ∈ R3 which implies that f(x) is smooth on R3. Hence, the
1038
+ second condition also holds.
1039
+ (iii) For any x ∈ R3, converting the Cartesian coordinates into spherical
1040
+ coordinates by making the following transformation
1041
+
1042
+ 
1043
+ x1 = r sin θ cos φ
1044
+ x2 = r sin θ sin φ
1045
+ x3 = r cos θ
1046
+
1047
+  ,
1048
+ where r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ π.
1049
+ Using this transformation in model (1), we have
1050
+ lim
1051
+ ||x||→0
1052
+ ||f(x)||
1053
+ ||x||
1054
+ = 0.
1055
+ Hence, the critical point (0, 0, 0) of system (1) is of the same type of
1056
+ critical point of the system
1057
+ ˙Z(t) = AZ.
1058
+
1059
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1060
+ 19
1061
+ The Eigen values of A are 1, −1 and −q which implies that (0, 0, 0) is
1062
+ saddle node for the system ˙Z(t) = AZ. Therefore, the trivial steady
1063
+ state X∗
1064
+ 0 = (0, 0, 0) of the model (1) is a saddle point.
1065
+
1066
+ (II) Stability of Axial Equilibrium Point X∗
1067
+ 1.
1068
+ The Jacobian matrix of model (1) for parameter values p = 2.9851, q =
1069
+ 3, r = 2 is given as
1070
+ (31)
1071
+ J =
1072
+
1073
+ 
1074
+ 1 − x2 + 4x1 − 5.9702x1x3
1075
+ −x1
1076
+ −2.9851x2
1077
+ 1
1078
+ x2
1079
+ −1 + x1
1080
+ 0
1081
+ 5.9702x1x3
1082
+ 0
1083
+ −3 + 2.9851x2
1084
+ 1
1085
+
1086
+  .
1087
+ Jacobian matrix (31) of the model (1) about X∗
1088
+ 1 = (1, 3, 0) yields the following
1089
+ Jacobian matrix
1090
+ (32)
1091
+ JX∗
1092
+ 1 =
1093
+
1094
+ 
1095
+ 2
1096
+ −1
1097
+ −2.9851
1098
+ 3
1099
+ 0
1100
+ 0
1101
+ 0
1102
+ 0
1103
+ −.0149
1104
+
1105
+  .
1106
+ The characteristic equation |JX∗
1107
+ 1 − λI| = 0 of matrix (32) is given as
1108
+ (33)
1109
+ λ3 − (1.9851)λ2 + (2.9702)λ + 0.0447 = 0.
1110
+ The characteristic equation (33) has the following Eigen values
1111
+ (34)
1112
+ λ1 = −0.014900, λ2 = 1 +
1113
+
1114
+ 2ι, λ3 = 1 −
1115
+
1116
+ 2ι.
1117
+ Since λ2 and λ3 have positive real parts, it implies that X∗
1118
+ 1 = (1, 3, 0) is
1119
+ unstable equilibrium point.
1120
+ (III) Stability of Planer Equilibrium Point X∗
1121
+ 2.
1122
+ The Jacobian matrix of model (1) for parameter values p = 2.9851, q =
1123
+ 3, r = 2 is given as
1124
+ (35)
1125
+ J =
1126
+
1127
+ 
1128
+ 1 − x2 + 4x1 − 5.9702x1x3
1129
+ −x1
1130
+ −2.9851x2
1131
+ 1
1132
+ x2
1133
+ −1 + x1
1134
+ 0
1135
+ 5.9702x1x3
1136
+ 0
1137
+ −3 + 2.9851x2
1138
+ 1
1139
+
1140
+  .
1141
+
1142
+ 20
1143
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1144
+ Jacobian matrix (35) of the model (1) about X∗
1145
+ 2 = (1.002493, 0, 1.4159) yields
1146
+ the following Jacobian matrix
1147
+ (36)
1148
+ JX∗
1149
+ 2 =
1150
+
1151
+ 
1152
+ 3.004986
1153
+ −1.002493
1154
+ 3.000002
1155
+ 0
1156
+ .002493
1157
+ 0
1158
+ 6.00887
1159
+ 0
1160
+ .000002
1161
+
1162
+  .
1163
+ The characteristic equation |JX∗
1164
+ 2 − λI| = 0 of matrix (36) is given as
1165
+ (37)
1166
+ λ3 + (0.997507)λ2 + (18.027423)λ − 0.044949 = 0.
1167
+ The characteristic equation (37) has the following Eigen values
1168
+ (38)
1169
+ λ1 = −0.002493, λ2 = −0.5 + 4.216ι, λ3 = −0.5 − 4.216ι.
1170
+ Since all three Eigen-values of matrix (36) have negative real parts, it shows
1171
+ that X∗
1172
+ 2 = (1002493, 0, 1.4159) is locally stable equilibrium point.
1173
+ It is clear that planer equilibrium point is stable whereas trivial and axial equilib-
1174
+ rium points are unstable equilibrium points. Since trivial equilibrium point refers
1175
+ the zero density of all three species, therefore, we neglect the instability of trivial
1176
+ equilibrium point. From an ecological point of view, we mainly focus on non-trivial
1177
+ unstable equilibrium point X∗
1178
+ 1 and try to stabilize it by adding some external control
1179
+ inputs.
1180
+ 3.7.
1181
+ Control of instability of axial equilibrium point. In order to suppress
1182
+ instability to X∗
1183
+ 1 = (1, 3, 0), we consider the controlled GLV system in the following
1184
+ form
1185
+ (39)
1186
+ ˙x1
1187
+ = x1(1 − x2 + rx1 − px3x1) + u1,
1188
+ ˙x2
1189
+ = x2(−1 + x1) + u2,
1190
+ ˙x3
1191
+ = x3(−q + px2
1192
+ 1) + u3.
1193
+ We introduce the external control law
1194
+ (40)
1195
+ u1
1196
+ = −µ1(x1 − 1),
1197
+ u2
1198
+ = −µ2(x2 − 3),
1199
+ u3
1200
+ = −µ3(x3 − 0).
1201
+ with x1, x2, x3 as the feedback variable and µ1, µ2, µ3 as the positive feedback
1202
+ gains. We substitute control law (40) into (39) and hence, the controlled system
1203
+
1204
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1205
+ 21
1206
+ (39) takes the following form
1207
+ (41)
1208
+ ˙x1 = x1(1 − x2 + rx1 − px3x1)) − µ1(x1 − 1),
1209
+ ˙x2 = x2(−1 + x1) − µ2(x2 − 3),
1210
+ ˙x3 = x3(−q + px2
1211
+ 1) − µ3(x3 − 0).
1212
+ Theorem 3.6. The equilibrium point X∗
1213
+ 1 = (1, 3, 0) of the model (1) will be asymp-
1214
+ totically stable if positive gains µ1, µ2 and µ3 satisfy the following inequalities[21]
1215
+ (42)
1216
+ µ1
1217
+ > 2,
1218
+ µ1µ2
1219
+ > 1 + 2µ2,
1220
+ µ1µ2(µ3 + 0.0149)
1221
+ > µ2(2µ3 + 2.2528) + µ3 + 0.0149.
1222
+ Proof. The Jacobian matrix J of the system (41) is given by
1223
+ (43)
1224
+
1225
+ 
1226
+ 1 − x2 + 2x1(r − px3) − µ1
1227
+ −x1
1228
+ −px2
1229
+ 1
1230
+ x2
1231
+ −1 + x1 − µ2
1232
+ 0
1233
+ 2px1x3
1234
+ 0
1235
+ −q + px2
1236
+ 1 − µ3
1237
+
1238
+ 
1239
+ Let us consider that
1240
+ (44)
1241
+ e1
1242
+ = (x1 − 1),
1243
+ e2
1244
+ = (x2 − 3),
1245
+ e3
1246
+ = (x3 − 0).
1247
+ From (44), we get the error system as
1248
+ (45)
1249
+ ˙e1 = (2 − µ1)e1 − e2 − 2.9851e3,
1250
+ ˙e2 = 3e1 − µ2e2,
1251
+ ˙e3 = −(0.014900 + µ3)e3.
1252
+ The system (1) with constant and known parameters, will be stabilized to steady
1253
+ state X∗
1254
+ 1 = (1, 3, 0), if error system (45) stabilized to (0, 0, 0).
1255
+ To study the stability of equilibrium point (0, 0, 0) of error system, we consider the
1256
+ Lyapunov function L(e1, e2, e3) as:
1257
+ (46)
1258
+ L = 1
1259
+ 2(e2
1260
+ 1 + e2
1261
+ 2 + e2
1262
+ 3).
1263
+ The time derivative of L in the neighbourhood of (0, 0, 0) is given as
1264
+ (47)
1265
+ ˙L = (2 − µ1)e2
1266
+ 1 + 2e1e2 − µ2e2
1267
+ 2 − 2.9851e1e3 − (0.0149 + µ2)e2
1268
+ 3.
1269
+
1270
+ 22
1271
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1272
+ The time derivative of Lyapunov function can be re-written in the following form
1273
+ (48)
1274
+ ˙L = eT Me.
1275
+ where e = ((x1 − 1), (x2 − 3), (x3 − 0)) is the error vector in R3, eT is the transpose
1276
+ of error vector e and the matrix M is 3 × 3 is given as
1277
+ M =
1278
+
1279
+ 
1280
+ 2 − µ1
1281
+ 1
1282
+ −1.49250
1283
+ 1
1284
+ −µ2
1285
+ 0
1286
+ −1.49250
1287
+ 0
1288
+ −(0.0149 + µ3)
1289
+
1290
+ 
1291
+ According to Lyapunov stability theory, the equilibrium point (0, 0, 0) of system
1292
+ (45) will be asymptotically stable if ˙L < 0. And ˙L < 0 if matrix M will be negative
1293
+ definite.
1294
+ Considering this, we find that mentioned condition will be fulfilled if
1295
+ positive feedback gains µ1, and µ2 satisfy the following inequalities,
1296
+ (49)
1297
+ µ1
1298
+ > 2,
1299
+ µ1µ2
1300
+ > 1 + 2µ2,
1301
+ µ1µ2(µ3 + 0.0149)
1302
+ > µ2(2µ3 + 2.2528) + µ3 + 0.0149.
1303
+
1304
+ 4. Complete Replacement Synchronization
1305
+ To investigate complete replacement synchronization techniques, we consider two
1306
+ identical chaotic GLV systems having the same parameter but different initial con-
1307
+ ditions. Since the coupling between models is needed to maintain the synchronous
1308
+ state, we couple the states of both models with two controllers and drive the re-
1309
+ sponse system with prey species x1. For this, we remove prey from response system,
1310
+ and drive its counterpart. Here, we can think of prey species x1 as a driving vari-
1311
+ able for response system with an assumption that it is superfluous in the system of
1312
+ two coupled GLV models. This construction gives us a new five-dimensional drive-
1313
+ response system having drive and response variables as (x1d, x2d, x3d) and (x2r, x3r)
1314
+
1315
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1316
+ 23
1317
+ respectively. The coupled chaotic system with x1d drive configuration is as follows:
1318
+ (50)
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+ (Drive System)
1353
+ ˙x1d
1354
+ = x1d(1 − x2d + rx1d − px3dx1d),
1355
+ ˙x2d
1356
+ = x2d(−1 + x1d),
1357
+ ˙x3d
1358
+ = x3d(−q + px2
1359
+ 1d),
1360
+ ( Response System)
1361
+ ˙x2r
1362
+ = x2d(−1 + x1d) + u1,
1363
+ ˙x3r
1364
+ = x3r(−q + px2
1365
+ 1d) + u2.
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+
1373
+
1374
+
1375
+
1376
+
1377
+
1378
+
1379
+
1380
+
1381
+
1382
+
1383
+
1384
+
1385
+
1386
+
1387
+
1388
+
1389
+
1390
+
1391
+
1392
+
1393
+
1394
+
1395
+
1396
+
1397
+
1398
+
1399
+ x2d(0) ̸= x2r(0) and x3d(0) ̸= x3r(0).
1400
+ 4.1. Active control law for stability of synchronization manifold.
1401
+ Theorem 4.1. The identical synchronization manifold Ω = [x2d = x2r, x3d = x3r]
1402
+ is globally asymptotically stable for the coupling between drive and response system
1403
+ in equation (24) for positive µ1 and µ2, where µ1 and µ2 are large enough such that
1404
+ µ1 + 1 > x1d,
1405
+ µ2 + q > px2
1406
+ 1d.
1407
+ Proof. We consider drive-response system given by equations (50) and add the uni-
1408
+ directional controllers to the response system through the linear positive constants
1409
+ µ1 and µ2. We choose two controllers for response system as
1410
+ (51)
1411
+ u1
1412
+ = −µ1(x2r(t) − x2d(t)),
1413
+ u2
1414
+ = −µ2(x3r(t) − x3d(t)).
1415
+ Existence of all forms of identical synchronization in any dynamical system
1416
+ (chaotic or not), are really manifestations of dynamical behaviour restricted to
1417
+ a flat hyper-plane in the phase space i.e. to say motion is continually confined to a
1418
+ hyper-plane which can be referred as synchronization manifold [22]. Therefore, we
1419
+ consider the identical synchronization manifold of the systems equation (50) as
1420
+ Ω = [x2d = x2r, x3d = x3r].
1421
+ Further, we consider the errors between states of drive and response systems of
1422
+ system (50) as
1423
+ (52)
1424
+ e2(t)
1425
+ = x2r(t) − x2d(t),
1426
+ e3(t)
1427
+ = x3r(t) − x3d(t).
1428
+
1429
+ 24
1430
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1431
+ The dynamics of error system is as follows
1432
+ (53)
1433
+ ˙e2
1434
+ = (−1 − µ1 + x1d)e2,
1435
+ ˙e3
1436
+ = (−q − µ2 + px2
1437
+ 1d)e3.
1438
+ where, we are now interested in the stability of origin. The Jacobian of right side
1439
+ of (53) is given by
1440
+ (54)
1441
+ J(e2, e3) =
1442
+
1443
+ −1 + µ1 + x1d
1444
+ 0
1445
+ 0
1446
+ −q + µ2 + px2
1447
+ 1d
1448
+
1449
+ We treat the response system (x2d(t), x3r(t)) as a separate system driven by x1d,
1450
+ then the solutions of equation (54) convey us about convergence and divergence of
1451
+ two initially nearby trajectories of {x2r(t), x2d(t)} and {x3r(t), x3d(t)}.
1452
+ Next, We analyse the possibility of synchronization using the Lyapunov function
1453
+ construction method. We consider the Lyapunov function as
1454
+ (55)
1455
+ L(e2, e3) = 1
1456
+ 2(e2
1457
+ 2 + e2
1458
+ 3).
1459
+ (56)
1460
+ dL
1461
+ dt = e2 ˙e2 + e3 ˙e3.
1462
+ Plugging dynamics of errors (53) into (55), we get
1463
+ (57)
1464
+ dL
1465
+ dt = −[(µ1 + 1 − x1d)e2
1466
+ 2 + (µ2 + q − px2
1467
+ 1d)e2
1468
+ 3],
1469
+ which will be strictly negative for following conditions on µ1 and µ2
1470
+ (58)
1471
+ µ1 + 1 > x1d,
1472
+ µ2 + q > px2
1473
+ 1d.
1474
+ for all t > 0. Condition (58) ensures that we consider the bounded density of prey
1475
+ species, then we can bound the positive feedback gains. Thus, if µ1 and µ2 satisfy
1476
+ (58), then it can be assured that dL
1477
+ dt < 0 for all t > 0 or in other words, the complete
1478
+ replacement synchronization follows as e2 and e3 → 0 as t → ∞.
1479
+
1480
+ 4.1.1. Numerical Simulation. Since, a suitable coupling can influence both fre-
1481
+ quency as well as chaotic amplitude, therefore, the states coincide (or nearby co-
1482
+ incide) and regime of synchronization sets in. Thus, it is pre-arranged that the
1483
+ chosen coupling should assist the coupled states in coincidence without perturbing
1484
+ their chaotic rhythm. We numerically integrate the System (50) and display results
1485
+
1486
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1487
+ 25
1488
+ in figure 4.1.1, where drive and response systems are shown to synchronize when
1489
+ considered positive feed-back gain are chosen as µ1 = 0.000024, µ2 = 1.345.
1490
+ 0
1491
+ 200
1492
+ 400
1493
+ 600
1494
+ 800
1495
+ 1000
1496
+ 1200
1497
+ 1400
1498
+ 1600
1499
+ 1800
1500
+ 2000
1501
+ Time
1502
+ 0.2
1503
+ 0.4
1504
+ 0.6
1505
+ 0.8
1506
+ 1
1507
+ 1.2
1508
+ 1.4
1509
+ 1.6
1510
+ Population
1511
+ x1d
1512
+ x2d
1513
+ x3d
1514
+ y2r
1515
+ y3r
1516
+ (a)
1517
+ 0
1518
+ 200
1519
+ 400
1520
+ 600
1521
+ 800
1522
+ 1000
1523
+ 1200
1524
+ 1400
1525
+ 1600
1526
+ 1800
1527
+ 2000
1528
+ Time
1529
+ -0.14
1530
+ -0.12
1531
+ -0.1
1532
+ -0.08
1533
+ -0.06
1534
+ -0.04
1535
+ -0.02
1536
+ 0
1537
+ Errors
1538
+ (e2)
1539
+ (e3)
1540
+ (b)
1541
+ x2d
1542
+ y2r
1543
+ x2d vs y2r
1544
+ (c)
1545
+ (d)
1546
+ Figure 8. (a): solutions of drive and response systems plotted
1547
+ over time, (b): errors between drive and response systems over
1548
+ time,(c): synchronization plot of {x2d, x2r}, (d): synchronization
1549
+ plot of {x3d, x3r}
1550
+ 4.1.2. Lyapunov Spectrum For Drive-Response System. Since the necessary condi-
1551
+ tion for the stability of the synchronization manifold is the negative largest trans-
1552
+ verse Lyapunov exponent. In the case of complete replacement synchronization,
1553
+ the transverse Lyapunov exponents are also known as conditional Lyapunov expo-
1554
+ nents. It is because Lyapunov exponents for the new system depend on the coupling
1555
+ from the drive[23]. The Lyapunov spectrum is a global indicator of the system’s
1556
+
1557
+ X
1558
+ VS
1559
+ 3d3
1560
+ X
1561
+ 3d26
1562
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1563
+ state, aggregating over the behaviour of the entire system trajectory in phase space.
1564
+ The typical approach for observing these transitions is to see a change in sign of
1565
+ the Lyapunov exponents of the system, as obtained from ensemble averages of the
1566
+ eigenvalues of the Jacobian matrix of system (50) [24]. We solve equations of system
1567
+ (50) and get the Jacobian matrix as
1568
+ (59)
1569
+ J(x1d, x2d, x3d, x2d, x3r) = A5×5, where A = [aij].
1570
+ The entries of the matrix A are given as:
1571
+ a11 = 1 − x2d + 2(r − px3d)x1d,
1572
+ a12 = −x1d,
1573
+ a13 = −px2
1574
+ 1d,
1575
+ a21 = x2d,
1576
+ a22 = −1 + x1d,
1577
+ a31 = 2px1dx3d,
1578
+ a33 = −q + px2
1579
+ 1d,
1580
+ a41 = x2d,
1581
+ a42 = µ1,
1582
+ a44 = −1 + x1d − µ1x2d,
1583
+ a51 = 2px3rx1d,
1584
+ a53 = µ2,
1585
+ a55 = −q + px2
1586
+ 1d − µ2,
1587
+ a14 =
1588
+ a15 =
1589
+ a23 =
1590
+ a24 =
1591
+ a25 =
1592
+ a32 = 0,
1593
+ a34 =
1594
+ a35 =
1595
+ a43 =
1596
+ a45 =
1597
+ a52 =
1598
+ a54 = 0.
1599
+ Averaging the eigenvalues of Jacobian J over all phase space configurations set-up
1600
+ by the chaotic trajectory, we get the five Lyapunov exponents of the system of two
1601
+ coupled GLV models.
1602
+ For set of parameter values {p, q, r} = {2.9851, 3, 2}, Lyapunov exponents of the
1603
+ drive-response system are obtained as
1604
+ (60)
1605
+ L1 = −0.011320,
1606
+ L2 = −0.174464,
1607
+ L3 = −0.22221,
1608
+ L4 = −5.011,
1609
+ L5 = −5.0059.
1610
+ Since, all Lyapunov exponents are negative which confirms the stable synchroniza-
1611
+ tion manifold, therefore, it can be concluded that the states of coupled GLV systems
1612
+ are synchronized.
1613
+
1614
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1615
+ 27
1616
+ 0
1617
+ 20
1618
+ 40
1619
+ 60
1620
+ 80
1621
+ 100
1622
+ Time
1623
+ -6
1624
+ -5
1625
+ -4
1626
+ -3
1627
+ -2
1628
+ -1
1629
+ 0
1630
+ Lyapunov exponents
1631
+ Dynamics of Lyapunov exponents
1632
+ L1=-0.01132
1633
+ L2=-0.17446
1634
+ L3=-0.22221
1635
+ L4=-5.011
1636
+ L5=-5.0059
1637
+ Figure 9. Lyapunov Exponents of two GLV models coupled with
1638
+ positive feedback gains µ1 = 0.000024 and µ2 = 1.345.
1639
+ 4.2. Adaptive control law for stability of synchronization manifold. Us-
1640
+ ing the method [25], we design non-linear adaptive controller for global complete-
1641
+ replacement synchronization of two chaotic GLV systems with unknown parameters.
1642
+ We consider the drive system as
1643
+ (61)
1644
+ ˙x1d
1645
+ = x1d(1 − x2d + rx1d − px3dx1d),
1646
+ ˙x2d
1647
+ = x2d(−1 + x1d),
1648
+ ˙x3d
1649
+ = x3d(−q + px2
1650
+ 1d).
1651
+ The response system is given by controlled chaotic system
1652
+ (62)
1653
+ ˙x2r
1654
+ = x2r(−1 + x1d) + u1,
1655
+ ˙x3r
1656
+ = x3r(−q + px2
1657
+ 1d) + u2.
1658
+ The synchronization error between drive and response systems is defined as
1659
+ (63)
1660
+ e2(t)
1661
+ = x2r(t) − x2d(t)
1662
+ e3(t)
1663
+ = x3r(t) − x3d(t).
1664
+ The error dynamics between drive and response systems is calculated as :
1665
+ (64)
1666
+ ˙e2
1667
+ = −e2 + x1de2 + u1,
1668
+ ˙e3
1669
+ = −qe3 + px2
1670
+ 1de3 + u2.
1671
+ In (64), unknown parameters p and q are to be determined by using parameter
1672
+ estimates P(t) and Q(t) respectively. For this purpose, we consider adaptive control
1673
+
1674
+ 28
1675
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1676
+ laws u1 and u2 with positive feedback gains µ1 and µ2 as
1677
+ (65)
1678
+ u1
1679
+ = e2 − x1de2 − µ1e2,
1680
+ u2
1681
+ = Q(t)e3 − P(t)x2
1682
+ 1de3 − µ2e3.
1683
+ Using control law (65) into the error dynamics (64), we get
1684
+ (66)
1685
+ ˙e2
1686
+ = −µ1e2,
1687
+ ˙e3
1688
+ = −(q − Q(t))e3 + (p − P(t))x2
1689
+ 1de3 − µ2e3.
1690
+ We define parameter estimation error as
1691
+ (67)
1692
+ ep(t) = (p − P(t)),
1693
+ eq(t) = (q − Q(t)).
1694
+ Using (67), we can simplify the error dynamics (66) as
1695
+ (68)
1696
+ ˙e2 = −µ1e2,
1697
+ ˙e3 = −eq(t)e3 + ep(t)x2
1698
+ 1de3 − µ2e3.
1699
+ Differentiating (67) with respect to t, we get
1700
+ (69)
1701
+ ˙ep
1702
+ = − ˙P(t),
1703
+ ˙eq
1704
+ = − ˙Q(t)
1705
+ Theorem 4.2. The identical synchronization manifold Ω = [x2d = x2r, x3d = x3r]
1706
+ is globally asymptotically stable for the coupling between derive and response system
1707
+ in equation (50) for positive µ1 and µ2.
1708
+ Proof. The identical synchronization manifold for the systems equation (24) can be
1709
+ written as
1710
+ Ω = [x2d = x2r, x3d = x3r].
1711
+ Using change of coordinates
1712
+ (70)
1713
+ e =
1714
+
1715
+ e2
1716
+ e3
1717
+
1718
+ =
1719
+
1720
+ x2d − x2d
1721
+ x3r − x3d
1722
+
1723
+ ,
1724
+ such that Ω can be written
1725
+ Ω = (0, 0).
1726
+ Next, we use Lyapunov stability theory for finding an update law for the parameter
1727
+ estimates. we consider the quadratic Lyapunov function as
1728
+ (71)
1729
+ L = 1
1730
+ 2(e2
1731
+ 2 + e2
1732
+ 3 + e2
1733
+ p + e2
1734
+ q)
1735
+
1736
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1737
+ 29
1738
+ Note that Lyapunov function L is positive definite on R4. Differentiating L along
1739
+ the trajectories of (66) and (69). We get,
1740
+ (72)
1741
+ dL
1742
+ dt
1743
+ = e2 ˙e2 + e3 ˙e3 + ep ˙ep + eq ˙eq,
1744
+ dL
1745
+ dt
1746
+ = −µ1e2
1747
+ 2 − µ2e2
1748
+ 3 + ep(t)(− ˙P(t) + x2
1749
+ 1de3) + eq(t)(− ˙Q(t) − e2
1750
+ 3).
1751
+ We want error system to be asymptotically stable i.e.
1752
+ (73)
1753
+ dL
1754
+ dt < 0.
1755
+ In view of (72), we take the parameter update law as
1756
+ (74)
1757
+ ˙P(t) = x2
1758
+ 1de3,
1759
+ ˙Q(t) = −e2
1760
+ 3.
1761
+ By substituting the parameter update law (74) into Lyapunov function, we obtain
1762
+ time derivative of L as
1763
+ (75)
1764
+ dL
1765
+ dt = −µ1e2
1766
+ 2 − µ2e2
1767
+ 3,
1768
+ From (75), it is clear that ˙L is negative semi-definite function on R4. Thus, we can
1769
+ conclude that the synchronization error vector e(t) and the parameter estimation
1770
+ error are globally bounded, i.e.
1771
+ (76)
1772
+ [e2, e3, ep, eq]T ∈ L∞.
1773
+ We define µ = min{µ1, µ2}, then it follows from (75) that
1774
+ (77)
1775
+ dL
1776
+ dt ≤ −µ||e||2.
1777
+ Integrating the inequality (77) with respect to τ from 0 to t. We get,
1778
+ (78)
1779
+ � t
1780
+ 0
1781
+ µ||e(τ)||2dτ ≤ L(0) − L(t).
1782
+ From (78) it follows that e ∈ L2 and hence, ˙e(t) ∈ L∞.
1783
+ With the help of Barbalat’s lemma [26],[27], we conclude that e(t) → 0 exponentially
1784
+ as t → ∞ for all initial conditions e(0) ∈ R2.
1785
+
1786
+
1787
+ 30
1788
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1789
+ 4.2.1. Numerical Simulation. For numerical simulations, we use the classical fourth-
1790
+ order Runge-Kutta method to solve the GLV system. The initial value of parameter
1791
+ estimates are taken as P(0) = 3.9, Q(0) = 4. The initial values of states of drive and
1792
+ response systems are taken as (x1d(0), x2d(0), x3d(0)) = (4, 1.4, 1.41) and (x2r(0),
1793
+ x3r(0)) = (1, 1.414) respectively. The effectiveness of control law is verified through
1794
+ simulation results which are shown in figure 4.2.1. Figure shows the solutions of
1795
+ system (50).
1796
+ It is clear that although the initial values are different, the error
1797
+ dynamics approach to zero as time goes to ∞. Therefore, our numerical results
1798
+ confirm that the amplitude and frequency of state variables of response system
1799
+ become same with the drive system under the designed control law.
1800
+ 5. Conclusion
1801
+ This work examines predator-prey systems in ecosystems to understand how
1802
+ they contribute to sustainable environment. Our focus is on the use of Generalized
1803
+ Lotka-Volterra (GLV) equations to model the competition and trophic relationships
1804
+ between various species. We consider three different forms of three-dimensional GLV
1805
+ models, each with different functional responses (linear, Holling type II, and Holling
1806
+ type III). We find that the model with the linear functional response exhibits un-
1807
+ stable dynamics, where alteration in functional response can stabilize the system
1808
+ dynamics for a particular scenario. To stabilize the dynamics in patchy ecosystem,
1809
+ we focus on the GLV model with the linear functional response for the remainder of
1810
+ the study. We investigate its fundamental properties and also examine the stability
1811
+ of equilibrium points and the suppression of instability at equilibrium. Through
1812
+ computation of Lyapunov exponent, we find that the model is chaotic due to one
1813
+ positive Lyapunov exponent and has two unstable equilibrium points for the con-
1814
+ stant parameters p = 2.9851, q = 3, r = 2.
1815
+ Further, we investigate the synchronization of two chaotic GLV models using two
1816
+ control schemes: the Active Control Technique and the Adaptive Control Technique.
1817
+ We consider a configuration in which the prey population in the drive system acts
1818
+ as a driving variable for the response system, allowing the other two predator popu-
1819
+ lations to depend only on the prey population. Using the Active Control Technique,
1820
+ we apply two simple linear controllers to synchronize the states of the GLV systems.
1821
+
1822
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1823
+ 31
1824
+ 0
1825
+ 200
1826
+ 400
1827
+ 600
1828
+ 800
1829
+ 1000
1830
+ 1200
1831
+ 1400
1832
+ 1600
1833
+ 1800
1834
+ 2000
1835
+ Time
1836
+ -1
1837
+ 0
1838
+ 1
1839
+ 2
1840
+ 3
1841
+ 4
1842
+ 5
1843
+ Population
1844
+ x1d
1845
+ x2d
1846
+ x3d
1847
+ y2r
1848
+ y3r
1849
+ (a)
1850
+ 0
1851
+ 200
1852
+ 400
1853
+ 600
1854
+ 800
1855
+ 1000
1856
+ 1200
1857
+ 1400
1858
+ 1600
1859
+ 1800
1860
+ 2000
1861
+ Time
1862
+ -0.1
1863
+ 0
1864
+ 0.1
1865
+ 0.2
1866
+ 0.3
1867
+ 0.4
1868
+ Errors
1869
+ (e2)
1870
+ (e3)
1871
+ (b)
1872
+ x2d
1873
+ 0
1874
+ y2r
1875
+ x2d vs y2r
1876
+ (c)
1877
+ 0
1878
+ x3d
1879
+ 0
1880
+ y3r
1881
+ x3d vs y3r
1882
+ (d)
1883
+ Figure 10. (a): solutions of drive and response systems over time,
1884
+ (b):
1885
+ errors between drive and response systems over time, (c):
1886
+ synchronization plot for {x2d, x2r}, (d): synchronization plot for
1887
+ {x3d, x3r} for coupling strengths µ1 = 0.0038 and µ2 = 2.
1888
+ These controllers are easy to implement and more straightforward than previous re-
1889
+ sults. The stability of synchronization manifold is ensured through the transition
1890
+ of positive conditional Lyapunov exponent to negative one. We also examine the
1891
+ synchronization of two chaotic GLV systems with unknown parameters using the
1892
+ Adaptive Control Technique. We design two adaptive laws of parameters using the
1893
+ Lyapunov stability theory to ensure global and exponential synchronization of the
1894
+ systems. Our results show that both the Active and Adaptive Control Techniques
1895
+ are effective for achieving global synchronization in chaotic systems.
1896
+
1897
+ 32
1898
+ SHUBHANGI, NITU KUMARI, AND R.K.UPADHYAY
1899
+ Funding
1900
+ The second author’s research was funded by the Science and Engineering Re-
1901
+ search Board (SERB), under two separate grants with grant numbers MTR/2018/000727
1902
+ and EMR/2017/005203.
1903
+ Disclosure statement
1904
+ The authors declare that they have no conflict of interest.
1905
+ References
1906
+ [1] Lorenz EN. Deterministic nonperiodic flow. Journal of the atmospheric sciences. 1963;
1907
+ 20(2):130–141.
1908
+ [2] Hunt BR, Ott E. Defining chaos. Chaos: An Interdisciplinary Journal of Nonlinear Science.
1909
+ 2015;25(9):097618.
1910
+ [3] Solari HG, Natiello MA, Mindlin GB. Nonlinear dynamics: a two-way trip from physics to
1911
+ math. CRC Press; 1996.
1912
+ [4] Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
1913
+ and engineering. CRC Press; 2018.
1914
+ [5] Janaki T, Rangarajan G. Lyapunov exponents for continuous-time dynamical systems [dis-
1915
+ sertation]. Msc, Thesis, Indian Institute of Science of education, India; 2003.
1916
+ [6] Pecora LM, Carroll TL. Synchronization in chaotic systems. Physical review letters. 1990;
1917
+ 64(8):821.
1918
+ [7] Blasius B, Huppert A, Stone L. Complex dynamics and phase synchronization in spatially
1919
+ extended ecological systems. Nature. 1999;399(6734):354.
1920
+ [8] Upadhyay RK, Rai V. Complex dynamics and synchronization in two non-identical chaotic
1921
+ ecological systems. Chaos, Solitons & Fractals. 2009;40(5):2233–2241.
1922
+ [9] Lu J, Cao J. Adaptive complete synchronization of two identical or different chaotic (hy-
1923
+ perchaotic) systems with fully unknown parameters. Chaos: An Interdisciplinary Journal of
1924
+ Nonlinear Science. 2005;15(4):043901.
1925
+ [10] Bai EW, Lonngren KE. Synchronization of two lorenz systems using active control. Chaos,
1926
+ Solitons & Fractals. 1997;8(1):51–58.
1927
+ [11] Njah A, Vincent U. Synchronization and anti-synchronization of chaos in an extended
1928
+ bonh¨offer–van der pol oscillator using active control. Journal of Sound and Vibration. 2009;
1929
+ 319(1-2):41–49.
1930
+ [12] Chen S, L¨u J. Synchronization of an uncertain unified chaotic system via adaptive control.
1931
+ Chaos, Solitons & Fractals. 2002;14(4):643–647.
1932
+ [13] Dai D, Ma XK. Chaos synchronization by using intermittent parametric adaptive control
1933
+ method. Physics Letters A. 2001;288(1):23–28.
1934
+
1935
+ SYNCHRONIZATION OF CHAOS IN ECOLOGY
1936
+ 33
1937
+ [14] Park JH. Adaptive synchronization of a unified chaotic system with an uncertain parameter.
1938
+ International Journal of Nonlinear Sciences and Numerical Simulation. 2005;6(2):201–206.
1939
+ [15] Rao VSH, Phaneendra BR. Global dynamics of bidirectional associative memory neural net-
1940
+ works involving transmission delays and dead zones. Neural networks. 1999;12(3):455–465.
1941
+ [16] Ackleh AS, Marshall DF, Heatherly HE. Extinction in a generalized lotka-volterra predator-
1942
+ prey model. International Journal of Stochastic Analysis. 1900;13(3):287–297.
1943
+ [17] Malcai O, Biham O, Richmond P, et al. Theoretical analysis and simulations of the generalized
1944
+ lotka-volterra model. Physical Review E. 2002;66(3):031102.
1945
+ [18] Elsadany A, Matouk A, Abdelwahab A, et al. Dynamical analysis, linear feedback control and
1946
+ synchronization of a generalized lotka-volterra system. International Journal of Dynamics and
1947
+ Control. 2018;6(1):328–338.
1948
+ [19] Samardzija N, Greller LD. Explosive route to chaos through a fractal torus in a generalized
1949
+ lotka-volterra model. Bulletin of Mathematical Biology. 1988;50(5):465–491.
1950
+ [20] Simmons GF. Differential equations with applications and historical notes. CRC Press; 2016.
1951
+ [21] Yassen M. Adaptive chaos control and synchronization for uncertain new chaotic dynamical
1952
+ system. Physics Letters A. 2006;350(1-2):36–43.
1953
+ [22] Pecora LM, Carroll TL. Master stability functions for synchronized coupled systems. Physical
1954
+ review letters. 1998;80(10):2109.
1955
+ [23] Frisk M. Synchronization in chaotic dynamical systems ; 2016.
1956
+ [24] Lahav N, Sendi˜na-Nadal I, Hens C, et al. Synchronization of chaotic systems: A microscopic
1957
+ description. Physical Review E. 2018;98(5):052204.
1958
+ [25] Fotsin H, Daafouz J. Adaptive synchronization of uncertain chaotic colpitts oscillators based
1959
+ on parameter identification. Physics Letters A. 2005;339(3-5):304–315.
1960
+ [26] Min YY, Liu YG. Barbalat lemma and its application in analysis of system stability. Journal
1961
+ of Shandong University (engineering science). 2007;37(1):51–55.
1962
+ [27] Sun M. A barbalat-like lemma with its application to learning control. IEEE Transactions on
1963
+ Automatic Control. 2009;54(9):2222–2225.
1964
+
BtE1T4oBgHgl3EQf9gZu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNAyT4oBgHgl3EQfePiT/content/tmp_files/2301.00318v1.pdf.txt ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Effect of Edge Roughness on resistance and
3
+ switching voltage of Magnetic Tunnel Junctions
4
+ Rachit R. Pandey1, Sutapa Dutta1, Heston A. Mendonca1, Ashwin A. Tulapurkar1
5
+ 1Solid State devices group, Department of Electrical Engineering, Indian Institute of Technology Bombay,
6
+ Mumbai 400076,India
7
+ Abstract—We investigate the impact of edge roughness on the
8
+ electrical transport properties of magnetic tunnel junctions using
9
+ non-equilibrium Green’s function formalism. We have modeled
10
+ edge roughness as a stochastic variation in the cross-sectional
11
+ profile of magnetic tunnel junction characterized by the stretched
12
+ exponential decay of the correlation function. The stochastic
13
+ variation in the shape and size changes the transverse energy
14
+ mode profile and gives rise to the variations in the resistance
15
+ and switching voltage of the magnetic tunnel junction. We find
16
+ that the variations are larger as the magnetic tunnel junction
17
+ size is scaled down due to the quantum confinement effect. A
18
+ model is proposed for the efficient calculation of edge roughness
19
+ effects by approximating the cross-sectional geometry to a circle
20
+ with the same cross-sectional area. Further improvement can be
21
+ obtained by approximating the cross-sectional area to an ellipse
22
+ with an aspect ratio determined by the first transverse eigenvalue
23
+ corresponding to the 2D cross section. These results would be
24
+ useful for reliable design of the spin transfer torque- magnetic
25
+ random access memory (STT-MRAM) with ultra-small magnetic
26
+ tunnel junctions.
27
+ Index Terms—Magnetic Tunnel Junction, spin transfer torque,
28
+ circular edge roughness, non-equilibrium Green’s function
29
+ I. INTRODUCTION
30
+ Magnetic tunnel junction (MTJ) comprises two ferromag-
31
+ netic layers (free layer and pinned layer) separated by a
32
+ tunneling barrier. Binary information can be stored in MTJs
33
+ corresponding to parallel (P) and anti-parallel (AP) configu-
34
+ rations of the magnetizations. The information can be read
35
+ by measuring the resistance which is low for P and high
36
+ for AP configurations respectively. Spin transfer torque (STT)
37
+ produced by application of large positive and negative voltages
38
+ to free layer with respect to the fixed layer, stabilizes P and
39
+ AP configurations respectively, and thus can be used for writ-
40
+ ing the memory. As ferromagnetic layers with perpendicular
41
+ magnetic anisotropy (PMA) have lower threshold switching
42
+ voltage (Vc) with enhanced thermal stability, they are preferred
43
+ over in-plane magnetized layers [1]. Reliability analysis of
44
+ STT-MRAM (Magnetic Random Access Memory) in terms of
45
+ write error, tunnel oxide breakdown, temperature variations,
46
+ etc. has been carried out before [2], [3], [4], [5], [6], [7].
47
+ In this paper, we have investigated the effect of lithographic
48
+ imperfections on the performance of MTJ, which becomes
49
+ more evident with the technology scaling. The circular edge
50
+ roughness (CER) is defined as the straying of a pattern from
51
+ its expected circular shape and is used to characterize the
52
+ unwanted sidewall roughness emerging during fabrication pro-
53
+ cesses [8], [9], [10]. The threshold voltages and resistances of
54
+ the MTJ have been calculated using non-equilibrium Green’s
55
+ function (NEGF) method, for 250 realizations of the sidewalls
56
+ for fixed CER parameters. CER affects the area as well as
57
+ the shape of MTJ, which in turn changes the transverse mode
58
+ energies of the electrons tunneling across the barrier and thus
59
+ gives rise to variations in the resistance and threshold voltage.
60
+ We have calculated these variations for a range of CER
61
+ parameters. The NEGF calculation needs transverse energy
62
+ eigenvalues which were obtained by solving the Schrodinger
63
+ equation for a 2d potential well with a random boundary
64
+ corresponding to each realization.
65
+ II. SIMULATION METHODOLOGY
66
+ In the first step, charge current and spin current for a given
67
+ applied voltage across MTJ is calculated using 1d NEGF
68
+ formalism, as a function of transverse mode energy at 300 K
69
+ temperature. The device Hamiltonian matrix is modeled using
70
+ an effective mass tight binding approach. The transport of
71
+ electrons across the device is assumed to be coherent. The
72
+ effect of the contacts is taken into account as self-energy
73
+ contributions to the Hamiltonian. Charge and spin currents
74
+ are calculated from the energy-resolved electron correlation
75
+ matrix [11], [12]. We used CoFeB as the ferromagnet for both
76
+ the fixed and free layers with the Fermi energy EF =2.25 eV
77
+ and the exchange splitting, ∆ = 2.15 eV. The barrier height
78
+ from the Fermi level is taken as UB “ 0.76 eV. The effective
79
+ mass of MgO (tunnelling barrier) and FM are taken as 0.16
80
+ me and 0.38 me, respectively, where me is the free electron
81
+ mass. The thickness of the oxide layer is set to 0.9 nm. The
82
+ charge and parallel spin current (spin current along the fixed
83
+ layer direction) as a function of the transverse mode energy
84
+ are tabulated for a range of voltage values ranging from -0.6
85
+ to 0.6 V for both P and AP configurations. In the second step,
86
+ the transverse energy modes are found from the solution of
87
+ the Schrodinger equation for 2d infinite well with a boundary
88
+ given by the cross-section of the MTJ. If the cross-section is
89
+ a perfect circle, the eigenvalues of Hamiltonian are known
90
+ analytically. For an arbitrary cross-section, the eigenvalues
91
+ can be found numerically using finite difference method by
92
+ discretizing the area into a square grid. In the third step,
93
+ the charge current and spin current for each transverse mode
94
+ are summed up to get the net charge and spin current for a
95
+ range of voltage values ranging from -0.6 to 0.6 V for both
96
+ P and AP configurations. The resistance-area (RA) product
97
+ arXiv:2301.00318v1 [cond-mat.mes-hall] 1 Jan 2023
98
+
99
+ 2
100
+ calculated at 0.01 V, for MTJ with elliptical cross-section for
101
+ different aspect ratios as a function of corresponding areas is
102
+ shown in Fig. 1b. From this figure, we can see that as the area
103
+ reduces, the RA product shows dependence on area as well as
104
+ shape [13]. The critical spin current can be calculated from the
105
+ Gilbert damping (αG) and the energy barrier between P and
106
+ AP states (∆E), as Isc “ p4qαG{¯hq∆E. Further, the energy
107
+ barrier is given by, ∆E
108
+ “ p1{2qµ0MsAtF MHK, where
109
+ Ms, A, tF M, HK denote the saturation magnetization, cross-
110
+ sectional area, free layer thickness and effective perpendicular
111
+ anisotropy respectively. The critical voltage can be found by
112
+ interpolating spin current vs voltage data. If the radius of MTJ
113
+ is 10 nm, assuming ∆E “ 40kBT (T=300 K), αG=0.08,
114
+ tF M=2 nm and Ms “ 1.2 ˆ 106A{m, the HK comes out
115
+ to be 3.5 ˆ 105A{m. The critical voltage for P to AP and AP
116
+ to P switching as a function of area assuming circular cross-
117
+ section and the same HK is shown by the magenta curve
118
+ in Fig. 1c. Similar calculations for 8 nm and 6 nm radii are
119
+ shown by green and blue curves respectively. Fig. 1d shows
120
+ the critical voltage (assuming HK of 6 nm radius MTJ) for
121
+ elliptical cross-section of different aspect ratios as a function
122
+ of the area. We can see that as the area reduces, the threshold
123
+ voltage shows dependence on area as well as shape.
124
+ Fig. 1. (a) Schematic of MTJ without edge roughness. (b) RA
125
+ product vs area for ellipse with different aspect ratios (AR=1
126
+ corresponds to a circle).(c) Vc vs area for circle with energy
127
+ barrier of 40kBT for radii=6 nm (blue), 8nm (green) and 10
128
+ nm (magenta). (d) Vc vs area for ellipse with different aspect
129
+ ratios for energy barrier of 40kBT for radius=6 nm.
130
+ For incorporation of circular edge roughness into a circular
131
+ cross-section of radius R0, we make a random line segment
132
+ of length 2πR0 with auto-correlation function (R) given by
133
+ the equation, Rpxq “ σ2e´pd{ξq2α, where the chord length
134
+ d is given by d “ 2R0|sinpx{2R0q|. ξ, α, and σ denote the
135
+ correlation length, roughness parameter and standard deviation
136
+ respectively [14], [15] . A realization of random line segment
137
+ is obtained as follows [16]: We numerically generate white
138
+ noise series with unit power spectral density (PSD) and take
139
+ its Fourier transform. This is then multiplied by the PSD of
140
+ the correlation function. The inverse FT of the product gives
141
+ us a random line segment. The random shape is constructed by
142
+ Fig. 2. Coefficient of Variation plots for: (a) Resistance (P) (b)
143
+ Resistance (AP) (c) Vc (P) (d) Vc (AP).
144
+ Fig. 3. (a) Schematic of MTJ with edge roughness. (b)
145
+ comparison of Vc (AP) for 20 trials obtained from detailed
146
+ calculation(blue), circle approximation (red), ellipse approxi-
147
+ mation (green).
148
+ taking R0 `x as the radii distribution for angles from 0 to 2π.
149
+ The coefficient of variation (CV=standard deviation/mean) for
150
+ the quantities to be analyzed is obtained from 250 samples.
151
+ III. RESULTS AND DISCUSSIONS
152
+ Variation in the area and shape of MTJ cross-section due
153
+ to the CER produces variation in the transverse energy mode
154
+ profile. This in turn produces variation in the charge current
155
+ and spin current flowing across the MTJ for a given applied
156
+ voltage. The coefficient of variation of resistance and switch-
157
+ ing voltage as a function of σ and ξ for α “ 0.5 and average
158
+ radius 6 nm obtained from detailed calculation is shown as
159
+ a 2D plot in Fig. 2. We can see that the variations become
160
+ larger as σ and ξ increase. CV for different parameters at the
161
+ centre of 2D plot (σ “ 0.67nm, ξ “ 15nm) are shown in the
162
+ table I for different average radii of the cross-section under
163
+ “detailed calculation” column heading. We can see that the
164
+ variations increase as the MTJ size is scaled down. To find out
165
+ the influence of area variation, for each of the 250 samples, we
166
+ mapped the random shape to a perfect circle of the same area
167
+ and found out the resistance and switching voltage (See Fig.
168
+ 1c). The CV obtained from this procedure is shown in table
169
+ I under “circle approximation” coumn heading and it matches
170
+ well with values obtained from detailed calculation.
171
+
172
+ (a)
173
+ (b)
174
+ .AR=1
175
+ (AP)
176
+ RA product (2 um
177
+ -"AR=0.6 (AP)
178
+ AR=0.4
179
+ (AP)
180
+ 5.9
181
+ CoFeB :0
182
+ AR=1 (P)
183
+ (free)
184
+ AR=0.6 (P)
185
+ 1.2
186
+ MgO
187
+ AR=0.4 (P)
188
+ 1.1
189
+ CoFeB
190
+ (pinned)
191
+ 100
192
+ 300
193
+ Area(nm2)
194
+ (c)
195
+ (d)
196
+ ..AR=1 (AP)
197
+ 0.16
198
+ R=6 nm (AP)
199
+ --AR=0.6 (AP)
200
+ .AR=0.4 (AP)
201
+ 0.1
202
+ M
203
+ 0.14
204
+ M
205
+ -0.22
206
+ AR=1 (P)
207
+ R=8 nm
208
+ (P)
209
+ -0.3
210
+ R=10 nm
211
+ AR=0.6 (P)
212
+ -R=6 nm
213
+ (P)
214
+ -0.25
215
+ AR=0.4 (P)
216
+ 100
217
+ 300
218
+ 100
219
+ 300
220
+ Area(nm?)
221
+ Area(nm?)25
222
+ 25
223
+ (a)
224
+ (b)
225
+ 0.5
226
+ 0.3
227
+ 15
228
+ 15
229
+ 0.3
230
+ cS
231
+ cS
232
+ 0.1
233
+ 0.1
234
+ 5
235
+ 5
236
+ 0.4
237
+ 1
238
+ 0.4
239
+ 1
240
+ 25
241
+ 25
242
+ (c)
243
+ (d)
244
+ 0.05
245
+ 0.05
246
+ 0.03
247
+ 15
248
+ 15
249
+ 0.03
250
+ cS
251
+ cS
252
+ 0.01
253
+ 0.01
254
+ 5
255
+ 5
256
+ 0.4
257
+ 1
258
+ 0.4
259
+ 0
260
+ 1(a)
261
+ (b)
262
+ detailed calculation
263
+ ellipse approximation
264
+ circle approximation
265
+ 0.159
266
+ (v)
267
+ CoFeB
268
+ P
269
+ (free)
270
+ 0.155
271
+ U
272
+ >
273
+ MgO
274
+ 0.151
275
+ CoFeB
276
+ (pinned)
277
+ 5
278
+ 10
279
+ 15
280
+ 203
281
+ TABLE I: % CV for α “ 0.5 σ “ 0.67nm ξ “ 15nm
282
+ % CV of
283
+ R0pnmq
284
+ Detailed
285
+ calculation
286
+ Estimated
287
+ from eq. 1
288
+ Circle
289
+ approx.
290
+ 6
291
+ 21.73
292
+ 20.5
293
+ 21.62
294
+ RP
295
+ 8
296
+ 12.94
297
+ 13.86
298
+ 12.95
299
+ 10
300
+ 10.12
301
+ 10.20
302
+ 9.99
303
+ 6
304
+ 25.63
305
+ 23.32
306
+ 25.33
307
+ RAP
308
+ 8
309
+ 14.26
310
+ 15.04
311
+ 14.15
312
+ 10
313
+ 10.89
314
+ 10.93
315
+ 10.69
316
+ 6
317
+ 2.18
318
+ 2.07
319
+ 1.99
320
+ V cP
321
+ 8
322
+ 0.93
323
+ 0.92
324
+ 0.94
325
+ 10
326
+ 0.57
327
+ 0.57
328
+ 0.56
329
+ 6
330
+ 2.02
331
+ 1.83
332
+ 1.85
333
+ V cAP
334
+ 8
335
+ 0.90
336
+ 0.90
337
+ 0.89
338
+ 10
339
+ 0.55
340
+ 0.53
341
+ 0.54
342
+ The circle approximation is expected to work well when
343
+ the ratio, (σ{R0) is small. Further, for the approximation
344
+ to work well, the minimum normalized correlation function
345
+ e´p2R0{ξq2α should be close to 1 i.e.p2R0{ξq2α should be
346
+ small. If area variation due to CER plays a dominant role,
347
+ we can estimate the variance in a quantity Q as,
348
+ varpQq « pdQ{dAq2r2
349
+ ż L
350
+ 0
351
+ pL ´ xqRpxqdxs
352
+ (1)
353
+ where L “ 2πR0 is the average perimeter. The term in the
354
+ square bracket in the above equation is the area variance. The
355
+ CV of various parameters estimated with above equation is
356
+ given under “estimated” column heading in table I. We can
357
+ see that values estimated from area variation are fairly close to
358
+ the numerically calculated values. These equations imply that
359
+ the area variance is proportional to σ2 and it is an increasing
360
+ function of ξ, which is consistent with trends seen in the 2d
361
+ plots in Fig. 2. (area variance saturates at large values of ξ{L).
362
+ To see if the circle approximation can be further improved,
363
+ we mapped a given random shape to an ellipse. This is done as
364
+ follows: We first note down the area. We calculate numerically
365
+ the ground state energy of the 2d infinite well with boundary
366
+ given by the random edge. We then compare ground state
367
+ energy with the tabulated ground state energies of ellipses with
368
+ the same area and different aspect ratios. An aspect ratio is
369
+ assigned to the random figure by interpolation. Using tabulated
370
+ data of Vc and resistance as a function of area for different
371
+ aspect ratios (see Fig. 1), we can calculate the switching
372
+ voltage and resistance of the random cross-section MTJ by
373
+ interpolation. Fig. 3 b shows the Vc for AP to P state for 20
374
+ different realizations (out of 250). The blue bar corresponds
375
+ to Vc calculated by numerically “exact” way i.e. getting all
376
+ the transverse energy modes to form the numerical solution of
377
+ 2d Schrodinger equation and summing up transverse currents
378
+ for each mode. The green bar corresponds to the calculation
379
+ by mapping the shape to an ellipse which needs only the
380
+ ground state energy calculation and is hence faster. However,
381
+ for large values of σ{R0 and R0{ξ, the contribution from the
382
+ non-elliptical shape variation should be taken into account. It
383
+ should be also noted that the area variation arising from CER
384
+ gives rise to variation in the thermal stability as the energy
385
+ barrier ∆E, depends on the area.
386
+ IV. CONCLUSION
387
+ We have demonstrated that edge roughness gives rise to
388
+ variance in the area and shape of a magnetic tunnel junction.
389
+ This in turn produces variance in the resistance and switching
390
+ voltage. The variance becomes larger as the MTJ size is scaled
391
+ down. These results would be useful for designing reliable
392
+ MRAM cells.
393
+ REFERENCES
394
+ [1] Ikeda, S., Miura, H., Mizunuma, K., Gan, H. D., Endo, M., Kanai, S.,
395
+ Hayakawa, J., Matsukura, F., and Ohno, H., “A perpendicular-anisotropy
396
+ cofeb–mgo magnetic tunnel junction,” Nature Mater, vol. 9, pp. 721–
397
+ 724, 2010.
398
+ [2] Nowak, J. J., Robertazzi, R. P., Sun, J. Z., Hu, G., Park, J.-H., Lee, J.,
399
+ Annunziata, A. J., Lauer, G. P., Kothandaraman, R., O’Sullivan, E. J.,
400
+ Trouilloud, P. L., Kim, Y., and Worledge, D. C., “Dependence of voltage
401
+ and size on write error rates in spin-transfer torque magnetic random-
402
+ access memory,” IEEE Magnetics Letters, vol. 7, pp. 1–4, 2016.
403
+ [3] Zhao, W., Zhang, Y., Devolder, T., Klein, J., Ravelosona, D., Chap-
404
+ pert, C., and Mazoyer, P., “Failure and reliability analysis of stt-mram,”
405
+ Microelectronics Reliability, vol. 52, no. 9, pp. 1848–1852, 2012.
406
+ [4] Vatajelu, E. I., Rodriguez-Monta˜nes, R., Indaco, M., Prinetto, P., and
407
+ Figueras, J., “Stt-mram cell reliability evaluation under process, voltage
408
+ and temperature (pvt) variations,” in 2015 10th International Conference
409
+ on Design & Technology of Integrated Systems in Nanoscale Era (DTIS),
410
+ 2015, pp. 1–6.
411
+ [5] Zhang, L., Todri-Sanial, A., Kang, W., Zhang, Y., Torres, L., Cheng, Y.,
412
+ and Zhao, W., “Quantitative evaluation of reliability and performance
413
+ for stt-mram,” in 2016 IEEE International Symposium on Circuits and
414
+ Systems (ISCAS), 2016, pp. 1150–1153.
415
+ [6] Han, S. H., Lee, J. H., Suh, K. S., Nam, K. T., Jeong, D. E., Oh, S. C.,
416
+ Hwang, S. H., Ji, Y., Lee, K., Lee, K., Song, Y. J., Hong, Y. G.,
417
+ and Jeong, G. T., “Reliability of stt-mram for various embedded ap-
418
+ plications,” in 2021 IEEE International Reliability Physics Symposium
419
+ (IRPS), 2021, pp. 1–5.
420
+ [7] Ran, Y., Kang, W., Zhang, Y., Klein, J.-O., and Zhao, W., “Read distur-
421
+ bance issue and design techniques for nanoscale stt-mram,” Journal of
422
+ Systems Architecture, vol. 71, pp. 2–11, 2016.
423
+ [8] Ban, Y., Ma, Y., Levinson, H. J., Deng, Y., Kye, J., and Pan, D. Z.,
424
+ “Modeling and characterization of contact-edge roughness for minimiz-
425
+ ing design and manufacturing variations in 32-nm node standard cell,”
426
+ in Design for Manufacturability through Design-Process Integration IV,
427
+ Rieger, M. L. and Thiele, J., Eds., vol. 7641, International Society for
428
+ Optics and Photonics.
429
+ SPIE, 2010, p. 76410D.
430
+ [9] Amita, Mittal, S., and Ganguly, U., “An analytical model to estimate
431
+ VT distribution of partially correlated fin edges in finfets due to fin-edge
432
+ roughness,” IEEE Transactions on Electron Devices, vol. 64, no. 4, pp.
433
+ 1708–1715, 2017.
434
+ [10] Constantoudis, V., Papavieros, G., Karakolis, P., Khiat, A., Prodro-
435
+ makis, T., and Dimitrakis, P., “Impact of line edge roughness on reram
436
+ uniformity and scaling,” Materials, vol. 12, no. 23, 2019.
437
+ [11] Datta, S., Quantum Transport: Atom to Transistor.
438
+ Cambridge Univer-
439
+ sity Press, 2005.
440
+ [12] Datta, D., Behin-Aein, B., Salahuddin, S., and Datta, S., “Voltage asym-
441
+ metry of spin-transfer torques,” IEEE Transactions on Nanotechnology,
442
+ vol. 11, 10 2009.
443
+ [13] Das, D., Tulapurkar, A., and Muralidharan, B., “Scaling projections on
444
+ spin-transfer torque magnetic tunnel junctions,” IEEE Transactions on
445
+ Electron Devices, vol. 65, no. 2, pp. 724–732, 2018.
446
+ [14] Soubeyrand, S., Enjalbert, J., and Sache, I., “Accounting for roughness
447
+ of circular processes: Using gaussian random processes to model the
448
+ anisotropic spread of airborne plant disease,” Theoretical Population
449
+ Biology, vol. 73, no. 1, pp. 92–103, 2008.
450
+ [15] Murugesan-Kuppuswamy, V.-K., Constantoudis, V., and Gogolides, E.,
451
+ “Contact edge roughness: Characterization and modeling,” Microelec-
452
+ tronic Engineering, vol. 88, no. 8, pp. 2492–2495, 2011.
453
+ [16] Zhao, Y., Wang, G., and Lu, T., Characterization of Amorphous and
454
+ Crystalline Rough Surface – Principles and Applications, ser. ISSN.
455
+ Elsevier Science, 2000.
456
+
CNAyT4oBgHgl3EQfePiT/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf,len=380
2
+ page_content='1 Effect of Edge Roughness on resistance and switching voltage of Magnetic Tunnel Junctions Rachit R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
3
+ page_content=' Pandey1, Sutapa Dutta1, Heston A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
4
+ page_content=' Mendonca1, Ashwin A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
5
+ page_content=' Tulapurkar1 1Solid State devices group, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076,India Abstract—We investigate the impact of edge roughness on the electrical transport properties of magnetic tunnel junctions using non-equilibrium Green’s function formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
6
+ page_content=' We have modeled edge roughness as a stochastic variation in the cross-sectional profile of magnetic tunnel junction characterized by the stretched exponential decay of the correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
7
+ page_content=' The stochastic variation in the shape and size changes the transverse energy mode profile and gives rise to the variations in the resistance and switching voltage of the magnetic tunnel junction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
8
+ page_content=' We find that the variations are larger as the magnetic tunnel junction size is scaled down due to the quantum confinement effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
9
+ page_content=' A model is proposed for the efficient calculation of edge roughness effects by approximating the cross-sectional geometry to a circle with the same cross-sectional area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
10
+ page_content=' Further improvement can be obtained by approximating the cross-sectional area to an ellipse with an aspect ratio determined by the first transverse eigenvalue corresponding to the 2D cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
11
+ page_content=' These results would be useful for reliable design of the spin transfer torque- magnetic random access memory (STT-MRAM) with ultra-small magnetic tunnel junctions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
12
+ page_content=' Index Terms—Magnetic Tunnel Junction, spin transfer torque, circular edge roughness, non-equilibrium Green’s function I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
13
+ page_content=' INTRODUCTION Magnetic tunnel junction (MTJ) comprises two ferromag- netic layers (free layer and pinned layer) separated by a tunneling barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
14
+ page_content=' Binary information can be stored in MTJs corresponding to parallel (P) and anti-parallel (AP) configu- rations of the magnetizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
15
+ page_content=' The information can be read by measuring the resistance which is low for P and high for AP configurations respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
16
+ page_content=' Spin transfer torque (STT) produced by application of large positive and negative voltages to free layer with respect to the fixed layer, stabilizes P and AP configurations respectively, and thus can be used for writ- ing the memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
17
+ page_content=' As ferromagnetic layers with perpendicular magnetic anisotropy (PMA) have lower threshold switching voltage (Vc) with enhanced thermal stability, they are preferred over in-plane magnetized layers [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
18
+ page_content=' Reliability analysis of STT-MRAM (Magnetic Random Access Memory) in terms of write error, tunnel oxide breakdown, temperature variations, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
19
+ page_content=' has been carried out before [2], [3], [4], [5], [6], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
20
+ page_content=' In this paper, we have investigated the effect of lithographic imperfections on the performance of MTJ, which becomes more evident with the technology scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
21
+ page_content=' The circular edge roughness (CER) is defined as the straying of a pattern from its expected circular shape and is used to characterize the unwanted sidewall roughness emerging during fabrication pro- cesses [8], [9], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
22
+ page_content=' The threshold voltages and resistances of the MTJ have been calculated using non-equilibrium Green’s function (NEGF) method, for 250 realizations of the sidewalls for fixed CER parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
23
+ page_content=' CER affects the area as well as the shape of MTJ, which in turn changes the transverse mode energies of the electrons tunneling across the barrier and thus gives rise to variations in the resistance and threshold voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
24
+ page_content=' We have calculated these variations for a range of CER parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
25
+ page_content=' The NEGF calculation needs transverse energy eigenvalues which were obtained by solving the Schrodinger equation for a 2d potential well with a random boundary corresponding to each realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
26
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
27
+ page_content=' SIMULATION METHODOLOGY In the first step, charge current and spin current for a given applied voltage across MTJ is calculated using 1d NEGF formalism, as a function of transverse mode energy at 300 K temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
28
+ page_content=' The device Hamiltonian matrix is modeled using an effective mass tight binding approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
29
+ page_content=' The transport of electrons across the device is assumed to be coherent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
30
+ page_content=' The effect of the contacts is taken into account as self-energy contributions to the Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
31
+ page_content=' Charge and spin currents are calculated from the energy-resolved electron correlation matrix [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
32
+ page_content=' We used CoFeB as the ferromagnet for both the fixed and free layers with the Fermi energy EF =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
33
+ page_content='25 eV and the exchange splitting, ∆ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
34
+ page_content='15 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
35
+ page_content=' The barrier height from the Fermi level is taken as UB “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
36
+ page_content='76 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
37
+ page_content=' The effective mass of MgO (tunnelling barrier) and FM are taken as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
38
+ page_content='16 me and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
39
+ page_content='38 me, respectively, where me is the free electron mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
40
+ page_content=' The thickness of the oxide layer is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
41
+ page_content='9 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
42
+ page_content=' The charge and parallel spin current (spin current along the fixed layer direction) as a function of the transverse mode energy are tabulated for a range of voltage values ranging from -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
43
+ page_content='6 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
44
+ page_content='6 V for both P and AP configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
45
+ page_content=' In the second step, the transverse energy modes are found from the solution of the Schrodinger equation for 2d infinite well with a boundary given by the cross-section of the MTJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
46
+ page_content=' If the cross-section is a perfect circle, the eigenvalues of Hamiltonian are known analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
47
+ page_content=' For an arbitrary cross-section, the eigenvalues can be found numerically using finite difference method by discretizing the area into a square grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
48
+ page_content=' In the third step, the charge current and spin current for each transverse mode are summed up to get the net charge and spin current for a range of voltage values ranging from -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
49
+ page_content='6 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
50
+ page_content='6 V for both P and AP configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
51
+ page_content=' The resistance-area (RA) product arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
52
+ page_content='00318v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
53
+ page_content='mes-hall] 1 Jan 2023 2 calculated at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
54
+ page_content='01 V, for MTJ with elliptical cross-section for different aspect ratios as a function of corresponding areas is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
55
+ page_content=' 1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
56
+ page_content=' From this figure, we can see that as the area reduces, the RA product shows dependence on area as well as shape [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
57
+ page_content=' The critical spin current can be calculated from the Gilbert damping (αG) and the energy barrier between P and AP states (∆E), as Isc “ p4qαG{¯hq∆E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
58
+ page_content=' Further, the energy barrier is given by, ∆E “ p1{2qµ0MsAtF MHK, where Ms, A, tF M, HK denote the saturation magnetization, cross- sectional area, free layer thickness and effective perpendicular anisotropy respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
59
+ page_content=' The critical voltage can be found by interpolating spin current vs voltage data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
60
+ page_content=' If the radius of MTJ is 10 nm, assuming ∆E “ 40kBT (T=300 K), αG=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
61
+ page_content='08, tF M=2 nm and Ms “ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
62
+ page_content='2 ˆ 106A{m, the HK comes out to be 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
63
+ page_content='5 ˆ 105A{m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
64
+ page_content=' The critical voltage for P to AP and AP to P switching as a function of area assuming circular cross- section and the same HK is shown by the magenta curve in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
65
+ page_content=' 1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
66
+ page_content=' Similar calculations for 8 nm and 6 nm radii are shown by green and blue curves respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
67
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
68
+ page_content=' 1d shows the critical voltage (assuming HK of 6 nm radius MTJ) for elliptical cross-section of different aspect ratios as a function of the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
69
+ page_content=' We can see that as the area reduces, the threshold voltage shows dependence on area as well as shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
70
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
71
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
72
+ page_content=' (a) Schematic of MTJ without edge roughness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
73
+ page_content=' (b) RA product vs area for ellipse with different aspect ratios (AR=1 corresponds to a circle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
74
+ page_content=' (c) Vc vs area for circle with energy barrier of 40kBT for radii=6 nm (blue), 8nm (green) and 10 nm (magenta).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
75
+ page_content=' (d) Vc vs area for ellipse with different aspect ratios for energy barrier of 40kBT for radius=6 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
76
+ page_content=' For incorporation of circular edge roughness into a circular cross-section of radius R0, we make a random line segment of length 2πR0 with auto-correlation function (R) given by the equation, Rpxq “ σ2e´pd{ξq2α, where the chord length d is given by d “ 2R0|sinpx{2R0q|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
77
+ page_content=' ξ, α, and σ denote the correlation length, roughness parameter and standard deviation respectively [14], [15] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
78
+ page_content=' A realization of random line segment is obtained as follows [16]: We numerically generate white noise series with unit power spectral density (PSD) and take its Fourier transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
79
+ page_content=' This is then multiplied by the PSD of the correlation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
80
+ page_content=' The inverse FT of the product gives us a random line segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
81
+ page_content=' The random shape is constructed by Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
82
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
83
+ page_content=' Coefficient of Variation plots for: (a) Resistance (P) (b) Resistance (AP) (c) Vc (P) (d) Vc (AP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
84
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
85
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
86
+ page_content=' (a) Schematic of MTJ with edge roughness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
87
+ page_content=' (b) comparison of Vc (AP) for 20 trials obtained from detailed calculation(blue), circle approximation (red), ellipse approxi- mation (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
88
+ page_content=' taking R0 `x as the radii distribution for angles from 0 to 2π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
89
+ page_content=' The coefficient of variation (CV=standard deviation/mean) for the quantities to be analyzed is obtained from 250 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
90
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
91
+ page_content=' RESULTS AND DISCUSSIONS Variation in the area and shape of MTJ cross-section due to the CER produces variation in the transverse energy mode profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
92
+ page_content=' This in turn produces variation in the charge current and spin current flowing across the MTJ for a given applied voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
93
+ page_content=' The coefficient of variation of resistance and switch- ing voltage as a function of σ and ξ for α “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
94
+ page_content='5 and average radius 6 nm obtained from detailed calculation is shown as a 2D plot in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
95
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
96
+ page_content=' We can see that the variations become larger as σ and ξ increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
97
+ page_content=' CV for different parameters at the centre of 2D plot (σ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
98
+ page_content='67nm, ξ “ 15nm) are shown in the table I for different average radii of the cross-section under “detailed calculation” column heading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
99
+ page_content=' We can see that the variations increase as the MTJ size is scaled down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
100
+ page_content=' To find out the influence of area variation, for each of the 250 samples, we mapped the random shape to a perfect circle of the same area and found out the resistance and switching voltage (See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
101
+ page_content=' 1c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
102
+ page_content=' The CV obtained from this procedure is shown in table I under “circle approximation” coumn heading and it matches well with values obtained from detailed calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
103
+ page_content=' (a) (b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
104
+ page_content='AR=1 (AP) RA product (2 um "AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
105
+ page_content='6 (AP) AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
106
+ page_content='4 (AP) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
107
+ page_content='9 CoFeB :0 AR=1 (P) (free) AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
108
+ page_content='6 (P) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
109
+ page_content='2 MgO AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
110
+ page_content='4 (P) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
111
+ page_content='1 CoFeB (pinned) 100 300 Area(nm2) (c) (d) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
112
+ page_content='.AR=1 (AP) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
113
+ page_content='16 R=6 nm (AP) --AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
114
+ page_content='6 (AP) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
115
+ page_content='AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
116
+ page_content='4 (AP) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
117
+ page_content='1 M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
118
+ page_content='14 M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
119
+ page_content='22 AR=1 (P) R=8 nm (P) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
120
+ page_content='3 R=10 nm AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
121
+ page_content='6 (P) R=6 nm (P) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
122
+ page_content='25 AR=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
123
+ page_content='4 (P) 100 300 100 300 Area(nm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
124
+ page_content=') Area(nm?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
125
+ page_content=' )25 25 (a) (b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
126
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
127
+ page_content='3 15 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
128
+ page_content='3 cS cS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
129
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
130
+ page_content='1 5 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
131
+ page_content='4 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
132
+ page_content='4 1 25 25 (c) (d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
133
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
134
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
135
+ page_content='03 15 15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
136
+ page_content='03 cS cS 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
137
+ page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
138
+ page_content='01 5 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
139
+ page_content='4 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
140
+ page_content='4 0 1(a) (b) detailed calculation ellipse approximation circle approximation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
141
+ page_content='159 (v) CoFeB P (free) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
142
+ page_content='155 U > MgO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
143
+ page_content='151 CoFeB (pinned) 5 10 15 203 TABLE I: % CV for α “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
144
+ page_content='5 σ “ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
145
+ page_content='67nm ξ “ 15nm % CV of R0pnmq Detailed calculation Estimated from eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
146
+ page_content=' 1 Circle approx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
147
+ page_content=' 6 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
148
+ page_content='73 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
149
+ page_content='5 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
150
+ page_content='62 RP 8 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
151
+ page_content='94 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
152
+ page_content='86 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
153
+ page_content='95 10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
154
+ page_content='12 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
155
+ page_content='20 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
156
+ page_content='99 6 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
157
+ page_content='63 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
158
+ page_content='32 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
159
+ page_content='33 RAP 8 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
160
+ page_content='26 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
161
+ page_content='04 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
162
+ page_content='15 10 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
163
+ page_content='89 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
164
+ page_content='93 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
165
+ page_content='69 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
166
+ page_content='18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
167
+ page_content='07 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
168
+ page_content='99 V cP 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
169
+ page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
170
+ page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
171
+ page_content='94 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
172
+ page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
173
+ page_content='57 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
174
+ page_content='56 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
175
+ page_content='02 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
176
+ page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
177
+ page_content='85 V cAP 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
178
+ page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
179
+ page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
180
+ page_content='89 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
181
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
182
+ page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
183
+ page_content='54 The circle approximation is expected to work well when the ratio, (σ{R0) is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
184
+ page_content=' Further, for the approximation to work well, the minimum normalized correlation function e´p2R0{ξq2α should be close to 1 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
185
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
186
+ page_content='p2R0{ξq2α should be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
187
+ page_content=' If area variation due to CER plays a dominant role, we can estimate the variance in a quantity Q as, varpQq « pdQ{dAq2r2 ż L 0 pL ´ xqRpxqdxs (1) where L “ 2πR0 is the average perimeter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
188
+ page_content=' The term in the square bracket in the above equation is the area variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
189
+ page_content=' The CV of various parameters estimated with above equation is given under “estimated” column heading in table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
190
+ page_content=' We can see that values estimated from area variation are fairly close to the numerically calculated values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
191
+ page_content=' These equations imply that the area variance is proportional to σ2 and it is an increasing function of ξ, which is consistent with trends seen in the 2d plots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
192
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
193
+ page_content=' (area variance saturates at large values of ξ{L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
194
+ page_content=' To see if the circle approximation can be further improved, we mapped a given random shape to an ellipse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
195
+ page_content=' This is done as follows: We first note down the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
196
+ page_content=' We calculate numerically the ground state energy of the 2d infinite well with boundary given by the random edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
197
+ page_content=' We then compare ground state energy with the tabulated ground state energies of ellipses with the same area and different aspect ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
198
+ page_content=' An aspect ratio is assigned to the random figure by interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
199
+ page_content=' Using tabulated data of Vc and resistance as a function of area for different aspect ratios (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
200
+ page_content=' 1), we can calculate the switching voltage and resistance of the random cross-section MTJ by interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
201
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
202
+ page_content=' 3 b shows the Vc for AP to P state for 20 different realizations (out of 250).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
203
+ page_content=' The blue bar corresponds to Vc calculated by numerically “exact” way i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
204
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
205
+ page_content=' getting all the transverse energy modes to form the numerical solution of 2d Schrodinger equation and summing up transverse currents for each mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
206
+ page_content=' The green bar corresponds to the calculation by mapping the shape to an ellipse which needs only the ground state energy calculation and is hence faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
207
+ page_content=' However, for large values of σ{R0 and R0{ξ, the contribution from the non-elliptical shape variation should be taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
208
+ page_content=' It should be also noted that the area variation arising from CER gives rise to variation in the thermal stability as the energy barrier ∆E, depends on the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
209
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
210
+ page_content=' CONCLUSION We have demonstrated that edge roughness gives rise to variance in the area and shape of a magnetic tunnel junction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
211
+ page_content=' This in turn produces variance in the resistance and switching voltage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
212
+ page_content=' The variance becomes larger as the MTJ size is scaled down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
213
+ page_content=' These results would be useful for designing reliable MRAM cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
214
+ page_content=' REFERENCES [1] Ikeda, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
215
+ page_content=', Miura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
216
+ page_content=', Mizunuma, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
217
+ page_content=', Gan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
218
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
219
+ page_content=', Endo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
220
+ page_content=', Kanai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
221
+ page_content=', Hayakawa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
222
+ page_content=', Matsukura, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
223
+ page_content=', and Ohno, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
224
+ page_content=', “A perpendicular-anisotropy cofeb–mgo magnetic tunnel junction,” Nature Mater, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
225
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
226
+ page_content=' 721– 724, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
227
+ page_content=' [2] Nowak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
228
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
229
+ page_content=', Robertazzi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
230
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
231
+ page_content=', Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
232
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
233
+ page_content=', Hu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
234
+ page_content=', Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
235
+ page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
236
+ page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
237
+ page_content=', Annunziata, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
238
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
239
+ page_content=', Lauer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
240
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
241
+ page_content=', Kothandaraman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
242
+ page_content=', O’Sullivan, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
243
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
244
+ page_content=', Trouilloud, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
245
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
246
+ page_content=', Kim, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
247
+ page_content=', and Worledge, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
248
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
249
+ page_content=', “Dependence of voltage and size on write error rates in spin-transfer torque magnetic random- access memory,” IEEE Magnetics Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
250
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
251
+ page_content=' 1–4, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
252
+ page_content=' [3] Zhao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
253
+ page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
254
+ page_content=', Devolder, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
255
+ page_content=', Klein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
256
+ page_content=', Ravelosona, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
257
+ page_content=', Chap- pert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
258
+ page_content=', and Mazoyer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
259
+ page_content=', “Failure and reliability analysis of stt-mram,” Microelectronics Reliability, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
260
+ page_content=' 52, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
261
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
262
+ page_content=' 1848–1852, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
263
+ page_content=' [4] Vatajelu, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
264
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
265
+ page_content=', Rodriguez-Monta˜nes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
266
+ page_content=', Indaco, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
267
+ page_content=', Prinetto, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
268
+ page_content=', and Figueras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
269
+ page_content=', “Stt-mram cell reliability evaluation under process, voltage and temperature (pvt) variations,” in 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
270
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
271
+ page_content=' [5] Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
272
+ page_content=', Todri-Sanial, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
273
+ page_content=', Kang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
274
+ page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
275
+ page_content=', Torres, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
276
+ page_content=', Cheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
277
+ page_content=', and Zhao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
278
+ page_content=', “Quantitative evaluation of reliability and performance for stt-mram,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
279
+ page_content=' 1150–1153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
280
+ page_content=' [6] Han, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
281
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
282
+ page_content=', Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
283
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
284
+ page_content=', Suh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
285
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
286
+ page_content=', Nam, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
287
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
288
+ page_content=', Jeong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
289
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
290
+ page_content=', Oh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
291
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
292
+ page_content=', Hwang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
293
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
294
+ page_content=', Ji, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
295
+ page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
296
+ page_content=', Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
297
+ page_content=', Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
298
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
299
+ page_content=', Hong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
300
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
301
+ page_content=', and Jeong, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
302
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
303
+ page_content=', “Reliability of stt-mram for various embedded ap- plications,” in 2021 IEEE International Reliability Physics Symposium (IRPS), 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
304
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
305
+ page_content=' [7] Ran, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
306
+ page_content=', Kang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
307
+ page_content=', Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
308
+ page_content=', Klein, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
309
+ page_content='-O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
310
+ page_content=', and Zhao, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
311
+ page_content=', “Read distur- bance issue and design techniques for nanoscale stt-mram,” Journal of Systems Architecture, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
312
+ page_content=' 71, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
313
+ page_content=' 2–11, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
314
+ page_content=' [8] Ban, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
315
+ page_content=', Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
316
+ page_content=', Levinson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
317
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
318
+ page_content=', Deng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
319
+ page_content=', Kye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
320
+ page_content=', and Pan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
321
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
322
+ page_content=', “Modeling and characterization of contact-edge roughness for minimiz- ing design and manufacturing variations in 32-nm node standard cell,” in Design for Manufacturability through Design-Process Integration IV, Rieger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
323
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
324
+ page_content=' and Thiele, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
325
+ page_content=', Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
326
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
327
+ page_content=' 7641, International Society for Optics and Photonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
328
+ page_content=' SPIE, 2010, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
329
+ page_content=' 76410D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
330
+ page_content=' [9] Amita, Mittal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
331
+ page_content=', and Ganguly, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
332
+ page_content=', “An analytical model to estimate VT distribution of partially correlated fin edges in finfets due to fin-edge roughness,” IEEE Transactions on Electron Devices, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
333
+ page_content=' 64, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
334
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
335
+ page_content=' 1708–1715, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
336
+ page_content=' [10] Constantoudis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
337
+ page_content=', Papavieros, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
338
+ page_content=', Karakolis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
339
+ page_content=', Khiat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
340
+ page_content=', Prodro- makis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
341
+ page_content=', and Dimitrakis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
342
+ page_content=', “Impact of line edge roughness on reram uniformity and scaling,” Materials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
343
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
344
+ page_content=' 23, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
345
+ page_content=' [11] Datta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
346
+ page_content=', Quantum Transport: Atom to Transistor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
347
+ page_content=' Cambridge Univer- sity Press, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
348
+ page_content=' [12] Datta, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
349
+ page_content=', Behin-Aein, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
350
+ page_content=', Salahuddin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
351
+ page_content=', and Datta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
352
+ page_content=', “Voltage asym- metry of spin-transfer torques,” IEEE Transactions on Nanotechnology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
353
+ page_content=' 11, 10 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
354
+ page_content=' [13] Das, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
355
+ page_content=', Tulapurkar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
356
+ page_content=', and Muralidharan, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
357
+ page_content=', “Scaling projections on spin-transfer torque magnetic tunnel junctions,” IEEE Transactions on Electron Devices, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
358
+ page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
359
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
360
+ page_content=' 724–732, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
361
+ page_content=' [14] Soubeyrand, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
362
+ page_content=', Enjalbert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
363
+ page_content=', and Sache, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
364
+ page_content=', “Accounting for roughness of circular processes: Using gaussian random processes to model the anisotropic spread of airborne plant disease,” Theoretical Population Biology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
365
+ page_content=' 73, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
366
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
367
+ page_content=' 92–103, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
368
+ page_content=' [15] Murugesan-Kuppuswamy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
369
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
370
+ page_content=', Constantoudis, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
371
+ page_content=', and Gogolides, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
372
+ page_content=', “Contact edge roughness: Characterization and modeling,” Microelec- tronic Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
373
+ page_content=' 88, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
374
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
375
+ page_content=' 2492–2495, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
376
+ page_content=' [16] Zhao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
377
+ page_content=', Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
378
+ page_content=', and Lu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
379
+ page_content=', Characterization of Amorphous and Crystalline Rough Surface – Principles and Applications, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
380
+ page_content=' ISSN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
381
+ page_content=' Elsevier Science, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/CNAyT4oBgHgl3EQfePiT/content/2301.00318v1.pdf'}
EdFKT4oBgHgl3EQfZy6F/content/tmp_files/2301.11805v1.pdf.txt ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11805v1 [math.LO] 27 Jan 2023
2
+ A GAME FOR BAIRE’S GRAND THEOREM
3
+ LORENZO NOTARO
4
+ Abstract. Generalizing a result of Kiss, we provide a game that char-
5
+ acterizes Baire class 1 functions between arbitrary separable metrizable
6
+ spaces. We show that the determinacy of our game is equivalent to a
7
+ generalization of Baire’s grand theorem, and that both these statements
8
+ hold under AD and in Solovay’s model.
9
+ 1. Introduction
10
+ A Polish space is a separable, completely metrizable topological space. Given
11
+ two topological spaces X, Y , a function f : X → Y is said to be Baire class 1 if,
12
+ for every open subset V of Y , the pre-image f −1(V ) is an Fσ subset of X, i.e. a
13
+ countable union of closed subsets. If X is metrizable, then the open subsets of X
14
+ are also Fσ subsets. All continuous functions with metrizable domain are Baire
15
+ class 1.
16
+ A classical result concerning this class of functions is the following theorem of
17
+ Baire — known as Baire’s grand theorem — which provides a characterization of
18
+ Baire class 1 functions from a Polish space to a separable metrizable space (e.g. see
19
+ [5, Theorem 24.15]).
20
+ Theorem (Baire). Let X be a Polish space, Y a separable metrizable space and
21
+ f : X → Y . Then the following are equivalent:
22
+ 1) f is Baire class 1
23
+ 2) f↾K has a point of continuity for every compact K ⊆ X
24
+ Actually, the separability hypothesis on X can be avoided [4, Corollary 1; 12, Ch.
25
+ II, §31, X], but in this article we are interested in the separable case.
26
+ We note that Baire class 1 functions have been, and still are, sometimes defined
27
+ as pointwise limits of continuous functions — e.g. [16–18], Baire himself originally
28
+ stated his grand theorem for pointwise limits of continuous real functions [14].
29
+ This definition and ours are equivalent only under certain hypotheses — e.g. see
30
+ [5, Theorem 24.10; 20].
31
+ In this article, we study the generalization of Baire’s grand theorem in which
32
+ the domain’s hypothesis is weakened from Polish to separable metrizable, and its
33
+ relationship with the determinacy of a two-player game. The use of infinite two-
34
+ player, perfect information games to characterize certain classes of functions has a
35
+ 2020 Mathematics Subject Classification. Primary 03E15, Secondary 26A21, 91A44.
36
+ Key words and phrases. Baire class 1, Baire characterization theorem, topological game, re-
37
+ duction game .
38
+ The author would like to thank Rapha¨el Carroy for his careful readings and useful suggestions,
39
+ which helped shaping this article. The author would like to acknowledge INDAM for the financial
40
+ support. This research was also partially supported by the project PRIN 2017 “Mathematical
41
+ Logic: models, sets, computability”, prot. 2017NWTM8R.
42
+ 1
43
+
44
+ 2
45
+ LORENZO NOTARO
46
+ long and established history — e.g. [1, 2, 6, 7, 13, 19, 21], see Motto Ros [11] for a
47
+ detailed introduction on this subject.
48
+ In Section 2 we define our game G(f), where f is a function between separable
49
+ metrizable spaces. We prove that Player II has a winning strategy in G(f) if and
50
+ only if f is Baire class 1 (Theorem 2.2). Then we show that Player I has a winning
51
+ strategy in G(f) if and only if there is a compact K ⊆ X such that f↾K has no
52
+ point of continuity (Theorem 2.3).
53
+ In Section 3 we discuss the determinacy of our game. We start by observing
54
+ that the determinacy of our game for every function is equivalent to GBT, the gen-
55
+ eralization of Baire’s grand theorem in which the domain’s hypothesis is weakened
56
+ from Polish to separable metrizable (Corollary 3.1). We note that AC and GBT are
57
+ mutually inconsistent (Proposition 3.2). Then we show that GBT is equivalent to a
58
+ separation property coming from Descriptive Set Theory (Theorem 3.4), and that
59
+ both these statements hold under AD, the axiom of determinacy, and in Solovay’s
60
+ model.
61
+ 2. The game
62
+ Given X a topological space and (Un)n∈N a sequence of open subsets of X, we
63
+ say that (Un)n∈N is convergent if it is decreasing with respect to ⊆, and if it is a
64
+ local basis of some x ∈ X. In that case we write limn→∞ Un = x.
65
+ Definition 2.1. Let X, Y be separable metrizable spaces and let f : X → Y . In
66
+ our game G(f), at the nth round, Player I plays a nonempty open subset Un of X,
67
+ and then Player II plays yn ∈ ran(f),
68
+ I
69
+ U0
70
+ U1
71
+ U2
72
+ ...
73
+ II
74
+ y0
75
+ y1
76
+ y2
77
+ ...
78
+ with the rule: Un+1 ⊆ Un for each n ∈ N.
79
+ At the end of a game run, Player
80
+ I and II have produced a sequence (Un)n∈N of nonempty open subsets of X and
81
+ a sequence (yn)n∈N in ran(f), respectively. Player II wins the run if either the
82
+ sequence (Un)n∈N is not convergent or it converges to an x ∈ X and (yn)n∈N
83
+ converges to f(x).
84
+ This game is an elaboration of Kiss’ game [1] and a further generalization of
85
+ Duparc’s eraser game [7].
86
+ Since we use trees and operations over finite sequences throughout, we briefly
87
+ recall their classical definition and notation. Let X be a nonempty set. We denote
88
+ by X<N the set of finite sequences of elements of X, with ∅ being the empty
89
+ sequence. Let u ∈ X<N and v ∈ X≤N. We write u ⊑ v when u is an initial segment
90
+ of v and we say that v extends u. We call u⌢v the concatenation of u and v. For
91
+ each n ≤ lenght(u), we let u↾n be the initial segment ⟨u(0), u(1), . . . , u(n − 1)⟩ if
92
+ n > 0; otherwise, we let it be the empty sequence. Given an x ∈ X, we write
93
+ u⌢x to denote the finite sequence u⌢⟨x⟩, where ⟨x⟩ is the sequence of length 1
94
+ containing only x. Sometimes we use the notation ⃗x to denote an element of X<N.
95
+ A tree T on X is a subset of X<N closed uder initial segments. A tree is said to
96
+ be pruned if all its nodes have a proper extension. Given a tree T , we denote by
97
+ [T ] the set {r ∈ XN | ∀n r↾n ∈ T }, whose elements are called branches of T . The
98
+ family {Ns | s ∈ N<N} with Ns = {r ∈ NN | s ⊑ r}, is the standard basis of the
99
+ Baire space.
100
+
101
+ A GAME FOR BAIRE’S GRAND THEOREM
102
+ 3
103
+ Kiss [1, Theorem 1] used his game to characterize Baire class 1 functions between
104
+ separable complete metric spaces. The next theorem generalizes this result by pro-
105
+ viding an analogous characterization for Baire class 1 functions between arbitrary
106
+ separable metrizable spaces.
107
+ Theorem 2.2. Let X, Y be separable metrizable spaces and f : X → Y . Then
108
+ Player II has a winning strategy in G(f) if and only if f is Baire class 1.
109
+ Proof. (⇐=): Assume that the function f is Baire class 1.
110
+ As every separable
111
+ metrizable space embeds into RN (i.e. the space of infinite sequences of real number
112
+ with the product of the euclidean topology), we can assume Y ⊆ RN without loss
113
+ of generality.
114
+ By a theorem of Lebesgue, Hausdorff and Banach [5, Theorem 24.10] there exists
115
+ a sequence (fn)n∈N of continuous functions from X to RN (with range not necessarily
116
+ in Y ) pointwise converging to f. We fix such a sequence, we fix also a compatible
117
+ metric d on RN and a sequence (qn)n∈N ⊂ ran(f) dense in ran(f).
118
+ We now define by induction a map σ⋆ that maps partial plays of Player I into
119
+ Y × N. Then πY ◦ σ⋆ is shown to be a winning strategy for Player II. We denote
120
+ by σ⋆
121
+ Y and σ⋆
122
+ N the functions πY ◦ σ⋆ and πN ◦ σ⋆, respectively, where πY , πN are the
123
+ projections.
124
+ Here is the definition on σ⋆ by induction on the lengths of Player I’s partial
125
+ plays: set σ⋆(U0) = (q0, 0) for each nonempty open subset U0 of X; fix k ∈ N,
126
+ suppose that we have defined σ⋆ for all Player I’s partial plays of length up to k
127
+ and consider a partial play ⃗U ⌢Uk of length k + 1, then
128
+ 1) if there is an n > σ⋆
129
+ N(⃗U) such that diam(fn[Uk]) ≤ 2−n: fix an n satisfying
130
+ the condition and an m such that d(qm, fn[Uk]) ≤ 2−n; set σ⋆(⃗U ⌢Uk) =
131
+ (qm, n).
132
+ 2) otherwise: we set σ⋆(⃗U ⌢Uk) = σ⋆(⃗U).
133
+ We now show that σ⋆
134
+ Y is a winning strategy for Player II in G(f). Fix an infinite
135
+ play (Uk)k∈N of Player I in G(f). If (Uk)k∈N is not convergent, then Player II wins.
136
+ Assume that (Uk)k∈N converges to an x ∈ X, and set yk = σ⋆
137
+ Y (U0, . . . , Uk), nk =
138
+ σ⋆
139
+ N(U0, . . . , Uk) for each k ∈ N. We now need to show limk→∞ yk = f(x).
140
+ Claim 2.2.1. The sequence (nk)k∈N is nondecreasing and unbounded in N.
141
+ Proof. The fact that (nk)k∈N is nondecreasing is a direct consequence of the defini-
142
+ tion of σ⋆. Next note that, for all n ∈ N, the diameters of the sets in the sequence
143
+ (fn[Uk])k∈N converge to 0, as fn is continuous and (Uk)k∈N is a local basis of x,
144
+ decreasing with respect to ⊆.
145
+ Fix a k ∈ N and an n > nk. By the previous observation, there exist a k′ > k such
146
+ that diam(fn[Uk′]) ≤ 2−n. Fix one such k′, there are two cases: either nk′−1 > nk
147
+ or nk′−1 = nk. In the latter case, the first condition in the inductive definition of
148
+ σ⋆ happens at the k′-th round, hence nk′ > nk′−1 = nk. In either case, nk′ > nk.
149
+ We just proved that for every k there is a k′ > k such that nk′ > nk, therefore
150
+ (nk)k∈N is unbounded.
151
+
152
+ Let ¯k be the least k such that nk > 0.
153
+ Claim 2.2.2. For all k ≥ ¯k, d(yk, fnk(x)) ≤ 21−nk.
154
+ Proof. Fix a k ≥ ¯k and pick the smallest l ≤ k such that nl = nk. Note that
155
+ yk = yl, as from the l-th round to the k-th σ⋆ does not change its response. From
156
+
157
+ 4
158
+ LORENZO NOTARO
159
+ the minimality of l it follows that the first condition of the inductive definition of σ⋆
160
+ happens at the l-th round, therefore d(yl, fnl[Ul]) ≤ 2−nl and diam(fnl[Ul]) ≤ 2−nl.
161
+ Since we assumed x = limn→∞ Un, x belongs to Ul and fnl(x) belongs to fnl[Ul],
162
+ hence d(yl, fnl(x)) ≤ 21−nl. As nl = nk and yl = yk we are done.
163
+
164
+ Then, for each k ≥ ¯k,
165
+ d(yk, f(x)) ≤ d(fnk(x), f(x)) + d(yk, fnk(x)) ≤ d(fnk(x), f(x)) + 21−nk.
166
+ Since (nk)k∈N is unbounded and the fn’s pointwise converge to f, these inequalities
167
+ imply that (yk)k∈N converges to f(x) and therefore σ⋆
168
+ Y wins the run. As (Uk)k∈N
169
+ was an arbitrary play of Player I, we have showed that σ⋆
170
+ Y is a winning strategy for
171
+ Player II in G(f).
172
+ (=⇒): Suppose that Player II has a winning strategy in G(f), we show that the
173
+ function f is Baire class 1.
174
+ Fix a winning strategy σ for Player II in G(f) and fix a compatible metric d
175
+ on X. As X is separable, there exists a scheme (Us)s∈N<N of open subsets of X
176
+ satisfying the following properties:
177
+ 1) U∅ = X.
178
+ 2) For all s ∈ N<N, �
179
+ n Us⌢n = Us.
180
+ 3) For all s ∈ N<N, diam(Us) ≤ 2−length(s).
181
+ For each s ∈ N<N let
182
+ ys = σ(Us↾0, Us↾1, Us↾2, . . . , Us).
183
+ In other words, ys is the response of Player II following σ to the partial play
184
+ (Us↾0, . . . , Us) of Player I. For every x ∈ X call Tx the tree {s ∈ N<N | x ∈ Us}.
185
+ It follows directly from properties 1) and 2) of the scheme that all such trees are
186
+ nonempty and pruned.
187
+ Claim 2.2.3. For all x ∈ X and V open neighborhood of f(x), there is an s ∈ Tx
188
+ such that for all t ∈ Tx if s ⊑ t then yt ∈ V .
189
+ Proof. Assume by contradiction that there is an x ∈ X and a V open neighborhood
190
+ of f(x) such that for all s ∈ Tx there is a t ∈ Tx that extends s and such that yt ̸∈ V .
191
+ Then there exists a branch r ∈ [Tx] such that {n ∈ N | yr↾n ̸∈ V } is infinite. Fix
192
+ one and note that Player I wins in G(f) by playing the sequence (Ur↾n)n∈N, as, by
193
+ property 3) of the scheme, this sequence converges to x, whilst the corresponding
194
+ play of Player II according to σ does not converge to f(x). Since we have assumed
195
+ σ to be a winning strategy for Player II, we have reached a contradiction.
196
+
197
+ Fix V open subset of Y and a sequence (Vn)n∈N of open subsets of V such that
198
+ V = �
199
+ n∈N Vn = �
200
+ n∈N Vn.
201
+ Claim 2.2.4.
202
+ f −1(V ) =
203
+
204
+ n∈N
205
+
206
+ s∈N<N
207
+
208
+ Us \
209
+
210
+ {Ut | t ⊒ s and yt ̸∈ Vn}
211
+
212
+ .
213
+ Proof. Take an x in the set on the right-hand side. By definition, there exists an
214
+ n ∈ N and an s ∈ N<N such that s ∈ Tx and for all t ∈ Tx extending s, yt ∈ Vn. Fix
215
+ a branch r ∈ [Tx]∩Ns, then the sequence (yr↾k)k∈N is eventually in Vn, i.e. yr↾k ∈ Vn
216
+ for all k greater than some m ∈ N. As (Ur↾k)k∈N converges to x by property 3) of
217
+
218
+ A GAME FOR BAIRE’S GRAND THEOREM
219
+ 5
220
+ the scheme, and σ is a winning strategy for Player II, we have limk→∞ yr↾k = f(x),
221
+ and therefore f(x) ∈ Vn ⊆ V .
222
+ Now pick an x in f −1(V ). There must be an n such that f(x) ∈ Vn. By Claim
223
+ 2.2.3, there exists an s ∈ N<N such that for all t ∈ Tx extending s, yt ∈ Vn. But
224
+ this means that x belongs to the set on the right-hand side.
225
+
226
+ Since the set on right-hand is an Fσ subset of X and V was an arbitrary open
227
+ subset of Y , we have showed that pre-images of open subsets of Y by f are Fσ sets.
228
+ So f is Baire class 1.
229
+
230
+ Theorem 2.3. Let X, Y be separable metrizable spaces and f : X → Y . Then
231
+ Player I has a winning strategy in G(f) if and only if there exists a compact set
232
+ K ⊆ X such that f↾K has no point of continuity.
233
+ To prove this theorem, we need the notion of pointwise oscillation of a function.
234
+ Given X a topological space, Y a metric space and f : A → Y for some nonempty
235
+ A ⊆ X, we define oscf(x) for each x ∈ X as
236
+ oscf(x) = inf{diam(f(U ∩ A)) | U ⊆ X open neighborhood of x}.
237
+ The function oscf is upper semi-continuous, i.e. for every ǫ > 0 the set {x ∈ X |
238
+ oscf(x) ≥ ǫ} is closed.
239
+ Lemma 2.4. Let X, Y be separable metric spaces, ǫ > 0 and f : X → Y such that
240
+ oscf(x) ≥ ǫ for all x ∈ X. Then there is a countable Q ⊆ X such that oscf↾Q(x) ≥ ǫ
241
+ for all x ∈ X.
242
+ Proof. Let dY be the metric on Y and fix a sequence (yn)n∈N dense in Y . For each
243
+ n, m ∈ N, let Qn,m be a countable and dense subset of f −1(B(yn, 2−m)). We claim
244
+ that the countable set Q = �
245
+ n,m Qn,m satisfies the wanted property.
246
+ Fix x ∈ X, m ∈ N and an open neighborhood U of x. By assumption, there
247
+ are x0, x1 ∈ U such that dY (f(x0), f(x1)) ≥ ǫ − 2−m. Let n0, n1 be such that
248
+ f(xi) ∈ B(yni, 2−m) for i = 0, 1. In particular U ∩ f −1(B(yni, 2−m)) ̸= ∅, and
249
+ therefore U ∩ Qni,m ̸= ∅ for i = 0, 1. Pick q0, q1 in U ∩ Qn0,m and U ∩ Qn1,m,
250
+ respectively. Then,
251
+ dY (f(q0), f(q1)) ≥ dY (f(x0), f(x1)) − dY (f(x0), f(q0)) − dY (f(x1), f(q1))
252
+ ≥ (ǫ − 2−m) − 21−m − 21−m = ǫ − 5 · 2−m.
253
+ Indeed, for i = 0, 1, f(xi) and f(qi) both belong to B(yni, 2−m), and therefore their
254
+ distance is less or equal to 21−m.
255
+ We have showed that for each x ∈ X, for every open neighborhood U of x and for
256
+ all m there are q0, q1 ∈ U ∩ Q such that dY (f(q0), f(q1)) is greater than ǫ − 5 · 2−m.
257
+ In particular diam(f(U ∩ Q)) ≥ ǫ. Hence, for all x ∈ X, oscf↾Q(x) ≥ ǫ.
258
+
259
+ proof of Theorem 2.3. (⇐=) : Fix a compact set K ⊆ X such that f↾K has no
260
+ continuity point. The winning strategy for Player I that we define is essentially the
261
+ one defined by Kiss1 in [1, §2], the only difference being that we deal with a bit
262
+ more care the amount of choice used in the construction (see Remark 2.5).
263
+ 1Kiss’ strategy, in turn, is based on the one defined by Carroy in [2, Theorem 4.1]
264
+
265
+ 6
266
+ LORENZO NOTARO
267
+ Fix a compatible metric dX on X and dY on Y . Since f↾K has no point of
268
+ continuity, it follows that oscf↾K(x) > 0 for every x ∈ K. In particular, K =
269
+
270
+ n Kn, where
271
+ Kn =
272
+
273
+ x ∈ K | oscf↾K(x) ≥ 1
274
+ n
275
+
276
+ .
277
+ By Baire’s category theorem, there are a nonempty open U ⊆ X and an n
278
+ such that Kn ∩ U = K ∩ U. Let C be the closure of Kn ∩ U and ǫ = 1/n, then
279
+ oscf↾C(x) ≥ ǫ for every x ∈ C.
280
+ By Lemma 2.4, we know that there is a countable Q ⊆ C such that oscf↾Q(x) ≥ ǫ
281
+ for every x ∈ Q. Let (qn)n∈N be an enumeration of Q. We now define a winning
282
+ strategy τ for Player I by induction on the lengths of Player II’s partial plays. In
283
+ particular, the map τ ranges among the open balls of X centered in Q, i.e. open
284
+ sets of the form B(x, ρ) for some x ∈ Q and radius ρ > 0: first set τ(∅) = B(q0, 1)
285
+ — we are setting the first move of Player I; fix k ∈ N, suppose that we have defined
286
+ τ for all partial plays of Player II of lengths up to k and consider the partial play
287
+ ⃗y ⌢yk of length k + 1 with B(qnk, ρk) = τ(⃗y), then
288
+ 1) if dY (yk, f(qnk)) ≤ ǫ/8:
289
+ let nk+1 be the least n such that qn ∈ B(qnk, ρk) and dY (f(qn), f(qnk)) ≥
290
+ ǫ/3; let ρ be the greatest ρ ≤ ρk such that B(qnk+1, ρ) ⊆ B(qnk, ρk) and set
291
+ τ(⃗y ⌢yk) = B(qnk+1, ρ/2).
292
+ 2) otherwise:
293
+ τ(⃗y ⌢yk) = B(qnk, ρk/2).
294
+ We now prove that τ is a winning strategy for Player I. Fix an infinite play (yk)k∈N
295
+ of Player II and set Bk = B(xk, ρk) = τ(y0, . . . , yk) for every k. First we show that
296
+ the sequence (Bk)k∈N converges to an x ∈ K. Indeed, it follows directly from τ’s
297
+ inductive definition that �
298
+ k Bk = �
299
+ k Bk; the compactness of K guarantees that
300
+ K ∩ �
301
+ k Bk ̸= ∅; finally, the radii of (Bk)k∈N converge to 0, hence K ∩ �
302
+ k Bk is a
303
+ singleton {x} and (Bk)k∈N converges to x.
304
+ So we are left to prove that the sequence (yk)k∈N does not converge to f(x).
305
+ Suppose first that condition 1) of τ’s inductive definition happens only finitely
306
+ many times during this game run. This means that there exists an n such that for
307
+ all k ≥ n, xk = x, and therefore dY (yk, f(x)) > ǫ/8 for all k ≥ n. In this case
308
+ (yk)k∈N certainly does not converge to f(x).
309
+ Now suppose otherwise, and let the increasing sequence (kn)n∈N be such that
310
+ condition 1) happens at the kn+1-th round for each n. More precisely, (kn)n∈N
311
+ is the increasing sequence such that dY (yk, f(xk)) ≤ ǫ/8 if and only if k = kn for
312
+ some (unique) n. For every n,
313
+ dY (ykn, ykn+1) ≥ dY (f(xkn), f(xkn+1)) − dY (f(xkn), ykn) − dY (f(xkn+1), ykn+1)
314
+ = dY (f(xkn), f(xkn+1)) − dY (f(xkn), ykn) − dY (f(xkn+1), ykn+1)
315
+ ≥ ǫ/3 − ǫ/8 − ǫ/8 = ǫ/12
316
+ where the equality follows from xkn+1 = xkn+1, which holds because in the rounds
317
+ between kn + 1 and kn+1 the strategy τ does not change the center of its balls; the
318
+ last inequality follows directly from the definition of τ. Therefore, as (kn)n∈N is
319
+ unbounded, the sequence (yk)k∈N does not converge.
320
+
321
+ A GAME FOR BAIRE’S GRAND THEOREM
322
+ 7
323
+ In either case (yk)k∈N does not converge to f(x), therefore τ wins the run. As
324
+ (yk)k∈N was an arbitrary play of Player II, we have showed that τ is a winning
325
+ strategy for Player I in G(f).
326
+ (=⇒) : Suppose that Player I has a winning strategy in G(f), we want to prove
327
+ that there exists a compact set K ⊆ X such that f↾K has no point of continuity.
328
+ We show instead that there exists a compact K ⊆ X such that Player I has a
329
+ winning strategy in G(f↾K). Indeed, if we do so, it would mean that the function
330
+ f↾K is not Baire class 1, as otherwise Player II would have a winning strategy in
331
+ G(f↾K) by Theorem 2.2. Then, by Baire’s grand theorem — which can be applied
332
+ as K, being a compact separable metrizable space, is a Polish space — there would
333
+ be a compact K′ ⊆ K such that f↾K′ has no point of continuity.
334
+ Fix a winning strategy τ for Player I and fix also an enumeration (qn)n∈N of
335
+ a countable dense subset of ran(f).
336
+ Denote by S the tree {s ∈ N<N | s(n) ≤
337
+ n for all n < length(s)}. Note that [S] is a compact subset of the Baire space.
338
+ Consider the following map:
339
+ ϕ : [S] −→ X
340
+ r �−→ lim
341
+ n→∞ τ(qr(0), qr(1), . . . , qr(n)).
342
+ Since we are assuming τ winning for Player I, the limits in the definition always
343
+ exist, and the map ϕ is well-defined. We now show that ϕ is continuous. Given
344
+ an r ∈ [S] and V open neighborhood of ϕ(r), there exists an n ∈ N such that
345
+ τ(qr(0), qr(1), . . . , qr(n−1)) ⊆ V , by definition of limit of sequences of open sets. But
346
+ then the rules of the game force every t ∈ [S] ∩ Nr↾n to be mapped by ϕ into
347
+ τ(qr(0), qr(1), . . . , qr(n−1)) ⊆ V . Therefore ϕ is continuous and K = ran(ϕ) is a
348
+ compact subset of X.
349
+ Next we show that Player I has a winning strategy in G(f↾K). Fix dY compatible
350
+ metric on Y . For each y ∈ Y and k ∈ N, pick an n ≤ k such that dY (qn, y) =
351
+ minm≤k dY (qm, y) and let q(y, k) = qn.
352
+ We define the strategy τ ′ for Player I in G(f↾K) as follows: for each (y0, . . . , yk)
353
+ partial play of Player II in G(f↾K), we let
354
+ τ ′(y0, y1, . . . , yk) = τ(q(y0, 0), q(y1, 1), . . . , q(yk, k)) ∩ K.
355
+ We claim that τ′ is a winning strategy for Player I in G(f↾K). Take an in-
356
+ finite play (yk)k∈N of Player II. For each k, let nk be such that qnk = q(yk, k).
357
+ Then (nk)k∈N belongs to [S], and the limit of the sequence (τ′(y0, . . . , yk))k∈N is
358
+ ϕ((nk)k∈N) ∈ K, by definition of ϕ.
359
+ If (yk)k∈N is not convergent then Player I wins the run. So suppose that (yk)k∈N
360
+ converges to y ∈ ran(f). Then,
361
+ dY (q(yk, k), y) ≤ dY (yk, y) + dY (q(yk, k), yk) = dY (yk, y) + min
362
+ m≤k dY (qm, yk)
363
+ ≤ 2dY (yk, y) + min
364
+ m≤k dY (qm, y).
365
+ Since limk→∞ yk = y by assumption, and limk→∞ minm≤k dY (qm, y) = 0 by the
366
+ density of (qn)n∈N in ran(f), it follows from the above inequalities that (q(yk, k))k∈N
367
+ converges to y. Therefore,
368
+ lim
369
+ k→∞ yk = lim
370
+ k→∞ q(yk, k) ̸= f( lim
371
+ k→∞ τ(q(y0, 0), . . . , q(yk, k))) = f( lim
372
+ k→∞ τ ′(y0, . . . yk))).
373
+
374
+ 8
375
+ LORENZO NOTARO
376
+ The inequality follows from having assumed τ winning strategy for Player I in G(f),
377
+ and the last equality instead comes directly from having defined τ ′(y0, . . . , yk) as
378
+ τ(q(y0, 0), . . . , q(yk, k)) ∩ K.
379
+ Hence (yk)k∈N does not converge to f(limk→∞ τ ′(y0, . . . yk))), and τ′ wins the
380
+ run. Since (yk)k∈N was an arbitrary play of Player II, τ ′ is a winning strategy for
381
+ Player I in G(f↾K).
382
+
383
+ Remark 2.5. The careful reader may have noticed that in this section we didn’t use
384
+ the axiom of choice, or even the axiom of dependent choice, in their full potential.
385
+ Indeed, all the proofs contained or cited in this section go through assuming only
386
+ ACω(R), the axiom of countable choice over the reals: “Every countable family of
387
+ nonempty subsets of R has a choice function”.
388
+ 3. On the determinacy of G(f)
389
+ Recall that a two-player game G is determined if either Player I or Player II
390
+ has a winning strategy. Carroy [2, Theorem 4.1] proved that Duparc’s eraser game
391
+ Ge(f), which characterizes Baire class 1 functions from and into NN, is determined
392
+ for every function f, and used this determinacy result to give a new game-theoretic
393
+ proof of Baire’s grand theorem restricted to functions between 0-dimensional Polish
394
+ spaces [2, Theorem 4.6]. On the other hand, Kiss [1, §2] used Baire’s grand theorem
395
+ to prove the determinacy of his game. Our game G(f) is a further generalization
396
+ of both these games, and, again, a strong relationship between its determinacy and
397
+ Baire’s grand theorem emerges as a direct corollary of the two main theorems of
398
+ the previous section. Let us introduce the following statement, which is the same
399
+ as Baire’s grand theorem with the hypothesis on the domain weakened from Polish
400
+ to separable metrizable:
401
+ (GBT)
402
+ For all X, Y separable metrizable spaces and f : X → Y , f
403
+ is Baire class 1 if and only if f↾K has a point of continuity
404
+ for every compact K ⊆ X.
405
+ The following is a direct corollary of Theorems 2.2 and 2.3.
406
+ Corollary 3.1. The following are equivalent:
407
+ 1) G(f) is determined for every f.
408
+ 2) GBT
409
+ But unlike Duparc’s and Kiss’ games, ours is not determined in general, as the
410
+ next proposition shows.
411
+ Proposition 3.2. (AC) GBT is false.
412
+ Proof. Under the axiom of choice, there exists a Bernstein set — i.e. a set of reals
413
+ with cardinality of the continuum which intersects every uncountable closed set but
414
+ that contains none of them. Let X be a Bernstein set. Since the family of the Fσ
415
+ subsets of a second countable space has at most the cardinality of the continuum,
416
+ it follows from Cantor’s theorem that there must be a subset A ⊂ X which is not
417
+ an Fσ subset of X.
418
+ The function
419
+ 1A : X → 2, with
420
+ 1A(x) = 1 iff x ∈ A, is not Baire class 1, as A is
421
+ not an Fσ subset of X. Nonetheless, we claim that
422
+ 1A↾K has a point of continuity
423
+ for every compact K ⊆ X. Fix a compact K ⊆ X, then K needs to be countable,
424
+ as we have assumed X to be a Bernstein set. But then K, being a countable and
425
+
426
+ A GAME FOR BAIRE’S GRAND THEOREM
427
+ 9
428
+ compact subset of R, has an isolated point, which is, in particular, a continuity
429
+ point of
430
+ 1A↾K.
431
+
432
+ Note that the same argument shows that G(1A) is undetermined.
433
+ A separable metrizable space is (absolutely) analytic precisely when it is the
434
+ continuous image of a Polish space. Gerlits and Laczkovich [4, Theorem 2] showed
435
+ that Baire’s grand theorem holds if the domain is assumed only to be an abso-
436
+ lutely analytic metrizable space — actually, they stated this generalization for real
437
+ functions, but their argument goes through assuming only separable metrizable
438
+ codomains. From the theorems of the previous section it follows that the game
439
+ G(f) is determined for every function f with analytic domain.
440
+ We cannot hope to extend tout court this determinacy result to functions with
441
+ co-analytic domains, where a separable metrizable space is said to be co-analytic if
442
+ it is homeomorphic to the complement of an analytic set in a Polish space. In fact,
443
+ the existence of a co-analytic Bernstein set is consistent with ZFC — in particular
444
+ it follows from V = L, see [10, Theorem 13.12] — and the example defined in
445
+ Proposition 3.2 would give us a function f with separable metrizable co-analytic
446
+ domain witnessing the failure of GBT and the undeterminacy of G(f).
447
+ We now focus on GBT, which, by Proposition 3.2, is inconsistent with AC. We
448
+ first introduce a couple of statements coming from Descriptive Set Theory which
449
+ are strictly related to GBT. We recall that, given three sets A, B, S we say that S
450
+ separates A from B if A ⊆ S and B ∩ S = ∅.
451
+ (HSP)
452
+ For every disjoint A, B ⊆ NN such that there is no Fσ set
453
+ separating A from B, there is a Cantor set C ⊆ A ∪ B with
454
+ C ∩ B countable and dense in C.
455
+ where HSP stands for Hurewicz’ Separation Property. The fact that the trace of
456
+ B on C (i.e. B ∩ C) is countable and dense not only means that B ∩ C is Fσ in C,
457
+ but also that it is Fσ-complete [5, Exercise 22.11]. HSP is known to hold under AD
458
+ [3, Theorem 4.2; 5, §21.F].
459
+ Fact 3.3. HSP is a strong statement, in the sense that HSP + DC is equiconsistent
460
+ with the existence of an inaccessible cardinal. Indeed, HSP + DC implies PSP, the
461
+ perfect set property for every subset of NN, and it is well-known that PSP + DC
462
+ implies the consistency of an inaccessible cardinal [10, Propositions 11.4 and 11.5];
463
+ on the other hand, Todorcevic and Di Prisco [8, Theorem 4.1] proved that HSP
464
+ holds in Solovay’s model, hence the equiconsistency.
465
+ Consider now this seemingly weaker statement:
466
+ (WHSP)
467
+ For every disjoint A, B ⊆ NN such that there is no Fσ set
468
+ separating A from B, there is a Cantor set C ⊆ A ∪ B with
469
+ C ∩ A dense and codense in C.
470
+ This statement is clearly a consequence of HSP, but it doesn’t tell us anything
471
+ about the definability of the trace of A or B on C.
472
+ Theorem 3.4. The following are equivalent:
473
+ 1) GBT
474
+ 2) WHSP
475
+ Proof. 1) =⇒ 2): let A, B ⊆ NN be disjoint subsets of the Baire space such that A
476
+ cannot be separated from B by an Fσ set. Equivalently, A is not Fσ with respect
477
+
478
+ 10
479
+ LORENZO NOTARO
480
+ to the relative topology on A ∪ B. Therefore, the function f : A ∪ B → 2, with
481
+ f(x) = 1 iff x ∈ A, is not Baire class 1, and by GBT there exists a compact set
482
+ K ⊆ A ∪ B such that f↾K has not point of continuity. This means that A ∩ K
483
+ is both dense and codense in K, as otherwise f would have a point of continuity.
484
+ Finally notice that K, being a compact and perfect subset of NN, is actually a
485
+ Cantor set [5, Theorem 7.4]. Hence WHSP holds.
486
+ 2) =⇒ 1): let X, Y be separable metrizable spaces and f : X → Y a function
487
+ which is not Baire class 1. Every Polish space is the image of NN by a continuous
488
+ and closed map [9]. As every separable metrizable space embeds into a Polish space,
489
+ there exists a closed and continuous surjection g : X′ → X for some X′ ⊆ NN. Since
490
+ the image of a closed set by a closed function is still closed by definition, also images
491
+ of Fσ sets by a closed function remain Fσ. Therefore the function h = f◦g : X′ → Y
492
+ is still not Baire class 1.
493
+ As h is not Baire class 1, there is an open set V ⊆ Y such that h−1(V ) is not an
494
+ Fσ set of X′. Fix such V and fix also a sequence of closed sets (Fn)n∈N such that
495
+ V = �
496
+ n Fn. It must be the case that, for some n, h−1(Fn) is not separable from
497
+ h−1(Y \ V ) by an Fσ set, as otherwise h−1(V ) would be a countable union of Fσ
498
+ sets, which is still Fσ. Fix such an n, then, by WHSP, there is a Cantor set C ⊆ X′
499
+ with both h−1(Fn) ∩ C and h−1(Y \ V ) ∩ C dense in C.
500
+ By continuity of g, the set g[C] is compact in X and f −1(Fn)∩g[C], f −1(Y \V )∩
501
+ g[C] are both dense in g[C].
502
+ We claim that the function f↾g[C] has no point of continuity. Take an x ∈ g[C],
503
+ and fix two sequences (xk)k∈N ⊂ f −1(Fn) ∩ g[C], (x′
504
+ k)k∈N ⊂ f −1(Y \ V ) ∩ g[C]
505
+ converging to x. Such sequences exist because f −1(Fn)∩g[C] and f −1(Y \V )∩g[C]
506
+ are both dense in g[C]. If the sequences (f(xk))k∈N and (f(x′
507
+ k))k∈N converged in Y ,
508
+ they would converge in Fn and in Y \ V , respectively, as both these sets are closed.
509
+ Thus, even if their limits were to exist, they could not coincide. In particular x is
510
+ not a point of continuity of f↾g[C]. Since x ∈ g[C] was arbitrary, we have that no
511
+ x ∈ g[C] is a continuity point of f↾g[C].
512
+ Given a function f : X → Y between separable metrizable spaces which is not
513
+ Baire class 1, we have found a compact K ⊆ X such that f↾K has no point of
514
+ continuity. On the other hand, if f : X → Y is Baire class 1, then the classical
515
+ argument used in the proof of Baire’s grand theorem shows that f↾K has a point
516
+ of continuity for every compact K ⊆ X (e.g. see [5, Theorem 24.15]), with no need
517
+ to invoke WHSP. Hence GBT holds.
518
+
519
+ As HSP, and in particular WHSP, holds under AD [3, Theorem 4.2; 5, §21.F]
520
+ and in Solovay’s model [8, Theorem 4.1], we can say the same of GBT and the full
521
+ determinacy of our game, by Theorem 3.4 and Corollary 3.1. But the the precise
522
+ consistency strength of these three statements (+DC) is still unknown.
523
+ WHSP, compared to HSP, seems to be weak enough to be proved consistent
524
+ relative to ZF, with no large cardinals needed (see Fact 3.3). Hence the following
525
+ conjecture.
526
+ Conjecture. GBT + DC is consistent relative to ZF.
527
+ Lastly, notice that the definition of our game does not rely on the separability or
528
+ the metrizability of the function’s domain and codomain, and it would make perfect
529
+ sense to study it on wider classes of functions. Future research can shed light on
530
+
531
+ A GAME FOR BAIRE’S GRAND THEOREM
532
+ 11
533
+ how our game behaves on the class of functions with metrizable (not necessarily
534
+ separable) domains and separable metrizable codomains.
535
+ Would our results of
536
+ Section 2 still hold? How much choice would be needed to prove them?
537
+ References
538
+ [1] Viktor Kiss, A game characterizing Baire class 1 functions, J. Symb. Log. 85 (2020), no. 1,
539
+ 456–466.
540
+ [2] Rapha¨el Carroy, Playing in the first Baire class, MLQ Math. Log. Q. 60 (2014), no. 1-2,
541
+ 118–132.
542
+ [3] Rapha¨el Carroy, Benjamin D. Miller, and D´aniel T. Soukup, The open dihypergraph di-
543
+ chotomy and the second level of the Borel hierarchy, Trends in set theory, Contemp. Math.,
544
+ vol. 752, Amer. Math. Soc., [Providence], RI, 2020, pp. 1–19.
545
+ [4] J. Gerlits and M. Laczkovich, On barely continuous and Baire 1 functions, Topology, Vol.
546
+ II (Proc. Fourth Colloq., Budapest, 1978), Colloq. Math. Soc. J´anos Bolyai, vol. 23, North-
547
+ Holland, Amsterdam-New York, 1980, pp. 493–499.
548
+ [5] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics,
549
+ vol. 156, Springer-Verlag, New York, 1995.
550
+ [6] William Wilfred Wadge, Reducibility and determinateness on the Baire space, ProQuest LLC,
551
+ Ann Arbor, MI, 1983. Thesis (Ph.D.)–University of California, Berkeley.
552
+ [7] J. Duparc, Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank, J. Symbolic
553
+ Logic 66 (2001), no. 1, 56–86.
554
+ [8] Carlos Augusto Di Prisco and Stevo Todorcevic, Perfect-set properties in L(R)[U], Adv.
555
+ Math. 139 (1998), no. 2, 240–259.
556
+ [9] R. Engelking, On closed images of the space of irrationals, Proc. Amer. Math. Soc. 21 (1969),
557
+ 583–586.
558
+ [10] Akihiro Kanamori, The higher infinite, 2nd ed., Springer Monographs in Mathematics,
559
+ Springer-Verlag, Berlin, 2003. Large cardinals in set theory from their beginnings.
560
+ [11] Luca Motto Ros, Game representations of classes of piecewise definable functions, MLQ
561
+ Math. Log. Q. 57 (2011), no. 1, 95–112.
562
+ [12] Kazimierz Kuratowski, Topologie, translated by Jan W. Jaworowski, Vol. 1, Accademic Press,
563
+ New York-London, 1966.
564
+ [13] Riccardo Camerlo and Jacques Duparc, Some remarks on Baire’s grand theorem, Arch. Math.
565
+ Logic 57 (2018), no. 3-4, 195–201.
566
+ [14] Ren´e Baire, Le¸cons sur les fonctions discontinues, Les Grands Classiques Gauthier-Villars.
567
+ [Gauthier-Villars Great Classics], ´Editions Jacques Gabay, Sceaux, 1995 (French). Reprint of
568
+ the 1905 original.
569
+ [15] Olena Karlova, A generalization of a Baire theorem concerning barely continuous functions,
570
+ Topology Appl. 258 (2019), 433–438.
571
+ [16] Petr Poˇsta, Dirichlet problem and subclasses of Baire-one functions, Israel J. Math. 226
572
+ (2018), no. 1, 177–188.
573
+ [17] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces
574
+ containing l1, Israel J. Math. 20 (1975), no. 3-4, 375–384.
575
+ [18] Felix Hausdorff, Set theory, 2nd ed., Chelsea Publishing Co., New York, 1962. Translated
576
+ from the German by John R. Aumann et al.
577
+ [19] Alessandro Andretta, More on Wadge determinacy, Ann. Pure Appl. Logic 144 (2006), no. 1-
578
+ 3, 2–32.
579
+ [20] Olena Karlova, On Baire-one mappings with zero-dimensional domains, Colloq. Math. 146
580
+ (2017), no. 1, 129–141.
581
+ [21] M´arton Elekes, J´anos Flesch, Viktor Kiss, Don´at Nagy, M´ark Po´or, and Arkadi Predtetchin-
582
+ ski, Games characterizing limsup functions and Baire class 1 functions, J. Symb. Log. 87
583
+ (2022), no. 4, 1459–1473.
584
+ Universit`a degli Studi di Torino, Dipartimento di Matematica “G. Peano”, Via Carlo
585
+ Alberto 10, 10123 Torino, Italy
586
+ Email address: lorenzo.notaro@unito.it
587
+
EdFKT4oBgHgl3EQfZy6F/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtAzT4oBgHgl3EQfVPz7/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9FAT4oBgHgl3EQfxh78/content/tmp_files/2301.08688v1.pdf.txt ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ASYNCHRONOUS DEEP DOUBLE DUELLING Q-LEARNING FOR
2
+ TRADING-SIGNAL EXECUTION IN LIMIT ORDER BOOK
3
+ MARKETS
4
+ Peer Nagy
5
+ Oxford-Man Institute of Quantitative Finance
6
+ University of Oxford
7
+ peer.nagy@eng.ox.ac.uk
8
+ Jan-Peter Calliess
9
+ Oxford-Man Institute of Quantitative Finance
10
+ University of Oxford
11
+ Stefan Zohren
12
+ Oxford-Man Institute of Quantitative Finance
13
+ University of Oxford
14
+ January 23, 2023
15
+ ABSTRACT
16
+ We employ deep reinforcement learning (RL) to train an agent to successfully translate a high-
17
+ frequency trading signal into a trading strategy that places individual limit orders. Based on the
18
+ ABIDES limit order book simulator, we build a reinforcement learning OpenAI gym environment and
19
+ utilise it to simulate a realistic trading environment for NASDAQ equities based on historic order book
20
+ messages. To train a trading agent that learns to maximise its trading return in this environment, we
21
+ use Deep Duelling Double Q-learning with the APEX (asynchronous prioritised experience replay)
22
+ architecture. The agent observes the current limit order book state, its recent history, and a short-term
23
+ directional forecast. To investigate the performance of RL for adaptive trading independently from a
24
+ concrete forecasting algorithm, we study the performance of our approach utilising synthetic alpha
25
+ signals obtained by perturbing forward-looking returns with varying levels of noise. Here, we find
26
+ that the RL agent learns an effective trading strategy for inventory management and order placing
27
+ that outperforms a heuristic benchmark trading strategy having access to the same signal.
28
+ Keywords Limit Order Books · Quantitative Finance · Reinforcement Learning · LOBSTER ·
29
+ 1
30
+ Introduction
31
+ Successful quantitative trading strategies often work by generating trading signals, which exhibit a statistically significant
32
+ correlation with future prices. These signals are then turned into actions, aiming to assume positions in order to gain
33
+ from future price changes. The higher the signal frequency and strategy turnover, the more critical is the execution
34
+ component of the strategy, which translates the signal into concrete orders that can be submitted to a market. Such
35
+ markets are oftentimes organised as an order ledger represented by a limit order book (LOB).
36
+ Limit order book prices have been shown to be predictable over short time periods, predicting a few successive ticks
37
+ into the future with some accuracy. This has been done by either utilising the recent history of order book states
38
+ [1, 2], order-flow data [3], or market-by-order (MBO) data directly as features [4]. However, given the short time
39
+ horizons over which these predictions are performed, and correspondingly small price movements, predictability does
40
+ not directly translate into trading profits. Transaction costs, strategy implementation details, and time delays add up to
41
+ the challenging problem of translating high-frequency forecasts into a trading strategy, which determines when and
42
+ which orders to send to the exchange. Moreover, different predictive signals have to be traded differently to achieve
43
+ optimal results, depending on the forecast horizon, signal stability, and predictive power.
44
+ arXiv:2301.08688v1 [q-fin.TR] 20 Jan 2023
45
+
46
+ A PREPRINT - JANUARY 23, 2023
47
+ In this paper, we use asynchronous off-policy reinforcement learning (RL), specifically Deep Duelling Double Q-
48
+ learning with the APEX architecture [5], to learn an optimal trading strategy, given a noisy directional signal of
49
+ short-term forward mid-quote returns. For this purpose, we developed an OpenAI gym [6] limit order book environment
50
+ based on the ABIDES [7] market simulator, similar to [8]. We use this simulator to replay NASDAQ price-time priority
51
+ limit order book markets using message data from the LOBSTER data set [9].
52
+ We study the case of an artificial or synthetic signal, taking the future price as known and adding varying levels of noise,
53
+ allowing us to investigate learning performance and to quantify the benefit of an RL-derived trading policy compared to
54
+ a baseline strategy using the same noisy signal. This is not an unrealistic setup when choosing the correct level of noise.
55
+ Practitioners often have dedicated teams researching and deriving alpha signals, often over many years, while other
56
+ teams might work on translating those signals into profitable strategies. Our aim is to focus on the latter problem which
57
+ becomes increasingly more difficult as signals become faster. It is thus interesting to see how an RL framework can be
58
+ used to solve this problem. In particular, we show that the RL agent learns superior policies to the baselines, both in
59
+ terms of strategy return and Sharpe ratio. Machine learning methods, such as RL, have become increasingly important
60
+ to automate trade execution in the financial industry in recent years [10], underlining the practical use of research in
61
+ this area.
62
+ We make a number of contributions to the existing literature. By defining a novel action and state space in a LOB
63
+ trading environment, we allow for the placement of limit orders at different prices. This allows the agent to learn
64
+ a concrete high-frequency trading strategy for a given signal, trading either aggressively by crossing the spread, or
65
+ conservatively, implicitly trading off execution probability and cost. In addition to the timing and level placement of
66
+ limit orders, our RL agent also learns to use limit orders of single units of stock to manage its inventory as it holds
67
+ variably sized long or short positions over time. More broadly, we demonstrate the practical use case of RL to translate
68
+ predictive signals into limit order trading strategies, which is still usually a hand-crafted component of a trading system.
69
+ We thus show that simulating limit order book markets and using RL to further automate the investment process is a
70
+ promising direction for further research. To the best of our knowledge, this is also the first study applying the APEX [5]
71
+ algorithm to limit order book environments.
72
+ The remaining paper is structured as follows: Section 2 surveys related literature, section 3 explains the mechanics
73
+ of limit order book markets and the APEX algorithm, section 4 details the construction of the artificial price signal,
74
+ section 5 showcases our empirical results, and section 6 concludes our findings.
75
+ 2
76
+ Related Work
77
+ Reinforcement learning has been applied to learn different tasks in limit order book market environments, such as
78
+ optimal trade execution [11, 12, 13, 14, 15], market making [16, 17], portfolio optimisation [18] or trading [19, 20, 21].
79
+ The objective of optimal trade execution is to minimise the cost of trading a predetermined amount of shares over a
80
+ given time frame. Trading direction and the number of shares is already pre-defined in the execution problem. Market
81
+ makers, on the other hand, place limit orders on both sides of the order book and set out to maximise profits from
82
+ capturing the spread, while minimising the risk of inventory accumulation and adverse selection. We summarise using
83
+ the term “RL for trading” such tasks which maximise profit from taking directional bets in the market. This is a hard
84
+ problem for RL to solve as the space of potential trading strategies is large, leading to potentially many local optima in
85
+ the loss landscape, and actionable directional market forecasts are notoriously difficult due to arbitrage in the market.
86
+ The work of [19] is an early study of RL for market microstructure tasks, including trade execution and predicting price
87
+ movements. While the authors achieve some predictive power of directional price moves, forecasts are determined
88
+ to be too erroneous for profitable trading. The most similar work to ours is [21] that provides the first end-to-end
89
+ DRL framework for high-frequency trading, using PPO [22] to trade Intel stock. To model price impact, [21] use an
90
+ approximation, moving prices proportionately to the square-root of traded volume. The action space is essentially
91
+ limited to market orders, so there is no decision made on limit prices. The trained policy is able to produce a profitable
92
+ trading strategy on the evaluated 20 test days. However, this is not compared to baseline strategies and the resulting
93
+ performance is not statistically tested for significance. In contrast, we consider a larger action space, allowing for the
94
+ placement of limit orders at different prices, thereby potentially lowering transaction costs of the learned HFT strategy.
95
+ For a broader survey of deep RL (DRL) for trading, including portfolio optimisation, model-based and hierarchical RL
96
+ approaches the reader is referred to [17].
97
+ 2
98
+
99
+ A PREPRINT - JANUARY 23, 2023
100
+ 3
101
+ Background
102
+ 3.1
103
+ Limit Order Book Data
104
+ Limit order books (LOBs) are one of the most popular financial market mechanisms used by exchanges around the
105
+ world [23]. Market participants submit limit buy or sell orders, specifying a maximum (minimum) price at which they
106
+ are willing to buy (sell), and the size of the order. The exchange’s limit order book then keeps track of unfilled limit
107
+ orders on the buy side (bids) and the sell side (asks). If an incoming order is marketable, i.e. there are open orders on
108
+ the opposing side of the order book at acceptable prices, the order is matched immediately, thereby removing liquidity
109
+ from the book. The most popular matching prioritisation scheme is price-time priority. Here, limit orders are matched
110
+ first based on price, starting with the most favourable price for the incoming order, and then based on arrival time,
111
+ starting with the oldest resting limit order in the book, at each price level. For a more complete review of limit order
112
+ book dynamics and pertaining models, we refer the reader to [23].
113
+ In this paper, we consider equity limit order book data from the NASDAQ exchange [9], which also uses a price-time
114
+ priority prioritisation. Our market simulator keeps track of the state of the LOB by replaying historical message data,
115
+ consisting of new incoming limit orders, order cancellations or modifications. The RL agent can then inject new
116
+ messages into the order flow and thereby, change the LOB state from its observed historical state.
117
+ Our simulator reconstructs LOB dynamics from message data, so every marketable order takes liquidity from the book
118
+ and thus has a direct price impact. Beyond that, we make no further assumptions on permanent market impact or
119
+ reactions of other agents in the market, which we leave to future work.
120
+ 3.2
121
+ Double DQN with Distributed Experience Replay
122
+ We model the trader’s problem as a Markov Decision Process (MDP) [24, 25], described by the tuple ⟨S, A, T , r, γ⟩. S
123
+ denotes a state space, A an action space, T a stochastic transition function, r a reward function and γ a discount factor.
124
+ Observing the current environment state st ∈ S at time t, the trader takes action at ∈ A, which causes the environment
125
+ to transition state according to the stochastic transition function T (st+1|st, at). After transitioning from st to st+1,
126
+ the agent receives a reward rt+1 = r(st, at, st+1). We use Deep Double Q-learning [26] with a duelling network
127
+ architecture [27] to approximate the optimal Q-function Q∗(s, a) = E[rt+1+γ maxa′ Q∗(st+1, a′)|at = a, st = s]. To
128
+ speed up the learning process we employ the APEX training architecture [5], which combines asynchronous experience
129
+ sampling using parallel environments with off-policy learning from experience replay buffers. Every episode i results
130
+ in an experience trajectory τi = {st, at}T
131
+ t=1, many of which are sampled from parallel environment instances and are
132
+ then stored in the replay buffer. The environment sampling is done asynchronously using parallel processes running on
133
+ CPUs. Experience data from the buffer is then sampled randomly and batched to perform a policy improvement step of
134
+ the Q-network on the GPU. Prioritised sampling from the experience buffer has proven to degrade performance in our
135
+ noisy problem setting, hence we are sampling uniformly from the buffer.1 After a sufficient number of training steps,
136
+ the new policy is then copied to every CPU worker to update the behavioural policy.
137
+ Double Q-learning [28, 26] stabilises the learning process by keeping separate Q-network weights for action selection
138
+ (main network) and action validation (target network). The target network weights are then updated gradually in the
139
+ direction of the main network’s weight every few iterations. The duelling network architecture [27] on the other hand
140
+ uses two separate network branches (for both main and target Q-networks). One branch estimates the value function
141
+ V (s) = maxa Q(s, a), while the other estimates the advantage function A(s, a) = Q(s, a) − V (s). The benefit of this
142
+ architecture choice lies therein that the advantage of individual actions in some states might be irrelevant, and the state
143
+ value, which can be learnt more easily, suffices for an action-value approximation.
144
+ 4
145
+ Framework
146
+ 4.1
147
+ Artificial Price Signal
148
+ The artificial directional price signal dt ∈ ∆2 = {x ∈ R3 : x1 + x2 + x3 = 1, xi ≥ 0 for i = 1, 2, 3} the agent
149
+ receives is modelled as a discrete probability distribution over 3 classes, corresponding to the averaged mid-quote price
150
+ decreasing, remaining stable, or increasing over a fixed future time horizon of h ∈ N+ seconds. To achieve realistic
151
+ levels of temporal stability of the signal process, dt is an exponentially weighted average, with persistence coefficient
152
+ 1In many application domains prioritised sampling, whereby we resample instances more frequently where the model initially
153
+ performs poorly tends to aide learning. However, in our low signal-to-noise application domain, we noted poor performance.
154
+ Investigating the matter, we found that prioritised sampling caused more frequent resampling of highly noisy instances where
155
+ learning was particularly difficult, hence degrading performance.
156
+ 3
157
+
158
+ A PREPRINT - JANUARY 23, 2023
159
+ φ ∈ (0, 1), of Dirichlet random variables ϵt. The Dirichlet parameters α depend on the realised smoothed future return
160
+ rt+h, specifically on whether the return lies within a neighbourhood of size k around zero, or above or below. Thus we
161
+ have:
162
+ dt = φdt−1 + (1 − φ)ϵt
163
+ ϵt = Dirichlet (α(rt+h))
164
+ rt+h = pt+h − pt
165
+ pt
166
+ where
167
+ pt+h = 1
168
+ h
169
+ h
170
+
171
+ i=1
172
+ pt+i
173
+ (1)
174
+ and prices pt refer to the mid-quote price at time t. The Dirichlet distribution is parametrised, so that, in expectation,
175
+ the signal dt updates in the direction of future returns, where aH and aL determine the variance of the signal. The
176
+ Dirichlet parameter vector is thus:
177
+ α(rt+h) =
178
+
179
+
180
+
181
+ (aH, aL, aL)
182
+ if rt+h < −k
183
+ (aL, aH, aL)
184
+ if − k ≤ rt+h < k
185
+ (aL, aL, aH)
186
+ if k ≤ rt+h.
187
+ (2)
188
+ 4.2
189
+ RL Problem Specification
190
+ At each time step t, the agent receives a new state observation st. st consists of the time left in the current episode
191
+ T − t given the episode’s duration of T, the agent’s cash balance Ct, stock inventory Xt, the directional signal dt ∈ ∆2,
192
+ encoded as probabilities of prices decreasing, remaining approximately constant, or increasing; and price and volume
193
+ quantities for the best bid and ask (level 1), including the agent’s own volume posted at bid and ask: ob,t and oa,t
194
+ respectively. In addition to the most current observable variables at time t, the agent also observes a history of the
195
+ previous l values, which are updated whenever there is an observed change in the LOB. Putting all this together, we
196
+ obtain the following state observation:
197
+ st =
198
+
199
+
200
+
201
+
202
+
203
+ T − u
204
+ Cu
205
+ Xu
206
+ (d1
207
+ u, d2
208
+ u, d3
209
+ u)′
210
+ (pa,u, va,u, oa,u, pb,u, vb,u, ob,u)′
211
+
212
+
213
+
214
+
215
+
216
+ u={t−l,...,t}
217
+ .
218
+ After receiving the state observation, the agent then chooses an action at. It can place a buy or sell limit order of a
219
+ single share at bid, mid-quote, or ask price; or do nothing and advance to the next time step. Actions, which would
220
+ immediately result in positions outside the allowed inventory constraints [posmin, posmax] are disallowed and do not
221
+ trigger an order. Whenever the execution of a resting limit order takes the inventory outside the allowed constraints, a
222
+ market order in the opposing direction is triggered to reduce the position back to posmin for short positions or posmax
223
+ for long positions. Hence, we define
224
+ at ∈ A = ({−1, 1} × {−1, 0, 1}) ∪ {skip}
225
+ so that in total there are 7 discrete actions available, three levels for both buy and sell orders, and a skip action.
226
+ For the six actions besides the “skip” action, the first dimension encodes the trading direction (sell or buy) and the
227
+ second dimension the price level (bid, mid-price, or ask). For example, a = (1, 0) describes the action to place a buy
228
+ order at the mid price, and a = (−1, 1) a sell order at best ask. Rewards Rt+1 consist of a convex combination of a
229
+ profit-and-loss-based reward Rpnl
230
+ t+1 and a directional reward Rdir
231
+ t+1. Rpnl
232
+ t+1 is the log return of the agent’s mark-to-market
233
+ portfolio value Mt, encompassing cash and the current inventory value, marked at the mid-price. The benefit of
234
+ log-returns is that they are additive over time, rather than multiplicative like gross returns, so that, without discounting
235
+ (γ = 1) the total profit-and-loss return �T
236
+ s=t+1 Rpnl
237
+ s
238
+ = MT − Mt. The directional reward term Rdir
239
+ t+1 incentivizes the
240
+ agent to hold inventory in the direction of the signal and penalises the agent for inventory positions opposing the signal
241
+ direction. The size of the directional reward can be scaled by the parameter κ > 0. Rdir
242
+ t+1 is positive if the positive
243
+ prediction has a higher score than the negative (dt,3 > dt,1) and the current inventory is positive; or if dt,3 < dt,1 and
244
+ 4
245
+
246
+ A PREPRINT - JANUARY 23, 2023
247
+ Xt < 0. Further, if the signal [−1, 0, 1] · dt has an opposite sign than inventory Xt, Rdir
248
+ t+1 is negative. This can be
249
+ summarised as follows:
250
+ Mark-to-Market Value
251
+ Mt = Ct + Xtpm
252
+ t
253
+ ∆Mt = ∆Ct + Xt−1∆pm
254
+ t + ∆xtpm
255
+ t
256
+ PnL Reward
257
+ Rpnl
258
+ t+1 = ln(Mt) − ln(Mt−1)
259
+ Directional Reward
260
+ Rdir
261
+ t+1 = κ[−1, 0, 1] · dtXt
262
+ Total Reward
263
+ rt+1 = wdirRdir
264
+ t+1 + (1 − wdir)Rpnl
265
+ t+1
266
+ (3)
267
+ The weight on the directional reward wdir ∈ [0, 1) is reduced every learning step by a factor ψ ∈ (0, 1),
268
+ wdir ← ψwdir
269
+ so that initially the agent quickly learns to trade in the signal direction. Over the course of the learning process, Rpnl
270
+ t
271
+ becomes dominant and the agent maximises its mark-to-market profits.
272
+ 5
273
+ Experimental Results
274
+ We train all RL policies using the problem setup discussed in section 4.2 on 5.5 months of Apple (AAPL) limit order
275
+ book data (2012-01-01 to 2012-05-16) and evaluate performance on 1.5 months of out-of-sample data (2012-05-17 to
276
+ 2012-06-31). We only use the first hour of every trading day (09:30 to 10:30) as the opening hour exhibits higher than
277
+ average trading volume and price moves. Each hour of the data corresponds to a single RL episode.
278
+ Our neural network architecture consists of 3 feed-forward layers, followed by an LSTM layer, for both the value- and
279
+ advantage stream of the duelling architecture. The LSTM layer allows the agent to efficiently learn a memory-based
280
+ policy with observations including 100 LOB states.
281
+ We compare the resulting learned RL policies to a baseline trading algorithm, which receives the same artificially
282
+ perturbed high-frequency signal of future mid-prices. The baseline policy trades aggressively by crossing the spread
283
+ whenever the signal indicates a directional price move up or down until the inventory constraint is reached. The signal
284
+ direction in the baseline algorithm is determined as the prediction class with the highest score (down, neutral, or up).
285
+ When the signal changes from up or down to neutral, indicating no immediate expected price move, the baseline strategy
286
+ places a passive order to slowly reduce position size until the inventory is cleared. This heuristic utilises the same action
287
+ space as the RL agent and yielded better performance than trading using only passive orders (placed at the near touch),
288
+ or only aggressive orders (at the far touch).
289
+ Figure 1 plots a 17 second simulation window from the test period, comparing the simulated baseline strategy with
290
+ the RL strategy. It can be seen that prices in the LOB are affected by the trading activity as both strategies inject new
291
+ order flow into the market, in addition to the historical orders, thereby consuming or adding liquidity at the best bid and
292
+ ask. During the plotted period, the baseline strategy incurs small losses due to the signal switching between predicting
293
+ decreasing and increasing future prices. This causes the baseline strategy to trade aggressively, paying the spread with
294
+ every trade. The RL strategy, on the other hand, navigates this difficult period better by trading more passively out of its
295
+ long position, and again when building up a new position. Especially in the second half of the depicted time period, the
296
+ RL strategy adds a large number of passive buy orders (green circles in the second panel of figure 1). This is shown
297
+ by the green straight lines, which connect the orders to their execution or cancellation, some of which occur after the
298
+ depicted period.
299
+ 5.1
300
+ Oracle Signal
301
+ The RL agent receives a noisy oracle signal of the mean return h = 10 seconds into the future (see equation 4.1). It
302
+ chooses an action every 0.1s, allowing a sufficiently quick build-up of long or short positions using repeated limit
303
+ orders of single stocks. The algorithm is constrained to keep the stock inventory within bounds of [posmin, posmax] =
304
+ [−10, 10]. To change the amount of noise in the signal, we vary the aH parameter of the Dirichlet distribution, keeping
305
+ aL = 1 constant in all cases. To keep the notation simple, we hence drop the H superscript and refer to the variable
306
+ Dirichlet parameter aH simply as a. We consider three different noise levels, parametrising the Dirichlet distribution
307
+ with a = 1.6 (low noise), a = 1.3 (mid noise), and a = 1.1 (high noise). A fixed return classification threshold
308
+ k = 4 · 10−5 was chosen to achieve good performance of the baseline algorithm, placing around 85% of observations
309
+ in the up or down category. The signal process persistence parameter is set to φ = 0.9.
310
+ 5
311
+
312
+ A PREPRINT - JANUARY 23, 2023
313
+ Figure 1: A short snapshot of simulation results (AAPL on 2012-06-14), comparing the RL policy (second panel) with
314
+ the baseline (first panel). The first two panels plot the best bid, ask, and mid-price, overlaying trading events of buy
315
+ orders (green) and sell orders (red). Circles mark new unmarketable limit orders entering the book. Crosses mark order
316
+ executions (trades) and triangles order cancellations. Open orders are connected by lines to either cancellations or
317
+ trades. Since we are simulating the entire LOB, trading activity can be seen to affect bid and ask prices. The third panel
318
+ plots the evolution of the inventory position of both strategies, and the last panel the trading profits over the period in
319
+ USD.
320
+ Out-of-sample trading performance is visualised by the account curves in figure 2. The curves show the evolution of
321
+ the portfolio value for a chronological evaluation of all test episodes. Every account curve shows the mean episodic
322
+ log-return µ and corresponding Sharpe ratio S next to it. We show that all RL-derived policies are able to outperform
323
+ their respective baseline strategies for the three noise levels investigated. Over the 31 test episodes, the cumulative RL
324
+ algorithm out-performance over the baseline strategy ranges between 14.8 (a = 1.3) and 32.2 (a = 1.1) percentage
325
+ points (and 20.7 for a = 1.6). In the case of the signal with the lowest signal-to-noise ratio (a=1.1), for which the
326
+ baseline strategy incurs a loss for the test period, the RL agent has learned a trading strategy with an approximately
327
+ zero mean return. Temporarily, the strategy even produces positive gains. Overall, it produces a sufficiently strong
328
+ performance to not lose money while still trading actively and incurring transaction costs. Compared to a buy-and-hold
329
+ strategy over the same time period, the noisy RL strategy similarly produces temporary out-performance, with both
330
+ account curves ending up flat with a return around zero. Inspecting Sharpe ratios, we find that using RL to optimise the
331
+ trading strategy is able to increase Sharpe ratios significantly. The increase in returns of the RL strategies is hence not
332
+ simply explained by taking on more market risk.
333
+ Figure 3a compares the mean return between the buy & hold, baseline, and RL policies for all out-of-sample episodes
334
+ across the three noise levels. A single dashed grey line connects the return for a single test episode across the three
335
+ trading strategies: buy & hold, baseline, and the RL policy. The solid blue lines representing the mean return across all
336
+ episodes. Error bars represent the 95% bootstrapped confidence intervals for the means. Testing for the significance of
337
+ the differences between RL and baseline returns across all episodes (t-test) is statistically significant (p ≪ 0.1) for all
338
+ noise levels. Differences in Sharpe ratios are similarly significant. We can thus conclude that the high frequency trading
339
+ strategies learned by RL outperform our baseline strategy for all levels of noise we have considered.
340
+ 6
341
+
342
+ bid
343
+ trade
344
+ order
345
+ ask
346
+ - mid
347
+ order
348
+ V
349
+ canc.
350
+ X
351
+ canc.
352
+ trade
353
+ O
354
+ O
355
+ V
356
+ baseline
357
+ 570.8
358
+ Pric
359
+ 570.4
360
+ RL
361
+ 570.8
362
+ Pric
363
+ 570.4
364
+ Position
365
+ 10
366
+ 0
367
+ baseline
368
+ -10
369
+ RL
370
+ Profit
371
+ 0
372
+ -10
373
+ 09:54:35
374
+ 09:54:40
375
+ 09:54:45
376
+ 09:54:50A PREPRINT - JANUARY 23, 2023
377
+ Figure 2: Account curves, trading the noisy oracle signal in the test set, comparing the learned RL policies (solid lines)
378
+ with the baseline trading strategy (dashed). The black line shows the performance of the buy & hold strategy over the
379
+ same period. Different colours correspond to different signal noise levels. The RL policy is able to improve the trading
380
+ performance across all signal noise levels.
381
+ (a) Episodic mean strategy return of buy & hold, baseline, and
382
+ RL strategies for high (a = 1.1), mid (a = 1.3), and low noise
383
+ (a = 1.6) in 31 evaluation episodes. The grey dashed lines con-
384
+ nect mean log-returns across strategies for all individual episodes.
385
+ The blue line connects the mean of all episodes with 95% boot-
386
+ strapped confidence intervals.
387
+ (b) Turnover per episode: comparison between baseline and RL
388
+ strategy. Lower noise results in a more persistent signal, decreas-
389
+ ing baseline turnover, but a higher quality signal, resulting in the
390
+ RL policy to increase trading activity and turnover.
391
+ Figure 3: Mean return and turnover of the baseline and RL trading strategies.
392
+ It is also informative to compare the amount of trading activity between the baseline and RL strategies (see figure
393
+ 3b). The baseline turnover decreases with an increasing signal-to-noise ratio (higher a), as the signal remains more
394
+ stable over time, resulting in fewer trades. In contrast, the turnover of the RL trading agent increases with a higher
395
+ signal-to-noise ratio, suggesting that the agent learns to trust the signal more and reflecting that higher transaction
396
+ costs, resulting from the higher trading activity, can be sustained, given a higher quality signal. In the high noise
397
+ case (a = 1.1), the RL agent learns to reduce trading activity relative to the other RL strategies, thereby essentially
398
+ filtering the signal. The turnover is high in all cases due to the high frequency of the signal and the fact that we are only
399
+ trading a small inventory. Nonetheless, performance is calculated net of spread-based transaction costs as our simulator
400
+ adequately accounts for the execution of individual orders.
401
+ Table 1 lists action statistics for all RL policies, including how often actions are skipped, and the price levels at which
402
+ limit orders are placed, grouped by buy and sell orders. With the least informative signal, the strategy almost exclusively
403
+ uses marketable limit orders, with buy orders being placed at the bid and sell orders at the ask price. With better signals
404
+ being available (a = 1.3 and a = 1.6), buy orders are more often placed at the mid-quote price, thereby trading less
405
+ aggressively and saving on transaction costs. Overall, the strategies trained on different signals all place the majority of
406
+ sell orders at the best bid price, with the amount of skipped actions varying considerably across the signals.
407
+ 7
408
+
409
+ (μ=0.25, S=19.30)
410
+ 1.2
411
+ RL (a=1.1)
412
+ baseline (a=l.1)
413
+ (μ=0.21, S=14.69)
414
+ 1.0
415
+ RL (a=1.3)
416
+ baseline (a=1.3)
417
+ 0.8
418
+ RL (a=1.6)
419
+ (μ=0.14, S=11.28)
420
+ baseline (a=1.6)
421
+ Return
422
+ 0.6
423
+ -(μ=0.11, S=7.34)
424
+ Buy & Hold
425
+ 0.4
426
+ 0.2
427
+ S=-%724)
428
+ 0.0
429
+ =%.%0.
430
+ -0.2
431
+ (μ=-0.07, S=-5.68)
432
+ T
433
+ T
434
+ T
435
+ T
436
+ 0
437
+ 5
438
+ 10
439
+ 15
440
+ 20
441
+ 25
442
+ 30
443
+ 35
444
+ Hours Tradinga=1.1
445
+ a=1.3
446
+ a=1.6
447
+ 0.4-
448
+ Return
449
+ 0.2
450
+ 0.0
451
+ -0.2
452
+ buy & hold
453
+ buy & hold
454
+ buy & hold
455
+ baselin
456
+ baseline
457
+ baselinea=1.1
458
+ a=1.3
459
+ a=1.6
460
+ 800
461
+ Turnover
462
+ 600
463
+ 400
464
+ 200
465
+ T
466
+ baseline
467
+ RL
468
+ baseline
469
+ RL
470
+ baseline
471
+ RLA PREPRINT - JANUARY 23, 2023
472
+ a=1.1
473
+ a=1.3
474
+ a=1.6
475
+ action skipped [%]
476
+ 24.5
477
+ 43.8
478
+ 7.8
479
+ sell levels (bid, mid, ask) [%]
480
+ (95.4, 3.1, 1.5)
481
+ (94.6, 2.8, 2.65)
482
+ (97.2, 1.9, 0.9)
483
+ buy levels (bid, mid, ask) [%]
484
+ (1.1, 1.3, 97.5)
485
+ (1.6, 52.9, 45.5)
486
+ (1.7, 13.0, 85.3)
487
+ Table 1: Actions taken by RL policy for the three different noise levels: the first row shows how often the policy
488
+ chooses the “skip” action. Not choosing this action does however not necessarily result in an order being placed, e.g. if
489
+ inventory constraints are binding. The last two rows show the relative proportion of limit order placement levels for sell
490
+ orders, and buy orders, respectively.
491
+ 6
492
+ Conclusions
493
+ Using Deep Double Duelling Q-learning with asynchronous experience replay, a state-of-the-art off-policy reinforcement
494
+ learning algorithm, we train a limit order trading strategy in an environment using historic market-by-order (MBO)
495
+ exchange message data. For this purpose we develop an RL environment based on the ABIDES [7] market simulator,
496
+ which reconstructs order book states dynamically from MBO data. Observing an artificial high-frequency signal of
497
+ the mean return over the following 10 seconds, the RL policy successfully transforms a directional signal into a limit
498
+ order trading strategy. The policies acquired by RL outperform our baseline trading algorithm, which places marketable
499
+ limit orders to trade into positions and passive limit orders to exit positions, both in terms of mean return and Sharpe
500
+ ratio. We investigate the effect of different levels of noise in the alpha signal on the RL performance. Unsurprisingly,
501
+ more accurate signals lead to higher trading returns but we also find that RL provides a similar added benefit to trading
502
+ performance across all noise levels investigated.
503
+ The task of converting high-frequency forecasts into tradeable and profitable strategies is difficult to solve as transaction
504
+ costs, due to high portfolio turnover, can have a prohibitively large impact on the bottom line profits. We suggest that
505
+ RL can be a useful tool to perform this translational role and learn optimal strategies for a specific signal and market
506
+ combination. We have shown that tailoring strategies in this way can significantly improve performance, and eliminates
507
+ the need for manually fine-tuning execution strategies for different markets and signals. For practical applications,
508
+ multiple different signals could even be combined into a single observation space. That way the problem of integrating
509
+ different forecasts into a single coherent trading strategy could be directly integrated into the RL problem.
510
+ While we here show an interesting use-case of RL in limit order book markets, we also want to motivate the need for
511
+ further research in this area. There are many years of high-frequency market data available, which ought to be utilised
512
+ to make further progress in LOB-based tasks and improve RL in noisy environments. This, together with the newest
513
+ type of neural network architectures, such as attention-based transformers [29, 30], enables learning tasks in LOB
514
+ environments directly from raw data with even better performance. For the task we have considered in this paper, future
515
+ research could enlarge the action space, allowing for placement of limit orders deeper into the book and larger orders
516
+ sizes. Allowing for larger sizes however would require a realistic model of market impact, considering the reaction of
517
+ other market participants.
518
+ 8
519
+
520
+ A PREPRINT - JANUARY 23, 2023
521
+ References
522
+ [1] Zihao Zhang, Stefan Zohren, and Stephen Roberts. DeepLOB: Deep convolutional neural networks for limit order
523
+ books. IEEE Transactions on Signal Processing, 67(11):3001–3012, 2019.
524
+ [2] Zihao Zhang and Stefan Zohren. Multi-horizon forecasting for limit order books: Novel deep learning approaches
525
+ and hardware acceleration using intelligent processing units. arXiv preprint arXiv:2105.10430, 2021.
526
+ [3] Petter N Kolm, Jeremy Turiel, and Nicholas Westray. Deep order flow imbalance: Extracting alpha at multiple
527
+ horizons from the limit order book. Available at SSRN 3900141, 2021.
528
+ [4] Zihao Zhang, Bryan Lim, and Stefan Zohren. Deep learning for market by order data. Applied Mathematical
529
+ Finance, 28(1):79–95, 2021.
530
+ [5] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and David
531
+ Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018.
532
+ [6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
533
+ Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.
534
+ [7] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market simulation for
535
+ AI research. Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
536
+ pages 11–22, 2020.
537
+ [8] Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso. ABIDES-
538
+ gym: gym environments for multi-agent discrete event simulation and application to financial markets. In
539
+ Proceedings of the Second ACM International Conference on AI in Finance, pages 1–9. ACM, 2021.
540
+ [9] Ruihong Huang and Tomas Polak. Lobster: Limit order book reconstruction system. Available at SSRN 1977207,
541
+ 2011.
542
+ [10] Peer Nagy, James Powrie, and Stefan Zohren. Machine learning for microstructure data-driven execution
543
+ algorithms. In The Handbook on AI and Big Data Applications in Investments. CFA Institute Research Foundation,
544
+ forthcoming 2023.
545
+ [11] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade execution. In
546
+ Proceedings of the 23rd international conference on Machine learning, pages 673–680, 2006.
547
+ [12] Brian Ning, Franco Ho Ting Lin, and Sebastian Jaimungal. Double deep Q-learning for optimal execution. Applied
548
+ Mathematical Finance, 28(4):361–380, 2021.
549
+ [13] Kevin Dabérius, Elvin Granat, and Patrik Karlsson. Deep execution-value and policy based reinforcement learning
550
+ for trading and beating market benchmarks. Available at SSRN 3374766, 2019.
551
+ [14] Michäel Karpe, Jin Fang, Zhongyao Ma, and Chen Wang. Multi-agent reinforcement learning in a realistic limit
552
+ order book market simulation. In Proceedings of the First ACM International Conference on AI in Finance. ACM,
553
+ 2020.
554
+ [15] Matthias Schnaubelt. Deep reinforcement learning for the optimal placement of cryptocurrency limit orders.
555
+ European Journal of Operational Research, 296(3):993–1006, 2022.
556
+ [16] Jacob D Abernethy and Satyen Kale. Adaptive market making via online learning. In Advances in Neural
557
+ Information Processing Systems, volume 26, 2013.
558
+ [17] Pankaj Kumar. Deep reinforcement learning for market making. In Proceedings of the 19th International
559
+ Conference on Autonomous Agents and MultiAgent Systems, pages 1892–1894, 2020.
560
+ [18] Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha Dasgupta. Model-based deep reinforce-
561
+ ment learning for dynamic portfolio optimization. arXiv preprint arXiv:1901.08740, 2019.
562
+ [19] Michael Kearns and Yuriy Nevmyvaka. Machine learning for market microstructure and high frequency trading.
563
+ High Frequency Trading: New Realities for Traders, Markets, and Regulators, 2013.
564
+ [20] Haoran Wei, Yuanbo Wang, Lidia Mangu, and Keith Decker. Model-based reinforcement learning for predictions
565
+ and control for limit order books. arXiv preprint arXiv:1910.03743, 2019.
566
+ [21] Antonio Briola, Jeremy Turiel, Riccardo Marcaccioli, and Tomaso Aste. Deep reinforcement learning for active
567
+ high frequency trading. arXiv preprint arXiv:2101.07107, 2021.
568
+ [22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
569
+ algorithms. arXiv preprint arXiv:1707.06347, 2017.
570
+ [23] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn, and Sam D Howison. Limit
571
+ order books. Quantitative Finance, 13(11):1709–1742, 2013.
572
+ 9
573
+
574
+ A PREPRINT - JANUARY 23, 2023
575
+ [24] Richard Bellman. A Markovian decision process. Journal of mathematics and mechanics, pages 679–684, 1957.
576
+ [25] Martin L Puterman. Markov decision processes. Handbooks in operations research and management science,
577
+ 2:331–434, 1990.
578
+ [26] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning. In
579
+ Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.
580
+ [27] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas. Dueling
581
+ network architectures for deep reinforcement learning. In International Conference on Machine Learning, pages
582
+ 1995–2003. PMLR, 2016.
583
+ [28] Hado Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 23, 2010.
584
+ [29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
585
+ Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.
586
+ [30] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers.
587
+ arXiv preprint arXiv:1904.10509, 2019.
588
+ [31] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez, Michael
589
+ Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning. In International Conference on
590
+ Machine Learning, pages 3053–3062. PMLR, 2018.
591
+ 7
592
+ Appendix
593
+ We use the RLlib library [31] for a reference implementation of the APEX algorithm. Table 2 shows a selection of
594
+ relevant parameters we used for RL training.
595
+ Paramter
596
+ Value
597
+ timesteps_total
598
+ 300e6
599
+ framework
600
+ torch
601
+ num_gpus
602
+ 1
603
+ num_workers
604
+ 42
605
+ batch_mode
606
+ truncate_episode
607
+ gamma
608
+ .99
609
+ lr_schedule
610
+ [[0,2e-5], [1e6, 5e-6]]
611
+ buffer_size
612
+ 2e6
613
+ learning_starts
614
+ 5000
615
+ train_batch_size
616
+ 50
617
+ rollout_fragment_length
618
+ 50
619
+ target_network_update_freq
620
+ 5000
621
+ n_step
622
+ 3
623
+ prioritized_replay
624
+ False
625
+ Table 2: Selected RL parameters for APEX algorithm using RLlib [31] library for training.
626
+ Figure 4 shows confusion matrices interpreting the oracle signal scores as probabilities over the three classes: down,
627
+ stationary, and up. The predicted class is thus the one with the highest score.
628
+ Figure 4: Confusion matrices of the artificial oracle signal for three noise levels, from low to high noise.
629
+ 10
630
+
631
+ a=1.1
632
+ a=1.3
633
+ a=1.6
634
+ 0.5
635
+ 0.23
636
+ 0.27
637
+ 0.69 0.11
638
+ 0.2
639
+ 0.77
640
+ 0.06 0.17
641
+ down
642
+ True label
643
+ stationary
644
+ 0.350.31
645
+ 0.34
646
+ 0.34 0.340.32
647
+ 0.35 0.360.29
648
+ up 0.29
649
+ 0.24
650
+ 0.48
651
+ 0.21
652
+ 0.11
653
+ 0.68
654
+ 0.2
655
+ 0.0580.74
656
+ down
657
+ stationary
658
+ down
659
+ stationary
660
+ down
661
+ stationary
662
+ dn
663
+ Tabe
M9FAT4oBgHgl3EQfxh78/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf,len=447
2
+ page_content='ASYNCHRONOUS DEEP DOUBLE DUELLING Q-LEARNING FOR TRADING-SIGNAL EXECUTION IN LIMIT ORDER BOOK MARKETS Peer Nagy Oxford-Man Institute of Quantitative Finance University of Oxford peer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
3
+ page_content='nagy@eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
4
+ page_content='ox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
5
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
6
+ page_content='uk Jan-Peter Calliess Oxford-Man Institute of Quantitative Finance University of Oxford Stefan Zohren Oxford-Man Institute of Quantitative Finance University of Oxford January 23, 2023 ABSTRACT We employ deep reinforcement learning (RL) to train an agent to successfully translate a high- frequency trading signal into a trading strategy that places individual limit orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
7
+ page_content=' Based on the ABIDES limit order book simulator, we build a reinforcement learning OpenAI gym environment and utilise it to simulate a realistic trading environment for NASDAQ equities based on historic order book messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
8
+ page_content=' To train a trading agent that learns to maximise its trading return in this environment, we use Deep Duelling Double Q-learning with the APEX (asynchronous prioritised experience replay) architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
9
+ page_content=' The agent observes the current limit order book state, its recent history, and a short-term directional forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
10
+ page_content=' To investigate the performance of RL for adaptive trading independently from a concrete forecasting algorithm, we study the performance of our approach utilising synthetic alpha signals obtained by perturbing forward-looking returns with varying levels of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
11
+ page_content=' Here, we find that the RL agent learns an effective trading strategy for inventory management and order placing that outperforms a heuristic benchmark trading strategy having access to the same signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
12
+ page_content=' Keywords Limit Order Books · Quantitative Finance · Reinforcement Learning · LOBSTER · 1 Introduction Successful quantitative trading strategies often work by generating trading signals, which exhibit a statistically significant correlation with future prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
13
+ page_content=' These signals are then turned into actions, aiming to assume positions in order to gain from future price changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
14
+ page_content=' The higher the signal frequency and strategy turnover, the more critical is the execution component of the strategy, which translates the signal into concrete orders that can be submitted to a market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
15
+ page_content=' Such markets are oftentimes organised as an order ledger represented by a limit order book (LOB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
16
+ page_content=' Limit order book prices have been shown to be predictable over short time periods, predicting a few successive ticks into the future with some accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
17
+ page_content=' This has been done by either utilising the recent history of order book states [1, 2], order-flow data [3], or market-by-order (MBO) data directly as features [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
18
+ page_content=' However, given the short time horizons over which these predictions are performed, and correspondingly small price movements, predictability does not directly translate into trading profits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
19
+ page_content=' Transaction costs, strategy implementation details, and time delays add up to the challenging problem of translating high-frequency forecasts into a trading strategy, which determines when and which orders to send to the exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
20
+ page_content=' Moreover, different predictive signals have to be traded differently to achieve optimal results, depending on the forecast horizon, signal stability, and predictive power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
21
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
22
+ page_content='08688v1 [q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
23
+ page_content='TR] 20 Jan 2023 A PREPRINT - JANUARY 23, 2023 In this paper, we use asynchronous off-policy reinforcement learning (RL), specifically Deep Duelling Double Q- learning with the APEX architecture [5], to learn an optimal trading strategy, given a noisy directional signal of short-term forward mid-quote returns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
24
+ page_content=' For this purpose, we developed an OpenAI gym [6] limit order book environment based on the ABIDES [7] market simulator, similar to [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
25
+ page_content=' We use this simulator to replay NASDAQ price-time priority limit order book markets using message data from the LOBSTER data set [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
26
+ page_content=' We study the case of an artificial or synthetic signal, taking the future price as known and adding varying levels of noise, allowing us to investigate learning performance and to quantify the benefit of an RL-derived trading policy compared to a baseline strategy using the same noisy signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
27
+ page_content=' This is not an unrealistic setup when choosing the correct level of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
28
+ page_content=' Practitioners often have dedicated teams researching and deriving alpha signals, often over many years, while other teams might work on translating those signals into profitable strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
29
+ page_content=' Our aim is to focus on the latter problem which becomes increasingly more difficult as signals become faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
30
+ page_content=' It is thus interesting to see how an RL framework can be used to solve this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
31
+ page_content=' In particular, we show that the RL agent learns superior policies to the baselines, both in terms of strategy return and Sharpe ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
32
+ page_content=' Machine learning methods, such as RL, have become increasingly important to automate trade execution in the financial industry in recent years [10], underlining the practical use of research in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
33
+ page_content=' We make a number of contributions to the existing literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
34
+ page_content=' By defining a novel action and state space in a LOB trading environment, we allow for the placement of limit orders at different prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
35
+ page_content=' This allows the agent to learn a concrete high-frequency trading strategy for a given signal, trading either aggressively by crossing the spread, or conservatively, implicitly trading off execution probability and cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
36
+ page_content=' In addition to the timing and level placement of limit orders, our RL agent also learns to use limit orders of single units of stock to manage its inventory as it holds variably sized long or short positions over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
37
+ page_content=' More broadly, we demonstrate the practical use case of RL to translate predictive signals into limit order trading strategies, which is still usually a hand-crafted component of a trading system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
38
+ page_content=' We thus show that simulating limit order book markets and using RL to further automate the investment process is a promising direction for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
39
+ page_content=' To the best of our knowledge, this is also the first study applying the APEX [5] algorithm to limit order book environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
40
+ page_content=' The remaining paper is structured as follows: Section 2 surveys related literature, section 3 explains the mechanics of limit order book markets and the APEX algorithm, section 4 details the construction of the artificial price signal, section 5 showcases our empirical results, and section 6 concludes our findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
41
+ page_content=' 2 Related Work Reinforcement learning has been applied to learn different tasks in limit order book market environments, such as optimal trade execution [11, 12, 13, 14, 15], market making [16, 17], portfolio optimisation [18] or trading [19, 20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
42
+ page_content=' The objective of optimal trade execution is to minimise the cost of trading a predetermined amount of shares over a given time frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
43
+ page_content=' Trading direction and the number of shares is already pre-defined in the execution problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
44
+ page_content=' Market makers, on the other hand, place limit orders on both sides of the order book and set out to maximise profits from capturing the spread, while minimising the risk of inventory accumulation and adverse selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
45
+ page_content=' We summarise using the term “RL for trading” such tasks which maximise profit from taking directional bets in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
46
+ page_content=' This is a hard problem for RL to solve as the space of potential trading strategies is large, leading to potentially many local optima in the loss landscape, and actionable directional market forecasts are notoriously difficult due to arbitrage in the market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
47
+ page_content=' The work of [19] is an early study of RL for market microstructure tasks, including trade execution and predicting price movements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
48
+ page_content=' While the authors achieve some predictive power of directional price moves, forecasts are determined to be too erroneous for profitable trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
49
+ page_content=' The most similar work to ours is [21] that provides the first end-to-end DRL framework for high-frequency trading, using PPO [22] to trade Intel stock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
50
+ page_content=' To model price impact, [21] use an approximation, moving prices proportionately to the square-root of traded volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
51
+ page_content=' The action space is essentially limited to market orders, so there is no decision made on limit prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
52
+ page_content=' The trained policy is able to produce a profitable trading strategy on the evaluated 20 test days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
53
+ page_content=' However, this is not compared to baseline strategies and the resulting performance is not statistically tested for significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
54
+ page_content=' In contrast, we consider a larger action space, allowing for the placement of limit orders at different prices, thereby potentially lowering transaction costs of the learned HFT strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
55
+ page_content=' For a broader survey of deep RL (DRL) for trading, including portfolio optimisation, model-based and hierarchical RL approaches the reader is referred to [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
56
+ page_content=' 2 A PREPRINT - JANUARY 23, 2023 3 Background 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
57
+ page_content='1 Limit Order Book Data Limit order books (LOBs) are one of the most popular financial market mechanisms used by exchanges around the world [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
58
+ page_content=' Market participants submit limit buy or sell orders, specifying a maximum (minimum) price at which they are willing to buy (sell), and the size of the order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
59
+ page_content=' The exchange’s limit order book then keeps track of unfilled limit orders on the buy side (bids) and the sell side (asks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
60
+ page_content=' If an incoming order is marketable, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
61
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
62
+ page_content=' there are open orders on the opposing side of the order book at acceptable prices, the order is matched immediately, thereby removing liquidity from the book.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
63
+ page_content=' The most popular matching prioritisation scheme is price-time priority.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
64
+ page_content=' Here, limit orders are matched first based on price, starting with the most favourable price for the incoming order, and then based on arrival time, starting with the oldest resting limit order in the book, at each price level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
65
+ page_content=' For a more complete review of limit order book dynamics and pertaining models, we refer the reader to [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
66
+ page_content=' In this paper, we consider equity limit order book data from the NASDAQ exchange [9], which also uses a price-time priority prioritisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
67
+ page_content=' Our market simulator keeps track of the state of the LOB by replaying historical message data, consisting of new incoming limit orders, order cancellations or modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
68
+ page_content=' The RL agent can then inject new messages into the order flow and thereby, change the LOB state from its observed historical state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
69
+ page_content=' Our simulator reconstructs LOB dynamics from message data, so every marketable order takes liquidity from the book and thus has a direct price impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
70
+ page_content=' Beyond that, we make no further assumptions on permanent market impact or reactions of other agents in the market, which we leave to future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
71
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
72
+ page_content='2 Double DQN with Distributed Experience Replay We model the trader’s problem as a Markov Decision Process (MDP) [24, 25], described by the tuple ⟨S, A, T , r, γ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
73
+ page_content=' S denotes a state space, A an action space, T a stochastic transition function, r a reward function and γ a discount factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
74
+ page_content=' Observing the current environment state st ∈ S at time t, the trader takes action at ∈ A, which causes the environment to transition state according to the stochastic transition function T (st+1|st, at).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
75
+ page_content=' After transitioning from st to st+1, the agent receives a reward rt+1 = r(st, at, st+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
76
+ page_content=' We use Deep Double Q-learning [26] with a duelling network architecture [27] to approximate the optimal Q-function Q∗(s, a) = E[rt+1+γ maxa′ Q∗(st+1, a′)|at = a, st = s].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
77
+ page_content=' To speed up the learning process we employ the APEX training architecture [5], which combines asynchronous experience sampling using parallel environments with off-policy learning from experience replay buffers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
78
+ page_content=' Every episode i results in an experience trajectory τi = {st, at}T t=1, many of which are sampled from parallel environment instances and are then stored in the replay buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
79
+ page_content=' The environment sampling is done asynchronously using parallel processes running on CPUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
80
+ page_content=' Experience data from the buffer is then sampled randomly and batched to perform a policy improvement step of the Q-network on the GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
81
+ page_content=' Prioritised sampling from the experience buffer has proven to degrade performance in our noisy problem setting, hence we are sampling uniformly from the buffer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
82
+ page_content='1 After a sufficient number of training steps, the new policy is then copied to every CPU worker to update the behavioural policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
83
+ page_content=' Double Q-learning [28, 26] stabilises the learning process by keeping separate Q-network weights for action selection (main network) and action validation (target network).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
84
+ page_content=' The target network weights are then updated gradually in the direction of the main network’s weight every few iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
85
+ page_content=' The duelling network architecture [27] on the other hand uses two separate network branches (for both main and target Q-networks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
86
+ page_content=' One branch estimates the value function V (s) = maxa Q(s, a), while the other estimates the advantage function A(s, a) = Q(s, a) − V (s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
87
+ page_content=' The benefit of this architecture choice lies therein that the advantage of individual actions in some states might be irrelevant, and the state value, which can be learnt more easily, suffices for an action-value approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
88
+ page_content=' 4 Framework 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
89
+ page_content='1 Artificial Price Signal The artificial directional price signal dt ∈ ∆2 = {x ∈ R3 : x1 + x2 + x3 = 1, xi ≥ 0 for i = 1, 2, 3} the agent receives is modelled as a discrete probability distribution over 3 classes, corresponding to the averaged mid-quote price decreasing, remaining stable, or increasing over a fixed future time horizon of h ∈ N+ seconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
90
+ page_content=' To achieve realistic levels of temporal stability of the signal process, dt is an exponentially weighted average, with persistence coefficient 1In many application domains prioritised sampling, whereby we resample instances more frequently where the model initially performs poorly tends to aide learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
91
+ page_content=' However, in our low signal-to-noise application domain, we noted poor performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
92
+ page_content=' Investigating the matter, we found that prioritised sampling caused more frequent resampling of highly noisy instances where learning was particularly difficult, hence degrading performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
93
+ page_content=' 3 A PREPRINT - JANUARY 23, 2023 φ ∈ (0, 1), of Dirichlet random variables ϵt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
94
+ page_content=' The Dirichlet parameters α depend on the realised smoothed future return rt+h, specifically on whether the return lies within a neighbourhood of size k around zero, or above or below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
95
+ page_content=' Thus we have: dt = φdt−1 + (1 − φ)ϵt ϵt = Dirichlet (α(rt+h)) rt+h = pt+h − pt pt where pt+h = 1 h h � i=1 pt+i (1) and prices pt refer to the mid-quote price at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
96
+ page_content=' The Dirichlet distribution is parametrised, so that, in expectation, the signal dt updates in the direction of future returns, where aH and aL determine the variance of the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
97
+ page_content=' The Dirichlet parameter vector is thus: α(rt+h) = � � � (aH, aL, aL) if rt+h < −k (aL, aH, aL) if − k ≤ rt+h < k (aL, aL, aH) if k ≤ rt+h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
98
+ page_content=' (2) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
99
+ page_content='2 RL Problem Specification At each time step t, the agent receives a new state observation st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
100
+ page_content=' st consists of the time left in the current episode T − t given the episode’s duration of T, the agent’s cash balance Ct, stock inventory Xt, the directional signal dt ∈ ∆2, encoded as probabilities of prices decreasing, remaining approximately constant, or increasing;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
101
+ page_content=' and price and volume quantities for the best bid and ask (level 1), including the agent’s own volume posted at bid and ask: ob,t and oa,t respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
102
+ page_content=' In addition to the most current observable variables at time t, the agent also observes a history of the previous l values, which are updated whenever there is an observed change in the LOB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
103
+ page_content=' Putting all this together, we obtain the following state observation: st = � � � � � T − u Cu Xu (d1 u, d2 u, d3 u)′ (pa,u, va,u, oa,u, pb,u, vb,u, ob,u)′ � � � � � u={t−l,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
104
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
105
+ page_content=',t} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
106
+ page_content=' After receiving the state observation, the agent then chooses an action at.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
107
+ page_content=' It can place a buy or sell limit order of a single share at bid, mid-quote, or ask price;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
108
+ page_content=' or do nothing and advance to the next time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
109
+ page_content=' Actions, which would immediately result in positions outside the allowed inventory constraints [posmin, posmax] are disallowed and do not trigger an order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
110
+ page_content=' Whenever the execution of a resting limit order takes the inventory outside the allowed constraints, a market order in the opposing direction is triggered to reduce the position back to posmin for short positions or posmax for long positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
111
+ page_content=' Hence, we define at ∈ A = ({−1, 1} × {−1, 0, 1}) ∪ {skip} so that in total there are 7 discrete actions available, three levels for both buy and sell orders, and a skip action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
112
+ page_content=' For the six actions besides the “skip” action, the first dimension encodes the trading direction (sell or buy) and the second dimension the price level (bid, mid-price, or ask).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
113
+ page_content=' For example, a = (1, 0) describes the action to place a buy order at the mid price, and a = (−1, 1) a sell order at best ask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
114
+ page_content=' Rewards Rt+1 consist of a convex combination of a profit-and-loss-based reward Rpnl t+1 and a directional reward Rdir t+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
115
+ page_content=' Rpnl t+1 is the log return of the agent’s mark-to-market portfolio value Mt, encompassing cash and the current inventory value, marked at the mid-price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
116
+ page_content=' The benefit of log-returns is that they are additive over time, rather than multiplicative like gross returns, so that, without discounting (γ = 1) the total profit-and-loss return �T s=t+1 Rpnl s = MT − Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
117
+ page_content=' The directional reward term Rdir t+1 incentivizes the agent to hold inventory in the direction of the signal and penalises the agent for inventory positions opposing the signal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
118
+ page_content=' The size of the directional reward can be scaled by the parameter κ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
119
+ page_content=' Rdir t+1 is positive if the positive prediction has a higher score than the negative (dt,3 > dt,1) and the current inventory is positive;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
120
+ page_content=' or if dt,3 < dt,1 and 4 A PREPRINT - JANUARY 23, 2023 Xt < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
121
+ page_content=' Further, if the signal [−1, 0, 1] · dt has an opposite sign than inventory Xt, Rdir t+1 is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
122
+ page_content=' This can be summarised as follows: Mark-to-Market Value Mt = Ct + Xtpm t ∆Mt = ∆Ct + Xt−1∆pm t + ∆xtpm t PnL Reward Rpnl t+1 = ln(Mt) − ln(Mt−1) Directional Reward Rdir t+1 = κ[−1, 0, 1] · dtXt Total Reward rt+1 = wdirRdir t+1 + (1 − wdir)Rpnl t+1 (3) The weight on the directional reward wdir ∈ [0, 1) is reduced every learning step by a factor ψ ∈ (0, 1), wdir ← ψwdir so that initially the agent quickly learns to trade in the signal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
123
+ page_content=' Over the course of the learning process, Rpnl t becomes dominant and the agent maximises its mark-to-market profits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
124
+ page_content=' 5 Experimental Results We train all RL policies using the problem setup discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
125
+ page_content='2 on 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
126
+ page_content='5 months of Apple (AAPL) limit order book data (2012-01-01 to 2012-05-16) and evaluate performance on 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
127
+ page_content='5 months of out-of-sample data (2012-05-17 to 2012-06-31).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
128
+ page_content=' We only use the first hour of every trading day (09:30 to 10:30) as the opening hour exhibits higher than average trading volume and price moves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
129
+ page_content=' Each hour of the data corresponds to a single RL episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
130
+ page_content=' Our neural network architecture consists of 3 feed-forward layers, followed by an LSTM layer, for both the value- and advantage stream of the duelling architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
131
+ page_content=' The LSTM layer allows the agent to efficiently learn a memory-based policy with observations including 100 LOB states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
132
+ page_content=' We compare the resulting learned RL policies to a baseline trading algorithm, which receives the same artificially perturbed high-frequency signal of future mid-prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
133
+ page_content=' The baseline policy trades aggressively by crossing the spread whenever the signal indicates a directional price move up or down until the inventory constraint is reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
134
+ page_content=' The signal direction in the baseline algorithm is determined as the prediction class with the highest score (down, neutral, or up).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
135
+ page_content=' When the signal changes from up or down to neutral, indicating no immediate expected price move, the baseline strategy places a passive order to slowly reduce position size until the inventory is cleared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
136
+ page_content=' This heuristic utilises the same action space as the RL agent and yielded better performance than trading using only passive orders (placed at the near touch), or only aggressive orders (at the far touch).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
137
+ page_content=' Figure 1 plots a 17 second simulation window from the test period, comparing the simulated baseline strategy with the RL strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
138
+ page_content=' It can be seen that prices in the LOB are affected by the trading activity as both strategies inject new order flow into the market, in addition to the historical orders, thereby consuming or adding liquidity at the best bid and ask.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
139
+ page_content=' During the plotted period, the baseline strategy incurs small losses due to the signal switching between predicting decreasing and increasing future prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
140
+ page_content=' This causes the baseline strategy to trade aggressively, paying the spread with every trade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
141
+ page_content=' The RL strategy, on the other hand, navigates this difficult period better by trading more passively out of its long position, and again when building up a new position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
142
+ page_content=' Especially in the second half of the depicted time period, the RL strategy adds a large number of passive buy orders (green circles in the second panel of figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
143
+ page_content=' This is shown by the green straight lines, which connect the orders to their execution or cancellation, some of which occur after the depicted period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
144
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
145
+ page_content='1 Oracle Signal The RL agent receives a noisy oracle signal of the mean return h = 10 seconds into the future (see equation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
146
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
147
+ page_content=' It chooses an action every 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
148
+ page_content='1s, allowing a sufficiently quick build-up of long or short positions using repeated limit orders of single stocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
149
+ page_content=' The algorithm is constrained to keep the stock inventory within bounds of [posmin, posmax] = [−10, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
150
+ page_content=' To change the amount of noise in the signal, we vary the aH parameter of the Dirichlet distribution, keeping aL = 1 constant in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
151
+ page_content=' To keep the notation simple, we hence drop the H superscript and refer to the variable Dirichlet parameter aH simply as a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
152
+ page_content=' We consider three different noise levels, parametrising the Dirichlet distribution with a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
153
+ page_content='6 (low noise), a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
154
+ page_content='3 (mid noise), and a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
155
+ page_content='1 (high noise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
156
+ page_content=' A fixed return classification threshold k = 4 · 10−5 was chosen to achieve good performance of the baseline algorithm, placing around 85% of observations in the up or down category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
157
+ page_content=' The signal process persistence parameter is set to φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
158
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
159
+ page_content=' 5 A PREPRINT - JANUARY 23, 2023 Figure 1: A short snapshot of simulation results (AAPL on 2012-06-14), comparing the RL policy (second panel) with the baseline (first panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
160
+ page_content=' The first two panels plot the best bid, ask, and mid-price, overlaying trading events of buy orders (green) and sell orders (red).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
161
+ page_content=' Circles mark new unmarketable limit orders entering the book.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
162
+ page_content=' Crosses mark order executions (trades) and triangles order cancellations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
163
+ page_content=' Open orders are connected by lines to either cancellations or trades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
164
+ page_content=' Since we are simulating the entire LOB, trading activity can be seen to affect bid and ask prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
165
+ page_content=' The third panel plots the evolution of the inventory position of both strategies, and the last panel the trading profits over the period in USD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
166
+ page_content=' Out-of-sample trading performance is visualised by the account curves in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
167
+ page_content=' The curves show the evolution of the portfolio value for a chronological evaluation of all test episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
168
+ page_content=' Every account curve shows the mean episodic log-return µ and corresponding Sharpe ratio S next to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
169
+ page_content=' We show that all RL-derived policies are able to outperform their respective baseline strategies for the three noise levels investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
170
+ page_content=' Over the 31 test episodes, the cumulative RL algorithm out-performance over the baseline strategy ranges between 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
171
+ page_content='8 (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
172
+ page_content='3) and 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
173
+ page_content='2 (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
174
+ page_content='1) percentage points (and 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
175
+ page_content='7 for a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
176
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
177
+ page_content=' In the case of the signal with the lowest signal-to-noise ratio (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
178
+ page_content='1), for which the baseline strategy incurs a loss for the test period, the RL agent has learned a trading strategy with an approximately zero mean return.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
179
+ page_content=' Temporarily, the strategy even produces positive gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
180
+ page_content=' Overall, it produces a sufficiently strong performance to not lose money while still trading actively and incurring transaction costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
181
+ page_content=' Compared to a buy-and-hold strategy over the same time period, the noisy RL strategy similarly produces temporary out-performance, with both account curves ending up flat with a return around zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
182
+ page_content=' Inspecting Sharpe ratios, we find that using RL to optimise the trading strategy is able to increase Sharpe ratios significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
183
+ page_content=' The increase in returns of the RL strategies is hence not simply explained by taking on more market risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
184
+ page_content=' Figure 3a compares the mean return between the buy & hold, baseline, and RL policies for all out-of-sample episodes across the three noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
185
+ page_content=' A single dashed grey line connects the return for a single test episode across the three trading strategies: buy & hold, baseline, and the RL policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
186
+ page_content=' The solid blue lines representing the mean return across all episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
187
+ page_content=' Error bars represent the 95% bootstrapped confidence intervals for the means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
188
+ page_content=' Testing for the significance of the differences between RL and baseline returns across all episodes (t-test) is statistically significant (p ≪ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
189
+ page_content='1) for all noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
190
+ page_content=' Differences in Sharpe ratios are similarly significant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
191
+ page_content=' We can thus conclude that the high frequency trading strategies learned by RL outperform our baseline strategy for all levels of noise we have considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
192
+ page_content=' 6 bid trade order ask mid order V canc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
193
+ page_content=' X canc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
194
+ page_content=' trade O O V baseline 570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
195
+ page_content='8 Pric 570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
196
+ page_content='4 RL 570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
197
+ page_content='8 Pric 570.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
198
+ page_content='4 Position 10 0 baseline 10 RL Profit 0 10 09:54:35 09:54:40 09:54:45 09:54:50A PREPRINT - JANUARY 23, 2023 Figure 2: Account curves, trading the noisy oracle signal in the test set, comparing the learned RL policies (solid lines) with the baseline trading strategy (dashed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
199
+ page_content=' The black line shows the performance of the buy & hold strategy over the same period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
200
+ page_content=' Different colours correspond to different signal noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
201
+ page_content=' The RL policy is able to improve the trading performance across all signal noise levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
202
+ page_content=' (a) Episodic mean strategy return of buy & hold, baseline, and RL strategies for high (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
203
+ page_content='1), mid (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
204
+ page_content='3), and low noise (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
205
+ page_content='6) in 31 evaluation episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
206
+ page_content=' The grey dashed lines con- nect mean log-returns across strategies for all individual episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
207
+ page_content=' The blue line connects the mean of all episodes with 95% boot- strapped confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
208
+ page_content=' (b) Turnover per episode: comparison between baseline and RL strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
209
+ page_content=' Lower noise results in a more persistent signal, decreas- ing baseline turnover, but a higher quality signal, resulting in the RL policy to increase trading activity and turnover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
210
+ page_content=' Figure 3: Mean return and turnover of the baseline and RL trading strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
211
+ page_content=' It is also informative to compare the amount of trading activity between the baseline and RL strategies (see figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
212
+ page_content=' The baseline turnover decreases with an increasing signal-to-noise ratio (higher a), as the signal remains more stable over time, resulting in fewer trades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
213
+ page_content=' In contrast, the turnover of the RL trading agent increases with a higher signal-to-noise ratio, suggesting that the agent learns to trust the signal more and reflecting that higher transaction costs, resulting from the higher trading activity, can be sustained, given a higher quality signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
214
+ page_content=' In the high noise case (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
215
+ page_content='1), the RL agent learns to reduce trading activity relative to the other RL strategies, thereby essentially filtering the signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
216
+ page_content=' The turnover is high in all cases due to the high frequency of the signal and the fact that we are only trading a small inventory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
217
+ page_content=' Nonetheless, performance is calculated net of spread-based transaction costs as our simulator adequately accounts for the execution of individual orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
218
+ page_content=' Table 1 lists action statistics for all RL policies, including how often actions are skipped, and the price levels at which limit orders are placed, grouped by buy and sell orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
219
+ page_content=' With the least informative signal, the strategy almost exclusively uses marketable limit orders, with buy orders being placed at the bid and sell orders at the ask price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
220
+ page_content=' With better signals being available (a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
221
+ page_content='3 and a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
222
+ page_content='6), buy orders are more often placed at the mid-quote price, thereby trading less aggressively and saving on transaction costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
223
+ page_content=' Overall, the strategies trained on different signals all place the majority of sell orders at the best bid price, with the amount of skipped actions varying considerably across the signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
224
+ page_content=' 7 (μ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
225
+ page_content='25, S=19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
226
+ page_content='30) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
227
+ page_content='2 RL (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
228
+ page_content='1) baseline (a=l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
229
+ page_content='1) (μ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
230
+ page_content='21, S=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
231
+ page_content='69) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
232
+ page_content='0 RL (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
233
+ page_content='3) baseline (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
234
+ page_content='3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
235
+ page_content='8 RL (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
236
+ page_content='6) (μ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
237
+ page_content='14, S=11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
238
+ page_content='28) baseline (a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
239
+ page_content='6) Return 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
240
+ page_content='6 (μ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
241
+ page_content='11, S=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
242
+ page_content='34) Buy & Hold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
243
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
244
+ page_content='2 S=-%724) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
245
+ page_content='0 =%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
246
+ page_content='%0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
247
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
248
+ page_content='2 (μ=-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
249
+ page_content='07, S=-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
250
+ page_content='68) T T T T 0 5 10 15 20 25 30 35 Hours Tradinga=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
251
+ page_content='1 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
252
+ page_content='3 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
253
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
254
+ page_content='4- Return 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
255
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
256
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
257
+ page_content='2 buy & hold buy & hold buy & hold baselin baseline baselinea=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
258
+ page_content='1 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
259
+ page_content='3 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
260
+ page_content='6 800 Turnover 600 400 200 T baseline RL baseline RL baseline RLA PREPRINT - JANUARY 23, 2023 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
261
+ page_content='1 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
262
+ page_content='3 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
263
+ page_content='6 action skipped [%] 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
264
+ page_content='5 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
265
+ page_content='8 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
266
+ page_content='8 sell levels (bid, mid, ask) [%] (95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
267
+ page_content='4, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
268
+ page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
269
+ page_content='5) (94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
270
+ page_content='6, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
271
+ page_content='8, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
272
+ page_content='65) (97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
273
+ page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
274
+ page_content='9, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
275
+ page_content='9) buy levels (bid, mid, ask) [%] (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
276
+ page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
277
+ page_content='3, 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
278
+ page_content='5) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
279
+ page_content='6, 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
280
+ page_content='9, 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
281
+ page_content='5) (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
282
+ page_content='7, 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
283
+ page_content='0, 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
284
+ page_content='3) Table 1: Actions taken by RL policy for the three different noise levels: the first row shows how often the policy chooses the “skip” action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
285
+ page_content=' Not choosing this action does however not necessarily result in an order being placed, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
286
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
287
+ page_content=' if inventory constraints are binding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
288
+ page_content=' The last two rows show the relative proportion of limit order placement levels for sell orders, and buy orders, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
289
+ page_content=' 6 Conclusions Using Deep Double Duelling Q-learning with asynchronous experience replay, a state-of-the-art off-policy reinforcement learning algorithm, we train a limit order trading strategy in an environment using historic market-by-order (MBO) exchange message data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
290
+ page_content=' For this purpose we develop an RL environment based on the ABIDES [7] market simulator, which reconstructs order book states dynamically from MBO data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
291
+ page_content=' Observing an artificial high-frequency signal of the mean return over the following 10 seconds, the RL policy successfully transforms a directional signal into a limit order trading strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
292
+ page_content=' The policies acquired by RL outperform our baseline trading algorithm, which places marketable limit orders to trade into positions and passive limit orders to exit positions, both in terms of mean return and Sharpe ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
293
+ page_content=' We investigate the effect of different levels of noise in the alpha signal on the RL performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
294
+ page_content=' Unsurprisingly, more accurate signals lead to higher trading returns but we also find that RL provides a similar added benefit to trading performance across all noise levels investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
295
+ page_content=' The task of converting high-frequency forecasts into tradeable and profitable strategies is difficult to solve as transaction costs, due to high portfolio turnover, can have a prohibitively large impact on the bottom line profits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
296
+ page_content=' We suggest that RL can be a useful tool to perform this translational role and learn optimal strategies for a specific signal and market combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
297
+ page_content=' We have shown that tailoring strategies in this way can significantly improve performance, and eliminates the need for manually fine-tuning execution strategies for different markets and signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
298
+ page_content=' For practical applications, multiple different signals could even be combined into a single observation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
299
+ page_content=' That way the problem of integrating different forecasts into a single coherent trading strategy could be directly integrated into the RL problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
300
+ page_content=' While we here show an interesting use-case of RL in limit order book markets, we also want to motivate the need for further research in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
301
+ page_content=' There are many years of high-frequency market data available, which ought to be utilised to make further progress in LOB-based tasks and improve RL in noisy environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
302
+ page_content=' This, together with the newest type of neural network architectures, such as attention-based transformers [29, 30], enables learning tasks in LOB environments directly from raw data with even better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
303
+ page_content=' For the task we have considered in this paper, future research could enlarge the action space, allowing for placement of limit orders deeper into the book and larger orders sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
304
+ page_content=' Allowing for larger sizes however would require a realistic model of market impact, considering the reaction of other market participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
305
+ page_content=' 8 A PREPRINT - JANUARY 23, 2023 References [1] Zihao Zhang, Stefan Zohren, and Stephen Roberts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
306
+ page_content=' DeepLOB: Deep convolutional neural networks for limit order books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
307
+ page_content=' IEEE Transactions on Signal Processing, 67(11):3001–3012, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
308
+ page_content=' [2] Zihao Zhang and Stefan Zohren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
309
+ page_content=' Multi-horizon forecasting for limit order books: Novel deep learning approaches and hardware acceleration using intelligent processing units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
310
+ page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
311
+ page_content='10430, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
312
+ page_content=' [3] Petter N Kolm, Jeremy Turiel, and Nicholas Westray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
313
+ page_content=' Deep order flow imbalance: Extracting alpha at multiple horizons from the limit order book.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
314
+ page_content=' Available at SSRN 3900141, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
315
+ page_content=' [4] Zihao Zhang, Bryan Lim, and Stefan Zohren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
316
+ page_content=' Deep learning for market by order data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
317
+ page_content=' Applied Mathematical Finance, 28(1):79–95, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
318
+ page_content=' [5] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and David Silver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
319
+ page_content=' Distributed prioritized experience replay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
320
+ page_content=' arXiv preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
321
+ page_content='00933, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
322
+ page_content=' [6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
323
+ page_content=' Openai gym.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
324
+ page_content=' arXiv preprint arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
325
+ page_content='01540, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
326
+ page_content=' [7] David Byrd, Maria Hybinette, and Tucker Hybinette Balch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
327
+ page_content=' Abides: Towards high-fidelity market simulation for AI research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
328
+ page_content=' Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pages 11–22, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
329
+ page_content=' [8] Selim Amrouni, Aymeric Moulin, Jared Vann, Svitlana Vyetrenko, Tucker Balch, and Manuela Veloso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
330
+ page_content=' ABIDES- gym: gym environments for multi-agent discrete event simulation and application to financial markets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
331
+ page_content=' In Proceedings of the Second ACM International Conference on AI in Finance, pages 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
332
+ page_content=' ACM, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
333
+ page_content=' [9] Ruihong Huang and Tomas Polak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
334
+ page_content=' Lobster: Limit order book reconstruction system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
335
+ page_content=' Available at SSRN 1977207, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
336
+ page_content=' [10] Peer Nagy, James Powrie, and Stefan Zohren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
337
+ page_content=' Machine learning for microstructure data-driven execution algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
338
+ page_content=' In The Handbook on AI and Big Data Applications in Investments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
339
+ page_content=' CFA Institute Research Foundation, forthcoming 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
340
+ page_content=' [11] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
341
+ page_content=' Reinforcement learning for optimized trade execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
342
+ page_content=' In Proceedings of the 23rd international conference on Machine learning, pages 673–680, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
343
+ page_content=' [12] Brian Ning, Franco Ho Ting Lin, and Sebastian Jaimungal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
344
+ page_content=' Double deep Q-learning for optimal execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
345
+ page_content=' Applied Mathematical Finance, 28(4):361–380, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
346
+ page_content=' [13] Kevin Dabérius, Elvin Granat, and Patrik Karlsson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
347
+ page_content=' Deep execution-value and policy based reinforcement learning for trading and beating market benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
348
+ page_content=' Available at SSRN 3374766, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
349
+ page_content=' [14] Michäel Karpe, Jin Fang, Zhongyao Ma, and Chen Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
350
+ page_content=' Multi-agent reinforcement learning in a realistic limit order book market simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
351
+ page_content=' In Proceedings of the First ACM International Conference on AI in Finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
352
+ page_content=' ACM, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
353
+ page_content=' [15] Matthias Schnaubelt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
354
+ page_content=' Deep reinforcement learning for the optimal placement of cryptocurrency limit orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
355
+ page_content=' European Journal of Operational Research, 296(3):993–1006, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
356
+ page_content=' [16] Jacob D Abernethy and Satyen Kale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
357
+ page_content=' Adaptive market making via online learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
358
+ page_content=' In Advances in Neural Information Processing Systems, volume 26, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
359
+ page_content=' [17] Pankaj Kumar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
360
+ page_content=' Deep reinforcement learning for market making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
361
+ page_content=' In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pages 1892–1894, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
362
+ page_content=' [18] Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha Dasgupta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
363
+ page_content=' Model-based deep reinforce- ment learning for dynamic portfolio optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
364
+ page_content=' arXiv preprint arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
365
+ page_content='08740, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
366
+ page_content=' [19] Michael Kearns and Yuriy Nevmyvaka.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
367
+ page_content=' Machine learning for market microstructure and high frequency trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
368
+ page_content=' High Frequency Trading: New Realities for Traders, Markets, and Regulators, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
369
+ page_content=' [20] Haoran Wei, Yuanbo Wang, Lidia Mangu, and Keith Decker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
370
+ page_content=' Model-based reinforcement learning for predictions and control for limit order books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
371
+ page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
372
+ page_content='03743, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
373
+ page_content=' [21] Antonio Briola, Jeremy Turiel, Riccardo Marcaccioli, and Tomaso Aste.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
374
+ page_content=' Deep reinforcement learning for active high frequency trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
375
+ page_content=' arXiv preprint arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
376
+ page_content='07107, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
377
+ page_content=' [22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
378
+ page_content=' Proximal policy optimization algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
379
+ page_content=' arXiv preprint arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
380
+ page_content='06347, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
381
+ page_content=' [23] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn, and Sam D Howison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
382
+ page_content=' Limit order books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
383
+ page_content=' Quantitative Finance, 13(11):1709–1742, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
384
+ page_content=' 9 A PREPRINT - JANUARY 23, 2023 [24] Richard Bellman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
385
+ page_content=' A Markovian decision process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
386
+ page_content=' Journal of mathematics and mechanics, pages 679–684, 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
387
+ page_content=' [25] Martin L Puterman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
388
+ page_content=' Markov decision processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
389
+ page_content=' Handbooks in operations research and management science, 2:331–434, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
390
+ page_content=' [26] Hado Van Hasselt, Arthur Guez, and David Silver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
391
+ page_content=' Deep reinforcement learning with double Q-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
392
+ page_content=' In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
393
+ page_content=' [27] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
394
+ page_content=' Dueling network architectures for deep reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
395
+ page_content=' In International Conference on Machine Learning, pages 1995–2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
396
+ page_content=' PMLR, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
397
+ page_content=' [28] Hado Hasselt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
398
+ page_content=' Double Q-learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
399
+ page_content=' Advances in Neural Information Processing Systems, 23, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
400
+ page_content=' [29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
401
+ page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
402
+ page_content=' Advances in Neural Information Processing Systems, 30, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
403
+ page_content=' [30] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
404
+ page_content=' Generating long sequences with sparse transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
405
+ page_content=' arXiv preprint arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
406
+ page_content='10509, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
407
+ page_content=' [31] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
408
+ page_content=' Rllib: Abstractions for distributed reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
409
+ page_content=' In International Conference on Machine Learning, pages 3053–3062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
410
+ page_content=' PMLR, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
411
+ page_content=' 7 Appendix We use the RLlib library [31] for a reference implementation of the APEX algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
412
+ page_content=' Table 2 shows a selection of relevant parameters we used for RL training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
413
+ page_content=' Paramter Value timesteps_total 300e6 framework torch num_gpus 1 num_workers 42 batch_mode truncate_episode gamma .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
414
+ page_content='99 lr_schedule [[0,2e-5], [1e6, 5e-6]] buffer_size 2e6 learning_starts 5000 train_batch_size 50 rollout_fragment_length 50 target_network_update_freq 5000 n_step 3 prioritized_replay False Table 2: Selected RL parameters for APEX algorithm using RLlib [31] library for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
415
+ page_content=' Figure 4 shows confusion matrices interpreting the oracle signal scores as probabilities over the three classes: down, stationary, and up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
416
+ page_content=' The predicted class is thus the one with the highest score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
417
+ page_content=' Figure 4: Confusion matrices of the artificial oracle signal for three noise levels, from low to high noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
418
+ page_content=' 10 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
419
+ page_content='1 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
420
+ page_content='3 a=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
421
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
422
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
423
+ page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
424
+ page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
425
+ page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
426
+ page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
427
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
428
+ page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
429
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
430
+ page_content='17 down True label stationary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
431
+ page_content='350.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
432
+ page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
433
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
434
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
435
+ page_content='340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
436
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
437
+ page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
438
+ page_content='360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
439
+ page_content='29 up 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
440
+ page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
441
+ page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
442
+ page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
443
+ page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
444
+ page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
445
+ page_content='68 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
446
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
447
+ page_content='0580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
448
+ page_content='74 down stationary down stationary down stationary dn Tabe' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FAT4oBgHgl3EQfxh78/content/2301.08688v1.pdf'}
MtFQT4oBgHgl3EQfVjao/content/tmp_files/2301.13301v1.pdf.txt ADDED
@@ -0,0 +1,2388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ New experimental constraint on the 185W(n, γ)186W cross section
2
+ A. C. Larsen,1, ∗ G. M. Tveten,1, 2, † T. Renstrøm,1, 2 H. Utsunomiya,3, 4 E. Algin,5 T. Ari-izumi,3
3
+ K. O. Ay,6 F. L. Bello Garrote,1 L. Crespo Campo,1 F. Furmyr,1 S. Goriely,7 A. G¨orgen,1
4
+ M. Guttormsen,1 V. W. Ingeberg,1 B. V. Kheswa,8, 9 I. K. B. Kullmann,10 T. Laplace,11 E. Lima,1
5
+ M. Markova,1 J. E. Midtbø,1 S. Miyamoto,12 A. H. Mjøs,1 V. Modamio,1 M. Ozgur,6 F. Pogliano,1
6
+ S. Riemer-Sørensen,13, 14 E. Sahin,1 S. Shen,13 S. Siem,1 A. Spyrou,15, 16, 17 and M. Wiedeking8, 18
7
+ 1Department of Physics, University of Oslo, N-0316 Oslo, Norway
8
+ 2Expert Analytics AS, N-0179 Oslo, Norway
9
+ 3Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan
10
+ 4Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
11
+ 5Department of Metallurgical and Materials Engineering, Pamukkale University, 20160 Denizli, Turkey
12
+ 6Department of Physics, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
13
+ 7Institut d’Astronomie et d’Astrophysique, Universit´e Libre de Bruxelles,
14
+ Campus de la Plaine, CP-226, 1050 Brussels, Belgium
15
+ 8iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
16
+ 9Department of Applied Physics and Engineering Mathematics,
17
+ University of Johannesburg, Johannesburg, 2028, South Africa
18
+ 10Institute d’Astronomie et d’Astrophysique, Universit´e Libre de Bruxelles, Belgium
19
+ 11Department of Nuclear Engineering, University of California, Berkeley, 94720, USA
20
+ 12Laboratory of Advanced Science and Technology for Industry,
21
+ University of Hyogo, 3-1-2 Kouto, Kamigori, Ako-gun, Hyogo 678-1205, Japan
22
+ 13Institute of Theoretical Astrophysics, University of Oslo, N-0316 Oslo, Norway
23
+ 14Department of Mathematics and Cybernetics, SINTEF Digital, N-0314 Oslo, Norway
24
+ 15Physics Department, Michigan State University, East Lansing, Michigan 48824, USA
25
+ 16National Superconducting Cyclotron Laboratory,
26
+ Michigan State University, East Lansing, Michigan 48824, USA
27
+ 17Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements,
28
+ University of Notre Dame, Notre Dame, Indiana 46556, USA
29
+ 18School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
30
+ (Dated: February 1, 2023)
31
+ In this work, we present new data on the 182,183,184W(γ, n) cross sections, utilizing a quasi-
32
+ monochromatic photon beam produced at the NewSUBARU synchrotron radiation facility. Further,
33
+ we have extracted the nuclear level density and γ-ray strength function of 186W from data on
34
+ the 186W(α, α′γ)186W reaction measured at the Oslo Cyclotron Laboratory. Combining previous
35
+ measurements on the 186W(γ, n) cross section with our new 182,183,184W(γ, n) and (α, α′γ)186W
36
+ data sets, we have deduced the 186W γ-ray strength function in the range of 1 < Eγ < 6 MeV and
37
+ 7 < Eγ < 14 MeV.
38
+ Our data are used to extract the level density and γ-ray strength functions needed as input to the
39
+ nuclear-reaction code TALYS, providing an indirect, experimental constraint for the 185W(n, γ)186W
40
+ cross section and reaction rate. Compared to the recommended Maxwellian-averaged cross section
41
+ (MACS) in the KADoNiS-1.0 data base, our results are on average lower for the relevant energy
42
+ range kBT ∈ [5, 100] keV, and we provide a smaller uncertainty for the MACS. The theoretical
43
+ values of Bao et al.
44
+ and the cross section experimentally constrained on photoneutron data of
45
+ Sonnabend et al. are significantly higher than our result. The lower value by Mohr et al. is in very
46
+ good agreement with our deduced MACS. Our new results could have implications for the s-process
47
+ and in particular the predicted s-process production of 186,187Os nuclei.
48
+ I.
49
+ INTRODUCTION
50
+ Neutron-capture reactions are known to be the main
51
+ producers of elements heavier than iron in our Uni-
52
+ verse [1, 2].
53
+ The rapid (r) and the slow (s) neutron-
54
+ capture processes are traditionally believed to account
55
+ for almost 100% of the Solar-system heavy-element abun-
56
+ ∗ a.c.larsen@fys.uio.no
57
+ † gry@xal.no
58
+ dances [3, 4]. The r process takes place in an environment
59
+ with an extremely high neutron density typicallly larger
60
+ than 1024 neutrons/cm3, which produces very neutron-
61
+ rich nuclei within a short time window (≈1s). In contrast,
62
+ the s process is, as the name implies, a slow process;
63
+ the neutron density is comparatively low (∼ 106 − 108
64
+ neutrons/cm3 in asymptotic giant branch stars [5]) and
65
+ it can take from days to thousands of years between each
66
+ neutron-capture reaction.
67
+ Consequently, the s-process
68
+ “path” in the nuclear chart remains close to the valley of
69
+ stability, as the β-decay rates are typically much faster
70
+ than the (n, γ) rates when an unstable nucleus is reached.
71
+ arXiv:2301.13301v1 [nucl-ex] 30 Jan 2023
72
+
73
+ 2
74
+ 108
75
+ 109
76
+ 110
77
+ 111
78
+ 112
79
+ 113
80
+ 114
81
+ 115
82
+ 116
83
+ Neutron number
84
+ 73
85
+ 74
86
+ 75
87
+ 76
88
+ 77
89
+ 78
90
+ Proton number
91
+ W
92
+ 182
93
+ W
94
+ 183
95
+ W
96
+ 184
97
+ W
98
+ 185
99
+ W
100
+ 186
101
+ W
102
+ 187
103
+ Re
104
+ 185
105
+ Re
106
+ 186
107
+ Re
108
+ 187
109
+ Re
110
+ 188
111
+ Os
112
+ 186
113
+ Os
114
+ 187
115
+ Os
116
+ 188
117
+ Os
118
+ 189
119
+ Os
120
+ 190
121
+ Os
122
+ 191
123
+ Os
124
+ 192
125
+ FIG. 1. (Color online) Schematic illustration of the nuclear chart in the W-Re-Os region. The black arrows indicate (n, γ)
126
+ reactions on stable or near-stable isotopes, the blue dashed arrows show the possible (n, γ) branch on the long-lived W, Re and
127
+ Os isotopes, while the pink arrows display the β− decay branch.
128
+ However, this is not true for some particular nuclei
129
+ along the s-process path. At the branch points [6] the
130
+ β-decay rate is comparable to the (n, γ) rate, so that
131
+ there is a non-negligible possibility for the nucleus to ei-
132
+ ther undergo β-decay or capture another neutron. On
133
+ the one hand, such branch points could complicate the
134
+ s-process nucleosynthesis calculation significantly; on the
135
+ other hand, they may provide valuable information about
136
+ the neutron density and/or temperature at the astro-
137
+ physical site for which the s process operates [7–9].
138
+ In this work, we focus on the branch-point nucleus
139
+ 185W, with a laboratory half-life of 75.1(3) days [10].
140
+ This nucleus is of interest for the Re/Os cosmochronol-
141
+ ogy first discussed by Clayton [11]. The main idea behind
142
+ the Re/Os cosmochronology is the following: the mat-
143
+ ter from which the Solar system was formed, contained
144
+ a given amount of 187Re and 187Os. Further, 187Re is
145
+ usually assigned a pure r-process origin, while 187Os is
146
+ produced only in the s process. As 187Re has a very long
147
+ half-life of more than 4·1010 years [12], Clayton suggested
148
+ to use the solar-system amount of 187Re and 187Os as a
149
+ “clock”, which would display the time span for which
150
+ nucleosynthesis events produced various elements up to
151
+ the time of the formation of our Solar system. Provided
152
+ that the 187Os amount stemming from the s process can
153
+ be reliably calculated, the extra amount of 187Os origi-
154
+ nates from the 187Re decay. Thus, at least in principle,
155
+ the abundances of the parent/child pair 187Re/187Os can
156
+ be used as a cosmochronometer, although not without
157
+ complications [13–15]. As discussed in Refs. [7, 14–16],
158
+ the branchings at 185W and 186Re (see Fig. 1) could well
159
+ have a non-negligible impact on this cosmochronometer.
160
+ Moreover, several authors [7–9, 17] have discussed the
161
+ 185W and 186Re branchings as a “neutron dosimeter” for
162
+ the effective s-process neutron density; this application
163
+ again depends on the radiative neutron-capture cross sec-
164
+ tions of 185W and 186Re. No direct measurement of the
165
+ neutron-capture cross section is possible on these target
166
+ nuclei, and only constraints on the electromagnetic de-
167
+ cay of the compound system have been obtained through
168
+ photoneutron experiments at relatively high photon en-
169
+ ergies [8, 9].
170
+ Here
171
+ we
172
+ present
173
+ new
174
+ photoneutron
175
+ data
176
+ on
177
+ 182,183,184W that complete the (γ, n) measurements
178
+ on the W isotopes (Sec. II). Moreover, in Sec. III,
179
+ we present the
180
+ 186W(α, α′γ) data taken at the Oslo
181
+ Cyclotron Laboratory, and the data analysis with the
182
+ resulting level density and γ strength function of 186W.
183
+ Using our new data to constrain the input to the
184
+ nuclear reaction code TALYS-1.9 [18] we estimate the
185
+ 185W(n, γ)186W Maxwellian-averaged cross section and
186
+ reaction rate, and compare to previous measurements
187
+ and evaluations in Sec. IV B. Finally, we give a summary
188
+ and outlook in Sec. V.
189
+ II.
190
+ THE (γ, n) EXPERIMENTS
191
+ A.
192
+ Experimental details
193
+ The photo-neutron measurements on 182,183,184W took
194
+ place at the NewSUBARU synchrotron radiation facil-
195
+ ity.
196
+ Figure 2 shows a schematic illustration of the γ-
197
+ ray beam line and experimental setup. Beams of γ rays
198
+ were produced through laser Compton scattering (LCS)
199
+ of 1064 nm photons in head-on collisions with relativistic
200
+
201
+ 3
202
+ Collision point Collision point
203
+ P1 (Nd laser) P2 (CO2 laser)
204
+ Collimator
205
+ C1
206
+ C2
207
+ Lasers: Nd(w, 2w), CO2
208
+ 8.9 m 7.5 m
209
+ 18.5 m
210
+ GACKO
211
+ g - ray
212
+ Gamma hutch-2
213
+ Gamma
214
+ hutch-1
215
+ FIG. 2. (Color online) A schematic illustration of the experimental set up at NewSUBARU used in the (γ, n) cross-section
216
+ measurements.
217
+ electrons at the most-efficient collision point P1. The γ
218
+ beams were collimated using the Pb collimators C1 and
219
+ C2, each 10 cm long, with 3 mm and 2 mm apertures,
220
+ respectively. The beam profile on target nearly follows
221
+ the geometrical aperture of the collimator C2 with re-
222
+ spect to the collision point P1, thus avoiding any interac-
223
+ tion between beam and other materials than the target.
224
+ Throughout the experiment, the laser was periodically
225
+ on for 80 ms and off for 20 ms, in order to measure
226
+ background neutrons and γ-rays.
227
+ In this experiment,
228
+ the beams produced had an energy resolution ranging
229
+ from 0.6 MeV to 0.9 MeV (full-width at half maximum,
230
+ FWHM).
231
+ The electrons were injected from a linear accelerator
232
+ into the NewSUBARU storage ring with an initial energy
233
+ of 974 MeV, then subsequently decelerated to nominal
234
+ energies ranging from 608 MeV to 849 MeV, providing
235
+ LCS γ-ray beams of energies up to 13 MeV and down to
236
+ the neutron separation energies of the W isotopes (thus
237
+ varied for each individual case).
238
+ The maximum γ-ray
239
+ energy of the beams was increased in steps of 0.25 MeV.
240
+ The electron beam energy has been calibrated with the
241
+ accuracy on the order of 10−5 [19].
242
+ The energy is re-
243
+ produced in every injection of an electron beam from a
244
+ linear accelerator to the storage ring. The reproducibil-
245
+ ity of the electron energy is assured in the deceleration
246
+ down to 0.5 GeV by an automated control of the electron
247
+ beam-optics parameters.
248
+ The energy profiles of the produced γ-ray beams were
249
+ measured with a 3.5in.×4.0in. LaBr3(Ce) (LaBr3) de-
250
+ tector. The measured LaBr3 spectra were reproduced by
251
+ a Geant4 code [20–23] that incorporated the kinematics
252
+ of the LCS process, including the beam emittance and
253
+ the interactions between the LCS beam and the LaBr3
254
+ detector.
255
+ In this way we were routinely able to sim-
256
+ ulate the energy profile of the incoming γ beams with
257
+ the maximum energies accurately determined by the cal-
258
+ ibrated electron beam energy by best reproducing the
259
+ LaBr3 spectra [24, 25].
260
+ The W targets were made from isotopically enriched
261
+ tungsten as metallic powder. The material was pressed
262
+ together and enclosed in an aluminium cylinder with a
263
+ thin cap. The targets had areal densities of 0.7421 g/cm2
264
+ (182W), 0.754 g/cm2 (183W), and 1.7925 g/cm2 (184W).
265
+ Due to the presence of the Al cap, we limited the γ-ray
266
+ beam energy maximum 13 MeV to avoid getting contam-
267
+ inant neutrons from 27Al (Sn=13.056 MeV).
268
+ To measure the emitted neutrons, a high-efficiency
269
+ 4π detector was used, consisting of 20 3He proportional
270
+ counters, arranged in three concentric rings and embed-
271
+ ded in a 36 × 36 × 50 cm3 polyethylene neutron modera-
272
+ tor [26]. The ring ratio technique, originally developed by
273
+ Berman and Fultz [27], was used to determine the aver-
274
+ age energy of the neutrons from the (γ, n) reactions. The
275
+ efficiency of the neutron detector varies with the average
276
+ neutron energy. The efficiency was measured with a cal-
277
+ ibrated 252Cf source with the emission rate of 2.27 · 104
278
+ s−1 with 2.2% uncertainty, and the energy dependence
279
+ was determined by Monte Carlo simulations [28]. The
280
+ efficiency of the neutron detector was simulated using
281
+ isotropically distributed, mono-energetic neutrons. Once
282
+ the neutron detection efficiency for a given beam energy
283
+ has been determined, we were able to deduce the number
284
+ of (γ, n) reactions that took place during each run.
285
+ The LCS γ-ray flux was monitored by a 8in.×12in.
286
+ NaI(Tl) (NaI) detector during neutron measurement runs
287
+ with 100% detection efficiency for the beam energies used
288
+ in this experiment.
289
+ The number of incoming γ rays
290
+ per measurement was determined using the pile-up and
291
+ Poisson-fitting technique described in Refs. [29, 30].
292
+ B.
293
+ Analysis
294
+ The measured photo-neutron cross section for an in-
295
+ coming beam with maximum γ energy Emax is given by
296
+
297
+ 4
298
+ FIG. 3. (Color online) The simulated energy profiles for the
299
+ γ beams used. The distributions (integrated over all Eγ) are
300
+ normalized to unity.
301
+ the convoluted cross section,
302
+ σEmax
303
+ exp
304
+ =
305
+ � Emax
306
+ Sn
307
+ DEmax(Eγ)σ(Eγ)dEγ =
308
+ Nn
309
+ NtNγξϵng .
310
+ (1)
311
+ Here,
312
+ DEmax
313
+ is the normalized energy distribution
314
+ (
315
+ � Emax
316
+ Sn
317
+ DEmaxdEγ = 1) of the γ-ray beam obtained from
318
+ Geant4 simulations. Examples of the simulated γ-beam
319
+ profiles, DEmax, are shown in Fig. 3. Furthermore, σ(Eγ)
320
+ is the true photo-neutron cross section as a function of
321
+ energy. The quantity Nn represents the number of neu-
322
+ trons detected, Nt gives the number of target nuclei per
323
+ unit area, Nγ is the number of γ rays incident on tar-
324
+ get, ϵn represents the neutron detection efficiency, and
325
+ finally ξ = (1 − e−µt)/(µt) gives a correction factor for
326
+ self-attenuation in the target. The factor g represents the
327
+ fraction of the γ flux above Sn.
328
+ We have determined the convoluted cross sections
329
+ σEmax
330
+ exp
331
+ given by Eq. (1) for γ beams with maximum en-
332
+ ergies in the range Sn ≤ Emax ≤ 13 MeV. The convo-
333
+ luted cross sections σEmax
334
+ exp
335
+ are not connected to a specific
336
+ Eγ, and we choose to plot them as a function of Emax.
337
+ The convoluted cross sections of the three W isotopes,
338
+ which are often called monochromatic cross sections, are
339
+ shown in Fig. 4. The error bars in Fig. 4 represent the
340
+ total uncertainty in the quantities comprising Eq. (1),
341
+ and consists of ∼ 3.2% from the efficiency determination
342
+ of the neutron detector, ∼ 1% from the pile-up method
343
+ that gives the number of γ rays, and the statistical un-
344
+ certainty in the number of detected neutrons [30]. The
345
+ statistical uncertainty ranges between ∼ 5.0 % close to
346
+ neutron threshold and 4.4 % for the highest maximum
347
+ γ-ray beam energies. The systematic error is dominated
348
+ by the uncertainty from the pile-up method and from the
349
+ simulated efficiency of the neutron detector. For the to-
350
+ tal uncertainty, we have added these uncorrelated errors
351
+ in quadrature.
352
+ By approximating the integral in Eq. (1) with a sum for
353
+ FIG. 4.
354
+ (Color online) Monochromatic cross sections of
355
+ 182,183,184W. The error bars contain statistical uncertainties
356
+ from the number of detected neutrons, the uncertainty in the
357
+ efficiency of the neutron detector and the uncertainly in the
358
+ pile-up method used to determine the integrated γ-flux on
359
+ target.
360
+ each γ-beam profile, we are able to express the unfolding
361
+ problem as a set of linear equations
362
+ σf = Dσ,
363
+ (2)
364
+ where σf is the cross section folded with the beam pro-
365
+ file D. The indexes i and j of the matrix element Dij
366
+ corresponds to Emax and Eγ, respectively.
367
+ The set of
368
+ equations is given by
369
+
370
+
371
+
372
+
373
+
374
+ σ1
375
+ σ2
376
+ ...
377
+ σN
378
+
379
+
380
+
381
+
382
+
383
+ f
384
+ =
385
+
386
+
387
+
388
+
389
+
390
+ D11
391
+ D12
392
+ · · · · · · D1M
393
+ D21
394
+ D22
395
+ · · · · · · D2M
396
+ ...
397
+ ...
398
+ ...
399
+ ...
400
+ ...
401
+ DN1 DN2 · · · · · · DNM
402
+
403
+
404
+
405
+
406
+
407
+
408
+
409
+
410
+
411
+
412
+
413
+
414
+
415
+ σ1
416
+ σ2
417
+ ...
418
+ ...
419
+ σM
420
+
421
+
422
+
423
+
424
+
425
+
426
+
427
+
428
+ . (3)
429
+ Each row of D corresponds to a Geant4 simulated γ beam
430
+ profile belonging to a specific measurement characterized
431
+ by Emax (see Fig. 3 for a visual representation of some of
432
+ the rows in the response matrix D). It is clear that D is
433
+ highly asymmetrical.
434
+ The number of γ-ray beam energies used to study the
435
+ cross section is much lower than the bin size (10 keV)
436
+ of the simulated beam profiles above Sn. As the system
437
+ of linear equations in Eq. (3) is under-determined, the
438
+ true σ vector cannot be extracted by matrix inversion.
439
+ In order to find σ, we utilize a folding iteration method.
440
+ The main features of this method are as follows [31]:
441
+ 1) As a starting point, we choose for the 0th iteration,
442
+ a constant trial function σ0. This initial vector is
443
+ multiplied with D, and we get the 0th folded vector
444
+ σ0
445
+ f = Dσ0.
446
+ 2) The next trial input function, σ1, can be estab-
447
+ lished by adding the difference of the experimen-
448
+
449
+ 0.025
450
+ 0.02
451
+ Relative intensity
452
+ 0.015
453
+ 0.01
454
+ 0.005
455
+ 6
456
+ 8
457
+ 10
458
+ 12
459
+ 14
460
+ E, [MeV]350
461
+ W-182. before deconvolution
462
+ 300
463
+ W-183. before deconvolution
464
+ 250
465
+ W-184. before deconvolution
466
+ [mb]
467
+ 200
468
+ ouo
469
+ 150
470
+ b
471
+ 100
472
+ 50
473
+ 8
474
+ 10
475
+ 11
476
+ 12
477
+ 13
478
+ 9
479
+ x [MeV]5
480
+ tally measured spectrum, σexp, and the folded spec-
481
+ trum, σ0
482
+ f , to σ0. In order to be able to add the
483
+ folded and the input vector together, we first per-
484
+ form a Piecewise Cubic Hermite Interpolating Poly-
485
+ nomial (pchip) interpolation on the folded vector so
486
+ that the two vectors have equal dimensions. Our
487
+ new input vector is:
488
+ σ1 = σ0 + (σexp − σ0
489
+ f ).
490
+ (4)
491
+ 3) The steps 1) and 2) are iterated i times giving
492
+ σi
493
+ f = Dσi
494
+ (5)
495
+ σi+1 = σi + (σexp − σi
496
+ f)
497
+ (6)
498
+ until convergence is achieved.
499
+ This means that
500
+ σi+1
501
+ f
502
+ ≈ σexp within the statistical errors. In order
503
+ to quantitatively check convergence, we calculate
504
+ the reduced χ2 of σi+1
505
+ f
506
+ and σexp after each iter-
507
+ ation.
508
+ Approximately four iterations are usually
509
+ enough for convergence, which is defined when the
510
+ reduced χ2 value approaches ≈ 1.
511
+ We stopped iterating when the χ2 became lower than
512
+ unity. In principle, the iteration could continue until the
513
+ reduced χ2 approaches zero, but that results in large un-
514
+ realistic fluctuations in σi due to over-fitting to the mea-
515
+ sured points σexp.
516
+ We estimate the total uncertainty in the unfolded cross
517
+ sections by calculating an upper limit of the monochro-
518
+ matic cross sections from Fig. 4 by adding and subtract-
519
+ ing the errors to the measured cross section values. These
520
+ upper and lower limits are then unfolded separately, re-
521
+ sulting in the unfolded cross sections shown in Fig. 5.
522
+ In Fig. 5, the unfolded cross sections for 182,183,184W
523
+ are evaluated at the maximum energies of the incom-
524
+ ing γ beams.
525
+ The error bars represent the statistical
526
+ errors and the systematic error due to the uncertainty in
527
+ the absolute efficiency calibration of the neutron detec-
528
+ tor. The results are compared to data on 182,184W from
529
+ Goryachev et al. [32], and the agreement is overall quite
530
+ reasonable although some local discrepancies can be ob-
531
+ served.
532
+ These discrepancies are sometimes not within
533
+ the given uncertainties, and could be due to unknown
534
+ systematic errors.
535
+ III.
536
+ THE OSLO EXPERIMENT
537
+ A.
538
+ Experimental details
539
+ The 186W(α, α′γ) inelastic-scattering experiment was
540
+ performed at the Oslo Cyclotron Laboratory. A fully-
541
+ ionized 30-MeV α beam was delivered by the MC-35
542
+ Scanditronix cyclotron and directed to the 186W target.
543
+ The radio frequency was set to 23.76 MHz, giving a beam
544
+ burst every 42.09 ns. The experiment was run for about
545
+ FIG. 5. (Color online) Cross sections of 182,183,184W obtained
546
+ after deconvolution. Also shown are cross sections of 182,184W
547
+ from Goryachev et al. [32].
548
+ eight days with typical beam intensities of 1.5 − 2.2 enA.
549
+ The target was mounted on a 24-µm carbon backing, and
550
+ the target thickness was 0.31 mg/cm2 with enrichment
551
+ > 98% in 186W.
552
+ To detect the outgoing charged particles, we used the
553
+ Silicon Ring (SiRi) [33] placed in backward angles with
554
+ respect to the beam direction. SiRi is a ∆E-E telescope
555
+ array consisting of eight 1550-µm thick back (E) detec-
556
+ tors, each of which has a 130-µm thick front (∆E) de-
557
+ tector divided in eight strips. A 10.5-µm thick Al foil
558
+ was placed in front of SiRi to reduce the amount δ elec-
559
+ trons from the target. SiRi covers about 6% of 4π and
560
+ the strips have an angular resolution of about 2◦, where
561
+ the center of the strip is at 126 − 140◦ (in steps of 2◦);
562
+ measured from the center of the front detector (at 133◦),
563
+ the distance of SiRi from the center of the target was 5
564
+ cm.
565
+ The ∆E-E telescopes allow for separating different
566
+ charged-particle species. Figure 6a shows the measured
567
+ protons, deuterons, tritons, and α particles for a strip at
568
+ 130◦. To select the 186W(α, α′) events, a gate was set on
569
+ the “banana” corresponding to the α particles. To cal-
570
+ ibrate the SiRi front and back detectors, we used range
571
+ calculations for our setup with the Qkinz code [34], see
572
+ Fig. 6b.
573
+ The resolution of the α particles was measured to
574
+ be 330–360 keV FWHM for the peak of the elastically-
575
+ scattered α particles. The relatively poor resolution is
576
+ mainly due to a rather elongated beam spot on the tar-
577
+ get (≈ 3–4 mm in diameter in the vertical direction, and
578
+ ≈ 1 mm in the horizontal direction). The master-gate
579
+ signal for the data acquisition system was a logical signal
580
+ of 2µs generated when an E detector gave a signal above
581
+ threshold, which was set to ≈ 200 mV.
582
+ Using the CACTUS array [35], we measured γ rays
583
+ in coincidence with the inelastic scattered α particles.
584
+ In the configuration used for this experiment, CAC-
585
+ TUS consisted of 26 NaI(Tl) crystals of cylindrical shape
586
+
587
+ 500
588
+ T
589
+ W-182, NewSUBARU
590
+ 450
591
+ W-183,NewSUBARU
592
+ 400
593
+ W-184, NewSUBARU
594
+ W-184, Goryachev et al.
595
+ 350
596
+ W-182, Goryachev et al.
597
+ Q
598
+ [qw] (u'l)o
599
+ 300
600
+ 250
601
+ 200
602
+ 150
603
+ 100
604
+ 50
605
+ 0
606
+ 8
607
+ 10
608
+ 6
609
+ 12
610
+ 14
611
+ 16
612
+ E, [MeV]6
613
+ FIG. 6.
614
+ (Color online) (a) Particle-identification spectrum for one of the front strips at 130◦ with its corresponding back
615
+ detector (∆E–E banana plot); (b) a zoom on the α-particle banana with the Qkinz calculations used for calibration (crosses).
616
+ (5in.× 5in.). All crystals were collimated with lead col-
617
+ limators and had 2-mm thick Cu shields in front to at-
618
+ tenuate X-rays. The NaI(Tl) detectors were mounted on
619
+ the spherical CACTUS frame, so that the front end of
620
+ each crystal was positioned 22 cm from the center of the
621
+ target. The efficiency of CACTUS (for 26 NaI(Tl) detec-
622
+ tors) is 14.1(2)% as measured with a 60Co source, and
623
+ with a resolution of ≈ 6.8% FWHM for Eγ = 1.33 MeV.
624
+ Using analog electronics, we obtained a lower threshold
625
+ of about 350 keV for the NaI(Tl) detectors.
626
+ The CACTUS detectors were calibrated in energy by
627
+ gating on the protons in SiRi.
628
+ As the target had a
629
+ significant contamination of carbon (from the backing)
630
+ and oxygen, we used peaks in the proton spectrum from
631
+ the 12C(α, pγ)15N and 16O(α, pγ)19F reactions to further
632
+ identify γ rays for calibration. In particular, we used the
633
+ 5.269-MeV transition from the 5/2+ first-excited level
634
+ in 15N together with the 1.868-MeV transition from the
635
+ 13/2+ level at Ex = 4.648 MeV in 19F. Then we cross-
636
+ checked the obtained calibration with the 1235-keV and
637
+ 2583-keV lines of 19F, in addition to the 511-keV γ ray
638
+ from positron annihilation.
639
+ To obtain α–γ coincident events, we applied a gate
640
+ on the time-to-digital converter (TDC) spectra for
641
+ the prompt peak, and subtracting randomly correlated
642
+ events. The start of the TDCs is given by the master
643
+ gate, and the stop signal is generated from the NaI(Tl)
644
+ detectors (each NaI(Tl) has an individual TDC), with a
645
+ built-in delay from the Mesytec shapers of ≈ 400 ns. The
646
+ range of the TDCs was 1.2 µs. The gate on the prompt
647
+ peak was set to ∆t = 0 ± 20 ns, while the gate for the
648
+ background subtraction was set to ∆t = 135 ± 20 ns.
649
+ Using the reaction kinematics, we determined the ini-
650
+ tial excitation energy of the residual nucleus from the
651
+ deposited energy of the α particles in SiRi. Applying the
652
+ time gates for the γ rays, we obtained excitation-energy
653
+ tagged, background-subtracted γ-ray spectra as shown in
654
+ Fig. 7a.
655
+ The γ-ray spectra needed to be corrected for the CAC-
656
+ TUS detector response. For this purpose, we applied the
657
+ iterative unfolding method of Ref. [36] available in the
658
+ Oslo-method software package [37]. This method takes
659
+ the raw γ-ray spectrum as a starting point for the un-
660
+ folded (“true”) spectrum. This trial spectrum is folded
661
+ with the known detector response, and then compared
662
+ with the raw spectrum. By taking the difference between
663
+ the folded spectrum and the raw spectrum, a new, im-
664
+ proved trial spectrum is made. This process is repeated
665
+ until the folded spectrum is approximately equal to the
666
+ raw spectrum, within the experimental uncertainties. To
667
+ preserve the experimental statistical fluctuations, and
668
+ not introduce artificial, spurious ones, the Compton sub-
669
+ traction method is also applied. This takes advantage of
670
+ the fact that the Compton distribution is very smooth.
671
+ For more details, see Ref. [36]. The unfolded γ-ray spec-
672
+ tra for each Ex bin are shown in Fig. 7b.
673
+ After unfolding, the first-generation γ rays were ex-
674
+ tracted from the data by applying an iterative subtrac-
675
+ tion method [38]. The first-generation γ rays are the ones
676
+ that are emitted first in the decay cascades, and their dis-
677
+ tribution represents the branching ratios for the various
678
+ γ transitions at a given Ex bin. The principle behind
679
+ the subtraction method is as follows. For a given Ex bin,
680
+ say, at Ex = 4 MeV, the unfolded spectrum contains all
681
+ the γ rays from all the possible decay cascades originat-
682
+ ing from the levels populated in that Ex bin. If we now
683
+ consider the Ex bins below Ex = 4 MeV, they will con-
684
+ tain all the same γ rays as the Ex = 4 MeV bin, except
685
+ the first-generation γs at Ex = 4 MeV. This is true if
686
+ the Ex bins have the same decay cascades whether the
687
+ levels in the bin were populated directly through the nu-
688
+ clear reaction, or if they were populated from γ decay of
689
+
690
+ 104
691
+ 103
692
+ 14000
693
+ TTTT
694
+ [ke]
695
+ 9500
696
+ (a) θ = 130°
697
+ (b)
698
+ +
699
+ Qkinz calculations
700
+ detector [
701
+ 12000
702
+ 9000
703
+ 103
704
+
705
+ 10000
706
+ 8500
707
+ deposited in △E
708
+ 102
709
+ 8000
710
+ 8000
711
+ 20
712
+ 102
713
+ 7500
714
+ 11
715
+ 6000
716
+ 7000
717
+ Energy
718
+ 10
719
+ 4000
720
+ 6500
721
+ 10
722
+ 6000
723
+ 2000
724
+ 5500
725
+ 0
726
+ 5000
727
+ 10000
728
+ 15000
729
+ 20000
730
+ 25000
731
+ 10000
732
+ 12000
733
+ 14000
734
+ 16000
735
+ 18000
736
+ 20000
737
+ 22000
738
+ Energy deposited in E detector [keV]
739
+ Energy deposited in E detector [keV]7
740
+ 0
741
+ 1
742
+ 2
743
+ 3
744
+ 4
745
+ 5
746
+ 6
747
+ 7
748
+ 8
749
+ 1
750
+ 2
751
+ 3
752
+ 4
753
+ 5
754
+ 6
755
+ 7
756
+ 8
757
+ [MeV]
758
+ x
759
+ E
760
+ (a)
761
+ 0
762
+ 1
763
+ 2
764
+ 3
765
+ 4
766
+ 5
767
+ 6
768
+ 7
769
+ 8
770
+ [MeV]
771
+ γ
772
+ E
773
+ (b)
774
+ 0
775
+ 1
776
+ 2
777
+ 3
778
+ 4
779
+ 5
780
+ 6
781
+ 7
782
+ 8
783
+ 1
784
+ 10
785
+ 2
786
+ 10
787
+ 1
788
+ 10
789
+ 2
790
+ 10
791
+ (c)
792
+ max
793
+ x
794
+ E
795
+ min
796
+ x
797
+ E
798
+ min
799
+ γ
800
+ E
801
+ FIG. 7. (Color online) Excitation-energy vs. γ-ray energy matrices of 186W. (a) Background-subtracted data; (b) unfolded
802
+ γ-ray spectra; (c) first-generation γ-ray spectra. The lines indicate the limits set for the further analysis.
803
+ above-lying levels. We refer the reader to Ref. [39] for a
804
+ more in-depth discussion on the assumptions behind the
805
+ first-generation method. The first-generation γ spectra
806
+ are displayed in Fig. 7c.
807
+ B.
808
+ Extraction of level density and γ-ray
809
+ transmission coefficient
810
+ We now exploit the fact that the first-generation γ
811
+ spectra represent the (relative) branching ratios for a
812
+ given initial excitation-energy bin, and that we have
813
+ many such branching ratios available for a large Ex re-
814
+ gion. In the spirit of Fermi’s Golden Rule [40, 41], where
815
+ the decay rate is proportional to the level density at the
816
+ final excitation energy and the reduced transition proba-
817
+ bility for decay between a given initial and final level, we
818
+ use the following ansatz [42]:
819
+ P(Eγ, Ex) ∝ ρ(Ex − Eγ) · T (Eγ),
820
+ (7)
821
+ where P(Eγ, Ex) is the matrix of first-generation γ rays
822
+ (Fig. 7c), ρ(Ex − Eγ) is the level density at the excita-
823
+ tion energy where the γ transition “lands” and T (Eγ) is
824
+ the γ-ray transmission coefficient. Note that T (Eγ) is
825
+ only a function of Eγ, which means that the Brink-Axel
826
+ hypothesis [43, 44] is invoked. Brink stated that
827
+ “...we assume that the energy dependence of
828
+ the photo effect is independent of the detailed
829
+ structure of the initial state so that, if it were
830
+ possible to perform the photo effect on an ex-
831
+ cited state, the cross section for absorption
832
+ of a photon of energy E would still have an
833
+ energy dependence given by (15).”
834
+ where “(15)” is referring to the equation describing
835
+ the Giant Dipole Resonance (GDR) with a Lorentzian
836
+ function that only depends on the γ-transition energy.
837
+ Brink’s original formulation (as well as Axel’s application
838
+ of Brink’s hypothesis) concerned only E1 transitions, and
839
+ there is a wealth of recent works in the literature dis-
840
+ cussing the validity and/or violation of the hypothesis;
841
+ see, e.g., Refs. [45–53].
842
+ A necessary condition for the Oslo method is that the
843
+ Brink hypothesis is at least approximately true for the
844
+ specific excitation-energy region used for extracting the
845
+ level density and γ-ray transmission coefficient. We have
846
+ performed tests of this assumption for the application in
847
+ the Oslo method in Ref. [39]. When the Brink hypothesis
848
+ is applicable, we can fit the data of the first-generation γ
849
+ rays to obtain a reliable estimate of the level density and
850
+ the γ-ray transmission coefficient through an iterative
851
+ optimization using a least-squares fit:
852
+ χ2
853
+ red =
854
+ 1
855
+ Nfree
856
+ Emax
857
+ x�
858
+ Ei=Emin
859
+ x
860
+ Ei
861
+
862
+ Eγ=Emin
863
+ γ
864
+ [P(Eγ, Ei) − Pth(Eγ, Ei)]2
865
+ [∆P(Eγ, Ei)]2
866
+ .
867
+ (8)
868
+ Here, P(Eγ, Ei) is the experimental matrix of first-
869
+ generation γ rays where each row is normalized to unity:
870
+ Ei
871
+
872
+ Ei=Emin
873
+ γ
874
+ P(Eγ, Ei) = 1,
875
+ (9)
876
+ and
877
+ ∆P(Eγ, Ei)
878
+ is
879
+ the
880
+ uncertainties
881
+ in
882
+ the
883
+ first-
884
+ generation matrix (including statistical errors and an es-
885
+ timate for systematic uncertainties due to unfolding and
886
+ the first-generation method, see Ref. [42]).
887
+ Moreover,
888
+ Nfree is the number of degrees of freedom and Pth(Eγ, Ei)
889
+ is the approximation for the theoretical first-generation
890
+ matrix [42]:
891
+ Pth(Eγ, Ei) =
892
+ ρ(Ei − Eγ)T (Eγ)
893
+ �Ei
894
+ Eγ=Emin
895
+ γ
896
+ ρ(Ei − Eγ)T (Eγ)
897
+ .
898
+ (10)
899
+
900
+ 8
901
+ 0
902
+ 1
903
+ 2
904
+ 3
905
+ 4
906
+ 5
907
+ 6
908
+ 7
909
+ 0.02
910
+ 0.04
911
+ 0.06
912
+ 0.08
913
+ 0.1
914
+ 0.12
915
+ 0.14
916
+ Probability distribution
917
+ = 4.14 MeV
918
+ x
919
+ E
920
+ (a)
921
+ first-gen. data
922
+
923
+ T
924
+ x
925
+ ρ
926
+
927
+ 0
928
+ 1
929
+ 2
930
+ 3
931
+ 4
932
+ 5
933
+ 6
934
+ 7
935
+ 0.02
936
+ 0.04
937
+ 0.06
938
+ 0.08
939
+ 0.1
940
+ 0.12
941
+ 0.14
942
+ Probability distribution
943
+ = 5.26 MeV
944
+ x
945
+ E
946
+ (d)
947
+ 0
948
+ 1
949
+ 2
950
+ 3
951
+ 4
952
+ 5
953
+ 6
954
+ 7
955
+ = 4.59 MeV
956
+ x
957
+ E
958
+ (b)
959
+ 0
960
+ 1
961
+ 2
962
+ 3
963
+ 4
964
+ 5
965
+ 6
966
+ 7
967
+ [MeV]
968
+ γ
969
+ E
970
+ energy
971
+ γ
972
+ Probability distribution
973
+ = 5.70 MeV
974
+ x
975
+ E
976
+ (e)
977
+ 0
978
+ 1
979
+ 2
980
+ 3
981
+ 4
982
+ 5
983
+ 6
984
+ 7
985
+ = 4.81 MeV
986
+ x
987
+ E
988
+ (c)
989
+ 0
990
+ 1
991
+ 2
992
+ 3
993
+ 4
994
+ 5
995
+ 6
996
+ 7
997
+ = 6.16 MeV
998
+ x
999
+ E
1000
+ (f)
1001
+ FIG. 8. (Color online) Experimental first-generation spectra (black crosses) compared to the predicted ones using the extracted
1002
+ level density and γ-transmission coefficient (blue line) for various excitation-energy bins (224-keV wide).
1003
+ The number of degrees of freedom, Nfree, is given by
1004
+ Nfree = Nch(P) − Nch(ρ) − Nch(T ). For the present data
1005
+ set, we have used Emin
1006
+ γ
1007
+ = 0.90 MeV, Emin
1008
+ x
1009
+ = 4.0 MeV,
1010
+ and Emax
1011
+ x
1012
+ = 7.2 MeV as shown in Fig. 7c. Note that
1013
+ the neutron separation energy Sn of 186W is 7.1920(12)
1014
+ MeV [54], and as we have no way of discriminating
1015
+ against neutrons, the Oslo method is usually limited to a
1016
+ maximum excitation energy (close to) Sn. With bin size
1017
+ of 224 keV, and the limits applied as shown in Fig. 7c,
1018
+ we have the number of pixels in the first-generation ma-
1019
+ trix Nch(P) = 330, while the number of elements in the
1020
+ vectors of ρ and T is Nch(ρ) = Nch(T ) = 39, giving
1021
+ Nfree = 252. It is important to note that the number
1022
+ of data points in the first-generation matrix, Nch(P), is
1023
+ much bigger than the number of points to be estimated,
1024
+ which is 2 × 39 points; this is why the method usually
1025
+ converges very well. When convergence is reached, the
1026
+ extracted ρ(Ex − Eγ) and T (Eγ) are the ones that best
1027
+ describe the experimental P(Eγ, Ei) matrix.
1028
+ For this
1029
+ case, we obtain χ2
1030
+ red = 0.85 after 20 iterations.
1031
+ As a visual illustration of the fit, Fig. 8 shows some of
1032
+ the experimental first-generation spectra together with
1033
+ the spectra obtained for Pth. Overall, the agreement is
1034
+ quite good, although we remark that the experimental
1035
+ errors are rather large. Note that the fit is performed on
1036
+ all the first-generation spectra (for 15 excitation-energy
1037
+ bins), and so the fit is still well constrained.
1038
+ Schiller et al. showed [42] that the χ2 minimization
1039
+ obtains a unique solution for the relative variation of
1040
+ neighboring points in the functions ρ and T ; however,
1041
+ an equally good fit to the experimental P matrix is given
1042
+ by the transformation
1043
+ ˜ρ(Ei − Eγ) = A exp[α(Ei − Eγ)] ρ(Ei − Eγ),
1044
+ (11)
1045
+ ˜T (Eγ) = B exp(αEγ)T (Eγ).
1046
+ (12)
1047
+ Here, α is the common slope adjustment of ρ and T ,
1048
+ while A and B gives the absolute scaling of ρ and T ,
1049
+ respectively. These parameters must be determined from
1050
+ external data, as described in the following sections.
1051
+ C.
1052
+ Normalization of level density
1053
+ To normalize the level density by determining the α
1054
+ and A parameters, we make use of discrete levels [54]
1055
+ at low Ex and data on s-wave neutron resonance spac-
1056
+ ings [55] at the neutron separation energy Sn. The av-
1057
+ erage s-wave neutron resonance spacing D0 = 9.3(16)
1058
+ eV [55] represents the spacing of levels with Jπ = 1−, 2−
1059
+ as the target nucleus 185W has ground-state spin/parity
1060
+
1061
+ t =
1062
+ 3
1063
+ 2
1064
+ −. To obtain the total level density at Sn, we
1065
+ need to apply a model for the spin distribution, in par-
1066
+ ticular the spin cutoff parameter σJ(Ex). Here, we use
1067
+ as a starting point the model of von Egidy and Bu-
1068
+ curescu [56, 57] employing the rigid-body moment of in-
1069
+ ertia.
1070
+ However, as shown by Uhrenholt et al. [58], at
1071
+ excitation energies around 7−8 MeV for heavy nuclei, a
1072
+ full rigid-body moment of inertia might not be reached
1073
+ yet: in Fig. 10 of Ref. [58], the effective moment of inertia
1074
+ is ≈ 85% of the rigid-body moment of inertia at Ex ≈ 8
1075
+ MeV. We take this as the reference value for which we
1076
+ will vary the spin cutoff parameter to obtain an estimate
1077
+ for the systematic uncertainty connected to the spin dis-
1078
+
1079
+ 9
1080
+ tribution, with the effective moment of inertia ranging
1081
+ from 70%−100% of the rigid-body moment of inertia:
1082
+ σ2
1083
+ J(Sn) = η 0.0146A5/3 1 +
1084
+
1085
+ 1 + 4a(Sn − E1)
1086
+ 2a
1087
+ ,
1088
+ (13)
1089
+ where η is the reduction factor set to 0.85(15), A is the
1090
+ mass number of the nucleus (here 186), a is the level-
1091
+ density parameter and E1 is an excitation-energy shift
1092
+ taken from the global systematics of von Egidy and Bu-
1093
+ curescu [56, 57] calculated with the robin.c code in the
1094
+ Oslo-method software package (see Table I). This gives
1095
+ us a range of values for the estimated ρ(Sn), which is
1096
+ then calculated as [39, 42]
1097
+ ρ(Sn) =
1098
+ 2σ2
1099
+ J
1100
+ D0
1101
+
1102
+ (It + 1)e−(It+1)2/2σ2
1103
+ J + Ite−I2
1104
+ t /2σ2
1105
+ J�,
1106
+ (14)
1107
+ assuming an equal parity distribution for all spins at
1108
+ the neutron separation energy. Uncertainties in the D0
1109
+ value and the spin cutoff parameter are propagated (for a
1110
+ derivation, see Appendix A). All the applied parameters
1111
+ are given in Table I.
1112
+ Moreover, due to the argument in the level density
1113
+ function being Ei − Eγ, we get an upper limit for the
1114
+ extracted level density given by Emax
1115
+ x
1116
+ −Emin
1117
+ γ
1118
+ . Therefore,
1119
+ we need to make an extrapolation from our data points
1120
+ up to ρ(Sn). Here, we use the constant-temperature (CT)
1121
+ model of Ericson [59]:
1122
+ ρCT(Ex) = 1
1123
+ T exp Ex − E0
1124
+ T
1125
+ ,
1126
+ (15)
1127
+ where T denotes the nuclear “temperature” and E0 is a
1128
+ shift; both parameters are usually obtained from fits to
1129
+ discrete data and to neutron resonance spacings.
1130
+ The
1131
+ parameters used for 186W are shown in Table I.
1132
+ From the Oslo-method software, statistical uncertain-
1133
+ ties and an estimate of systematic errors due to the un-
1134
+ folding procedure and the first-generation method are
1135
+ calculated as described in Ref. [42].
1136
+ We also include
1137
+ systematic errors from the normalization procedure, ac-
1138
+ counting for the uncertainty in the experimental D0 value
1139
+ as well as the uncertainty in the moment of inertia and
1140
+ thus the spin cutoff parameter as described above. We es-
1141
+ timate the uncertainty (approximately one standard de-
1142
+ viation) including all these factors as
1143
+ δρ = ρrec
1144
+ ��δD0
1145
+ D0
1146
+ �2
1147
+ +
1148
+ �δσJ
1149
+ σJ
1150
+ �2
1151
+ +
1152
+ �∆ρrec
1153
+ ρrec
1154
+ �2
1155
+ ,
1156
+ (16)
1157
+ where ρrec is the central value (“recommended” nor-
1158
+ malization), and ∆ρrec represents statistical uncertain-
1159
+ ties and systematic errors from unfolding and the first-
1160
+ generation method. The resulting normalized level den-
1161
+ sity is shown in Fig. 9.
1162
+ D.
1163
+ Normalization of γ-ray strength
1164
+ Having the normalized level density at hand, we
1165
+ proceed to normalizing the γ-ray transmission coeffi-
1166
+ 0
1167
+ 1
1168
+ 2
1169
+ 3
1170
+ 4
1171
+ 5
1172
+ 6
1173
+ 7
1174
+ [MeV]
1175
+ x
1176
+ E
1177
+ Excitation energy
1178
+ 1
1179
+ 10
1180
+ 2
1181
+ 10
1182
+ 3
1183
+ 10
1184
+ 4
1185
+ 10
1186
+ 5
1187
+ 10
1188
+ 6
1189
+ 10
1190
+ 7
1191
+ 10
1192
+ ]
1193
+ -1
1194
+ ) [MeV
1195
+ x
1196
+ E
1197
+ (
1198
+ ρ
1199
+ Level density
1200
+ W
1201
+ 186
1202
+ Oslo data,
1203
+ stat.+sys.
1204
+ σ
1205
+ 1
1206
+ Known levels
1207
+ CT interpolation
1208
+ )
1209
+ n
1210
+ S
1211
+ (
1212
+ ρ
1213
+ Estimated
1214
+ FIG. 9. (Color online) Normalized level density of 186W. The
1215
+ discrete levels [54] are binned with the same bin size as our
1216
+ data (224 keV/channel). The dashed line shows the CT-model
1217
+ interpolation between our data and ρ(Sn). The black error
1218
+ bars represent statistical uncertainties from the experiment
1219
+ and systematic errors connected to the unfolding procedure
1220
+ and the first-generation method. The blue band includes also
1221
+ systematic errors from the normalization procedure (see text).
1222
+ 0
1223
+ 1
1224
+ 2
1225
+ 3
1226
+ 4
1227
+ 5
1228
+ 6
1229
+ 7
1230
+ 8
1231
+ [MeV]
1232
+ γ
1233
+ E
1234
+ -ray energy
1235
+ γ
1236
+ 10
1237
+ 2
1238
+ 10
1239
+ 3
1240
+ 10
1241
+ 4
1242
+ 10
1243
+ 5
1244
+ 10
1245
+ 6
1246
+ 10
1247
+ Transmission coeff. (arb. units)
1248
+ W Oslo data, this work
1249
+ 186
1250
+
1251
+ low-energy extrapolation
1252
+ high-energy extrapolation
1253
+ FIG. 10. Gamma-ray transmission coefficient of 186W before
1254
+ normalization. The arrows indicate the fit regions used for de-
1255
+ termining the extrapolations (see text). The gray data points
1256
+ are not considered further in the analysis due to very low
1257
+ statistics in the first-generation matrix for these γ energies.
1258
+ cient T (Eγ) by determining the scaling parameter B in
1259
+ Eq. (12). Here we make use of the relation between the
1260
+ average, total radiative width ⟨Γγ0⟩ deduced from s-wave
1261
+ neutron resonances, the level density and the transmis-
1262
+
1263
+ 10
1264
+ TABLE I. Parameters used for the normalization of the level density and γ-ray transmission coefficient. Note that the E0
1265
+ parameter is adjusted to make ρCT(Sn) match with ρ(Sn) = 26.5·105 MeV−1. The uncertainty in ⟨Γγ0⟩ from Mughabghab [55]
1266
+ is given as 5 meV; however, this uncertainty seems too small based on the experimental errors in the radiative width for other
1267
+ W isotopes, and we have chosen a more conservative uncertainty in line with the experimental errors of 182,183,184,186W.
1268
+ Sn
1269
+
1270
+ t
1271
+ D0
1272
+ σ2
1273
+ J(Sn)
1274
+ a
1275
+ E1
1276
+ ρ(Sn)
1277
+ T
1278
+ E0
1279
+ ⟨Γγ0⟩
1280
+ σ2
1281
+ d
1282
+ Ed
1283
+ (MeV)
1284
+ (eV)
1285
+ (MeV−1) (MeV) 105 (MeV−1) (MeV) (MeV) (meV)
1286
+ (MeV)
1287
+ 7.192 3/2− 9.3(16)
1288
+ 47(8)
1289
+ 19.38
1290
+ 0.28
1291
+ 26.5(64)
1292
+ 0.51(1) -0.0077 60+13
1293
+ −9
1294
+ 7.3(13) 0.86(19)
1295
+ sion coefficient [39, 60]:
1296
+ ⟨Γγ0⟩ = BD0
1297
+
1298
+ � Sn
1299
+ Eγ=0
1300
+ dEγT (Eγ)ρ(Sn − Eγ)×
1301
+ 1
1302
+
1303
+ J=−1
1304
+ [g(Sn − Eγ, It − 1/2 + J) + g(Sn − Eγ, It + 1/2 + J)] ,
1305
+ (17)
1306
+ where g is the spin distribution [61, 62]:
1307
+ g(Ex, J) ≃ 2J + 1
1308
+ 2σ2
1309
+ J
1310
+ exp
1311
+
1312
+ −(J + 1/2)2/2σ2
1313
+ J
1314
+
1315
+ .
1316
+ (18)
1317
+ As we need the spin distribution for the excitation-energy
1318
+ range Ex ∈ [0, Sn], we make use of the spin cutoff param-
1319
+ eter in the general form [63]
1320
+ σ2
1321
+ J(Ex) = σ2
1322
+ d + Ex − Ed
1323
+ Sn − Ed
1324
+
1325
+ σ2
1326
+ J(Sn) − σ2
1327
+ d
1328
+
1329
+ ,
1330
+ (19)
1331
+ which is motivated also from microscopic calculations
1332
+ (e.g., shell-model calculations [64] and the work of Uhren-
1333
+ holt et al. [58]). Here, σ2
1334
+ d represents the spin cutoff pa-
1335
+ rameter at the low excitation energy Ed, where the lev-
1336
+ els are still resolved and with firm spin/parity assign-
1337
+ ments [54], see Table I.
1338
+ We need to estimate the γ-ray transmission coefficient
1339
+ for Eγ < Emin
1340
+ γ
1341
+ , i.e., where we do not have experimen-
1342
+ tal data, in order to calculate the integral in Eq. (17).
1343
+ Therefore, we extrapolate with a fit to the low-energy
1344
+ data points using the functional form E3
1345
+ γ exp(p1Eγ +p2),
1346
+ where p1 and p2 are free parameters1.
1347
+ Moreover, the
1348
+ statistics is very low at high γ-ray energies, and so we
1349
+ make use of an extrapolation here as well, here using a
1350
+ simple exponential, exp(p3Eγ + p4), where p3 and p4 are
1351
+ again free parameters. The fit regions and the extrapo-
1352
+ lation functions are shown in Fig. 10. The data points in
1353
+ gray color (Eγ > 6 MeV) are from a region in the first-
1354
+ generation matrix with very low statistics (see Fig. 7c),
1355
+ and we therefore choose to exclude those data points from
1356
+ the further analysis.
1357
+ To obtain the γ-ray strength function, we use the fact
1358
+ that γ decay at high excitation energies is largely domi-
1359
+ nated by dipole transitions (see, e.g., Refs. [67–69]). As
1360
+ 1 This functional form is motivated by shell-model calculations of
1361
+ the low-energy γ strength, e.g. Refs. [65, 66].
1362
+ 0
1363
+ 1
1364
+ 2
1365
+ 3
1366
+ 4
1367
+ 5
1368
+ 6
1369
+ [MeV]
1370
+ γ
1371
+ -ray energy E
1372
+ γ
1373
+ 8
1374
+
1375
+ 10
1376
+ 7
1377
+
1378
+ 10
1379
+ 6
1380
+
1381
+ 10
1382
+ ]
1383
+ -3
1384
+ ) [MeV
1385
+ γ
1386
+ -ray strength function f(E
1387
+ γ
1388
+ W
1389
+ 186
1390
+ Oslo data,
1391
+ stat.+sys.
1392
+ σ
1393
+ 1
1394
+ FIG. 11.
1395
+ (Color online) Gamma-ray strength function of
1396
+ 186W. The black error bars represent statistical uncertain-
1397
+ ties from the experiment and systematic errors connected to
1398
+ the unfolding procedure and the first-generation method. The
1399
+ blue band includes also systematic errors from the normaliza-
1400
+ tion procedure (see text).
1401
+ our experimental data in principle contain transitions of
1402
+ both electric and magnetic character, we get the total
1403
+ dipole strength function f(Eγ) through
1404
+ f(Eγ) = T (Eγ)
1405
+ 2πE3γ
1406
+ .
1407
+ (20)
1408
+ In accordance with the approach for the level density, we
1409
+ estimate the uncertainty in the γ-ray strength function
1410
+ through
1411
+ δf = frec
1412
+ ��δD0
1413
+ D0
1414
+ �2
1415
+ +
1416
+ �δσJ
1417
+ σJ
1418
+ �2
1419
+ +
1420
+ �δΓγ0
1421
+ Γγ0
1422
+ �2
1423
+ +
1424
+ �∆frec
1425
+ frec
1426
+ �2
1427
+ ,
1428
+ (21)
1429
+ where ∆frec is again the central value (“recommended”
1430
+ normalization), and ∆frec represents statistical uncer-
1431
+ tainties and systematic errors from unfolding and the
1432
+ first-generation method. The resulting, normalized γ-ray
1433
+ strength function is shown in Fig. 11.
1434
+
1435
+ 11
1436
+ IV.
1437
+ RESULTS AND DISCUSSION
1438
+ A.
1439
+ Comparison to other data and models
1440
+ The level-density data are compared to various mod-
1441
+ els available in the TALYS-1.9 code [18], see Fig. 12.
1442
+ The models are: ldmodel 1, the composite formula of
1443
+ Gilbert and Cameron [70]; ldmodel 2, the back-shifted
1444
+ Fermi gas model [71]; ldmodel 3, the generalized super-
1445
+ fluid model [72]; ldmodel 4, calculated within the Hartree-
1446
+ Fock-BCS approach [73]; ldmodel 5, the combinatorial-
1447
+ plus-Hartree-Fock-Bogoliubov approach [74];
1448
+ and ld-
1449
+ model 6, the combinatorial model combined with a
1450
+ temperature-dependent Hartree-Fock-Bogoliubov calcu-
1451
+ lation [75].
1452
+ 0
1453
+ 1
1454
+ 2
1455
+ 3
1456
+ 4
1457
+ 5
1458
+ 6
1459
+ 7
1460
+ [MeV]
1461
+ x
1462
+ E
1463
+ Excitation energy
1464
+ 1
1465
+ 10
1466
+ 2
1467
+ 10
1468
+ 3
1469
+ 10
1470
+ 4
1471
+ 10
1472
+ 5
1473
+ 10
1474
+ 6
1475
+ 10
1476
+ 7
1477
+ 10
1478
+ ]
1479
+ -1
1480
+ ) [MeV
1481
+ x
1482
+ E
1483
+ (
1484
+ ρ
1485
+ Level density
1486
+ W
1487
+ 186
1488
+ Oslo data,
1489
+ stat.+sys.
1490
+ σ
1491
+ 1
1492
+ Known levels
1493
+ ldmodel 1
1494
+ ldmodel 2
1495
+ ldmodel 3
1496
+ ldmodel 4
1497
+ ldmodel 5
1498
+ ldmodel 6
1499
+ FIG. 12. (Color online) Comparison of the level-density data
1500
+ from this work with models included in the TALYS code (see
1501
+ text).
1502
+ From a first look, none of the models seem to be in good
1503
+ agreement with the data, and we remark that the TALYS
1504
+ level densities have not been normalized to the D0 value
1505
+ from Ref. [55]. In adition, we take notice of two impor-
1506
+ tant issues: (i) the spin cutoff parameter we have used in
1507
+ our normalization procedure might not be representative
1508
+ of the corresponding spin distribution in the TALYS mod-
1509
+ els; (ii) our data can be re-normalized more coherently
1510
+ for each model by adopting its energy-dependence to ex-
1511
+ trapolate between the highest energy point and ρ(Sn), as
1512
+ was done e.g. in Ref. [76]. Nevertheless, it is clear that
1513
+ the overall shape of our data points are significantly dif-
1514
+ ferent from several of the level-density models. We also
1515
+ remark that the slope of our level-density data points is
1516
+ directly linked to the slope of the γ-strength function as
1517
+ given in Eq. (12). If we were to renormalize our level
1518
+ density to the TALYS models, this would inevitably lead
1519
+ to a change in slope in the γ-strength function as well.
1520
+ We now compare our γ-strength data from the (γ, n)
1521
+ measurements and the OCL experiment to external data
1522
+ found in the literature, as shown in Fig. 13a. We observe
1523
+ a good agreement with the E1 strength extracted from
1524
+ primary γ rays following neutron capture by Kopecky et
1525
+ al [78], which brings further support to the absolute nor-
1526
+ malization procedure.
1527
+ Moreover, we compare our new
1528
+ photoneutron data to several data sets found in the liter-
1529
+ ature, where the photoneutron cross section σγn is con-
1530
+ verted into dipole strength using the relation of Axel [79]:
1531
+ fγn(Eγ) =
1532
+ 1
1533
+ 3π2ℏ2c2
1534
+ σγn(Eγ)
1535
+
1536
+ ,
1537
+ (22)
1538
+ where σγn is in units of mb, Eγ in MeV, and the factor
1539
+ 1/(3π2ℏ2c2) = 8.674 · 10−8 mb−1MeV−2. Overall, there
1540
+ is good agreement between the various data sets for the
1541
+ W isotopes.
1542
+ In Fig. 13a, we also compare the data with avail-
1543
+ able models in TALYS: strength 1, the Generalized
1544
+ Lorentzian [67]; strength 2, the Standard Lorentzian
1545
+ (Brink-Axel model) [43, 44];
1546
+ strength 3, the Quasi-
1547
+ Particle Random Phase Approximation (QRPA) on top
1548
+ of a Hartree-Fock-plus-BCS calculation [80]; strength 4,
1549
+ the QRPA on top of a Hartree-Fock-Bogoliubov (HFB)
1550
+ calculations [81];
1551
+ strength 5, the Hybrid model [82]
1552
+ with parameters from global systematics [18]; strength
1553
+ 6, QRPA as in Ref. [81] but on top of a temperature-
1554
+ dependent HFB calculation [75]; and finally strength 7,
1555
+ a relativistic mean-field calculation plus a continuum
1556
+ QRPA calculation [83].
1557
+ Out of these models, strength
1558
+ 4 and strength 6 match reasonably well the present Oslo
1559
+ data, but not the (γ, n) data. In general, the models are
1560
+ deviating significantly from each other and from either
1561
+ the Oslo data or the (γ, n) data.
1562
+ To obtain a model description that can reproduce our
1563
+ data reasonably well over the entire energy range, we
1564
+ take a pragmatic approach and exploit phenomenologi-
1565
+ cal models for the dipole strength. For the main part
1566
+ of the E1 strength which is dominated by the Giant
1567
+ Dipole Resonance (GDR), we apply the Hybrid model
1568
+ of Goriely [82]:
1569
+ f Hyb
1570
+ E1 (Eγ, Tf) =
1571
+ 1
1572
+ 3π2ℏ2c2
1573
+ EγσrΓrΓ(Eγ, Tf)
1574
+ (E2γ − E2r)2 + E2γΓrΓ(Eγ, Tf),
1575
+ (23)
1576
+ where σr is the peak cross section, Er the centroid, and
1577
+ Γr the width of the GDR. Further, the γ-energy and
1578
+ temperature dependent width Γ(Eγ, Tf) is given by
1579
+ Γ(Eγ, Tf) = 0.7 · Γr
1580
+ E2
1581
+ γ + 4π2T 2
1582
+ f
1583
+ EγEr
1584
+ .
1585
+ (24)
1586
+ The temperature of the final levels, Tf, is here considered
1587
+ as a constant, in line with the Brink-Axel hypothesis. We
1588
+ also include extra E1 strength (labeled “E1 pygmy” in
1589
+ Fig. 13b) to make a smooth connection between our data
1590
+ and the (γ, n) data.
1591
+ Finally, we also add a magnetic-
1592
+ dipole component (marked “M1 spin-flip” in Fig. 13b).
1593
+
1594
+ 12
1595
+ 0
1596
+ 2
1597
+ 4
1598
+ 6
1599
+ 8
1600
+ 10
1601
+ 12
1602
+ 14
1603
+ [MeV]
1604
+ γ
1605
+ E
1606
+ -ray energy
1607
+ γ
1608
+ 8
1609
+
1610
+ 10
1611
+ 7
1612
+
1613
+ 10
1614
+ 6
1615
+
1616
+ 10
1617
+ ]
1618
+ -3
1619
+ ) [MeV
1620
+ γ
1621
+ E
1622
+ (f
1623
+ -ray strength function
1624
+ γ
1625
+ (a)
1626
+ W Oslo data, this work
1627
+ 186
1628
+
1629
+ stat.+sys.
1630
+ σ
1631
+ 1
1632
+ ,n), this work
1633
+ γ
1634
+ W(
1635
+ 182
1636
+
1637
+ ,n), this work
1638
+ γ
1639
+ W(
1640
+ 183
1641
+
1642
+ ,n), this work
1643
+ γ
1644
+ W(
1645
+ 184
1646
+
1647
+ ,n), Berman et al.
1648
+ γ
1649
+ W(
1650
+ 186
1651
+
1652
+ ,n), Mohr et al.
1653
+ γ
1654
+ W(
1655
+ 186
1656
+
1657
+
1658
+ et al.
1659
+ , Kopecky
1660
+ E1
1661
+ f
1662
+ W
1663
+ 184
1664
+
1665
+
1666
+ et al.
1667
+ , Kopecky
1668
+ M1
1669
+ f
1670
+ W
1671
+ 184
1672
+
1673
+ strength1
1674
+ strength2
1675
+ strength3
1676
+ strength4
1677
+ strength5
1678
+ strength6
1679
+ strength7
1680
+ 0
1681
+ 2
1682
+ 4
1683
+ 6
1684
+ 8
1685
+ 10
1686
+ 12
1687
+ 14
1688
+ [MeV]
1689
+ γ
1690
+ E
1691
+ -ray energy
1692
+ γ
1693
+ 8
1694
+
1695
+ 10
1696
+ 7
1697
+
1698
+ 10
1699
+ 6
1700
+
1701
+ 10
1702
+ E1 hybrid
1703
+ E1 pygmy
1704
+ M1 spin-flip
1705
+ total fit function
1706
+ (b)
1707
+ FIG. 13. (Color online) (a) Comparison of γ-strength data from this work with data from the literature (Berman et al. [77],
1708
+ Mohr et al. [9], and Kopecky et al. [78]), and to models included in the TALYS code (see text); (b) Fit to the γ-ray strength
1709
+ function data of 186W and the 184W data of Kopecky et al. [78]) (see text).
1710
+ TABLE II. Parameters found from the model fits of ftot to the γ-strength data (see text). The uncertainties given are from
1711
+ the fit only. Note that EM1 and ΓM1 are fixed.
1712
+ Norm.
1713
+ Er
1714
+ Γr
1715
+ σr
1716
+ EPyg
1717
+ ΓPyg
1718
+ σPyg
1719
+ Tf
1720
+ EM1
1721
+ ΓM1
1722
+ σM1
1723
+ (MeV) (MeV) (mb)
1724
+ (MeV) (MeV) (mb)
1725
+ (MeV) (MeV) (MeV) (mb)
1726
+ Rec.
1727
+ 12.9(1) 4.1(1) 382(2) 6.3(1) 2.6(2) 7.2(3) 0.43(3) 7.2
1728
+ 2.5
1729
+ 4.4(4)
1730
+ For both the E1 pygmy and the M1 spin-flip contribu-
1731
+ tions, we apply a resonance-like form using a Standard
1732
+ Lorentzian:
1733
+ fPyg,M1(Eγ) =
1734
+ 1
1735
+ 3π2ℏ2c2
1736
+ σPyg,M1Γ2
1737
+ Pyg,M1Eγ
1738
+ (E2γ − E2
1739
+ Pyg,M1)2 + Γ2
1740
+ Pyg,M1E2γ
1741
+ (25)
1742
+ where σPyg,M1, ΓPyg,M1, and EPyg,M1 are the peak cross
1743
+ section, width, and centroid for the pygmy (Pyg) and
1744
+ the spin-flip (M1) resonance, respectively. The total fit
1745
+ function is then given by
1746
+ ftot(Eγ) = f Hyb
1747
+ E1 (Eγ, Tf = const.) + fPyg(Eγ) + fM1(Eγ).
1748
+ (26)
1749
+ For the fit, we first constrain the Hybrid component by
1750
+ fitting only the Hybrid model to the GDR data (Mohr et
1751
+ al. [9] and Berman et al. [77]) in the range Eγ = 7.7−14.5
1752
+ MeV. We choose to fix the Tf parameter to the one used
1753
+ for the extrapolation of the level density (see Sec. III C)
1754
+ to ease the fit, as Tf is largely determined from the γ-
1755
+ strength function below neutron threshold. From this fit,
1756
+ we determine the GDR parameters σr, Er, and Γr, to be
1757
+ used as start values for the next fit including the data for
1758
+ γ energies below neutron threshold as well.
1759
+ For the spin-flip part, we use a fixed centroid EM1
1760
+ taken from systematics [63], and a fixed width of ΓM1 of
1761
+ 2.5 MeV. The peak cross section σM1 is then found from a
1762
+ fit to the M1 data of 184W from Kopecky et al. [78]. Then
1763
+ we make a fit using the full energy range Eγ = 1.0 − 14.5
1764
+ MeV, with only the spin-flip parameters fixed, and with
1765
+ the first fit of the GDR data as starting values. In the fit,
1766
+ we include the present OCL data of 186W, the E1 data
1767
+ from Kopecky et al. [78] on 184W, and the GDR data
1768
+ from Mohr et al. [9] and Berman et al. [77]. The result-
1769
+ ing fit is shown in Fig. 13b, and the parameters are listed
1770
+ in Table II. As this model fit will be used to calculate the
1771
+ (n, γ) cross section and reactivity in the following sec-
1772
+ tion, we repeat the fit for all the different normalizations
1773
+ (varying D0, Γγ0, σJ and taking into account ∆f). All
1774
+ fits are performed within the ROOT software tool [84]
1775
+ using the Minuit package.
1776
+ The resulting fit function gives a reasonable description
1777
+ of the strength function data, although we note a poten-
1778
+ tial issue in that the region between Eγ = 6 − 8 MeV
1779
+ contains practically no data points for 186W. Moreover,
1780
+ the 184W data points from primary transitions following
1781
+ neutron capture typically have large fluctuations. Hence,
1782
+ it is very difficult to assess the actual parameters for the
1783
+ E1 pygmy, and the deduced parameters given in Table II
1784
+
1785
+ 13
1786
+ should be used with caution.
1787
+ We also remark that the data points at the lowest γ
1788
+ energies, Eγ < 1.5 MeV, might indicate some low-energy
1789
+ increase in the γ-strength function, as first observed in
1790
+ iron isotopes [85].
1791
+ However, in contrast to clear cases
1792
+ like 56Fe [68, 69, 85], it is hard to conclude here as there
1793
+ are only a few data points that might show an increas-
1794
+ ing trend. We therefore choose not to include an extra
1795
+ “upbend” component in the fit.
1796
+ B.
1797
+ Maxwellian-averaged cross section and reaction
1798
+ rate
1799
+ Using our level-density data and γ-strength function
1800
+ data, we now calculate the Maxwellian-averaged cross
1801
+ section (MACS) with the TALYS code, which is based on
1802
+ the statistical model of Wolfenstein [86] and Hauser and
1803
+ Feshbach [87]. The resulting MACS is shown in Fig. 14,
1804
+ where we also show the TALYS MACS with default in-
1805
+ puts (strength 1, ldmodel 1, a global optical-model po-
1806
+ tential, and no upbend), and the variation of the MACS
1807
+ as the different level-density and γ-strength models are
1808
+ used. We have tested using the semi-microscopic optical-
1809
+ model potential of Bauge et al. [88] for comparison with
1810
+ the one of Koning and Delaroche [89].
1811
+ As seen from
1812
+ Fig. 14 (dashed line versus dashed-dotted line), there
1813
+ is only a minor difference between the two for neutron
1814
+ energies around kBT = 30 keV, and overall the semi-
1815
+ microscopic potential gives a lower MACS. Nevertheless,
1816
+ the presented uncertainty band on our experimentally-
1817
+ constrained MACS includes the variation between the
1818
+ two different optical models in the lower uncertainty, in
1819
+ addition to uncertainties from D0, Γγ0, and σJ.
1820
+ In Fig. 14, we compare our result with the KADoNiS
1821
+ database [90], and find agreement within the error bars,
1822
+ although the KADoNiS values are overall larger than our
1823
+ central values. We remark that the KADoNiS values are
1824
+ from a weighted average of MACS constrained by pho-
1825
+ tonuclear data above Sn, while our results include infor-
1826
+ mation on both the level density as well as the γ-strength
1827
+ function below Sn.
1828
+ We have multiplied the KADoNiS
1829
+ MACS values with their corresponding stellar enhance-
1830
+ ment factor (SEF) as given in Ref. [90] for 185W(n, γ).
1831
+ Furthermore, our estimated uncertainty band is smaller
1832
+ than the KADoNiS uncertainties, Our result at kBT = 30
1833
+ keV, 508+76
1834
+ −106 mb, agrees well within error bars with the
1835
+ MACS from Mohr et al. [9], 553(60) mb. On the other
1836
+ hand, the evaluation of Bao et al. [91] of 703(113) mb,
1837
+ and the measurement of Sonnabend et al. [8], 687(110)
1838
+ mb, are both larger than our estimate, although still
1839
+ within the estimated uncertainties. We note that none
1840
+ of these values are directly measured, as Bao et al. gives
1841
+ a purely theoretical prediction, while the MACS value
1842
+ from Sonnabend et al. is constrained on (γ, n) data above
1843
+ Sn. In comparison with the TALYS estimates using the
1844
+ default input as well as the resulting MACS when vary-
1845
+ ing the level-density and γ-strength models, our deduced
1846
+ 20
1847
+ 40
1848
+ 60
1849
+ 80
1850
+ 100
1851
+ [keV]
1852
+ T
1853
+ B
1854
+ k
1855
+ Energy
1856
+ 0
1857
+ 200
1858
+ 400
1859
+ 600
1860
+ 800
1861
+ 1000
1862
+ 1200
1863
+ 1400
1864
+ 1600
1865
+ MACS [mb]
1866
+ exp. constrained
1867
+ KADoNiS-1.0
1868
+ Bao et al. (2000)
1869
+ Sonnabend et al. (2003)
1870
+ Mohr et al. (2004)
1871
+ TALYS default
1872
+ Variations, NLD
1873
+ SF
1874
+ γ
1875
+ Variations,
1876
+ Variation, n-OMP
1877
+ FIG. 14.
1878
+ (Color online) Maxwellian-averaged cross section
1879
+ for the 185W(n, γ) reaction. The shaded band indicates the
1880
+ present data-constrained MACS. The thick, azure dashed-
1881
+ dotted line shows the TALYS result using default input, the
1882
+ thin, azure dashed lines show the TALYS MACS when vary-
1883
+ ing the level-density models, and the thin, cyan lines show
1884
+ the variation due to different γ-strength models.
1885
+ The dot-
1886
+ ted line shows the deviation from the default when using the
1887
+ optical-model potential of Bauge et al. [88].
1888
+ 1
1889
+
1890
+ 10
1891
+ 1
1892
+ Temperature [GK]
1893
+ 0
1894
+ 20
1895
+ 40
1896
+ 60
1897
+ 80
1898
+ 100
1899
+ 120
1900
+ 140
1901
+ 160
1902
+ 180
1903
+ 200
1904
+ 220
1905
+ 6
1906
+ 10
1907
+ ×
1908
+ ]
1909
+ -1
1910
+ mol
1911
+ -1
1912
+ s
1913
+ 3
1914
+ [cm
1915
+
1916
+ v
1917
+ σ
1918
+
1919
+ A
1920
+ N
1921
+ exp. constrained
1922
+ KADoNiS-1.0
1923
+ TALYS default
1924
+ Variations, NLD
1925
+ SF
1926
+ γ
1927
+ Variations,
1928
+ Variation, n-OMP
1929
+ FIG. 15. (Color online) Reaction rate for the 185W(n, γ) reac-
1930
+ tion. The shaded band indicates the present data-constrained
1931
+ result. See also the caption of Fig. 14.
1932
+ MACS is in between the extremes.
1933
+ In Fig. 15, we show the corresponding reaction rate
1934
+ (stellar reactivity) deduced from our data compared to
1935
+ the KADoNiS rate, the TALYS default and the variations
1936
+ using different model inputs.
1937
+ Again we find that the
1938
+ KADoNiS values are overall higher than our estimated
1939
+ rate, in particular for temperatures below 0.3 GK.
1940
+
1941
+ 14
1942
+ To address possible implications for the s process
1943
+ and the Re/Os cosmochronometer in a reliable way, the
1944
+ branch points at 186Re and 191Os should also be consid-
1945
+ ered in realistic stellar models for thermally-pulsing AGB
1946
+ stars. The 191Os MACS has been estimated by a similar
1947
+ procedure as in this work by Kullmann et al. [92]. The
1948
+ 186Re MACS remains to be experimentally constrained
1949
+ in the same way; the 186W(α, dγ)187Re data from this
1950
+ same experiment is currently being analyzed. With this
1951
+ experimentally-constrained MACS also at hand, we in-
1952
+ tend to perform a consistent study of the s process in
1953
+ this mass region.
1954
+ V.
1955
+ SUMMARY AND OUTLOOK
1956
+ In this work, we have performed photoneutron cross
1957
+ section measurements on the 182,183,184W isotopes. This
1958
+ completes the photoneutron measurements on the stable
1959
+ W isotopic chain. Furthermore, we have presented data
1960
+ on the 186W(α, α′γ) reaction, and used the extracted
1961
+ level density and γ-ray strength function to provide an
1962
+ experimentally constrained (n, γ) cross section for the
1963
+ branch-point nucleus 185W.
1964
+ In comparison with other data and the recommended
1965
+ MACS from the KADoNiS data base, we find that our
1966
+ estimated MACS and reaction rate are lower than most
1967
+ of the other available values, except for the result of Mohr
1968
+ et al. Our reaction rate could possibly impact the s pro-
1969
+ cess in this mass region, in particular the deduced neu-
1970
+ tron density and the calculation of the 186Os abundance.
1971
+ When the 186Re MACS also becomes available, we intend
1972
+ to perform a systematic study of the s-process conditions
1973
+ in the W-Re-Os region in the near future.
1974
+ ACKNOWLEDGMENTS
1975
+ The authors would like to thank J. C. M¨uller,
1976
+ P. A. Sobas, and J. C. Wikne at the Oslo Cyclotron Labo-
1977
+ ratory for operating the cyclotron and providing excellent
1978
+ experimental conditions. We sincerely thank T. W. Ha-
1979
+ gen, S. J. Rose and F. Zeiser for helping with the OCL
1980
+ experiment, Y.-W. Lui for helping with the NewSUB-
1981
+ ARU experiments, and S. N. Liddick for inspiring dis-
1982
+ cussions.
1983
+ A. C. L. gratefully acknowledges funding of
1984
+ this research by the European Research Council through
1985
+ ERC-STG-2014 under grant agreement no. 637686, and
1986
+ from the Research Council of Norway, project grant no.
1987
+ 316116. S. G. acknowledges the support from the F.R.S.-
1988
+ FNRS. This work was supported in part by the National
1989
+ Science Foundation under Grant No.
1990
+ OISE-1927130
1991
+ (IReNA). The photoneutron cross section measurement
1992
+ was performed as part of the IAEA CRP on “Updating
1993
+ the Photonuclear Data Library and generating a Refer-
1994
+ ence Database for Photon Strength Functions” (F41032).
1995
+ A. G., V. W. I., and S. S. gratefully acknowledge fi-
1996
+ nancial support from the Research Council of Norway,
1997
+ project grant no. 325714. This work is in part based on
1998
+ the research supported partly by the National Research
1999
+ Foundation of South Africa (Grant Number: 118846).
2000
+ Appendix A: Uncertainty in ρ(Sn)
2001
+ To estimate the total NLD at the neutron separation
2002
+ energy using Eq. (14), we propagate errors from the D0
2003
+ value and the spin cutoff parameter σJ(Sn) assuming
2004
+ that they are independent variables, which is a justified
2005
+ assumption. Thus, we get that
2006
+ �δρ(Sn)
2007
+ ρ(Sn)
2008
+ �2
2009
+ =
2010
+ �δD0
2011
+ D0
2012
+ �2
2013
+ +
2014
+ �δξ(σJ(Sn))
2015
+ ξ(σJ(Sn))
2016
+ �2
2017
+ ,
2018
+ (A1)
2019
+ where ξ represents the function containing the depen-
2020
+ dency on the spin cutoff parameter σJ at the neutron
2021
+ separation energy Sn:
2022
+ ξ(σJ) =
2023
+ 2σ2
2024
+ J
2025
+ Ite−I2
2026
+ t /2σ2
2027
+ J + (It + 1)e−(It+1)2/2σ2
2028
+ J .
2029
+ (A2)
2030
+ Now we take the derivative of ξ with respect to σJ and
2031
+ obtain:
2032
+ δξ
2033
+ δσJ
2034
+ =
2035
+ 4σJ
2036
+
2037
+ Ite−I2
2038
+ t /2σ2
2039
+ J + (It + 1)e−(It+1)2/2σ2
2040
+ J
2041
+
2042
+
2043
+ 2
2044
+ σJ
2045
+
2046
+ I3
2047
+ t e−I2
2048
+ t /2σ2
2049
+ J + (It + 1)3e−(It+1)2/2σ2
2050
+ J
2051
+
2052
+
2053
+ Ite−I2
2054
+ t /2σ2
2055
+ J + (It + 1)e−(It+1)2/2σ2
2056
+ J�2 .
2057
+ (A3)
2058
+ For convenience, we now define the auxilliary functions
2059
+ z1 ≡ I3
2060
+ t e−I2
2061
+ t /2σ2
2062
+ J + (It + 1)3e−(It+1)2/2σ2
2063
+ J,
2064
+ z2 ≡ Ite−I2
2065
+ t /2σ2
2066
+ J + (It + 1)e−(It+1)2/2σ2
2067
+ J.
2068
+ Using these and dividing Eq. (A3) on the function ξ(σJ),
2069
+ we get
2070
+ δξ
2071
+ ξδσJ
2072
+ = 2
2073
+ σJ
2074
+
2075
+ z1
2076
+ σ3
2077
+ Jz2
2078
+ = 2
2079
+ σJ
2080
+
2081
+ 1 −
2082
+ 1
2083
+ 2σ2
2084
+ J
2085
+ z1
2086
+ z2
2087
+
2088
+ .
2089
+ (A4)
2090
+ Finally, we obtain
2091
+ �δξ
2092
+ ξ
2093
+ �2
2094
+ =
2095
+ �2δσJ
2096
+ σJ
2097
+ �2 �
2098
+ 1 −
2099
+ 1
2100
+ 2σ2
2101
+ J
2102
+ z1
2103
+ z2
2104
+ �2
2105
+ .
2106
+ (A5)
2107
+
2108
+ 15
2109
+ This is what is implemented in the code d2rho in the Oslo
2110
+ software package [37].
2111
+ [1] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and
2112
+ F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).
2113
+ [2] A. G. W. Cameron, Astron. J. 62, 9 (1957).
2114
+ [3] M. Arnould, S. Goriely, and K. Takahashi, Physics Re-
2115
+ ports 450, 97 (2007).
2116
+ [4] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian,
2117
+ M. Wiescher, K. Langanke, G. Mart´ınez-Pinedo, and F.-
2118
+ K. Thielemann, Rev. Mod. Phys. 93, 015002 (2021).
2119
+ [5] F. K¨appeler, R. Gallino, S. Bisterzo, and W. Aoki, The
2120
+ s process: Nuclear physics, stellar models, and observa-
2121
+ tions, Rev. Mod. Phys. 83, 157 (2011).
2122
+ [6] R. A. Ward, M. J. Newman, and D. D. Clayton, Astro-
2123
+ phys. J. Suppl. 31, 33 (1976).
2124
+ [7] F. K¨appeler, S. Jaag, Z. Y. Bao, and G. Reffo, Astrophys.
2125
+ J. 366, 605 (1991).
2126
+ [8] K. Sonnabend, P. Mohr, K. Vogt, A. Zilges, A. Mengoni,
2127
+ T. Rauscher, H. Beer, F. Kappeler, and R. Gallino, The
2128
+ Astrophysical Journal 583, 506 (2003).
2129
+ [9] P. Mohr, T. Shizuma, H. Ueda, S. Goko, A. Makinaga,
2130
+ K. Y. Hara, T. Hayakawa, Y.-W. Lui, H. Ohgaki, and
2131
+ H. Utsunomiya, Phys. Rev. C 69, 032801 (2004).
2132
+ [10] J. F. Emery, S. A. Reynolds, E. I. Wyatt, and G. I. Glea-
2133
+ son, Nucl. Sci. Eng. 48, 319 (1972).
2134
+ [11] D. D. Clayton, Astrophys. J. 139, 637 (1964).
2135
+ [12] M. Galeazzi, F. Fontanelli, F. Gatti, and S. Vitale, Phys.
2136
+ Rev. C 63, 014302 (2000).
2137
+ [13] K. Yokoi, K. Takahashi, and M. Arnould, Astronomy and
2138
+ Astrophysics 117, 65 (1983).
2139
+ [14] M. Arnould, K. Takahashi, and K. Yokoi, Astronomy and
2140
+ Astrophysics 137, 51 (1984).
2141
+ [15] M. Mosconi et al., Phys. Rev. C 82, 015802 (2010).
2142
+ [16] T. Shizuma, H. Utsunomiya, P. Mohr, T. Hayakawa,
2143
+ S. Goko, A. Makinaga, H. Akimune, T. Yamagata,
2144
+ M. Ohta, H. Ohgaki, Y.-W. Lui, H. Toyokawa, A. Uri-
2145
+ tani, and S. Goriely, Phys. Rev. C 72, 025808 (2005).
2146
+ [17] M. Humayun and A. D. Brandon, The Astrophysical
2147
+ Journal 664, L59 (2007).
2148
+ [18] A. Koning and D. Rochman, Nuclear Data Sheets 113,
2149
+ 2841 (2012), special Issue on Nuclear Reaction Data.
2150
+ [19] H. Utsunomiya, T. Shima, K. Takahisa, D. M. Filipescu,
2151
+ O. Tesileanu, I. Gheorghe, H. T. Nyhus, T. Renstrøm,
2152
+ Y. W. Lui, Y. Kitagawa, S. Amano, and S. Miyamoto,
2153
+ IEEE Transactions on Nuclear Science 61, 1252 (2014).
2154
+ [20] A. I. Gheorghe, Nuclear data obtained with Laser Comp-
2155
+ ton Scattered gamma-ray beams, Ph.D. thesis, University
2156
+ of Bucharest (2017).
2157
+ [21] S. Agostinelli et al., Geant4 a simulation toolkit, NIM A
2158
+ 506, 250 (2003).
2159
+ [22] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).
2160
+ [23] J. Allison et al., Nuclear Instruments and Methods in
2161
+ Physics Research Section A: Accelerators, Spectrometers,
2162
+ Detectors and Associated Equipment 835, 186 (2016).
2163
+ [24] T. Shima and H. Utsunomiya, Nuclear Physics and
2164
+ Gamma-Ray Sources for Nuclear Security and Nonpro-
2165
+ liferation , 151 (2015).
2166
+ [25] D. Filipescu, I. Gheorghe, H. Utsunomiya, S. Goriely,
2167
+ T. Renstrøm, H. Nyhus, O. Tesileanu, T. Glodariu,
2168
+ T. Shima, K. Takahisa, S. Miyamoto, Y.-W. Lui, S. Hi-
2169
+ laire, S. P´eru, M. Martini, and A. Koning, Physical Re-
2170
+ view C 90 (2014).
2171
+ [26] O. Itoh, H. Utsunomiya, H. Akimune, T. Kondo, M. Ka-
2172
+ mata, T. Yamagata, H. Toyokawa, H. Harada, F. Ki-
2173
+ tatani, S. Goko, C. Nair, and Y.-W. Lui, Journal of Nu-
2174
+ clear Science and Technology 48, 834 (2011).
2175
+ [27] B. L. Berman and S. C. Fultz, Rev. Mod. Phys. 47, 713
2176
+ (1975).
2177
+ [28] H. Nyhus, T. Renstrøm, H. Utsunomiya, S. Goriely,
2178
+ D. Filipescu, I. Gheorghe, O. Tesileanu, T. Glodariu,
2179
+ T. Shima, K. Takahisa, S. Miyamoto, Y.-W. Lui, S. Hi-
2180
+ laire, S. P´eru, M. Martini, L. Siess, and A. Koning, Phys-
2181
+ ical Review C 91 (2015).
2182
+ [29] T. Kondo, H. Utsunomiya, H. Akimune, T. Yama-
2183
+ gata, A. Okamoto, H. Harada, F. Kitatani, T. Shima,
2184
+ K. Horikawa, and S. Miyamoto, Nuclear Instruments
2185
+ and Methods in Physics Research Section A: Acceler-
2186
+ ators, Spectrometers, Detectors and Associated Equip-
2187
+ ment 659, 462 (2011).
2188
+ [30] H. Utsunomiya, T. Watanabe, T. Ari-izumi, D. Take-
2189
+ naka, T. Araki, K. Tsuji, I. Gheorghe, D. M. Filipescu,
2190
+ S. Belyshev, K. Stopani, D. Symochko, H. Wang, G. Fan,
2191
+ T. Renstrøm, G. M. Tveten, Y.-W. Lui, K. Sugita,
2192
+ and S. Miyamoto, Nuclear Instruments and Methods in
2193
+ Physics Research Section A: Accelerators, Spectrometers,
2194
+ Detectors and Associated Equipment 896, 103 (2018).
2195
+ [31] T. Renstrøm, H. Utsunomiya, H. T. Nyhus, A. C. Larsen,
2196
+ M. Guttormsen, G. M. Tveten, D. M. Filipescu, I. Ghe-
2197
+ orghe, S. Goriely, S. Hilaire, Y.-W. Lui, J. E. Midtbø,
2198
+ S. P´eru, T. Shima, S. Siem, and O. Tesileanu, Phys. Rev.
2199
+ C 98, 054310 (2018).
2200
+ [32] A. M. Goryachev and G. N. Zalesnyy, Izvestiya Akademii
2201
+ Nauk Resp.Kaz., Ser.Fiz.-Mat. 6, 8 (1978).
2202
+ [33] M. Guttormsen, A. B¨urger, T. E. Hansen, and N. Lietaer,
2203
+ Nucl. Instr. Methods Phys. Res. A 648, 168 (2011).
2204
+ [34] V. W. Ingeberg, (2015).
2205
+ [35] M. Guttormsen, A. Atac, G. Løvhøiden, S. Messelt,
2206
+ T. Ramsøy, J. Rekstad, T. Thorsteinsen, T. Tveter, and
2207
+ Z. Zelazny, Physica Scripta T32, 54 (1990).
2208
+ [36] M. Guttormsen, T. Tveter, L. Bergholt, F. Ingebretsen,
2209
+ and J. Rekstad, Nuclear Instruments and Methods in
2210
+ Physics Research A 374, 371 (1996).
2211
+ [37] M. Guttormsen et al., Oslo-method software package,
2212
+ Github, Oslo Method v1.1.6.
2213
+ [38] M. Guttormsen, T. Ramsøy, and J. Rekstad, Nuclear In-
2214
+ struments and Methods in Physics Research A 255, 518
2215
+ (1987).
2216
+ [39] A. C. Larsen, M. Guttormsen, M. Krtiˇcka, E. Bˇet´ak,
2217
+ A. B¨urger,
2218
+ A. G¨orgen,
2219
+ H. T. Nyhus,
2220
+ J. Rekstad,
2221
+ A. Schiller, S. Siem, H. K. Toft, G. M. Tveten, A. V.
2222
+ Voinov, and K. Wikan, Phys. Rev. C 83, 034315 (2011).
2223
+ [40] P. A. M. Dirac, Proc. R. Soc. London A 114, 243 (1927).
2224
+ [41] E. Fermi, Nuclear Physics (University of Chicago Press,
2225
+ Chicago, 1950).
2226
+ [42] A. Schiller, L. Bergholt, M. Guttormsen, E. Melby,
2227
+ J. Rekstad, and S. Siem, Nuclear Instruments and Meth-
2228
+ ods in Physics Research Section A: Accelerators, Spec-
2229
+ trometers, Detectors and Associated Equipment 447, 498
2230
+
2231
+ 16
2232
+ (2000).
2233
+ [43] D. M. Brink, Some aspects of the interaction of fields with
2234
+ matter, Ph.D. thesis, Oxford University (1955).
2235
+ [44] P. Axel, Phys. Rev. 126, 671 (1962).
2236
+ [45] G. W. Misch, G. M. Fuller, and B. A. Brown, Phys. Rev.
2237
+ C 90, 065808 (2014).
2238
+ [46] C. W. Johnson, Physics Letters B 750, 72 (2015).
2239
+ [47] N. Q. Hung, N. D. Dang, and L. T. Q. Huong, Phys. Rev.
2240
+ Lett. 118, 022502 (2017).
2241
+ [48] M. Guttormsen, A. C. Larsen, A. G¨orgen, T. Renstrøm,
2242
+ S. Siem, T. G. Tornyi, and G. M. Tveten, Phys. Rev.
2243
+ Lett. 116, 012502 (2016).
2244
+ [49] D. Martin, P. von Neumann-Cosel, A. Tamii, N. Aoi,
2245
+ S. Bassauer, C. A. Bertulani, J. Carter, L. Donaldson,
2246
+ H. Fujita, Y. Fujita, T. Hashimoto, K. Hatanaka, T. Ito,
2247
+ A. Krugmann, B. Liu, Y. Maeda, K. Miki, R. Neveling,
2248
+ N. Pietralla, I. Poltoratska, V. Y. Ponomarev, A. Richter,
2249
+ T. Shima, T. Yamamoto, and M. Zweidinger, Phys. Rev.
2250
+ Lett. 119, 182503 (2017).
2251
+ [50] L. C. Campo, M. Guttormsen, F. L. B. Garrote, T. K.
2252
+ Eriksen, F. Giacoppo, A. G¨orgen, K. Hadynska-Klek,
2253
+ M. Klintefjord, A. C. Larsen, T. Renstrøm, E. Sahin,
2254
+ S. Siem, A. Springer, T. G. Tornyi, and G. M. Tveten,
2255
+ Phys. Rev. C 98, 054303 (2018).
2256
+ [51] P. Scholz, M. Guttormsen, F. Heim, A. C. Larsen,
2257
+ J. Mayer, D. Savran, M. Spieker, G. M. Tveten, A. V.
2258
+ Voinov, J. Wilhelmy, F. Zeiser, and A. Zilges, Phys. Rev.
2259
+ C 101, 045806 (2020).
2260
+ [52] C. T. Angell, S. L. Hammond, H. J. Karwowski, J. H.
2261
+ Kelley, M. Krtiˇcka, E. Kwan, A. Makinaga, and G. Ru-
2262
+ sev, Phys. Rev. C 86, 051302 (2012).
2263
+ [53] J. Isaak, D. Savran, B. L¨oher, T. Beck, M. Bhike,
2264
+ U.
2265
+ Gayer,
2266
+ Krishichayan,
2267
+ N.
2268
+ Pietralla,
2269
+ M.
2270
+ Scheck,
2271
+ W. Tornow, V. Werner, A. Zilges, and M. Zweidinger,
2272
+ Physics Letters B 788, 225 (2019).
2273
+ [54] National Nuclear Data Center, Nudat 3 database (2022).
2274
+ [55] S. F. Mughabghab, Atlas of Neutron Resonances, 6th ed.
2275
+ (Elsevier Science, Amsterdam, 2018).
2276
+ [56] T. von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311
2277
+ (2005).
2278
+ [57] T. von Egidy and D. Bucurescu, Phys. Rev. C 73, 049901
2279
+ (2006).
2280
+ [58] H. Uhrenholt, S. ˚Aberg, A. Dobrowolski, T. Døssing,
2281
+ T. Ichikawa, and P. M¨oller, Nuclear Physics A 913, 127
2282
+ (2013).
2283
+ [59] T. Ericson, Nuclear Physics 11, 481 (1959).
2284
+ [60] A. Voinov,
2285
+ M. Guttormsen,
2286
+ E. Melby,
2287
+ J. Rekstad,
2288
+ A. Schiller, and S. Siem, Phys. Rev. C 63, 044313 (2001).
2289
+ [61] H. A. Bethe, Phys. Rev. 50, 332 (1936).
2290
+ [62] T. Ericson and V. Strutinski, Nuclear Physics 8, 284
2291
+ (1958).
2292
+ [63] R. Capote,
2293
+ M. Herman,
2294
+ P. Obloˇzinsk´y,
2295
+ P. Young,
2296
+ S. Goriely, T. Belgya, A. Ignatyuk, A. Koning, S. Hi-
2297
+ laire, V. Plujko, M. Avrigeanu, O. Bersillon, M. Chad-
2298
+ wick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky,
2299
+ V. Maslov, G. Reffo, M. Sin, E. Soukhovitskii, and
2300
+ P. Talou, Nuclear Data Sheets 110, 3107 (2009), special
2301
+ Issue on Nuclear Reaction Data.
2302
+ [64] T. Renstrøm, G. M. Tveten, J. E. Midtbø, H. Ut-
2303
+ sunomiya,
2304
+ O. Achakovskiy,
2305
+ S. Kamerdzhiev,
2306
+ B. A.
2307
+ Brown, A. Avdeenkov, T. Ari-izumi, A. G´’orgen, S. M.
2308
+ Grimes, M. Guttormsen, T. W. Hagen, V. W. Ingeberg,
2309
+ S. Katayama, B. V. Kheswa, A. C. Larsen, Y.-W. Lui,
2310
+ H.-T. Nyhus, S. Siem, D. Symochko, D. Takenaka, and
2311
+ A. V. Voinov, arxiv (2018).
2312
+ [65] R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys.
2313
+ Rev. Lett. 111, 232504 (2013).
2314
+ [66] B. A. Brown and A. C. Larsen, Phys. Rev. Lett. 113,
2315
+ 252502 (2014).
2316
+ [67] J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).
2317
+ [68] A. C. Larsen, N. Blasi, A. Bracco, F. Camera, T. K. Erik-
2318
+ sen, A. G¨orgen, M. Guttormsen, T. W. Hagen, S. Leoni,
2319
+ B. Million, H. T. Nyhus, T. Renstrøm, S. J. Rose, I. E.
2320
+ Ruud, S. Siem, T. Tornyi, G. M. Tveten, A. V. Voinov,
2321
+ and M. Wiedeking, Phys. Rev. Lett. 111, 242504 (2013).
2322
+ [69] M. D. Jones, A. O. Macchiavelli, M. Wiedeking, L. A.
2323
+ Bernstein, H. L. Crawford, C. M. Campbell, R. M. Clark,
2324
+ M. Cromaz, P. Fallon, I. Y. Lee, M. Salathe, A. Wiens,
2325
+ A. D. Ayangeakaa, D. L. Bleuel, S. Bottoni, M. P. Car-
2326
+ penter, H. M. Davids, J. Elson, A. G¨orgen, M. Gut-
2327
+ tormsen, R. V. F. Janssens, J. E. Kinnison, L. Kirsch,
2328
+ A. C. Larsen, T. Lauritsen, W. Reviol, D. G. Sarantites,
2329
+ S. Siem, A. V. Voinov, and S. Zhu, Phys. Rev. C 97,
2330
+ 024327 (2018).
2331
+ [70] A. Gilbert and A. G. W. Cameron, Canadian Journal
2332
+ of Physics 43, 1446 (1965), https://doi.org/10.1139/p65-
2333
+ 139.
2334
+ [71] J. R. Huizenga, H. K. Vonach, A. A. Katsanos, A. J.
2335
+ Gorski, and C. J. Stephan, Phys. Rev. 182, 1149 (1969).
2336
+ [72] A. V. Ignatyuk, J. L. Weil, S. Raman, and S. Kahane,
2337
+ Phys. Rev. C 47, 1504 (1993).
2338
+ [73] P. Demetriou and S. Goriely, Nuclear Physics A 695, 95
2339
+ (2001).
2340
+ [74] S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C
2341
+ 78, 064307 (2008).
2342
+ [75] S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Phys.
2343
+ Rev. C 86, 064317 (2012).
2344
+ [76] S. Goriely, A.-C. Larsen, and D. M¨ucher, Phys. Rev. C
2345
+ 106, 044315 (2022).
2346
+ [77] B. L. Berman, M. A. Kelly, R. L. Bramblett, J. T. Cald-
2347
+ well, H. S. Davis, and S. C. Fultz, Phys. Rev. 185, 1576
2348
+ (1969).
2349
+ [78] J. Kopecky, S. Goriely, S. P´eru, S. Hilaire, and M. Mar-
2350
+ tini, Phys. Rev. C 95, 054317 (2017).
2351
+ [79] P. Axel, Proceedings of the International Symposium on
2352
+ Nuclear Structure , p.299 (1968).
2353
+ [80] S. Goriely and E. Khan, Nuclear Physics A 706, 217
2354
+ (2002).
2355
+ [81] S. Goriely, E. Khan, and M. Samyn, Nuclear Physics A
2356
+ 739, 331 (2004).
2357
+ [82] S. Goriely, Physics Letters B 436, 10 (1998).
2358
+ [83] I. Daoutidis and S. Goriely, Phys. Rev. C 86, 034328
2359
+ (2012).
2360
+ [84] R. Brun and F. Rademakers, Root - An Object Oriented
2361
+ Data Analysis Framework,
2362
+ Proceedings AIHENP’96
2363
+ Workshop, Lausanne, Sep. 1996, (1997).
2364
+ [85] A. Voinov,
2365
+ E. Algin,
2366
+ U. Agvaanluvsan,
2367
+ T. Belgya,
2368
+ R. Chankova, M. Guttormsen, G. E. Mitchell, J. Rekstad,
2369
+ A. Schiller, and S. Siem, Phys. Rev. Lett. 93, 142504
2370
+ (2004).
2371
+ [86] L. Wolfenstein, Phys. Rev. 82, 690 (1951).
2372
+ [87] W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
2373
+ [88] E. Bauge, J. P. Delaroche, and M. Girod, Phys. Rev. C
2374
+ 63, 024607 (2001).
2375
+ [89] A. Koning and J. Delaroche, Nuclear Physics A 713, 231
2376
+ (2003).
2377
+ [90] I. Dillmann, R. Plag, F. K¨appeler, and T. Rauscher, Data
2378
+ extracted using the KADoNiS On-Line Data Service.
2379
+
2380
+ 17
2381
+ [91] Z. Bao, H. Beer, F. K¨appeler, F. Voss, K. Wisshak, and
2382
+ T. Rauscher, Atomic Data and Nuclear Data Tables 76,
2383
+ 70 (2000).
2384
+ [92] I. K. B. Kullmann, A. C. Larsen, T. Renstrøm, K. S.
2385
+ Beckmann, F. L. B. Garrote, L. C. Campo, A. G¨orgen,
2386
+ M. Guttormsen, J. E. Midtbø, E. Sahin, S. Siem, G. M.
2387
+ Tveten, and F. Zeiser, Phys. Rev. C 99, 065806 (2019).
2388
+
MtFQT4oBgHgl3EQfVjao/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf ADDED
Binary file (81.2 kB). View file
 
NtFPT4oBgHgl3EQfmDWp/content/tmp_files/2301.13124v1.pdf.txt ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13124v1 [cs.CY] 30 Jan 2023
2
+ MED1stMR: Mixed Reality to Enhance the Training of Medical First
3
+ Responders for Challenging Contexts
4
+ HELMUT SCHROM-FEIERTAG, GEORG REGAL, and MARKUS MURTINGER, AIT Austrian Insti-
5
+ tute of Technology, Vienna
6
+ 1
7
+ INTRODUCTION
8
+ Mass-casualty incidents with a large number of injured persons caused by human-made or by natural disasters are
9
+ increasing globally. In such situations, medical first responders (MFRs) need to perform diagnosis, basic life support,
10
+ or other first aid to help stabilize victims and keep them alive to wait for the arrival of further support. Situational
11
+ awareness and effective coping with acute stressors are essential [5] to enable first responders to take appropriate
12
+ action that saves lives. Such tasks are particularly challenging for first responders, that lack the special training to act
13
+ optimally in these situations. Increasingly severe consequences of natural disasters and terrorist threats will expand
14
+ the occurrence probability of such stressful and demanding situations and require the development and deployment
15
+ of innovative technological solutions adapted to the (cross-sectoral) needs of first responders.
16
+ In that context, the adage “practice makes perfect” is well-fitting to situational training. Lectures, books, videos, etc.
17
+ are no substitute for hands-on experiences, and humans often learn more from their mistakes than from their successes.
18
+ Unfortunately, it is difficult to provide such training for large-scale emergency medicine or in dangerous conditions.
19
+ Current training of medical first responders often happens through live exercises: medics practice stabilisation and
20
+ wound care via moulage, a training exercise where live persons are given highly realistic “fake” wounds. The drawback
21
+ of such training is the large effort needed to create such live training exercises (a large number of ‘victim actors’ needed,
22
+ availability of infrastructure, etc.) and the lack of realistic treatments. Hence, such training or exercises are not executed
23
+ very often and sometimes also fail to create “real” stressful and demanding environments.
24
+ Virtual Reality (VR) has already been demonstrated in several domains to be a serious alternative, and in some areas
25
+ also a significant improvement to conventional learning and training. Especially for the challenges in the training
26
+ of MFRs, it can be highly useful for practising and learning domains where the context of the training is not easily
27
+ available. VR training offers controlled, easy-to-create environments that can be created and trained repeatedly under
28
+ the same conditions. This repetition makes it possible to master a new skill or process. Like in real-life training, trainees
29
+ are transformed into active users who need to be physically and mentally engaged to evaluate the situation, take
30
+ appropriate measures and act accordingly.
31
+ There are two types of VR medical training systems realised up to date. Systems centred on teaching direct physical
32
+ skills and procedures e.g. surgery (e.g. [7], [10], [14], [12]). Those usually employ highly sophisticated hardware user
33
+ interfaces providing realistic haptic feedback or/and mimicking real devices. On the other end of the spectrum, there
34
+ are VR systems helping the trainee to develop psychological skills required in real-world scenarios (e.g. [15], [11]) and
35
+ in particular decision training.
36
+ However, these approaches are currently rather disjunct and do not allow to train decision-making under stress
37
+ together with physical skill scenarios. Also, other medical tasks or preclinical routines in patient care and treatment
38
+ are not yet covered by haptic solutions. Training medical skills are about vision and haptics for tangible interaction,
39
+ and if a simulation has only one of those two, it will provide only half of the experience.
40
+ 1
41
+
42
+ Schrom-Feiertag, Regal and Murtinger
43
+ 2
44
+ VISION OF THE PROJECT MED1STMR
45
+ As an advanced alternative to VR, Mixed Reality (MR) environments have the potential to augment current VR training
46
+ by providing a dynamic simulation of an environment and hands-on practice on injured victims.
47
+ There are several interpretations of MR, one is that the real environment is augmented by digital objects, another
48
+ is that physical objects are integrated into the VR. In our vision, MR is to be considered as the latter interpretation
49
+ with a fully digital environment, where the user sees a fully digital environment without looking at the real world, but
50
+ this digital environment is connected to real physical objects. This VR-based mixed reality is also called augmented
51
+ virtuality (AV) according to [13].
52
+ Building on this interpretation of MR, the main aim of MED1stMR is to develop a new generation of MR training
53
+ with haptic feedback for enhanced realism. To this end, we will pursue the following pioneering concepts:
54
+ 2.1
55
+ Integration of high-fidelity patient simulation manikins for enhanced realism
56
+ Evidence shows that the use of VR is useful when the training domain is complex and difficult to master (cf. [9], [2])
57
+ and when the audio-visual features assisted by haptic feedback of the training environment are crucial to the overall
58
+ training success (cf. [1]). This makes virtual environments the solution for practising and learning domains where the
59
+ context of the training is not easily available or replicable due to security and safety issues (e.g. [6]). It allows creating
60
+ easily a diverse range of training scenarios tailored to the training goals and needs (single user vs. teams, from single
61
+ to many people injured in large incidents, influence of psychological and contextual factors).
62
+ Through the integration of high-fidelity patient simulation manikins and medical equipment into the MR experience,
63
+ MED1stMR offers a much richer sensory experience. This MR training environment allows trainees to immerse into
64
+ virtual scenarios and be able to feel and perceive actual movements of the limbs, head, and face through tactile and
65
+ visual interaction as they are actuated. Furthermore, it enables systematic manipulation of a large set of potential
66
+ influence factors in order to optimise training effects. This will bring virtual training closer to reality and enable both
67
+ scenario training and medical training in the same MR training environment.
68
+ 2.2
69
+ Biosignal feedback loop and smart scenario control to enhance effectiveness of MR training
70
+ The wireless integration of wearables in MR training environments is emerging (e.g., [8]) and particularly in the train-
71
+ ing of highly demanding skills such as piloting/aviation, medical surgeries (e.g., [4]) or first responders (e.g., [3]).
72
+ In order to better support, assist and personalise MFRs training, we will integrate wearable technology for moni-
73
+ toring trainees’ physiological data. Smart electronic devices can detect and transmit information regarding biosignals,
74
+ informing on trainees’ physiological status. Monitoring these signals will provide the detection of physical and psy-
75
+ chological strain and stress during training.
76
+ This will provide information for the debriefing sessions and can be used for real-time scenario control through the
77
+ trainer (manual control) or automatically by the training system through artificial intelligence-based adaptive smart
78
+ scenarios. The data on trainee state and behaviour can then be used to constitute a feedback loop for personalising
79
+ and adapting training to the trainees’ needs. Such a system can automatically adjust the scenarios according to the
80
+ stress level of the trainee, for example, low stress increases the difficulty of the scenario and allows longer and more
81
+ complex scenarios to be trained without the intervention of a trainer.
82
+ 2
83
+
84
+ MED1stMR: Mixed Reality to Enhance Training of Medical First Responder
85
+ 3
86
+ OUR MOTIVATION
87
+ The development of such a training system for MFRs requires research, expertise, and knowledge in the areas of
88
+ medical research, biosensors, and wearable technologies, human factors research, psychology, physiological research,
89
+ technology experience, user research, VR/MR, and medical training simulation development to answer all the questions
90
+ that arise in order to develop an optimal training system for MFRs:
91
+ • How can haptic feedback for training medical skills on victims be provided for MFRs?
92
+ • Which scenarios and use cases are most suitable for MR training and deliver the greatest benefits?
93
+ • How can effective MR training scenarios be developed?
94
+ • How effective are such training approaches, how good is the learning progress and how does it compare to
95
+ real-world training?
96
+ • How should a MR training curriculum be designed and merged with existing training curricula?
97
+ • What about the costs for the training system and does the benefit justify the effort?
98
+ 4
99
+ OUR CONTRIBUTION TO THE WORKSHOP
100
+ MED1stMR develop a MR training system based on a combination of VR environment and the integration of VR-
101
+ enabled manikins. With this new training environment, MED1stMR delivers a training platform for collaborative multi-
102
+ user training to train the medical skills of MFRs as well the decision-making abilities in disaster situations. In the project,
103
+ the training is designed for teams of up to four people to enable emergency teams to train together. The technological
104
+ basis is the Refense trainings platform (www.refense.com) that allows up to 10 users on an area of 11 x 20 meters to
105
+ immerse themselves into a realistic common shared scenario, see each other in real time with full-body VR tracking. A
106
+ trainer can also be included as an invisible observer in the training. Every movement and voice spoken are recorded for
107
+ debriefing of team collaboration and actions taken. The inclusion of manikins as tangible objects as learning support
108
+ provides a more realistic experience and enables novel possibilities for hands-on tasks. The basis will build the ADAM-
109
+ X manikin (https://medical-x.com/product/adam-x/) and will be advanced to a fully functional touch-enabled human
110
+ manikin designed for practising skills in trauma emergency situation.
111
+ The goal of the MED1stMR training solution is to train the situation awareness and the procedure in the first and
112
+ second triage. The realisation of a biosignal feedback loop with body sensors allows to monitor trainee (stress, anxiety,
113
+ etc.) states and behaviours of MFRs during training and will make this data available for scenario control. For this
114
+ purpose, heart rate variability is measured as one of the most reliable indicators of stress. The trainer can adapt training
115
+ to the personal needs of trainees and provides a new way of interaction between trainer and trainee and requires an
116
+ appropriate user interface for support.
117
+ A key point in MED1stMR is to examine the effectiveness of training for the different roles. To increase the effective-
118
+ ness of the training, the simple repetition of the training scenarios as well as the recording of all movements, activities
119
+ and communication during the training for the debriefing play an important role. The presentation of our project is in-
120
+ tended to provide an insight into our approach and to open up an exchange of experiences with other people, projects,
121
+ research, and developments and also to get an impression of how the topics are received, what others are doing in this
122
+ field and where further and interesting research topics lie in this area.
123
+ We can contribute existing knowledge to the workshop and discuss with the other participants’ challenges and help
124
+ to set up a future research agenda for collaborative multi-user VR training.
125
+ 3
126
+
127
+ Schrom-Feiertag, Regal and Murtinger
128
+ ACKNOWLEDGEMENTS
129
+ The project MED1stMR has received funding from the European Union’s Horizon 2020 Research and Innovation Pro-
130
+ gramme under grant agreement No 101021775. The content reflects only the MED1stMR consortium’s view. Research
131
+ Executive Agency and European Commission is not liable for any use that may be made of the information contained
132
+ herein.
133
+ REFERENCES
134
+ [1] Andrea F Abate, Mariano Guida, Paolo Leoncini, Michele Nappi, and Stefano Ricciardi. 2009. A haptic-based approach to virtual training for
135
+ aerospace industry. Journal of Visual Languages & Computing 20, 5 (2009), 318–325.
136
+ [2] Cyril Bossard, Gilles Kermarrec, Cédric Buche, and Jacques Tisseau. 2008. Transfer of learning in virtual environments: a new challenge? Virtual
137
+ Reality 12, 3 (2008), 151–161.
138
+ [3] Meredith Carroll, Mitchell Ruble, Mark Dranias,Summer Rebensky, Maria Chaparro, Joanna Chiang, and Brent Winslow. 2020. Automatic detection
139
+ of learner engagement using machine learning and wearable sensors. Journal of Behavioral and Brain Science 10, 3 (2020), 165–178.
140
+ [4] Jonathan Currie, Raymond R Bond, Paul McCullagh, Pauline Black, Dewar D Finlay, Stephen Gallagher, Peter Kearney, Aaron Peace, Danail Stoy-
141
+ anov, Colin D Bicknell, et al. 2019. Wearable technology-based metrics for predicting operator performance during cardiac catheterisation. Inter-
142
+ national journal of computer assisted radiology and surgery 14, 4 (2019), 645–657.
143
+ [5] Marie Ottilie Frenkel, Laura Giessing, Sebastian Egger-Lampl, Vana Hutter, Raoul RD Oudejans, Lisanne Kleygrewe, Emma Jaspaert, and Henning
144
+ Plessner. 2021. The impact of the COVID-19 pandemic on European police officers: Stress, demands, and coping resources. Journal of Criminal
145
+ justice 72 (2021), 101756.
146
+ [6] Andrzej Grabowski and Jarosław Jankowski. 2015. Virtual reality-based pilot training for underground coal miners. Safety science 72 (2015),
147
+ 310–314.
148
+ [7] Cuan M Harrington, Dara O Kavanagh, John F Quinlan, Donncha Ryan, Patrick Dicker, Dara O’Keeffe, Oscar Traynor, and Sean Tierney. 2018.
149
+ Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. The American Journal of Surgery 215, 1 (2018),
150
+ 42–47.
151
+ [8] ByronHavardand Megan Podsiad. 2020. A meta-analysisof wearablesresearchin educational settings published 2016–2019. Educational Technology
152
+ Research and Development 68, 4 (2020), 1829–1854.
153
+ [9] Hsiu-Mei Huang, Ulrich Rauch, and Shu-Sheng Liaw. 2010. Investigating learners’ attitudes toward virtual reality learning environments: Based
154
+ on a constructivist approach. Computers & Education 55, 3 (2010), 1171–1182.
155
+ [10] Filip Jaskiewicz, Krystyna Frydrysiak, Katarzyna Starosta-Głowinska, and Dariusz Timler. 2019.
156
+ The applicability of virtual reality in car-
157
+ diopulmonary resuscitation training – opinion of medical professionals and students.
158
+ Emergency Medical Service 6 (March 2019), 32–36.
159
+ https://doi.org/10.36740/EmeMS201901103
160
+ [11] Joshua Benjamin Kaplan, Aaron L Bergman, Michael Christopher, Sarah Bowen, and Matthew Hunsinger. 2017. Role of resilience in mindfulness
161
+ training for first responders. Mindfulness 8, 5 (2017), 1373–1380.
162
+ [12] Hannes Götz Kenngott, Anas Amin Preukschas, Martin Wagner, Felix Nickel, Michael Müller, Nadine Bellemann, Christian Stock, Markus Fangerau,
163
+ Boris Radeleff, Hans-Ulrich Kauczor,et al. 2018. Mobile, real-time, and point-of-care augmented reality is robust, accurate,and feasible:a prospective
164
+ pilot study. Surgical endoscopy 32, 6 (2018), 2958–2967.
165
+ [13] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. 1995. Augmented reality: A class of displays on the reality-virtuality continuum.
166
+ In Telemanipulator and telepresence technologies, Vol. 2351. International Society for Optics and Photonics, 282–292.
167
+ [14] Felix Nickel, Julia A Brzoska, Matthias Gondan, Henriette M Rangnick, Jackson Chu, Hannes G Kenngott, Georg R Linke, Martina Kadmon, Lars
168
+ Fischer, and Beat P Müller-Stich. 2015. Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled
169
+ trial with laparoscopic novices. Medicine 94, 20 (2015).
170
+ [15] Federica Pallavicini, Luca Argenton, Nicola Toniazzi, Luciana Aceti, and Fabrizia Mantovani. 2016. Virtual reality applications for stress manage-
171
+ ment training in the military. Aerospace medicine and human performance 87, 12 (2016), 1021–1030.
172
+ 4
173
+
NtFPT4oBgHgl3EQfmDWp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf,len=170
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
3
+ page_content='13124v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
4
+ page_content='CY] 30 Jan 2023 MED1stMR: Mixed Reality to Enhance the Training of Medical First Responders for Challenging Contexts HELMUT SCHROM-FEIERTAG, GEORG REGAL, and MARKUS MURTINGER, AIT Austrian Insti- tute of Technology, Vienna 1 INTRODUCTION Mass-casualty incidents with a large number of injured persons caused by human-made or by natural disasters are increasing globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
5
+ page_content=' In such situations, medical first responders (MFRs) need to perform diagnosis, basic life support, or other first aid to help stabilize victims and keep them alive to wait for the arrival of further support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
6
+ page_content=' Situational awareness and effective coping with acute stressors are essential [5] to enable first responders to take appropriate action that saves lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
7
+ page_content=' Such tasks are particularly challenging for first responders, that lack the special training to act optimally in these situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
8
+ page_content=' Increasingly severe consequences of natural disasters and terrorist threats will expand the occurrence probability of such stressful and demanding situations and require the development and deployment of innovative technological solutions adapted to the (cross-sectoral) needs of first responders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
9
+ page_content=' In that context, the adage “practice makes perfect” is well-fitting to situational training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
10
+ page_content=' Lectures, books, videos, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
11
+ page_content=' are no substitute for hands-on experiences, and humans often learn more from their mistakes than from their successes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
12
+ page_content=' Unfortunately, it is difficult to provide such training for large-scale emergency medicine or in dangerous conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
13
+ page_content=' Current training of medical first responders often happens through live exercises: medics practice stabilisation and wound care via moulage, a training exercise where live persons are given highly realistic “fake” wounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
14
+ page_content=' The drawback of such training is the large effort needed to create such live training exercises (a large number of ‘victim actors’ needed, availability of infrastructure, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
15
+ page_content=') and the lack of realistic treatments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
16
+ page_content=' Hence, such training or exercises are not executed very often and sometimes also fail to create “real” stressful and demanding environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
17
+ page_content=' Virtual Reality (VR) has already been demonstrated in several domains to be a serious alternative, and in some areas also a significant improvement to conventional learning and training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
18
+ page_content=' Especially for the challenges in the training of MFRs, it can be highly useful for practising and learning domains where the context of the training is not easily available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
19
+ page_content=' VR training offers controlled, easy-to-create environments that can be created and trained repeatedly under the same conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
20
+ page_content=' This repetition makes it possible to master a new skill or process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
21
+ page_content=' Like in real-life training, trainees are transformed into active users who need to be physically and mentally engaged to evaluate the situation, take appropriate measures and act accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
22
+ page_content=' There are two types of VR medical training systems realised up to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
23
+ page_content=' Systems centred on teaching direct physical skills and procedures e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
24
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
25
+ page_content=' surgery (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
26
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
27
+ page_content=' [7], [10], [14], [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
28
+ page_content=' Those usually employ highly sophisticated hardware user interfaces providing realistic haptic feedback or/and mimicking real devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
29
+ page_content=' On the other end of the spectrum, there are VR systems helping the trainee to develop psychological skills required in real-world scenarios (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
30
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
31
+ page_content=' [15], [11]) and in particular decision training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
32
+ page_content=' However, these approaches are currently rather disjunct and do not allow to train decision-making under stress together with physical skill scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
33
+ page_content=' Also, other medical tasks or preclinical routines in patient care and treatment are not yet covered by haptic solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
34
+ page_content=' Training medical skills are about vision and haptics for tangible interaction, and if a simulation has only one of those two, it will provide only half of the experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
35
+ page_content=' 1 Schrom-Feiertag, Regal and Murtinger 2 VISION OF THE PROJECT MED1STMR As an advanced alternative to VR, Mixed Reality (MR) environments have the potential to augment current VR training by providing a dynamic simulation of an environment and hands-on practice on injured victims.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
36
+ page_content=' There are several interpretations of MR, one is that the real environment is augmented by digital objects, another is that physical objects are integrated into the VR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
37
+ page_content=' In our vision, MR is to be considered as the latter interpretation with a fully digital environment, where the user sees a fully digital environment without looking at the real world, but this digital environment is connected to real physical objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
38
+ page_content=' This VR-based mixed reality is also called augmented virtuality (AV) according to [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
39
+ page_content=' Building on this interpretation of MR, the main aim of MED1stMR is to develop a new generation of MR training with haptic feedback for enhanced realism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
40
+ page_content=' To this end, we will pursue the following pioneering concepts: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
41
+ page_content='1 Integration of high-fidelity patient simulation manikins for enhanced realism Evidence shows that the use of VR is useful when the training domain is complex and difficult to master (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
42
+ page_content=' [9], [2]) and when the audio-visual features assisted by haptic feedback of the training environment are crucial to the overall training success (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
43
+ page_content=' [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
44
+ page_content=' This makes virtual environments the solution for practising and learning domains where the context of the training is not easily available or replicable due to security and safety issues (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
45
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
46
+ page_content=' [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
47
+ page_content=' It allows creating easily a diverse range of training scenarios tailored to the training goals and needs (single user vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
48
+ page_content=' teams, from single to many people injured in large incidents, influence of psychological and contextual factors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
49
+ page_content=' Through the integration of high-fidelity patient simulation manikins and medical equipment into the MR experience, MED1stMR offers a much richer sensory experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
50
+ page_content=' This MR training environment allows trainees to immerse into virtual scenarios and be able to feel and perceive actual movements of the limbs, head, and face through tactile and visual interaction as they are actuated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
51
+ page_content=' Furthermore, it enables systematic manipulation of a large set of potential influence factors in order to optimise training effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
52
+ page_content=' This will bring virtual training closer to reality and enable both scenario training and medical training in the same MR training environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
53
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
54
+ page_content='2 Biosignal feedback loop and smart scenario control to enhance effectiveness of MR training The wireless integration of wearables in MR training environments is emerging (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
55
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
56
+ page_content=', [8]) and particularly in the train- ing of highly demanding skills such as piloting/aviation, medical surgeries (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
57
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
58
+ page_content=', [4]) or first responders (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
59
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
60
+ page_content=', [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
61
+ page_content=' In order to better support, assist and personalise MFRs training, we will integrate wearable technology for moni- toring trainees’ physiological data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
62
+ page_content=' Smart electronic devices can detect and transmit information regarding biosignals, informing on trainees’ physiological status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
63
+ page_content=' Monitoring these signals will provide the detection of physical and psy- chological strain and stress during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
64
+ page_content=' This will provide information for the debriefing sessions and can be used for real-time scenario control through the trainer (manual control) or automatically by the training system through artificial intelligence-based adaptive smart scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
65
+ page_content=' The data on trainee state and behaviour can then be used to constitute a feedback loop for personalising and adapting training to the trainees’ needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
66
+ page_content=' Such a system can automatically adjust the scenarios according to the stress level of the trainee, for example, low stress increases the difficulty of the scenario and allows longer and more complex scenarios to be trained without the intervention of a trainer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
67
+ page_content=' 2 MED1stMR: Mixed Reality to Enhance Training of Medical First Responder 3 OUR MOTIVATION The development of such a training system for MFRs requires research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
68
+ page_content=' expertise,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
69
+ page_content=' and knowledge in the areas of medical research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
70
+ page_content=' biosensors,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
71
+ page_content=' and wearable technologies,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
72
+ page_content=' human factors research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
73
+ page_content=' psychology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
74
+ page_content=' physiological research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
75
+ page_content=' technology experience,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
76
+ page_content=' user research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
77
+ page_content=' VR/MR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
78
+ page_content=' and medical training simulation development to answer all the questions that arise in order to develop an optimal training system for MFRs: How can haptic feedback for training medical skills on victims be provided for MFRs?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
79
+ page_content=' Which scenarios and use cases are most suitable for MR training and deliver the greatest benefits?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
80
+ page_content=' How can effective MR training scenarios be developed?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
81
+ page_content=' How effective are such training approaches, how good is the learning progress and how does it compare to real-world training?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
82
+ page_content=' How should a MR training curriculum be designed and merged with existing training curricula?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
83
+ page_content=' What about the costs for the training system and does the benefit justify the effort?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
84
+ page_content=' 4 OUR CONTRIBUTION TO THE WORKSHOP MED1stMR develop a MR training system based on a combination of VR environment and the integration of VR- enabled manikins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
85
+ page_content=' With this new training environment, MED1stMR delivers a training platform for collaborative multi- user training to train the medical skills of MFRs as well the decision-making abilities in disaster situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
86
+ page_content=' In the project, the training is designed for teams of up to four people to enable emergency teams to train together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
87
+ page_content=' The technological basis is the Refense trainings platform (www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
88
+ page_content='refense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
89
+ page_content='com) that allows up to 10 users on an area of 11 x 20 meters to immerse themselves into a realistic common shared scenario, see each other in real time with full-body VR tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
90
+ page_content=' A trainer can also be included as an invisible observer in the training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
91
+ page_content=' Every movement and voice spoken are recorded for debriefing of team collaboration and actions taken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
92
+ page_content=' The inclusion of manikins as tangible objects as learning support provides a more realistic experience and enables novel possibilities for hands-on tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
93
+ page_content=' The basis will build the ADAM- X manikin (https://medical-x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
94
+ page_content='com/product/adam-x/) and will be advanced to a fully functional touch-enabled human manikin designed for practising skills in trauma emergency situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
95
+ page_content=' The goal of the MED1stMR training solution is to train the situation awareness and the procedure in the first and second triage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
96
+ page_content=' The realisation of a biosignal feedback loop with body sensors allows to monitor trainee (stress, anxiety, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
97
+ page_content=') states and behaviours of MFRs during training and will make this data available for scenario control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
98
+ page_content=' For this purpose, heart rate variability is measured as one of the most reliable indicators of stress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
99
+ page_content=' The trainer can adapt training to the personal needs of trainees and provides a new way of interaction between trainer and trainee and requires an appropriate user interface for support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
100
+ page_content=' A key point in MED1stMR is to examine the effectiveness of training for the different roles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
101
+ page_content=' To increase the effective- ness of the training, the simple repetition of the training scenarios as well as the recording of all movements, activities and communication during the training for the debriefing play an important role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
102
+ page_content=' The presentation of our project is in- tended to provide an insight into our approach and to open up an exchange of experiences with other people, projects, research, and developments and also to get an impression of how the topics are received, what others are doing in this field and where further and interesting research topics lie in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
103
+ page_content=' We can contribute existing knowledge to the workshop and discuss with the other participants’ challenges and help to set up a future research agenda for collaborative multi-user VR training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
104
+ page_content=' 3 Schrom-Feiertag, Regal and Murtinger ACKNOWLEDGEMENTS The project MED1stMR has received funding from the European Union’s Horizon 2020 Research and Innovation Pro- gramme under grant agreement No 101021775.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
105
+ page_content=' The content reflects only the MED1stMR consortium’s view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
106
+ page_content=' Research Executive Agency and European Commission is not liable for any use that may be made of the information contained herein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
107
+ page_content=' REFERENCES [1] Andrea F Abate, Mariano Guida, Paolo Leoncini, Michele Nappi, and Stefano Ricciardi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
108
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
109
+ page_content=' A haptic-based approach to virtual training for aerospace industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
110
+ page_content=' Journal of Visual Languages & Computing 20, 5 (2009), 318–325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
111
+ page_content=' [2] Cyril Bossard, Gilles Kermarrec, Cédric Buche, and Jacques Tisseau.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
112
+ page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
113
+ page_content=' Transfer of learning in virtual environments: a new challenge?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
114
+ page_content=' Virtual Reality 12, 3 (2008), 151–161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
115
+ page_content=' [3] Meredith Carroll, Mitchell Ruble, Mark Dranias,Summer Rebensky, Maria Chaparro, Joanna Chiang, and Brent Winslow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
116
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
117
+ page_content=' Automatic detection of learner engagement using machine learning and wearable sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
118
+ page_content=' Journal of Behavioral and Brain Science 10, 3 (2020), 165–178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
119
+ page_content=' [4] Jonathan Currie, Raymond R Bond, Paul McCullagh, Pauline Black, Dewar D Finlay, Stephen Gallagher, Peter Kearney, Aaron Peace, Danail Stoy- anov, Colin D Bicknell, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
120
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
121
+ page_content=' Wearable technology-based metrics for predicting operator performance during cardiac catheterisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
122
+ page_content=' Inter- national journal of computer assisted radiology and surgery 14, 4 (2019), 645–657.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
123
+ page_content=' [5] Marie Ottilie Frenkel, Laura Giessing, Sebastian Egger-Lampl, Vana Hutter, Raoul RD Oudejans, Lisanne Kleygrewe, Emma Jaspaert, and Henning Plessner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
124
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
125
+ page_content=' The impact of the COVID-19 pandemic on European police officers: Stress, demands, and coping resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
126
+ page_content=' Journal of Criminal justice 72 (2021), 101756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
127
+ page_content=' [6] Andrzej Grabowski and Jarosław Jankowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
128
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
129
+ page_content=' Virtual reality-based pilot training for underground coal miners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
130
+ page_content=' Safety science 72 (2015), 310–314.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
131
+ page_content=' [7] Cuan M Harrington, Dara O Kavanagh, John F Quinlan, Donncha Ryan, Patrick Dicker, Dara O’Keeffe, Oscar Traynor, and Sean Tierney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
132
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
133
+ page_content=' Development and evaluation of a trauma decision-making simulator in Oculus virtual reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
134
+ page_content=' The American Journal of Surgery 215, 1 (2018), 42–47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
135
+ page_content=' [8] ByronHavardand Megan Podsiad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
136
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
137
+ page_content=' A meta-analysisof wearablesresearchin educational settings published 2016–2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
138
+ page_content=' Educational Technology Research and Development 68, 4 (2020), 1829–1854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
139
+ page_content=' [9] Hsiu-Mei Huang, Ulrich Rauch, and Shu-Sheng Liaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
140
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
141
+ page_content=' Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
142
+ page_content=' Computers & Education 55, 3 (2010), 1171–1182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
143
+ page_content=' [10] Filip Jaskiewicz, Krystyna Frydrysiak, Katarzyna Starosta-Głowinska, and Dariusz Timler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
144
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
145
+ page_content=' The applicability of virtual reality in car- diopulmonary resuscitation training – opinion of medical professionals and students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
146
+ page_content=' Emergency Medical Service 6 (March 2019), 32–36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
147
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
148
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
149
+ page_content='36740/EmeMS201901103 [11] Joshua Benjamin Kaplan, Aaron L Bergman, Michael Christopher, Sarah Bowen, and Matthew Hunsinger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
150
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
151
+ page_content=' Role of resilience in mindfulness training for first responders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
152
+ page_content=' Mindfulness 8, 5 (2017), 1373–1380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
153
+ page_content=' [12] Hannes Götz Kenngott, Anas Amin Preukschas, Martin Wagner, Felix Nickel, Michael Müller, Nadine Bellemann, Christian Stock, Markus Fangerau, Boris Radeleff, Hans-Ulrich Kauczor,et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
154
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
155
+ page_content=' Mobile, real-time, and point-of-care augmented reality is robust, accurate,and feasible:a prospective pilot study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
156
+ page_content=' Surgical endoscopy 32, 6 (2018), 2958–2967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
157
+ page_content=' [13] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
158
+ page_content=' 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
159
+ page_content=' Augmented reality: A class of displays on the reality-virtuality continuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
160
+ page_content=' In Telemanipulator and telepresence technologies, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
161
+ page_content=' 2351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
162
+ page_content=' International Society for Optics and Photonics, 282–292.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
163
+ page_content=' [14] Felix Nickel, Julia A Brzoska, Matthias Gondan, Henriette M Rangnick, Jackson Chu, Hannes G Kenngott, Georg R Linke, Martina Kadmon, Lars Fischer, and Beat P Müller-Stich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
164
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
165
+ page_content=' Virtual reality training versus blended learning of laparoscopic cholecystectomy: a randomized controlled trial with laparoscopic novices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
166
+ page_content=' Medicine 94, 20 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
167
+ page_content=' [15] Federica Pallavicini, Luca Argenton, Nicola Toniazzi, Luciana Aceti, and Fabrizia Mantovani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
168
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
169
+ page_content=' Virtual reality applications for stress manage- ment training in the military.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
170
+ page_content=' Aerospace medicine and human performance 87, 12 (2016), 1021–1030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
171
+ page_content=' 4' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NtFPT4oBgHgl3EQfmDWp/content/2301.13124v1.pdf'}
PdFIT4oBgHgl3EQfeytv/content/tmp_files/2301.11276v1.pdf.txt ADDED
@@ -0,0 +1,634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BayesSpeech: A Bayesian Transformer Network for
2
+ Automatic Speech Recognition
3
+ Will Rieger
4
+ Master of Science in Computer Science
5
+ Department of Computer Science
6
+ The University of Texas at Austin
7
+ Abstract
8
+ Recent developments using End-to-End Deep Learning models have
9
+ been shown to have near or better performance than state of the art
10
+ Recurrent Neural Networks (RNNs) on Automatic Speech Recognition
11
+ tasks. These models tend to be lighter weight and require less training
12
+ time than traditional RNN-based approaches. However, these models take
13
+ frequentist approach to weight training. In theory, network weights are
14
+ drawn from a latent, intractable probability distribution. We introduce
15
+ BayesSpeech for end-to-end Automatic Speech Recognition. BayesSpeech
16
+ is a Bayesian Transformer Network where these intractable posteriors are
17
+ learned through variational inference and the local reparameterization
18
+ trick without recurrence. We show how the introduction of variance in
19
+ the weights leads to faster training time and near state-of-the-art perfor-
20
+ mance on LibriSpeech-960.
21
+ 1. Introduction
22
+ In the majority of neural networks, randomness is usually introduced through perturbation
23
+ of the input or randomly removing nodes from the network (Hinton et al., 2012). There
24
+ has been great success using these methods across a variety of domains including Automatic
25
+ Speech Recognition (Park et al., 2019).
26
+ Models continue to evolve.
27
+ However and data
28
+ augmentation methods rarely take large leaps in terms of the features they can help express.
29
+ Newer models are generally larger and larger and require incredible amounts of compute to
30
+ properly train. We especially see this in the field of Automatic Speech Recognition. Newer
31
+ models such as Jasper (Li et al., 2019), the Conformer (Gulati et al., 2020), LAS (Chan et
32
+ al., 2016), and the Transformer (Vaswani et al., 2017) all require training for multiple days
33
+ across multiple GPUs. Creating deeper models can certainly help attain better performance
34
+ on the domain task. But what if we approach the model differently and try to leverage their
35
+ probabilistic nature?
36
+ 1
37
+ arXiv:2301.11276v1 [eess.AS] 16 Jan 2023
38
+
39
+ Most Neural Network models take a frequentist approach to model training. As you in-
40
+ troduce non-linearities and apply gradient methods to solving these optimization problems,
41
+ we become less and less likely to know we have reached a true minima.
42
+ In theory, our
43
+ true weights are drawn from an intractable prior distribution. If we approach the problem
44
+ through a Bayesian lens, we can better contextualize our model’s output and weights on the
45
+ input data. Using variational inference techniques, we can design a network whose weights
46
+ are drawn from a learnable, tractable posterior. We present BayesSpeech; a Bayesian Trans-
47
+ former Network for End-to-End Automatic Speech recognition where feed forward layers are
48
+ contextualized with probability distributions.
49
+ 2. Background
50
+ 2.1 Automatic Speech Recognition
51
+ Automatic Speech Recognition models have been evolving rapidly in recent years. Models
52
+ can either be sub-domain specific and focus on speech representation (Mohamed et al., 2012)
53
+ (Lee et al., 2009) (Conneau et al., 2020) (Devlin et al., 2018) (Schneider et al., 2019) (Chung
54
+ et al., 2019) (Maas, 2013) (Baevski et al., 2020) attention (Vaswani et al., 2017) (Chorowski
55
+ et al., 2015) (Conneau et al., 2020) or be end-to-end and incorporate the aforementioned
56
+ components into one model and jointly train them.
57
+ 2.1.1 Connectionist Transporal Classification
58
+ In order to jointly train end-to-end model including alignment, and encoding/decoding the
59
+ input/output sequence, Connectionist Transporal (CTC) Loss can be used to better manage
60
+ the alignments (Graves et al., 2006). Alignment of the input and output sequence becomes
61
+ especially challenging in speech recognition tasks as the input sequence is generally longer
62
+ than the output sequence. CTC Loss aids this process by penalizing models based on the
63
+ joint probability of the current token in the sequence and all other tokens predicted.
64
+ For decoders that only output set-length sequences, we can further augment the CTC loss
65
+ by utilizing traditional Cross Entropy loss on the predictions (Hori et al., 2017). By enabling
66
+ a joint CTC and Cross Entropy (CE) loss function we not only penalize characters based on
67
+ their sequence but also on their absolute positioning in the output. This is covered further
68
+ in Section 3.2.2.
69
+ 2.1.2 Models for End-to-End Speech Recognition
70
+ End-to-End Speech recognition models combine all of the individual aspects of Automatic
71
+ Speech Recognition into one model that is trained jointly. Traditional models rely on RNNs,
72
+ 2
73
+
74
+ LSTMs, and generally recurrences for defining the output sequence (Liu et al., 2022)(Chan
75
+ et al., 2016). These models are cumbersome to train and parallelize and create additional
76
+ operational hurdles in properly tuning.
77
+ Recently, new models involving convolutions and linear outputs have been used within
78
+ Encoder-Decoder frameworks for end-to-end speech recognition tasks. These models such as
79
+ Jasper (Li et al., 2019), Conformer (Gulati et al., 2020), and Transformer (Dong et al., 2018)
80
+ are huge models with one billion or more parameters relying on feed-forward architectures.
81
+ The three models were all trained for multiple days on multiple GPUs and required incred-
82
+ ible compute power. The Speech-Transformer model (Dong et al., 2018) tried to address
83
+ these issues by creating a thinner model to yield similar performance on the WSJ dataset.
84
+ However, compared to its larger counterparts, it did not have the same performance charac-
85
+ teristics. Although it did lend hope that smaller models could be trained to compete with
86
+ their larger counterparts.
87
+ 2.2 Bayesian Methods
88
+ Bayesian models have begun to show further promise in multiple fields such as Image Recog-
89
+ nition (Blundell et al., 2015), attention mechanisms (Zhang et al., 2021) (Fan et al., 2020),
90
+ and auto-encoders (Kingma & Welling, 2013). In a Bayesian approach, networks weights
91
+ are samples from an intractable distribution which we can estimate over training iterations
92
+ through Variational Inference.
93
+ 2.2.1 Variational Inference
94
+ Variational Inference (VI) is the estimation of an intractable distribution through minimiz-
95
+ ing the Kullback-Lieblier divergence (DKL) between a sample and some true distribution.
96
+ Different works have shown that these estimation methods have value when applied to a
97
+ Bayesian Neural Network (Graves, 2011) (Kingma & Welling, 2013). There are two different
98
+ approaches to VI that largely depend on the what the true distribution is believed to be. If
99
+ the true prior can be any distribution Monte-Carlo sampling is the only option for estimating
100
+ the gradient from DKL. When using MC sampling, a network is sampled multiple times for
101
+ the same input and the gradients are averaged together across the number of samples.
102
+ If the prior is generally assumed to be Gaussian, the KL Divergence can be explicitly calcu-
103
+ lated and the Local Reparameterization Trick (Kingma et al., 2015) can be used for finding
104
+ the gradient with just one sample. This is discussed further in Section 3.1.4.
105
+ 3
106
+
107
+ 2.2.2 Bayes by Backprop
108
+ Blundell et al.
109
+ introduced the Bayes by Backprop algorithm for jointly learning the in-
110
+ tractable distribution as well as a domain problem in a Bayesian Neural Network. They
111
+ introduce the joint loss function in two parts:
112
+ 1. Weighting the KL Divergence of the model against the epoch
113
+ 2. Creating an Evidence Lower Bound (ELBO) on the loss function for the purpose of
114
+ training
115
+ We discuss the weighting of the KL Divergence loss term over time in Section 3.2.1. The
116
+ introduction of ELBO loss serves as the method for tuning an efficient approximator for
117
+ the Maximum Likelihood given an a-posteriori inference of the parameters. Because we are
118
+ always sampling from an intractable distribution, the KL divergence term can be thought
119
+ of as a regularization constant on the network. Over time, the KL divergence impact on
120
+ loss will encourage the approximate posterior to be close to the true prior.
121
+ While not
122
+ readily apparent, ELBO loss is implicitly involved in the loss function described in Section
123
+ 3.2.3.
124
+ 3. Research & Methods
125
+ As introduced above, sampling network weights (Bayesian approach) rather than explicitly
126
+ defining them (frequentist approach) has been shown to have increased performance and
127
+ faster convergence times. Our goal is to produce a network, leveraging Bayesian layers, to
128
+ compete with state-of-the-art models and require less training time. BayesSpeech, is largely
129
+ based on the no-recurrence model, the Transformer (Vaswani et al., 2017). While we leverage
130
+ the model’s general architecture, we introduce modified Encoder and Decoder layers with
131
+ Bayesian, Pointwise Feed Forward sub-layers. In this section, we explore the core components
132
+ of the model, the model’s architecture, and a new training methodology for an ensemble loss
133
+ function.
134
+ 3.1 Core Components
135
+ 3.1.1 Attention Mechanisms
136
+ Part of Vaswani et al.’s Transformer (Vaswani et al., 2017) network was the introduction
137
+ of Scaled Dot-Product attention and, further, Multi-Headed Attention. The goal of these
138
+ mechanisms is to generate a temporal-rich representation of the inputs by attending to
139
+ different positions within the input sequence. An attention function maps a query (or set
140
+ of queries) in a matrix, Q, and a set of key-value pairs in matrices, K, V , to the input
141
+ 4
142
+
143
+ sequence.
144
+ Scaled Dot-Product Attention first takes the softmax of the matrix multiplication of Q, K.
145
+ Then it matrix multiplies that value with V and normalizes by √dk (the dimension of the
146
+ keys, K) (Equation 1). The normalization by the key size is used to prevent the softmax
147
+ function from suffering the vanishing gradient problem.
148
+ Attention(Q, K, V ) = Softmax(QKT
149
+ √dk
150
+ )V
151
+ (1)
152
+ Scaled Dot-Product attention only performs a single attention function at a time. Multi-Head
153
+ Attention addresses this by linearly projecting the queries, keys, and values h times to each of
154
+ the input dimensions (dq, dk, dv, respectively). Then Scaled Dot-Product attention is applied
155
+ to these newly projected inputs in order to attend across the h different ”heads” (Equation
156
+ 2).
157
+ Each headi is equal to Attention(QW Q
158
+ i , KW K
159
+ i , V W V
160
+ i ).
161
+ This way the model jointly
162
+ attends different input representations across the different subspaces introduced through the
163
+ projection.
164
+ MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O
165
+ (2)
166
+ 3.1.2 Sinusoidal Positional Encoding
167
+ Because the model does not have recurrence or convolutions, in order to make use of the
168
+ temporal attentions from the Multi-Head modules, position information about the position of
169
+ the tokens in the sequence must be introduced (Vaswani et al., 2017). Positional Encodings
170
+ are used in the both the Encoder and Decoder modules to align each module’s outputs and
171
+ allow them to be summed. The model leverages Sinusoidal embeddings (Equation 3) where
172
+ the frequency corresponds to the token position (pos) and the dimension (i). Vaswani et al.
173
+ hypothesize that using this encoding function will make it easy for the model to learn the
174
+ attention weights for relative positions and adapt for longer sequences.
175
+ PositionalEmbedding(pos,i) =
176
+
177
+
178
+
179
+ sin(pos/10000
180
+ 2i
181
+ dmodel )
182
+ if i < dmodel
183
+ 2
184
+ cos(pos/10000
185
+ 2i
186
+ dmodel )
187
+ if i ≥ dmodel
188
+ 2
189
+ (3)
190
+ 3.1.4 Proposal: Bayesian, Positionwise Feed Forward Layer
191
+ Our primary proposal, is the Bayesian, Positionwise Feed Forward Layer (Figure 1). Rather
192
+ than use two linear layers with dropout, we substitute the input layer with a Bayesian Linear
193
+ Layer suplemented with the Local Reparameterization Trick (Bayes Linear LRT) (Kingma
194
+ 5
195
+
196
+ et al., 2015) and remove the dropout. Other approaches to producing Bayesian components
197
+ rely on sampling the same input sequence multiple times from a Monte-Carlo process in order
198
+ to define an average gradient for modeling the intractable posterior (Blundell et al., 2015).
199
+ In addition to being computationally expensive, this can also lead to high variance in the
200
+ gradients increasing training time. The Local Reparameterization Trick addresses this by
201
+ assuming that both the prior and posterior are Gaussian. Using only a single sample, the KL
202
+ divergence between the estimators can be explicitly solved for. This new estimator is efficient
203
+ (as it has less computational complexity) and reduces the variance in the gradient.
204
+ For each Bayesian Layer in Figure 1, let din, dout be the input and output dimensions of the
205
+ layer, respectiveley. We define matrices Wµ ∈ RdoutXdin and Wρ ∈ RdoutXdin representing the
206
+ mean and variance scalar for each weight in the network. Similarly we have bias vectors for
207
+ the output of Wµ and Wρ defined as bµ ∈ Rdout and bρ ∈ Rdout, respectively. Finally, at each
208
+ iteration we sample a term from a standard Gaussian, ϵ ∼ N(0, 1).
209
+ In order to calculate the output of the layer, we define a function for explicitly calculating
210
+ the KL divergence when the prior and posterior are both Gaussian (Equation 4). The prior
211
+ is represented by p and posterior represented by q. A sum is taken over all elements in the
212
+ input matrices.
213
+ KLD(µp, σp, µq, σq) = 1
214
+ 2
215
+
216
+ (2 log(σp
217
+ σq
218
+ ) − (1 + (σp
219
+ σq
220
+ )2) + (µp − µq
221
+ σp
222
+ )2)
223
+ (4)
224
+ In the forward pass of the algorithm, we first must use our variance parameter ρ for estimating
225
+ our standard deviation of weight and biases (Equation 5). The same applies for the bias
226
+ Figure 1: Bayesian, Positionwise Feed Forward Layer Diagram
227
+ 6
228
+
229
+ Activation (GELU
230
+ Bayes Linear LRT
231
+ Linearvector b (e.g. we arrive at a bσ using bρ).
232
+ Wσ = log(1 + eWρ)
233
+ (5)
234
+ Next we sample from our Gaussian and introduce variance in the weights and biases for the
235
+ input sequence X (Equation 6, Equation 7).
236
+ Wout = XW T
237
+ µ +
238
+
239
+ (W 2
240
+ σ)TX ∗ ϵ
241
+ (6)
242
+ bout = XbT
243
+ µ + bσ ∗ ϵ
244
+ (7)
245
+ Then we calculate the KL divergence between our estimated posteriors and true priors for
246
+ the weights and biases: WKL = KLD(0, 1, Wµ, Wσ) and bKL = KLD(0, 0.1, bµ, bσ). Finally,
247
+ the forward computation sets a global KL divergence term (KL = WKL + bKL) and returns
248
+ Wout+bout. The KL divergence term is used in the join loss function for tuning our variational
249
+ posterior.
250
+ 3.1.4 Encoder Feature Extraction
251
+ Although the original Transformer architecture does not involve any convolutions, recent
252
+ work in the Image Recognition domain ((Simonyan & Zisserman, 2014)) has lent itself useful
253
+ for sequence-to-sequence ASR tasks (Hori et al., 2017). The modified VGG Network from
254
+ (Hori et al., 2017) is used in the Encoder to further enhance in the input feature set drawing
255
+ ideas from unsupervised speech representation tasks as seen in (Chung et al., 2019), (Lee et
256
+ al., 2009), and (Mohamed et al., 2012). The output from this initial convolutional layer is
257
+ passed to the encoder layers in the final network.
258
+ 3.1.5 BayesSpeech Model
259
+ Putting this together, we arrive at our final model architecture (Figure 2). The model passes
260
+ the input through an Encoder (Figure 2a) and then passes the encoder output through a
261
+ Decoder (Figure 2b). In our model, we use 12 encoder block layers (de = 12) and 6 decoder
262
+ block layers (dd = 6). These 18 inner layers contain a Mutli-Head attention block as well as
263
+ a Bayesian Position-wise Feed Forward block. The model has a dimension of 512 and a feed
264
+ forward dimension of 2148.
265
+ 3.2 Model Training
266
+ In order to train our transformer model, we utilize a variation of the Bayes-By-Backprop
267
+ algorithm (Blundell et al., 2015) with a joint Connectionist Temporal Classification and
268
+ 7
269
+
270
+ (a) BayesSpeech Encoder
271
+ (b) BayesSpeech Decoder
272
+ Figure 2: BayesSpeech Encoder and Decoder Diagrams
273
+ Cross Entropy loss function (Joint CTC, CrossEntropy Loss). The two-stage training is
274
+ meant to:
275
+ 1. further tune the sampling mechanics for the variational posterior distribution the
276
+ weights are drawn from
277
+ 2. and learn the temporal alignments and classification loss of the output tokens.
278
+ We have found that trying to optimize each component separately leads to over-fitting in
279
+ one of the domains of this problem. If we choose a large step size and seek to minimize
280
+ the aggregate KL divergence across the Bayesian layers, we cannot further learn the align-
281
+ ments. And if we choose a small step-size and learn the alignments, we introduce too much
282
+ randomness in the output for our results to be meaningful. Therefore we introduce a scal-
283
+ ing function, similar to the one in Bayes-by-Backprop for managing the tradeoff over epoch
284
+ iterations (Minibatch Weighting). Our model was trained on the LibriSpeech-960 dataset
285
+ (Panayotov et al., 2015). The utterances in the dataset were converted to Mel Spectrogram
286
+ form with 80 channels a width of 20ms and a stride of 10ms.
287
+ 3.2.1 Tuning Variational Posterior
288
+ The Bayesian part of our model tries to fit a variational posterior distribution (qθ) to a true
289
+ intractable posterior (p) for each of the weights in the network. In order to do so, we reduce
290
+ the problem of fitting qθ to that of a Minimum Description Length (MDL) problem (Hinton &
291
+ van Camp, 1993a) (Rissanen, 1978) (Hinton & van Camp, 1993b). While we have introduced
292
+ the explicit calculation of the Kullback-Leibler divergence between our variational posterior
293
+ and true prior above (DKL(qθ||p)), it is important to conceptualize the divergence as the
294
+ 8
295
+
296
+ VGG Extractor
297
+ Linear
298
+ Norm
299
+ Sinusoidal Encoding
300
+ Dropout
301
+ Layer Norm
302
+ Multi-Head Attention
303
+ x de
304
+ Encoder Layer(s)
305
+ Bayesian Position-wise
306
+ Feed Forward
307
+ Norm
308
+ LinearEmbedding
309
+ Sinusoidal Encoding
310
+ Layer Norm
311
+ Multi-Head Attention
312
+ Dropout
313
+ Layer Norm
314
+ C
315
+ xdd
316
+ Decoder Layer(s)
317
+ Multi-Head Attention
318
+ Layer Norm
319
+ Norm
320
+ Bayesian Position-wise
321
+ Linear
322
+ Feed ForwardMDL problem.
323
+ The Minimum Description Length principal is that the best model for a given dataset bal-
324
+ ances the tradeoff between describing the model and describing the misfit between the model
325
+ and the data (Hinton & van Camp, 1993b). The KL divergence criteria we use has the goal
326
+ of keeping weights simple by penalizing the amount of information they contain. Ultimately,
327
+ this methodology will lead to a better separation between prediction accuracy and model
328
+ complexity and is explicitly differentiable (Graves, 2011). The variational loss function used
329
+ has two parts:
330
+ 1. Error Loss - the expected value of negative log probability in samples from qθ(β) (where
331
+ β are the model’s parameters)
332
+ 2. Complexity Loss - the KL divergence between the tractable, variational posterior and
333
+ the parameterized prior, DKL(qθ(β)||pα).
334
+ In each batch, we seek to gently tune our model’s variational posterior (qθ) to continue
335
+ random sampling but isolate different weights that have different levels of kurtosis. Due to
336
+ the minibatch weighting, discussed in a later section, we see a consistent decline in the joint
337
+ loss value dominated by the KL divergence term (blue, Figure 3b). Blundell et al. also show
338
+ that using this relative kurtosis can create thinner models with an explicit scheme for weight
339
+ pruning. Weights that are more leptokurtic are kept while platykurtic ones are discarded.
340
+ While this is beyond the scope of this paper, it would present and interesting future research
341
+ case for the model presented.
342
+ (a) CTC Loss Over Training Iterations
343
+ (b) Joint (Blue) and Scaled (Red) Loss Over Time
344
+ Figure 3: Loss Functions over Training Iterations
345
+ 9
346
+
347
+ CTCLossOverEpochs
348
+ CTC LoSS
349
+ CTCLoss(Smooth)
350
+ 4.0
351
+ 3.5
352
+ 3.0
353
+ 2.5
354
+ 2.0
355
+ 1.5
356
+ 0
357
+ 1000
358
+ 2000
359
+ 3000
360
+ 4000
361
+ Training IterationComparisonofScaledandJointLoss
362
+ 1e7
363
+ 1e7
364
+ 7
365
+ 7.57
366
+ 6
367
+ 7.56
368
+ Scaled Loss (Red)
369
+ Joint Loss (Blue)
370
+ 5
371
+ 4
372
+ 7.55
373
+ 3
374
+ 7.54
375
+ 2
376
+ 1
377
+ 7.53
378
+ 0
379
+ 1000
380
+ 2000
381
+ 3000
382
+ 4000
383
+ idx3.2.2 Joint CTC, CrossEntropy Loss
384
+ In order to penalize the model for alignment of the input sequence to the output tokens, we
385
+ utilize a joint Connectionist Transporal Classification (Graves et al., 2006) and Cross Entropy
386
+ Loss function. The goal of this two term loss function is to manage a gradient through the
387
+ alignment of tokens in the feature input (CTC) as well as the actual classification loss of
388
+ the aligned output and the true tokens. The loss functions weights the two as so: L(X) =
389
+ 0.3 ∗ CTC(X) + 0.7 ∗ CE(X). We do this in order to help smooth out the gradient while
390
+ maintaining the proper loss to back-propagate through the network. Due to the adversarial
391
+ nature of the Bayesian outputs, we find that this joint loss descends rapidly then continues
392
+ to descend without adjustment to the original learning rate (Figure 3a). In our training, we
393
+ held the learning rate fixed at 10−6.
394
+ 3.2.3 Minibatch Weighting
395
+ Blundell et al. found that earlier epochs have a greater importance on tuning of the varia-
396
+ tional posterior than later ones. We adopt a similar methodology where we weight the KL
397
+ divergence term according to the epoch (e) and number of epochs (ne) (Equation).
398
+ MinibatchWeight(e, ne) = 2ne−e
399
+ 2ne − e
400
+ (8)
401
+ To better aid training over time, we choose an epoch indexer where the epoch index is
402
+ integer divided by 10. When the training loop runs for multiple hours, this helps keep the
403
+ KL divergence more heavily weighted at first. We then weight the KL divergence term by
404
+ the minibatch weight term (Equation 9). The KLdiv term is the sum of all KL divergences
405
+ over the Bayesian layers.
406
+ L(X, e, ne) = MinibatchWeight(e, ne) ∗ KLdiv + 0.3 ∗ CTC(X) + 0.7 ∗ CE(X)
407
+ (9)
408
+ 4. Results
409
+ We split our model into two variants: one that outputs a character sequence and one that
410
+ outputs tokenized word-pieces from a Sentencepiece language model with vocab size of 1000
411
+ (Kudo & Richardson, 2018). We trained each model variant on a single A-100 GPU through
412
+ Google Colab for 8 hours with a batchsize of 24.
413
+ As shown in Table 1, our model performs nearly as well as the state of the art ASR models.
414
+ Our Bayes speech model reaches respectable Word Error Rates with and without a language
415
+ model on the LibriSpeech dataset. The Bayes Model as well was trained for just 8 hours on
416
+ 10
417
+
418
+ Model
419
+ WER (w/o LM)
420
+ WER (w/ LM)
421
+ test-clean
422
+ test-other
423
+ test-clean
424
+ test-other
425
+ LAS (Chan et al., 2016)
426
+ 2.89%
427
+ 6.98%
428
+ 2.33%
429
+ 5.17%
430
+ Transformer (Vaswani et al., 2017)
431
+ 2.4%
432
+ 5.6%
433
+ 2.0%
434
+ 4.6%
435
+ Conformer (Gulati et al., 2020)
436
+ 2.1%
437
+ 5.0%
438
+ 2.0%
439
+ 4.3%
440
+ BayesSpeech
441
+ 4.5%
442
+ 6.5%
443
+ 4.0%
444
+ 5.7%
445
+ Table 1: WER Results on LibriSpeech dataset
446
+ a single GPU. For instance, the Conformer model was trained over the course of multiple
447
+ days on multiple GPUs (8). During evaluation, we use beam search with a beam width of
448
+ 10 over the set of possible decoded sequences. This appears to be the standard decoding
449
+ methodology giving the probabilistic output of the model’s decoder.
450
+ When the input sequence passes through our Bayesian feed forward layers, we believe this
451
+ creates an adversarial input stream. Rather than artificially augment the input Mel Spec-
452
+ trogram inputs (Park et al., 2019), these layers produce a probabilistic feature encoding of
453
+ the input. We believe that this general adversarial training technique allows our model to
454
+ converge faster with less training time and resources. The randomness introduced in the
455
+ model also helps better contextualize outputs. As we continue to tune the variational poste-
456
+ rior over the weights, I imagine we would see a dramatic increase in performance. Because
457
+ our model yielded reasonable results after 8 hours, we stopped training but future work may
458
+ investigate if increased training could further improve our performance. There may also be a
459
+ benefit to equally weighting the variational component and the CTC loss component of the
460
+ global loss function. Similarly, in future work it may be useful to explore systematic model
461
+ pruning as presented in Blundell et al.
462
+ 5. Conclusion
463
+ Currently, best in class Automatic Speech Recognition solutions require multiple days of
464
+ training on multiple GPUs. These models also take a frequentist approach to weight training.
465
+ In this work, we present BayesSpeech; a Bayesian Transformer Network for learning an
466
+ intractable posterior distribution over which weights are drawn in feed forward layers. We
467
+ believe this probabilistic encoding of the input feature set creates a better representation of
468
+ the input Mel Spectrogram. This mechanic in conjunction with a joint loss function yields
469
+ near state-of-the-art results on the LibriSpeech dataset.
470
+ 11
471
+
472
+ References
473
+ Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for
474
+ self-supervised learning of speech representations. CoRR, abs/2006.11477. Retrieved
475
+ from https://arxiv.org/abs/2006.11477
476
+ Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in
477
+ neural networks. arXiv. Retrieved from https://arxiv.org/abs/1505.05424
478
+ doi:
479
+ 10.48550/ARXIV.1505.05424
480
+ Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016). Listen, attend and spell: A neural
481
+ network for large vocabulary conversational speech recognition. In 2016 ieee interna-
482
+ tional conference on acoustics, speech and signal processing (icassp) (p. 4960-4964).
483
+ doi: 10.1109/ICASSP.2016.7472621
484
+ Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y.
485
+ (2015).
486
+ Attention-
487
+ based models for speech recognition. CoRR, abs/1506.07503. Retrieved from http://
488
+ arxiv.org/abs/1506.07503
489
+ Chung, Y.-A., Hsu, W.-N., Tang, H., & Glass, J. (2019). An Unsupervised Autoregressive
490
+ Model for Speech Representation Learning. In Proc. interspeech 2019 (pp. 146–150).
491
+ doi: 10.21437/Interspeech.2019-1473
492
+ Conneau, A., Baevski, A., Collobert, R., Mohamed, A., & Auli, M. (2020). Unsupervised
493
+ cross-lingual representation learning for speech recognition. CoRR, abs/2006.13979.
494
+ Retrieved from https://arxiv.org/abs/2006.13979
495
+ Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidi-
496
+ rectional transformers for language understanding. CoRR, abs/1810.04805. Retrieved
497
+ from http://arxiv.org/abs/1810.04805
498
+ Dong, L., Xu, S., & Xu, B.
499
+ (2018).
500
+ Speech-transformer:
501
+ A no-recurrence sequence-
502
+ to-sequence model for speech recognition.
503
+ In 2018 ieee international conference
504
+ on acoustics, speech and signal processing (icassp) (p. 5884-5888).
505
+ doi:
506
+ 10.1109/
507
+ ICASSP.2018.8462506
508
+ Fan, X., Zhang, S., Chen, B., & Zhou, M. (2020). Bayesian attention modules. arXiv.
509
+ Retrieved from https://arxiv.org/abs/2010.10604
510
+ doi: 10.48550/ARXIV.2010
511
+ .10604
512
+ Graves,
513
+ A.
514
+ (2011).
515
+ Practical
516
+ variational
517
+ inference
518
+ for
519
+ neural
520
+ networks.
521
+ In
522
+ J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.),
523
+ Advances in neural information processing systems
524
+ (Vol. 24).
525
+ Curran Asso-
526
+ ciates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2011/file/
527
+ 7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
528
+ 12
529
+
530
+ Graves, A., Fern´andez, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist temporal
531
+ classification: Labelling unsegmented sequence data with recurrent neural networks.
532
+ In Proceedings of the 23rd international conference on machine learning (p. 369–376).
533
+ New York, NY, USA: Association for Computing Machinery. Retrieved from https://
534
+ doi.org/10.1145/1143844.1143891 doi: 10.1145/1143844.1143891
535
+ Gulati, A., et al. (Eds.). (2020). Conformer: Convolution-augmented transformer for speech
536
+ recognition.
537
+ Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012).
538
+ Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
539
+ abs/1207.0580. Retrieved from http://arxiv.org/abs/1207.0580
540
+ Hinton, G. E., & van Camp, D. (1993a). Keeping the neural networks simple by minimizing
541
+ the description length of the weights. In Proceedings of the sixth annual conference
542
+ on computational learning theory (p. 5–13).
543
+ New York, NY, USA: Association for
544
+ Computing Machinery. Retrieved from https://doi.org/10.1145/168304.168306
545
+ doi: 10.1145/168304.168306
546
+ Hinton, G. E., & van Camp, D. (1993b). Keeping the neural networks simple by minimizing
547
+ the description length of the weights. In Proceedings of the sixth annual conference
548
+ on computational learning theory (p. 5–13).
549
+ New York, NY, USA: Association for
550
+ Computing Machinery. Retrieved from https://doi.org/10.1145/168304.168306
551
+ doi: 10.1145/168304.168306
552
+ Hori, T., Watanabe, S., Zhang, Y., & Chan, W. (2017). Advances in joint ctc-attention based
553
+ end-to-end speech recognition with a deep cnn encoder and rnn-lm. In Interspeech.
554
+ Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local repa-
555
+ rameterization trick. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett
556
+ (Eds.), Advances in neural information processing systems (Vol. 28). Curran Asso-
557
+ ciates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2015/file/
558
+ bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
559
+ Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv. Retrieved
560
+ from https://arxiv.org/abs/1312.6114 doi: 10.48550/ARXIV.1312.6114
561
+ Kudo, T., & Richardson, J. (2018). Sentencepiece: A simple and language independent
562
+ subword tokenizer and detokenizer for neural text processing. CoRR, abs/1808.06226.
563
+ Retrieved from http://arxiv.org/abs/1808.06226
564
+ Lee, H., Pham, P., Largman, Y., & Ng, A. (2009). Unsupervised feature learning for audio
565
+ classification using convolutional deep belief networks. In Y. Bengio, D. Schuurmans,
566
+ J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information process-
567
+ ing systems (Vol. 22). Curran Associates, Inc. Retrieved from https://proceedings
568
+ 13
569
+
570
+ .neurips.cc/paper/2009/file/a113c1ecd3cace2237256f4c712f61b5-Paper.pdf
571
+ Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev, O., Cohen, J. M., . . . Gadde, R. T.
572
+ (2019). Jasper: An end-to-end convolutional neural acoustic model. arXiv. Retrieved
573
+ from https://arxiv.org/abs/1904.03288 doi: 10.48550/ARXIV.1904.03288
574
+ Liu, A. H., Hsu, W.-N., Auli, M., & Baevski, A. (2022). Towards end-to-end unsupervised
575
+ speech recognition. arXiv. Retrieved from https://arxiv.org/abs/2204.02492 doi:
576
+ 10.48550/ARXIV.2204.02492
577
+ Maas, A. L. (2013). Rectifier nonlinearities improve neural network acoustic models..
578
+ Mohamed, A.-r., Dahl, G. E., & Hinton, G. (2012). Acoustic modeling using deep belief
579
+ networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 14-
580
+ 22. doi: 10.1109/TASL.2011.2109382
581
+ Panayotov, V., Chen, G., Povey, D., & Khudanpur, S.
582
+ (2015).
583
+ Librispeech:
584
+ An asr
585
+ corpus based on public domain audio books. In 2015 ieee international conference
586
+ on acoustics, speech and signal processing (icassp) (p. 5206-5210).
587
+ doi:
588
+ 10.1109/
589
+ ICASSP.2015.7178964
590
+ Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V.
591
+ (2019, sep). SpecAugment: A simple data augmentation method for automatic speech
592
+ recognition. In Interspeech 2019. ISCA. Retrieved from https://doi.org/10.21437%
593
+ 2Finterspeech.2019-2680 doi: 10.21437/interspeech.2019-2680
594
+ Rissanen, J.
595
+ (1978).
596
+ Modeling by shortest data description.
597
+ Automatica, 14(5),
598
+ 465-471. Retrieved from https://www.sciencedirect.com/science/article/pii/
599
+ 0005109878900055 doi: https://doi.org/10.1016/0005-1098(78)90005-5
600
+ Schneider, S., Baevski, A., Collobert, R., & Auli, M.
601
+ (2019).
602
+ wav2vec: Unsupervised
603
+ pre-training for speech recognition. CoRR, abs/1904.05862. Retrieved from http://
604
+ arxiv.org/abs/1904.05862
605
+ Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
606
+ image recognition. arXiv. Retrieved from https://arxiv.org/abs/1409.1556
607
+ doi:
608
+ 10.48550/ARXIV.1409.1556
609
+ Vaswani,
610
+ A.,
611
+ Shazeer,
612
+ N.,
613
+ Parmar,
614
+ N.,
615
+ Uszkoreit,
616
+ J.,
617
+ Jones,
618
+ L.,
619
+ Gomez,
620
+ A. N.,
621
+ . . .
622
+ Polosukhin, I.
623
+ (2017).
624
+ Attention is all you need.
625
+ In I. Guyon et al.
626
+ (Eds.), Advances in neural information processing systems (Vol. 30). Curran Asso-
627
+ ciates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/
628
+ 3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
629
+ Zhang, S., Fan, X., Chen, B., & Zhou, M. (2021). Bayesian attention belief networks. arXiv.
630
+ Retrieved from https://arxiv.org/abs/2106.05251
631
+ doi: 10.48550/ARXIV.2106
632
+ .05251
633
+ 14
634
+
PdFIT4oBgHgl3EQfeytv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
Q9AyT4oBgHgl3EQf7vq-/content/tmp_files/2301.00845v1.pdf.txt ADDED
@@ -0,0 +1,1667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Weak solutions to the near-field reflector problem with
2
+ spatial restrictions approached with generalized
3
+ reflectors constructed from ellipsoids
4
+ Dylanger S. Pittman
5
+ 400 Dowman Drive, Atlanta
6
+ Abstract
7
+ We motivate then formulate a novel variant of the near-field reflector problem
8
+ and call it the near-field reflector problem with spatial restrictions. Let O be
9
+ an anisotropic point source of light and assume that we are given a bounded
10
+ open set U. Suppose that the light emitted from the source at O in directions
11
+ defined by the aperture D ⊆ S2, of radiance g(m) for m ∈ D, is reflected off
12
+ R ⊂ U, creating the irradiance f(x) for x ∈ T. The inverse problem consists of
13
+ constructing the reflector R ⊆ U from the given position of the source O, the
14
+ input aperture D, radiance g, ‘target’ set T, and irradiance f. We focus entirely
15
+ on the case where the target set T is finite.
16
+ Keywords:
17
+ partial differential equations, geometric optics, geometry
18
+ 2020 MSC: 78A05, 35, 51, 53
19
+ 1. Introduction
20
+ Let O be the origin of R3, and let S2 be the unit sphere centered at O. We
21
+ treat points on S2 as unit vectors with initial points at O. Let an aperture be
22
+ a subset of S2; in our work, the aperture will be an open set. Physically, it
23
+ makes sense to consider O as the location of an anisotropic point source of light
24
+ such that rays of light are emitted in a set of directions defined by an aperture
25
+ D ⊆ S2.
26
+ Email address: dpittm2@emory.edu (Dylanger S. Pittman)
27
+ Preprint submitted to Constructive Approximation
28
+ January 4, 2023
29
+ arXiv:2301.00845v1 [math.AP] 2 Jan 2023
30
+
31
+ Definition 1.1. Assume that we are given an aperture that is a connected open
32
+ set D ⊆ S2, and a function ρ : D → (0, ∞) that is continuous and almost
33
+ everywhere differentiable. Then a reflector is the set R = {mρ(m)|m ∈ D} ⊂
34
+ R3.
35
+ If ρ is a smooth function, we can call R a smooth reflector.
36
+ Given an aperture, D, that is a connected open set, assume that we have a
37
+ continuous, almost everywhere differentiable, positive function ρ : D → (0, ∞),
38
+ and a corresponding reflector R = {mρ(m)|m ∈ D}. Suppose that a ray origi-
39
+ nating from O in the direction m ∈ D is incident on the reflector R at the point
40
+ mρ(m). If ρ is differentiable at m, there is a unit vector, n(m), normal to the
41
+ reflector R at mρ(m). Therefore, by the reflection law of geometric optics, a
42
+ ray from O of direction m reflects off the point mρ(m) in the direction
43
+ y(m) = m − 2⟨m, n(m)⟩n(m)
44
+ (1)
45
+ where ⟨m, n(m)⟩ is the standard Euclidean inner product in R3 and n(m) is
46
+ oriented such that ⟨m, n(m)⟩ > 0 [1].
47
+ The reflector R is designed such that the ray described by the point mρ(m) ∈
48
+ R and the direction y(m) corresponds to some element in a prespecified target
49
+ set T. What one means by a ‘target set’ changes depending on the context, and
50
+ the correspondence between y(m); also, an element of the target set can also
51
+ vary depending on one’s needs. Hence a target set can represent many things.
52
+ For example, if the target set T is a subset of S2, then a possible correspondence
53
+ can be
54
+ y(m)
55
+ |y(m)| ∈ T; see [2]. Physically, in this case, T can be considered as a set
56
+ of directions for rays of light. If T is a subset R3 \ {O}, then for an example of
57
+ another possible correspondence, we can say that for every m ∈ D, there exists
58
+ an a(m) > 0 such that a(m)y(m) + mρ(m) ∈ T; see [3] and [4]. Physically, in
59
+ this case, T can be considered as a region that one wants to illuminate.
60
+ Assume that g is an integrable and nonnegative function over an aperture D,
61
+ and f is an integrable and nonnegative function over a target set T. Physically
62
+ speaking, we say g(m) for m ∈ D is the radiance of the source at O in the
63
+ directions m ∈ D, or that g is a radiance distribution over D. We also say f(x)
64
+ 2
65
+
66
+ for x ∈ T is the irradiance of the target set at x ∈ T, or that f is an irradiance
67
+ distribution over T.
68
+ A reflector system comprises of an aperture D, O, a reflector R, an integrable
69
+ and nonnegative function g over D, and a target set T with an integrable and
70
+ nonnegative function f over T. From a physical perspective: light emitted from
71
+ the source at O in directions defined by the aperture D, of radiance g(m) for
72
+ m ∈ D, is reflected off R, creating the irradiance f(x) for x ∈ T. An example
73
+ that can serve as an illustration is shown in Figure 1.
74
+ A reflector problem is, in short, an inverse problem that seeks to complete
75
+ a reflector system by creating a reflector that fits the other information given.
76
+ Specifically, suppose we are given O, an aperture D, an integrable and non-
77
+ negative function g over D, and a target set T with an integrable and nonneg-
78
+ ative function f over T. The aim of a reflector problem is to find a continu-
79
+ ous, almost everywhere differentiable, positive ρ over D such that the reflector
80
+ R = {mρ(m)|m ∈ D} produces the specified in advance irradiance distribution
81
+ f on T.
82
+ Reflector problems have been well studied due to their utility in physics and
83
+ engineering. Such problems have found numerous applications in the construc-
84
+ tion of reflector antennas (see [5], [6]), mirror design [7], heat transfer [8], and
85
+ beam shaping [9].
86
+ We only consider in the high-frequency approximation of
87
+ light, where the laws of geometric optics apply. We now proceed with a general
88
+ description and motivation for the near-field reflector problem.
89
+ 2. The Near-Field Reflector Problem
90
+ We discuss a reflector problem that we call the ‘near-field reflector prob-
91
+ lem.’ In short, the near-field reflector problem aims to design a reflector that
92
+ redistributes the light from the origin onto a set a finite distance away from the
93
+ origin.
94
+ In this part, when we say surface, we mean it in the differential geometric
95
+ sense; see Definition 12.4 in [10]. Suppose that we are given a reflector system
96
+ 3
97
+
98
+ O
99
+ The plane reflector R
100
+ The surface normal to R
101
+ Light rays going to some target set T
102
+ Figure 1: Here is the most basic example of a reflector system with a smooth reflector. Here R
103
+ is a plane. Every point on R has a normal. Light originates from the point O with directions
104
+ represented by points on the unit sphere S2 and travels according to some target set that is
105
+ neither shown nor specified.
106
+ 4
107
+
108
+ consisting of
109
+ 1. O,
110
+ 2. an aperture D ⊂ S2,
111
+ 3. a nonnegative g ∈ L1(D),
112
+ 4. a bounded Borel set T ⊂ R3 \ {O} (typically either a subset of a surface
113
+ or a finite set),
114
+ 5. a nonnegative and integrable function f : T → [0, ∞),
115
+ 6. and a smooth function ρ : D → (0, ∞) with a smooth reflector R =
116
+ {mρ(m)|m ∈ D}.
117
+ From a physical perspective, this setup can be described as follows. The light
118
+ is emitted from the source at O in directions defined by the aperture D. Each
119
+ ray of direction m ∈ D has radiance g(m) and is reflected off R at the point
120
+ mρ(m) in the direction y(m) as described by (1). For every m ∈ D, there exists
121
+ an a(m) > 0 such that a(m)y(m) + mρ(m) ∈ T creating the irradiance f(x) for
122
+ x ∈ T. A basic illustration of this situation is depicted in Figure 2. With this
123
+ setup in mind, we proceed with a formulation of the near-field reflector problem
124
+ Let u = (u1, u2) be smooth local coordinates on S2 such that D lies in one
125
+ coordinate patch. The position vector of a point m ∈ D is m = m(u). We
126
+ choose the coordinates u1, u2 so that ⟨m, m1 × m2⟩ = 1 in D; here, ⟨, ⟩ denotes
127
+ the scalar product in R3 and mi = ∂m
128
+ ∂ui , i = 1, 2. Observe that this implies that
129
+ ⟨m, mi⟩ = 0, i = 1, 2. The first fundamental form of S2 is given by e = eijduiduj
130
+ where eij = ⟨mi, mj⟩.
131
+ Set r(m) = mρ(m), then r(m) defines a smooth surface R = {r(m)|m ∈ D}.
132
+ Let g = gijduiduj be the first fundamental form of R where gij = ⟨ri, rj⟩ =
133
+ ρiρj + ρ2eij, ri =
134
+ ∂r
135
+ ∂ui , and ρi =
136
+ ∂ρ
137
+ ∂ui .
138
+ Let n(m) is the normal vector field on R such that ⟨n(m), m⟩ > 0 everywhere
139
+ on R. Then
140
+ n(m) = (ρ2 + | ˜∇ρ|2)−1/2(r − ˜∇ρ)
141
+ (2)
142
+ 5
143
+
144
+ O
145
+ Reflector R
146
+ Target set T with irradiance distribution f
147
+ Surface normals to R
148
+ Light Rays
149
+ Figure 2: Here is an illustration of the near-field reflector problem in R3.
150
+ The radiation
151
+ intensity at the origin O is given by a nonnegative function g ∈ L1(D). We want to find a
152
+ reflector R such that the reflected rays produce the prescribed irradiance distribution f on T.
153
+ 6
154
+
155
+ where | ˜∇p|2 = ρiρjeij. This combined with equation (1) determines the direction
156
+ a ray will go after reflecting off R [11].
157
+ We can now track the path of each ray described by the direction m ∈ D
158
+ to a point x(m) ∈ T. A ray, originating at O in direction m, hits the surface
159
+ R at a point r(m). Then, said ray reflects off R at r(m) in the direction y(m)
160
+ as defined by (1) and reaches T at some point x(m). Thus, from a physical
161
+ perspective, an irradiance f(x(m)) is created by the rays reflected at x(m).
162
+ This defines a mapping m → x that we call a reflector map; for convenience,
163
+ we denote x(m) as the image of m under the reflector map. The reflector map
164
+ x : D → T combined with equations (1) and (2) describes the ray tracing from
165
+ D to T.
166
+ If the reflector map is a diffeomorphism from D to T where T is a subset
167
+ of a smooth surface, then one can introduce the first fundamental form of T as
168
+ w = wijduiduj, where wij = ⟨xi, xj⟩, xi =
169
+ ∂x
170
+ ∂ui .
171
+ According to the differential form of the energy conservation law [1],
172
+ f(x(m))|J(x(m))| = g(m)
173
+ (3)
174
+ where J is the Jacobian determinant of the map x. Note that
175
+ J(x(m)) = ±dν(x(m))
176
+ dσ(m)
177
+ = ±
178
+
179
+ det(wij)
180
+
181
+ det(eij)
182
+ (4)
183
+ where dσ is the surface area element on S2, and dν is the surface area element
184
+ on T. We assign a ± sign to the Jacobian according to whether x preserves
185
+ the orientation or reverses it. Therefore, by integration of (3), for all Borel sets
186
+ ω ⊆ T,
187
+
188
+ x−1[ω]
189
+ gdσ =
190
+
191
+ ω
192
+ fdν
193
+ (5)
194
+ where x−1[ω] = {m ∈ D|x(m) ∈ ω} and
195
+
196
+ D gdσ =
197
+
198
+ T fdν.
199
+ With this motivation, we can now state the near-field reflector problem.
200
+ Assume that we are given O, an aperture D ⊂ S2 with a nonnegative function
201
+ g ∈ L1(D), and a bounded Borel set T ⊂ R3\{O} with a nonnegative, integrable
202
+ function f : T → [0, ∞). The goal is to find a smooth function ρ over D such
203
+ that:
204
+ 7
205
+
206
+ 1. The ray originating from O in the direction m ∈ D reflects off the reflector
207
+ R = {mρ(m)|m ∈ D} in accordance with equation (1) and reaches the
208
+ target set T.
209
+ 2. g(m) on D is transformed by the reflector map into f on T; i.e. for all
210
+ Borel subsets ω ⊆ T,
211
+
212
+ x−1[ω]
213
+ gdσ =
214
+
215
+ ω
216
+ fdν
217
+ (6)
218
+ where x : D → T the reflector map corresponding to the reflector R =
219
+ {mρ(m)|m ∈ D}, x−1[ω] = {m ∈ D|x(m) ∈ ω}, dσ is the surface area
220
+ element on S2, and dν is the area element on T (ν is typically some discrete
221
+ or Lebesgue measure).
222
+ 3. The law of total energy conservation is obeyed:
223
+
224
+ D gdσ =
225
+
226
+ T fdν.
227
+ The case where the reflector map is a diffeomorphism from D to T can be
228
+ alternatively formulated as a PDE of Monge-Amp`ere type; specifically equation
229
+ (4) from [12].
230
+ There has been a lot of work done on the near-field reflector problem. In
231
+ 1972, Schruben [3] found that if the target set was a subset of a plane in R3, one
232
+ can then derive an implicit integro-differential equation describing the reflector;
233
+ the existence of a solution was not proved. Then in [13], Schruben considered
234
+ the case where the target set was a small rotationally symmetric patch on the
235
+ plane.
236
+ In this case, when the radiance and the irradiance distributions are
237
+ rotationally symmetric, the equation derived in [3] can be solved as an ODE.
238
+ In 1989, Oliker [12] found a formulation of the near-field reflector problem in
239
+ the form of a strongly non-linear PDE of Monge-Amp`ere type. The exploration
240
+ of the said equation is difficult and in [12] was solved only for the rotationally
241
+ symmetric case.
242
+ In 1998, Kochengin and Oliker [4] introduced an alternative formulation to
243
+ the near-field reflector problem, which was a geometric approach involving the
244
+ analysis of the boundaries of convex sets generated by families of supporting
245
+ ellipsoids. This approach can also be considered a weak solution to the PDE
246
+ 8
247
+
248
+ introduced in [12]. The strategy was to assume that the target set was a finite
249
+ set on a plane and constructively prove the existence of solutions for that case.
250
+ Since the reflectors that were constructed were convex, one can use the Blaschke
251
+ selection theorem (for more details, see [14]) to prove the existence of a solution
252
+ with a continuous target set on the plane. This method was largely motivated
253
+ by previous work done by Caffarelli and Oliker [2] which involved the analysis
254
+ of the boundaries of convex sets generated by families of supporting paraboloids
255
+ to solve a related problem.
256
+ In [15] a provably convergent numerical algorithm was introduced that ex-
257
+ plicitly finds the ellipsoids required to construct the reflectors described in [4].
258
+ It was shown that this construction leads to infinitely many solutions; however,
259
+ the algorithm has the benefit of converging to a unique solution if we fix an ini-
260
+ tial point on the reflector. This algorithm and its variations have been explored
261
+ extensively in various scenarios. For example, Fournier, Cassarly, and Rolland
262
+ in [16] adapted the algorithm in [15], to situations where the light source is
263
+ not a single point; specifically, a flat rotationally symmetric emitter. In [17] a
264
+ method was proposed for smoothing out a reflector with a discrete irradiance
265
+ distribution to a reflector with a continuous irradiance distribution. Optimal
266
+ transport methods have also been studied [18].
267
+ 2.1. The Near-Field Reflector Problem with Spatial Restrictions
268
+ In this paper, we study a novel variant of the near-field reflector problem
269
+ where we have extreme limitations on where we can place and construct the
270
+ reflectors. Specifically, we are given an open set U ⊂ R3 \{O}, and our reflector
271
+ R must now be a subset of U.
272
+ Definition 2.1. Given an x ∈ R3 \ {O} and a subset S ⊆ R3 \ {O}, then we
273
+ define Proj(x) =
274
+ x
275
+ |x| as the projection of x onto S2 and Proj[S] = {Proj(x) ∈
276
+ S2|x ∈ S} as the projection of S onto S2.
277
+ Assume that we are given a positive, continuous, almost everywhere differen-
278
+ tiable function ρ over Proj[U]. We have a reflector R = {mρ(m)|m ∈ Proj[U]}
279
+ 9
280
+
281
+ which determines our reflector map x : Proj[U] → T which is determined by
282
+ tracking the path of each ray described by the direction m ∈ Proj[U] to a point
283
+ x(m) ∈ T. A ray, originating at O in direction m, hits the reflector R at a
284
+ point mρ(m). Then, assuming ρ is differentiable at m, said ray reflects off R
285
+ at mρ(m) in the direction y(m) as defined by (1) and reaches T at some point
286
+ x(m). Thus, from a physical perspective, an irradiance f(x(m)) is created by
287
+ the rays reflected at x(m). This defines a mapping m → x(m) that we call the
288
+ reflector map; for convenience, we denote x(m) as the image of m under the
289
+ reflector map.
290
+ We can now formulate the near-field reflector problem with spatial restric-
291
+ tions.
292
+ Assume that we are given an open set U ⊂ R3 \ {O}, O, an aper-
293
+ ture Proj[U] ⊂ S2, a nonnegative g ∈ L1(Proj[U]), and a bounded Borel set
294
+ T ⊂ R3 \ {O} with an integrable function f : T → [0, ∞).
295
+ The goal is to find a positive, continuous, almost everywhere differentiable
296
+ function ρ over Proj[U] such that:
297
+ 1. R = {mρ(m)|m ∈ Proj[U]} ⊂ U.
298
+ 2. The ray originating from O in the direction m ∈ Proj[U] reflects off of R
299
+ in accordance with equation (1) and reaches the target set T.
300
+ 3. g(m) on Proj[U] is transformed by the reflector map into f on T, i.e. for
301
+ all Borel subsets ω ⊆ T,
302
+
303
+ x−1[ω]
304
+ gdσ =
305
+
306
+ ω
307
+ fdν
308
+ (7)
309
+ where x : Proj[U] → T is the reflector map, x−1[ω] = {m ∈ Proj[U]|x(m) ∈
310
+ ω}, dσ is the surface area element on S2, and dν is the area element on T
311
+ (ν is typically some discrete or Lebesgue measure).
312
+ 4. The law of total energy conservation is obeyed:
313
+
314
+ Proj[U] gdσ =
315
+
316
+ T fdν.
317
+ This variation of the near-field reflector problem has clear applications to
318
+ engineering; as often one has to grapple with restrictions of space in real-world
319
+ designs. For example, in the construction of automotive headlights, there are
320
+ 10
321
+
322
+ strict restrictions, guided purely by aesthetics, as to where a reflector can be
323
+ placed and how a reflector must be shaped [19].
324
+ However, to the author’s
325
+ knowledge, no mathematical research has been done in this direction. We focus
326
+ exclusively on the case where the target set is finite.
327
+ 3. Ellipsoids of Revolution
328
+ We do all our work in R3. We denote S2 to be the unit sphere with the
329
+ center at O and kx = x/|x| for all x ∈ R3 \ {O}. We borrow much of this
330
+ geometric setup from [4] and [15]. Ellipsoids of revolution are of paramount
331
+ importance when solving the near-field reflector problem due to their unique
332
+ optical properties.
333
+ Let x ∈ R3 \ {O} and d ∈ (0, ∞).
334
+ We denote by Ed(x) an ellipsoid of
335
+ revolution about the axis Ox and with foci at points O and x. The polar radius
336
+ relative to O can be represented as:
337
+ ψx,d(m) =
338
+ d
339
+ 1 − ϵ⟨m, kx⟩, m ∈ S2
340
+ (8)
341
+ where ϵ is the eccentricity and
342
+ ϵ =
343
+
344
+ 1 + d2
345
+ x2 − d
346
+ |x|.
347
+ (9)
348
+ So in other words
349
+ Ed(x) = {mψx,d(m)|m ∈ S2}.
350
+ (10)
351
+ From this point on, whenever we use the term ellipsoid we specifically refer to
352
+ an ellipsoid of this kind with one of the foci always at O. Note that each Ed(x)
353
+ is uniquely defined by the x ∈ R3 \ {O} and the d ∈ (0, ∞). In this paper, we
354
+ define Ψx,d(m) = mψx,d(m).
355
+ Note that for all possible values of d, we have that ϵ ∈ (0, 1). Also for a
356
+ fixed x, as d → 0 the ellipsoid will degenerate into a line segment, i.e. Ed(x) →
357
+ {tx + (1 − t)O|t ∈ [0, 1]}. Such an ellipsoid is called degenerate. Observe that as
358
+ d → ∞, |ψx,d(m)| → ∞ for all m ∈ S2.
359
+ An important property of ellipsoids can be described by the following propo-
360
+ sition.
361
+ 11
362
+
363
+ Proposition 3.1. Let c, d > 0. Then the ellipsoids Ecd(x) and Ed(x) have the
364
+ same foci: O and x.
365
+ From a physical perspective, the aforementioned property is important be-
366
+ cause a reflector that is shaped like an ellipsoid Ed(x) will illuminate the focus
367
+ x with the light emitted from O such that the total energy emitted from O is
368
+ equal to the total energy reflected onto x. This property is still true no matter
369
+ how large or small the ellipsoid is; all that matters is the location of the foci.
370
+ 4. Generalized Reflectors
371
+ Before we proceed, we reiterate that the near-field reflector problem can
372
+ be expressed analytically as a PDE of Monge Amp´ere Type. Specifically, the
373
+ equation (4) from [12]. Therefore we will consider the following formulation of
374
+ the near-field reflector problem with spatial restrictions as a weak formulation
375
+ and its solutions, weak solutions. The following formulation only concerns the
376
+ case where the target set is finite.
377
+ 4.1. Weak Solutions Using Generalized Reflectors
378
+ Definition 4.1. Assume that we are given an aperture D ⊆ S2 that is an
379
+ open set, and a function ρ : D → (0, ∞) that is not necessarily continuous
380
+ and almost everywhere differentiable. Then a generalized reflector is the set
381
+ R = {mρ(m)|m ∈ D} ⊂ R3.
382
+ The upper half-space of R3 be represented as R3+ = {(x, y, z) ∈ R3|z > 0},
383
+ and the lower half-space of R3 be represented as R3− = {(x, y, z) ∈ R3|z < 0}.
384
+ Let σ denote the standard measure on S2. Consider an open set U ⊆ R3+, a
385
+ corresponding aperture Proj[U], and a finite target set T ⊂ R3−.
386
+ Let B be a countable family of open subsets of S2 such that σ(Proj[U] \
387
+
388
+ B∈B B) = 0, Proj[U] ⊆ �
389
+ B∈B B, and σ(B∩B′) = 0 for all distinct B, B′ ∈ B.
390
+ Let the set B(U) be the set of all such families.
391
+ Since every ellipsoid requires foci and an eccentricity to be well defined, given
392
+ a family B ∈ B(U), let UT (B) be the set of all functions B → T and V (B) be
393
+ 12
394
+
395
+ the set of all functions B → (0, ∞). Thus we define
396
+ ET (U) =
397
+ � �
398
+ B∈B
399
+ Ψu(B),v(B)[B]
400
+ ����� B ∈ B(U), u ∈ UT (B), v ∈ V (B)
401
+
402
+ .
403
+ (11)
404
+ Assume we are given a Z ∈ ET (U). Let us define
405
+ BZ =
406
+
407
+ Int(Proj[Ed(x) ∩ Z]) ⊆ S2 |d ∈ (0, ∞), x ∈ T, σ(Proj[Ed(x) ∩ Z]) ̸= 0
408
+
409
+ .
410
+ (12)
411
+ The geometry of the ellipsoid and the definition of BZ imply that there ex-
412
+ ists unique u ∈ UT (B) and v ∈ V (B) such that Z = �
413
+ B∈BZ Ψu(B),v(B)[B].
414
+ Define uZ ∈ UT (BZ) and vZ ∈ V (BZ) be the unique functions such that
415
+ Z = �
416
+ B∈BZ ΨuZ(B),vZ(B)[B].
417
+ Given some Z ∈ ET (U), let y1
418
+ Z(m) = {B ∈
419
+ BZ|m ∈ B} for m ∈ Proj[U]. Given a B ∈ B(U), let N (B) be the set of all
420
+ injective functions s : B → N. For Z ∈ ET (U) and s ∈ N (BZ), define
421
+ ρs
422
+ Z(m) = ψuZ(s−1(min s[y1
423
+ Z(m)])),vZ(s−1(min s[y1
424
+ Z(m)]))(m), m ∈ Proj[U].
425
+ (13)
426
+ Observe that the function ρs
427
+ Z is positive, not necessarily continuous, and almost
428
+ everywhere differentiable. Let W(ρs
429
+ Z) = {mρs
430
+ Z(m)|m ∈ Proj[U]} and thus we
431
+ describe a set of generalized reflectors
432
+ RU
433
+ 1 (T) =
434
+
435
+ W(ρs
436
+ Z)| Z ∈ ET (U) where Z ⊂ U, s ∈ N (BZ)
437
+
438
+ .
439
+ (14)
440
+ Assume we are given a generalized reflector R ∈ RU
441
+ 1 (T). Let us define
442
+ BR =
443
+
444
+ Int(Proj[Ed(x) ∩ R]) ⊆ S2 |d ∈ (0, ∞), x ∈ T, σ(Proj[Ed(x) ∩ R]) ̸= 0
445
+
446
+ .
447
+ (15)
448
+ The geometry of the ellipsoid and the definition of BR imply that there exists
449
+ an s ∈ N(BR), unique u ∈ UT (B) and unique v ∈ V (B) such that W(ρs
450
+ Z) = R
451
+ where Z = �
452
+ B∈BR Ψu(B),v(B)[B].
453
+ Therefore, for every generalized reflector
454
+ R ∈ RU
455
+ 1 (T), we may define a unique BR ∈ B(U) such that for each B ∈ BR
456
+ there are unique xB ∈ T and dB ∈ (0, ∞) such that, for some s ∈ N(BR),
457
+ R = W (ρs
458
+ Z) where Z = �
459
+ B∈BR ΨxB,dB[B].
460
+ Therefore, given a generalized reflector R ∈ RU
461
+ 1 (T), we obtain a correspond-
462
+ ing BR; for each B ∈ BR we define unique xB and dB. We also obtain an
463
+ sR ∈ N(BR) and a unique ZR = �
464
+ B∈BR ΨxB,dB[B] such that R = W(ρsR
465
+ ZR).
466
+ 13
467
+
468
+ Given a generalized reflector R ∈ RU
469
+ 1 (T), for all m ∈ Proj[U] we define
470
+ M(m) = xB ∈ T
471
+ (16)
472
+ where mρsR
473
+ ZR(m) = ΨxB,dB(m). Let y2
474
+ R(m) be the points of intersection between
475
+ R \ {mρsR
476
+ ZR(m)} and the line segment connecting mρsR
477
+ ZR(m) to M(m).
478
+ Given a generalized reflector R ∈ RU
479
+ 1 (T), the map α1 : Proj[U] → T ∪ R,
480
+ α1(m) =
481
+
482
+
483
+
484
+
485
+
486
+ M(m)
487
+ if y2
488
+ R(m) = ∅
489
+ y2
490
+ R(m)
491
+ if y2
492
+ R(m) ̸= ∅
493
+ (17)
494
+ is called the generalized reflector map. Physically speaking, a ray of light of
495
+ direction m originating from O can only reach the target set if y2
496
+ R(m) is empty.
497
+ Assume we are given a nonnegative g ∈ L1(S2). Let us define for all Borel
498
+ X ⊆ S2
499
+ µg(X) =
500
+
501
+ X
502
+ g(m)dσ(m)
503
+ (18)
504
+ where σ denotes the standard measure on S2. Assume that g ≡ 0 outside of
505
+ Proj[U]. Physically speaking, g is the radiance distribution of the source at O.
506
+ In order to formulate and solve the generalized reflector problem (in the
507
+ framework of weak solutions to be defined below), we need to define a mea-
508
+ sure representing the energy generated by g and redistributed by a generalized
509
+ reflector R ∈ RU
510
+ 1 (T).
511
+ Given a generalized reflector R ∈ RU
512
+ 1 (T) and a set ω ⊆ T we define the
513
+ visibility set of ω as
514
+ V U
515
+ 1 (ω) =
516
+
517
+ A∈A
518
+ A \ {m ∈ Proj[U]|α1(m) = y2
519
+ R(m)}
520
+ (19)
521
+ where A = {B ∈ BR|xB ∈ ω}. We now need to show that V U
522
+ 1 (ω) is measurable.
523
+ Note the following definition.
524
+ Definition 4.2. For an element x ∈ R3 and a set A ⊂ R3, let the set Cx,A =
525
+ {at + x(1 − t)|t ∈ [0, 1], a ∈ A} be the union of all line segments from x to A
526
+ and Cx,A,∞ = {at + x(1 − t)|t ∈ [0, ∞), a ∈ A} be the union of all rays from x
527
+ that intersect A.
528
+ 14
529
+
530
+ We proceed with the following lemmas.
531
+ Lemma 4.1. Let w : S2 → (0, ∞) be continuous and W(m) = mw(m) for all
532
+ m ∈ S2. If B is a Borel set of S2, then CO,W [B] and CO,W [B],∞ are Borel sets
533
+ of R3.
534
+ Proof. Recall that all Borel sets can be formed from open sets through the
535
+ operations of countable union, countable intersection, and relative complement.
536
+ Let {Ei} be a countable collection of open sets of S2 such that through said
537
+ operations, we obtain B. Then given the countable collection of open sets of R3,
538
+ {Int(CO,W [Ei])}, through the same sequence of operations we used to obtain B
539
+ from {Ei}, we obtain Int(CO,W [B]). Thus CO,W [B] is Borel. Therefore, assuming
540
+ Wi ≡ (im)w(m) for all m ∈ S2 and i ∈ (0, ∞), �∞
541
+ n=1 CO,Wn[B] = CO,W [B],∞ is
542
+ Borel.
543
+ Lemma 4.2. If B is a Borel set of S2, x ∈ R3 \ {O} and d ∈ (0, ∞), then
544
+ Cx,Ψx,d[B] and Cx,Ψx,d[B],∞ are Borel sets of R3.
545
+ Proof. Let S2
546
+ x = {m+x|m ∈ S2} be the set of all unit vectors originating from x,
547
+ i.e the unit sphere centered at x. Since x is another focus of the ellipsoid, there
548
+ exists a continuous function w : S2 → (0, ∞) such that Ed(x) = {mw(m)+x|m ∈
549
+ S2}. Let Wx(m) = mw(m) + x and let W(m) = mw(m). Note that since B is
550
+ Borel in S2, Ψx,d[B] is Borel in Ed(x). Thus W −1
551
+ x [Ψx,d[B]] is Borel in S2. By
552
+ Lemma 4.1, CO,W [W −1
553
+ x
554
+ [Ψx,d[B]]] and CO,W [W −1
555
+ x
556
+ [Ψx,d[B]]],∞ are Borel sets of R3.
557
+ Thus, by translation, Cx,Ψx,d[B] and Cx,Ψx,d[B],∞ are Borel sets of R3.
558
+ We can now prove the following proposition.
559
+ Proposition 4.1. Let R be a generalized reflector in RU
560
+ 1 (T). For any set ω ⊆ T
561
+ the visibility set V U
562
+ 1 (ω) is Borel.
563
+ Proof. We make use of the fact that sets formed from Borel sets through the
564
+ operations of countable union, countable intersection, and relative complement
565
+ are Borel. Recall that we obtain a sR ∈ N(BR). Note that by the definition
566
+ of a generalized reflector in RU
567
+ 1 (T), R = �
568
+ B∈BR ΨxB,dB [B′] where B′ = {m ∈
569
+ 15
570
+
571
+ B|mρsR
572
+ ZR = ΨxB,dB(m)} = B\�
573
+ K∈K K where K = {A ∈ BR|sR(A) < sR(B)};
574
+ note that B′ is clearly Borel and B ⊆ B′ ⊆ B.
575
+ For B ∈ BR, we have that CxB,ΨxB,dB [B′] and CO,ΨxB,dB [B′] are Borel sets
576
+ by Lemmas 4.2 and 4.1 respectively. Since BR is countable and functions of
577
+ the form ΨxB,dB are continuous and bijective, R is Borel. Thus for all B ∈ BR,
578
+ the set QB = CxB,ΨxB,dB [B′] ∩ (R \ ΨxB,dB[B′]) is Borel and therefore the set
579
+ LB = CxB,QB,∞ ∩ ΨxB,dB[B′] is Borel. Thus Proj[LB] is Borel, as it is the
580
+ preimage of LB under ΨxB,dB. Since
581
+ {m ∈ Proj[U]|α1(m) = y2
582
+ R(m)} =
583
+
584
+ B∈BR
585
+ Proj[LB],
586
+ (20)
587
+ we have that {m ∈ Proj[U]|α1(m) = y2
588
+ R(m)} is Borel and thus V U
589
+ 1 (ω) is Borel.
590
+ Define for any generalized reflector R ∈ RU
591
+ 1 (T),
592
+ G1(ω) = µg(V U
593
+ 1 (ω))
594
+ (21)
595
+ which we will deem the energy function of the generalized reflector problem.
596
+ Let F be a nonnegative, finite measure on the finite set T. We say that a
597
+ generalized reflector R ∈ RU
598
+ 1 (T) is a weak solution to the generalized reflector
599
+ problem if the generalized reflector map α1 determined by R is such that
600
+ F(ω) = G1(ω) for any Borel set ω ⊆ T.
601
+ (22)
602
+ It would be useful to point out the similarity of condition (22) and condition
603
+ (6).
604
+ 4.2. Geometric Lemmas
605
+ One thing that should be noted is that the definition of the generalized
606
+ reflector map takes into account that there could potentially be a part of the
607
+ generalized reflector that intercepts an already reflected ray before it can reach
608
+ the target set. That fact inspires some key geometric lemmas.
609
+ 16
610
+
611
+ Lemma 4.3. Let R ∈ RU
612
+ 1 (T) for some finite set T ⊂ R3− and open set U ⊆
613
+ R3+. For all B ∈ BR, if m ∈ B, then α1(m) = xB if and only if y2
614
+ R(m) = ∅.
615
+ Proof. This follows directly from the definition of the reflector map of the gen-
616
+ eralized reflector problem.
617
+ Note the following definition.
618
+ Definition 4.3. When we say that r is a ray in Cx,B,∞, then r = {at + x(1 −
619
+ t)|t ∈ [0, ∞)} for some a ∈ B, similarly if we say r is a line segment in Cx,B,
620
+ then r = {at + x(1 − t)|t ∈ [0, 1]} for some a ∈ B.
621
+ Lemma 4.4. Let A, B ⊂ S2 be disjoint sets. Then for any x ∈ R3 \ {O} and
622
+ a, b ∈ (0, ∞), Cx,Ψx,a[A] ∩ Ψx,b[B] = ∅ and Cx,Ψx,b[B] ∩ Ψx,a[A] = ∅ if and only
623
+ if Cx,Ψx,a[A],∞ ∩ Ψx,b[B] = ∅.
624
+ Proof. If Cx,Ψx,a[A],∞∩Ψx,b[B] ̸= ∅, then there exists a ray r in Cx,Ψx,a[A],∞ such
625
+ that r intersects Ψx,b[B]. Thus, either there exists a line segment in Cx,Ψx,a[A]
626
+ that intersects Ψx,b[B] and thus Cx,Ψx,a[A] ∩ Ψx,b[B] ̸= ∅, or there exists a line
627
+ segment in Cx,Ψx,b[B] that intersects Ψx,a[A] and thus Cx,Ψx,b[B] ∩ Ψx,a[A] ̸= ∅.
628
+ Conversely, if Cx,Ψx,a[A] ∩ Ψx,b[B] ̸= ∅, then there exists a line segment
629
+ in Cx,Ψx,a[A] that intersects Ψx,b[B], said line segment coincides with a ray in
630
+ Cx,Ψx,a[A],∞; thus Cx,Ψx,a[A],∞ ∩ Ψx,b[B] ̸= ∅. If Cx,Ψx,b[B] ∩ Ψx,a[A] ̸= ∅, then
631
+ there exists a line segment in Cx,Ψx,b[B] that intersects Ψx,a[A], said line segment
632
+ coincides with a ray in Cx,Ψx,a[A],∞; thus Cx,Ψx,a[A],∞ ∩ Ψx,b[B] ̸= ∅.
633
+ These two lemmas give us the following result.
634
+ Lemma 4.5. Assume that U is an open set in R3+, and T is a finite target
635
+ set in R3−. Let R ∈ RU
636
+ 1 (T) be a generalized reflector and A, B ∈ BR such that
637
+ A ̸= B and x = xA = xB. Then the following conditions are equivalent:
638
+ 1. for all m ∈ A and m′ ∈ B, α1(m) = α1(m′) = x,
639
+ 2. Cx,Ψx,dA[A] ∩ Ψx,dB[B] = ∅ and Cx,Ψx,dB [B] ∩ Ψx,dA[A] = ∅,
640
+ 3. Cx,Ψx,dA[A],∞ ∩ Ψx,dB[B] = ∅.
641
+ 17
642
+
643
+ Proof. (2) and (3) are equivalent by Lemma 4.4. By Lemma 4.3, for all m ∈ A
644
+ α1(m) = x if and only if y2
645
+ R(m) = ∅. By definition, y2
646
+ R(m) = ∅ if and only if
647
+ the line segment between Ψx,dA(m) and x does not intersect R \ {Ψx,dA(m)}.
648
+ Similarly, By Lemma 4.3, for all m′ ∈ B, α1(m′) = x if and only if y2
649
+ R(m′) = ∅.
650
+ By definition, y2
651
+ R(m′) = ∅ if and only if the line segment between Ψx,dB(m′)
652
+ and x does not intersect R\{Ψx,dB(m′)}. Therefore, statements (1) and (2) are
653
+ equivalent.
654
+ 4.3. Generalized Reflectors Constructed in an Open Conical Cylinder of Arbi-
655
+ trary Thickness
656
+ Let S2
657
+ + = {m ∈ S2|⟨m, (0, 0, 1)⟩ > 0} be the open hemisphere of the S2
658
+ oriented towards the positive z−axis. Similarly, S2
659
+ − = {m ∈ S2|⟨m, (0, 0, 1)⟩ <
660
+ 0} be the open hemisphere of the S2 oriented towards the negative z−axis.
661
+ Given an open U ⊆ S2
662
+ +, and δ, z′ > 0, we then define an open conical cylinder
663
+ of thickness δ as C δ
664
+ U(z′) = CO,U,∞ ∩ {(x, y, z) ∈ R3|z′ + δ > z > z′}.
665
+ In this paper, given a finite target set T ⊂ R3−, we aim to construct a
666
+ generalized reflector R ∈ RC δ
667
+ U(z′)
668
+ 1
669
+ (T) that is a weak solution of the generalized
670
+ reflector problem. This condition is very strict and the following strategies can
671
+ potentially be applied to other kinds of open subsets in R3+.
672
+ We first consider the case where the target set is a single point. We proceed
673
+ with the following lemmas.
674
+ Lemma 4.6. Let U be an open set in S2
675
+ + and z′, δ > 0.
676
+ Let {Si}i∈N be a
677
+ countable collection of open subsets in U, {di}i∈N is a countable collection of
678
+ distinct positive numbers, and x ∈ R3−. Assume that each Ψx,di[Si] ⊂ C δ
679
+ U(z′)
680
+ and denote Ψi = Ψx,di[Si]. Then we have that
681
+ Proj
682
+
683
+ C δ
684
+ U(z′) \
685
+
686
+ i∈N
687
+ (CO,Ψi,∞ ∪ Cx,Ψi,∞)
688
+
689
+ = Proj
690
+
691
+ C δ
692
+ U(z′) \
693
+
694
+ i∈N
695
+ CO,Ψi,∞
696
+
697
+ . (23)
698
+ Proof. Assume to the contrary that
699
+ Proj
700
+
701
+ C δ
702
+ U(z′) \
703
+
704
+ i∈N
705
+ (CO,Ψi,∞ ∪ Cx,Ψi,∞)
706
+
707
+ ̸= Proj
708
+
709
+ C δ
710
+ U(z′) \
711
+
712
+ i∈N
713
+ CO,Ψi,∞
714
+
715
+ . (24)
716
+ 18
717
+
718
+ Then there exists a ray r in CO,U\�
719
+ i∈N Si,∞ = CO,U,∞ \ �
720
+ i∈N CO,Si,∞ such that
721
+ r ∩ C δ
722
+ U(z′) ⊂ �
723
+ i∈N Cxi,Si,∞. Equivalently, one can say that there must be a ray
724
+ of direction m ∈ U \ �
725
+ i∈N Si originating from O that we denote as r such that
726
+ r ∩ (C δ
727
+ U(z′) \ �
728
+ i∈N(CO,Ψi,∞ ∪ Cx,Ψi,∞)) = ∅.
729
+ Consider the plane P(α) = {(x, y, z) ∈ R3|z = α}. Let m ∈ U \ �
730
+ i∈N Si.
731
+ Assume that there exists a set P(z′) ∩ �
732
+ i∈N Cx,Ψi,∞ such that
733
+ ��
734
+ P(z′) ∩
735
+
736
+ i∈N
737
+ Cx,Ψi,∞
738
+
739
+ \
740
+
741
+ P(z′) ∩
742
+
743
+ i∈N
744
+ CO,Ψi,∞
745
+ ��
746
+ ∩ CO,U,∞ ̸= ∅.
747
+ (25)
748
+ Otherwise there does not exist a ray r of direction m ∈ U \ �
749
+ i∈N Si originating
750
+ from O such that r ∩ (C δ
751
+ U(z′) \ �
752
+ i∈N(CO,Ψi,∞ ∪ Cx,Ψi,∞)) = ∅; a contradiction.
753
+ Thus we assume such a ray exists r exists. Then m must be in a direction such
754
+ that there exists a dmin > 0 where
755
+ Ψx,dmin(m) ∈
756
+ ��
757
+ P(z′) ∩
758
+
759
+ i∈N
760
+ Cx,Ψi,∞
761
+
762
+ \
763
+
764
+ P(z′) ∩
765
+
766
+ i∈N
767
+ CO,Ψi,∞
768
+ ��
769
+ ∩ CO,U,∞.
770
+ (26)
771
+ Since C δ
772
+ U(z′) is bounded, there must also exist a dmax > 0 such that
773
+ Ψx,dmax(m) ∈ P(z′ + δ) ∩ CO,U,∞.
774
+ (27)
775
+ Note that by our assumptions, for all d ∈ (dmin, dmax), there exists an α ∈ N
776
+ such that the line segment between Ψx,d(m) and x is a subset of a line segment
777
+ in Cx,Ψα. However, since all Ψi are closed, then for all d ∈ [dmin, dmax], there
778
+ exists an α such that the line segment between Ψx,d(m) and x is a subset of a
779
+ line segment in Cx,Ψα.
780
+ Case 1. dmax > di for all i ∈ N.
781
+ Recall that by our assumptions, Ψx,d(m) ∈ �
782
+ i∈N Cx,Ψi,∞ for all d ∈ [dmin, dmax].
783
+ However, since ψx,dmax(m) > ψx,di(m) for all i ∈ N, Ψx,dmax(m) cannot reside
784
+ on the interior of any ellipsoid Ed′(x) where d′ ∈ {di}i∈N, thus Ψx,d(m) ̸∈
785
+
786
+ i∈N Cx,Ψi,∞. A contradiction.
787
+ Case 2. There exists some α ∈ N such that dmax = dα.
788
+ If there exists some α such that dmax = dα, then, since tΨx,dmax(m) + (1 −
789
+ 19
790
+
791
+ t)x ̸∈ C δ
792
+ U(z′) for all t > 1, Ψx,dmax(m) resides on the ellipsoid Edα(x). Therefore
793
+ Ψx,dmax(m) ∈ Ψα ∩ P(z′ + δ) and thus m ∈ Sα. A contradiction.
794
+ Case 3. There exists some α ∈ N such that dα > dmax.
795
+ Assume that {di}i∈N is arranged such that di+1 ≥ di If there exists some α
796
+ such that dα > dmax, then there exists a ray originating from x that intersects
797
+ the point Ψx,dmax(m) that also intersects a point (xβ, yβ, zβ) ∈ Ψβ where dβ ≥
798
+ dmax. The case where dβ = dmax has already been covered. When dβ > dmax:
799
+ since x ∈ R3− and Ψx,dmax(m) ∈ P(z′ + δ), this implies that zβ > z′ + δ. A
800
+ contradiction.
801
+ Lemma 4.7. Recall that σ is the standard measure on S2. Let U be a Borel
802
+ set in R3 \ {O} such that Int(U) ̸= ∅. Let x ∈ R3 \ {O}. Consider the set
803
+ K(d) = Proj[Ed(x) ∩ U] and the corresponding function D(d) = σ(K(d)) for
804
+ d ∈ (0∞). Then D(d) cannot be identically zero.
805
+ Furthermore, if U is open, K(d) is open in S2 for all d ∈ (0, ∞).
806
+ Proof. Clearly there exists a d′ ∈ (0, ∞) such that K(d′) ∩ Int(U) ̸= ∅. Then
807
+ Ed′(x) ∩ Int(U) is open in Ed′(x) and thus Proj[Ed′(x) ∩ Int(U)] is open in S2.
808
+ Therefore, D(d′) ≥ σ(Proj[K(d′) ∩ Int(U)]) > 0.
809
+ Theorem 4.1. Let U be an open set in S2
810
+ +, δ, z′ > 0, and T = {x} ∈ R3−.
811
+ Assume that we are given a nonnegative g ∈ L1(S2) where g ≡ 0 outside U.
812
+ Then there exists a generalized reflector R ∈ RC δ
813
+ U(z′)
814
+ 1
815
+ (T) such that G1({x}) =
816
+ µg(U).
817
+ Proof. For convenience, label C∗ = C δ
818
+ U(z′). Recall that σ is the standard mea-
819
+ sure on S2.
820
+ Consider the set K1(d) = Proj[Ed(x) ∩ C∗] and its corresponding function
821
+ D1(d) = σ(K1(d)) where d ∈ (0, ∞). Note that since C∗ is bounded, D1(d) → 0
822
+ as d → ∞ and D1(d) → 0 as d → 0. By construction, it is clear that D1 is
823
+ bounded by 0 and σ(U). Therefore, Dmax
824
+ 1
825
+ = sup{D1(d)|d ∈ (0, ∞)} exists and
826
+ is finite, and by Lemma 4.7, Dmax
827
+ 1
828
+ > 0.
829
+ 20
830
+
831
+ Let ϵ1 ∈ [0, Dmax
832
+ 1
833
+ ). We define dmax1 to be a value such that D1(dmax1) =
834
+ Dmax
835
+ 1
836
+ − ϵ1 where ϵ1 = 0 if Dmax
837
+ 1
838
+ ∈ {D1(d)|d ∈ (0, ∞)}. We now eliminate the
839
+ parts of U that had already been accounted for and the parts of C∗ that can no
840
+ longer be used: let E1 = Proj[Edmax1 (x) ∩ C∗], Ψ1 = Ψx,dmax1 [E1],
841
+ Q2 = C∗ \ (Cx,Ψ1,∞ ∪ CO,Ψ1,∞),
842
+ (28)
843
+ and U2 = U \ E1. Note by Lemma 4.6, U2 = Proj[Q2]. Let us define K2(d) =
844
+ Proj[Ψx,d[U2] ∩ Q2] and D2(d) = σ(K2(d)).
845
+ Note that since Q2 is bounded, D2(d) → 0 as d → ∞ and D2(d) → 0
846
+ as d → 0. By construction, it is clear that D2 is bounded by 0 and σ(U2).
847
+ Therefore, Dmax
848
+ 2
849
+ = sup{D2(d)|d ∈ (0, ∞)} exists and is finite, and by Lemma
850
+ 4.7, Dmax
851
+ 2
852
+ > 0. Let ϵ2 ∈ [0, Dmax
853
+ 2
854
+ ). We define dmax2 to be a value such that
855
+ D1(dmax1) ≥ D2(dmax2) = Dmax
856
+ 2
857
+ − ϵ2.
858
+ Given that U1 = U and Q1 = C∗, we can now recursively define a sequence
859
+ of functions and sets for k ≥ 2:
860
+ Ek−1 = Proj[Ψx,dmaxk−1 [Uk−1] ∩ Qk−1],
861
+ (29)
862
+ Ψk−1 = Ψx,dmaxk−1 [Ek−1],
863
+ (30)
864
+ Qk = Qk−1 \ (Cx,Ψk−1,∞ ∪ CO,Ψk−1,∞),
865
+ (31)
866
+ Uk = U \
867
+
868
+
869
+ k−1
870
+
871
+ j=1
872
+ Ej
873
+
874
+ � = Proj[Qk],
875
+ (32)
876
+ Kk(d) = Proj[Ed(x) ∩ Qk],
877
+ (33)
878
+ Dk(d) = σ(Kk(d)).
879
+ (34)
880
+ Also, note that since Qk is bounded, Dk(d) → 0 as d → ∞ and Dk(d) → 0
881
+ as d → 0. By construction, it is clear that Dk is bounded by 0 and σ(Uk).
882
+ Therefore, Dmax
883
+ k
884
+ = sup{Dk(d)|d ∈ (0, ∞)} exists and is finite, and by Lemma
885
+ 4.7, Dmax
886
+ k
887
+ > 0. Let ϵk ∈ [0, Dmax
888
+ k
889
+ ). We define dmaxk to be a value such that
890
+ Dk−1(dmaxk−1) ≥ Dk(dmaxk) = Dmax
891
+ k
892
+ − ϵk.
893
+ Observe that the set Kk(d) is open for all d > 0. We can therefore construct
894
+ 21
895
+
896
+ a sequence
897
+
898
+
899
+ �σ
900
+
901
+
902
+ k�
903
+ j=1
904
+ Ej
905
+
906
+
907
+
908
+
909
+
910
+
911
+ k=1
912
+ .
913
+ (35)
914
+ Claim 4.1. There exists {ϵi}i∈N such that
915
+
916
+ σ
917
+ ��k
918
+ j=1 Ej
919
+ ��∞
920
+ k=1 converges to
921
+ σ(U).
922
+ Proof. By construction, the sequence increases monotonically and is bounded
923
+ between 0 and σ(U); thus it converges. Assume to the contrary that for every
924
+ possible {ϵi}i∈N,
925
+
926
+ σ
927
+ ��k
928
+ j=1 Ej
929
+ ��∞
930
+ k=1 that converges to an L ∈ (0, σ(U)). Then
931
+ σ
932
+
933
+ U \ �∞
934
+ j=1 Ej
935
+
936
+ = σ(U) − L > 0.
937
+ Consider the function
938
+ D∗(d) = σ
939
+
940
+ Proj
941
+
942
+ Ed(x) ∩ lim
943
+ j→∞ Qj
944
+ ��
945
+ .
946
+ (36)
947
+ Observe that limj→∞ Qj = C∗\�∞
948
+ i=1(Cx,Ψi,∞∪CO,Ψi,∞). Note that �∞
949
+ i=1(Cx,Ψi,∞∪
950
+ CO,Ψi,∞) ⊆ �∞
951
+ i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞). Observe that for all i ∈ N, Int(Cx,Ψi,∞ ∪ CO,Ψi,∞) =
952
+ Cx,Ψi,∞∪CO,Ψi,∞; thus �∞
953
+ i=1 Int(Cx,Ψi,∞ ∪ CO,Ψi,∞) = �∞
954
+ i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞).
955
+ Thus limj→∞ Qj = C∗\�∞
956
+ i=1(Cx,Ψi,∞ ∪ CO,Ψi,∞) is open and thus Int(limj→∞ Qj) ̸=
957
+ ∅.
958
+ Thus, by Lemma 4.7, there exists a d′ such that D∗(d′) > 0. By the def-
959
+ inition of convergence, there exists an M such that for all m ≥ M, D∗(d′) >
960
+ σ
961
+ ��∞
962
+ j=m Ej
963
+
964
+ . Note that σ
965
+ ��∞
966
+ j=m Ej
967
+
968
+ = �∞
969
+ j=m σ(Ej) = �∞
970
+ j=m Di(dmaxi) ≥
971
+ Dm(dmaxm). For all k ∈ N, Dmax
972
+ k
973
+ is a limit point of {Dk(d)|d ∈ (0, ∞)}, there-
974
+ fore as ϵk → 0, Dk(dmaxk) → Dmax
975
+ k
976
+ . Observe that Dm(d′) ≥ D∗(d′) because
977
+ limj→∞ Qj ⊆ Qm and U \ �∞
978
+ j=1 Ej ⊆ Um. Therefore there exists a sequence
979
+ {ϵi}i∈N such that Dm(dmaxm) ≥ D∗(d′). For this sequence σ
980
+ ��∞
981
+ j=m Ej
982
+
983
+
984
+ D∗(d′); a contradiction. Thus, there exists {ϵi}i∈N such that
985
+
986
+ σ
987
+ ��k
988
+ j=1 Ej
989
+ ��∞
990
+ k=1
991
+ converges to σ(U).
992
+ Let
993
+ Z =
994
+
995
+
996
+ j=1
997
+ Ψj.
998
+ (37)
999
+ 22
1000
+
1001
+ For some s ∈ N(BZ), consider the generalized reflector R = W(ρs
1002
+ Z) ∈ RC∗
1003
+ 1 (T).
1004
+ By construction,
1005
+ Cx,Ψx,dmaxj [Int(Ej)],∞ ∩ Ψx,dmaxj′ [Int(Ej′)] = ∅
1006
+ (38)
1007
+ when j ̸= j′. Observe that if j′, j ∈ N where j′ > j, then dmaxj ̸= dmaxj′
1008
+ because otherwise Ej′ ⊆ Ej; thus BR = {Int(Ej) ⊂ S2|j ∈ N}.
1009
+ Thus, by
1010
+ Lemma 4.5, for all m ∈ B where B ∈ BR, we have α1(m) = x. Then, for any
1011
+ s ∈ N(BZ), the generalized reflector R = W(ρs
1012
+ Z) ∈ RC∗
1013
+ 1 (T) is a weak solution
1014
+ to the generalized reflector problem such that G1({x}) = µg(U).
1015
+ We can now prove a result where our target set is made up of finitely many
1016
+ points. First, we prove the following lemma.
1017
+ Lemma 4.8. Assume that U is an open set in R3+, and T is a finite target
1018
+ set in R3−. Let R ∈ RU
1019
+ 1 (T) be a generalized reflector and A, B ∈ BR such that
1020
+ A ̸= B. Then the following conditions are equivalent:
1021
+ 1. for all m ∈ A and m′ ∈ B, α1(m) = xA and α1(m′) = xB,
1022
+ 2. CxA,ΨxA,dA[A] ∩ ΨxB,dB[B] = ∅ and CxB,ΨxB,dB [B] ∩ ΨxA,dA[A] = ∅.
1023
+ Proof. For the case where xA = xB, we have Lemma 4.5. We now consider
1024
+ the case where xB ̸= xB. By Lemma 4.3, for all m ∈ A α1(m) = xA if and
1025
+ only if y2
1026
+ R(m) = ∅. By definition, y2
1027
+ R(m) = ∅ if and only if the line segment
1028
+ between ΨxA,dA(m) and xA does not intersect R \ {ΨxA,dA(m)}.
1029
+ Similarly,
1030
+ By Lemma 4.3, for all m′ ∈ B α1(m′) = xB if and only if y2
1031
+ R(m′) = ∅. By
1032
+ definition, y2
1033
+ R(m′) = ∅ if and only if the line segment between ΨxB,dB(m′) and
1034
+ x does not intersect R \ {ΨxB,dB(m′)}. Therefore, statements (1) and (2) are
1035
+ equivalent.
1036
+ Theorem 4.2. Let U be an open set in S2
1037
+ +, δ, z′ > 0, and {x1, . . . , xk} ∈ R3−
1038
+ where k ≥ 2. Assume we are given a nonnegative g ∈ L1(S2) where g ≡ 0
1039
+ 23
1040
+
1041
+ outside U. Let f1, f2, . . . , fk be nonnegative real numbers such that
1042
+ k
1043
+
1044
+ i=1
1045
+ fi = µg(U).
1046
+ (39)
1047
+ Assume that there exists n ≥ k disjoint open sets Bi in U where �
1048
+ i∈[n] Bi = U.
1049
+ Also assume that there exists a collection of k subsets of [n], {Ai}i∈[k], such that:
1050
+ At ∩At′ = ∅ where t ̸= t′, �
1051
+ i∈[k] Ai = [n], and µg(�
1052
+ i∈At Bi) = ft. Suppose that
1053
+ for all i ∈ [n] there exists ai, bi > 0 where z′ ≤ ai < ai + bi ≤ z′ + δ such that
1054
+ C bi
1055
+ Bi(ai) ∩ Cxj,C
1056
+ bj
1057
+ Bj (aj) = ∅ for all j ∈ [n] \ {i}.
1058
+ Then there exists a generalized reflector in R ∈ RC δ
1059
+ U(z′)
1060
+ 1
1061
+ (T) such that G1({xi}) =
1062
+ fi for all i ∈ [k].
1063
+ Proof. For each i ∈ [n], C bi
1064
+ Bi(ai) is open and a generalized reflector Ri ∈
1065
+ R
1066
+ C
1067
+ bi
1068
+ Bi(ai)
1069
+ 1
1070
+ ({xi}) is constructed in the exact same way as Theorem 4.1. By our
1071
+ assumptions, since Ri ⊆ C bi
1072
+ Bi(ai), then
1073
+ (Ri ∩ C bi
1074
+ Bi(ai)) ∩ Cxj,Rj∩C
1075
+ bj
1076
+ Bj (aj) = ∅
1077
+ (40)
1078
+ for all j ∈ [n] \ {i}.
1079
+ Let F = �
1080
+ i∈[k] Ri and consider the generalized reflector R = W(ρF ) ∈
1081
+ RC δ
1082
+ U(z′)
1083
+ 1
1084
+ (T). By construction, for an A, B ∈ BR such that A ̸= B, we have
1085
+ that CxA,ΨxA,dA[A] ∩ ΨxB,dB[B] = ∅ and CxB,Ψx,dB [B] ∩ ΨxA,dA[A] = ∅. Thus
1086
+ by Lemma 4.8, for any B ∈ BR, for all m ∈ B we have α1(m) = xB. Then,
1087
+ for any s ∈ N(BF ), the generalized reflector R = W(ρs
1088
+ F ) ∈ RC δ
1089
+ U (z′)
1090
+ 1
1091
+ (T) is a
1092
+ weak solution to the generalized reflector problem such that G1({xi}) = fi for
1093
+ all i ∈ [k].
1094
+ We now will use Theorem 4.2 to construct a specific type of generalized
1095
+ reflector. Note the following definition.
1096
+ Definition 4.4. Let k ≥ 2, d > 0, ξ ∈ (−1, 0), and t ∈ R. Recall that, given a
1097
+ 24
1098
+
1099
+ point (x, y, z) ∈ R3, there exists r ∈ [0, ∞), φ ∈ [0, π], θ ∈ [0, 2π), such that
1100
+ x = r cos θ sin φ
1101
+ (41)
1102
+ y = r sin θ sin φ
1103
+ (42)
1104
+ z = r cos φ.
1105
+ (43)
1106
+ Define the set of points T ξ
1107
+ k,d(t) as
1108
+ ��
1109
+ d cos
1110
+ �2πj
1111
+ k
1112
+ + t
1113
+
1114
+ sin (arccos(ξ)) , d sin
1115
+ �2πj
1116
+ k
1117
+ + t
1118
+
1119
+ sin (arccos(ξ)) , dξ
1120
+
1121
+ |j ∈ I
1122
+
1123
+ (44)
1124
+ where I = {0, 1, . . . , k − 1}.
1125
+ If we are additionally given an i ∈ {0, 1, . . . , k − 1}, we may define the set
1126
+ Pk,i(t) ⊂ S2, as
1127
+ ��
1128
+ cos
1129
+
1130
+ θ + π(2i − 1)
1131
+ k
1132
+ + t
1133
+
1134
+ sin φ, sin
1135
+
1136
+ θ + π(2i − 1)
1137
+ k
1138
+ + t
1139
+
1140
+ sin φ, cos φ
1141
+
1142
+ ����φ ∈ [0, π], θ ∈
1143
+
1144
+ 0, 2π
1145
+ k
1146
+ ��
1147
+ .
1148
+ (45)
1149
+ If k = 1, define the set of points T ξ
1150
+ 1,d(t) = {(0, 0, −d)} and P1,0(t) = S2.
1151
+ It is good to observe that T ξ
1152
+ k,d(t) defines the points of a regular k-gon centered
1153
+ at the z-axis and that Pk,i(t) defines a spherical wedge.
1154
+ Theorem 4.3. Let δ, z′ > 0. Consider the open disk U = {m ∈ S2
1155
+ +|⟨(0, 0, 1), m⟩ >
1156
+ c} where 0 < c < 1. Let d1, . . . , dn be a collection of not necessarily distinct
1157
+ positive numbers. Let k1, . . . , kn be a collection of not necessarily distinct pos-
1158
+ itive integers. Let ξ1, . . . , ξn be a collection of not necessarily distinct numbers
1159
+ such that ξi ∈ (−1, 0). Let t′
1160
+ 1, . . . , t′
1161
+ n be a collection of not necessarily distinct
1162
+ elements of R. Let us denote Ti = T ξi
1163
+ ki,di(t′
1164
+ i) and let T = �n
1165
+ i=1 Ti.
1166
+ Assume that we a given a nonnegative g ∈ L1(S2
1167
+ +) that is rotationally sym-
1168
+ metric about the z-axis such that g ≡ 0 outside U. Let f1, . . . , fn be a collection
1169
+ of positive numbers such that
1170
+ µg(U) =
1171
+ n
1172
+
1173
+ i=1
1174
+ fi.
1175
+ (46)
1176
+ 25
1177
+
1178
+ Then there exists a generalized reflector R ∈ RC δ
1179
+ U(z′)
1180
+ 1
1181
+ (T) such that
1182
+ G1({x}) =
1183
+
1184
+ {j∈[n]|x∈Tj}
1185
+ fj
1186
+ kj
1187
+ (47)
1188
+ for all x ∈ T.
1189
+ Proof. By the intermediate value theorem, there exists a collection of numbers
1190
+ ζ1, . . . , ζn ∈ [c, 1) where ζn = c and µg
1191
+
1192
+ {m ∈ S2
1193
+ +|⟨(0, 0, 1), m⟩ > ζi}
1194
+
1195
+ = �i
1196
+ j=1 fj.
1197
+ Define
1198
+ Bi = {m ∈ S2
1199
+ +|⟨(0, 0, 1), m⟩ > ζi} \ {m ∈ S2
1200
+ +|⟨(0, 0, 1), m⟩ ≥ ζi−1}
1201
+ (48)
1202
+ for all i ∈ {2, . . . , n} and B1 = {m ∈ S2
1203
+ +|⟨(0, 0, 1), m⟩ > ζ1}. Thus µg(Bi) = fi.
1204
+ Consider the set Ti, let
1205
+ Ti(j) =
1206
+
1207
+ di cos
1208
+ �2πj
1209
+ ki
1210
+ + t′
1211
+ i
1212
+
1213
+ sin (arccos(ξi)) , di sin
1214
+ �2πj
1215
+ ki
1216
+ + t′
1217
+ i
1218
+
1219
+ sin (arccos(ξi)) , diξi
1220
+
1221
+ (49)
1222
+ where j ∈ {0, . . . , ki − 1} if k ≥ 2 and Ti(0) = (0, 0, −di).
1223
+ Let Pi(j) = Pki,j(t′
1224
+ i) where j ∈ {0, . . . , ki −1}, then by construction µg(Bi ∩
1225
+ Pi(j)) = fi
1226
+ ki . Let Ui(j) = C
1227
+ δ
1228
+ n
1229
+ Bi∩Int(Pi(j))
1230
+
1231
+ z′ + (i − 1) δ
1232
+ n
1233
+
1234
+ where j ∈ {0, . . . , ki −1}.
1235
+ Since Ti(j) ∈ R3−, any given line segment between a point in Ui(j) and the point
1236
+ Ti(j) will not intersect any set Ui′(j′) where i′ > i and j′ ∈ {0, . . . , ki′ − 1}.
1237
+ Therefore CTi(j),Ui(j) ∩ Ui′(j′) = ∅ where i′ > i and j′ ∈ {0, . . . , ki′ − 1}. Also,
1238
+ since CO,Pi(j),∞ is a convex set and Ui(j), {Ti(j)} are both subsets of CO,Pi(j),∞,
1239
+ we then have CTi(j),Ui(j) ⊂ CO,Pi(j),∞. Therefore, CTi(j),Ui(j) ∩ Ui(j′) = ∅
1240
+ where j′ ̸= j. Finally, if there exists a line segment between a point in Ui(j)
1241
+ and Ti(j) that intersects a Ui′(j′) where i > i′ and j′ ∈ {0, . . . , ki′ − 1}, then it
1242
+ must intersect CO,{m∈S2
1243
+ +|⟨(0,0,1),m⟩>ζi−1},∞. However, CTi(j),Ui(j) is disjoint from
1244
+ CO,{m∈S2
1245
+ +|⟨(0,0,1),m⟩>ζi−1},∞ and thus CTi(j),Ui(j) ∩ Ui′(j′) = ∅ where i > i′ and
1246
+ j′ ∈ {0, . . . , ki′ − 1}. Therefore, CTi(j),Ui(j) ∩ Ui′(j′) = ∅ when (i, j) ̸= (i′, j′).
1247
+ Therefore, by Theorem 4.2, there exists a generalized reflector R ∈ RCδ
1248
+ U(z′)
1249
+ 1
1250
+ (T)
1251
+ such that
1252
+ G1({x}) =
1253
+
1254
+ {j∈[n]|x∈Tj}
1255
+ fj
1256
+ kj
1257
+ (50)
1258
+ 26
1259
+
1260
+ for all x ∈ T.
1261
+ 5. Interpolated Reflectors
1262
+ The generalized reflector presented in the previous section might be impos-
1263
+ sible or, at best, very difficult to construct in the real world. Thus we introduce
1264
+ the following notion.
1265
+ Definition 5.1. Assume that we are given an aperture that is a connected open
1266
+ set D ⊆ S2 and a not necessarily continuous, almost everywhere differentiable
1267
+ function ρ : D → (0, ∞). Then an interpolated reflector is the set R =
1268
+ ∂(CO,S) \ ∂(CO,S,∞) ⊂ R3 where S = {mρ(m)|m ∈ D}.
1269
+ It is interesting to note that, given an aperture that is a connected open set
1270
+ D ⊆ S2, a set is a reflector if and only if it is both a generalized reflector and
1271
+ an interpolated reflector.
1272
+ The type of interpolated reflector we construct below is a topological surface
1273
+ (see Chapter 4.36 in [20]) and thus consists of one connected component instead
1274
+ of countably many. In a practical sense, when designing an interpolated reflector
1275
+ as opposed to a generalized reflector, new challenges are introduced. Thus, we
1276
+ settle for finding a necessary and sufficient condition for the existence of an
1277
+ interpolated reflector.
1278
+ We will consider the following formulation of the near-field reflector problem
1279
+ as a weak formulation of equation (4) from [12] and its solutions, weak solutions.
1280
+ The following formulation only concerns the case where the target set is finite.
1281
+ 5.1. Weak Solutions using Interpolated Reflectors
1282
+ Consider a connected open set U ⊆ R3+, a corresponding aperture Proj[U],
1283
+ and a finite target set T ⊆ R3−. Also, consider the set RU
1284
+ 1 (T) as defined by
1285
+ (14). We then describe a set of interpolated reflectors
1286
+ RU
1287
+ 2 (T) =
1288
+
1289
+ ∂(CO,S) \ ∂(CO,S,∞)| S ∈ RU
1290
+ 1 (T)
1291
+
1292
+ .
1293
+ (51)
1294
+ 27
1295
+
1296
+ It is interesting to note that the interpolated reflectors in RU
1297
+ 2 (T) are all topo-
1298
+ logical surfaces.
1299
+ Assume we are given an interpolated reflector R ∈ RU
1300
+ 2 (T). Let us define
1301
+ BR =
1302
+
1303
+ Int(Proj[Ed(x) ∩ R]) ⊆ S2 |d ∈ (0, ∞), x ∈ T, σ(Proj[Ed(x) ∩ R]) ̸= 0
1304
+
1305
+ .
1306
+ (52)
1307
+ The geometry of the ellipsoid and the definition of BR imply that there
1308
+ exists an s ∈ N(BR), unique u ∈ UT (B) and unique v ∈ V (B) such that
1309
+ ∂(CO,W (ρs
1310
+ Z))\∂(CO,W (ρs
1311
+ Z),∞) = R where Z = �
1312
+ B∈BR Ψu(B),v(B)[B]. Therefore,
1313
+ for every interpolated reflector R ∈ RU
1314
+ 2 (T), we may define a unique BR ∈ B(U)
1315
+ such that for each B ∈ BR there are unique xB ∈ T and dB ∈ (0, ∞) such
1316
+ that, for some s ∈ N(BR), R = ∂(CO,W (ρs
1317
+ Z)) \ ∂(CO,W (ρs
1318
+ Z),∞) where Z =
1319
+
1320
+ B∈BR ΨxB,dB[B].
1321
+ Therefore, given a interpolated reflector R ∈ RU
1322
+ 2 (T), we obtain a cor-
1323
+ responding BR; for each B ∈ BR we define unique xB and dB.
1324
+ We also
1325
+ obtain an sR ∈ N(BR) and a unique ZR = �
1326
+ B∈BR ΨxB,dB[B] such that
1327
+ R = ∂(CO,S) \ ∂(CO,S,∞) where S = W(ρsR
1328
+ ZR).
1329
+ Given an interpolated reflector R ∈ RU
1330
+ 2 (T), let
1331
+ M(m) = xB ∈ T
1332
+ (53)
1333
+ where mρsR
1334
+ ZR(m) = ΨxB,dB(m). Let y2
1335
+ R(m) be the points of intersection between
1336
+ R \ {mρsR
1337
+ ZR(m)} and the line segment connecting mρsR
1338
+ ZR(m) to M(m).
1339
+ Given an interpolated reflector R ∈ RU
1340
+ 2 (T), the map α2 : Proj[U] → T ∪ R,
1341
+ α2(m) =
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+ M(m)
1348
+ if y2
1349
+ R(m) = ∅
1350
+ y2
1351
+ R(m)
1352
+ if y2
1353
+ R(m) ̸= ∅
1354
+ (54)
1355
+ is called the interpolated reflector map. Physically speaking, a ray of light of
1356
+ direction m originating from O can only reach the target set if y2
1357
+ R(m) is empty.
1358
+ As before, we denote by g ∈ L1(S2) the energy density of the source O. Let
1359
+ us define for all Borel X ⊆ S2
1360
+ µg(X) =
1361
+
1362
+ X
1363
+ g(m)dσ(m)
1364
+ (55)
1365
+ 28
1366
+
1367
+ where σ denotes the standard measure on S2. Assume that g is a nonnegative
1368
+ function where g ≡ 0 outside of Proj[U]. Physically speaking, g is the radiance
1369
+ distribution of the source at O
1370
+ In order to formulate and solve the interpolated reflector problem (in the
1371
+ framework of weak solutions to be defined below), we need to define a measure
1372
+ representing the energy generated by g and redistributed by an interpolated
1373
+ reflector R ∈ RU
1374
+ 2 (T).
1375
+ Given a interpolated reflector R ∈ RU
1376
+ 2 (T) and a set ω ⊆ T we define the
1377
+ visibility set of ω as
1378
+ V U
1379
+ 2 (ω) =
1380
+
1381
+ A∈A
1382
+ A \ {m ∈ Proj[U]|α2(m) = y2
1383
+ R(m)}
1384
+ (56)
1385
+ where A = {B ∈ BR|xB ∈ ω}. We now need to show that V U
1386
+ 2 (ω) is measurable.
1387
+ Proposition 5.1. Let R be a interpolated reflector in RU
1388
+ 2 (T).
1389
+ For any set
1390
+ ω ⊆ T, the visibility set V U
1391
+ 2 (ω) is Borel.
1392
+ Proof. We make use of the fact that sets formed from Borel sets through the
1393
+ operations of countable union, countable intersection, and relative complement
1394
+ are Borel. Recall that we obtain a sR ∈ N(BR). Note that by the definition of
1395
+ an interpolated reflector in RU
1396
+ 1 (T), R = �
1397
+ B∈BR ΨxB,dB [B′] ∪ SR where B′ =
1398
+ {m ∈ B|mρsR
1399
+ ZR = ΨxB,dB(m)} = B \ �
1400
+ K∈K K where K = {A ∈ BR|sR(A) <
1401
+ sR(B)} and SR = R \ �
1402
+ B∈BR ΨxB,dB[B′]. Note that B′ is clearly Borel and
1403
+ B ⊆ B′ ⊆ B.
1404
+ For B ∈ BR, we have that CxB,ΨxB,dB [B′] and CO,ΨxB,dB [B′] are Borel sets
1405
+ by Lemmas 4.2 and 4.1 respectively. Note that R is Borel as it is a boundary of
1406
+ an open set minus the boundary of another open set. Since BR is countable and
1407
+ functions of the form ΨxB,dB are continuous and bijective, �
1408
+ B∈BR ΨxB,dB [B′]
1409
+ is Borel.
1410
+ Therefore SR is also Borel.
1411
+ Thus for all B ∈ BR, the set QB =
1412
+ CxB,ΨxB,dB [B′]∩(R\ΨxB,dB[B′]) is Borel and therefore the set LB = CxB,QB,∞∩
1413
+ ΨxB,dB[B′] is Borel. Thus Proj[LB] is Borel, as it is the preimage of LB under
1414
+ 29
1415
+
1416
+ ΨxB,dB. Since
1417
+ {m ∈ Proj[U]|α2(m) = y2
1418
+ R(m)} =
1419
+
1420
+ B∈BR
1421
+ Proj[LB],
1422
+ (57)
1423
+ we have that {m ∈ Proj[U]|α2(m) = y2
1424
+ R(m)} is Borel and thus V U
1425
+ 2 (ω) is Borel.
1426
+ Define for any interpolated reflector R ∈ RU
1427
+ 2 (T),
1428
+ G2(ω) = µg(V U
1429
+ 2 (ω))
1430
+ (58)
1431
+ which we will deem the energy function of interpolated reflector problem.
1432
+ Let F be a nonnegative, finite measure on the finite set T. We say that an
1433
+ interpolated reflector R ∈ RU
1434
+ 2 (T) is a weak solution to the interpolated reflector
1435
+ problem if the interpolated reflector map α2 determined by R is such that
1436
+ F(ω) = G2(ω) for any Borel set ω ⊆ T.
1437
+ (59)
1438
+ 5.2. Main Results
1439
+ Here we prove a necessary and sufficient condition for the existence of weak
1440
+ solutions to the interpolated reflector problem. We proceed with the following
1441
+ lemma.
1442
+ Lemma 5.1. Assume that U is an open set in R3+, and T is a finite target
1443
+ set in R3−. Assume we are given a nonnegative g ∈ L1(S2) such that g ≡ 0
1444
+ outside Proj[U] and g > 0 inside Proj[U]. Let R ∈ RU
1445
+ 1 (T) be a generalized
1446
+ reflector, then we define the set Bx
1447
+ R = {B ∈ BR|x = xB} for x ∈ T. Then for
1448
+ any z, y ∈ T the following conditions are equivalent:
1449
+ 1. for all m ∈ �
1450
+ A∈Bz
1451
+ R A and m′ ∈ �
1452
+ B∈By
1453
+ R B, α1(m) = z and α1(m′) = y,
1454
+ 2. Cz,Ψz,dA[A] ∩Ψy,dB[B] = ∅ and Cy,Ψy,dB [B] ∩Ψz,dA[A] = ∅ for all A ∈ Bz
1455
+ R
1456
+ and B ∈ By
1457
+ R where A ̸= B,
1458
+ 3. CxA,ΨxA,dA[A] ∩ΨxB,dB[B] = ∅ and CxB,ΨxB,dB [B] ∩ΨxA,dA[A] = ∅ for all
1459
+ A, B ∈ BR where A ̸= B,
1460
+ 30
1461
+
1462
+ 4. G1({x}) = µg(�
1463
+ A∈Bx
1464
+ R A) and G1({y}) = µg(�
1465
+ B∈By
1466
+ R B).
1467
+ Proof. (1) ⇔ (2) by Lemma 4.8, clearly (3) ⇔ (2), and (1) trivially implies (4).
1468
+ We only need to prove that (4) implies (2); we prove the contrapositive.
1469
+ Assume that there exists an A ∈ Bx
1470
+ R and a B′ ∈ By
1471
+ R such that, without loss of
1472
+ generality, Cz,Ψz,dA[A] ∩ Ψy,dB′ [B′] ̸= ∅. Let Q = Cz,Ψz,dA[A] ∩ Ψy,dB′ [B′]. Note
1473
+ that Cz,Ψz,dA[A],∞ ∩ Cz,Ψy,dB′ [B′],∞ = Cz,Q,∞. Since Cz,Ψz,dA[A],∞ \ {O} and
1474
+ Cz,Ψy,dB′ [B′],∞\{O} are open, Cz,Q,∞\{O} is open; thus Cz,Q,∞∩EdB(y) is open
1475
+ in EdB(y). Thus Proj[Q] ⊆ B is open and, since g > 0 in U, µg(Proj[Q]) > 0,
1476
+ and thus G1({y}) ≤ µg(�
1477
+ B∈By
1478
+ R B) − µg(Proj[Q]).
1479
+ Note the following definition.
1480
+ Definition 5.2. Let K be a subset of Rn where n ≥ 2 such that K is compact.
1481
+ The complement U = Rn \ K is an open set. For sufficiently large R > 0,
1482
+ the set V = {x|R < |x|} is contained in U. Since V is connected, there exists
1483
+ a connected component of U that contains V . This is the unique unbounded
1484
+ connected component of U.
1485
+ We define the exterior boundary of K as the boundary of the unbounded
1486
+ connected component of Rn \ K. We denote this as ∂E(K).
1487
+ The following result gives a condition that is necessary and sufficient for the
1488
+ existence of weak solutions to the interpolated reflector problem.
1489
+ Theorem 5.1. Let U ⊂ R3+ be a simply connected open set such that U ⊂ R3+,
1490
+ and T ⊂ R3− be a finite set. Assume we are given a nonegative g ∈ L1(S2) such
1491
+ that g ≡ 0 outside Proj[U] and g > 0 inside Proj[U]. Let F be a measure over
1492
+ T such that
1493
+ F(T) = µg(Proj[U]).
1494
+ (60)
1495
+ Then there exists an interpolated reflector R2 ∈ RU
1496
+ 2 (T) that is a weak solu-
1497
+ tion to the interpolated reflector problem as defined in (59) if and only if there
1498
+ exists a generalized reflector R1 ∈ RU
1499
+ 1 (T) that is a weak solution to the gen-
1500
+ eralized reflector problem as defined in (22) where R1 is a subset of a simply
1501
+ 31
1502
+
1503
+ connected subset of
1504
+ U ∩ ∂E
1505
+
1506
+ �CO,R1 ∪
1507
+
1508
+ B∈BR1
1509
+ CxB,ΨxB,dB [B]
1510
+
1511
+ � .
1512
+ (61)
1513
+ Proof. It is clear that if R2 ∈ RU
1514
+ 2 (T) that is a weak solution to the interpolated
1515
+ reflector problem as defined in (59), then, for any s ∈ N(BR2), R1 = W(ρs
1516
+ F )
1517
+ where F = �
1518
+ B∈BR2 ΨxB,dB[B] is a weak solution to the generalized reflector
1519
+ problem as defined in (22). Note that this implies that BR1 = BR2. Since
1520
+ g is positive in Proj[U], for our reflector R1, by Lemma 5.1, for all distinct
1521
+ A, B ∈ BR1, CxA,ΨxA,dA[A]∩ΨxB,dB[B] = ∅ and CxB,ΨxB,dB [B]∩ΨxA,dA[A] = ∅.
1522
+ Therefore, for all A ∈ BR1, ΨxA,dA[A]∩Int
1523
+
1524
+ CO,R1 ∪ �
1525
+ B∈BR1 CxB,ΨxB,dB [B]
1526
+
1527
+ =
1528
+ ∅.
1529
+ Also observe that for all A ∈ BR1, (CO,ΨxA,dA[A],∞ \ CO,ΨxA,dA[A]) ∩
1530
+ Int
1531
+
1532
+ CO,R1 ∪ �
1533
+ B∈BR1 CxB,ΨxB,dB [B]
1534
+
1535
+ = ∅.
1536
+ Therefore, R1 is a subset of a simply connected subset of
1537
+ ∂E
1538
+
1539
+ �CO,R1 ∪
1540
+
1541
+ B∈BR1
1542
+ CxB,ΨxB,dB [B]
1543
+
1544
+ � .
1545
+ (62)
1546
+ Since the interpolated reflector must be contained in U, we obtain (61).
1547
+ Conversely, if there exists a reflector R1 ∈ RU
1548
+ 1 (T) that is a weak solution of
1549
+ the generalized reflector problem as defined in (22) where R1 ⊂ Q such that Q
1550
+ is a simply connected subset of (61), then R2 = ∂(CO,R1) \ ∂(CO,R1,∞) is also
1551
+ a subset of Q.
1552
+ 6. Discussion
1553
+ In this note, with respect to the near-field reflector problem with spatial
1554
+ restrictions, we defined two different kinds of weak solutions. For the first weak
1555
+ solution, we proved, under certain assumptions, the existence of a generalized
1556
+ reflector where the target set is multiple points. A possible avenue for further
1557
+ research is to attempt to expand Theorem 4.3 for different target sets, apertures,
1558
+ and spatial restrictions. Another idea might be to try to come up with designs
1559
+ such that the generalized reflectors have finitely many connected components
1560
+ 32
1561
+
1562
+ instead of countably many. The author believes that the following statement is
1563
+ true.
1564
+ Conjecture 6.1. Let U be an open set in S2
1565
+ +, δ, z′ > 0, and {x1, . . . , xk} ∈ R3−
1566
+ where k ≥ 2. Assume we are given a positive g ∈ L1(S2) where g ≡ 0 outside
1567
+ U. Let f1, f2, . . . , fk be nonnegative real numbers such that
1568
+ k
1569
+
1570
+ i=1
1571
+ fi = µg(U).
1572
+ (63)
1573
+ Then there exists a generalized reflector R ∈ RC δ
1574
+ U(z′)
1575
+ 1
1576
+ (T) such that G1({xi}) = fi
1577
+ for all i ∈ [k].
1578
+ For the second weak solution, we proved a theorem that detailed a necessary
1579
+ and sufficient condition for the existence of an interpolated reflector. The ad-
1580
+ vantage of our interpolated reflectors, as opposed to our generalized reflectors,
1581
+ is that our interpolated reflector design is a topological surface; thus it is easier
1582
+ to construct from an engineering perspective. An obvious avenue for further
1583
+ work would be to create some practically useful interpolated reflectors; using
1584
+ Theorem 4.2 might be useful in this regard. In fact, it would be very useful if
1585
+ the following conjecture is true.
1586
+ Conjecture 6.2. Let U be a simply connected open set in S2
1587
+ +, δ, z′ > 0, and
1588
+ {x1, . . . , xk} ∈ R3−. Assume we are given a nonnegative g ∈ L1(S2) where g ≡ 0
1589
+ outside U. Let f1, f2, . . . , fk be nonnegative real numbers such that
1590
+ k
1591
+
1592
+ i=1
1593
+ fi = µg(U).
1594
+ (64)
1595
+ Then there exists an interpolated reflector in R ∈ RC δ
1596
+ U(z′)
1597
+ 2
1598
+ (T) such that
1599
+ G2({xi}) = fi for all i ∈ [k].
1600
+ Another fruitful avenue of research might be to somehow expand these def-
1601
+ initions of weak solutions to account for cases where the target set is not finite.
1602
+ Then, proving the existence of generalized and interpolated reflectors with con-
1603
+ tinuous irradiance distributions.
1604
+ 33
1605
+
1606
+ As the reader might have noticed, we make no attempt to address the near-
1607
+ field reflector problem with spatial conditions with a reflector.
1608
+ Instead, we
1609
+ exclusively use generalized or interpolated reflectors. While it may be interesting
1610
+ to research reflectors in order to get a ‘stronger’ solution, it is the author’s
1611
+ view that, in general, it is not possible to construct a reflector under spatial
1612
+ conditions. For example, if the target set is a single point, the solution to the
1613
+ near-field reflector problem is an ellipsoid. However, if given spatial restrictions,
1614
+ a single ellipsoid, in general, cannot fit those restrictions; this is demonstrated
1615
+ in Theorem 4.1. If no reflector exists for a single point, the prospects for more
1616
+ complicated target sets and irradiance distributions appear limited.
1617
+ References
1618
+ [1] M. Born, E. Wolf, Principles of Optics: 60th Anniversary Edition, 7th
1619
+ Edition, Cambridge University Press, 2019.
1620
+ [2] L. Caffarelli, V. Oliker, Weak solutions of one inverse problem in geometric
1621
+ optics, Journal of Mathematical Sciences 154 (2008) 39–49.
1622
+ [3] J. Schruben, Formulation of relector-design problem for a lighting fixture,
1623
+ J. Opt. Soc. Am. 62 (12) (1972) 1498–1501.
1624
+ [4] S. Kochengin, V. Oliker, Determination of reflector surfaces from near-field
1625
+ scattering data, Inverse Problems 13 (2) (1997) 363–373.
1626
+ [5] X.-J. Wang, On design of reflector antenna, Inverse Problems 12 (1996)
1627
+ 351–375.
1628
+ [6] B. Kinber, On two reflector antennas, Radio Eng. Electron. Phys. 7 (1962)
1629
+ 973–979.
1630
+ [7] D. Burkhard, D. Shealy, Design of reflectors which will distribute sunlight
1631
+ in a specified manner, Solar Energy 17 (1975) 221–307.
1632
+ 34
1633
+
1634
+ [8] T. E. Horton, J. H. McDermit, Design of a specular aspheric surface to
1635
+ uniformly radiate a flat surface using a nonuniform collimated radiation
1636
+ source, J. Heat Transfer (1972) 453–458.
1637
+ [9] F. Fournier, A review of beam shaping strategies for LED lighting, in: T. E.
1638
+ Kidger, S. David (Eds.), Illumination Optics II, Vol. 8170, SPIE, 2011, pp.
1639
+ 55 – 65.
1640
+ [10] A. Gray, Modern Differential Geometry of Curves and Surfaces with Math-
1641
+ ematica, 2nd Edition, CRC Press, Boca Raton, FL, 1997.
1642
+ [11] V. Oliker, E. Newman, The energy conservation equation in the reflector
1643
+ mapping problem, Applied Mathematics Letters 6 (1) (1993) 91–95.
1644
+ [12] V. Oliker, On reconstructing a reflecting surface from the scattering data in
1645
+ the geometric optics approximation, Inverse Problems 5 (1) (1989) 51–65.
1646
+ [13] J. Schruben, Analysis of rotationally symmetric reflectors for illuminating
1647
+ systems∗, J. Opt. Soc. Am. 64 (1) (1974) 55–58.
1648
+ [14] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, 2nd Edition,
1649
+ Encyclopedia of Mathematics and its Applications, Cambridge University
1650
+ Press, 2013.
1651
+ [15] S. Kochengin, V. Oliker, Determination of reflector surfaces from near-field
1652
+ scattering data ii. numerical solution ., Numer. Math. 79 (1998) 553–568.
1653
+ [16] F. Fournier, B. Cassarly, J. Rolland, Optimization of single reflectors for
1654
+ extended sources, Proc SPIE 7103 (09 2008).
1655
+ [17] F. Fournier, B. Cassarly, J. Rolland, Fast freeform reflector generation using
1656
+ source-target maps, Opt. Express 18 (5) (2010) 5295–5304.
1657
+ [18] T. Graf, V. Oliker, An optimal mass transport approach to the near-field
1658
+ reflector problem in optical design, Inverse Problems 28 (2012) 025001.
1659
+ 35
1660
+
1661
+ [19] F. R. Fournier, Freeform reflector design with extended sources, Ph.D.
1662
+ thesis, CREOL, the College of Optics and Photonics at the University of
1663
+ Central Florida (2010).
1664
+ [20] J. Munkres, Topology, 2nd Edition, Featured Titles for Topology, Prentice
1665
+ Hall, Incorporated, 2000.
1666
+ 36
1667
+
Q9AyT4oBgHgl3EQf7vq-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QtFRT4oBgHgl3EQf7Tgp/content/tmp_files/2301.13679v1.pdf.txt ADDED
@@ -0,0 +1,1313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Density of states and spectral function of a superconductor out of a quantum-critical
2
+ metal
3
+ Shang-Shun Zhang1 and Andrey V. Chubukov1
4
+ 1School of Physics and Astronomy and William I. Fine Theoretical Physics Institute,
5
+ University of Minnesota, Minneapolis, MN 55455, USA
6
+ (Dated: February 1, 2023)
7
+ We analyze the validity of a quasiparticle description of a superconducting state at a metallic
8
+ quantum-critical point (QCP). A normal state at a QCP is a non-Fermi liquid with no coherent
9
+ quasiparticles.
10
+ A superconducting order gaps out low-energy excitations, except for a sliver of
11
+ states for non-s-wave gap symmetry, and at a first glance, should restore a coherent quasiparticle
12
+ behavior. We argue that this does not necessarily hold as in some cases the fermionic self-energy
13
+ remains singular slightly above the gap edge.
14
+ This singularity gives rise to markedly non-BCS
15
+ behavior of the density of states and to broadening and eventual vanishing of the quasiparticle peak
16
+ in the spectral function. We analyze the set of quantum-critical models with an effective dynamical
17
+ 4-fermion interaction, mediated by a gapless boson at a QCP, V (Ω) ∝ 1/Ωγ. We show that coherent
18
+ quasiparticle behavior in a superconducting state holds for γ < 1/2, but breaks down for larger γ.
19
+ We discuss signatures of quasiparticle breakdown and compare our results with the data.
20
+ Introduction.
21
+ Metals near a quantum critical
22
+ point (QCP) display a number of non-Fermi liquid
23
+ properties like linear-in-T resistivity, a broad peak in
24
+ the spectral function near kF with linear-in-ω width,
25
+ singular behavior of optical conductivity, etc [1–18].
26
+ These properties are often thought to be caused by
27
+ the coupling of fermions to near-gapless fluctuations of
28
+ an order parameter, which condenses at a QCP [19–
29
+ 29].
30
+ The same fermion-boson interaction gives rise to
31
+ superconductivity near a QCP [30–42].
32
+ A
33
+ superconducting
34
+ order
35
+ gaps
36
+ out
37
+ low-energy
38
+ excitations, leaving at most a tiny subset of gapless
39
+ states for a non-s−wave order parameter.
40
+ A general
41
+ belief has been that this restores fermionic coherence. A
42
+ frequently cited experimental evidence is the observed
43
+ re-emergence
44
+ of
45
+ a
46
+ quasiparticle
47
+ peak
48
+ below
49
+ Tc
50
+ in
51
+ near-optimally doped cuprates (see e.g.,
52
+ Ref. [43]).
53
+ From theory side, the argument is that the fermionic
54
+ self-energy in a superconductor has a conventional Fermi-
55
+ liquid form Σ(ω) ∼ ω at the lowest ω, in distinction from
56
+ a non-Fermi-liquid Σ(ω) ∝ ωa with a < 1 in the normal
57
+ state
58
+ [44–53].
59
+ In this paper, we analyze theoretically
60
+ whether fermions in a superconducting state at a QCP
61
+ can be viewed as well-defined coherent quasiparticles.
62
+ We argue that this is not necessarily the case as fermionic
63
+ self-energy can still be singular on a real frequency axis
64
+ immediately above the gap edge. This singularity gives
65
+ rise to markedly non-BCS behavior of the density of
66
+ states (DoS) and to broadening and eventual vanishing
67
+ of the quasiparticle peak.
68
+ For superconductivity away from a QCP, mediated by
69
+ a massive boson, numerous earlier studies have found
70
+ that the spectral function A(k, ω) at T
71
+ = 0 has a
72
+ δ-functional peak at ω = (∆2 + (ξk/Z)2)1/2, where
73
+ ξk = vF (k − kF ) is a fermionic dispersion (vF is a
74
+ Fermi velocity), ∆ is a superconducting gap, and Z is
75
+ an inverse quasiparticle residue.
76
+ A δ-functional peak
77
+ FIG. 1.
78
+ Three possible forms of the electronic spectral
79
+ function
80
+ A(k, ω)
81
+ at
82
+ T
83
+ =
84
+ 0
85
+ in
86
+ a
87
+ quantum
88
+ critical
89
+ superconductor at a small but finite k − kF and in the
90
+ absence of impurity broadening.
91
+ (a):
92
+ A(k, ω) vanishes at
93
+ |ω| = ∆ and has a well-defined peak at ω > ∆, (b): A(k, ω)
94
+ diverges at |ω| = ∆, but it non-monotonic at larger ω. The
95
+ peak in A(k, ω) at |ω| > ∆ broadens, but still exists. (c):
96
+ A(k, ω) diverges at |ω| = ∆, and monotonically decreases at
97
+ larger ω. In case (a) fermions can be viewed as well-defined
98
+ quasiparticles, in case (c) the quasiparticle picture completely
99
+ breaks down. The case (b) is the intermediate one between
100
+ (a) and (c).
101
+ holds for momenta near the Fermi surface, as long as
102
+ ω < ∆ + ω0, where ω0 is a mass of a pairing boson
103
+ in energy units. At larger ω, fermionic damping kicks
104
+ in, and the peak broadens.
105
+ The same physics leads
106
+ to peak-dip-hump behavior of A(k, ω) as a function of
107
+ ω, observed most spectacularly in near-optimally doped
108
+ cuprate Bi2Sr2CaCu2O8+δ (see, e.g, Refs. [54, 55]). At
109
+ a QCP, the pairing boson becomes massless and ω0
110
+ vanishes. This creates a singular behavior near the gap
111
+ edge at ω = ∆, which holds even when ξk is finite.
112
+ A simple experimentation shows that there are three
113
+ possible forms of A(k, ω), which we present in Fig. 1:
114
+ it (i) either vanishes at ω = ∆ and has a well-defined
115
+ peak at ω > ∆ whose width at small ξk is parametrically
116
+ smaller than its energy; or (ii) diverges at ω = ∆,
117
+ arXiv:2301.13679v1 [cond-mat.supr-con] 31 Jan 2023
118
+
119
+ Three possible forms of A( k,w) in quantum-critical superconductor
120
+ (a) Quasiparticle picture
121
+ (b) Partial breakdown
122
+ (c) Complete breakdown
123
+ of quasiparticle
124
+ of quasiparticle
125
+ (k,w)
126
+ A
127
+ -△
128
+ 0
129
+ -△
130
+ 0
131
+ -△
132
+ 0
133
+ 3
134
+ 3
135
+ 32
136
+ 0
137
+ 0.5
138
+ 1
139
+ 2
140
+ .
141
+ 0
142
+ 0.5
143
+ 1
144
+ 1.5
145
+ 2
146
+ Leading exponent
147
+ 0
148
+ 0.2
149
+ 0.4
150
+ 0.6
151
+ 0.8
152
+ 1
153
+ 1.2
154
+ Subleading exponent
155
+ 8
156
+ c
157
+ 0
158
+ 0.2
159
+ 0.4
160
+ 0.6
161
+ 0.8
162
+ !=7g
163
+ 0
164
+ 2
165
+ 4
166
+ 6
167
+ 8
168
+ 10
169
+ D(!)
170
+ . = 0:8; 8 ' 1:18
171
+ gap edge
172
+ 0
173
+ 0.1
174
+ 0.2
175
+ (" ! !)8
176
+ 0
177
+ 0.1
178
+ 0.2
179
+ D(!) ! 1
180
+ -10
181
+ -5
182
+ 0
183
+ 5
184
+ 10
185
+ !=7g
186
+ 0
187
+ 1
188
+ 2
189
+ 3
190
+ 4
191
+ 5
192
+ DoS
193
+ 10!2
194
+ 10!1
195
+ 100
196
+ (! ! ")=7g
197
+ 100
198
+ 101
199
+ 9 1=x0:5
200
+ 9 1=x0:59
201
+ . = 0:35
202
+ . = 0:8
203
+ (a)
204
+ (b)
205
+ (c)
206
+ FIG. 2.
207
+ (a) Exponents ν and c for the leading and the subleading terms in the expansion D(ω) ≃ 1+α(∆−ω)ν +β(∆−ω)ν+c,
208
+ where D(ω) = ∆(ω)/ω and the gap edge ∆ is the solution of D(ω = ∆) = 1. (b) Numerical result for D(ω) for γ = 0.8. Inset
209
+ shows the power-law behavior near the gap edge with ν = 1.18, consistent with (a). (c) Fermionic DoS at T = 0 for γ = 0.35
210
+ (thick green line) and γ = 0.8 (thin pink line). In both cases, the DoS vanishes below the gap edge ∆ and has a power-law
211
+ singularity above it N(ω) ∝ 1/(ω − ∆)ν/2, but the exponent ν is different in the two cases, as we show in the right panel.
212
+ but is non-monotonic at larger ω and displays a broad
213
+ maximum at some ω > ∆, or (iii) diverges at ω = ∆ and
214
+ monotonically decreases at larger ω.
215
+ In the first case,
216
+ fermions in a quantum-critical superconductor can be
217
+ viewed as well-defined quasiparticles; in the last case the
218
+ quasiparticle picture completely breaks down; the second
219
+ case is the intermediate one between the other two. Our
220
+ goal is to understand under what circumstances A(k, ω)
221
+ of a quantum-critical superconductor has one of these
222
+ forms.
223
+ Model.
224
+ For our study, we consider dispersion-
225
+ full fermions, Yukawa-coupled to a massless boson. We
226
+ assume, like in earlier works (see, e.g., Refs. [56]), that
227
+ a boson is Landau overdamped, and its effective velocity
228
+ is far smaller than vF . In this situation, the interaction
229
+ that gives rise to non-Fermi liquid in the normal state
230
+ and to superconductivity, is a purely dynamical V (Ω).
231
+ The fermionic self-energy and the pairing gap, tuned into
232
+ a proper spatial pairing channel, are then determined
233
+ by two coupled equations in the frequency domain. At
234
+ a QCP, V (Ω) is singular at vanishing Ω in spatial
235
+ dimension D ≤ 3, and behaves as V (Ω) ∝ (¯g/Ω)γ,
236
+ where ¯g is the effective fermion-boson coupling, and the
237
+ exponent γ is determined by the underlying microscopic
238
+ model.
239
+ The most studied models of this kind are of
240
+ fermions near an Ising-nematic or Ising/ferromagnetic
241
+ QCP (γ = 1/3) and near an antiferromagnetic or charge
242
+ density wave QCP (γ
243
+ = 1/2).
244
+ The same effective
245
+ interaction emerges for dispersion-less fermions in a
246
+ quantum dot coupled to Einstein bosons (the Yuakawa-
247
+ SYK model) [57–60]. For this last case, the exponent γ is
248
+ a continuous variable γ ∈ (0, 1), depending on the ratio of
249
+ fermion and boson flavors. An extension of the Yukawa-
250
+ SYK model to γ ∈ (1, 2) has recently been proposed [61].
251
+ We follow these works and consider γ as a continuous
252
+ variable. We note that the value of γ is generally larger
253
+ deep in a superconducting state because of feedback
254
+ from superconductivity on the bosonic polarization. For
255
+ simplicity, we neglect potential in-gap states associated
256
+ with non-s-wave pairing symmetry and focus on the
257
+ spectral function of fermions away from the nodal points
258
+ and on features in the density of states (DoS) above the
259
+ gap edge. An extension to models with in-gap states is
260
+ straightforward.
261
+ In previous studies of the γ-model, we focused on
262
+ the novel superconducting behavior at γ > 1, when the
263
+ pairing interaction is attractive on the Matsubara axis,
264
+ while on the real axis ReV (Ω) is repulsive [62, 63]. We
265
+ argued that this dichotomy gives rise to phase slips of
266
+ the gap function on the real axis.
267
+ Here, we restrict
268
+ ourselves to γ ≤ 1, when this physics is not present and,
269
+ hence, does not interfere with the analysis of the validity
270
+ of a quasiparticle description in a superconducting state.
271
+ Pairing gap and quasiparticle residue.
272
+ For
273
+ superconductivity mediated by a dynamical interaction,
274
+ the paring gap ∆(ω) and the inverse quasiparticle
275
+ residue Z(ω) are functions of the running real fermionic
276
+ frequency ω. We define the gap edge ∆ (often called the
277
+ gap) from the condition ∆(ω) = ω at ω = ∆.
278
+ For our purposes, it is convenient to introduce D(ω) =
279
+ ∆(ω)/ω. The gap edge is at |D| = 1. The equation for
280
+ D(ω) that we need to solve is
281
+ ωB(ω)D(ω) = A(ω) + C(ω),
282
+ (1)
283
+ where B(ω) and A(ω) are regular functions of ω (see
284
+ [64, 65]). The C(ω) term depends on the running D(ω),
285
+ C(ω) = ¯gγ sin πγ
286
+ 2
287
+ � ω
288
+ 0
289
+ dΩ
290
+ Ωγ
291
+ D(ω − Ω) − D(ω)
292
+
293
+ D2(ω − Ω) − 1
294
+ .
295
+ (2)
296
+ Its presence makes Eq. (S3) an integral equation. The
297
+ inverse residue Z(ω) is expressed via D(ω′) as
298
+ Z(ω) = B(ω) + ¯gγ sin πγ
299
+ 2
300
+ ω
301
+ � ω
302
+ 0
303
+ dΩ
304
+ Ωγ
305
+ 1
306
+
307
+ D2(ω − Ω) − 1
308
+ (3)
309
+
310
+ 3
311
+ FIG. 3.
312
+ Spectral function A(k, ω) at T = 0 for four representative γ. The broadening in the plots is intrinsic. (a-d): color-
313
+ coded plot at negative ω, as measured by the ARPES intensity at T = 0. (e-f): constant-k cuts of A(k, ω) at ξk = 0 and at
314
+ ξk = ±4¯g. For γ < 1/2, the spectral function has a sharp quasiparticle peak at ω + ∆ ∝ ξ2
315
+ k. For γ > 1/2, the peak moves to
316
+ ω + ∆ ∝ |ξk|1/(1−γ) and broadens up, which eventually disappears (see text).
317
+ and is readily obtained once D(ω) is known.
318
+ At γ
319
+ = 0, which models a BCS superconductor,
320
+ C(ω) = 0 and D(ω) = A(ω)/(ωB(ω)) is a regular
321
+ function of frequency.
322
+ Near the gap edge at ω > 0,
323
+ D(ω)−1 ∼ ω−∆ and Z(ω) ≈ Z(∆) ≡ Z. We assume and
324
+ then verify that D(ω) remains regular in some range of
325
+ γ > 0. Substituting D(ω)−1 ∼ ω−∆ into (S7) for γ > 0,
326
+ we obtain C(ω)−C(∆) ∼ (ω−∆)3/2−γ. We see that C(ω)
327
+ is non-analytic near the gap edge, but for γ < 1/2, the
328
+ exponent 3/2−γ is larger than one. In this situation, the
329
+ non-analytic term in C(ω) generates a non-analytic term
330
+ in D(ω) of order (ω − ∆)3/2−γ, which is smaller than the
331
+ regular ω−∆ term. Evaluating the prefactors, we obtain
332
+ slightly above the gap edge, at ω = ∆ + δ
333
+ D′(∆ + δ) = 1 + αδ + A cos[π(3/2 − γ)]δ3/2−γ,
334
+ D′′(∆ + δ) = −A sin[π(3/2 − γ)]δ3/2−γ,
335
+ (4)
336
+ where α ∼ 1/¯g, A = � α
337
+ 2
338
+ ¯gγ sin(πγ/2)
339
+ ∆B(∆)
340
+ J(γ, 1) and J(γ, ν) is
341
+ expressed via Beta functions:
342
+ J(γ, ν) = B(1 − γ, γ − 1 − ν
343
+ 2) − B(1 − γ, γ − 1 + ν
344
+ 2). (5)
345
+ For γ > 1/2, 3/2 − γ > 1, and the calculation of D(ω)
346
+ has to be done differently. We find after straightforward
347
+ analysis that the leading δ-dependent term in D(∆ + δ)
348
+ is non-analytic and of order δν, where ν is the solution
349
+ of J(γ, ν) = 0. The exponent ν ≈ 1 + 0.67(γ − 1/2) for
350
+ γ ≈ 1/2 and ν ≈ 1.3 for γ = 1. The subleading term in
351
+ D(∆ + δ) scales as δν+c, where c > 0 is approximately
352
+ linear in γ − 1/2. In Fig. 2, we plot ν(γ) and c(γ) along
353
+ with the numerical results of D(ω) for a representative
354
+ γ = 0.8. The exponent ν extracted from this numerical
355
+ D(ω) is 1.18, which matches perfectly with the analytical
356
+ result. The behavior at γ = 1/2 is special, and we discuss
357
+ it in Ref. [64].
358
+ Substituting D(∆ + δ) into the formula for Z(ω), Eq.
359
+ (S8), we obtain
360
+ Z′(∆ + δ)=Z(∆)+B cos(π(γ + ν/2 − 1))δ1−γ−ν/2,(6)
361
+ Z′′(∆ + δ)=B sin(π(γ + ν/2 − 1))δ1−γ−ν/2.
362
+ (7)
363
+ where B =
364
+ ¯gγ sin πγ
365
+ 2
366
+
367
+
368
+ 2α B(1 − γ, ν
369
+ 2 + γ − 1). For γ < 1/2,
370
+ Z(ω) = Z(∆) + O(δ1/2−γ) is approximately a constant
371
+ near the gap edge.
372
+ For γ > 1/2, the inverse residue
373
+ diverges at the gap edge, indicating a qualitative change
374
+ in the system behavior.
375
+ Spectral function and DoS.
376
+ The spectral function
377
+ and the DoS per unit volume are given by
378
+ A(k, ω) = − 1
379
+ π ImGR(k, ω),
380
+ N(ω) = 1
381
+ V
382
+
383
+ k
384
+ A(k, ω) = NF ωIm
385
+
386
+ 1
387
+ ∆2(ω) − ω2 , (8)
388
+ where
389
+ the
390
+ retarded
391
+ Green’s
392
+ function
393
+ GR(k, ω)
394
+ =
395
+ −(ωZ(ω) + ξk)/(ξ2
396
+ k + (∆2(ω) − ω2)Z2(ω)).
397
+ ARPES
398
+ intensity is proportional to A(k, ω)nF (ω), which at T = 0
399
+ selects negative ω.
400
+ At γ = 0 (BCS limit), N(ω) ∼
401
+ 1/(ω−∆)1/2, and the spectral function has a δ-functional
402
+ peak at ω = (∆2 + (ξk/Z)2)1/2. In Fig. 2 (c,d), we show
403
+ the DoS N(ω), obtained from the numerical solution of
404
+ the full gap equation (S3) for representative γ = 0.35
405
+ and 0.8. We see that in both cases the DoS describes a
406
+ gapped continuum, but there is a qualitative difference in
407
+ the behavior near the gap edge: for γ = 0.35, N(ω) has
408
+ the same 1/δ1/2 singularity as for γ = 0, and for γ = 0.8
409
+
410
+ (e) = 0.35
411
+ (f) = 0.45
412
+ 1
413
+ 1
414
+ A(k,w)
415
+ Sk = 0
416
+ 0>
417
+ ......
418
+ 0<
419
+ 0.5
420
+ 0.5
421
+ 0
422
+ 0
423
+ -10
424
+ 6-
425
+ -8
426
+ -7
427
+ -6
428
+ -5
429
+ -4.5
430
+ -4
431
+ -3.5
432
+ -3
433
+ -2.5
434
+ -2
435
+ w/g
436
+ w/g(g) = 0.65
437
+ (h) = 0.8
438
+ 0.4
439
+ 0.4
440
+ 0.3
441
+ 0.3
442
+ 0.2
443
+ 0.2
444
+ 0.1
445
+ 0.1
446
+ 0
447
+ 0
448
+ -2
449
+ -1.5
450
+ -1
451
+ -0.5
452
+ -1.5
453
+ -1
454
+ -0.5
455
+ w/g
456
+ w/g(a) = 0.35
457
+ (b) = 0.45
458
+ -2
459
+ -1
460
+ -4
461
+ -2
462
+ 19
463
+ -6
464
+ 3
465
+ -8
466
+ -3
467
+ -10
468
+ -4
469
+ -12
470
+ -10
471
+ -5
472
+ 0
473
+ 5
474
+ 10
475
+ -10
476
+ -5
477
+ 0
478
+ 5
479
+ 10
480
+ Sk/g
481
+ Sk/g
482
+ 1.5.
483
+ 1.5.(c) = 0.65
484
+ (d) = 0.8
485
+ -0.5
486
+ -0.5
487
+ -1
488
+ -1
489
+ -1.5
490
+ -1.5
491
+ -2
492
+ -10
493
+ -5
494
+ 0
495
+ 5
496
+ 10
497
+ -10
498
+ -5
499
+ 0
500
+ 5
501
+ 10
502
+ Sk/g
503
+ Sk/g
504
+ 0.5
505
+ 0.5Max
506
+ 00.
507
+ 0.0.
508
+ 0.4
509
+ the DOS behaves as 1/δ0.59, which perfectly matches the
510
+ analytical form δ−ν/2, given that ν = 1.18 for γ = 0.8.
511
+ The spectral function A(k, ω) is shown in Fig.
512
+ (3).
513
+ For comparison with ARPES, we set ω to be negative:
514
+ ω = −(∆ + δ).
515
+ For any γ, there is no frequency
516
+ range, where A(k, ω) is a δ-function, simply because
517
+ the bosonic mass vanishes at a QCP. Still, for γ < 1/2,
518
+ D(−(∆+δ))−1 ∝ δ and Z(−(∆+δ)) ≈ Z(−∆) = Z(∆).
519
+ In this situation, the spectral weight on the Fermi
520
+ surface, integrated over an infinitesimally small range
521
+ around ω
522
+ =
523
+ −∆ immediately above the real axis,
524
+ is finite, like in BCS case.
525
+ Away from the Fermi
526
+ surface, the spectral function vanishes as |ω + ∆|1/2−γ
527
+ at the gap edge and displays a quasiparticle peak at
528
+ ω ≈ −(∆2 + (ξk/Z(∆))2)1/2. The peak is well defined
529
+ at small δ as its width O(δ1/2−γ) is parametrically
530
+ smaller than its frequency.
531
+ This is the same behavior
532
+ as in Fig. 1 (a).
533
+ For γ
534
+ >
535
+ 1/2, the situation is
536
+ qualitatively different.
537
+ Now Z(−∆ − δ) diverges at
538
+ δ → 0 and D(−∆ − δ) − 1 ∼ |δ|ν ≪ |δ|.
539
+ In this
540
+ case, the integral of A(kF , ω) over an infinitesimally
541
+ small range around ω = −∆ vanishes, which can be
542
+ interpreted as a vanishing of a quasiparticle peak.
543
+ At
544
+ finite ξk, the spectral function diverges at the gap edge
545
+ as 1/|ω + ∆|γ/2+γ−1. For γ slightly above 1/2, A(k, ω)
546
+ is non-monotonic and possess a broad maximum at
547
+ |ω + ∆| ∼ (ξk/¯gγ)
548
+ 1
549
+ 1−γ .
550
+ This is the same behavior as
551
+ in Fig. 1 (b).
552
+ For larger γ, the maximum disappears,
553
+ and A(k, ω) monotonically decreases at |ω| > ∆. This
554
+ is the same behavior as in Fig. 1 (c).
555
+ For small ξk,
556
+ the maximum disappears at γ ∼ 0.9.
557
+ For larger ξk,
558
+ it disappears at smaller γ, first for positive ξk (see Fig. 4).
559
+ Comparison with ARPES
560
+ The behavior shown
561
+ in Fig. 4 is our result in some range of γ > 1/2. For
562
+ positive ξk (i.e., outside the Fermi surface), the spectral
563
+ function has a single non-dispersing maximum at the
564
+ gap edge, except for the smallest ξk, while for negative
565
+ ξk, A(k, ω) has a kink at the gap edge ω = −∆ and
566
+ a dispersing maximum at ω = −∆ − O
567
+
568
+ |ξk|1/(1−γ)�
569
+ .
570
+ This behavior is consistent with the ARPES data for
571
+ Bi2201, Ref. [66].
572
+ The data shows that the spectral
573
+ function near the antinode, where our analysis is valid,
574
+ displays an almost non-dispersing maximum at positive
575
+ ξk, while for negative ξk it displays a non-dispersing
576
+ kink at the same energy and a dispersing maximum
577
+ at larger |ω|.
578
+ We associate the non-dispersing feature
579
+ at both positive and negative ξk with the gap edge
580
+ ∆, and associate the dispersing maximum, observed
581
+ in [66] at ξk < 0, with the dispersing maximum in Fig. 4.
582
+ Discussion and summary.
583
+ In this work, we
584
+ analyzed the applicability of quasiparticle description of
585
+ a superconducting state which emerges out of a non-
586
+ Fermi liquid at a metallic QCP. We considered the
587
+ model with an effective dynamical 4-fermion interaction
588
+ FIG. 4. (a) Spectral function A(k, ω) at positive and negative
589
+ ξk = ±4¯g at γ = 0.6. To account for impurity scattering,
590
+ we convoluted the spectral function with a Lorentzian of
591
+ width ∼ 0.03¯g.
592
+ (b) Spectral function at a set of discrete
593
+ momenta. It displays a non-dispersing gap edge singularity
594
+ (green dots) and a dispersing maximum (blue circles). This
595
+ theoretical A(k, ω) is consistent with the ARPES data for
596
+ Bi2201, Ref. [66] (see text).
597
+ V (Ω) ∝ 1/Ωγ, mediated by a gapless boson at a QCP
598
+ and analyzed the spectral function and the DoS for
599
+ γ ∈ (0, 1). Interaction V (Ω) gives rise to a non-Fermi
600
+ liquid in the normal state with self-energy Σ(ω) ∝ ω1−γ
601
+ and to pairing below some finite Tc. A superconducting
602
+ order gaps out low-energy excitations and, at a first
603
+ glance, should restore fermionic coherence.
604
+ We found,
605
+ however, that this holds only for γ < 1/2. For larger γ
606
+ the spectral function and the DoS exhibit qualitatively
607
+ different behavior than that in a superconductor with
608
+ coherent quasiparticles.
609
+ (different power-laws).
610
+ We
611
+ argued that the quasiparticle peak broadens up and
612
+ completely disappears for γ close to one.
613
+ Away from a QCP, a pairing boson is massive and
614
+ at the lowest energies a Fermi-liquid description holds
615
+ already in the normal state and continue to hold in
616
+ a superconductor.
617
+ In particular, in the immediate
618
+ vicinity of the gap edge, the system displays a BCS-
619
+ like behavior for all γ. Still, the system behavior over
620
+ a broad frequency range is governed by the physics at
621
+ a QCP, as numerous experiments on the cuprates and
622
+ other correlated systems indicate. We argued that our
623
+ results are quite consistent with the ARPES data for
624
+ Bi2201 [11, 66].
625
+ We acknowledge with thanks useful conversations with
626
+ a number of our colleagues. This work was supported by
627
+ the U.S. Department of Energy, Office of Science, Basic
628
+ Energy Sciences, under Award No. DE-SC0014402.
629
+ [1] S. Martin, A. T. Fiory, R. Fleming, L. Schneemeyer, and
630
+ J. V. Waszczak, Physical Review B 41, 846 (1990).
631
+ [2] H. v. L¨ohneysen, T. Pietrus, G. Portisch, H. Schlager,
632
+ A. Schr¨oder, M. Sieck, and T. Trappmann, Physical review
633
+
634
+ 0.05
635
+ 0
636
+ -2
637
+ -1.5
638
+ w/g1
639
+ 0.5
640
+ 49
641
+ 0
642
+ -2
643
+ -1.8
644
+ -1.6
645
+ -1.4-1.2
646
+ 6/3(a)
647
+ Damped peak
648
+ 0.2
649
+ Gap edge sing
650
+ 0.15
651
+ (k,
652
+ 0.1
653
+ 40(b)
654
+ -4g
655
+ 2.5
656
+ ularit
657
+ 2
658
+ ntensity
659
+ 1.55
660
+ letters 72, 3262 (1994).
661
+ [3] M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano,
662
+ T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku,
663
+ K. Kadowaki, P. Guptasarma, et al., Nature 392, 157
664
+ (1998).
665
+ [4] Z.-X. Shen and G. Sawatzky, physica status solidi (b) 215,
666
+ 523 (1999).
667
+ [5] S. Grigera, R. Perry, A. Schofield, M. Chiao, S. Julian,
668
+ G. Lonzarich,
669
+ S. Ikeda,
670
+ Y. Maeno,
671
+ A. Millis, and
672
+ A. Mackenzie, Science 294, 329 (2001).
673
+ [6] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.
674
+ Phys. 75, 473 (2003).
675
+ [7] D. S. Inosov, J. Fink, A. A. Kordyuk, S. V. Borisenko,
676
+ V. B. Zabolotnyy, R. Schuster, M. Knupfer, B. B¨uchner,
677
+ R. Follath,
678
+ H. A. D¨urr,
679
+ W. Eberhardt,
680
+ V. Hinkov,
681
+ B. Keimer, and H. Berger, Phys. Rev. Lett. 99, 237002
682
+ (2007).
683
+ [8] R.
684
+ Daou,
685
+ N.
686
+ Doiron-Leyraud,
687
+ D.
688
+ LeBoeuf,
689
+ S.
690
+ Li,
691
+ F. Lalibert´e, O. Cyr-Choiniere, Y. Jo, L. Balicas, J.-Q.
692
+ Yan, J.-S. Zhou, et al., Nature Physics 5, 31 (2009).
693
+ [9] R.
694
+ Cooper,
695
+ Y.
696
+ Wang,
697
+ B.
698
+ Vignolle,
699
+ O.
700
+ Lipscombe,
701
+ S. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara,
702
+ H. Takagi, et al., Science 323, 603 (2009).
703
+ [10] T. Sarkar, P. Mandal, J. Higgins, Y. Zhao, H. Yu, K. Jin,
704
+ and R. L. Greene, Physical Review B 96, 155449 (2017);
705
+ K. Jin, N. Butch, K. Kirshenbaum, J. Paglione, and
706
+ R. Greene, Nature 476, 73 (2011).
707
+ [11] M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux,
708
+ and Z.-X. Shen, Nature Physics 10, 483 (2014).
709
+ [12] A.
710
+ Kaminski,
711
+ T.
712
+ Kondo,
713
+ T.
714
+ Takeuchi,
715
+ and
716
+ G.
717
+ Gu,
718
+ Philosophical
719
+ Magazine
720
+ 95,
721
+ 453
722
+ (2015),
723
+ https://doi.org/10.1080/14786435.2014.906758.
724
+ [13] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida,
725
+ and J. Zaanen, Nature 518, 179 (2015).
726
+ [14] L.
727
+ Taillefer,
728
+ Annual
729
+ Review
730
+ of
731
+ Condensed
732
+ Matter
733
+ Physics 1, 51 (2010), https://doi.org/10.1146/annurev-
734
+ conmatphys-070909-104117.
735
+ [15] A. Legros, S. Benhabib, W. Tabis, F. Lalibert´e, M. Dion,
736
+ M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Li, et al.,
737
+ Nature Physics 15, 142 (2019).
738
+ [16] C. M. Varma, Rev. Mod. Phys. 92, 031001 (2020).
739
+ [17] S. A. Hartnoll and A. P. Mackenzie, Rev. Mod. Phys. 94,
740
+ 041002 (2022).
741
+ [18] K. Harada, Y. Teramoto, T. Usui, K. Itaka, T. Fujii,
742
+ T. Noji, H. Taniguchi, M. Matsukawa, H. Ishikawa,
743
+ K. Kindo, D. S. Dessau, and T. Watanabe, Phys. Rev.
744
+ B 105, 085131 (2022).
745
+ [19] H. v. L¨ohneysen, A. Rosch, M. Vojta, and P. W¨olfle, Rev.
746
+ Mod. Phys. 79, 1015 (2007).
747
+ [20] T. Valla, A. Fedorov, P. Johnson, B. Wells, S. Hulbert,
748
+ Q. Li, G. Gu, and N. Koshizuka, Science 285, 2110 (1999).
749
+ [21] A.
750
+ Abanov,
751
+ A.
752
+ V.
753
+ Chubukov,
754
+ and
755
+ J.
756
+ Schmalian,
757
+ Advances in Physics 52, 119 (2003); Journal of Electron
758
+ spectroscopy and related phenomena 117, 129 (2001).
759
+ [22] J.
760
+ Fink,
761
+ A.
762
+ Koitzsch,
763
+ J.
764
+ Geck,
765
+ V.
766
+ Zabolotnyy,
767
+ M. Knupfer, B. B¨uchner, A. Chubukov, and H. Berger,
768
+ Phys. Rev. B 74, 165102 (2006).
769
+ [23] T. Shibauchi, A. Carrington, and Y. Matsuda, Annu.
770
+ Rev. Condens. Matter Phys. 5, 113 (2014).
771
+ [24] F. Restrepo, U. Chatterjee, G. Gu, H. Xu, D. K. Morr,
772
+ and J. C. Campuzano, Communications Physics 5, 45
773
+ (2022).
774
+ [25] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
775
+ [26] K. B. Efetov, H. Meier, and C. Pepin, Nature Physics 9,
776
+ 442 (2013).
777
+ [27] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson,
778
+ Proceedings of the National Academy of Sciences 114,
779
+ 4905 (2017).
780
+ [28] S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and
781
+ S. Sachdev, Phys. Rev. B 84, 125115 (2011).
782
+ [29] H. Wang and G. Torroba, Phys. Rev. B 96, 144508
783
+ (2017).
784
+ [30] N. E. Bonesteel, I. A. McDonald, and C. Nayak, Phys.
785
+ Rev. Lett. 77, 3009 (1996).
786
+ [31] A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, EPL
787
+ (Europhysics Letters) 54, 488 (2001).
788
+ [32] A. V. Chubukov, A. Abanov, Y. Wang, and Y.-M. Wu,
789
+ Annals of Physics 417, 168142 (2020).
790
+ [33] M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil,
791
+ Phys. Rev. B 91, 115111 (2015).
792
+ [34] A. Perali, C. Castellani, C. Di Castro, and M. Grilli,
793
+ Phys. Rev. B 54, 16216 (1996).
794
+ [35] E. G. Moon and S. Sachdev, Phys. Rev. B 80, 035117
795
+ (2009).
796
+ [36] Y. Wang and A. V. Chubukov, Phys. Rev. Lett. 110,
797
+ 127001 (2013).
798
+ [37] Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan,
799
+ and A. V. Chubukov, Phys. Rev. Lett. 117, 157001 (2016).
800
+ [38] H. Wang, S. Raghu, and G. Torroba, Phys. Rev. B 95,
801
+ 165137 (2017).
802
+ [39] D. T. Son, Phys. Rev. D 59, 094019 (1999);
803
+ A. V.
804
+ Chubukov and J. Schmalian, Phys. Rev. B 72, 174520
805
+ (2005).
806
+ [40] A. Abanov and A. V. Chubukov, Phys. Rev. B 102,
807
+ 024524 (2020).
808
+ [41] E. A. Yuzbashyan,
809
+ M. K.-H. Kiessling, and B. L.
810
+ Altshuler, Phys. Rev. B 106, 064502 (2022).
811
+ [42] S.-S. Zhang, Y.-M. Wu, A. Abanov, and A. V. Chubukov,
812
+ Physical Review B 106, 144513 (2022).
813
+ [43] A. Kaminski, J. Mesot, H. Fretwell, J. C. Campuzano,
814
+ M.
815
+ R.
816
+ Norman,
817
+ M.
818
+ Randeria,
819
+ H.
820
+ Ding,
821
+ T.
822
+ Sato,
823
+ T. Takahashi, T. Mochiku, K. Kadowaki, and H. Hoechst,
824
+ Phys. Rev. Lett. 84, 1788 (2000).
825
+ [44] V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev.
826
+ B 64, 195109 (2001).
827
+ [45] W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev.
828
+ Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner,
829
+ Phys. Rev. B 73, 045127 (2006).
830
+ [46] J. Rech, C. P´epin, and A. V. Chubukov, Phys. Rev. B
831
+ 74, 195126 (2006).
832
+ [47] M. A. Metlitski and S. Sachdev, Physical Review B 82,
833
+ 075127 (2010); 82, 075128 (2010).
834
+ [48] D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys.
835
+ Rev. B 82, 045121 (2010).
836
+ [49] S. Raghu, G. Torroba, and H. Wang, Phys. Rev. B 92,
837
+ 205104 (2015); A. L. Fitzpatrick, S. Kachru, J. Kaplan,
838
+ S. Raghu, G. Torroba, and H. Wang, Phys. Rev. B 92,
839
+ 045118 (2015).
840
+ [50] A. Klein, A. V. Chubukov, Y. Schattner, and E. Berg,
841
+ Phys. Rev. X 10, 031053 (2020).
842
+ [51] S.-S. Lee, Phys. Rev. B 80, 165102 (2009); D. Dalidovich
843
+ and S.-S. Lee, Phys. Rev. B 88, 245106 (2013); A. Schlief,
844
+ P. Lunts, and S.-S. Lee, Phys. Rev. X 7, 021010 (2017).
845
+ [52] M. Punk, Phys. Rev. B 94, 195113 (2016).
846
+ [53] D. L. Maslov and A. V. Chubukov, Phys. Rev. B 81,
847
+ 045110 (2010).
848
+ [54] D. S. Dessau, B. O. Wells, Z.-X. Shen, W. E. Spicer,
849
+ A. J. Arko, R. S. List, D. B. Mitzi, and A. Kapitulnik,
850
+
851
+ 6
852
+ Phys. Rev. Lett. 66, 2160 (1991).
853
+ [55] A. A. Kordyuk, S. V. Borisenko, T. K. Kim, K. A.
854
+ Nenkov, M. Knupfer, J. Fink, M. S. Golden, H. Berger,
855
+ and R. Follath, Phys. Rev. Lett. 89, 077003 (2002).
856
+ [56] S.-S.
857
+ Zhang,
858
+ E.
859
+ Berg,
860
+ and
861
+ A.
862
+ V.
863
+ Chubukov,
864
+ arXiv:2301.01873, and references therein.
865
+ [57] I.
866
+ Esterlis
867
+ and
868
+ J.
869
+ Schmalian,
870
+ Phys.
871
+ Rev.
872
+ B
873
+ 100,
874
+ 115132 (2019);
875
+ D. Hauck, M. J. Klug, I. Esterlis, and
876
+ J. Schmalian, Annals of Physics 417, 168120 (2020).
877
+ [58] Y. Wang, Phys. Rev. Lett. 124, 017002 (2020).
878
+ [59] D. Chowdhury and E. Berg, Phys. Rev. Research 2,
879
+ 013301 (2020).
880
+ [60] L. Classen and A. Chubukov, Phys. Rev. B 104, 125120
881
+ (2021).
882
+ [61] J. Schmalian, private communication.
883
+ [62] Y.-M. Wu, S.-S. Zhang, A. Abanov, and A. V. Chubukov,
884
+ Phys. Rev. B 103, 024522 (2021).
885
+ [63] Y.-M. Wu, S.-S. Zhang, A. Abanov, and A. V. Chubukov,
886
+ Phys. Rev. B 103, 184508 (2021).
887
+ [64] See the Supplementary Information for more details.
888
+ [65] F. Marsiglio, M. Schossmann, and J. P. Carbotte, Phys.
889
+ Rev. B 37, 4965 (1988).
890
+ [66] R.-H. He, M. Hashimoto, H. Karapetyan, J. Koralek,
891
+ J. Hinton, J. Testaud, V. Nathan, Y. Yoshida, H. Yao,
892
+ K. Tanaka, et al., Science 331, 1579 (2011).
893
+
894
+ 7
895
+ Supplementary information for “Density of states and spectral function of a
896
+ superconductor out of a quantum-critical metal”
897
+ by Shang-Shun Zhang and Andrey V Chubukov
898
+ GAP EQUATION ALONG THE REAL-FREQUENCY AXIS AND ITS SOLUTION
899
+ We will use the approach pioneered by Marsiglio, Shossmann, and Carbotte [1]. In this approach, one first solves
900
+ non-linear gap equation along the Matsubara axis, which can be done rather straightforwardly as the gap function
901
+ ∆(ωm) can be chosen to be real for all frequencies and is a regular function of ωm even when the pairing boson is
902
+ massless. One then uses this ∆(ωm) as an input for the equation for complex ∆(ω) along the real frequency axis.
903
+ The non-linear integral equation for D(ωm) = ωm∆(ωm) on the Matsubara axis, and the equation for the inverse
904
+ quasiparticle residue Z(ωm) = 1 + Σ(ωm)/ωm (Σ(ωm) is the fermionic self-energy), have the form
905
+ ωmD(ωm) = πT
906
+
907
+ ω′m
908
+ (D(ω′
909
+ m) − D(ωm)) sgn(ω′
910
+ m)
911
+
912
+ 1 + D2(ω′m)
913
+ V (ω − ω′
914
+ m),
915
+ (S1)
916
+ Z(ωm) = 1 + 1
917
+ ωm
918
+ πT
919
+
920
+ ω′m
921
+ sgn(ω′
922
+ m)
923
+
924
+ 1 + D2(ω′m)
925
+ V (ω − ω′
926
+ m),
927
+ (S2)
928
+ where V (Ωm) = (¯g/|Ωm|)γ is the same as in the main text (¯g is an effective fermion-boson coupling, and γ depends
929
+ on the underlying microscopic model).This set of equations has a non-zero solution D(ωm) below a finite pairing
930
+ temperature Tp ∼ ¯g. Fig. S1 shows the numerical solution for ∆(ωm) at T = 10−6¯g ≪ Tp, for different γ. We see
931
+ from the figure that ∆(ωm) approaches a constant value at small frequencies and decays as ω−γ
932
+ m
933
+ at high frequencies.
934
+ This behavior holds for all γ and can be easily verified analytically.
935
+ The gap equation along the real frequency axis is
936
+ ωB(ω)D(ω) = A(ω) + C(ω),
937
+ (S3)
938
+ (Eqn. (1) in the main text). This equation is obtained by using the spectral representation of an analytic function
939
+ on the upper frequency half-plane
940
+ f(iωm) = 1
941
+ π
942
+
943
+ dx Imf(x)
944
+ x − iωm
945
+ (S4)
946
+ and, where possible, keeping D(ωm) as an input function. This approach was pioneered for electron-phonon interaction
947
+ in Refs. [3–6] for the electron-phonon problem.
948
+ FIG. S1. Numerical resulls for the gap function ∆(ωm) along the Matsubara axis. The calculation is performed at temperature
949
+ T = 10−6¯g using the hybrid-frequency method [2].
950
+
951
+ 10
952
+ 10°
953
+ 6/(um)V
954
+ 1.0
955
+ 0.
956
+ 10
957
+ 102
958
+ 100
959
+ 104
960
+ wm
961
+ /g8
962
+ 20
963
+ 40
964
+ 60
965
+ 80
966
+ 100 120
967
+ 0
968
+ 0.5
969
+ 1
970
+ 1.5
971
+ D(!)
972
+ (a)
973
+ . = 0:25
974
+ #5
975
+ D0
976
+ D00
977
+ 20
978
+ 40
979
+ 60
980
+ 80
981
+ 100 120
982
+ !=7g
983
+ 0
984
+ 0.5
985
+ 1
986
+ 1.5
987
+ 2
988
+ Z(!)
989
+ (b)
990
+ . = 0:25
991
+ Z0
992
+ Z00
993
+ 1
994
+ 2
995
+ 3
996
+ 0
997
+ 0.5
998
+ 1
999
+ 1.5
1000
+ (c)
1001
+ . = 0:5
1002
+ 1
1003
+ 2
1004
+ 3
1005
+ !=7g
1006
+ 0
1007
+ 2
1008
+ 4
1009
+ 6
1010
+ (d)
1011
+ . = 0:5
1012
+ 0
1013
+ 1
1014
+ 2
1015
+ 3
1016
+ 4
1017
+ 5
1018
+ 0
1019
+ 0.5
1020
+ 1
1021
+ 1.5
1022
+ (e)
1023
+ . = 0:8
1024
+ 0
1025
+ 1
1026
+ 2
1027
+ 3
1028
+ 4
1029
+ 5
1030
+ !=7g
1031
+ 0
1032
+ 2
1033
+ 4
1034
+ 6
1035
+ 8
1036
+ 10
1037
+ (f)
1038
+ . = 0:8
1039
+ FIG. S2. Numerical results for D(ω) and Z(ω) for γ = 0.25, γ = 0.5 and γ = 0.8.
1040
+ For our case, the functions A(ω) and B(ω) are directly expressed via D(ωm) along the Matsubara axis as
1041
+ A(ω) = 1
1042
+ 2
1043
+ � ∞
1044
+ 0
1045
+ dωm
1046
+ D(ωm)
1047
+
1048
+ 1 + D2(ωm)
1049
+ ×
1050
+
1051
+ ¯gγ
1052
+ (ωm + iω)γ +
1053
+ ¯gγ
1054
+ (ωm − iω)γ
1055
+
1056
+ ,
1057
+ (S5)
1058
+ B(ω) = 1 + i
1059
+
1060
+ � ∞
1061
+ 0
1062
+ dωm
1063
+ 1
1064
+
1065
+ 1 + D2(ωm)
1066
+ ×
1067
+
1068
+ ¯gγ
1069
+ (ωm + iω)γ −
1070
+ ¯gγ
1071
+ (ωm − iω)γ
1072
+
1073
+ .
1074
+ (S6)
1075
+ and C(ω) is given by
1076
+ C(ω) = ¯gγ sin πγ
1077
+ 2
1078
+ � ω
1079
+ 0
1080
+ dΩ
1081
+ Ωγ
1082
+ D(ω − Ω) − D(ω)
1083
+
1084
+ D2(ω − Ω) − 1
1085
+ ,
1086
+ (S7)
1087
+ (Eqn (3) in the main text). This function depends on the running D(ω − Ω), which makes Eq. (S3) an integral
1088
+ equation. The inverse residue Z(ω) is expressed via D(ω′) as
1089
+ Z(ω) = B(ω) + ¯gγ sin πγ
1090
+ 2
1091
+ ω
1092
+ � ω
1093
+ 0
1094
+ dΩ
1095
+ Ωγ
1096
+ 1
1097
+
1098
+ D2(ω − Ω) − 1
1099
+ (S8)
1100
+ (Eqn (4) in the main text) and is readily obtained once D(ω) is known.
1101
+ The gap equation along the real-frequency axis has an iterative structure in the sense that D(ω) depends on D(ω′)
1102
+ at ω′ < ω. This allows us to solve this equation iteratively, using the low-frequency form D(ω) ≃ ∆(0)/ω as an input,
1103
+ with ∆(0) ≡ ∆(ωm = πT). In Fig. S2 we show the results for D(ω) and Z(ω) for three representative values of γ. In
1104
+ all cases, D(ω) and Z(ω) are real below the gap edge ω = ∆ and are complex above the gap edge, where ∆ is defined
1105
+ as ∆(ω) = 1 at ω = ∆. We see that for γ > 1/2, Z(ω) diverges at the gap edge. We use this fact in the main text in
1106
+ the analysis of the spectral function.
1107
+
1108
+ 9
1109
+ FIG. S3. The real and imaginary parts of the gap function near the gap edge ω = ∆ for γ = 1/2, obtained by solving the
1110
+ non-linear gap equation numerically. The leading term in D′(∆ − δ) − 1, shown in the inset of (a), is linear in δ∆ − ω, and the
1111
+ subleading scales as δ/| log |δ||, as is confirmed by the linear relation in panel (a), The imaginary part D′′ appears at negative
1112
+ δ above the gap edge. The numerical result in panel (b) clearly shows the scaling relation D′′ ∼ δ/ log2 (|δ|/¯g), expected from
1113
+ the Kramers-Kronig relation with D′.
1114
+ THE CASE OF γ = 1/2
1115
+ In the main text we argued that for γ < 1/2, the function D(∆ − δ) − 1 ∝ δ, where δ = ∆ − ω, and the correction
1116
+ scales as δ3/2−γ. More specifically, we found iteratively that
1117
+ D(∆ − δ) = 1 + δ
1118
+
1119
+
1120
+ n=0
1121
+ αnδnϵ
1122
+ (S9)
1123
+ where ϵ = 1/2−γ and α0 = O(1/¯g). The expression for α1 is presented in the main text, after Eq. (4). It is proportional
1124
+ to J(γ, 1) = B(1 − γ, γ − 3/2) − B(1 − γ, γ − 1/2), where B(a, b) is a Beta function (B(a, b) = Γ(a)Γ(b)/Γ(a + b)).
1125
+ For small ϵ (i.e., for γ ≤ 1/2), α1 ∼ J(γ, 1) ∼ 1/ϵ. For the next term in (S9) we find α2 ∼ 1/ϵ2, and so on.
1126
+ We see that the perturbative expansion in δϵ in (S9) holds for (δ/¯g)ϵ/ϵ ≤ 1. Outside this range, all terms in Eq.
1127
+ (S9) are relevant. As γ approaches 1/2 from below and ϵ decreases, the perturbative regime shrinks to exponentially
1128
+ small δ < ¯g exp(−| log ϵ|/ϵ).
1129
+ To understand the form of D(ω) outside the perturbative regime, we express (δ/¯g)ϵ as eϵ log (δ/¯g) and expand (S10)
1130
+ in powers of log (δ/¯g). We obtain
1131
+ D(∆ − δ) = 1 + δ
1132
+
1133
+
1134
+ n=0
1135
+ ˜αn(log δ
1136
+ ¯g )n
1137
+ (S10)
1138
+ where ˜α0 = α0 + α1 + α2 + .., ˜α1 = ϵα1 + 2ϵα2 + .., ˜α2 = 2ϵ2α2 + .... We see that each ˜αn is a series, in which the
1139
+ first term is independent on ϵ, and the others diverge as powers of 1/ϵ, because α1 ∼ 1/ϵ, α2 ∼ 1/ϵ2, and so on.
1140
+ We now argue that singular parts of ˜αn can be neglected. The argument is two-fold. First, in the calculations, the
1141
+ 1/ϵ divergencies originate from the divergence of J(1/2 − ϵ, 1) ≈ 1/(2ϵ). This divergence is regularized by a finite
1142
+ boson mass, such that strictly at ϵ = 0, one has J(1/2, 1) = 0 instead of infinity. Second, if we assume that ˜α0
1143
+ in (S10) remains finite at ϵ = 0 and substitute the trial D(∆ − δ) = 1 + δ˜α0 in the gap equation at γ = 1/2 and
1144
+ compute iteratively the next term in D(∆−δ), we find it in the form ˜α1δ log (δ/¯g) with a finite ˜α1 = √¯g˜α0/(4∆B(∆)).
1145
+ Extending the iterative analysis, we find that all ˜αn are finite at γ = 1/2 (i.e., ϵ = 0), as we anticipated.
1146
+ We didn’t manage to sum up analytically the logarithmic series in (S10). The numerical solution for D(∆ − δ) for
1147
+ γ = 1/2 shows that D(∆ − δ) − 1 remains linear in δ (see Fig. S2 (c)), and the corrections scale as 1/| log (|δ|/¯g)|
1148
+ (see Fig. S3 (a)). By Kramers-Kronig relation, this implies that at negative δ, when ω > ∆ is above the gap edge,
1149
+ the imaginary part of D(ω) scales as D
1150
+ ′′(∆ + |δ|) ∝ δ/ log2 (|δ|/¯g) (the same form is obtained by just noticing that
1151
+ log(−|δ|) = log(−(ω − ∆ + i0)) = log |δ| − iπ). This form of D
1152
+ ′′(∆ + |δ|) is consistent with our numerical solution
1153
+ above the gap edge, Fig. S3 (b). The solution clearly shows that the ratio D
1154
+ ′′(∆ + |δ|)/δ decreases at the smallest δ.
1155
+ We next use the result for D(ω) to obtain the inverse quasi-particle residue near the gap edge.
1156
+ Substituting
1157
+ D(∆ − δ) ≈ 1 + ˜α0δ into (S8), we obtain at γ = 1/2
1158
+ Z(∆ − δ) =
1159
+ 1
1160
+ 2∆
1161
+ � ¯g
1162
+ ˜α0
1163
+ | log δ|.
1164
+ (S11)
1165
+
1166
+ 4
1167
+ 3.5
1168
+ 1
1169
+ 1.2
1170
+ 1.4
1171
+ 1.6
1172
+ 1.
1173
+ I log(8)|12
1174
+ 000
1175
+ 11.5
1176
+ GO
1177
+ 8
1178
+ 5
1179
+ 10
1180
+ 1og2 [8]15(a)
1181
+ 5.5
1182
+ ×10-4
1183
+ gap
1184
+ edge
1185
+ 1
1186
+ 5
1187
+ 0
1188
+ 1.843
1189
+ 1.8435
1190
+ /
1191
+ 3
1192
+ 1
1193
+ 4.5
1194
+ G0000(b) 13.5
1195
+ 13
1196
+ 12.510
1197
+ FIG. S4. (a) The spectral function A(k, ω) for γ = 1/2. (b) Constant ξk cuts along the blue lines in panel (a).
1198
+ Analytically continuing this function to negative δ, i.e., to ω above the threshold, we obtain
1199
+ Z(∆ + |δ|) =
1200
+ 1
1201
+ 2∆
1202
+ � ¯g
1203
+ ˜α0
1204
+ (| log |δ|| + iπ) ,
1205
+ (S12)
1206
+ Note that the imaginary part of Z(ω) jumps to a finite value at ω infinitesimally above the threshold. This behavior
1207
+ is consistent with the numerical solution for Z(ω), see Fig. S2 (d).
1208
+ Finally, we use the results for D(ω) and Z(ω) and compute the spectral function near the gap edge. On the Fermi
1209
+ surface, the spectral function at negative ω and |ω| > ∆ takes the form
1210
+ A(kF , ω) ∝
1211
+ 1
1212
+ |ω + ∆| log(¯g/|ω + ∆|).
1213
+ (S13)
1214
+ Slightly away from the Fermi surface, the spectral function has a peak at |ω| = ∆+δk where δk ∼ (ξ2
1215
+ k/¯g)/ log2(|¯g/ξk|).
1216
+ The peak width scales as δk/ log(|¯g/ξk|) and is logarithmically smaller than the energy variation |ω| − ∆. Also, for
1217
+ any non-zero ξk, the spectral function jumps at the gap edge to a finite value of order 1/ξ2
1218
+ k. In Fig. S4 we show the
1219
+ numerical result for the spectral function. It is consistent with the behavior we just described.
1220
+ UNIVERSAL FORM OF THE SPECTRAL FUNCTION AT 1/2 < γ < 1
1221
+ For frequencies ω near the gap edge and for momenta near the Fermi surface, when ξk is much smaller than |ωZ(ω)|,
1222
+ a straightforward calculation shows that for γ > 1/2, the spectral function can be expressed as a scaling function of
1223
+ ξk/|ω + ∆|1−γ¯gγ (we set ω < 0). Namely,
1224
+ A(k, ω) ∝
1225
+ 1
1226
+ |ω + ∆|
1227
+ ν
1228
+ 2 +1−γ Φ
1229
+
1230
+ ξk
1231
+ |ω + ∆|1−γ¯gγ
1232
+
1233
+ ,
1234
+ (S14)
1235
+ where
1236
+ Φ(x) ≡
1237
+ x2 + Q2
1238
+ γ sin[π(ν − c)]/ sin(πc)
1239
+
1240
+ x2 + Q2γ cos(2πγ)
1241
+ �2 + Q4γ sin2(2πγ)
1242
+ (S15)
1243
+ with Qγ = sin(πγ/2)B(1 − γ, ν/2 + γ − 1). In Fig. S5, we plot the dimensionless function Φ(x) for different values of
1244
+ γ. At x ≫ 1, Φ(x) ∼ 1/x2; at x ≪ 1, Φ(x) ∼ const. For γ < γc ≃ 0.9, function Φ(x) contains a local maximum at
1245
+ x2
1246
+ ∗ ∼
1247
+
1248
+ (u − v)2 + w2 − u,
1249
+ (S16)
1250
+ where u = Q2
1251
+ γ sin[π(ν − c)]/ sin(πc), v = Q2
1252
+ γ cos(2πγ), and w = Q2
1253
+ γ sin(2πγ). This maximum can be interpreted as an
1254
+ over-damped, but still existing quasi-particle peak. At γ > γc, the function Φ(x) monotonically decreases with x. In
1255
+ this case, the quasiparticle description breaks down completely.
1256
+
1257
+ -2.5
1258
+ -3
1259
+ -3.5
1260
+ -10
1261
+ -5
1262
+ 0
1263
+ 5
1264
+ 10
1265
+ Sk/g2
1266
+ 1
1267
+ 0
1268
+ -2.8
1269
+ -2.6
1270
+ -2.4
1271
+ -2.2
1272
+ -2
1273
+ -1.8
1274
+ -1.6
1275
+ w/gMin(a)
1276
+ 0
1277
+ -0.5
1278
+ -1
1279
+ -1.5
1280
+ 19
1281
+ 3
1282
+ -2(b)
1283
+ 6
1284
+ 5
1285
+ 4
1286
+ ntensity
1287
+ 3Max11
1288
+ 100
1289
+ 101
1290
+ 102
1291
+ x
1292
+ 10!4
1293
+ 10!3
1294
+ 10!2
1295
+ 10!1
1296
+ )(x)
1297
+ 0:5
1298
+ .
1299
+ 1:0
1300
+ . = .c ' 0:9
1301
+ FIG. S5. The function Φ(x), Eqn (S15), for different values of γ.
1302
+ We emphasize that this behavior holds only for small enough ξk. For larger ξk, the spectral function does depend
1303
+ on the sign of ξk and as γ increases, the quasiparticle behavior gets completely destroyed first for positive ξk and
1304
+ then, at larger γ, for negative ξk.
1305
+ [1] F. Marsiglio, M. Schossmann, and J. P. Carbotte, Phys. Rev. B 37, 4965 (1988).
1306
+ [2] Y.-M. Wu, A. Abanov, Y. Wang, and A. V. Chubukov, Phys. Rev. B 102, 024525 (2020).
1307
+ [3] F. Marsiglio and J. P. Carbotte, Phys. Rev. B 43, 5355 (1991), for more recent results see F. Marsiglio and J.P. Carbotte,
1308
+ “Electron-Phonon Superconductivity”, in “The Physics of Conventional and Unconventional Superconductors”, Bennemann
1309
+ and Ketterson eds., Springer-Verlag, (2006) and references therein; F. Marsiglio, Annals of Physics 417, 168102-1-23 (2020).
1310
+ [4] A. Karakozov, E. Maksimov, and A. Mikhailovsky, Solid State Communications 79, 329 (1991).
1311
+ [5] R. Combescot, Phys. Rev. B 51, 11625 (1995).
1312
+ [6] Y.-M. Wu, A. Abanov, Y. Wang, and A. V. Chubukov, Phys. Rev. B 99, 144512 (2019).
1313
+
QtFRT4oBgHgl3EQf7Tgp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
TdE0T4oBgHgl3EQfUwDn/content/tmp_files/2301.02256v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
TdE0T4oBgHgl3EQfUwDn/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VtE1T4oBgHgl3EQfIwPB/content/tmp_files/2301.02944v1.pdf.txt ADDED
@@ -0,0 +1,1226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum Honest Byzantine Agreement as a
2
+ Distributed Quantum Algorithm
3
+ Marcus Edwards
4
+ July 23, 2020
5
+ 1
6
+ arXiv:2301.02944v1 [quant-ph] 7 Jan 2023
7
+
8
+ Contents
9
+ 1
10
+ Quantum Honest Byzantine Agreement
11
+ 3
12
+ 1.1
13
+ Blockchain’s Resource Consumption and the Abundance of
14
+ Quantum Resources
15
+ . . . . . . . . . . . . . . . . . . . . . . . . .
16
+ 3
17
+ 1.2
18
+ Coincidence-driven Consensus via Byzantine Agreement . . . . .
19
+ 5
20
+ 1.2.1
21
+ Distribution of Correlated Lists . . . . . . . . . . . . . . .
22
+ 5
23
+ 1.2.2
24
+ Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
+ 6
26
+ 1.3
27
+ Casting to a Modular Quantum Neural Architecture . . . . . . .
28
+ 8
29
+ 1.3.1
30
+ Restricted Boltzmann Machines . . . . . . . . . . . . . . .
31
+ 8
32
+ 1.3.2
33
+ Associative Measuring Neurons . . . . . . . . . . . . . . .
34
+ 10
35
+ 1.3.3
36
+ Training Via Quantum Binding Commitment . . . . . . .
37
+ 15
38
+ 1.3.4
39
+ Commitment Schemes . . . . . . . . . . . . . . . . . . . .
40
+ 15
41
+ 1.3.5
42
+ Collapsing Hash Functions
43
+ . . . . . . . . . . . . . . . . .
44
+ 18
45
+ 1.3.6
46
+ A New Type of Machine Learning Algorithm . . . . . . .
47
+ 19
48
+ 1.4
49
+ Practical Implementation Limitations and Advantages . . . . . .
50
+ 20
51
+ 1.4.1
52
+ Practical Constraints Today . . . . . . . . . . . . . . . . .
53
+ 20
54
+ 1.4.2
55
+ Near-future Possibilities . . . . . . . . . . . . . . . . . . .
56
+ 27
57
+ 2
58
+ References
59
+ 29
60
+ 2
61
+
62
+ 1
63
+ Quantum Honest Byzantine Agreement
64
+ Blockchain technology has three main components:
65
+ the network, consensus
66
+ algorithm and distributed data structure. Each of these brings with it particular
67
+ issues of scalability and efficiency.
68
+ By recasting the network and consensus
69
+ algorithm components of blockchain to a quantum algorithm, we show that
70
+ the efficiency and scalability of blockchain technology can be improved in the
71
+ near-term without requiring powerful quantum computers to be available.
72
+ 1.1
73
+ Blockchain’s Resource Consumption and the Abun-
74
+ dance of Quantum Resources
75
+ Crandall points out the abundance of resources in our world that could
76
+ be harnessed for information processing tasks in his book “Nanotechnology:
77
+ Molecular speculations on global abundance” [4].
78
+ In light of the seemingly
79
+ endless resources around us, it is difficult to stomach the irresponsible use of
80
+ resources that we have encouraged through the design of our most prominent
81
+ blockchain systems including Bitcoin.
82
+ There are critical issues with the scaling properties and efficiency of these
83
+ blockchain technologies which require solutions if any significant distributed
84
+ ledgers are going to be possible to sustainably implement. The scaling properties
85
+ of the immutable distributed data structures used in blockchain networks have
86
+ been shown to cause demands on memory that are hard to justify. Blockchains
87
+ that are based on proof-of-work consensus schemes like Bitcoin also encourage
88
+ massively wasteful compute resource consumption.
89
+ Competition in Bitcoin’s
90
+ compute-intensive scheme coupled with the limitations of the blockchain data
91
+ structure implementation by Bitcoin also causes issues with throughput of the
92
+ system as a practical trading platform. The amount of transactions that can be
93
+ processed by Bitcoin is less than seven per second. This is far from the reported
94
+ 3
95
+
96
+ 47,000 per second achieved by VISA [5]. These issues have motivated some push
97
+ back against the spread of blockchain. China is seeking to stop Bitcoin mining
98
+ in the country, for example [6].
99
+ From a business perspective, blockchain technology is not expected to be
100
+ viable for full adoption and practical use by mainstream banks for around
101
+ another ten years [7]. Even so, banks are beginning to implement prototypes
102
+ and blockchain applications of limited scale now. An IBM survey of 200 global
103
+ banks [8] showed that 65% of these banks intended to roll out blockchain-based
104
+ products between 2016 and 2019.
105
+ The majority of blockchain applications that are being developed do not have
106
+ solutions to the scalability and efficiency issues of their underlying cybersecurity
107
+ schemes. They are also not prepared to face the challenges of attackers equipped
108
+ with the quantum computers we expect to see developed within the next ten
109
+ years.
110
+ In the meantime, evidence is mounting that we will be capable of performing
111
+ complex computing tasks using the world’s smallest resources within the next
112
+ decade.
113
+ Subatomic particles with properties that allow for us to use them
114
+ in quantum computing applications include the spin- 1
115
+ 2 particles:
116
+ electrons,
117
+ protons, neutrons, neutrinos and quarks. These are especially convenient for
118
+ use in computing applications because of how the limitation of 2 observables
119
+ mimics the limitation of the 2 discrete levels used in digital logic and Boolean
120
+ algebra.
121
+ I explore the question of whether consensus networks like those in modern
122
+ blockchains might be possible to improve upon using more efficient hybrid
123
+ quantum-classical communication networks.
124
+ 4
125
+
126
+ 1.2
127
+ Coincidence-driven Consensus via Byzantine Agree-
128
+ ment
129
+ Sun, Xin, et al. presented a voting protocol for blockchain in their 2019 paper
130
+ [1].
131
+ Their protocol makes use of a method for ensuring consensus between
132
+ talliers from their previous work, called a Quantum Honest Success Byzantine
133
+ Agreement Protocol (QHBA) [2]. This protocol is used in their voting scheme
134
+ to identify dishonest ballot talliers.
135
+ Definition 1 (Honest Success Byzantine Agreement Protocol (HBA))
136
+ An honest success Byzantine agreement protocol involves n agents. One of the
137
+ agents is the sender S, and holds an input value xs ∈ D, where D is a finite
138
+ domain. A protocol achieves honest success Byzantine agreement if the protocol
139
+ guarantees the following:
140
+ 1. If the sender is honest, then all honest agents agree on the same output
141
+ value y = xs.
142
+ 2. If the sender is dishonest, then either all honest receivers abort the
143
+ protocol, or all honest receivers decide on the same output value y ∈ D.
144
+ The protocol is p-resilient if the protocol works when less than a fraction of p
145
+ receivers are dishonest.
146
+ The QHBA is
147
+ m−2
148
+ m -resilient.
149
+ m is the number of receivers, and is more
150
+ efficient than a classical HBA protocol when there are many dishonest receivers.
151
+ 1.2.1
152
+ Distribution of Correlated Lists
153
+ The first phase of the QHBA protocol is for correlated lists to be distributed
154
+ among the agents using quantum secure direct communication.
155
+ 5
156
+
157
+ Let the sender be S = P1. Each agent Pi ∈ {P n
158
+ 2 +1, ..., Pn} is tasked with
159
+ distributing a list of numbers Li
160
+ k to agent Pk ∈ {P1, ..., P n
161
+ 2 } such that:
162
+ 1. |Li
163
+ k| = l ∀ k ∈ {1, ..., n/2}, where l is a multiple of 6.
164
+ 2. Li
165
+ 1 ∈ {0, 1, 2}l.
166
+ l
167
+ 3 numbers on Li
168
+ 1 are 0.
169
+ l
170
+ 3 are 1.
171
+ l
172
+ 3 are 2.
173
+ 3. Li
174
+ k ∈ {0, 1}l ∀ k ∈ {2, ..., n/2}
175
+ 4. ∀ j ∈ {1, ..., l}, if Li
176
+ 1[j] = 0, then Li
177
+ 2[j] = ... = Li
178
+ n/2[j] = 0
179
+ 5. ∀ j ∈ {1, ..., l}, if Li
180
+ 1[j] = 1, then Li
181
+ 2[j] = ... = Li
182
+ n/2[j] = 1
183
+ 6. ∀ j ∈ {1, ..., l}, if Li
184
+ 1[j] = 2, then ∀ k ∈ {2, ..., m} the probability that
185
+ Li
186
+ k[j] = 0 and that Li
187
+ k[j] = 1 are equal.
188
+ If the number of receivers that report non-compliant lists from a distributor
189
+ passes a threshold, then that distributor is classified as dishonest.
190
+ 1.2.2
191
+ Consensus
192
+ Assuming h > n
193
+ 2 , the following procedure can be used to reach a consensus.
194
+ First, the sender S sends a binary number B1k and a list of numbers ID1k
195
+ to each receiver Pk. ID1k should indicate all the positions on L1 where B1k
196
+ appears to Pk. An honest sender will send the same list to all receivers.
197
+ Each Pk will compare the B1k and ID1k to their list Lk. If any honest Pk
198
+ finds information that is not consistent, he/she sends ⊥ to the other receivers.
199
+ Otherwise, he/she sends B1k and ID1k to the other receivers.
200
+ After all these messages have been received, each honest Pk checks the
201
+ following:
202
+ 1. If there were more than two agents who sent binary numbers and lists
203
+ that were consistent with Lk but some had different binary numbers, Pk
204
+ outputs ⊥.
205
+ 6
206
+
207
+ 2. If more than two agents sent the same binary numbers and lists which
208
+ were consistent with Lk, these agents are considered to be honest. Pk
209
+ outputs the binary number provided by these honest agents.
210
+ 3. If more than two agents sent the same binary numbers and lists which
211
+ were consistent with Lk, any other agents are considered dishonest. If all
212
+ of the dishonest agents sent ⊥ to Pk, then Pk sets vk to the binary value
213
+ provided by the honest agents.
214
+ 4. In all other cases, Pk outputs ⊥.
215
+ Consensus is achieved if at least n
216
+ 4 agents output the same bit value.
217
+ Suppose Pj were a dishonest receiver, and j ≥ 2. Pj would want to send a
218
+ binary number Bjk and list of numbers IDjk which was consistent with Lk.On
219
+ Lj, there are
220
+ l
221
+ 2 appearances of Bjk. On L1 there are only
222
+ l
223
+ 3 appearances of
224
+ Bjk. So, there are
225
+ l
226
+ 6 positions of discord x, where L1[x] = 2. If Pj selects a
227
+ discord position x then with probability 1
228
+ 2, Lk[x] ̸= Bjk. Pj has to avoid all
229
+ discord positions in order to avoid being identified as dishonest. This has a
230
+ ( 2
231
+ 3)
232
+ l
233
+ 3 probability of success which is very small when l is large. This is rationale
234
+ behind the checks made by Pk listed above.
235
+ In a nutshell, the receivers don’t know which instances of the false bit in
236
+ their strings from the distributors are random, so they have to just echo what
237
+ they were given by the sender. The final output is simply an agreed-upon bit.
238
+ If the receivers should chose to transmit the false bit and say it should occur at
239
+ a random index, they are recognized as dishonest when Bjk, IDjk are checked
240
+ against the other receivers’ lists L.
241
+ 7
242
+
243
+ 1.3
244
+ Casting to a Modular Quantum Neural Architecture
245
+ I suggest that the QHBA protocol essentially reduces consensus to coincidence.
246
+ The volume of coincidence is the input parameter which drives a receiver to echo
247
+ its input. A lack of coincidence results in no useful output from a receiver, as
248
+ per subsection 2.1.3. This is a similar mechanism to the learning mechanism in
249
+ cognitive modular neural architectures like Haikonen’s architecture for artificial
250
+ intelligence [3].
251
+ 1.3.1
252
+ Restricted Boltzmann Machines
253
+ Furthermore, the path of information between the participants in the QHBA
254
+ protocol is suggestive of a fully-connected feed-forward neural network.
255
+ The RBM-like connectivity graph of the Honest Success
256
+ Byzantine Agreement
257
+ At first glance, this appears to be a Restricted Boltzmann Machine (RBM).
258
+ Restricted Boltzmann machines are an early machine learning neural network
259
+ structure created by Geoffrey Hinton.
260
+ A restricted Boltzmann machine is a
261
+ shallow network with two layers. One is ”hidden”, one is ”visible”. The input
262
+ layer’s nodes accept the system’s inputs, process these inputs, and pass their
263
+ 8
264
+
265
+ outputs onto the nodes of the next layer. Each node is a McCulloch-Pitts neuron
266
+ and has an activation function, typically of the following form.
267
+ yj = T(
268
+
269
+ i
270
+ wjixi + b)
271
+ The input xi is multiplied by a weight wji and added to a bias b.
272
+ The
273
+ result is passed to an activation transfer function T, which produces a node’s
274
+ output. This output is an amplification or suppression of the strength of the
275
+ signal passing through it.
276
+ In a fully-connected RBM, each node of the first layer outputs to each node of
277
+ the second. Each combination of source and destination nodes ji has a different
278
+ weight.
279
+ The jth McCulloch-Pitts neuron in a network takes a set of weighted inputs
280
+ xi and a bias signal, and outputs a signal yj which transforms its inputs
281
+ according to a transfer function T.
282
+ A simple instance of a McCulloch-Pitts neuron is the perceptron, which is
283
+ a threshold binary classifier. Its output is always a 0 or 1. The perceptron will
284
+ output a value of 1 if the following condition is satisfied.
285
+ (
286
+
287
+ i
288
+ wixi + b) > 0
289
+ This type of neuron then plays the role of summarizing its inputs by putting
290
+ them into a category. Artificial intelligence is most useful for the categorization
291
+ of data which has very dense informational data points which share a structural
292
+ pattern. A set of these neurons is typically arranged, and each neuron given the
293
+ responsibility to categorize a different subset of a ”training data set”. A neural
294
+ network’s output is often simply used to update a statistical model. This might
295
+ mean updating a regression or more advanced statistical model of the training
296
+ 9
297
+
298
+ data.
299
+ As a thought experiment, let us consider the topology of the computer
300
+ network implied by the QHBA protocol as a neural network. In this paradigm,
301
+ the means of network communication between each protocol participant
302
+ corresponds to a weighted I/O channel between neurons.
303
+ The participants
304
+ themselves correspond to neurons. The training data set is simply the sender’s
305
+ list L1, and the output is the agreed-upon bit B1.
306
+ 1.3.2
307
+ Associative Measuring Neurons
308
+ If our network is to perform the QHBA protocol, the neurons must clearly be
309
+ modified. Rather than the receiver neurons simply outputting a binary classifier
310
+ when the perception threshold is reached, our version of honest receiver neurons
311
+ must output its input, Bjk, IDjk when the amount of agreement or coincidence
312
+ of its inputs’ values passes a threshold. This mechanism will actually suffice for
313
+ the distribution neurons as well, with one small tweak. Rather than having a
314
+ neuron simply output its input, we can have the neurons both measure and then
315
+ output their inputs. This will not change the function of the reveiver neurons,
316
+ but will allow the distributors to achieve the replacement of 2’s in the list L1
317
+ provided to their inputs by the sender S with probabilistically distributed 1’s
318
+ and 0’s.
319
+ Definition 2 (Associative Measuring Neuron) An associative measuring
320
+ neuron will conditionally propagate a quantum state from its quantum input
321
+ to its output. Its output may be a classical channel or quantum channel that
322
+ will accept only basis states. Let an associative measuring neuron k have the
323
+ following output yk in terms of inputs x from n neurons, where |Xk > will
324
+ be a superposition of basis vectors weighted appropriately to represent their
325
+ multiplicities as inputs to the neuron, and the weight of |0⊗l > will represent the
326
+ 10
327
+
328
+ neuron’s bias. Then the neuron achieves the non-linear effect of collapsing its
329
+ output state to an that of an input which is sufficiently present so as to overcome
330
+ the neuron’s bias.
331
+ yk = M|Xk >
332
+ (1)
333
+ The behaviour of an associative measuring neuron is then to output the most
334
+ recurring input with high likelihood, unless no input is repeated sufficiently
335
+ enough, in which case the measurement will yield |0⊗l > with high probability.
336
+ The input coincidence threshold is manifested by bk, which is the coefficient
337
+ on the |0⊗l > basis state and should be trainable as well as the weights w. A
338
+ simple way to achieve this functionality would be to implement an associative
339
+ measuring neuron using a series of conditionally applied quantum gates.
340
+ Associative Measuring Neuron Circuit
341
+ In this circuit, D is the Grover Diffusion Operator.
342
+ Grover Diffusion Operator
343
+ Each Uki is a circuit composed of controlled Pauli-Z phase flip gates. Each
344
+ of the Uki is a parameterized operator that takes a set of qubit indexes IDki, a
345
+ boolean value Bki and a weight wki. All of these parameters are classical.
346
+ 11
347
+
348
+ Uki
349
+ Ukj
350
+ Ukl
351
+ Yk
352
+ H
353
+ D
354
+ D
355
+ DHH
356
+ 20><0-I
357
+ H&If the boolean Bki is 1, then Uki is simply a multiply controlled CZ gate with
358
+ all qubits in IDki included as controllers in x and targets in y. For example, if
359
+ l = 6; a, c ∈ IDki and b, d, e, f, g /∈ IDki we would have the following.
360
+ Parameterized Oracle Example with Bki = 1
361
+ If the boolean Bki is 0, then a Pauli-X gate is first applied to the input xi.
362
+ 12
363
+
364
+ Yka
365
+ Z
366
+ Ykb
367
+ yke
368
+ Z
369
+ ykd
370
+ ykg
371
+ Lia
372
+ Tib
373
+ Lic
374
+ Lid-
375
+ Tie
376
+ Ti
377
+ LigYka
378
+ Z
379
+ ykb
380
+ Yke
381
+ Z
382
+ Ykd
383
+ ke
384
+ Ykg
385
+ Tia
386
+ Tib-
387
+ Tic
388
+ Lid
389
+ Lie-
390
+ Lif
391
+ TigParameterized Oracle Example with Bki = 0
392
+ The weight wki dictates the number of times the operators Uki and D are
393
+ repeated. The larger the weight with respect to other weights for other inputs
394
+ to the same neuron, the more repeats. When there is only one weight and it
395
+ is 1, then the operator should not be applied at all. Otherwise, Uki and D
396
+ should be repeated a number of times proportional to the number of standard
397
+ deviations Ni the weight wki is above the mean weight ¯
398
+ wk. A negative N should
399
+ be reflected as well, so we will always either subtract from or add to a default
400
+ number of repetitions. This default will exactly be the bias bk and will be a
401
+ learned parameter itself.
402
+ Ni =
403
+ wki − ¯
404
+ wk
405
+
406
+ 1
407
+ l
408
+ �l
409
+ j=1(wkj − ¯
410
+ wk)2
411
+ (2)
412
+ The number of repetitions total will be ⌊bk + Ni⌋.
413
+ The function of the associative measuring neuron is comparable to a number
414
+ of competing Grover searches [12] performed on the same quantum state. The
415
+ algorithm is designed such that the effect of a search is proportional to the
416
+ multiplicity of its corresponding input list Li
417
+ k = xi, if that list matches the
418
+ paramters IDki and Bk. In the case that IDki and Bk correspond correctly with
419
+ xi, then the effect of Uki is to impose a negative phase on the bits corresponding
420
+ to Bk in yk, which effectively ”tags” that state for amplitude amplification. In
421
+ the case that xi does not correspond with IDki and Bk, the controlled Z gate is
422
+ not applied since not all of its controlling qubits are 1’s. Hence, the bad value
423
+ contributes nothing to the neuron’s final output state.
424
+ S should encode a 2 into L1 by simply applying a Hadamard gate to
425
+ 13
426
+
427
+ the corresponding qubits in a qubit register with a size equal to the length
428
+ of L, preparing and sending this entire qubit register L to each distributor
429
+ individually. With each message, S sends the parameters IDki and Bk. The
430
+ effects of the associative measuring neuron’s operations will be to exactly
431
+ replace any 2’s in the list L1 provided to their inputs by the sender S with
432
+ probabilistically distributed 1’s and 0’s via measurement of the corresponding
433
+ single qubit states which will be |0>+|1>
434
+
435
+ 2
436
+ or |0>−|1>
437
+
438
+ 2
439
+ depending on whether Bk
440
+ is 1 or 0. The algorithm will leave the rest of the state unchanged and simply
441
+ measure it.
442
+ The receivers will also be associative measuring neurons and perform the
443
+ same process. However, it will be assumed that they are more likely to have
444
+ conflicting inputs, and that their weights will not all agree. Also, receivers will
445
+ receive their inputs x from distributors and other receivers, but the parameters
446
+ IDki and Bk will still be provided directly by S. The receivers should have a
447
+ final state that approximates the following.
448
+ |Xk >= bk|0⊗l > +
449
+
450
+ i
451
+
452
+ j̸=i
453
+ (< xi|xj > wkiwkj)|xi >
454
+ (3)
455
+ The weights and biases will be naturally normalized.
456
+ b2
457
+ k +
458
+
459
+ i
460
+
461
+ j̸=i
462
+ δ(xi, xj)(wkiwkj)2 = 1
463
+ (4)
464
+ While the machine begins with a nearly equal number of distributors and
465
+ receivers, the neurons which do not receive consistent data do not output
466
+ information and their input sources are considered unreliable. This decreases
467
+ 14
468
+
469
+ the number of useful neurons in the network and may reduce the size of either
470
+ of the two layers. This is how the QHBA selects trusted paths of information
471
+ through the network. This is not dissimilar to the way that pathways between
472
+ neurons are created through learning in Haikonen’s cognitive modular neural
473
+ network.
474
+ 1.3.3
475
+ Training Via Quantum Binding Commitment
476
+ We can make use of an optimally secure mechanism called a Quantum Binding
477
+ Commitment to define the training data for the system. In our network, we
478
+ will want the consensus to result in agreement on a single bit. So, the measure
479
+ of fidelity used in our training is trivial: a single bit (a sender’s vote) that is
480
+ known initially only by the sender and the training code which can be a very
481
+ simple, visible, immutable and infinitely running script.
482
+ Quantum Bit Commitment Training
483
+ 1.3.4
484
+ Commitment Schemes
485
+ Computationally binding commitment schemes between two parties are
486
+ composed of two phases.
487
+ The Commitment Phase allows one party to send
488
+ 15
489
+
490
+ Commitment
491
+ ML Algorithmthe other party some information c related to a message m which does not give
492
+ the receiver any information about m itself. However, the act of sending c binds
493
+ the sender to provide the message m in the second stage, the Open Phase. In the
494
+ Open Phase, the sender transmits m to the receiver and proves to the receiver
495
+ that m does indeed correspond to c by providing a signature that ”opens c to
496
+ m”.
497
+ In our system, a successful opening will occur after a consensus is reached
498
+ on a vote with well-tuned weights and biases. In the case that an opening is
499
+ unsuccessful, this is used as negative feedback to motivate the ML to adjust its
500
+ descent of the gradient.
501
+ A classical definition of a computationally binding is the following from
502
+ Unruh [21].
503
+ Definition 3 (Classical-style binding) No algorithm A can output a
504
+ commitment c and two signatures s, s’ that open c to two different messages
505
+ m and m’.
506
+ Computationally binding commitment schemes have been studied and
507
+ defined in the quantum setting. Interestingly, when the algorithm A is allowed
508
+ to be a quantum polynomial time algorithm, this definition was shown to be
509
+ inadequate.
510
+ While definition 3 holds for a particular classical-style binding
511
+ commitment, Ambainis, Rosmanis, and Unruh showed that for this particular
512
+ binding a quantum polynomial time algorithm A employed by an adversary
513
+ could open c to any message that the adversary wished [22].
514
+ Therefore Unruh was motivated to define a different type of binding that
515
+ was useful in the quantum case. The new binding property is demonstrated by
516
+ a pair of quantum games.
517
+ Let A, B be algorithms and S, M, U be quantum registers.
518
+ Vc is a
519
+ 16
520
+
521
+ measurement which verifies that that U opens M.
522
+ Mok measures m in the
523
+ computational basis if ok = 1.
524
+ The first game Game1 consists of four steps:
525
+ (S, M, U, c) ← A(1γ)
526
+ ok ← Vc(M, U)
527
+ m ← Mok(M)
528
+ b ← B(1γ, S, M, U)
529
+ The second game Game2 omits the measurement in step three but is
530
+ otherwise the same:
531
+ (S, M, U, c) ← A(1γ)
532
+ ok ← Vc(M, U)
533
+ b ← B(1γ, S, M, U)
534
+ A commitment scheme is ”collapse-binding” iff for any quantum polynomial
535
+ time valid adversary, cAdv = |Pr[b = 1 : Game1] − Pr[b = 1 : Game2]| is
536
+ negligible.
537
+ This essentially expresses that if an adversary (A, B) provides a classical
538
+ commitment c, there must be only one message he/she can open c to.
539
+ A
540
+ outputs a superposition of messages M and a superposition of corresponding
541
+ opening signatures U. S is the adversary’s state. The assertion that |Pr[b = 1 :
542
+ 17
543
+
544
+ Game1]−Pr[b = 1 : Game2]| is negligible limits the value of M to computational
545
+ basis vectors for collapse-binding commitments. No quantum polynomial time
546
+ algorithm B should be able to distinguish between the value of M whether M
547
+ is measured in the computational basis or not.
548
+ 1.3.5
549
+ Collapsing Hash Functions
550
+ We will have to choose a specific collapse-binding commitment scheme for our
551
+ system to use. However, the specific choice is relatively arbitrary as long as it
552
+ satisfies the collapse-binding property.
553
+ The games used to define the collapse-binding property of commitment
554
+ schemes can also be applied to classify hash functions that are collapsing.
555
+ Assume H is a one-to-one hash function.
556
+ Definition 4 (Collapsing hash function - informal) H is a collapsing
557
+ hash function iff no quantum polynomial time algorithm B can distinguish
558
+ between Game1 and Game2.
559
+ An adversary is valid if A outputs a classical
560
+ value c and a register M where H(m) = c.
561
+ This game based definition was clarified and made mathematical by Fehr in
562
+ 2018 [23].
563
+ Definition 5 (Collapsing hash function - formal) A function H X → Y
564
+ is ∈(q)-collapsing if
565
+ cAdv[H](q) :=
566
+ sup
567
+ SMCU
568
+ δq(M, M|CU) ≤∈ (q)
569
+ for all q. The supremum is over all states SMCU = S H(M) CU with
570
+ 18
571
+
572
+ complexity ≤ q.
573
+ The collapsing property of a hash function is a counterpart of collision
574
+ resistance. Unruh shows that the random quantum oracle is a collapsing hash
575
+ [21] and so some hash function based commitment schemes are collapsing in the
576
+ random oracle model. Unruh also showed that Merkle-Damgard hash functions
577
+ are collapsing if their underlying compression algorithms are, which implies that
578
+ SHA-2 is collapsing [24]. Czajkowski, et al. showed the same for Sponge hashes
579
+ with certain conditions [25]. Sponge hash construction underlies SHA-3.
580
+ 1.3.6
581
+ A New Type of Machine Learning Algorithm
582
+ Our approach does not exactly fit into the category of supervised machine
583
+ learning, since the idea here is not to train the neural network using a predefined
584
+ data set until it reaches a fidelity threshold, and then to use the machine
585
+ in production afterwards. Rather, our machine will be continuously training
586
+ in production to achieve the effect of learning and accounting for the shifting
587
+ behaviour of the participants in the network.
588
+ The algorithm will train both weights and biases.
589
+ As in any traditional
590
+ RBM, each bias will effect all of the inputs to its neuron, while the weights
591
+ will each be specific to channels between neurons. Hence, I expect that this
592
+ approach will mitigate the impact of both dishonest individuals and groups of
593
+ collaborating dishonest individuals.
594
+ Another interesting paradigm shift has taken place. ML usually variationally
595
+ combines well-defined, trivially simple and reliable elements (the neurons) to
596
+ model uncertain, complex and large data sets (the training data). In our case,
597
+ this is basically reversed. The training data is a single bit, for which we have an
598
+ expectation value at the onset. The neurons are the uncertain elements. While
599
+ we have defined the behaviour of the honest receiver neurons in the previous
600
+ 19
601
+
602
+ subsection, we expect some participants to be dishonest and therefore deviate
603
+ from this neuron model.
604
+ The question that this algorithm is answering is fundamentally how to
605
+ orchestrate unreliable and complex elements of a fair consensus system such
606
+ that collaborative productivity is maximized. Since this new type of machine
607
+ learning algorithm seems to be a suitable solution, there is the suggestion that
608
+ a symbiosis of machine and human information processing can be useful for
609
+ maximizing productivity.
610
+ It would be interesting for future works to consider other applications where
611
+ such a ”symbiotic” information processing approach could be useful.
612
+ 1.4
613
+ Practical Implementation Limitations and Advantages
614
+ 1.4.1
615
+ Practical Constraints Today
616
+ It is an intended feature of the associative measuring neuron’s design that if
617
+ the size of input lists and outputs is l = 6, its behaviour can be realized today
618
+ using IBM’s commercially available Q System One or IBM Q 16 Melbourne
619
+ system which is free to use for research purposes. Some restrictions must be
620
+ applied to the neuron in order to ensure that it can be implemented using either
621
+ system, since the superconducting Transmon qubit networks of these systems
622
+ are not fully-connected.
623
+ In order to make the associative measuring neuron
624
+ compatible with the Melbourne, a sender simply must choose IDki and Bk that
625
+ specify a controlled Z operation that is possible to implement. Many control
626
+ configurations can be achieved using qubit swapping.
627
+ 20
628
+
629
+ Y
630
+ 13
631
+ 12
632
+ 11
633
+ 10
634
+ 9
635
+ 8IBM Q 16 Melbourne Connectivity Graph
636
+ The number of D and Uki operations applied, the less fidelity we will have
637
+ in the neuron’s outputs due to decoherence.
638
+ A minimum fidelity should be
639
+ chosen and used to select the range of possible values that will be taken by the
640
+ default repetition bias bk. This fidelity can be dynamically chosen based on
641
+ the calibration parameters of the Melbourne, for example, which fluctuate but
642
+ are available at a given time. The average T1 and T2 times for the IBM Q
643
+ System One are reportedly 74µs and 69µs respectively [14]. The Melbourne’s
644
+ decoherence times are similar but vary depending on the qubits involved, as
645
+ evidenced by the figure. IBM reports that the average decoherence times for the
646
+ Melbourne are T1 = 67.50µs and T2 = 22.40µs [16]. We only will consider the
647
+ Melbourne’s limitations thoroughly, since it is less advanced and more limited
648
+ than the IBM Q System One.
649
+ IBM Q 16 Melbourne Calibration Details July 17th 2019
650
+ The gate times of the Melbourne are updated continuously and published
651
+ publicly [17], and the average amount of time required for a CX gate is around
652
+ 350ns.
653
+ 21
654
+
655
+ qubit
656
+ multi_qb_gate_error
657
+ T1 (us)
658
+ T2 (us)
659
+ Frequency (GHz)
660
+ readout error
661
+ gate_error
662
+ Q0
663
+ 73.32348273
664
+ 23.48828043
665
+ 5.100090141
666
+ 0.0215
667
+ 0.004031062
668
+ Q1
669
+ CX1 0:0.03, CX1 2:0.04
670
+ 63.23181621
671
+ 116.7289054
672
+ 5.238609742
673
+ 0.054
674
+ 0.012242205
675
+ Q2
676
+ CX2_3: 0.04
677
+ 46.13953307
678
+ 74.56571753
679
+ 5.032644087
680
+ 0.1864
681
+ 0.010450744
682
+ Q3
683
+ 81.05055849
684
+ 74.78940464
685
+ 4.896205701
686
+ 0.047
687
+ 0.002494886
688
+ Q4
689
+ CX4 3:0.03, CX4 10:0.04
690
+ 55.43102145
691
+ 27.63898146
692
+ 5.028667392
693
+ 0.1226
694
+ 0.002551687
695
+ Q5
696
+ CX5 4:0.05,CX5 6:0.05,CX5 9:0.07
697
+ 27.79450766
698
+ 50.71953989
699
+ 5.06718735
700
+ 0.0568
701
+ 0.004714312
702
+ Q6
703
+ CX6 8:0.04
704
+ 56.16840169
705
+ 56.0630866
706
+ 4.923906934
707
+ 0.0478
708
+ 0.004816689
709
+ Q7
710
+ CX7 8:0.03
711
+ 32.50641909
712
+ 45.28966051
713
+ 4.974534967
714
+ 0.0598
715
+ 0.004438222
716
+ Q8
717
+ 47.68062524
718
+ 71.45643335
719
+ 4.739563654
720
+ 0.0389
721
+ 0.004361702
722
+ Q9
723
+ CX9 8:0.04, CX9 10:0.05
724
+ 38.43726664
725
+ 79.71232612
726
+ 4.963421912
727
+ 0.0443
728
+ 0.006372041
729
+ Q10
730
+ 56.99362705
731
+ 69.83941723
732
+ 4.945065458
733
+ 0.037
734
+ 0.003278348
735
+ Q11
736
+ CX11 3:0.05,CX11 10:0.05,CX11 12:0.06
737
+ 57.53451171
738
+ 71.43323367
739
+ 5.004981691
740
+ 0.0357
741
+ 0.0044898
742
+ Q12
743
+ CX12 2: 0.06
744
+ 78.13277541
745
+ 117.4664528
746
+ 4.760047973
747
+ 0.0918
748
+ 0.007732648
749
+ Q13
750
+ CX13_1:0.12, CX13_12:0.1
751
+ 21.39891833
752
+ 41.28178002
753
+ 4.968495889
754
+ 0.0498
755
+ 0.011006778IBM Q 16 Melbourne Gate Time Details August 7th 2019
756
+ A CZ gate is realized in the IBM system using a CX and two single qubit
757
+ Hadamard gates.
758
+ Each Uki is a pair of controlled CCZ gates, and either 0
759
+ or 6 X gates.
760
+ A CCZ gate can be realized using CNOT, T †, and T gates
761
+ via an optimal decomposition [20]. This requires six CX gates. The Grover
762
+ diffusion operator can be realized using Hadamard gates surrounding a multiply
763
+ controlled Z operation as well, as per [19].
764
+ CCZ Gate Acheivable Using IBM Q
765
+ Generally, the Grover diffusion operator would involve a multiply controlled
766
+ Z gate with a number of controls equal to the size of the output register, minus
767
+ one. We can get away with simplifying the Grover diffusion operator for our
768
+ case by realizing that the operator will only ever be used to rotate the state
769
+ 22
770
+
771
+ cX Gate
772
+ GFGateTime (ns)
773
+ CX1_0
774
+ 239
775
+ CX1_2
776
+ 174
777
+ CX2_3
778
+ 261
779
+ CX4_3
780
+ 266
781
+ CX5_4
782
+ 300
783
+ CX5_6
784
+ 300
785
+ CX7_8
786
+ 220
787
+ CX9_8
788
+ 434
789
+ CX9_10
790
+ 300
791
+ CX11_10
792
+ 261
793
+ CX11_12
794
+ 261
795
+ CX13_12
796
+ 300
797
+ CX13_1
798
+ 652
799
+ CX12_2
800
+ 1043
801
+ CX11_3
802
+ 286
803
+ CX4_10
804
+ 261
805
+ CX5_9
806
+ 348
807
+ CX6_8
808
+ 348towards basis states with two non-zero qubit values. During each such rotation,
809
+ the diffusion operator can be realized by a single CZ gate which involves the
810
+ two qubits that correspond to the particular input xi’s corresponding indexes
811
+ ID.
812
+ This will rotate the high dimensional output state towards the target
813
+ basis state in the relevant degrees of freedom, and leave the other degrees of
814
+ freedom untouched. However, each input xi may adjust the overall output state
815
+ in different degrees of freedom, and together rotate the state in any arbitrary
816
+ direction. Using this approach, the Grover diffusion operator can be realized
817
+ using six single qubit gates and one CX gate.
818
+ The single qubit gates involved in the algorithm each have a time penalty
819
+ as well. These time penalties can be understood by decomposing each unitary
820
+ gates into its set of actual physical gates that are used to implement them in
821
+ IBM’s system. IBM’s computers support three types of single qubit gates, the
822
+ first two (u1, u2) are relevant for us:
823
+ u1(λ) =
824
+
825
+ ��
826
+ 1
827
+ 0
828
+ 0
829
+ eλi
830
+
831
+ ��
832
+ u2(φ, λ) =
833
+ 1
834
+
835
+ 2
836
+
837
+ ��
838
+ 1
839
+ −eλi
840
+ eφi
841
+ e(φi+λi)
842
+
843
+ ��
844
+ Any single qubit gate which has the form given by u1 is implemented using
845
+ Frame Change (FC) operation, which does not physically take any time but
846
+ actually influences the frame of the following operation and takes no time in
847
+ and of itself. We can see that the T and T † gates do have the corresponding
848
+ form.
849
+ 23
850
+
851
+ T =
852
+
853
+ ��
854
+ 1
855
+ 0
856
+ 0
857
+ e
858
+ π
859
+ 4 i
860
+
861
+ �� = u1(π
862
+ 4 )
863
+ T † =
864
+
865
+ ��
866
+ 1
867
+ 0
868
+ 0
869
+ e− π
870
+ 4 i
871
+
872
+ �� = u1(−π
873
+ 4 )
874
+ u1 Frame Change Physical Gate
875
+ The Hadamard gate is also used in our algorithm, and matches the form
876
+ of u2.
877
+ Any gate which has the form of u2 is implemented using a physical
878
+ Gaussian-Derivative (GD) pulse parameterized by two frame changes. A GD
879
+ pulse takes 60ns itself, and invokes a 10ns buffer time.
880
+ H =
881
+ 1
882
+
883
+ 2
884
+
885
+ ��
886
+ 1
887
+ 1
888
+ 1
889
+ −1
890
+
891
+ �� = u2(2π, 3π)
892
+ u2 Frame Change Physical Gate
893
+ The final type of gate that is relevant for our work is the CX gate, which
894
+ makes use of both FC and GD physical gates as well as Gaussian Flattop
895
+ (GF) pulses. We have already addressed the time requirements for CX gates
896
+ depending on the qubits involved.
897
+ 24
898
+
899
+ U1
900
+ FC
901
+ bm
902
+ (M)
903
+ (-入)U2
904
+ FC
905
+ GD
906
+ FC
907
+ bm
908
+ (9, 入)
909
+ (-入)
910
+ (π/2,π/2)
911
+ (-Φ)CX Physical Gate
912
+ Understanding this, we may say that the time requirement for Uki is at most
913
+ equivalent to that of two CCZ gates and six X gates.
914
+ T(Uki) ˙= 2 · 0ns + 6 · 350ns = 2100ns
915
+ (5)
916
+ Similarly, the time requirement for our simplified Grover diffusion operator
917
+ is that of four Hadamard gates, two X gates and one CX gate.
918
+ T(D) ˙= 2 · 0ns + 4 · 70ns + 1 · 350ns = 640ns
919
+ (6)
920
+ The overall time cost of a repetition of DUki is then given by equation (7).
921
+ Trep = T(Uki) + T(D) = 2740ns
922
+ (7)
923
+ The time requirement for an associative measuring neuron’s operation in its
924
+ entirety will then be given by equation (8).
925
+ Tassoc =
926
+
927
+ i
928
+ ⌊bk + Ni⌋ · 2740ns
929
+ (8)
930
+ 25
931
+
932
+ FC
933
+ GD
934
+ GD
935
+ I
936
+ Control: wc
937
+ (乙/μ)
938
+ (/-")
939
+ (t,0)
940
+ GF
941
+ GF
942
+ CR: WT
943
+ (π/4,0)
944
+ (π/4, )
945
+ -
946
+ +
947
+ GD
948
+ Target: WT
949
+ (π/2,0)
950
+ T
951
+ -
952
+ -To ensure this operation completes within an acceptable window, we simply
953
+ enforce that Tassoc < T2. The most expensive associative measuring neuron
954
+ operation will involve
955
+ |P |
956
+ 2
957
+ inputs xi.
958
+ So, for example a system with ten
959
+ participants would yield a maximal Tassoc time of max(Tassoc| |P|).
960
+ max(Tassoc| |P|) =
961
+ |P |
962
+ 2
963
+
964
+ i=0
965
+ ⌊bk + Ni⌋ · 2740ns
966
+ In this scenario, Ni would be standard deviations of each |P |
967
+ 2 points. To keep
968
+ an associative measuring neuron operation under the shortest time constraint,
969
+ which is T2 = 22.40µs on the Melbourne, we must limit either the number of
970
+ participants in the network |P|, or cap the number of standard deviations Ni at
971
+ some maximum range. It is more appealing for the machine learning algorithm
972
+ to take the number of participants as a parameter and adjust the range of the
973
+ maximum considered standard deviation. So, we can define a maximum range
974
+ max(Ni| |P|).
975
+ T2 = max(Tassoc| |P|) =
976
+ |P |
977
+ 2
978
+
979
+ i=0
980
+ ⌊bk + max(Ni)⌋ · 2740ns
981
+ 22.40µs =
982
+ |P |
983
+ 2
984
+
985
+ i=0
986
+ ⌊bk + max(Ni)⌋ · 2740ns
987
+ 22.40µs
988
+ 2740ns =
989
+ |P |
990
+ 2
991
+
992
+ i=0
993
+ ⌊bk + max(Ni)⌋
994
+ 26
995
+
996
+ 22.40µs
997
+ 2740ns −
998
+ |P |
999
+ 2
1000
+
1001
+ i=0
1002
+ bk ˙=
1003
+ |P |
1004
+ 2
1005
+
1006
+ i=0
1007
+ max(Ni)
1008
+ 22.40µs
1009
+ 2740ns −
1010
+ |P |
1011
+ 2
1012
+
1013
+ i=0
1014
+ bk ˙= |P|
1015
+ 2 max(Ni)
1016
+ max(Ni| |P|) ˙=
1017
+ 2
1018
+ |P| · 22.40µs
1019
+ 2740ns −
1020
+ |P |
1021
+ 2
1022
+
1023
+ i=0
1024
+ bk
1025
+ In the worst case, � |P |
1026
+ 2
1027
+ i=0 bk → |P |
1028
+ 2
1029
+ since 0 ≤ bk ≤ 1.
1030
+ max(Ni| |P|) ˙=
1031
+ 2
1032
+ |P| · 22.40µs
1033
+ 2740ns − |P|
1034
+ 2
1035
+ The system will become functionally useless when max(Ni| |P|) approaches
1036
+ 0. Therefore we can conclude that the system will be able to handle only 6
1037
+ participants if our quantum associative measuring neurons were used at each
1038
+ node today.
1039
+ Also, if this system were implemented today, each participant would not
1040
+ have a local quantum computer to use for their associative measuring neuron
1041
+ operations. Rather, they would need to delegate their quantum computations
1042
+ to a central quantum computer. Today, the best option would be IBM’s system.
1043
+ The amount of time spent in the queue waiting for each others’ operations to
1044
+ complete would render the speedup from using Grover’s search pointless.
1045
+ 1.4.2
1046
+ Near-future Possibilities
1047
+ Despite the conclusion that this system is not practical to implement today,
1048
+ the work we did in the last subsection gives us a method for predicting how
1049
+ 27
1050
+
1051
+ useful the system will be in the future, when we have access to better quantum
1052
+ computers.
1053
+ IBM claims that they intend to eventually improve their coherence (T2)
1054
+ times to 1-5 milliseconds, and suggest that they are exponentially approaching
1055
+ this goal according to a relationship similar to Moore’s law for integrated
1056
+ electronics [14]. Assuming this goal is reached within the next decade, which
1057
+ is generally considered to be feasible with at least a non-zero possibility, our
1058
+ scheme would be able to support roughly 85 participants in each vote.
1059
+ The true randomness of the probabilistic outcomes from measuring the
1060
+ states |0>+|1>
1061
+
1062
+ 2
1063
+ and |0>−|1>
1064
+
1065
+ 2
1066
+ is a valuable cryptographic asset when a quantum
1067
+ associative measuring neuron is used for a security protocol due to the outcome
1068
+ being truly random.
1069
+ Also, the Grover’s search algorithm provides a known
1070
+ quadratic speedup over equivalent classical methods, when the number of
1071
+ applied operations is compared to the number of classical records checked for
1072
+ the value searched for [13].
1073
+ However, it is important to point out that an associative measuring neuron
1074
+ with a limited repetition capacity can be easily classically simulated. So, the
1075
+ entire system described thus far could theoretically be replaced with a classical
1076
+ equivalent. This would mean that we do not gain the security and efficiency
1077
+ benefits of the quantum algorithms employed. However, it would mean that
1078
+ scaling the system to support any arbitrarily large number of users would be
1079
+ possible.
1080
+ An optimal network scheme would incorporate both quantum and classical
1081
+ elements to take advantage of as much quantum security and speedup as possible
1082
+ with the resources available whilst also supporting an arbitrary number of users.
1083
+ The
1084
+ machine
1085
+ learning
1086
+ inspired
1087
+ element
1088
+ of
1089
+ the
1090
+ consensus
1091
+ algorithm
1092
+ implemented at any scale would be beyond the capabilities of any quantum
1093
+ 28
1094
+
1095
+ computing technology that exists today. However, it would be well within the
1096
+ reach of modern classical technology. So, we will assume that it is purely classical
1097
+ for the forseeable future. However, it would be interesting for a future work to
1098
+ look into how quantum machine learning might increase the efficiency of this
1099
+ component as well.
1100
+ On the other hand, quantum-secure communication channels are already
1101
+ being established and demonstrated in the world by companies like NXM [18].
1102
+ We posit that quantum networks will also be available for practical use in the
1103
+ near-term, and we can expect to use these as a resource. The ability to perform
1104
+ a Hadamard gate, transmit and measure the resulting state is already quite
1105
+ feasible. So, we can assume that at least some of the channels used by the sender
1106
+ of any vote can benefit from the pure randomness of the quantum approach for
1107
+ encoding 2’s into the lists L1k.
1108
+ Our system does not make assumptions on the number of participants who
1109
+ will be interested in participating in any given vote. Therefore it is conceivable
1110
+ that votes involving small numbers of people (< 6 today, < 85 eventually) could
1111
+ occur, and benefit fully from the quadratic speedup of the Grover’s search.
1112
+ Larger votes could also occur, which would involve strictly classical neuron
1113
+ operations and simply trade efficiency for scalability.
1114
+ The ability to use a mixture of quantum and classical channels and neurons
1115
+ is an advantage.
1116
+ It enables this blockchain scheme to be viable throughout
1117
+ transitions in networking and computing technology.
1118
+ 2
1119
+ References
1120
+ 1. Sun, Xin, et al. “A Simple Voting Protocol on Quantum Blockchain.”
1121
+ International Journal of Theoretical Physics, vol. 58, no. 1, 2019, pp.
1122
+ 275–281.
1123
+ 29
1124
+
1125
+ 2. Sun, Xin, et al. “Quantum-Enhanced Logic-Based Blockchain I: Quantum
1126
+ Honest-Success Byzantine Agreement and Qulogicoin.” 2018.
1127
+ 3. An Artificial Cognitive Neural System Based on a Novel Neuron Structure
1128
+ and a Reentrant Modular Architecture with Implications to Machine
1129
+ Consciousness
1130
+ 4. Crandall, B. C. (2000). Nanotechnology: Molecular speculations on global
1131
+ abundance. Cambridge (Massachusetts): MIT Press.
1132
+ 5. Vujicic, Dejan, et al. “Blockchain Technology, Bitcoin, and Ethereum:
1133
+ A Brief Overview.” 2018 17th International Symposium INFOTEH-
1134
+ JAHORINA (INFOTEH), 2018, doi:10.1109/infoteh.2018.8345547.
1135
+ 6. Goh, Brenda, and Alun John. “China Wants to Ban Bitcoin Mining.”
1136
+ Reuters, Thomson Reuters, 9 Apr.
1137
+ 2019, www.reuters.com/article/us-
1138
+ china-cryptocurrency/china-wants-to-ban-Bitcoin-mining-idUSKCN1RL0C4.
1139
+ 7. Schaus, Paul. “Blockchain Projects Will Pay Off 10 Years from Now.”
1140
+ American Banker, 2 Dec. 2016, www.americanbanker.com/opinion/blockchain-
1141
+ projects-will-pay-off-10-years-from-now.
1142
+ 8. Macheel, Tanaya.
1143
+ “Banks Will Start Actually Using Blockchain Next
1144
+ Year: IBM Report.” American Banker, 28 Sept. 2016, www.americanbanker.co-
1145
+ m/news/banks-will-start-actually-using-blockchain-next-year-ibm-report.
1146
+ 9. Sarma, S. D., Deng, D., & Duan, L. (2019).
1147
+ Machine learning meets
1148
+ quantum physics. Physics Today, 72(3), 48-54. doi:10.1063/pt.3.4164
1149
+ 10. Nakatani, N. (2018).
1150
+ Matrix Product States and Density Matrix
1151
+ Renormalization Group Algorithm.
1152
+ Reference Module in Chemistry,
1153
+ Molecular Sciences and Chemical Engineering.
1154
+ doi:10.1016/b978-0-12-
1155
+ 409547-2.11473-8
1156
+ 30
1157
+
1158
+ 11. Carleo, G., & Troyer, M. (2017).
1159
+ Solving the quantum many-body
1160
+ problem with artificial neural networks.
1161
+ Science, 355(6325), 602-606.
1162
+ doi:10.1126/science.aag2302
1163
+ 12. Grover, Lov K. “A Fast Quantum Mechanical Algorithm for Database
1164
+ Search.” Proceedings of the Twenty-Eighth Annual ACM Symposium on
1165
+ Theory of Computing - STOC 96, 1996, doi:10.1145/237814.237866.
1166
+ 13. Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U. (1997).
1167
+ Strengths and Weaknesses of Quantum Computing.
1168
+ SIAM Journal on
1169
+ Computing, 26(5), 1510-1523. doi:10.1137/s0097539796300933
1170
+ 14. “Cramming More Power Into a Quantum Device.” IBM Research Blog,
1171
+ 15 Mar.
1172
+ 2019, www.ibm.com/blogs/research/2019/03/power-quantum-
1173
+ device/.
1174
+ 15. Jay M. Gambetta, A. D. C´orcoles, S. T. Merkel, B. R. Johnson, John
1175
+ A. Smolin, Jerry M. Chow, Colm A. Ryan, Chad Rigetti, S. Poletto,
1176
+ Thomas A. Ohki, Mark B. Ketchen, and M. Steffen, Characterization of
1177
+ Addressability by Simultaneous Randomized Benchmarking, Phys. Rev.
1178
+ Lett. 109, 240504.
1179
+ 16. “Quantum Devices & Simulators.” IBM Q, 5 June 2018, www.research.ibm.com/ibm-
1180
+ q/technology/devices/#ibmq 16 melbourne.
1181
+ 17. Qiskit. “Qiskit/Ibmq-Device-Information.” GitHub, github.com/Qiskit/ibmq-
1182
+ device-information/blob/master/backends/melbourne/V1/version log.md#gate-
1183
+ specification.
1184
+ 18. NXM Labs, Inc. “NXM Labs Announces Breakthrough in Quantum-Safe
1185
+ Security for Existing Computers and IoT Devices.” Cision, 24 Apr. 2019,
1186
+ 31
1187
+
1188
+ www.newswire.ca/news-releases/nxm-labs-announces-breakthrough-in-quantum-
1189
+ safe-security-for-existing-computers-and-iot-devices-890174168.html.
1190
+ 19. Coles, et al. “Quantum Algorithm Implementations for Beginners.” 2018.
1191
+ 20. Shende, Vivek V., and Igor L. Markov. “On the CNOT-Cost of TOFFOLI
1192
+ Gates.” 2008, pp. Quant.Inf.Comp. 9(5–6):461–486 (2009).
1193
+ 21. Unruh, Dominique. “Computationally Binding Quantum Commitments.”
1194
+ Advances in Cryptology – EUROCRYPT 2016 Lecture Notes in Computer
1195
+ Science, 2016, pp. 497–527., doi:10.1007/978-3-662-49896-5 18.
1196
+ 22. Ambainis,
1197
+ Andris,
1198
+ et al.
1199
+ “Quantum Attacks on Classical Proof
1200
+ Systems:
1201
+ The Hardness of Quantum Rewinding.” 2014 IEEE 55th
1202
+ Annual
1203
+ Symposium
1204
+ on
1205
+ Foundations
1206
+ of
1207
+ Computer
1208
+ Science,
1209
+ 2014,
1210
+ doi:10.1109/focs.2014.57.
1211
+ 23. Fehr, Serge. “Classical Proofs for the Quantum Collapsing Property of
1212
+ Classical Hash Functions.” Theory of Cryptography Lecture Notes in
1213
+ Computer Science, 2018, pp. 315–338., doi:10.1007/978-3-030-03810-6 12.
1214
+ 24. Unruh, Dominique. “Collapse-Binding Quantum Commitments Without
1215
+ Random Oracles.” Advances in Cryptology – ASIACRYPT 2016 Lecture
1216
+ Notes in Computer Science, 2016, pp. 166–195., doi:10.1007/978-3-662-
1217
+ 53890-6 6.
1218
+ 25. Bertoni,
1219
+ Guido,
1220
+ et al.
1221
+ “On the Indifferentiability of the Sponge
1222
+ Construction.” Advances in Cryptology – EUROCRYPT 2008 Lecture
1223
+ Notes in Computer Science, 2008, pp. 181–197., doi:10.1007/978-3-540-
1224
+ 78967-3 11.
1225
+ 32
1226
+
XNFOT4oBgHgl3EQf8TTm/content/tmp_files/2301.12966v1.pdf.txt ADDED
@@ -0,0 +1,1257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Based on Springer Nature LATEX template
2
+ Lyapunov Exponents for Temporal Networks
3
+ Annalisa Caligiuri1, Victor M. Egu´ıluz1, Leonardo di
4
+ Gaetano2, Tobias Galla1 and Lucas Lacasa1*
5
+ 1Institute for Cross-Disciplinary Physics and Complex Systems (IFISC),
6
+ CSIC-UIB, Palma de Mallorca, Spain.
7
+ 2Department of Network and Data Science, Central European University,
8
+ 1100 Vienna, Austria.
9
+ *Corresponding author(s). E-mail(s): lucas@ifisc.uib-csic.es;
10
+ Abstract
11
+ By interpreting a temporal network as a trajectory of a latent graph
12
+ dynamical system, we introduce the concept of dynamical instabil-
13
+ ity of a temporal network, and construct a measure to estimate the
14
+ network Maximum Lyapunov Exponent (nMLE) of a temporal net-
15
+ work trajectory. Extending conventional algorithmic methods from
16
+ nonlinear time-series analysis to networks, we show how to quantify
17
+ sensitive dependence on initial conditions, and estimate the nMLE
18
+ directly from a single network trajectory. We validate our method
19
+ for a range of synthetic generative network models displaying low
20
+ and high dimensional chaos, and finally discuss potential applications.
21
+ Keywords: Lyapunov exponent, temporal networks, chaos, complex systems
22
+ 1 Introduction
23
+ Temporal networks (TNs) [1–3] are graphs whose topology changes in time.
24
+ They are minimal mathematical models that encapsulate how the interaction
25
+ architecture of elements in a complex system changes dynamically. TNs have
26
+ been successfully used in a variety of areas ranging from epidemic spreading
27
+ [4] or air transport [6] to neuroscience [7] to cite a few, and it has been shown
28
+ that important dynamical processes running on networks (e.g. epidemics [4],
29
+ synchronization, search [5]) display qualitatively different emergent patterns
30
+ when the substrate is a TN, compared to the case of a static network. These
31
+ 1
32
+ arXiv:2301.12966v1 [physics.data-an] 30 Jan 2023
33
+
34
+ Based on Springer Nature LATEX template
35
+ 2
36
+ Lyapunov Exponents for Temporal Networks
37
+ effects are particularly relevant when the timescale of the dynamics running
38
+ on the graph is comparable to that of the intrinsic evolution of the network,
39
+ i.e., when there is no manifest separation of timescales. Relatively lesser
40
+ work has, however, considered the intrinsic dynamics of the network from a
41
+ principled point of view. Recently, a research programme has been proposed
42
+ [8] in which TNs are to be interpreted as the trajectories of a latent ‘graph
43
+ dynamical system’ (GDS). The GDS provides an explicit model for the time-
44
+ evolution of the network. Similar to a conventional dynamical system (whose
45
+ output is a time series of scalar or vector quantities), the output of a GDS is
46
+ a time series of networks, i.e. a TN.
47
+ The dynamics of TNs and GDS are indeed the objects of ongoing research.
48
+ For instance, in [8] the authors consider how to extend the autocorrelation
49
+ function of a signal to a graph-theoretical setting. They explore how TNs can
50
+ oscillate and how harmonic modes, as well as decaying linear temporal correla-
51
+ tions of various shapes, emerge. In a similar fashion, the memory of a temporal
52
+ network has been studied from different angles, including the concept of mem-
53
+ ory shape [9] as a multidimensional extension of memory (high order Markov
54
+ chain theory) in conventional time series. In this work, we further pursue the
55
+ abovementioned research framework programme, and consider the problem of
56
+ dynamical instability and chaos quantification in TNs. Interpreting temporal
57
+ networks as trajectories in graph space, we aim to generalise the concept
58
+ of Lyapunov exponents as quantifiers of the sensitivity to initial conditions.
59
+ Our objective is to define and measure Lyapunov exponents and sensitive
60
+ dependence to initial conditions of the network as a whole. Our approach is
61
+ therefore not to quantify chaos in the dynamics for example of every link, but
62
+ rather to quantify chaos for the collective dynamics of the whole network.
63
+ Since TNs in applications are frequently observed empirically, we focus our
64
+ implementation and inference of network Lyapunov exponents solely on the
65
+ observation of a single (long) TN trajectory, without the need to access the
66
+ underlying GDS (but of course, the framework is also applicable if the GDS
67
+ is explicitly accessible). Our algorithmic implementation can thus be seen as
68
+ a conceptual network generalization of the classical algorithms by Wolf and
69
+ Kantz [10–12, 14], originally proposed to quantify sensitive dependence on
70
+ initial conditions directly from empirically observed time series (see also [13]
71
+ for a similarly seminal work).
72
+ Importantly, any new method needs to be validated. In our case, this is
73
+ not trivial, since the notion of chaotic TNs is not common in existing litera-
74
+ ture. A second objective of this work is thus to propose synthetic generative
75
+ models of chaotic TNs, which can be used as templates to validate the meth-
76
+ ods we develop for the quantification of chaos in TNs. These methods, once
77
+ validated, can then be used in wider applications and further research.
78
+
79
+ Springer Nature 2021 LATEX template
80
+ Lyapunov Exponents for Temporal Networks
81
+ 3
82
+ The rest of the paper is organised as follows. In Section 2 we introduce the
83
+ theoretical background to our work, and we set the notation. We derive the
84
+ network analog of the maximum Lyapunov exponent (MLE), and we outline
85
+ an algorithmic implementation to estimate quantities such as the spectrum
86
+ of local expansion rates, trajectory-averaged and volume-averaged expansion
87
+ rates, and the network maximum Lyapunov exponent (nMLE). In Section 3
88
+ we consider the relatively simple case of random network dynamics as a first
89
+ example, and show how the method works in such scenario. Then, in Section 4
90
+ we introduce a generative model of (low-dimensional) chaotic temporal net-
91
+ works. This model provides us with ‘ground-truth’ access to the nMLEs of the
92
+ network trajectories that the model generates. We show that the method we
93
+ propose to infer nMLEs from a trajectory of networks correctly reconstructs
94
+ this ‘true’ exponent. We also assess how the estimation of the nMLE is affected
95
+ when the chaotic network trajectory is polluted with certain amounts of noise,
96
+ and discuss at this point how to estimate negative nMLEs as well. In Section 5
97
+ we introduce a different generative model of (high-dimensional) chaotic TNs.
98
+ We demonstrate that the generated TNs show sensitive dependence to initial
99
+ conditions, and that the nMLE varies as expected as a function of a network’s
100
+ coupling parameter. In Section 6 we finally conclude and discuss potential
101
+ applications of the method.
102
+ 2 Theory and method
103
+ 2.1 Lyapunov exponents for graph dynamical systems
104
+ In nonlinear time series analysis, the maximum Lyapunov exponent λMLE of
105
+ a dynamical system quantifies how two trajectories that are initially close
106
+ separate over time. More precisely, one imagines two copies of the system,
107
+ which are started from initial conditions at time t = 0 which are a distance d0
108
+ apart. One then defines
109
+ λMLE = lim
110
+ t→∞ lim
111
+ d0→0
112
+ 1
113
+ t ln dt
114
+ d0
115
+ ,
116
+ (1)
117
+ where dt is the distance between the two copies of the system at time t.
118
+ In practice, the distance d0 is often small but finite, and the limit d0 → 0 may
119
+ not be accessible. It then turns out that the long-time limit t → ∞ is not
120
+ accessible either as the growth of dt is bounded by the size of the attractor
121
+ of the system [16]. In such cases, the behaviour of dt usually undergoes a
122
+ cross-over (at a time which we label τ), between an exponentially expanding
123
+ phase (t < τ) to a saturated phase (t > τ). In the latter regime, dt fluctuates
124
+ around the attractor’s size. We will call τ the saturation time.
125
+ In the network setting, we assume there exists a (sometimes unknown)
126
+ graph dynamical system that determines the evolution of a graph over time.
127
+ We focus on discrete time. The GDS is then a map, which determines how
128
+
129
+ Based on Springer Nature LATEX template
130
+ 4
131
+ Lyapunov Exponents for Temporal Networks
132
+ one network evolves in the next time step. For simplicity, we assume that
133
+ the set of vertices is fixed, and that the vertices are distinguishable from
134
+ one another and labelled. Thus, only the set of edges between these ver-
135
+ tices evolves in time. A trajectory of the GDS then consists of a sequence
136
+ of network snapshots. These trajectories define the TNs generated by the
137
+ system [1, 3]. Each trajectory is given by the sequence of adjacency matrices
138
+ S = (At)t≥0, At = {aij; t}; i, j = 1, 2, . . . , n where aij; t = 1 if the vertices i
139
+ and j are connected at time t, and zero otherwise (this symmetric choice is
140
+ for simple, undirected networks, but the method works essentially along the
141
+ same lines for non-simple and directed networks, perhaps except for different
142
+ normalization factors in the definition of the distance, see below). As such,
143
+ we are considering labelled, unweighted networks of n nodes.
144
+ It is not clear a priori if the specific choice of the distance used to quantify
145
+ the deviation between two originally close network trajectories is critical. We
146
+ conjecture that, as long as this distance is based on the full adjacency matrix
147
+ –not on a projection of it–, results should hold independent of the specific met-
148
+ ric. This is based on the fact that in dynamical systems, the MLE is invariant
149
+ under different choices of the underlying norm ||.|| [14, 16]. There exist many
150
+ graph distances [18]. For simplicity, we take an intuitive definition of such a
151
+ distance which is based on the amount of edge overlap between two networks:
152
+ given two networks with the same number of nodes n and adjacency matrices
153
+ A and B,
154
+ d(A, B) = 1
155
+ 2
156
+
157
+ i,j
158
+ |aij − bij|,
159
+ (2)
160
+ where i and j take values from 1 to n1. In our setting, networks are simple
161
+ and unweighted. In the particular case where A and B have the same number
162
+ of edges, the distance defined in Eq. (2) is indeed a rewiring distance, i.e., it
163
+ is given by the number of unique rewirings needed to transform A into B,
164
+ and therefore d is a positive integer-valued function. One can then further
165
+ normalize d as appropriate such that it is defined in [0, 1], as we will show
166
+ later. Further details can be found in the Appendix, where we also introduce
167
+ alternative distances.
168
+ 2.2 Inference of network Lyapunov exponents
169
+ 2.2.1 Local expansion rates
170
+ We are interested in quantifying sensitive dependence on initial conditions (and
171
+ in particular, the network version of λMLE, which we here call λnMLE) when
172
+ the mechanics of the GDS is not known, and when we only have access to
173
+ a (single) discrete-time network trajectory S = (A0, A1, A2, . . . ) of adjacency
174
+ matrices. This is analogous to the case in which one would like to reconstruct
175
+ the MLE of a conventional dynamical system from a single time series. The
176
+ 1The pre-factor is used to have a normalized distance when networks are simple, undirected
177
+ and have the same number of links, otherwise a different normalization is needed.
178
+
179
+ Springer Nature 2021 LATEX template
180
+ Lyapunov Exponents for Temporal Networks
181
+ 5
182
+ standard approach consists in using Wolf’s or Kantz’s algorithms [10–12, 14].
183
+ The central idea is here to look for recurrences in the orbit, finding points in
184
+ the time series which might be temporally separated but which are close in
185
+ phase space. One then monitors the deviation of those points over time. Here,
186
+ we extend this approach to the case of a time series of networks, i.e. a TN.
187
+ We start by fixing an element At from S, where t is an arbitrary point in
188
+ time. This adjacency matrix will be the ‘initial condition’ for our analysis. To
189
+ extend Wolf’s algorithm we then proceed to look in S for another element At′
190
+ at a different time t′, such that d(At, At′) < ϵ, where ϵ is a small threshold
191
+ chosen before the analysis begins2. This recurrence in phase space allows us
192
+ to use a single trajectory to explore how two close networks separate over
193
+ time. We then set d0 := d(At, At′) as the initial distance. We then proceed to
194
+ measure how distance evolves over time as we separately track the evolution
195
+ of At+k and At′+k in S, where k = 1, 2, . . . . We write dk = ||At+k − At′+k||.
196
+ Without loss of generality, we can always write the successive distances in
197
+ terms of a sequence of local expansion rates ℓ1, ℓ2, . . . ,
198
+ dk = dk−1 exp(ℓk).
199
+ (3)
200
+ Each of the ℓk can be positive (local expansion), negative (local contraction),
201
+ or zero. Equation (3) generally models the case where two initially close tra-
202
+ jectories (d0 < ϵ) deviate from each other over time. The ℓk can depend on k,
203
+ since the expansion rates can vary as the trajectories pass through different
204
+ parts of the attractor [14]. We then define a trajectory-averaged expansion rate
205
+ ℓ as follows
206
+ ℓ = 1
207
+ τ
208
+ τ
209
+
210
+ k=1
211
+ ℓk = 1
212
+ τ
213
+ τ
214
+
215
+ k=1
216
+ ln dk
217
+ dk−1
218
+ ,
219
+ (4)
220
+ where τ is the saturation time defined earlier. Since we are considering a fixed
221
+ trajectory (not an ensemble of trajectories), we thus have
222
+ ℓ = 1
223
+ τ ln dτ
224
+ d0
225
+ .
226
+ (5)
227
+ Provided the GDS is ergodic (i.e., that a single and long enough orbit ade-
228
+ quately visits the whole graph phase space), ℓ converges to the network
229
+ Maximum Lyapunov Exponent λnMLE in the limit of large τ, independent of
230
+ the choice of the initial adjacency matrix At. However, in practice, τ will be
231
+ finite, and thus we cannot readily assume that ℓ fully describes the long-term
232
+ behaviour, or that it is independent of the initial condition At. It is thus inter-
233
+ preted as a local Lyapunov exponent [15], and an average of this quantity over
234
+ different initial conditions At will be required, as discussed further below.
235
+ 2In practice, At′ is selected as the closest network from At within the ball of radius ϵ.
236
+
237
+ Based on Springer Nature LATEX template
238
+ 6
239
+ Lyapunov Exponents for Temporal Networks
240
+ Fig. 1 Illustration of a temporal network S = (G0, G1, G2, ...) as a trajectory of a latent
241
+ graph dynamical system (GDS) and the methodology to compute its network Maximum
242
+ Lyapunov exponent (Kantz version) λK
243
+ nMLE. Each element of the trajectory is a network,
244
+ i.e. a snapshot of the temporal network. λK
245
+ nMLE is estimated directly from S (i.e., without
246
+ accessing the GDS directly) by looking at recurrences in S and quantifying the average
247
+ expansion around different network snapshots. In this illustration, a ball of radius ϵ around
248
+ an arbitrary G0 is fixed, and four recurrences are found where d(G0, Gr) < ϵ. The initial
249
+ distance d(G0, Gr) is averaged over the four recurrences and the average distance after one
250
+ time step d(G1, Gr+1) is computed. λK
251
+ nMLE is computed by averaging over time, volume and
252
+ different initial conditions G0 (see the text for details).
253
+ 2.2.2 Wolf and Kantz methods of estimating maximum
254
+ Lyapunov exponents for temporal networks
255
+ The time it takes for two trajectories to reach a distance of the order of the
256
+ attractor’s size depends on how close these two trajectories were initially. In
257
+ other words, the saturation time τ depends on d0, and therefore on the choice
258
+
259
+ Go
260
+ G1
261
+ S= (Go,G1, G2, ..., Grt, Gr+1, ..., Gr2, Gr+1, ...)
262
+ Gr2+1
263
+ Gr3
264
+ Gra
265
+ Go
266
+ Gr2
267
+ G1Springer Nature 2021 LATEX template
268
+ Lyapunov Exponents for Temporal Networks
269
+ 7
270
+ of the threshold ϵ. The limits d0 → 0 and τ → ∞ are thus related to one
271
+ another. Conceptually, we would like the trajectories to be as close as possible
272
+ initially, so that we can monitor the expansion rate for long times, allowing
273
+ us to obtain a global MLE as opposed to a local Lyapunov exponent. To do
274
+ this, we need to track the expansion for sufficiently long, but we also need to
275
+ avoid the regime in which the distance is limited by the characteristic size of
276
+ the attractor.
277
+ Generalised Wolf approach to measuring the nMLE. We now construct
278
+ the generalisation of Wolf’s approach, which will yield an estimation of the
279
+ nMLE that we call λW
280
+ nMLE. The aim is to compute ⟨ℓ⟩ = ⟨ 1
281
+ τ ln dτ
282
+ d0 ⟩, where the
283
+ average is over choices of At and At′. In practice one considers a set of w
284
+ initial choices of At, which we index i = 1, . . . , w, and for each of these choices,
285
+ one additional point At′ on the trajectory such that d(At, At′) < ϵ. One then
286
+ obtains
287
+ λW
288
+ nMLE = 1
289
+ w
290
+ w
291
+
292
+ i=1
293
+ ℓ(i),
294
+ (6)
295
+ where ℓ(i) is the trajectory-averaged expansion rate ℓ computed for the i-th
296
+ initial condition, obtained from Eq. (4).
297
+ Algorithmically, this approach has the advantage that we do not need to fix
298
+ the choice of τ, we are able to flexibly adjust τ for each initial condition,
299
+ according to the specific d0 we are able to find in S. On the other hand, this
300
+ approach is point-wise, in the sense that for each choice of At one only con-
301
+ siders a single At′ nearby. As a consequence, this method does not necessarily
302
+ capture the average expansion rate around each initial condition At.
303
+ Generalised Kantz approach to measuring the NMLE. In order to cal-
304
+ culate such an average expansion rate (for a given choice of At) one would, for
305
+ a fixed At, have to average over the expansion rates for choices of At′ in an
306
+ ϵ-ball about At. This volume-averaging is the basis of Kantz’s generalization
307
+ [11, 12] of Wolf’s algorithm [10], see Fig.1 for an illustration. For a given ini-
308
+ tial condition At Kantz’ method provides a trajectory and volume averaged
309
+ expansion rate ⟨ 1
310
+ τ ln dτ
311
+ d0 ⟩volume. We will write Λ for the volume-averaged expan-
312
+ sion rate. For fixed At, this could algorithmically be obtained as follows. One
313
+ chooses N different At′ from the trajectory S, all within distance ϵ from At.
314
+ We label these j = 1, . . . , N. For each At′ one then computes ℓ(j) via Eq. (4).
315
+ Then one sets
316
+ Λ(At) = 1
317
+ N
318
+ N
319
+
320
+ j=1
321
+ ℓ(j),
322
+ (7)
323
+ where N is the number of initial conditions inside a ball of radius ϵ and cen-
324
+ tered at At that we have found in the sequence S.
325
+ In practice, Kantz algorithm proceeds slightly differently. Instead of first com-
326
+ puting the ℓ(j), and then averaging the expansion rates, the average over the
327
+ At′ is instead computed at the level of distances. That is to say, one makes N
328
+
329
+ Based on Springer Nature LATEX template
330
+ 8
331
+ Lyapunov Exponents for Temporal Networks
332
+ choices of At′ as described above, and then obtains dk(j) for each j = 1, . . . , N
333
+ and k = 0, 1, 2, . . . (k runs up to the relevant cut-off time). One then sets
334
+ Λ(At) = 1
335
+ τ ln
336
+ N −1 �N
337
+ j=1 dτ(j)
338
+ N −1 �N
339
+ j=1 d0(j)
340
+ ,
341
+ (8)
342
+ where τ is a priori fixed for all j. The numerator in the logarithm represents
343
+ the volume average (over choices of At′ in a ball about At) of dτ, and the
344
+ denominator is the volume average of d0.
345
+ We stress that Eqs. (7) and (8) are mathematically different and do not
346
+ necessarily lead to the same results. While Eq. (7) allows adapting the precise
347
+ value τ (which depends on d0) for each trajectory, Eq. (8) instead requires
348
+ us to use a uniform τ across all trajectories. The latter expression looks at
349
+ the expansion in time of an initially small volume centered on At, and is
350
+ closer in spirit to capturing the underlying nonlinear dynamics than Eqs. (7).
351
+ Accordingly, Eq. (8) is the basis of the Kantz’ method.
352
+ The quantity Λ in Eq. (8) is still a local quantity, in the sense that it
353
+ was computed for a phase space volume around a fixed choice of At. In prin-
354
+ ciple, the local volume-averaged expansion rate could vary across different
355
+ regions in phase space. To capture the global long-term behaviour we there-
356
+ fore additionally average over choices of At, and then finally obtain the global
357
+ volume-averaged network maximum Lyapunov exponent
358
+ λK
359
+ nMLE =
360
+ �1
361
+ τ ln ⟨dτ⟩volume
362
+ ⟨d0⟩volume
363
+
364
+ At
365
+ ,
366
+ (9)
367
+ where we have written ⟨· · · ⟩At, for the average over initial conditions At. In
368
+ practice this is carried out by averaging over a set of w choices of At, i.e.,
369
+ λK
370
+ nMLE = 1
371
+ w
372
+ w
373
+
374
+ j=1
375
+ Λ(A(j)
376
+ t )
377
+ (10)
378
+ where Λ(A(j)
379
+ t ) stands for the expression in Eq. (8) for the fixed choice
380
+ At = A(j)
381
+ t .
382
+ We note that the value of the saturation time τ or the radius of the ball
383
+ ϵ will have to be selected after some numerical exploration. Indeed, a better
384
+ estimate of the Lyapunov exponent is obtained when the cut-off time τ is
385
+ large. This, in turn, is the case when the initial distance between At and At′ is
386
+ small, hence favouring choosing a relatively small value of ϵ. However, a small
387
+ value of ϵ complicates the task of finding points At′ that are at most a distance
388
+ ϵ away from At on the given trajectory. In practice, a trade-off is to be struck.
389
+
390
+ Springer Nature 2021 LATEX template
391
+ Lyapunov Exponents for Temporal Networks
392
+ 9
393
+ To summarise, from a given TN trajectory (i.e. a sequence of network
394
+ snapshots) we first measure the local expansion rates {ℓk}τ
395
+ k=1 via Eq. (3)
396
+ for a fixed choice of At and At′. The set of ℓk obtained in this way provide
397
+ information on the fluctuations of the local expansion rate (for fixed At and
398
+ At′), and its trajectory-average ℓ. We can then proceed along two alternative
399
+ routes. In the first approach (i) we average ℓ over different choices for the
400
+ initial condition At [Eq. (6)], and obtain Wolf’s approximation to the nMLE
401
+ λW
402
+ nMLE. Alternatively, (ii) we can initially perform, for each initial condition
403
+ At, an average over At′. This is done by computing the local expansion of a
404
+ volume ⟨dk⟩volume and then averaging this over time [Eq. (8)]. This is then
405
+ repeated for different choices of At, and once hence obtains a distribution
406
+ P(Λ) describing the fluctuations across different points in the network phase
407
+ space. Its mean provides Kantz’s approximation to the nMLE λK
408
+ nMLE.
409
+ In the following sections, we present a validation of this method for random,
410
+ low-dimensional and high-dimensional chaotic temporal networks.
411
+ 3 The white-noise equivalent of a temporal
412
+ network: independent and identically
413
+ distributed random graphs
414
+ Before addressing the case of chaotic dynamics, we briefly discuss the case of
415
+ random network trajectories, with no correlations in time. One then expects
416
+ no systematic expansion or compression in time, and the resulting Lyapunov
417
+ exponent should hence vanish3. We here seek to verify that this is indeed the
418
+ case for the procedures we have introduced to estimate the Lyapunov expo-
419
+ nents of TNs. Studying this is of interest, among other reasons, because an
420
+ empirically obtained time series may appear random. It is then important to
421
+ be able to decide if the trajectory is consistent with an uncorrelated random
422
+ trajectory in network space, or with a deterministic chaotic model.
423
+ Here we study the simple case where S is an independently drawn sequence of
424
+ Erd¨os-R´enyi graphs with n nodes and in which the probability that any two
425
+ nodes are connected is p. This is an analog to white noise for TNs, i.e., a situ-
426
+ ation in which the TN displays delta-distributed autocorrelation function [8].
427
+ At odds with a deterministic GDS, the distances between different points on a
428
+ network trajectory are now random variables. More precisely, since all elements
429
+ of S are the adjacency matrices of Erd¨os-R´enyi graphs, the elements of these
430
+ matrices are Bernoulli variables, taking values zero (with probability 1 − p) or
431
+ one (with probability p). For independent adjacency matrices A and B, the
432
+ possible values of |aij − bij| are then zero with probability p2 + (1 − p)2, and
433
+ 3By construction, d1 > d0 as we force d0 < ϵ, so in order to avoid spurious expansions at k = 1,
434
+ in this section we don’t take into account d0 in the estimation of finite Lyapunov exponents, i.e.
435
+ our starting time is k = 1.
436
+
437
+ Based on Springer Nature LATEX template
438
+ 10
439
+ Lyapunov Exponents for Temporal Networks
440
+ one with probability 2p(1 − p). Thus we have
441
+ d(A, B) ∼ Binomial[n(n − 1)/2, 2p(1 − p)].
442
+ (11)
443
+ Eq. (11) is numerically verified in panel (a) of Fig. 2.
444
+ Fig. 2
445
+ Panel (a): Probability distribution of the distance between consecutive networks in
446
+ an i.i.d. sequence of |S| = 105 Erdos-Renyi graphs with n = 100 nodes and p = 0.01 (black
447
+ line). The plot is in semi-log, where a Gaussian shape appears as an inverted parabola, so
448
+ we can better appreciate the tails. Blue solid line is Eq. (11). Panel (b): P(ℓ) (black) and
449
+ P(Λ) (red) associated with a sequence of |S| = 5·104 i.i.d. ER networks (n = 100, p = 0.01),
450
+ for τ = 1 and w = O(104) initial conditions. The mean of both distributions (nMLE) is
451
+ essentially zero for both methods, but the dispersion around the mean is larger in Wolf’s
452
+ approach. The solid blue line is the theoretical prediction, i.e. a Gaussian distribution with
453
+ mean 0 and variance as in Eq. (14) with τ = 1. The inset of panel (b) shows how the variance
454
+ of ℓ shrinks as τ increases (resulting in a much lower uncertainty around a zero nMLE): dots
455
+ are different numerical simulations with |S| = 104 and w = 103, for different τ; the blue line
456
+ is Eq. (14).
457
+ The quantity ℓ in Eq. (5) is given by ℓ = 1
458
+ τ (ln dτ − ln d0). As we have just
459
+ established, d0 and dτ are independent binomial random variables following
460
+ the distribution in Eq. (11). For large networks (n ≫ 1) this distribution can
461
+ be approximated as a Gaussian, with mean µ = qn(n − 1)/2 and variance
462
+ σ2 = q(1 − q)n(n − 1)/2, where we have written q ≡ 2p(1 − p). Writing
463
+ d0 = µ + σz0, with z0 a standard Gaussian random variable, we have
464
+ ln d0 ≈ ln
465
+
466
+ µ(1 + σ
467
+ µz0)
468
+
469
+ = ln µ + σ
470
+ µz0 − 1
471
+ 2
472
+ σ2
473
+ µ2 z2
474
+ 0 + . . . ,
475
+ (12)
476
+ after an expansion in powers of σ/µ, where the latter quantity is of order
477
+ O(1/n). The same expansion can be carried out for dτ, and we therefore find
478
+ ℓ = 1
479
+ τ
480
+ �σ
481
+ µ(zτ − z0) + 1
482
+ 2
483
+ σ2
484
+ µ2 (z2
485
+ 0 − z2
486
+ τ)
487
+
488
+ + . . . .
489
+ (13)
490
+
491
+ (a)
492
+ 10-2
493
+ P
494
+ simulation
495
+ 10
496
+ — theory
497
+ 10-5
498
+ 60
499
+ 80
500
+ 100
501
+ 120
502
+ 140
503
+ dsimulation
504
+ (b)
505
+ 10-2
506
+ Eq. (14)
507
+ 4
508
+ P()
509
+ - theory (Wolf)
510
+ 3
511
+ L P(Λ)
512
+ P(0), P(Λ)
513
+ 1
514
+ 10
515
+ 1
516
+ 2
517
+ 0
518
+ -0.5
519
+ 0
520
+ 0.5
521
+ l, ^Springer Nature 2021 LATEX template
522
+ Lyapunov Exponents for Temporal Networks
523
+ 11
524
+ We note that the second term in the bracket is of sub-leading order in 1/n.
525
+ Hence, ℓ is to lowest order in 1/n approximately Gaussian, with mean zero
526
+ and variance
527
+ Var(ℓ) = 2
528
+ τ 2
529
+ σ2
530
+ µ2 = 1
531
+ τ 2
532
+ 4(1 − q)
533
+ qn(n − 1)
534
+ (14)
535
+ This theory has been numerically verified, and in panel (b) of Fig.2 we plot
536
+ P(ℓ) both for τ = 1 (outer panel) and Eq.14 for increasing values of τ (inset
537
+ panel).
538
+ The case of Λ (Kantz-version) should intuitively converge even faster than
539
+ ℓ (Wolf-version) since in this case we are carrying out two averages instead
540
+ of just one, i.e. P(Λ) should have a smaller variance than P(ℓ), for a given
541
+ τ. This is confirmed in panel (b) of Fig. 2, where we also observe that both
542
+ methods yield the same (correct) estimation of the nMLE, which in this case
543
+ is approximately zero (both estimates are of the order of 10−6). Note that the
544
+ main panels of Fig. 2) are for the case τ = 1, so it is a worst-case scenario:
545
+ as τ increases Var(ℓ) shrinks [Eq. (14)] and the uncertainty around the null
546
+ shrinks accordingly [see inset of Fig. 2(b)].
547
+ We were not able to find a closed-form solution for P(Λ) as averages inside
548
+ the ϵ-ball are random variables whose distribution explicitly depends on the
549
+ specific initial condition At: this calculation is left as an open problem. In
550
+ anycase, we conclude that an i.i.d. temporal network has a null MLE Lyapunov
551
+ exponent and the methodology (in both variants) correctly estimates it.
552
+ 4 Low-dimensional chaotic networks
553
+ 4.1 Network generation: the dictionary trick
554
+ To be able to validate the method in the context of chaotic dynamics, we
555
+ ideally need to have access to chaotic network trajectories with a ground true
556
+ nMLE. This is difficult as a general theory of chaotic GDS is not yet accessible.
557
+ To circumvent this drawback, in this section we develop a method to construct
558
+ (low-dimensional) chaotic network trajectories by symbolising in graph space-
559
+ time series from low-dimensional chaotic maps. The method of graph-space
560
+ symbolisation was first proposed as a so-called ‘dictionary trick’ in [8] and
561
+ consists of the following steps:
562
+ • We construct a network dictionary D. This is a set of networks that allows us
563
+ to map a real-valued scalar x ∈ [0, 1]4 into a network, such that the distance
564
+ between two scalars is preserved in graph space. The set D is therefore
565
+ ordered and equipped with a metric, such that the distance between two real-
566
+ valued scalars |x−x′| is preserved in the graph symbols. More concretely, the
567
+ dictionary of networks D = (G1, G2, ..., GL) such that d(Gp, Gq) ∝ |p − q|
568
+ (one can subsequently normalize d according to the length of the dictionary,
569
+ such that we have d ∈ [0, 1]).
570
+ 4We choose the interval [0, 1] without loss of generality.
571
+
572
+ Based on Springer Nature LATEX template
573
+ 12
574
+ Lyapunov Exponents for Temporal Networks
575
+ • Once such dictionary is built, any one-dimensional time series can be
576
+ mapped into a sequence of networks. In particular, we can map chaotic
577
+ time series with well-known MLEs into network trajectories, from which an
578
+ independent estimate of the nMLE can be obtained.
579
+ Algorithmically, the dictionary is generated sequentially with G1 ∼ ER(p)
580
+ (an Erd¨os-R´enyi graph with parameter p) and then iteratively constructing
581
+ Gk+1 from Gk by rewiring a link that (i) has not been rewired in any previous
582
+ iteration of the algorithm, (ii) into a place that did not have a link in any pre-
583
+ vious iteration of the algorithm. It is easy to see that such algorithm ensures
584
+ that D provides a partition of [0, 1] of the form [0, 1] = ∪L−1
585
+ k=0 [k/L, (k + 1)/L],
586
+ where L is the number of networks in the dictionary. The dictionary is thus
587
+ metrical, in the sense that the rewiring distance between any two elements
588
+ in the dictionary is (for a sufficiently large refinement L) arbitrarily close to
589
+ the associated real-valued scalars in the original interval. Once the dictionary
590
+ is established, we can then generate synthetic temporal network trajectories
591
+ as symbolizations of unit interval dynamics by matching points in the subin-
592
+ terval [k/L, (k + 1)/L] to the symbol Gk+1. The resulting temporal network
593
+ S inherits, by construction, the properties of the scalar time series, and in
594
+ particular can be used to generate chaotic TNs.
595
+ Fig. 3 Panel (a): Semi-log plot of the distance dk as a function of iteration index k, for
596
+ two initially close network trajectories sampled from S. We can appreciate an initial expo-
597
+ nentially expanding phase, followed by a saturation phase, although the local expansion
598
+ rate strongly fluctuates. Panel (b) Volume-averaged distance ⟨dk⟩volume as a function of
599
+ time k, for N = 17 initial graph conditions inside a volume centered at an initial graph of
600
+ n = 500 nodes and m = 2000 edges. Network dynamics evolve according to a logistic map
601
+ as described in the text, whose true Lyapunov exponent is ln 2 ≈ 0.693. We can see how the
602
+ volume enclosing the graphs on average expands exponentially fast –with an exponent close
603
+ to ln 2, as expected– until it reaches the attractor size, what happens at the saturation time
604
+ τ ≈ 10.
605
+
606
+ In2·k
607
+ n = 500
608
+ 0.1
609
+ m = 2000
610
+ 0.01
611
+ (a)
612
+ 0
613
+ 10
614
+ 20
615
+ 30
616
+ kn = 500
617
+ m = 2000
618
+ N = 17
619
+ t (saturation time)
620
+ 0.01
621
+ In2·k
622
+ (b)
623
+ 0
624
+ 5
625
+ 10
626
+ 15
627
+ 20
628
+ 25
629
+ 30
630
+ kSpringer Nature 2021 LATEX template
631
+ Lyapunov Exponents for Temporal Networks
632
+ 13
633
+ 4.2 Results for the logistic map
634
+ As a first validation, we consider the fully chaotic logistic map
635
+ xt+1 = 4xt(1 − xt),
636
+ xt ∈ [0, 1],
637
+ (15)
638
+ that generates chaotic trajectories with λMLE = ln 2 ≈ 0.693. Using the dic-
639
+ tionary trick, from a signal extracted from Eq. (15) we generate a temporal
640
+ network trajectory S of |S| = 3000 network snapshots. In this validation,
641
+ networks have n = 500 nodes and m = 2000 edges.
642
+ Fig. 4 Panel (a): Approximation to λW
643
+ nMLE following Wolf’s approach (see text), computed
644
+ by averaging ℓ over w randomly sampled initial conditions [Eq.6], as a function of w. We
645
+ can see that the exponent converges to the ground true exponent ln 2 as w increases. Inset
646
+ in (a): Probability distribution P(ℓ), sampled by estimating ℓ for w = 500 different initial
647
+ graph conditions sampled randomly from S. The mean of this empirical distribution is
648
+ λW
649
+ nMLE = ⟨Λ⟩At ≈ 0.685, very close to the true exponent ln 2 ≈ 0.693. Panel (b): Same as
650
+ panel (a), but using Kantz’s approach (see the text), where we compute the volume and
651
+ trajectory averaged expansion rate Λ for w initial conditions. Convergence properties are
652
+ similar in both cases.
653
+ For illustration, in panel (a) of Fig. 3 we plot in semi-log scales the
654
+ (properly normalized) distance dk as a function of the iteration index k, for
655
+ two initially close network trajectories sampled from S. We can see an initial
656
+ exponentially expanding phase (whose exponent is an estimation of ℓ) followed
657
+ by a saturation, although the distance function shows strong fluctuations. To
658
+ cope with these, in panel (b) of the same figure we plot the volume-averaged
659
+ expansion ⟨dk⟩volume vs k for a ball of radius ϵ = 0.005 centered at a specific
660
+ initial graph from S. We can now clearly see the initial exponential phase
661
+ followed by a cross-over to a saturation phase. The cross-over marks the
662
+ saturation time τ where the distance reaches the attractor size. Note that the
663
+ slope of the exponential expansion (i.e. the estimate of Λ) is close to ln 2, the
664
+ true MLE.
665
+
666
+ 1.2
667
+ (a)
668
+ 2
669
+ W
670
+ 0.685
671
+ 1.0
672
+ P1
673
+ 0
674
+ 0.8
675
+ 0
676
+ 0.5
677
+ 1.0
678
+ 1.5
679
+ In 2
680
+ 0.6
681
+ 0
682
+ 100
683
+ 200
684
+ 300
685
+ 400
686
+ 500
687
+ w (# initial conditions)1.1
688
+ 3
689
+ (b)
690
+ XNMLE = 0.685
691
+ 1.0
692
+ 2
693
+ P(Λ)
694
+ 0.9
695
+ 1
696
+ 0
697
+ 0.8
698
+ -0.5
699
+ 0
700
+ 0.5
701
+ 1.0
702
+ V
703
+ - In 2
704
+ 0.7
705
+ 0
706
+ 100
707
+ 200
708
+ 300
709
+ 400
710
+ 500
711
+ w (# initial conditions)Based on Springer Nature LATEX template
712
+ 14
713
+ Lyapunov Exponents for Temporal Networks
714
+ Figure 4 shows the estimated of the nMLE obtained both using Wolf’s
715
+ approach [panel (a)] and Kantz’s approach [panel (b)]. These are from aver-
716
+ aging ℓ (Wolf) and Λ (Kantz) over w = 500 initial graph conditions sampled
717
+ from S. In both cases, the average quickly stabilises for w ≈ 100, and we
718
+ obtain estimates λW
719
+ nMLE ≈ λK
720
+ nMLE ≈ 0.685, very close to the ground true
721
+ λMLE = ln 2 ≈ 0.693.
722
+ Fig. 5 Volume-averaged distance ⟨dk⟩volume as a function of time k, for a network dynamics
723
+ evolving according to a chaotic logistic map xt+1 = 4xt(1 − xt), polluted with extrinsic
724
+ Gaussian noise N(0, σ2) as described in the text, for four different noise intensities σ =
725
+ 0, 10−3, 10−2, 10−1. The exponential expansion phase –which systematically suggests the
726
+ same exponent ln 2, as expected– is gradually erased as the noise intensity increases.
727
+ 4.3 Noisy chaotic networks
728
+ To explore how noise contamination can complicate the estimation of the
729
+ nMLE, we proceed to generate a temporal network S from Eq. (15) by using
730
+ the dictionary trick, where before the network mapping, the original chaotic
731
+ signal is contaminated by a certain amount of white Gaussian noise N(0, σ2)5.
732
+ As we did in Section 3, we remove potential algorithmic biases by discarding
733
+ ⟨d0⟩ for the computation of Λ. Results are summarised in Fig. 5. The main
734
+ observation is that noise pollution tends to reduce the extent of the exponen-
735
+ tial phase (i.e., the saturation time τ decreases). For small amounts of noise,
736
+ this phase is still observable, and the estimated nMLE continues to be con-
737
+ sistent with that of the noise-free case. When the noise intensity is above a
738
+ certain threshold, noise effectively hides the chaotic signal, and the exponential
739
+ phase can no longer be identified, resulting in an apparent vanishing nMLE.
740
+ These results are consistent with intuition and with the typical phenomenology
741
+ observed in noisy chaotic time series [10], [11].
742
+ 5Note that we discard realizations of the noise that take the scalar variable outside the unit
743
+ interval.
744
+
745
+ 10
746
+ 10°
747
+ =0
748
+ 0=10-3
749
+ 0=10-2
750
+ 0=10-1
751
+ exp(In2 k)
752
+ 10-4
753
+ 2
754
+ 4
755
+ 6
756
+ 8
757
+ 10
758
+ 12
759
+ 14
760
+ kSpringer Nature 2021 LATEX template
761
+ Lyapunov Exponents for Temporal Networks
762
+ 15
763
+ 4.4 Results for the parametric logistic map
764
+ Here we consider the logistic map xt+1 = rxt(1 − xt). For each value of the
765
+ parameter r > r∞, using the dictionary trick we generate a long sequence of
766
+ networks Sr with the desired chaoticity properties, and proceed to estimate
767
+ the network Lyapunov exponent using the method detailed in Section 2. In
768
+ panel (a) of Fig.6 we plot λW
769
+ nMLE vs λMLE of the map, for a range of values of
770
+ the parameter r. The agreement is excellent in the region of parameters where
771
+ the temporal network is chaotic.
772
+ Fig. 6
773
+ Panel (a): Scatterplot of λW
774
+ nMLE, estimated from a temporal network Sr generated
775
+ via the dictionary trick (see the text) from a logistic map xt+1 = rxt(1 − xt) for a range
776
+ of values of r, vs the ground true λMLE. The solid line is the diagonal of perfect agreement
777
+ y = x, highlighting the good agreement found in the chaotic region. The legend states
778
+ the goodness of fit metric R2 of the fit of dk to an exponential function. The method is
779
+ unable to capture negative Lyapunov exponents (observe that in those cases the R2 of the
780
+ exponential fit is very bad), but these cases can easily be identified as periodic orbits using
781
+ the autocorrelation function [8], see text for details. Panel (b): Estimate of the negative
782
+ nMLE using two initially close temporal networks generated via the dictionary trick from the
783
+ logistic map at r = 3.4 (period-2 orbit), where one initial condition belongs to the period-2
784
+ attractor and the other is outside the attractor (see the text for details).
785
+ 4.5 A note on negative Lyapunov exponents
786
+ The classical approach to estimate the MLE from a single trajectory displayed
787
+ by Wolf and Kantz algorithms –based on recurrences of the trajectory– is, by
788
+ construction, unable to capture negative MLEs. The reason is straightforward:
789
+ once in the periodic attractor, the trajectory sequentially visits each element
790
+ of the periodic orbit, and thus we won’t find recurrences that are close but
791
+ away from the initial condition of interest. Accordingly, our method to esti-
792
+ mate nMLE cannot work in that case for the same reasons, as confirmed in
793
+ Fig. 6(a). This drawback can be solved using two alternative approaches.
794
+ First, it is well known that a periodic time series has an autocorrelation
795
+ function that peaks at the period of the time series. Interestingly, a recent
796
+ work [8] has operationalised a way to estimate the autocorrelation function
797
+
798
+ 10-2
799
+ r = 3.4
800
+ 入MLE = -0.137
801
+ exp(-0.143k)
802
+ 10-3
803
+ (b)
804
+ 0
805
+ 5
806
+ 10
807
+ 15
808
+ 20
809
+ 25
810
+ k0.8
811
+ R?
812
+ < 0.2
813
+ 0.6
814
+ E (0.2,0.7)
815
+ E
816
+ [0.7,0.8]
817
+ 0.4
818
+ E [0.8,0.9]
819
+ > 0.9
820
+ 0.2
821
+ (a)
822
+ +
823
+ 0
824
+ ++
825
+ -0.5
826
+ 0
827
+ 0.5
828
+ ΛMLEBased on Springer Nature LATEX template
829
+ 16
830
+ Lyapunov Exponents for Temporal Networks
831
+ of temporal networks, whereby temporal networks that display periodicity
832
+ are well characterised by a network version of the autocorrelation function.
833
+ Accordingly, from a practical point of view, before attempting to estimate the
834
+ nMLE of a given temporal network, it is sensible to apply the procedure of [8]
835
+ and exclude that the temporal network is periodic –which would typically6
836
+ mean a negative nMLE–. Once this test is done, it is sensible to conduct the
837
+ nMLE analysis presented in this paper.
838
+ Second, it is indeed possible to estimate negative nMLEs if one has access
839
+ to the latent graph dynamical system (GDS), as in this case one does not need
840
+ to undergo a Wolf/Kantz approach and one can generate through the GDS
841
+ temporal networks from close initial graph conditions. To illustrate this, in
842
+ panel (b) of Fig. 6 we plot the graph distance of two initially close networks
843
+ evolving according to the logistic map for a value of the map’s parameter for
844
+ which the orbit is periodic (the TNs are again generated via the dictionary
845
+ trick). One initial condition is set at one of the orbit elements, whereas the
846
+ other initial condition is a network close in graph space (but outside the peri-
847
+ odic attractor). As we can see, there is an exponential shrinking of the initial
848
+ distance, and the slope gives an estimate of the nMLE, which in this case is
849
+ negative and in good agreement with the theoretical result.
850
+ 5 High-dimensional chaotic networks
851
+ We now consider the case of high-dimensional chaotic dynamics for temporal
852
+ networks. We first introduce a generative model, based on coupled Map Lat-
853
+ tices (CML). These are high-dimensional dynamical systems with discrete time
854
+ and continuous state variables, widely used to model complex spatio-temporal
855
+ dynamics [20] in disparate contexts such as turbulence [21, 25], financial mar-
856
+ kets [26], biological systems [27] or quantum field theories [28].
857
+ Globally Coupled Maps (GCMs) [29] are a mean-field version of CMLS, where
858
+ the diffusive coupling between the entities in a CML is replaced with an all-
859
+ to-all coupling, mimicking the effect of a mean-field. We consider a globally
860
+ coupled map of m entities, of the form
861
+ xi(t + 1) = (1 − α)F[xi(t)] + α
862
+ m
863
+ m
864
+
865
+ j=1
866
+ F[xj(t)], i = 1, 2, . . . , m,
867
+ (16)
868
+ where F(x) = 4x(1 − x), x ∈ [0, 1], where α ∈ [0, 1] is the strength of the
869
+ mean-field coupling. In the uncoupled case α = 0, the system is composed of m
870
+ independent fully chaotic dynamics. Its attractor is thus high-dimensional and,
871
+ since there are m Lyapunov exponents all equal to ln 2, we have λMLE = ln 2.
872
+ 6Some pathological cases exist for which we can have seemingly periodic behavior but not a
873
+ negative MLE, e.g. when we have a disconnected attractor composed by a number of bands and
874
+ a trajectory that periodically visits the different chaotic bands
875
+
876
+ Springer Nature 2021 LATEX template
877
+ Lyapunov Exponents for Temporal Networks
878
+ 17
879
+ At the other extreme, for complete coupling α = 1, the system is fully synchro-
880
+ nized (i.e., for any time t we have xi(t) = xj(t) for all i, j), and the dynamics
881
+ is reduced to the one-dimensional dynamics, again with λMLE = ln 2. We add
882
+ that complete synchronization is in fact known to occur for α > 1/2 [29].
883
+ For intermediate coupling the system shows a number of different macroscopic
884
+ phases [29]. Among these one finds high-dimensional chaos for weak coupling
885
+ α < 0.2. This is the so-called ‘turbulent state’. Interestingly, for CMLs with
886
+ diffusive coupling, a scaling law has been established [22]
887
+ λMLE = log 2 − βα1/p,
888
+ (17)
889
+ where p indicates the type of nonlinearity of F(x), i.e. p = 2 for the logistic
890
+ map, p = 1 for tent maps, etc. Results for GCM are less clear. However, when
891
+ the mean-field coupling can be considered ‘thermalized’ (i.e., independent of x)
892
+ [23, 24] then Eq. (17) holds for β = 1. However such thermalization is known
893
+ to be true only for tent maps (p = 1) and not logistic maps.
894
+ Here we consider the range α ∈ [0, 0.2], i.e., the turbulent state of the
895
+ GCM. We interpret the collection {xi}m
896
+ i=1 as the (weighted) edge set of a fully
897
+ connected undirected network backbone of n nodes and m = n(n−1)/2 edges.
898
+ Once the time series of each edge {xi(t)}T
899
+ t=1 has been computed from Eq. (16),
900
+ we proceed to binarise each edge activity by using a two-symbol generating
901
+ partition as follows: values xi(t) < 1/2 are mapped into the symbol 0, and
902
+ xi(t) ≥ 1/2 onto the symbol 1[30]. Note that the use of a generating partition
903
+ ensures that the symbolised (binary) series preserves the chaotic properties
904
+ of the original signal [31–33]. Finally, we convert the (binary) evolution of
905
+ the edges into a time-dependent adjacency matrix, thereby constructing a
906
+ temporal network S. For values of α in the weak-coupling regime, we expect
907
+ the temporal network to display sensitive dependence on initial conditions.
908
+ In practice, the Wolf/Kantz methods of inferring the larges Lyapunov
909
+ exponent proposed in the paper would require a very long sequence S for close
910
+ enough recurrences to be observable in a system with large n. However, here
911
+ we have access to the actual underlying GDS via Eq. (16). Given that the goal
912
+ of this section is to show evidence that high-dimensional chaotic networks can
913
+ be generated and their nMLE be estimated, we can use the GDS to generate
914
+ the temporal network for any required initial condition. Accordingly, for a
915
+ given initial condition {xi(0)}m
916
+ i=1, we construct a perturbed copy {x′
917
+ i(0)}m
918
+ i=1
919
+ (where |x′
920
+ i(0) − xi(0)| < ϵ for some small choice of ϵ), generate temporal
921
+ networks for both of these initial conditions, and track the network distance
922
+ between the copies over time. We do this for 100 replicas to extract a volume-
923
+ averaged distance, and then for 50 different initial conditions. Observe that,
924
+ at odds with the model developed in the previous section, here the number of
925
+ edges in each network snapshot is not fixed, and thus the network phase space
926
+ is substantially larger. Similarly, the normalization factor of the distance
927
+ function is now simply the total number of possible edges, n(n − 1)/2.
928
+
929
+ Based on Springer Nature LATEX template
930
+ 18
931
+ Lyapunov Exponents for Temporal Networks
932
+ Fig. 7 Panel (a): Semi-log plot of the volume-averaged distance ⟨dk⟩volume as a function
933
+ of the time step k, for a temporal network extracted from the GCM model with coupling
934
+ constant α = 0, 0.05, 0.1. We observe an exponential phase, with different exponents for
935
+ each value of the coupling constant. The solid lines are the best exponential fits. Panel (b):
936
+ Estimate of the network maximum Lyapunov exponent λnMLE vs the coupling constant α
937
+ for temporal networks generated from a GCM of logistic maps (blue circles) and tent maps
938
+ (black squares). For each α, a total of 50 initial conditions were considered, and a ball of 100
939
+ points for each initial condition was used. Error bars are standard deviation from the average
940
+ over 50 different temporal network realizations. Blue lines report the theoretical predictions
941
+ for logistic and tent CMLs [Eq. (17)], whereas the black line reports the theoretical prediction
942
+ for GCM with thermalised mean-field, applicable for tent GCMs only.
943
+ Results for a network of n = 100 nodes are shown in Fig. 7. In panel (a) we
944
+ plot ⟨dk⟩volume vs time k, for three different coupling constants α = 0, 0.05, 0.1
945
+ in the weak coupling regime. In every case we find a clear exponential phase.
946
+ The exponent in the uncoupled phase α = 0 is indeed equal to ln 2, as expected,
947
+ further validating the method. For increasing values of the coupling, interest-
948
+ ingly, the nMLE seems to decrease and, as a byproduct, the saturation time τ
949
+ increases. In Fig. 7(b) we plot, as blue dots, the estimated λnMLE as a function
950
+ of the coupling α ∈ [0, 0.2], indeed showing a clear decrease. Such decrease
951
+ might be induced by the fact that the m degrees of freedom are now coupled
952
+ in some nontrivial way. Blue lines correspond to the theoretical predictions for
953
+ logistic and tent CMLs obtained from Eq. (17). For completeness, we repeated
954
+ the same analysis for network GCMs constructed from tent maps where λMLE
955
+ is explicitly known (black line): F(x) = 1 − 2|x|, with x ∈ [−1, 1] and a sym-
956
+ bolisation partition with x < 0 mapped to the symbol 0, and x ≥ 0 mapped
957
+ to 1. Results for this case are plotted as black squares in Fig. 7(b)
958
+ We conclude that (i) the TN thereby generated exhibits high-dimensional chaos
959
+ and its nMLE, reconstructed with the methods we have developed, shows the
960
+ expected behaviour, and (ii) this validation shows that the method works with
961
+ TNs where not only the position but also the total number of edges itself
962
+ fluctuates over time.
963
+
964
+ (a)
965
+ 10
966
+ 10-
967
+ 2
968
+ α=0
969
+ exp(0.68 k) (R² = 0.99)
970
+ α = 0.05
971
+ exp(0.56 k) (R² = 0.99)
972
+ α = 0.1
973
+ 10-3
974
+ exp(0.44 k) (R2 = 0.99)
975
+ 0
976
+ 5
977
+ 10
978
+ 15
979
+ k0.7
980
+ (b)
981
+ 0.6
982
+ 0.5
983
+ 入nMLE
984
+ E
985
+ 0.4
986
+ logistic map network
987
+ log2 -βVa
988
+ 0.3
989
+ .... log2 - βa
990
+ tent map network
991
+ 0.2
992
+ log2 + log(1-a)
993
+ 0
994
+ 0.1
995
+ 0.2
996
+ aSpringer Nature 2021 LATEX template
997
+ Lyapunov Exponents for Temporal Networks
998
+ 19
999
+ 6 Discussion
1000
+ In this work, we propose to look at temporal networks as trajectories of a
1001
+ latent Graph Dynamical System (GDS). This interpretation naturally leads
1002
+ us to explore whether these trajectories can show sensitive dependence on
1003
+ initial conditions, a fingerprint of chaotic behaviour. We have proposed a
1004
+ method to quantify this, and defined and computed the network Maximum
1005
+ Lyapunov Exponent (nMLE) for temporal network. Since the latent GDS
1006
+ is rarely available in practice, our algorithm exploits the recurrences of the
1007
+ temporal network in graph space. It generalizes the classical approaches of
1008
+ Wolf and Kantz to networks. We have validated the method by generating
1009
+ different synthetic GDS with known ground-truth nMLE.
1010
+ Conceptually speaking, quantifying chaos in the trajectory of structured
1011
+ objects (in our case, mathematical graphs) is somewhat close in spirit to quan-
1012
+ tifying the dynamical stability of (lattice) spin systems. Thus our approach
1013
+ shares some similarities with the damage-spreading [34] and self-overlap meth-
1014
+ ods [35] in statistical physics, and their applications to cellular automata [36]
1015
+ and random Boolean systems [37].
1016
+ Observe that we have focused on exponential expansion on nearby con-
1017
+ ditions –i.e., sensitive dependence–, since one of the goals of the paper is to
1018
+ conceptually postulate the existence of chaotic networks and to potentially
1019
+ operationalise a way to measure this deterministic fingerprint in observed TNs,
1020
+ without needs to having access to the underlying GDS. However, our approach
1021
+ can be straightforwardly extended to non-exponential divergence, e.g. alge-
1022
+ braic or otherwise, simply by suitably modifying the definition of expansion
1023
+ rates, thus yielding a way to quantify other types of dynamical instability.
1024
+ The rationale of this work is to consider graphs evolving over time as whole
1025
+ –yet not punctual– objects [8], and thus consider its evolution in graph space.
1026
+ It is however true that this approach might have a limitation for (large) real-
1027
+ world temporal networks, as it is often difficult to observe recurrences in high-
1028
+ dimensional space. A possible solution is to extract suitable scalar variables
1029
+ from the network, analyse sensitive dependence on initial conditions in each
1030
+ of them, and extract a consensus. We leave this approach for future work.
1031
+ Observe that throughout this work we have considered labelled networks.
1032
+ This choice was used for, convenience, illustration, and because TNs are usu-
1033
+ ally labelled, but we expect that a similar approach is possible for unlabelled
1034
+ TNs, i.e. graphs that evolve over time according to a certain graph dynamics.
1035
+ In this latter case, each network snapshot is no longer uniquely represented
1036
+ by a single adjacency matrix, in the sense that permutations of the rows and
1037
+ columns of the matrix lead to an equally valid description. It is then clear
1038
+ that one needs to use graph distances showing invariance under permutation
1039
+ of rows and columns in the adjacency matrices [38]. This could be, for exam-
1040
+ ple, distances based on the network spectrum, or graph kernels [39]. We leave
1041
+ this interesting extension as a question for further research, as well as the
1042
+
1043
+ Based on Springer Nature LATEX template
1044
+ 20
1045
+ Lyapunov Exponents for Temporal Networks
1046
+ quantification of the full Lyapunov spectrum beyond the maximum one.
1047
+ Finally we would like to add that the fact that the method does not rely
1048
+ on knowing the GDS and instead directly estimates the nMLE from tempo-
1049
+ ral network trajectories enables the investigation of these matters in empirical
1050
+ temporal networks. We foresee a range of potentially interesting applications
1051
+ in physical, biological, economic and social sciences –as indeed temporal net-
1052
+ works pervade these disciplines–. This approach is specially appealing in those
1053
+ systems where we don’t have access to the ‘equations of motion’ but it is sen-
1054
+ sible to expect some underlying deterministic dynamics, i.e. physical systems,
1055
+ but the approach is also extensible to systems with socially or biologically-
1056
+ mediated interactions, for instance: do flocks of birds [40–42] or crowd behavior
1057
+ [43], adequately modelled as temporal proximity networks, show chaos?
1058
+ Appendix: Graph distances
1059
+ Consider two adjacency matrices A, and B, each with binary entries (0 or
1060
+ 1), describing two simple unweighted graphs with n nodes. The so-called edit
1061
+ distance [18] is a matrix distance defined as
1062
+ d(A, B) =
1063
+ n
1064
+
1065
+ i,j=1
1066
+ |aij − bij|.
1067
+ (18)
1068
+ The object d(A, B) counts the number of entries that are different in A and B.
1069
+ For simple undirected graphs (symmetric adjacency matrices), we need
1070
+ to account for the fact that the number of edges is only half the number of
1071
+ positive entries of the adjacency matrix, and therefore d(A, B)/2 measures
1072
+ the number of edges that exist in one graph but not on the other. We have
1073
+ d(A, B)/2 = 0 if and only if A = B. It is also easy to see that d(A, B)/2 only
1074
+ takes integer values for symmetric adjacency matrices A and B. If A ̸= B, then
1075
+ 1 ≤ d(A, B)/2 ≤ n(n − 1)/2. We have d(A, B)/2 = 1 when the two graphs are
1076
+ identical except for one edge, which is present in one graph and absent in the
1077
+ other.
1078
+ One can directly use this unnormalized distance (as we do in Section 3) or
1079
+ subsequently normalize d(A, B) using different strategies, e.g. one can divide
1080
+ it over n(n − 1)/2 (as we do in Section 5), or just divide over the maximum
1081
+ possible distance, if further restrictions are imposed between A and B (as we
1082
+ do in Section 4).
1083
+ If we further impose that both graphs have the same number of edges, then
1084
+ the lower bound cannot be attained and 2 ≤ d(A, B)/2 when A ̸= B. This
1085
+ lower bound is reached when we only need a single edge rewiring to get from
1086
+
1087
+ Springer Nature 2021 LATEX template
1088
+ Lyapunov Exponents for Temporal Networks
1089
+ 21
1090
+ the first graph to the second. One can thus define the rewiring distance
1091
+ d(A, B) = 1
1092
+ 4
1093
+ n
1094
+
1095
+ i,j=1
1096
+ |aij − bij|.
1097
+ (19)
1098
+ applicable for simple graphs (i.e. no self-links). This quanity measures the
1099
+ total number of rewirings needed to transform A into B when the associated
1100
+ graphs are simple, unweighted, undirected (symmetric adjacency matrices)
1101
+ and have the same number of nodes and edges.
1102
+ The rewiring distance above is based on the concept of non-overlapping
1103
+ edges, i.e., edges that are present in one graph, but not in the other. Thus,
1104
+ the edit and rewiring distances are based on |aij − bij| for the different edges,
1105
+ and hence assign the same importance to the presence or absence of an edge.
1106
+ One can instead construct measures of distance based on the number of links
1107
+ that are present in both networks. If the edge ij is present in both graphs
1108
+ then aijbij = 1, while this product is zero otherwise. One can prove that the
1109
+ following function is a distance [19]:
1110
+ d(A, B) = 1 −
1111
+ 1
1112
+ 2|E|
1113
+ n
1114
+
1115
+ i,j=1
1116
+ aijbij.
1117
+ (20)
1118
+ We replicated the analysis in Sec.
1119
+ 4 for the distance defined above, and
1120
+ results (resulting nMLE) coincide.
1121
+ Acknowledgments We thank Federico Battiston for helpful comments on
1122
+ initial phases of this research, and Emilio Hern´andez-Fern´andez, Sandro Mel-
1123
+ oni, Lluis Arola-Fern´andez, Ernesto Estrada, Massimiliano Zanin, Diego Paz´o
1124
+ and Juan Manuel L´opez for helpful discussions around several aspects of the
1125
+ work. AC acknowledges funding by the Maria de Maeztu Programme (MDM-
1126
+ 2017-0711) and the AEI under the FPI programme. LL acknowledges funding
1127
+ from project DYNDEEP (EUR2021-122007), and LL and VME acknowledge
1128
+ funding from project MISLAND (PID2020-114324GB-C22), both projects
1129
+ funded by the Spanish Ministry of Science and Innovation. This work has
1130
+ been partially supported by the Mar´ıa de Maeztu project CEX2021-001164-M
1131
+ funded by MCIN/AEI/10.13039/501100011033.
1132
+ References
1133
+ [1] P. Holme, J. Saram¨aki. Temporal networks. Physics Reports 519, 3 (2012):
1134
+ 97-125.
1135
+ [2] N. Masuda and R. Lambiotte, A Guide to Temporal Networks, vol. 4 of
1136
+ Series on Complexity Science. World Scientific (Europe), 2016.
1137
+
1138
+ Based on Springer Nature LATEX template
1139
+ 22
1140
+ Lyapunov Exponents for Temporal Networks
1141
+ [3] P. Holme, J. Saram¨aki, eds. Temporal network theory Vol. 2. (New York:
1142
+ Springer, 2019).
1143
+ [4] N. Masuda, P. Holme, (Eds.). Temporal network epidemiology (Singapore:
1144
+ Springer 2017).
1145
+ [5] N. Perra, A. Baronchelli, D. Mocanu, B. Gon¸calves, R. Pastor-Satorras, A.
1146
+ Vespignani. Random walks and search in time-varying networks. Physical
1147
+ review letters 109, 23 (2012).
1148
+ [6] M. Zanin, L. Lacasa, M. Cea, Dynamics in scheduled networks. Chaos 19,
1149
+ 2 (2009).
1150
+ [7] Thompson, William Hedley, Per Brantefors, and Peter Fransson. From
1151
+ static to temporal network theory: Applications to functional brain con-
1152
+ nectivity. Network Neuroscience 1.2 (2017): 69-99.
1153
+ [8] L. Lacasa, J.P. Rodriguez, V.M. Eguiluz, Correlation of Network Trajec-
1154
+ tories, Physical Review Research 4, L042008 (2022).
1155
+ [9] O.E. Williams, L. Lacasa, A.P. Millan, V. Latora. The memory shape of
1156
+ temporal networks, Nature Communications 13, 499 (2022).
1157
+ [10] A. Wolf, J.B. Swift, H. L. Swinney, L.A. Vastano, Determining Lyapunov
1158
+ exponents from a time series, Physica D 16, 285 (1985).
1159
+ [11] H. Kantz, A robust method to estimate the maximum Lyapunov exponent
1160
+ of a time series, Physics Letters A 185, 77 (1994).
1161
+ [12] M.T. Rosenstein, J.J. Collins, C.J. De Lucca, A practical method for
1162
+ calculating largest Lyapunov exponents from small data sets, Physica D
1163
+ 65, 117 (1993).
1164
+ [13] J. Kurths, H. Herzel. An attractor in a solar time series. Physica D 25
1165
+ (1987).
1166
+ [14] H. Kantz, and T. Schreiber. Nonlinear time series analysis (Cambridge
1167
+ university press, 2004).
1168
+ [15] E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani, Pre-
1169
+ dictability in the large: An extension of the concept of Lyapunov exponent,
1170
+ J. Phys. A Math. Gen. 30 (1997).
1171
+ [16] J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors,
1172
+ Reviews of Modern Physics 57, 3 (1985).
1173
+ [17] E. D´ıaz-Franc´es, and F.J. Rubio. On the existence of a normal approxi-
1174
+ mation to the distribution of the ratio of two independent normal random
1175
+
1176
+ Springer Nature 2021 LATEX template
1177
+ Lyapunov Exponents for Temporal Networks
1178
+ 23
1179
+ variables. Statistical Papers 54, 2 (2013): 309-323.
1180
+ [18] P. Wills, F.G. Meyer. Metrics for graph comparison: a practitioner’s guide.
1181
+ Plos one 15, 2 (2020).
1182
+ [19] R. Flanagan, L. Lacasa, E.K. Towlson, S.H. Lee, M.A. Porter, Effect
1183
+ of antipsychotics on community structure in functional brain networks.
1184
+ Journal of Complex Networks, 7, 6 (2019) 932-960.
1185
+ [20] Kaneko, K. Pattern dynamics in spatiotemporal chaos: Pattern selection,
1186
+ diffusion of defect and pattern competition intermittency. Physica D 34,
1187
+ 1-41 (1989).
1188
+ [21] Kaneko, K. Theory and applications of coupled map lattices (Vol. 12).
1189
+ John Wiley & Son Ltd. (1993).
1190
+ [22] Yang, Weiming, E-Jiang Ding, and Mingzhou Ding. Universal scaling law
1191
+ for the largest Lyapunov exponent in coupled map lattices. Physical Review
1192
+ Letters 76.11 (1996): 1808.
1193
+ [23] G. Perez, H.A. Cerdeira. Instabilities and nonstatistical behavior in
1194
+ globally coupled systems. Physical Review A 46, 12 (1992).
1195
+ [24] D. Velasco, J.M. L´opez, and D. Paz´o. Nonuniversal large-size asymptotics
1196
+ of the Lyapunov exponent in turbulent globally coupled maps. Physical
1197
+ Review E 104, 3 (2021).
1198
+ [25] Hilgers, A. and Beck, C., Hierarchical coupled map lattices as cascade
1199
+ models for hydrodynamic turbulence, Europhys. Lett. 45, 552 (1999).
1200
+ [26] Hilgers, A. and Beck, C., Turbulent behavior of stock market indices and
1201
+ foreign currency exchange rates, Int. J. Bif. Chaos 7, 1855 (1997).
1202
+ [27] Bevers, M., Flather, CH., Numerically exploiting habitat fragmentation
1203
+ effects on populations using cell-based coupled map lattices, Theor. Pop.
1204
+ Biol. 55, 61 (1999).
1205
+ [28] Beck, C. Chaotic scalar fields as models for dark energy. Phys. Rev. D
1206
+ 69(12), 123515 (2004).
1207
+ [29] K. Kaneko, Physica D 41, 137-172 (1990).
1208
+ [30] Ledrappier F., Some properties of absolutely continuous invariant mea-
1209
+ sures on an interval, Ergodic Theory Dynam. Systems, 1 (1981).
1210
+ [31] Crutchfield J.P. and Packard N.H., Symbolic dynamics of one-dimensional
1211
+ maps: entropies, finite precision, and noise, Internat. J. Theoret. Phys. 21
1212
+ (1982).
1213
+
1214
+ Based on Springer Nature LATEX template
1215
+ 24
1216
+ Lyapunov Exponents for Temporal Networks
1217
+ [32] Beck C. and Schlogl F., Thermodynamics of Chaotic Systems (Cambridge
1218
+ University Press, 1993)
1219
+ [33] Collet P. and Eckmann J.P., Iterated Maps on the Interval as Dynamical
1220
+ Systems ( Progress in Physics, Birkhauser, 1980)
1221
+ [34] Stanley, H. E., Stauffer, D., Kertesz, J., & Herrmann, H. J. Dynamics
1222
+ of spreading phenomena in two-dimensional Ising models. Physical review
1223
+ letters 59, 20 (1987). 2326.
1224
+ [35] Ferrera, A., Luque, B., Lacasa, L., and Valero, E. Self-overlap as a method
1225
+ of analysis in Ising models. Physical Review E, 75, 6 (2007) 061103.
1226
+ [36] Bagnoli, F., R. Rechtman, and Stefano Ruffo. Damage spreading and Lya-
1227
+ punov exponents in cellular automata. Physics Letters A 172, 1-2 (1992):
1228
+ 34-38.
1229
+ [37] B. Luque and R.V. Sole, Lyapunov exponents of random boolean net-
1230
+ works, Physica A 284 (2000).
1231
+ [38] C. Godsil, and G.F. Royle. Algebraic graph theory (Springer Science and
1232
+ Business Media, vol 207, 2001).
1233
+ [39] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borg-
1234
+ wardt. Graph kernels. Journal of Machine Learning Research 11 (2010):
1235
+ 1201-1242.
1236
+ [40] Mora, Thierry, Aleksandra M. Walczak, Lorenzo Del Castello, Francesco
1237
+ Ginelli, Stefania Melillo, Leonardo Parisi, Massimiliano Viale, Andrea Cav-
1238
+ agna, and Irene Giardina. Local equilibrium in bird flocks. Nature Physics
1239
+ 12, 12 (2016): 1153-1157.
1240
+ [41] Bialek,
1241
+ William,
1242
+ Andrea
1243
+ Cavagna,
1244
+ Irene
1245
+ Giardina,
1246
+ Thierry
1247
+ Mora,
1248
+ Edmondo Silvestri, Massimiliano Viale, and Aleksandra M. Walczak. Sta-
1249
+ tistical mechanics for natural flocks of birds. Proceedings of the National
1250
+ Academy of Sciences 109, 13 (2012): 4786-4791.
1251
+ [42] Cavagna, Andrea, Alessio Cimarelli, Irene Giardina, Giorgio Parisi,
1252
+ Raffaele Santagati, Fabio Stefanini, and Massimiliano Viale. Scale-free cor-
1253
+ relations in starling flocks. Proceedings of the National Academy of Sciences
1254
+ 107, 26 (2010): 11865-11870.
1255
+ [43] Helbing, Dirk. Traffic and related self-driven many-particle systems.
1256
+ Reviews of modern physics 73, 4 (2001): 1067.
1257
+
XNFOT4oBgHgl3EQf8TTm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YdE3T4oBgHgl3EQfcQoq/content/tmp_files/2301.04523v1.pdf.txt ADDED
@@ -0,0 +1,962 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Machine-learning-assisted environment-adaptive thermal
4
+ metamaterials
5
+ Peng Jin1, Liujun Xu2,3, Guoqiang Xu2, Jiaxin Li2, Cheng-Wei Qiu2,* and Jiping Huang1,*
6
+
7
+ 1Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro
8
+ and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
9
+ 2Department of Electrical and Computer Engineering, National University of Singapore,
10
+ Singapore 117583, Singapore
11
+ 3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
12
+
13
+
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+ *Corresponding authors. Emails: chengwei.qiu@nus.edu.sg; jphuang@fudan.edu.cn
25
+
26
+ 2
27
+
28
+ Abstract
29
+ Adaptive metamaterials have prevailed recently owing to their extraordinary features like
30
+ dynamic response to external interference. However, highly complicated parameters, narrow
31
+ working ranges, and supervised manual intervention are still long-term and tricky obstacles to
32
+ the most advanced self-adaptive metamaterials. To surmount these barriers, we present
33
+ environment-adaptive thermal metamaterials driven by machine learning, which can
34
+ automatically sense ambient temperatures and regulate thermal functions promptly and
35
+ continuously. Thermal functions are robust when external thermal fields change their directions,
36
+ and simulations and experiments exhibit excellent performance. Based on this, we further
37
+ design two metadevices with on-demand adaptability, performing distinctive features with
38
+ isotropic materials, wide working temperatures, and spontaneous response. This work provides
39
+ a paradigm for intelligent diffusion metamaterial design and can be extended to other diffusion
40
+ fields, responding to more complex and variable environments.
41
+
42
+
43
+
44
+ 3
45
+
46
+ Introduction
47
+ Metamaterials [1-5] have drawn intensive attraction due to their unprecedented ability to
48
+ manipulate physical fields. Profit from computer numerical control and three-dimensional
49
+ printing technology, metamaterials with novel functions are fabricated according to given
50
+ parameters and applied to laboratories or industries. Traditional metamaterials mainly focused
51
+ on static cases [6-15], lacking tunability for variable scenes. To tackle this issue, tunable
52
+ metamaterials with dynamic features have emerged, covering optics [16,17], acoustics [18],
53
+ and thermotics [19-21]. For example, many advanced thermal functions have been realized,
54
+ including macroscopic thermal diodes [19], tunable analog thermal materials [22], path-
55
+ dependent thermal metadevices [23], and tunable hybrid thermal metamaterials [24]. On the
56
+ other hand, adaptive thermal metadevices are presented to maintain the robustness of functions
57
+ against environmental changes or switch functions depending on application scenes [20,25-30].
58
+ However, the achievement of state-of-the-art self-adaptive thermal metamaterials is confronted
59
+ with three longstanding and strong barriers. Firstly, adaptive thermal metadevices with robust
60
+ functions usually require extremely complicated parameters [25-27], which are difficult to
61
+ prepare from natural bulk materials. Secondly, existing adaptive metadevices, especially
62
+ macroscopic thermal diodes [19] and energy-free temperature trapping [20], are limited to a
63
+ specific temperature range related to the phase change temperature of shape memory alloys.
64
+ Finally, most tunable or adaptive metamaterials [16-30] need to be adjusted through manual
65
+ control rather than automatically, lacking self-cognitive ability.
66
+ Recently, intelligent materials, involving interdisciplinary research and combining
67
+ intelligent algorithms with material design, have motivated applications in optics [31-33],
68
+
69
+ 4
70
+
71
+ nanotechnology [34], theoretical physics [35], materials science [36], and thermal science [37].
72
+ These advances inspire ideal self-adaptive thermal metamaterials with full embracement of
73
+ intelligence. In principle, ideal self-adaptive thermal metadevices should automatically
74
+ (without human aid) and timely adjust their dynamic components to keep function stable or
75
+ switch functions continuously in response to the broad range of ambient temperature change.
76
+ Developing such self-adaptive thermal metamaterials is highly desirable to be valuable in situ
77
+ scenes. However, the demanding technical performance requires an appropriate actuation
78
+ mechanism that integrates an algorithm-driven intelligent system with thermal metamaterial
79
+ design. Although these metamaterials have been used to design advanced self-adaptive optical
80
+ cloaks in wave systems [38], they fail in diffusion systems like heat transfer due to the lack of
81
+ controllable degrees of freedom. Existing machine-learning-based thermal metamaterials are
82
+ dictated by the inverse design method [39-42], which only calculates the parameters of
83
+ materials and sizes for desired functions. In addition, once such metamaterials are prepared,
84
+ their functions are not switchable, lacking response to various scenes.
85
+ Here, we introduce a machine-learning-assisted intelligent system and propose
86
+ environment-adaptive thermal metamaterials driven by big data. As a conceptual
87
+ implementation, we design an intelligent temperature gradient controller. We load the pre-
88
+ trained artificial neural network into a hardware system and combine it with the bilayer
89
+ structure [43]. Depending on the sensing-feedback ambient temperatures, the thermal
90
+ conductivity of a spinning component could be adjusted to achieve a tunable temperature
91
+ gradient in a target region, verified by finite-element simulations and experiments. We then
92
+ propose two applications with on-demand adaptability. One is a thermal signal modulator with
93
+
94
+ 5
95
+
96
+ functional robustness, making original thermal signals clearer. The other is an intelligent
97
+ thermoelectric generator with intelligent functional choice, which can automatically adjust the
98
+ electromotive force generated by thermoelectric materials [44] based on the ambient
99
+ temperature. The intelligent environment-adaptive thermal metamaterial features isotropic
100
+ materials, unlimited working temperatures, and cognitive responsiveness. A handy actuation
101
+ mechanism also integrates machine-learning-driven intelligent systems with diffusion
102
+ metamaterial design. Our work brings the design of self-adaptive diffusion metamaterials to a
103
+ new stage without human intervention.
104
+ Architecture
105
+ of
106
+ the
107
+ intelligent
108
+ temperature-gradient
109
+ controller
110
+ The architecture of the intelligent temperature-gradient controller is presented in Fig. 1. It
111
+ contains four main modules: a temperature acquisition module (micro infrared camera), a
112
+ computing system with a pre-trained artificial neural network (ANN), a stepper motor, and a
113
+ bilayer structure. We aim to manipulate the temperature gradient of the target region based on
114
+ the feedback of temperature information of its surroundings. Here, as a proof-of-concept
115
+ implementation, we consider a two-dimensional system with a bilayer metal structure. The
116
+ target region is the core region Ω! consisting of poly-dimethylsiloxane (PDMS). The
117
+ component of the inner layer (Silicone pad) is approximately adiabatic for precise control of
118
+ thermal fields of Ω!, and the outer layer as a compensation layer (Magnesium alloy) is intended
119
+ not to disturb the thermal fields of the background (Inconel alloy). The thermal conductivity
120
+ from the inside out is 0.15, 1, 72.7, and 9.8 W m-1 K-1, respectively. After setting R1 = 30 mm
121
+ and R2 = 53 mm, R3 can be calculated as 60 mm [43].
122
+
123
+ 6
124
+
125
+ To characterize the temperature information of the bilayer structure’s surroundings, we
126
+ choose a series of discrete positions around the outer layer and extract their temperature using
127
+ a micro infrared camera. As shown in Fig. 1, the blue dashed circle is the chosen bilayer
128
+ structure’s surrounding, and the position marked 0◦ is the first position. Then, we take the
129
+ temperature of the amount of N equally spaced positions on the circumference in a
130
+ counterclockwise direction, serving as the input layer of ANN.
131
+ Thanks to the tunable analog thermal material [22], by spinning (angular velocity: 𝜔!)
132
+ the PDMS in the core region Ω!, the effective thermal conductivity of the spinning medium
133
+ can be tuned from near-zero (𝜔! = 0) to near-infinity (larger 𝜔!). On the other hand, the
134
+ effective thermal conductivity of Ω! is the crucial factor affecting the temperature-gradient
135
+ distributions of Ω!; see lower part of Fig. 1 for an intuitive description. Color denotes
136
+ temperature profiles of the core region, and the white lines represent the isotherms from finite-
137
+ element simulations. Here, sparser isotherms correspond to a smaller temperature gradient.
138
+ For the sake of “intelligence”, we utilize ANN to establish a mapping between extracted
139
+ temperature information (input data: 𝑻(#)) and the angular velocity of Ω! (output data: 𝜔!).
140
+ In Fig. 1, we show the structural component of the ANN, which is fully connected with four
141
+ hidden layers (50 neurons per layer). Activations of all neurons in the next layer are determined
142
+ by activations of those in the current layer (𝑯(%)), represented by
143
+
144
+
145
+
146
+
147
+ ⎪⎧𝑯(%&!) = ReLU0𝑾(%)𝑻(%) + 𝒃(%&!)4, 𝑖 = 0
148
+ 𝑯(%&!) = ReLU0𝑾(%)𝑯(%) + 𝒃(%&!)4, 0 < 𝑖 < 4
149
+ 𝜔! = ReLU0𝑾(%)𝑯(%) + 𝒃(%&!)4, 𝑖 = 4
150
+
151
+ (1)
152
+ where ReLU (a) = max(0, a) is the rectified linear unit function. W and b are weights and
153
+ biases for the neurons. i is the ordinal number of layers, and 𝑖 = 0 represents the input layer.
154
+
155
+ 7
156
+
157
+ As the ANN is a data-driven-based model, we then prepare the dataset (see Supplementary Note
158
+ 1). Finally, via the back propagation algorithm, the proposed ANN with selected
159
+ hyperparameters is well trained by the dataset (see Supplementary Note 1).
160
+ When the thermal field of the bilayer structure reaches equilibrium, the temperature
161
+ information (𝑇!, 𝑇', 𝑇(, ..., 𝑇)) at the circle with a radius of R3 = 60 mm is collected by micro
162
+ infrared camera and imported into the computing system as an array of input signals for the
163
+ pre-trained ANN. The computing system’s output signal is the stepper motor’s spinning angular
164
+ velocity 𝜔!. Considering a case where the output spinning angular velocity is 0 rad s-1, static
165
+ PDMS possesses thermal conductivity with 0.15 W m-1 K-1. At this time, the temperature
166
+ gradient in Ω! reaches its maximum value.
167
+ Intelligent response in omnidirectional simulations
168
+ Finite-element simulations are first used to demonstrate the performance of an intelligent
169
+ temperature-gradient controller. For proof-of-concept verification, we consider a two-
170
+ dimensional bilayer structure whose components and sizes are the same as mentioned above.
171
+ The system’s left (right) end connects to a hot (cold) source. In our simulations, the cold source
172
+ (𝑇* = 283 K) is fixed, while the hot source (𝑇+) is changeable. We first extract the temperature
173
+ data (𝑇𝒂
174
+ (#), 𝑇𝒃
175
+ (#), 𝑇𝒄
176
+ (#)) of N = 36 equally spaced positions in the white dashed circle in three
177
+ cases (𝑇+ = 293, 303, 313 K) of a static bilayer structure, as shown in Fig. 2a. For each case,
178
+ the first data is the temperature of the position marked 0◦ in the dashed circle. The order of
179
+ taking the temperature of these positions is counterclockwise, serving as the input layer of the
180
+ pre-trained ANN. Hence, via the pre-trained ANN, the spinning angular velocity 𝜔! of PDMS
181
+ is calculated individually as 0.10, 0.00067, and 0 rad s-1. After setting the above parameters
182
+
183
+ 8
184
+
185
+ (𝑇+ and 𝜔!) in finite-element simulations, we show these three temperature profiles (color
186
+ distributions) of the bilayer structure; see Fig. 2b. No matter how the angular velocity 𝜔! of
187
+ PDMS changes, the temperature distributions of the background will not be disturbed (see
188
+ Supplementary Note 2). Finally, their corresponding temperature-gradient distributions in Ω!
189
+ are given in the right part of Fig. 2c. For comparison, we show the temperature-gradient
190
+ distributions in Ω! of pure background (size: 200 × 200 mm2) with three hot sources; see left
191
+ part of Fig. 2c. As anticipated, there is a mapping relationship between lowest/highest 𝑇+ − 𝑇*
192
+ and highest/lowest angular velocity 𝜔! (or say, lowest/highest |∇𝑇| in Ω!) in above scheme.
193
+ Further, the range of originally external temperature-gradient field [(𝑇+ − 𝑇*)/𝐿 : 50 to 150 K
194
+ m-1] can be adjusted to a wider range of temperature gradient (|∇𝑇|: 0 to 238.5 K m-1) in the
195
+ target region Ω!.
196
+ In the actual scene, we are unsure in which direction the external thermal field is exerted
197
+ on the bilayer structure. Therefore, we should ensure that the performance of the intelligent
198
+ temperature-gradient controller will not be affected by the change in the direction of the
199
+ external thermal field. In particular, we guarantee the hot and cold sources consistent with the
200
+ above and rotate them 30, 60, and 90◦ around the center of the bilayer structure. Apparently,
201
+ temperature distributions in the white dashed circle is different from each other when rotating
202
+ the same 𝑇+ and 𝑇*; see 𝑇(#), 𝑇/(#), 𝑇//(#), and 𝑇///(#) in Figs. 2a,d,g,j. Subsequently, we
203
+ calculate the angular velocity 𝜔! in cases with 𝑇+ = 293, 303, 313 K in the above four
204
+ directions using the pre-trained ANN and perform finite-element simulations. Finally, Figs.
205
+ 2c,f,i,l verify that the performance of the intelligent temperature-gradient controller has good
206
+ robustness to the influence of external thermal flow’s direction. Such intelligent metadevice
207
+
208
+ 9
209
+
210
+ also maintains functional stability under other cold sources and non-uniform external thermal
211
+ fields (see Supplementary Note 3). In addition, the calculated 𝜔! from pre-trained ANN is
212
+ almost consistent with the set 𝜔!,123456 when external hot and cold sources are given, as
213
+ shown in Figs. 2m-o.
214
+ Experimental realization and measurements
215
+ The intelligent temperature-gradient controller contains four parts: a micro infrared
216
+ camera, a computing system with pre-trained ANN, a stepper motor, and a bilayer structure;
217
+ see the real experimental setup in Supplementary Figure S7. A bilayer structure with a thickness
218
+ of 2 mm is connected to a hot and cold container on the two sides, serving as heat baths. Its
219
+ components and sizes are the same as those in simulations. The micro infrared camera is
220
+ controlled by the computing system. Every time the infrared camera is started, it measures the
221
+ temperature distribution of the bilayer structure and transmits the temperature data to the
222
+ computing system. The computing system consists of power, a microcomputer Raspberry Pi, a
223
+ power of motor driver, and a motor driver. A pre-trained ANN program runs in the Raspberry
224
+ Pi. The input data 𝑇(#) is from the temperature data measured by the micro infrared camera.
225
+ After the program processing, the computing system extracts the temperature data of the bilayer
226
+ structure’s surroundings, provided to the input layer 𝑇(#) of ANN. When reading the input
227
+ data 𝑇(#), the pre-trained ANN program in the computing system calculates the angular
228
+ velocity 𝜔! of PDMS in the core region Ω! of the bilayer structure. The corresponding signal
229
+ of controlling 𝜔! is transmitted to the stepper motor via the motor driver. Finally, the PDMS
230
+ spins around the center, driven by the stepper motor, and the temperature-gradient distribution
231
+ in Ω! is regulated. To verify the performance of the intelligent device, we first set the
232
+
233
+ 10
234
+
235
+ temperatures of the hot and cold baths to 293 K and 283 K. After starting this intelligent system,
236
+ the temperature data 𝑇𝒂
237
+ (#) are measured and the angular velocity 𝜔! of PDMS is calculated
238
+ as 0.118 rad s-1 via pre-trained ANN, see Fig. 3a. Fig. 3b shows the temperature profile of the
239
+ bilayer structure recorded by infrared camera Fotric 430. Note that in the core region, the
240
+ temperature distribution is uniform, and in the background region, the temperature field is
241
+ nearly undistorted. Subsequently, we fixed the temperature of the cold bath to 283 K and
242
+ changed the temperature of the hot bath to 303 K. When the temperature field is stable, we start
243
+ the intelligent device again. The measured temperature data 𝑇𝒃
244
+ (#) and the calculated 𝜔! =
245
+ 0.0007 rad s-1 are shown in Fig. 3c. The temperature profile of the bilayer structure is shown
246
+ in Fig. 3d. At this time, the background temperature field is still undisturbed, and the uniformity
247
+ of the temperature distribution in the core region is slightly broken. Finally, with the same cold
248
+ bath, we further set the hot bath to 313 K. Fig. 3e displays the measured temperature data 𝑇𝒄
249
+ (#).
250
+ As anticipated, the calculated 𝜔! is 0 rad s-1. Therefore, we get the temperature profile of the
251
+ bilayer structure, see Fig. 3f. We observe from Fig. 3f that the temperature distribution in the
252
+ core region has a maximal non-uniformity, also almost without disturbing the background
253
+ thermal field. Above temperature data 𝑇𝒂
254
+ (#), 𝑇𝒃
255
+ (#), and 𝑇𝒄
256
+ (#), the relevant angular velocity
257
+ 𝜔! , and their temperature profiles of the bilayer structure are consistent with the above
258
+ simulation results. For quantitative analysis, we use the central difference method to process
259
+ the discrete temperature data in Figs. 3b,d,f and obtain these temperature-gradient distributions
260
+ in the core region (see Fig. 3g), which is in good agreement with the simulation results in the
261
+ right part of Fig. 2c. As a result, we realize the manipulation of the core region’s temperature
262
+ gradient in the bilayer structure based on the feedback of temperature information 𝑻(#) of its
263
+
264
+ 11
265
+
266
+ surroundings.
267
+ Potential applications
268
+
269
+ We realize a thermal signal modulator based on the intelligent temperature-gradient
270
+ controller for heat communications. The existing work adopted binary thermal spatial coding
271
+ to store information in heat communications (thermal signals) [45]. Binary 0 and 1 are
272
+ represented by encoding the temperature gradient in the working zone of the cloaking and
273
+ concentration with core-shell structures, where the core region is the working zone. For thermal
274
+ cloaking (concentration), there is a minimum (maximum) temperature-gradient distribution in
275
+ the working zone. Via the continuous arrangement of cloaking or concentration devices,
276
+ thermal signals could be stored and characterized by the temperature-gradient distributions in
277
+ the working zones of the arranged metadevices. Actually, binary encoding makes information
278
+ storage inefficient. Thermal signals should oscillate with space in a continuous mode to transmit
279
+ more encoding information simultaneously in heat communications. However, once the
280
+ continuous encoding is adopted, original thermal signals are easily disturbed and can only
281
+ oscillate with space in smaller amplitude due to thermal dissipation and thermal noise. Thanks
282
+ to the proposed thermal signal modulator, original disturbed thermal signals can be re-
283
+ modulated to oscillate with space in a larger amplitude; see the schematic in Fig. 4a. We select
284
+ a square area (see the dashed box marked in Fig. 4a) in the working zone of devices as the
285
+ encoding zone. The area size is consistent with the size of the intelligent temperature-gradient
286
+ controller. To ensure the temperature field in the working zone of the device is not disturbed,
287
+ we make the effective thermal conductivity inside and outside the encoding zone consistent.
288
+ The original temperature gradient in the encoding zone is considered the external thermal field
289
+
290
+ 12
291
+
292
+ of the intelligent temperature-gradient controller. In above simulations, external thermal fields
293
+ |∇𝑇| vary from (𝑇+,789 − 𝑇*)/𝐿 = 50 to (𝑇+,72: − 𝑇*)/𝐿 = 150 K m-1. Through the
294
+ intelligent temperature-gradient controller, the average temperature gradient of the modulated
295
+ zone (Ω!; see round dashed line marked in Fig. 4a) could be ranged from 0 to 238.5 K m-1. We
296
+ obtain a linear transformation relationship between the original temperature-gradient range and
297
+ modulated temperature-gradient range. Considering the oscillation of original thermal signals
298
+ driven by variable hot sources across the x direction in the sinusoidal law sin 2𝜋𝑥/𝜆, we apply
299
+ the linear transformation to original thermal signals and finally get the modulated thermal
300
+ signals, see Fig. 4b. We take 𝜆 as 10 m, and arrange 50 intelligent temperature-gradient
301
+ controllers (each size: 0.2 × 0.2 m2) in each range of 𝜆. Fig. 4c shows the temperature profiles
302
+ of several controllers and their original external thermal fields placed at x = 2.5, 17.5, 35, and
303
+ 47.5 m (from finite-element simulations), respectively. Here, each x coordinate represents the
304
+ central position of each controller. We mark the original (modulated) temperature gradient
305
+ values in the encoding (modulated) zone of several controllers; see Fig. 4c. Such a thermal
306
+ signal modulator does not change the relative strength relationship between the original signals
307
+ but makes the difference between the original signals more obvious.
308
+ Conclusion and discussion
309
+ To sum up, we propose an environment-adaptive thermal metamaterial driven by a
310
+ machine-learning algorithm without manual intervention. As a conceptual verification, via pre-
311
+ trained ANN (artificial neural network), we achieve the property of intelligent adjustment of
312
+ the temperature gradient of the spinning component PDMS (poly-dimethylsiloxane) of a bilayer
313
+ structure based on its ambient temperature. For algorithm implementation, we consider the
314
+
315
+ 13
316
+
317
+ temperatures at a series of discrete positions on the outer contour of the bilayer structure
318
+ (ambient temperature) as the input data. Then, the pre-trained ANN outputs the PDMS’s
319
+ spinning angular velocity 𝜔!. 𝜔! can adjust the effective thermal conductivity of the spinning
320
+ PDMS and then adjust the temperature-gradient distribution in the core region. As for the
321
+ hardware implementation, we embed the pre-trained ANN into a microcomputer called
322
+ Raspberry Pi. One end is connected to the micro infrared camera to detect the ambient
323
+ temperature for the input data, and the other is connected to a stepper-motor driver to control
324
+ the 𝜔! of the motor, rotating the PDMS. Finite-element simulations and experiments have
325
+ confirmed this intelligent temperature-gradient controller. Meanwhile, the above thermal
326
+ manipulation is robust for the direction of external thermal fields. In addition, we design a
327
+ thermal signal modulator with functional robustness for the intelligent temperature-gradient
328
+ controller, which modulates original thermal signals clearer.
329
+ Incidentally, self-adaptive or intelligent devices involve two typical application scenarios.
330
+ The first is that the device displays stable function in a changeable environment like the thermal
331
+ signal modulator. The second is the device with intelligent functional choice responding to
332
+ environmental changes. We still design an application based on the intelligent temperature-
333
+ gradient controller for the second typical scenario, an intelligent thermoelectric generator with
334
+ intelligent functional choice in a changeable environment. The adjustable temperature gradient
335
+ in the core region enables thermoelectric materials like Bi2Te3 to generate tunable electromotive
336
+ force, verified by finite-element simulations (see Supplementary Note 4). Finally, we make
337
+ metamaterials have the ability to perceive the environment. The proposed concept combines
338
+ diverse domains, such as artificial intelligence, metamaterials, energy utilization, heat
339
+
340
+ 14
341
+
342
+ communications, and thermal management. We promise the interdisciplinary work to provide
343
+ new inspiration for progress in various areas, for example, intelligent thermal management in
344
+ chips.
345
+
346
+ Additional information
347
+ All study data are included in the article and/or Supplementary Information.
348
+ Acknowledgements
349
+ This work was supported by the National Natural Science Foundation of China to J.H.
350
+ (11725521 and 12035004), the Science and Technology Commission of Shanghai Municipality
351
+ to J.H. (20JC1414700), and the Singapore Ministry of Education to C.-W.Q. (R-263-000-E19-
352
+ 114).
353
+ Author contributions
354
+ P.J., C.-W.Q., and J.H. conceived of the idea. P.J. proposed the methodology, designed the
355
+ algorithm and hardware programs, and conducted the experiments. P.J., L.X., G.X., J.L., C.-
356
+ W.Q., and J.H. made the visualization and wrote the manuscript. C.-W.Q. and J.H. supervised
357
+ the work. All authors contributed to the discussion and finalization of the manuscript.
358
+ Competing interests
359
+ The authors declared no competing interests.
360
+
361
+
362
+
363
+
364
+
365
+ 15
366
+
367
+ References
368
+ [1] Chen, H., Chan, C. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9,
369
+ 387–396 (2010).
370
+ [2] Cummer, S., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials.
371
+ Nat. Rev. Mater. 1, 16001 (2016).
372
+ [3] Bertoldi, K., Vitelli, V., Christensen, J. & Hecke, M. V. Flexible mechanical
373
+ metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
374
+ [4] Huang, J. P. Theoretical Thermotics: Transformation Thermotics and Extended Theories
375
+ for Thermal Metamaterials. (Springer, Singapore, 2020).
376
+ [5] Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev.
377
+ Mater. 6, 488–507 (2021).
378
+ [6] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312,
379
+ 1780–1782 (2006).
380
+ [7] Zigoneanu, L., Popa, B. I. & Cummer, S. A. Three-dimensional broadband
381
+ omnidirectional acoustic ground cloak. Nat. Mater. 13, 352–355 (2014).
382
+ [8] Li, Y., Bai, X., Yang, T., Luo, H. & Qiu, C.-W. Structured thermal surface for radiative
383
+ camouflage. Nat. Commun. 9, 273 (2018).
384
+ [9] Li, Y. et al. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18,
385
+ 48-54 (2019).
386
+ [10] Fujii, G. & Akimoto, Y. Optimizing the structural topology of bifunctional invisible cloak
387
+ manipulating heat flux and direct current. Appl. Phys. Lett. 115, 174101 (2019).
388
+ [11] Jin, P., Xu, L. J., Jiang, T., Zhang, L. & Huang, J. P. Making thermal sensors accurate
389
+
390
+ 16
391
+
392
+ and invisible with an anisotropic monolayer scheme. Int. J. Heat Mass Transf. 163,
393
+ 120437 (2020).
394
+ [12] Fujii, G. & Akimoto, Y. Cloaking a concentrator in thermal conduction via topology
395
+ optimization. Int. J. Heat Mass Transf. 159, 120082 (2020).
396
+ [13] Li, Y. et al. Heat transfer control using a thermal analogue of coherent perfect absorption.
397
+ Nat. Commun. 13, 2683 (2022).
398
+ [14] Sha, W. et al. Robustly printable freeform thermal metamaterials. Nat. Commun. 12, 7228
399
+ (2021).
400
+ [15] Sha, W. et al. Topology-optimized thermal metamaterials traversing full-parameter
401
+ anisotropic space. npj Comput. Mater. 8, 179 (2022).
402
+ [16] Kwon, H., Sounas, Dimitrios., Cordaro, A., Polman, A. & Alù, A. Nonlocal Metasurfaces
403
+ for Optical Signal Processing. Phys. Rev. Lett. 121, 173004 (2018).
404
+ [17] Alam, M. Z., Schulz, S. A., Upham, J., Leon, I. D. & Boyd, R. W. Large optical
405
+ nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photon. 12,
406
+ 79–83 (2018).
407
+ [18] Xie, Y. et al. Wavefront modulation and subwavelength diffractive acoustics with an
408
+ acoustic metasurface. Nat. Commun. 5, 5553 (2014).
409
+ [19] Li, Y. et al. Temperature-dependent transformation thermotics: From switchable thermal
410
+ cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015).
411
+ [20] Shen, X., Li, Y., Jiang, C. & Huang, J. Temperature Trapping: Energy-Free Maintenance
412
+ of Constant Temperatures as Ambient Temperature Gradients Change. Phys. Rev. Lett.
413
+ 117, 055501 (2016).
414
+
415
+ 17
416
+
417
+ [21] Li, Y. et al. Anti–parity-time symmetry in diffusive systems. Science 364, 170-173 (2019).
418
+ [22] Xu, G. et al. Tunable analog thermal material. Nat. Commun. 11, 6028 (2020).
419
+ [23] Su, Y. et al. Path-Dependent Thermal Metadevice beyond Janus Functionalities. Adv.
420
+ Mater. 33, 2003084 (2021).
421
+ [24] Jin, P. et al. Tunable hybrid thermal metamaterials with a topology transition. Preprint at
422
+ https://arxiv.org/abs/2208.13638 (2022).
423
+ [25] Zhang, Y., Luo, Y., Pendry, J. B. & Zhang, B. Transformation-Invariant Metamaterials.
424
+ Phys. Rev. Lett. 123, 067701 (2019).
425
+ [26] Wu, L. et al. Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Phys.
426
+ Rev. Appl. 12, 044011 (2019).
427
+ [27] Sedeh, H. B., Fakheri, M. H., Abdolali, A., Sun, F. & Ma, Y. Feasible Thermodynamics
428
+ Devices Enabled by Thermal-Null Medium. Phys. Rev. Appl. 14, 064034 (2020).
429
+ [28] Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).
430
+ [29] Zhang, X. G. et al. An optically driven digital metasurface for programming
431
+ electromagnetic functions. Nat. Electron. 3, 165–171 (2020).
432
+ [30] Guo, J., Xu, G., Tian, D., Qu, Z. & Qiu, C.-W. A Real-Time Self-Adaptive Thermal
433
+ Metasurface. Adv. Mater. 34, 2201093 (2022).
434
+ [31] Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science
435
+ 361, 1004-1008 (2018).
436
+ [32] Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with
437
+ active metasurfaces. Science 364, 648 (2019).
438
+ [33] Zhu, R. et al. Phase-to-pattern inverse design paradigm for fast realization of functional
439
+
440
+ 18
441
+
442
+ metasurfaces via transfer learning. Nat. Commun. 12, 2974 (2021).
443
+ [34] Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial
444
+ neural networks. Sci. Adv. 4, 1–8 (2018).
445
+ [35] Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological order through
446
+ unsupervised machine learning. Nat. Phys. 15, 790–795 (2019).
447
+ [36] Luo, Y. T. et al. Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design
448
+ of Functional Metastructures. Research 2020, 8757403 (2020).
449
+ [37] Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-
450
+ assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys.
451
+ Rev. 7, 021407 (2020).
452
+ [38] Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human
453
+ intervention. Nat. Photon. 14, 383–390 (2020).
454
+ [39] Jin, P. et al. Particle swarm optimization for realizing bilayer thermal sensors with bulk
455
+ isotropic materials. Int. J. Heat Mass Transf. 172, 121177 (2021).
456
+ [40] Lu, H., Yu, Y., Jain, A., Ang, Y. S. & Ong, W.-L. Deep learning techniques elucidate and
457
+ modify the shape factor to extend the effective medium theory beyond its original
458
+ formulation. Int. J. Heat Mass Transf. 184, 122305 (2022).
459
+ [41] Ji, Q. et al. Design of thermal cloaks with isotropic materials based on machine learning.
460
+ Int. J. Heat Mass Transf. 189, 122716 (2022).
461
+ [42] Ji, Q. et al. Deep learning based design of thermal metadevices. Int. J. Heat Mass Transf.
462
+ 196, 123149 (2022).
463
+ [43] Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112,
464
+
465
+ 19
466
+
467
+ 054302 (2014).
468
+ [44] Zhou, W. et al. Seebeck-driven transverse thermoelectric generation. Nat. Mater. 20, 463–
469
+ 467 (2021).
470
+ [45] Hu, R. et al. Binary Thermal Encoding by Energy Shielding and Harvesting Units. Phys.
471
+ Rev. Appl. 10, 054032 (2018).
472
+
473
+
474
+
475
+ 20
476
+
477
+
478
+ Fig. 1 The architecture of the intelligent temperature-gradient controller. The intelligent
479
+ controller comprises a micro infrared camera, a pre-trained artificial neural network, a stepper
480
+ motor, and a bilayer structure. The infrared camera measures the temperature data of the bilayer
481
+ structure’s surroundings. The measured temperature data is input into the pre-trained artificial
482
+ neural network, calculating the angular velocity 𝜔! of the spinning component in the core
483
+ region Ω! of the bilayer structure. The stepper motor reads the angular velocity and drives the
484
+ spinning component to spin (through the spin disk). Finally, thermal functions in the core region
485
+ are regulated.
486
+
487
+ Input layer
488
+ Hidden layers
489
+ Output layer
490
+ Ti
491
+ T2
492
+ T3
493
+ 01
494
+ 2
495
+ Spin disk
496
+ Stepper motor
497
+ n
498
+ Artificialneuralnetwork(ANN)
499
+ emperature
500
+ Surroundings
501
+ Angle
502
+ Surroundings
503
+ Variable
504
+ Variable
505
+ R.
506
+ R
507
+ Microinfraredcamera
508
+ Bilayerstructure21
509
+
510
+
511
+ Fig. 2 Response of intelligent temperature-gradient controller in simulations. a N = 36 equally
512
+ spaced temperature data 𝑇𝒂
513
+ (#) , 𝑇𝒃
514
+ (#) , 𝑇𝒄
515
+ (#) in the white dashed circle in static bilayer
516
+ structures. The hot source is set as 293, 303, 313 K, respectively. The cold source is fixed at
517
+ 283 K. The first data is the temperature of the position marked 0◦. Each temperature data is
518
+ taken every 10◦ in the counterclockwise direction. b Temperature profiles of the bilayer
519
+
520
+ a
521
+ b
522
+ d
523
+ e
524
+ 90°
525
+ .06
526
+ 120°
527
+ 60°
528
+ 120°
529
+ 60°
530
+ T
531
+ 150°
532
+ 30°
533
+ 150°
534
+ 30°
535
+ 0.136
536
+ 30°
537
+ Angle
538
+ 180°
539
+
540
+ Angle
541
+ 180°
542
+
543
+ @1= 0.0006
544
+ @1= 0.00089
545
+ 313 K
546
+ 210°
547
+ 330°
548
+ 210°
549
+ 330°
550
+ T(O)
551
+ T (0)
552
+ 240°
553
+ 300°
554
+ 240°
555
+ 300°
556
+ 270°
557
+ 270°
558
+ c
559
+ f
560
+ 250
561
+ 250
562
+ CE
563
+ 250
564
+ 250
565
+ 0=0
566
+ @=0
567
+ 200
568
+ 200
569
+ 200
570
+ Original
571
+ 150
572
+ 3 T. - 313 K
573
+ 150
574
+ 150
575
+ Original
576
+ 2n T--313 K
577
+ 150
578
+ ,=0.00067
579
+ Modt
580
+ @1= 0.00089
581
+ 100
582
+ c T. - 303 K
583
+ 100
584
+ 100
585
+ T.-303K
586
+ 100
587
+ Modu
588
+ 50
589
+ 2 T. - 293 K
590
+ 50
591
+ 50
592
+ A2 T--293 K
593
+ @, = 0.10
594
+ @, = 0.136
595
+ 0.02
596
+ 0.02
597
+ 0.059
598
+ 0.02
599
+ 0.02
600
+ x (m)
601
+ -0.02~0.02
602
+ y (m)
603
+ x (m)
604
+ -0.02-0.02
605
+ y (m)
606
+ x (m)
607
+ -0.02~0.02
608
+ y (m)
609
+ x (m)
610
+ y(m)
611
+ g
612
+ h
613
+ j
614
+ k
615
+ 90°
616
+ 90°
617
+ 120°
618
+ 60°
619
+ 120°
620
+ 60°
621
+ T "(0)
622
+ 150°
623
+ 30°
624
+ =0.105
625
+ 150°
626
+ 30°
627
+ @-0.115
628
+ (0)..
629
+ T"(0)
630
+ .09
631
+ .06
632
+ 283K
633
+ 4(0)
634
+ Angle
635
+ 180°
636
+ 0
637
+ Angle
638
+ 180°
639
+ 00
640
+ 01= 0.0008
641
+ +
642
+ @=0.00085
643
+ 210°
644
+ 330°
645
+ 210°
646
+ 330°
647
+ 240°
648
+ 300°
649
+ 240°
650
+ 300°
651
+ 270°
652
+ 270°
653
+ 0
654
+ 00
655
+ -
656
+ 250
657
+ 250
658
+ 0=0
659
+ 250
660
+ 250
661
+ 0m
662
+ IVTI(K mr)
663
+ 200
664
+ ated
665
+ 200
666
+ 200
667
+ Original
668
+ ted
669
+ 150
670
+ 3·T-313K
671
+ 150
672
+ 150
673
+ C8 T, - 313 K
674
+ 150
675
+ Modu
676
+ 0=0.0008
677
+ w1=0.00085
678
+ 100
679
+ 6T-303K
680
+ 100
681
+ 100 -
682
+ 2 T, - 303 K
683
+ 100
684
+ 50
685
+ 2·T=293K
686
+ 2 T, -293 K
687
+ @, = 0.105
688
+ 50
689
+ @, = 0.115
690
+ 0.02
691
+ 0.02
692
+ 0.02
693
+ 0.02
694
+ 0.001
695
+ 0.09
696
+ 0.02
697
+ -0.020.02
698
+ y(m)
699
+ -0.020.02
700
+ 0
701
+ y (m)
702
+ 0
703
+ x (m)
704
+ y (m)
705
+ -0.02-0.02
706
+ x (m)
707
+ x (m)
708
+ x (m)
709
+ y(m)
710
+ T= 293K T.=283K
711
+ T. = 303 K T= 283 K
712
+ T=313KT=283K
713
+ 0.14
714
+ 1 ×10-3
715
+ m
716
+ Wi.Target
717
+ n
718
+ 0.12
719
+
720
+ W1,Target
721
+ 0.8
722
+ .0.81
723
+
724
+ 0.1
725
+ 0.08
726
+ 0.6
727
+ Wi,Target
728
+ (rad
729
+ 0F
730
+ 0.06
731
+ 0.4
732
+ 0.04
733
+ 0.2
734
+ 0.02
735
+ 0
736
+ 0
737
+
738
+ 30°
739
+ 60°
740
+ 90°
741
+
742
+ 30°
743
+ 60°
744
+ 90°
745
+
746
+ 30°
747
+ 60°
748
+ 90°
749
+ Direction of external thermal field
750
+ Direction of external thermal field
751
+ Direction of external thermal field22
752
+
753
+ structure with spinning angular velocity 𝜔! = 0.10, 0.00067, 0 rad s-1, respectively. Left part
754
+ of c Temperature-gradient distributions |∇𝑇| in core region Ω! of static pure background
755
+ with three hot sources. Right part of c Temperature-gradient distributions |∇𝑇| in core region
756
+ Ω! of the bilayer structure with 𝜔! = 0.10, 0.00067, 0 rad s-1, respectively. d-f Same
757
+ characterization with a-c when the external thermal field rotates 30◦ around the center of the
758
+ bilayer structure in the counterclockwise direction. g-i Same characterization with a-c when
759
+ the external thermal field rotates 60◦ around the center of the bilayer structure in the
760
+ counterclockwise direction. j-l Same characterization with a-c when the external thermal field
761
+ rotates 90◦ around the center of the bilayer structure in the counterclockwise direction. m-o
762
+ Comparison of calculated 𝜔! and targeted 𝜔!,123456 in above four directions of the external
763
+ thermal field in cases with 𝑇+ = 293, 303, 313 K, respectively.
764
+
765
+
766
+
767
+
768
+
769
+
770
+
771
+
772
+
773
+ 23
774
+
775
+
776
+ Fig. 3 Realization of the intelligent temperature-gradient controller. a,c,e Experimental
777
+ temperature data 𝑇𝒂
778
+ (#), 𝑇𝒃
779
+ (#), 𝑇𝒄
780
+ (#) in the dashed circle with radius R3 = 60 mm, marked in
781
+ b,d,f, when hot bath is set to 293, 303, 313 K, respectively. The cold bath is fixed to 283 K.
782
+ b,d,f Measured temperature profile of the bilayer structure with spinning angular velocity
783
+ 𝜔! = 0.118, 0.0007, 0 rad s-1, respectively. g Calculated temperature-gradient distributions
784
+ |∇𝑇| in core region Ω! of the bilayer structure with 𝜔! = 0.118, 0.0007, 0 rad s-1,
785
+ respectively.
786
+
787
+
788
+
789
+ Ta
790
+ (0)(K)
791
+ θ (∘)
792
+ Tb
793
+ (0)(K)
794
+ θ (∘)
795
+ θ (∘)
796
+ Tc
797
+ (0)(K)
798
+ Exp.
799
+ Simu.
800
+ Exp.
801
+ Simu.
802
+ Exp.
803
+ Simu.
804
+ 293 K
805
+ 283 K
806
+ 303 K
807
+ 283 K
808
+ 313 K
809
+ 283 K
810
+ a
811
+ b
812
+ c
813
+ d
814
+ e
815
+ f
816
+ g
817
+ ω1,Target
818
+ ω1(rad s-1)
819
+ 0.118
820
+ 0.12
821
+ ω1,Target
822
+ ω1(rad s-1)
823
+ 0.0007
824
+ 0.001
825
+ ω1,Target
826
+ ω1(rad s-1)
827
+ 0
828
+ 0
829
+ 0∘
830
+ θ∘
831
+ 0∘
832
+ 0∘
833
+ Ta
834
+ (0)
835
+ Tb
836
+ (0)
837
+ Tc
838
+ (0)
839
+ R3= 60 mm
840
+ 0
841
+ 50
842
+ -0.015
843
+ 100
844
+ 150
845
+ 200
846
+ 0.015
847
+ 250
848
+ 0
849
+ 0
850
+ 0.015
851
+ -0.015
852
+ y (m)
853
+ x (m)
854
+ |∇T| (K m-1)
855
+ ω1 = 0
856
+ ω1 = 0.0007
857
+ ω1 = 0.118
858
+
859
+ 24
860
+
861
+
862
+ Fig. 4 Intelligent temperature-gradient controller for robust modulation of thermal signals. a
863
+ Schematic of the thermal signal modulator. b Comparison of modulated and original thermal
864
+ signals. Modulated (original) thermal signals are denoted by distributions of averaged
865
+ temperature gradients in the modulated zones of the controllers (only external thermal fields)
866
+ across the x direction. Each x coordinate represents the central position of each controller. c
867
+ Simulated temperature profiles of several controllers and their external thermal fields placed at
868
+ 𝑥 = 2.5, 17.5, 35, and 47.5 m, respectively.
869
+
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+ Modulated zone
879
+ Cold source (TC)
880
+ Encoding zone
881
+ x
882
+ y
883
+ z
884
+ |∇T|
885
+ |∇T′|
886
+ Original
887
+ |∇T| = TH − TC
888
+ L
889
+ T(0)
890
+ Designed
891
+ intelligent system
892
+ ω1
893
+ Modulated
894
+ |∇T′|
895
+ |∇T|
896
+ |∇T′|
897
+ Original thermal signal
898
+ Modulated thermal signal
899
+ a
900
+ 238.5
901
+ b
902
+ (K m-1)
903
+ 0
904
+ 10
905
+ 20
906
+ 30
907
+ 40
908
+ 50
909
+ 0
910
+ 50
911
+ 100
912
+ 150
913
+ 200
914
+ 250
915
+ 0
916
+ 50
917
+ 100
918
+ 150
919
+ 200
920
+ x (m)
921
+ Original
922
+ Modulated
923
+ c
924
+ x = 2.5 m
925
+ x = 17.5 m
926
+ x = 35 m
927
+ x = 47.5 m
928
+ |∇T|
929
+ Encoding zone
930
+ TH
931
+ TC
932
+ T(0)
933
+ ω1
934
+ L
935
+ x
936
+ y
937
+ Modulated
938
+ zone
939
+ Ω1
940
+ L = 0.2 m
941
+ Original
942
+ 150 K m-1
943
+ Modulated |∇T′| Ω1
944
+ Unit: K
945
+ 283
946
+ 293
947
+ 303
948
+ 313
949
+ |∇T|
950
+ 238.5 K m-1
951
+ 50 K m-1
952
+ 0 K m-1
953
+ 100 K m-1
954
+ 120 K m-1
955
+ 50 K m-1
956
+ 0 K m-1
957
+ TC
958
+ (fixed)
959
+ TH
960
+ (variable)
961
+ Hot source (TH)
962
+
YdE3T4oBgHgl3EQfcQoq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_NE0T4oBgHgl3EQfxQFJ/content/tmp_files/2301.02643v1.pdf.txt ADDED
@@ -0,0 +1,717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Auto-Assembly: a framework for automated robotic
2
+ assembly directly from CAD.
3
+ Fedor Chervinskii§, Sergei Zobov§, Aleksandr Rybnikov§, Danil Petrov§, Komal Vendidandi§
4
+ Λ Γ Γ I V Λ L
5
+ Abstract—In this work, we propose a framework called Auto-
6
+ Assembly for automated robotic assembly from design files and
7
+ demonstrate a practical implementation on modular parts joined
8
+ by fastening using a robotic cell consisting of two robots. We show
9
+ the flexibility of the approach by testing it on different input
10
+ designs. Auto-Assembly consists of several parts: design analysis,
11
+ assembly sequence generation, bill-of-process (BOP) generation,
12
+ conversion of the BOP to control code, path planning, simulation,
13
+ and execution of the control code to assemble parts in the physical
14
+ environment.
15
+ Index
16
+ Terms—industry
17
+ 4.0,
18
+ smart
19
+ manufacturing,
20
+ cyber-
21
+ physical systems, smart factory, manufacturing automation, ma-
22
+ nipulators, cellular manufacturing, digital twins, robotic assem-
23
+ bly
24
+ I. INTRODUCTION
25
+ Assembly planning is one of the most laborious tasks
26
+ when releasing a new product for manufacturing. Thus, many
27
+ algorithms and methods around computer-aided design (CAD)
28
+ and digital twins of the factories have emerged in recent
29
+ years that help process engineers to prepare a new design
30
+ for assembly (Computer-aided Assembly Process Planning
31
+ techniques [1]). An emerging trend of Industry 4.0 [2] suggests
32
+ that a digital, highly automated factory should be able to infer
33
+ the process from the design. In practice, even for an automated
34
+ factory, assembly planning has to be followed by an offline-
35
+ programming of all the robots and devices to perform the
36
+ assembly plan.
37
+ Additive manufacturing technology (3D printing [3]) at the
38
+ same time has achieved a much higher rate of process design
39
+ automation. One can simply load a CAD file into a machine
40
+ that will yield a part of the desired design. The main question
41
+ we are trying to address in this paper is ”Could a robotic
42
+ cell or even the whole factory work just as a 3D printer?”.
43
+ When loaded with target assembly CAD design and given
44
+ input parts in specified conditions (e.g. placed in special input
45
+ jigs) - would it perform the required assembly?
46
+ In this work, we show how this can be achieved under
47
+ specific constraints, paving the road for future experiments
48
+ towards a more general approach and wider applications.
49
+ However, the framework we propose is general enough to
50
+ accommodate more complex designs and conditions, like
51
+ many types of tooling and different joining technologies.
52
+ §Equal contribution.
53
+ [chervinskii, zobov, rybnikov, danil.petrov, vendidandi]@arrival.com
54
+ Fig. 1: Experimental setup: robotic cell with two UR5e manip-
55
+ ulators. Left: UR5e with a screwdriver Likratec EH2 R1030-
56
+ A and Right: UR5e with gripper Robotiq 2F-85 with custom
57
+ designed gripper clamps. On the table: custom-designed 3D-
58
+ printed jigs.
59
+ II. RELATED WORK AND BACKGROUND
60
+ An Assembly Planning for a given design typically starts
61
+ from identifying the mating features or joints and suggesting
62
+ a feasible Assembly Sequence, which could be automated as
63
+ seen in [4], [5], [6].
64
+ To proceed to the process planning, a virtual environment,
65
+ also known as Digital Twin [7] is necessary. There are at-
66
+ tempts to develop a common ontology, e.g. [8], [9] and unify
67
+ interfaces between systems [10] to support process design
68
+ automation.
69
+ Sierla, Seppo, et al. [11] discuss the conceptual framework
70
+ of automated assembly planning using a digital twin. It uses
71
+ the XML-based AutomationML [12] data modeling frame-
72
+ work. This framework aggregates different data exchange
73
+ formats like CAEX for plant description, COLLADA for
74
+ geometry and kinematics of 3D models, etc.
75
+ There is still not sufficient work in joining together process
76
+ planning, motion planning and execution using a common
77
+ framework. In [13] authors used artificial intelligence to solve
78
+ a Tooling Matching problem and developed an add-on for
79
+ Octopuz [14] to do a Motion Planning and Robot Program
80
+ Generation for disassembly, but not testing in physical cells.
81
+ In another work, [15] a similar pipeline is described for an
82
+ arXiv:2301.02643v1 [cs.RO] 6 Jan 2023
83
+
84
+ Screwdriver
85
+ Gripper
86
+ Assembly
87
+ Assembly Jig
88
+ Parts Unload Jigs
89
+ Screws Unload Jigarchitectural domain, mainly focusing on parametric design
90
+ and modular assembly.
91
+ We claim that Auto-Assembly is the first proposed frame-
92
+ work that can generate and execute robotic assembly process
93
+ for an arbitrary input CAD design.
94
+ III. PROBLEM STATEMENT AND METHOD OVERVIEW
95
+ The main objective of our work is to create a framework
96
+ that enables a closed loop between design and robotic manu-
97
+ facturing. A target framework should analyse the design and
98
+ provide a simulation of assembly, executable programs (when
99
+ possible) and other feedback. The primary aim of the feedback
100
+ is to help in adapting the design and manufacturing to better
101
+ correspond to each other.
102
+ The feedback we should provide can be split into two
103
+ categories:
104
+ • Successful simulation and its’ artefacts can be directly
105
+ used to decide on physical manufacturing. Users can
106
+ choose between different processes to choose the one,
107
+ based on the key performance indicators (KPI) they want
108
+ to optimize: time, tooling price, energy consumption, etc.
109
+ • In case of a failure, the system should provide all neces-
110
+ sary feedback that helps to change the design, robot’s
111
+ position, choose the robots with better parameters or
112
+ different cell configuration. Such feedback can be: failed
113
+ operations, missing appropriate tooling, parts or tools in
114
+ collision, unreachable states.
115
+ To achieve this, we implement a framework described in
116
+ detail in Section IV. Section IV-A gives an overview of
117
+ our system and its components. Section IV-B discusses 3D
118
+ modelling of the assembly design files that form the base of
119
+ our data extraction pipeline. Section IV-C reviews the usage
120
+ of this extracted data to produce a set of possible assembly
121
+ sequences.
122
+ Each operation in the assembly sequence is enriched with
123
+ tooling information as discussed in section IV-D. Finding a
124
+ specific cell that contains all the resources like jigs, robots,
125
+ and their tooling, etc to execute all the operations needed for
126
+ an assembly is explained in section IV-E. Section IV-F tells
127
+ about the generation of the control code that moves the robots
128
+ to grasp, place and fasten parts in a cell.
129
+ In section V, we test our framework on different assemblies
130
+ and discuss the results. In section VI, we review our findings
131
+ from the experiments and future work.
132
+ IV. FRAMEWORK
133
+ A. System architecture
134
+ Auto-Assembly framework can be divided into two parts as
135
+ shown in Fig. 2. The first part, called ”Artefacts generation”,
136
+ works with CAD files provided by a design engineer. It is
137
+ intended to run once on the input data and provide artefacts,
138
+ which can then be stored and re-used to run the assembly
139
+ process in the simulated and physical environments. This
140
+ part includes Assembly Sequence Generation, Tool and Cell
141
+ Matching, Bill-of-Process (BOP) Generation and Control Code
142
+ generation.
143
+ The second part can be seen as a deployed environment.
144
+ It is represented as a system where we have many services,
145
+ providing “abilities” which can be called from the domain-
146
+ specific Process language (PL). An example of the PL script
147
+ can be seen in a Listing 3. Here we describe the most important
148
+ services and their respective abilities:
149
+ • Robot Controller
150
+ – Abilities to control the robots on a low level. As
151
+ input, it takes a trajectory as a list of a robot’s joint
152
+ states, and as output, interpolates the trajectory and
153
+ moves the robot.
154
+ – Abilities to control tooling connected to the robot,
155
+ like grippers, screwdrivers, etc.
156
+ • Motion Planner
157
+ – Ability to plan a trajectory in the cell to move a
158
+ robot to a target pose with cell objects taken as the
159
+ collisions.
160
+ • Jig Controller
161
+ – Ability to return a pose of a part in a jig with respect
162
+ to the jig origin.
163
+ • Assembly Service
164
+ – Ability to retrieve the information about fasteners
165
+ and resulting parts’ pose with respect to the cell
166
+ origin.
167
+ • Transform Service
168
+ – Ability to get the position of any object inside a cell
169
+ with respect to any object in the cell.
170
+ • 3D Simulator
171
+ – Abilities to load objects from cell description and
172
+ visualize cell state.
173
+ • Database and Message Bus
174
+ – Abilities to publish and retrieve JSON objects. This
175
+ component is used as a message bus and data storage.
176
+ All system parts exchange the data in a special format
177
+ called Factory Control Model (FCM). It can be considered
178
+ as a schema and also is a vital part of our system since it lets
179
+ all the components speak the same language.
180
+ B. CAD Data Preparation and Extraction
181
+ For any given assembly, our framework needs two design
182
+ files.
183
+ • Design file containing part assembly with joints. Fasten-
184
+ ers are labelled as separate joints in order to distinguish
185
+ them from other parts.
186
+ • Design file containing the jigs and gripper at different
187
+ stages of assembly like grasping, placing, etc.
188
+ The examples of these files for an assembly are depicted in
189
+ Figs 6 and 7 and are created by us in Fusion 360. Our method
190
+ is CAD-software agnostic as long as we can extract the CAD
191
+ data using an API.
192
+ From the design file in Fig. 6, we extract the joints and part
193
+ occurrences information using Fusion 360 API [16]. Using
194
+ this data, a joint register is created that maps every joint to its
195
+ parts. The joint register follows the FCM schema.
196
+
197
+ Fig. 2: System architecture
198
+ Fig. 3: Listing of PL-code implementing high-level of robot
199
+ control. Abilities get cell state and plan trajectory are imple-
200
+ mented by Motion Planner and execute trajectory by Robot
201
+ Controller
202
+ From the design file in Fig. 7, we extract the pose of gripper
203
+ occurrence relative to the part during grasping it from the jig
204
+ and placing it at the assembly state using the Fusion 360 API.
205
+ We call this data as recipes.
206
+ C. Assembly Sequence Generation
207
+ A CAD design contains a lot of important information about
208
+ the part’s geometries, relations, and absolute poses. But what
209
+ it lacks - the right assembling order - is the key information
210
+ to move towards the assembled product. Assembly sequence
211
+ encodes the order of operations needed to be performed on
212
+ parts by the robotic cell. Although the operations can be
213
+ executed sequentially, assembly sequences are represented by
214
+ polytree (directed acyclic graph whose underlying undirected
215
+ graph is a tree). Not any such tree represents a valid and
216
+ feasible assembly sequence:
217
+ • only directly joined parts should be neighbours;
218
+ • the order of operations should take into account the
219
+ geometrical limitations;
220
+ • the number of generated assembly sequences should be
221
+ reasonably limited. Naturally, it grows exponentially with
222
+ the number of parts involved. This makes it hard to check
223
+ all the generated sequences to pick the best one according
224
+ to some criteria.
225
+ The assembly sequence generation step aims to solve all three
226
+ aforementioned issues, providing a limited number of valid
227
+ sequences. The whole process can be divided into three steps:
228
+ • a liaison graph generation;
229
+ • assembly sequences generation based on the obtained
230
+ liaison graph;
231
+
232
+ Artefacts generation
233
+ CAD file:
234
+ parts geometries
235
+ Assembly
236
+ - joints
237
+ Sequence
238
+ - labelling
239
+ Assembly
240
+ CAD Data
241
+ BOP
242
+ Control Code
243
+ Sequences
244
+ Extraction
245
+ generation
246
+ Generation
247
+ CAD file:
248
+ Generation
249
+ - tooling placing
250
+ 3D-model files
251
+ absolute
252
+ BOP
253
+ - jigs placing
254
+ positions and
255
+ occurrencesof
256
+ parts
257
+ Tool and
258
+ - joints
259
+ - fastening
260
+ Cell
261
+ features
262
+ Matching
263
+ recipes
264
+ Artefacts set
265
+ Objects
266
+ FCM
267
+ PL script
268
+ objects
269
+ geometries
270
+ Deploy
271
+ graph
272
+ Physical
273
+ PL script
274
+ Parts
275
+ FCM objects
276
+ Best Run
277
+ environment
278
+ geometries
279
+ graph
280
+ Selection
281
+ Unsuccessful simulation runloop
282
+ deploy
283
+ Succesful run
284
+ Databaseand
285
+ artefacts set
286
+ messagebus
287
+ Services
288
+ Simulation
289
+ Robot
290
+ Motion
291
+ Assembly
292
+ Transform
293
+ 3D
294
+ controller
295
+ planner
296
+ Controller
297
+ Service
298
+ Service
299
+ Simulator1-move_robot_to_position(cell, motion_group, manipulator_service,
300
+ 2
301
+ planning_object,position,move_type,
302
+ 3 -
303
+ ignored_collisions,ignored_collision_pairs)(
304
+ 4 -
305
+ rules (
306
+ 5
307
+ ~ get_cell_state(cell = cell, out cell_state = cell_state)
308
+ 6 -
309
+ ~plan_trajectory(
310
+ 7
311
+ position= position,
312
+ 8
313
+ motion_group=motion_group
314
+ 9
315
+ planning_object= planning_object
316
+ 10
317
+ planning_socket_name="eef",
318
+ 11
319
+ move_type=move_type,
320
+ 12
321
+ ignoredcollision pairs = ignored collisionpairs
322
+ 13
323
+ ignored_collisions = ignored_collisions,
324
+ 14
325
+ cell_state = cell_state,
326
+ 15
327
+ out result_motion_plan= trajectory
328
+ 16
329
+ )
330
+ 17
331
+ execute_trajectory(trajectory = trajectory)
332
+ 18
333
+ } seq
334
+ 19 -
335
+ constraints (
336
+ 20
337
+ execute_trajectory.@provider_id.resource_id== @manipulator_service.id
338
+ 21
339
+ 22• geometry feasibility checking based on parts geometries
340
+ This approach we used is described in [5]. Further, the high-
341
+ level steps, important implementation details, and differences
342
+ with the original paper are described.
343
+ 1) Liaison graph generation: The CAD file consists of the
344
+ individual parts combined together with joints and fasteners.
345
+ The information about the joints is crucial to accurately
346
+ determine parts connectivity. Considering the parts as liaison
347
+ graph nodes, connectivity information transfers into edges in
348
+ this graph. We extracted the information about joints and
349
+ fasteners from the design in CAD software to build up a liaison
350
+ graph to further analyze it and generate assembly sequences.
351
+ 2) Sequences generation: An assembly sequence deter-
352
+ mines the order of operations on parts. The liaison graph
353
+ itself, being undirected, doesn’t set the order of operations
354
+ in general. But the order should be based on the liaison graph
355
+ since the latter contains the information about the connectivity
356
+ in the resulting assembly. Usually, there are many sequences of
357
+ operations. [5] describes the approach of extracting all possible
358
+ assembly sequences from the liaison graph. We followed the
359
+ suggested approach.
360
+ 3) Geometry feasibility checking: The geometrical feasibil-
361
+ ity of an assembly process is the fundamental property, which
362
+ should be checked first to eliminate irrelevant sequences.
363
+ These irrelevant sequences could contain, for example, one
364
+ part to be joined with another part, which is trapped already
365
+ inside the sub-assembly. To prevent this, geometrical analysis
366
+ of sub-assemblies is used. One sub-assembly is translated step-
367
+ by-step w.r.t another sub-assembly in one of chosen directions
368
+ until the bounding boxes of the sub-assemblies still intersect
369
+ and the solid bodies’ intersection is checked. If the intersection
370
+ represents a volume, it’s impossible to join the sub-assemblies
371
+ in the chosen direction, and the remaining directions should
372
+ be checked.
373
+ Choosing the directions of translations alongside step size
374
+ is important for the result. Due to the nature of assembly
375
+ parts and their orientation alignment, directions along the
376
+ main coordinate axes work well in the tested assemblies. In
377
+ other cases, information from joints from the CAD file could
378
+ be used to determine the potential directions. Step size is
379
+ computed based on the minimal size of the part across both
380
+ sub-assemblies. Precisely, the step size is computed as a 0.75
381
+ ratio of the diagonal of the smallest bounding box part. The
382
+ idea behind this value is to exclude the possibility of going
383
+ completely through the smallest part with a single translation
384
+ step.
385
+ D. Tooling Matching
386
+ The assembly sequence in itself doesn’t require specific
387
+ tooling models, but this is information is required for the
388
+ next steps in the assembling process. Given a graph of the
389
+ assembly sequence from the previous section, we traverse
390
+ this graph, considering the type of operation and parts used,
391
+ assigning all the tooling models and adding recipes to process
392
+ this operation.
393
+ To archive this, we extract the following information from
394
+ the CAD files:
395
+ • For grippers:
396
+ – Model of the part gripper can be applied.
397
+ – List of positions for grasping the part, calculated with
398
+ respect to the part origin. We use the information
399
+ from “joints”, such as JointAxis, to extract the vec-
400
+ tor of connection. Based on this vector poses are
401
+ calculated.
402
+ – States of digital inputs register to control the gripper.
403
+ • For jigs:
404
+ – Model of the part jig can hold.
405
+ – Position of a part in a jig.
406
+ • For screwdrivers:
407
+ – Screw-picking requirements, such as type of screw-
408
+ holder.
409
+ We store this data in Tooling Database. In our approach
410
+ Tooling Database is a storage with an API which allows
411
+ adding, matching and visualizing of the tooling.
412
+ By analyzing the dataset of the tooling used in physical
413
+ world production in the automotive field, we concluded that
414
+ the same information is stored in the tooling design files and
415
+ propagated to the tooling integration in the physical cells. We
416
+ decided to formalize the requirements and then store this data.
417
+ For the cases where it can’t be calculated from the design files,
418
+ we can manually put that information into the tooling database.
419
+ E. Cell matching
420
+ Cell description includes all the information representing
421
+ an assembly cell. Cell description is used to deploy both
422
+ environments (virtual and physical) and to choose a cell to
423
+ execute Assembly Sequence. We topologically sort a graph of
424
+ the Assembly Sequence and assign a level for every operation.
425
+ The level is required to assign resources for the parallel
426
+ operations when we should use different resources of the
427
+ same model. Then by traversing each operation, we check the
428
+ resources’ models required for this operation and find their
429
+ representation in the cell. If there are no cells satisfying all
430
+ the resource requirements for the Assembly Sequence, we fail,
431
+ providing feedback with the exact operation and the resources
432
+ model we were not able to assign. As a result of the execution
433
+ of the described algorithm, we have an assembly sequence to
434
+ be converted into a BOP.
435
+ F. Control code generation
436
+ For each operation in the BOP, we match a specific PL-
437
+ script, which is self-containing to perform this type of oper-
438
+ ation, and pass the operation, its resources and parts as the
439
+ parameters, creating one PL-script, to assemble a product.
440
+ An example of PL-script implementing unload operation is
441
+ presented on the Listing 4
442
+ V. EXPERIMENTS AND RESULTS
443
+ The objectives of our experiments are:
444
+ • To evaluate the framework.
445
+
446
+ Fig. 4: Listing of PL-code for unload operation
447
+ • To evaluate the assembly BOPs in the physical environ-
448
+ ment to provide metrics and feedback on the assembly.
449
+ The assembly we chose to test is shown in Fig. 6 and its
450
+ tooling, and jig design are shown in Fig.7.
451
+ • Data Preparation:
452
+ – we extract the joint register and recipes as mentioned
453
+ in section IV-B.
454
+ – taking the joint register and part models files, as-
455
+ sembly sequence generator produced 8 assembly
456
+ sequences for this assembly. These sequences are
457
+ mentioned in Fig. 5.
458
+ – we enrich the assembly sequences using tool match-
459
+ ing mentioned in section IV-D.
460
+ – we convert the enriched assembly sequences to BOP
461
+ using cell matching as mentioned in section IV-E.
462
+ Fig. 5: A diagram of assembly sequences generation process
463
+ for the design used in the experiments. Square blocks represent
464
+ parts while circles represent (sub-)assemblies(D and E). The
465
+ possible sequences are Left: ABDC, BADC, CABD, CBAD
466
+ and Right: BCEA, CBEA, ABCE, ACBE.
467
+ • Scene Preparation: Before starting the assembly, if it’s
468
+ a simulated environment, the jigs are unloaded at the
469
+ same poses as in the physical world in Fig. 1. If it’s
470
+ the physical environment, the jigs and parts are placed in
471
+ their respective poses.
472
+ • Simulation
473
+ Fig. 6: A simple assembly containing 3 parts. Profiles: A, C
474
+ and connector: B
475
+ Fig. 7: Assembly Design file showing the assembly jig,
476
+ custom-designed gripper adapters, grasping, and insertion
477
+ states of the gripper. Assembly state: Center of the table. Jig
478
+ state: Top and bottom right of the table.
479
+ 1) Start simulation deployment with services and a
480
+ database and message bus instance as mentioned in
481
+ Fig. 2.
482
+ 2) We trigger execution of the PL code, which starts
483
+ from running operations of type ”unload” on input
484
+ parts. This operation effectively initializes part in-
485
+ stances on respective positions in the input jigs, so
486
+ that the parts are now represented in the digital twin
487
+ of the cell, as active objects with poses, visible for
488
+ the simulator as well as for the motion planner.
489
+ 3) The rest of the PL code is executed, sequentially
490
+ reading necessary gripper positions, planning and
491
+ executing trajectories, and triggering gripper control
492
+ programs for grasping/releasing/fastening, all by
493
+ calling respective PL functions that use abilities of
494
+ underlying systems described in IV-A.
495
+ 4) The user can observe the execution of assembly
496
+ in the 3D simulator. During the execution of the
497
+ assembly process, the motion planner gives us direct
498
+ feedback, on whether it can reach a certain pose in
499
+ the assembly or not.
500
+ For our example assembly, the initial results were the
501
+ following:
502
+ – Of all the possible 8 assembly sequences, only one
503
+ assembly sequence (ABDC) passed through the cell
504
+ matching, as the cell resource descriptions (in this
505
+ case jigs) support this. Many sequences get filtered
506
+
507
+ 1- unload_operation(operation, cell, jig, out part_instance_id)(
508
+ 2- rules {
509
+ 3 ~
510
+ ~ read_fcm#find_part(
511
+ 4
512
+ object_id = @operation,
513
+ 5
514
+ level = 2,
515
+ 6
516
+ format ="array"
517
+ 7
518
+ object_filters=[{"path":"type","operation":"EQ","value":"part"}]
519
+ 8
520
+ link_filters=[{"path":"type","operation":"EQ","value":"uses"}],
521
+ 9
522
+ out id = part)
523
+ 10 -
524
+ get_part_pose_wrt_jig(
525
+ 11
526
+ jig_id=@jig.id,
527
+ 12
528
+ absoccurrenceid=@part.abs_occurrence_object,
529
+ 13
530
+ out pose_from_jig)
531
+ 14 -
532
+ ~ unload_part(
533
+ 15
534
+ part_object = @part,
535
+ 16
536
+ cell_object = @cell,
537
+ 17
538
+ pose = @pose_from_jig,
539
+ 18
540
+ out part_instance_id)
541
+ 19
542
+ seq
543
+ 20
544
+ ;assembly
545
+ assembly
546
+ C
547
+ D
548
+ A
549
+ E
550
+ 1
551
+ I
552
+ -
553
+ A
554
+ B
555
+ B
556
+ cC
557
+ AQ0060000600000000000
558
+ 0000000060000000000
559
+ Q0000000000000000
560
+ e00000000000000
561
+ Q00000000
562
+ 00000008
563
+ 9000000000000
564
+ 000000
565
+ 00000000000
566
+ 000000000
567
+ 0000000
568
+ 00000
569
+ 00000000
570
+ QC0000000000000
571
+ 0000000000
572
+ 0000000
573
+ 0000000
574
+ QDO0000000008based on the cell resources (jigs, robot tooling, etc.).
575
+ All the sequences for any given assembly are fea-
576
+ sible, if the cell has the resources to hold sub-
577
+ assemblies, For example, the assembly sequence
578
+ CABD is possible when the cell has the jig that
579
+ supports moving part C first to the assembly pose,
580
+ then creating a sub-assembly D by moving parts A
581
+ and B in the same order. Now the question here is,
582
+ how to make the decision on which resources in this
583
+ case jigs are needed to be designed to hold the sub-
584
+ assemblies. If there are cycles in the graph, multiple
585
+ BOPs pass through the cell matching which needs
586
+ the same cell resources, which enables us to simulate
587
+ and select the best one based on the metrics.
588
+ – We also noticed that our initial design failed due to
589
+ fastening robot reachability, we took this feedback
590
+ from the framework and changed the fastening posi-
591
+ tion in the assembly to assemble a product.
592
+ To adjust the design, we changed the positions of the
593
+ screws in the assembly to other holes without losing the
594
+ structure stability. After this design adjustment, we were
595
+ able to successfully simulate the one feasible assembly
596
+ sequence.
597
+ This is one of the main features of the proposed frame-
598
+ work - to get this kind of feedback about the prod-
599
+ uct/tooling/cell design compatibility as soon as possible
600
+ with minimal manual input.
601
+ • Running assembly on physical robotic cell: Once we
602
+ find an assembly sequence that passes in the simulation,
603
+ we can proceed to the physical assembly process.
604
+ This is achieved by running the same generated PL code
605
+ as before but now in a physical robotic environment. The
606
+ only thing that differs compared to the previous pipeline
607
+ in simulation is the first step - deployment of the systems.
608
+ For a physical assembly we deploy the robot and the
609
+ gripper drivers to be connected to robots and devices,
610
+ such that in parallel with updating the state of the digital
611
+ twin, these controllers will be changing the states of the
612
+ tools in the physical world, such as robots moving along
613
+ precomputed trajectories, gripper opening/closing and the
614
+ screwdriver fastening the screws.
615
+ We evaluated this assumption on the physical robotic cell
616
+ with two collaborative robots the layout of which can be
617
+ seen in Fig. 1. The results of these experiments are two
618
+ folds:
619
+ 1) On one side, we can see that as soon as the
620
+ digital twin is accurate enough, all computed gripper
621
+ positions allow performing most of the operations,
622
+ such as picking a screw, grasping and releasing a
623
+ part, and in some cases to fasten a screw.
624
+ 2) On another side, some operations show that an ac-
625
+ cumulated tolerance stack of robot calibration, tool
626
+ accuracy, and parts accuracy leads to the inability
627
+ to perform the joint operation such as fastening
628
+ successfully, and the screwing position requires cor-
629
+ rection.
630
+ The example of running assembly in the virtual and phys-
631
+ ical environments can be seen in Fig. 8. The process of
632
+ assembly of the provided CAD by running the generated
633
+ PL code can be seen in the accompanying video.
634
+ Fig. 8: Assembly process. Left: Physical environment and
635
+ Right: Virtual environment.
636
+ VI. CONCLUSION AND FUTURE SCOPE
637
+ In this paper, we implemented and tested a framework to
638
+ run a robotic assembly of a product by using only CAD
639
+ files as input. We were able to use the feedback provided
640
+ by the framework to change the original design and achieve
641
+ successful assembly. We re-iterated the whole pipeline and
642
+ transferred the assembly from the virtual to the physical
643
+ world. We conclude that this transfer can be done only if the
644
+ digital twin matches the physical cell precisely, which requires
645
+ additional work, such as robots and cell calibration, but it’s out
646
+ of the scope of this paper. The choice of design of our system
647
+ proved its flexibility since we were able to analyze and change
648
+ artefacts produced during the different steps of the execution.
649
+ The system is general enough to support new products and
650
+ cell configurations.
651
+ The next step is to validate our framework on more complex
652
+ assemblies, including new types of operations and operations
653
+ which involve more than two parts.
654
+ In our experiment, we relied only on the parts’ dimensional
655
+ precision and the accuracy of the robots. While it could work
656
+ for some parts, and partially worked in our case, it would
657
+ likely fail on many other parts and materials. To address this
658
+ problem, computer vision and other perception methods should
659
+ be introduced into the framework to deal with variations in the
660
+ real assembly process.
661
+ In the section IV-C3 the constraint we chose could lead to
662
+ some possible assembly sequences being rejected. To solve
663
+ this issue, we plan to implement a geometrical feasibility
664
+ check based on joints from the CAD files or other optimization
665
+ algorithms.
666
+ The method used in the section IV-E can lead to a sub-
667
+ optimal configuration or even to setups where some robots
668
+ can’t reach parts. This approach was chosen as the easiest to
669
+ track and implement. In future works, we plan to implement a
670
+ more sophisticated scheduling algorithm based on geometrical
671
+ and utilization constraints.
672
+
673
+ REFERENCES
674
+ [1] Henrioud, J. M., and A. Bourjault. ”Computer aided assembly process
675
+ planning.” Proceedings of the Institution of Mechanical Engineers, Part
676
+ B: Journal of Engineering Manufacture 206.1 (1992): 61-66.
677
+ [2] Thoben, Klaus-Dieter, Stefan Wiesner, and Thorsten Wuest. ”“Industrie
678
+ 4.0” and smart manufacturing-a review of research issues and application
679
+ examples.” International journal of automation technology 11.1 (2017):
680
+ 4-16.
681
+ [3] Masters ”Computer automated manufacturing process and system” U.S.
682
+ Patent 4,665,492. (1984)
683
+ [4] Deepak, B. B. V. L., et al. ”Assembly sequence planning using soft
684
+ computing methods: a review.” Proceedings of the Institution of Me-
685
+ chanical Engineers, Part E: Journal of Process Mechanical Engineering
686
+ 233.3 (2019): 653-683.
687
+ [5] Vigano‘, Roberto, et al. ”Assembly planning with automated re-
688
+ trieval of assembly sequences from CAD model information” DOI
689
+ 10.1108/01445151211262410
690
+ [6] Zhang, Jie, et al. ”Automatic assembly simulation of product in virtual
691
+ environment based on interaction feature pair.” Journal of Intelligent
692
+ Manufacturing 29.6 (2018): 1235-1256.
693
+ [7] Grieves, Michael. ”Digital twin: manufacturing excellence through vir-
694
+ tual factory replication.” White paper 1.2014 (2014): 1-7.
695
+ [8] J¨arvenp¨a¨a, Eeva, et al. ”The development of an ontology for describ-
696
+ ing the capabilities of manufacturing resources.” Journal of Intelligent
697
+ Manufacturing 30.2 (2019): 959-978.
698
+ [9] Lemaignan, Severin, et al. ”MASON: A proposal for an ontology
699
+ of manufacturing domain.” IEEE Workshop on Distributed Intelligent
700
+ Systems: Collective Intelligence and Its Applications (DIS’06). IEEE,
701
+ 2006.
702
+ [10] Rust, Romana, et al. ”COMPAS FAB: Robotic fabrication package for
703
+ the COMPAS Framework” Gramazio Kohler Research, ETH Zurich.
704
+ https://github.com/compas-dev/compas fab (2018)
705
+ [11] Sierla, Seppo, et al. ”Automatic assembly planning based on digital
706
+ product descriptions.” Computers in Industry 97 (2018): 34-46
707
+ [12] Drath, Rainer, ed. AutomationML: the industrial cookbook. Walter de
708
+ Gruyter GmbH & Co KG, 2021.
709
+ [13] Beck, Joshua, Alexander Neb, and Katharina Barbu. ”Towards a CAD-
710
+ based Automated Robot Offline-Programming Approach for Disassem-
711
+ bly.” Procedia CIRP 104 (2021): 1280-1285.
712
+ [14] Octopuz® https://octopuz.com
713
+ [15] Huang, Yijiang. Automated motion planning for robotic assembly of
714
+ discrete architectural structures. Diss. Massachusetts Institute of Tech-
715
+ nology, 2018.
716
+ [16] Autodesk® Fusion 360® https://www.autodesk.com/
717
+
_NE0T4oBgHgl3EQfxQFJ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf,len=375
2
+ page_content='Auto-Assembly: a framework for automated robotic assembly directly from CAD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
3
+ page_content=' Fedor Chervinskii§, Sergei Zobov§, Aleksandr Rybnikov§, Danil Petrov§, Komal Vendidandi§ Λ Γ Γ I V Λ L Abstract—In this work, we propose a framework called Auto- Assembly for automated robotic assembly from design files and demonstrate a practical implementation on modular parts joined by fastening using a robotic cell consisting of two robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
4
+ page_content=' We show the flexibility of the approach by testing it on different input designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
5
+ page_content=' Auto-Assembly consists of several parts: design analysis, assembly sequence generation, bill-of-process (BOP) generation, conversion of the BOP to control code, path planning, simulation, and execution of the control code to assemble parts in the physical environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
6
+ page_content=' Index Terms—industry 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
7
+ page_content='0, smart manufacturing, cyber- physical systems, smart factory, manufacturing automation, ma- nipulators, cellular manufacturing, digital twins, robotic assem- bly I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
8
+ page_content=' INTRODUCTION Assembly planning is one of the most laborious tasks when releasing a new product for manufacturing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
9
+ page_content=' Thus, many algorithms and methods around computer-aided design (CAD) and digital twins of the factories have emerged in recent years that help process engineers to prepare a new design for assembly (Computer-aided Assembly Process Planning techniques [1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
10
+ page_content=' An emerging trend of Industry 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
11
+ page_content='0 [2] suggests that a digital, highly automated factory should be able to infer the process from the design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
12
+ page_content=' In practice, even for an automated factory, assembly planning has to be followed by an offline- programming of all the robots and devices to perform the assembly plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
13
+ page_content=' Additive manufacturing technology (3D printing [3]) at the same time has achieved a much higher rate of process design automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
14
+ page_content=' One can simply load a CAD file into a machine that will yield a part of the desired design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
15
+ page_content=' The main question we are trying to address in this paper is ”Could a robotic cell or even the whole factory work just as a 3D printer?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
16
+ page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
17
+ page_content=' When loaded with target assembly CAD design and given input parts in specified conditions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
18
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
19
+ page_content=' placed in special input jigs) - would it perform the required assembly?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
20
+ page_content=' In this work, we show how this can be achieved under specific constraints, paving the road for future experiments towards a more general approach and wider applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
21
+ page_content=' However, the framework we propose is general enough to accommodate more complex designs and conditions, like many types of tooling and different joining technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
22
+ page_content=' §Equal contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
23
+ page_content=' [chervinskii, zobov, rybnikov, danil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
24
+ page_content='petrov, vendidandi]@arrival.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
25
+ page_content='com Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
26
+ page_content=' 1: Experimental setup: robotic cell with two UR5e manip- ulators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
27
+ page_content=' Left: UR5e with a screwdriver Likratec EH2 R1030- A and Right: UR5e with gripper Robotiq 2F-85 with custom designed gripper clamps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
28
+ page_content=' On the table: custom-designed 3D- printed jigs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
29
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
30
+ page_content=' RELATED WORK AND BACKGROUND An Assembly Planning for a given design typically starts from identifying the mating features or joints and suggesting a feasible Assembly Sequence, which could be automated as seen in [4], [5], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
31
+ page_content=' To proceed to the process planning, a virtual environment, also known as Digital Twin [7] is necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
32
+ page_content=' There are at- tempts to develop a common ontology, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
33
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
34
+ page_content=' [8], [9] and unify interfaces between systems [10] to support process design automation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
35
+ page_content=' Sierla, Seppo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
36
+ page_content=' [11] discuss the conceptual framework of automated assembly planning using a digital twin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
37
+ page_content=' It uses the XML-based AutomationML [12] data modeling frame- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
38
+ page_content=' This framework aggregates different data exchange formats like CAEX for plant description, COLLADA for geometry and kinematics of 3D models, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
39
+ page_content=' There is still not sufficient work in joining together process planning, motion planning and execution using a common framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
40
+ page_content=' In [13] authors used artificial intelligence to solve a Tooling Matching problem and developed an add-on for Octopuz [14] to do a Motion Planning and Robot Program Generation for disassembly, but not testing in physical cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
41
+ page_content=' In another work, [15] a similar pipeline is described for an arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
42
+ page_content='02643v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
43
+ page_content='RO] 6 Jan 2023 Screwdriver Gripper Assembly Assembly Jig Parts Unload Jigs Screws Unload Jigarchitectural domain, mainly focusing on parametric design and modular assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
44
+ page_content=' We claim that Auto-Assembly is the first proposed frame- work that can generate and execute robotic assembly process for an arbitrary input CAD design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
45
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
46
+ page_content=' PROBLEM STATEMENT AND METHOD OVERVIEW The main objective of our work is to create a framework that enables a closed loop between design and robotic manu- facturing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
47
+ page_content=' A target framework should analyse the design and provide a simulation of assembly, executable programs (when possible) and other feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
48
+ page_content=' The primary aim of the feedback is to help in adapting the design and manufacturing to better correspond to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
49
+ page_content=' The feedback we should provide can be split into two categories: Successful simulation and its’ artefacts can be directly used to decide on physical manufacturing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
50
+ page_content=' Users can choose between different processes to choose the one, based on the key performance indicators (KPI) they want to optimize: time, tooling price, energy consumption, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
51
+ page_content=' In case of a failure, the system should provide all neces- sary feedback that helps to change the design, robot’s position, choose the robots with better parameters or different cell configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
52
+ page_content=' Such feedback can be: failed operations, missing appropriate tooling, parts or tools in collision, unreachable states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
53
+ page_content=' To achieve this, we implement a framework described in detail in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
54
+ page_content=' Section IV-A gives an overview of our system and its components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
55
+ page_content=' Section IV-B discusses 3D modelling of the assembly design files that form the base of our data extraction pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
56
+ page_content=' Section IV-C reviews the usage of this extracted data to produce a set of possible assembly sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
57
+ page_content=' Each operation in the assembly sequence is enriched with tooling information as discussed in section IV-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
58
+ page_content=' Finding a specific cell that contains all the resources like jigs, robots, and their tooling, etc to execute all the operations needed for an assembly is explained in section IV-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
59
+ page_content=' Section IV-F tells about the generation of the control code that moves the robots to grasp, place and fasten parts in a cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
60
+ page_content=' In section V, we test our framework on different assemblies and discuss the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
61
+ page_content=' In section VI, we review our findings from the experiments and future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
62
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
63
+ page_content=' FRAMEWORK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
64
+ page_content=' System architecture Auto-Assembly framework can be divided into two parts as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
65
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
66
+ page_content=' The first part, called ”Artefacts generation”, works with CAD files provided by a design engineer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
67
+ page_content=' It is intended to run once on the input data and provide artefacts, which can then be stored and re-used to run the assembly process in the simulated and physical environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
68
+ page_content=' This part includes Assembly Sequence Generation, Tool and Cell Matching, Bill-of-Process (BOP) Generation and Control Code generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
69
+ page_content=' The second part can be seen as a deployed environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
70
+ page_content=' It is represented as a system where we have many services, providing “abilities” which can be called from the domain- specific Process language (PL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
71
+ page_content=' An example of the PL script can be seen in a Listing 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
72
+ page_content=' Here we describe the most important services and their respective abilities: Robot Controller – Abilities to control the robots on a low level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
73
+ page_content=' As input, it takes a trajectory as a list of a robot’s joint states, and as output, interpolates the trajectory and moves the robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
74
+ page_content=' – Abilities to control tooling connected to the robot, like grippers, screwdrivers, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
75
+ page_content=' Motion Planner – Ability to plan a trajectory in the cell to move a robot to a target pose with cell objects taken as the collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
76
+ page_content=' Jig Controller – Ability to return a pose of a part in a jig with respect to the jig origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
77
+ page_content=' Assembly Service – Ability to retrieve the information about fasteners and resulting parts’ pose with respect to the cell origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
78
+ page_content=' Transform Service – Ability to get the position of any object inside a cell with respect to any object in the cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
79
+ page_content=' 3D Simulator – Abilities to load objects from cell description and visualize cell state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
80
+ page_content=' Database and Message Bus – Abilities to publish and retrieve JSON objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
81
+ page_content=' This component is used as a message bus and data storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
82
+ page_content=' All system parts exchange the data in a special format called Factory Control Model (FCM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
83
+ page_content=' It can be considered as a schema and also is a vital part of our system since it lets all the components speak the same language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
84
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
85
+ page_content=' CAD Data Preparation and Extraction For any given assembly, our framework needs two design files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
86
+ page_content=' Design file containing part assembly with joints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
87
+ page_content=' Fasten- ers are labelled as separate joints in order to distinguish them from other parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
88
+ page_content=' Design file containing the jigs and gripper at different stages of assembly like grasping, placing, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
89
+ page_content=' The examples of these files for an assembly are depicted in Figs 6 and 7 and are created by us in Fusion 360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
90
+ page_content=' Our method is CAD-software agnostic as long as we can extract the CAD data using an API.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
91
+ page_content=' From the design file in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
92
+ page_content=' 6, we extract the joints and part occurrences information using Fusion 360 API [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
93
+ page_content=' Using this data, a joint register is created that maps every joint to its parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
94
+ page_content=' The joint register follows the FCM schema.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
95
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
96
+ page_content=' 2: System architecture Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
97
+ page_content=' 3: Listing of PL-code implementing high-level of robot control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
98
+ page_content=' Abilities get cell state and plan trajectory are imple- mented by Motion Planner and execute trajectory by Robot Controller From the design file in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
99
+ page_content=' 7, we extract the pose of gripper occurrence relative to the part during grasping it from the jig and placing it at the assembly state using the Fusion 360 API.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
100
+ page_content=' We call this data as recipes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
101
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
102
+ page_content=' Assembly Sequence Generation A CAD design contains a lot of important information about the part’s geometries, relations, and absolute poses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
103
+ page_content=' But what it lacks - the right assembling order - is the key information to move towards the assembled product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
104
+ page_content=' Assembly sequence encodes the order of operations needed to be performed on parts by the robotic cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
105
+ page_content=' Although the operations can be executed sequentially, assembly sequences are represented by polytree (directed acyclic graph whose underlying undirected graph is a tree).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
106
+ page_content=' Not any such tree represents a valid and feasible assembly sequence: only directly joined parts should be neighbours;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
107
+ page_content=' the order of operations should take into account the geometrical limitations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
108
+ page_content=' the number of generated assembly sequences should be reasonably limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
109
+ page_content=' Naturally, it grows exponentially with the number of parts involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
110
+ page_content=' This makes it hard to check all the generated sequences to pick the best one according to some criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
111
+ page_content=' The assembly sequence generation step aims to solve all three aforementioned issues, providing a limited number of valid sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
112
+ page_content=' The whole process can be divided into three steps: a liaison graph generation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
113
+ page_content=' assembly sequences generation based on the obtained liaison graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
114
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
115
+ page_content='Artefacts generation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
116
+ page_content='CAD file: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
117
+ page_content='parts geometries ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
118
+ page_content='Assembly ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
119
+ page_content='joints ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
120
+ page_content='Sequence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
121
+ page_content='labelling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
122
+ page_content='Assembly ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
123
+ page_content='CAD Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
124
+ page_content='BOP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
125
+ page_content='Control Code ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
126
+ page_content='Sequences ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
127
+ page_content='Extraction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
128
+ page_content='generation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
129
+ page_content='Generation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
130
+ page_content='CAD file: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
131
+ page_content='Generation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
132
+ page_content='tooling placing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
133
+ page_content='3D-model files ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
134
+ page_content='absolute ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
135
+ page_content='BOP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
136
+ page_content='jigs placing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
137
+ page_content='positions and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
138
+ page_content='occurrencesof ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
139
+ page_content='parts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
140
+ page_content='Tool and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
141
+ page_content='joints ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
142
+ page_content='fastening ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
143
+ page_content='Cell ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
144
+ page_content='features ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
145
+ page_content='Matching ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
146
+ page_content='recipes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
147
+ page_content='Artefacts set ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
148
+ page_content='Objects ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
149
+ page_content='FCM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
150
+ page_content='PL script ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
151
+ page_content='objects ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
152
+ page_content='geometries ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
153
+ page_content='Deploy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
154
+ page_content='graph ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
155
+ page_content='Physical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
156
+ page_content='PL script ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
157
+ page_content='Parts ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
158
+ page_content='FCM objects ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
159
+ page_content='Best Run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
160
+ page_content='environment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
161
+ page_content='geometries ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
162
+ page_content='graph ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
163
+ page_content='Selection ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
164
+ page_content='Unsuccessful simulation runloop ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
165
+ page_content='deploy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
166
+ page_content='Succesful run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
167
+ page_content='Databaseand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
168
+ page_content='artefacts set ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
169
+ page_content='messagebus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
170
+ page_content='Services ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
171
+ page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
172
+ page_content='Robot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
173
+ page_content='Motion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
174
+ page_content='Assembly ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
175
+ page_content='Transform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
176
+ page_content='3D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
177
+ page_content='controller ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
178
+ page_content='planner ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
179
+ page_content='Controller ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
180
+ page_content='Service ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
181
+ page_content='Service ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
182
+ page_content='Simulator1-move_robot_to_position(cell,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
183
+ page_content=' motion_group,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
184
+ page_content=' manipulator_service,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
185
+ page_content=' 2 planning_object,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
186
+ page_content='position,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
187
+ page_content='move_type,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
188
+ page_content=' 3 - ignored_collisions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
189
+ page_content='ignored_collision_pairs)( 4 - rules ( 5 ~ get_cell_state(cell = cell,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
190
+ page_content=' out cell_state = cell_state) 6 - ~plan_trajectory( 7 position= position,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
191
+ page_content=' 8 motion_group=motion_group 9 planning_object= planning_object 10 planning_socket_name="eef",' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
192
+ page_content=' 11 move_type=move_type,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
193
+ page_content=' 12 ignoredcollision pairs = ignored collisionpairs 13 ignored_collisions = ignored_collisions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
194
+ page_content=' 14 cell_state = cell_state,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
195
+ page_content=' 15 out result_motion_plan= trajectory 16 ) 17 execute_trajectory(trajectory = trajectory) 18 } seq 19 - constraints ( 20 execute_trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
196
+ page_content=' @provider_id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
197
+ page_content='resource_id== @manipulator_service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
198
+ page_content='id 21 22• geometry feasibility checking based on parts geometries This approach we used is described in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
199
+ page_content=' Further, the high- level steps, important implementation details, and differences with the original paper are described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
200
+ page_content=' 1) Liaison graph generation: The CAD file consists of the individual parts combined together with joints and fasteners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
201
+ page_content=' The information about the joints is crucial to accurately determine parts connectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
202
+ page_content=' Considering the parts as liaison graph nodes, connectivity information transfers into edges in this graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
203
+ page_content=' We extracted the information about joints and fasteners from the design in CAD software to build up a liaison graph to further analyze it and generate assembly sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
204
+ page_content=' 2) Sequences generation: An assembly sequence deter- mines the order of operations on parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
205
+ page_content=' The liaison graph itself, being undirected, doesn’t set the order of operations in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
206
+ page_content=' But the order should be based on the liaison graph since the latter contains the information about the connectivity in the resulting assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
207
+ page_content=' Usually, there are many sequences of operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
208
+ page_content=' [5] describes the approach of extracting all possible assembly sequences from the liaison graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
209
+ page_content=' We followed the suggested approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
210
+ page_content=' 3) Geometry feasibility checking: The geometrical feasibil- ity of an assembly process is the fundamental property, which should be checked first to eliminate irrelevant sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
211
+ page_content=' These irrelevant sequences could contain, for example, one part to be joined with another part, which is trapped already inside the sub-assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
212
+ page_content=' To prevent this, geometrical analysis of sub-assemblies is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
213
+ page_content=' One sub-assembly is translated step- by-step w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
214
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
215
+ page_content='t another sub-assembly in one of chosen directions until the bounding boxes of the sub-assemblies still intersect and the solid bodies’ intersection is checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
216
+ page_content=' If the intersection represents a volume, it’s impossible to join the sub-assemblies in the chosen direction, and the remaining directions should be checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
217
+ page_content=' Choosing the directions of translations alongside step size is important for the result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
218
+ page_content=' Due to the nature of assembly parts and their orientation alignment, directions along the main coordinate axes work well in the tested assemblies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
219
+ page_content=' In other cases, information from joints from the CAD file could be used to determine the potential directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
220
+ page_content=' Step size is computed based on the minimal size of the part across both sub-assemblies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
221
+ page_content=' Precisely, the step size is computed as a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
222
+ page_content='75 ratio of the diagonal of the smallest bounding box part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
223
+ page_content=' The idea behind this value is to exclude the possibility of going completely through the smallest part with a single translation step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
224
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
225
+ page_content=' Tooling Matching The assembly sequence in itself doesn’t require specific tooling models, but this is information is required for the next steps in the assembling process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
226
+ page_content=' Given a graph of the assembly sequence from the previous section, we traverse this graph, considering the type of operation and parts used, assigning all the tooling models and adding recipes to process this operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
227
+ page_content=' To archive this, we extract the following information from the CAD files: For grippers: – Model of the part gripper can be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
228
+ page_content=' – List of positions for grasping the part, calculated with respect to the part origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
229
+ page_content=' We use the information from “joints”, such as JointAxis, to extract the vec- tor of connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
230
+ page_content=' Based on this vector poses are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
231
+ page_content=' – States of digital inputs register to control the gripper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
232
+ page_content=' For jigs: – Model of the part jig can hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
233
+ page_content=' – Position of a part in a jig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
234
+ page_content=' For screwdrivers: – Screw-picking requirements, such as type of screw- holder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
235
+ page_content=' We store this data in Tooling Database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
236
+ page_content=' In our approach Tooling Database is a storage with an API which allows adding, matching and visualizing of the tooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
237
+ page_content=' By analyzing the dataset of the tooling used in physical world production in the automotive field, we concluded that the same information is stored in the tooling design files and propagated to the tooling integration in the physical cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
238
+ page_content=' We decided to formalize the requirements and then store this data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
239
+ page_content=' For the cases where it can’t be calculated from the design files, we can manually put that information into the tooling database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
240
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
241
+ page_content=' Cell matching Cell description includes all the information representing an assembly cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
242
+ page_content=' Cell description is used to deploy both environments (virtual and physical) and to choose a cell to execute Assembly Sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
243
+ page_content=' We topologically sort a graph of the Assembly Sequence and assign a level for every operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
244
+ page_content=' The level is required to assign resources for the parallel operations when we should use different resources of the same model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
245
+ page_content=' Then by traversing each operation, we check the resources’ models required for this operation and find their representation in the cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
246
+ page_content=' If there are no cells satisfying all the resource requirements for the Assembly Sequence, we fail, providing feedback with the exact operation and the resources model we were not able to assign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
247
+ page_content=' As a result of the execution of the described algorithm, we have an assembly sequence to be converted into a BOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
248
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
249
+ page_content=' Control code generation For each operation in the BOP, we match a specific PL- script, which is self-containing to perform this type of oper- ation, and pass the operation, its resources and parts as the parameters, creating one PL-script, to assemble a product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
250
+ page_content=' An example of PL-script implementing unload operation is presented on the Listing 4 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
251
+ page_content=' EXPERIMENTS AND RESULTS The objectives of our experiments are: To evaluate the framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
252
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
253
+ page_content=' 4: Listing of PL-code for unload operation To evaluate the assembly BOPs in the physical environ- ment to provide metrics and feedback on the assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
254
+ page_content=' The assembly we chose to test is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
255
+ page_content=' 6 and its tooling, and jig design are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
256
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
257
+ page_content=' Data Preparation: – we extract the joint register and recipes as mentioned in section IV-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
258
+ page_content=' – taking the joint register and part models files, as- sembly sequence generator produced 8 assembly sequences for this assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
259
+ page_content=' These sequences are mentioned in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
260
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
261
+ page_content=' – we enrich the assembly sequences using tool match- ing mentioned in section IV-D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
262
+ page_content=' – we convert the enriched assembly sequences to BOP using cell matching as mentioned in section IV-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
263
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
264
+ page_content=' 5: A diagram of assembly sequences generation process for the design used in the experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
265
+ page_content=' Square blocks represent parts while circles represent (sub-)assemblies(D and E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
266
+ page_content=' The possible sequences are Left: ABDC, BADC, CABD, CBAD and Right: BCEA, CBEA, ABCE, ACBE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
267
+ page_content=' Scene Preparation: Before starting the assembly, if it’s a simulated environment, the jigs are unloaded at the same poses as in the physical world in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
268
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
269
+ page_content=' If it’s the physical environment, the jigs and parts are placed in their respective poses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
270
+ page_content=' Simulation Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
271
+ page_content=' 6: A simple assembly containing 3 parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
272
+ page_content=' Profiles: A, C and connector: B Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
273
+ page_content=' 7: Assembly Design file showing the assembly jig, custom-designed gripper adapters, grasping, and insertion states of the gripper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
274
+ page_content=' Assembly state: Center of the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
275
+ page_content=' Jig state: Top and bottom right of the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
276
+ page_content=' 1) Start simulation deployment with services and a database and message bus instance as mentioned in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
277
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
278
+ page_content=' 2) We trigger execution of the PL code, which starts from running operations of type ”unload” on input parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
279
+ page_content=' This operation effectively initializes part in- stances on respective positions in the input jigs, so that the parts are now represented in the digital twin of the cell, as active objects with poses, visible for the simulator as well as for the motion planner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
280
+ page_content=' 3) The rest of the PL code is executed, sequentially reading necessary gripper positions, planning and executing trajectories, and triggering gripper control programs for grasping/releasing/fastening, all by calling respective PL functions that use abilities of underlying systems described in IV-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
281
+ page_content=' 4) The user can observe the execution of assembly in the 3D simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
282
+ page_content=' During the execution of the assembly process, the motion planner gives us direct feedback, on whether it can reach a certain pose in the assembly or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
283
+ page_content=' For our example assembly, the initial results were the following: – Of all the possible 8 assembly sequences, only one assembly sequence (ABDC) passed through the cell matching, as the cell resource descriptions (in this case jigs) support this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
284
+ page_content=' Many sequences get filtered 1- unload_operation(operation, cell, jig, out part_instance_id)( 2- rules { 3 ~ ~ read_fcm#find_part( 4 object_id = @operation, 5 level = 2, 6 format ="array" 7 object_filters=[{"path":"type","operation":"EQ","value":"part"}] 8 link_filters=[{"path":"type","operation":"EQ","value":"uses"}], 9 out id = part) 10 - get_part_pose_wrt_jig( 11 jig_id=@jig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
285
+ page_content='id, 12 absoccurrenceid=@part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
286
+ page_content='abs_occurrence_object, 13 out pose_from_jig) 14 - ~ unload_part( 15 part_object = @part, 16 cell_object = @cell, 17 pose = @pose_from_jig, 18 out part_instance_id) 19 seq 20 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
287
+ page_content='assembly assembly C D A E 1 I A B B cC AQ0060000600000000000 0000000060000000000 Q0000000000000000 e00000000000000 Q00000000 00000008 9000000000000 000000 00000000000 000000000 0000000 00000 00000000 QC0000000000000 0000000000 0000000 0000000 QDO0000000008based on the cell resources (jigs, robot tooling, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
288
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
289
+ page_content=' All the sequences for any given assembly are fea- sible, if the cell has the resources to hold sub- assemblies, For example, the assembly sequence CABD is possible when the cell has the jig that supports moving part C first to the assembly pose, then creating a sub-assembly D by moving parts A and B in the same order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
290
+ page_content=' Now the question here is, how to make the decision on which resources in this case jigs are needed to be designed to hold the sub- assemblies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
291
+ page_content=' If there are cycles in the graph, multiple BOPs pass through the cell matching which needs the same cell resources, which enables us to simulate and select the best one based on the metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
292
+ page_content=' – We also noticed that our initial design failed due to fastening robot reachability, we took this feedback from the framework and changed the fastening posi- tion in the assembly to assemble a product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
293
+ page_content=' To adjust the design, we changed the positions of the screws in the assembly to other holes without losing the structure stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
294
+ page_content=' After this design adjustment, we were able to successfully simulate the one feasible assembly sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
295
+ page_content=' This is one of the main features of the proposed frame- work - to get this kind of feedback about the prod- uct/tooling/cell design compatibility as soon as possible with minimal manual input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
296
+ page_content=' Running assembly on physical robotic cell: Once we find an assembly sequence that passes in the simulation, we can proceed to the physical assembly process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
297
+ page_content=' This is achieved by running the same generated PL code as before but now in a physical robotic environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
298
+ page_content=' The only thing that differs compared to the previous pipeline in simulation is the first step - deployment of the systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
299
+ page_content=' For a physical assembly we deploy the robot and the gripper drivers to be connected to robots and devices, such that in parallel with updating the state of the digital twin, these controllers will be changing the states of the tools in the physical world, such as robots moving along precomputed trajectories, gripper opening/closing and the screwdriver fastening the screws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
300
+ page_content=' We evaluated this assumption on the physical robotic cell with two collaborative robots the layout of which can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
301
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
302
+ page_content=' The results of these experiments are two folds: 1) On one side, we can see that as soon as the digital twin is accurate enough, all computed gripper positions allow performing most of the operations, such as picking a screw, grasping and releasing a part, and in some cases to fasten a screw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
303
+ page_content=' 2) On another side, some operations show that an ac- cumulated tolerance stack of robot calibration, tool accuracy, and parts accuracy leads to the inability to perform the joint operation such as fastening successfully, and the screwing position requires cor- rection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
304
+ page_content=' The example of running assembly in the virtual and phys- ical environments can be seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
305
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
306
+ page_content=' The process of assembly of the provided CAD by running the generated PL code can be seen in the accompanying video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
307
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
308
+ page_content=' 8: Assembly process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
309
+ page_content=' Left: Physical environment and Right: Virtual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
310
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
311
+ page_content=' CONCLUSION AND FUTURE SCOPE In this paper, we implemented and tested a framework to run a robotic assembly of a product by using only CAD files as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
312
+ page_content=' We were able to use the feedback provided by the framework to change the original design and achieve successful assembly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
313
+ page_content=' We re-iterated the whole pipeline and transferred the assembly from the virtual to the physical world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
314
+ page_content=' We conclude that this transfer can be done only if the digital twin matches the physical cell precisely, which requires additional work, such as robots and cell calibration, but it’s out of the scope of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
315
+ page_content=' The choice of design of our system proved its flexibility since we were able to analyze and change artefacts produced during the different steps of the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
316
+ page_content=' The system is general enough to support new products and cell configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
317
+ page_content=' The next step is to validate our framework on more complex assemblies, including new types of operations and operations which involve more than two parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
318
+ page_content=' In our experiment, we relied only on the parts’ dimensional precision and the accuracy of the robots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
319
+ page_content=' While it could work for some parts, and partially worked in our case, it would likely fail on many other parts and materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
320
+ page_content=' To address this problem, computer vision and other perception methods should be introduced into the framework to deal with variations in the real assembly process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
321
+ page_content=' In the section IV-C3 the constraint we chose could lead to some possible assembly sequences being rejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
322
+ page_content=' To solve this issue, we plan to implement a geometrical feasibility check based on joints from the CAD files or other optimization algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
323
+ page_content=' The method used in the section IV-E can lead to a sub- optimal configuration or even to setups where some robots can’t reach parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
324
+ page_content=' This approach was chosen as the easiest to track and implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
325
+ page_content=' In future works, we plan to implement a more sophisticated scheduling algorithm based on geometrical and utilization constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
326
+ page_content=' REFERENCES [1] Henrioud, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
327
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
328
+ page_content=', and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
329
+ page_content=' Bourjault.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
330
+ page_content=' ”Computer aided assembly process planning.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
331
+ page_content='1 (1992): 61-66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
332
+ page_content=' [2] Thoben, Klaus-Dieter, Stefan Wiesner, and Thorsten Wuest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
333
+ page_content=' ”“Industrie 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
334
+ page_content='0” and smart manufacturing-a review of research issues and application examples.” International journal of automation technology 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
335
+ page_content='1 (2017): 4-16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
336
+ page_content=' [3] Masters ”Computer automated manufacturing process and system” U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
337
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
338
+ page_content=' Patent 4,665,492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
339
+ page_content=' (1984) [4] Deepak, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
340
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
341
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
342
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
343
+ page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
344
+ page_content=' ”Assembly sequence planning using soft computing methods: a review.” Proceedings of the Institution of Me- chanical Engineers, Part E: Journal of Process Mechanical Engineering 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
345
+ page_content='3 (2019): 653-683.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
346
+ page_content=' [5] Vigano‘, Roberto, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
347
+ page_content=' ”Assembly planning with automated re- trieval of assembly sequences from CAD model information” DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
348
+ page_content='1108/01445151211262410 [6] Zhang, Jie, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
349
+ page_content=' ”Automatic assembly simulation of product in virtual environment based on interaction feature pair.” Journal of Intelligent Manufacturing 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
350
+ page_content='6 (2018): 1235-1256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
351
+ page_content=' [7] Grieves, Michael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
352
+ page_content=' ”Digital twin: manufacturing excellence through vir- tual factory replication.” White paper 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
353
+ page_content='2014 (2014): 1-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
354
+ page_content=' [8] J¨arvenp¨a¨a, Eeva, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
355
+ page_content=' ”The development of an ontology for describ- ing the capabilities of manufacturing resources.” Journal of Intelligent Manufacturing 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
356
+ page_content='2 (2019): 959-978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
357
+ page_content=' [9] Lemaignan, Severin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
358
+ page_content=' ”MASON: A proposal for an ontology of manufacturing domain.” IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS’06).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
359
+ page_content=' IEEE, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
360
+ page_content=' [10] Rust, Romana, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
361
+ page_content=' ”COMPAS FAB: Robotic fabrication package for the COMPAS Framework” Gramazio Kohler Research, ETH Zurich.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
362
+ page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
363
+ page_content='com/compas-dev/compas fab (2018) [11] Sierla, Seppo, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
364
+ page_content=' ”Automatic assembly planning based on digital product descriptions.” Computers in Industry 97 (2018): 34-46 [12] Drath, Rainer, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
365
+ page_content=' AutomationML: the industrial cookbook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
366
+ page_content=' Walter de Gruyter GmbH & Co KG, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
367
+ page_content=' [13] Beck, Joshua, Alexander Neb, and Katharina Barbu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
368
+ page_content=' ”Towards a CAD- based Automated Robot Offline-Programming Approach for Disassem- bly.” Procedia CIRP 104 (2021): 1280-1285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
369
+ page_content=' [14] Octopuz® https://octopuz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
370
+ page_content='com [15] Huang, Yijiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
371
+ page_content=' Automated motion planning for robotic assembly of discrete architectural structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
372
+ page_content=' Diss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
373
+ page_content=' Massachusetts Institute of Tech- nology, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
374
+ page_content=' [16] Autodesk® Fusion 360® https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
375
+ page_content='autodesk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
376
+ page_content='com/' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE0T4oBgHgl3EQfxQFJ/content/2301.02643v1.pdf'}
_NE1T4oBgHgl3EQf8gXW/content/tmp_files/2301.03547v1.pdf.txt ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ON PERTURBATIONS RETAINING CONSERVATION
2
+ LAWS OF DIFFTRENTIAL EQUATIONS
3
+ ALEXEY SAMOKHIN
4
+ Abstract. The paper deals with perturbations of the equation
5
+ that have a number of conservation laws. When a small term is
6
+ added to the equation its conserved quantities usually decay at in-
7
+ dividual rates, a phenomenon known as a selective decay. These
8
+ rates are described by the simple law using the conservation laws’
9
+ generating functions and the added term. Yet some perturbation
10
+ may retain a specific quantity(s), such as energy, momentum and
11
+ other physically important characteristics of solutions. We intro-
12
+ duce a procedure for finding such perturbations and demonstrate
13
+ it by examples including the KdV-Burgers equation and a system
14
+ from magnetodynamics. Some interesting properties of solutions
15
+ of such perturbed equations are revealed and discussed.
16
+ Keywords: conservation laws, perturbed equations, selective de-
17
+ cay, traveling waves.
18
+ MSC[2010]: 35Q53, 35B36.
19
+ 1. Introduction
20
+ Many physical systems are modeled using equations that have a sig-
21
+ nificant number of conservation laws. Yet when an additional (usually
22
+ dissipative) term is added to the equation its conserved quantities decay
23
+ at individual rates, which are connected to their generating functions
24
+ [1]. The famous example is the KdV equation (it has infinitely many
25
+ conservation laws) and the KdV-Burgers equation (with additional,
26
+ with respect to KdV, dissipative term and only one conservation law).
27
+ To be precise let E(u) = 0 be a system of equations describing an
28
+ ideal (unperturbed) media state. A scalar H depending on u and its
29
+ derivatives is a conservation law if for ⟨H⟩, the integral of H over some
30
+ fixed spatial domain, ∂⟨H⟩
31
+ ∂t
32
+ ����
33
+ E
34
+ = 0.
35
+ For the perturbed equation the quantity H is constant no more and
36
+ ∂⟨H⟩
37
+ ∂t
38
+ ̸= 0 is called the decay rate of H, cf. [2].
39
+ A perturbed state usually satisfies the equation E(u) + LF(u) = 0,
40
+ where L is a small parameter diagonal matrix diag(λi); for L = 0 we
41
+ get the ideal state equation. The decay rate depends on the additional
42
+ term L F(u). The connection between decay rate and LF(u) was called
43
+ a ’balance law’ in [3].
44
+ 1
45
+ arXiv:2301.03547v1 [nlin.PS] 9 Jan 2023
46
+
47
+ 2
48
+ ALEXEY SAMOKHIN
49
+ This law expresses ∂t⟨H⟩ in terms of scalar product of LF(u) and
50
+ the generating function g of the conserved quantity H, [1]:
51
+ ∂⟨H⟩
52
+ ∂t
53
+ = ⟨g · LF⟩
54
+ (1)
55
+ Remarks
56
+ • The right-hand side of (1) is not unique: e.g, one can get a
57
+ different but equivalent form integrating by parts.
58
+ • In the case of the integrand in the right-hand side of (1) is null or
59
+ an exact form we get the situation when the conserved quantity
60
+ ⟨H⟩ is conserved as well for the correspondent perturbed state.
61
+ • Let us restrict considerations to R[u], the ring of differential
62
+ polynoms of u. Then all perturbations F retaining the conser-
63
+ vation law with the generating function g must satisfy
64
+ g · LFdx1 . . . dxn ∈ Im(d),
65
+ where d : Λn−1 → Λn and Λk are k-forms of spatial variables.
66
+ Of course, the intersection of the principal ideal g · R[u] with
67
+ Im(d) is huge.
68
+ A considerable difference in decay rates leads to a simple method,
69
+ first discovered by Taylor, [4], for finding quasi-stationary states of
70
+ plasma which are of great practical importance.
71
+ He studied the model where the decay of energy E is monotonic but
72
+ those of momentum M and helicity are not necessarily so. Such an
73
+ inequality in decay rates leads to a distinct physical phenomenon of
74
+ ’self–organization’ or quasi–stable states.
75
+ There exist a very simple procedure for finding solutions of the above
76
+ described behavior. It was suggested in [4], and is known as ’Taylor
77
+ trick’. The procedure is as follows.
78
+ Taking into consideration their comparative decay rates, minimize
79
+ E with M as constrain. Put δ(E + λM = 0), M and presumed con-
80
+ stant, λ being Lagrange multiplier. This Euler–Lagrange equation is
81
+ not necessarily compatible with the initial equation but nevertheless it
82
+ gives a way for good approximations of self-organization phenomena.
83
+ There is a considerable number of publication in the field, see a recent
84
+ paper [5] for recent developments.
85
+ Another application of selective decay is given in [6]. The problem
86
+ is the behavior of the soliton which, while moving in non-dissipative
87
+ and dispersion-constant medium encounters a finite-width barrier with
88
+ varying dissipation and/or dispersion; beyond the layer dispersion is
89
+ constant (but not necessarily of the same value) and dissipation is null.
90
+ The transmitted wave either retains the form of a soliton (though of
91
+ different parameters) or scatters a into a number of them. Using the
92
+ relative decay of the KdV conserved quantities a simple algorithm to
93
+ predict the number and amplitudes of resulting solitons was obtained.
94
+
95
+ ON PERTURBATIONS RETAINING CONSERVATION LAWS
96
+ 3
97
+ In [7] the selective decay approach was applied to some well-known
98
+ equations of mathematical physics (KdV and KdV-Burgers equation,
99
+ BBM and its dissipative generalization, two-dimensional generalized
100
+ shallow water wave equation). It have showed that the Taylor trick
101
+ extremals are associated with first-order PDEs and travelling wave so-
102
+ lutions.
103
+ In this paper we search, for some popular equations, their low-order
104
+ perturbations which retain a chosen conservation law (in a sense that
105
+ the perturbed equation has the same conserved quantity as initial one).
106
+ Examples include KdV and its conserved energy or momentum and the
107
+ Kadomtsev-Pogutse system of equation from magnetohydrodynamics
108
+ with its three known conserved quantities. Some interesting properties
109
+ of solutions of such perturbed equations are revealed and discussed.
110
+ 2. KdV and KdV-Burgers
111
+ The generalized KdV equation (KdV-Burgers equation) considered
112
+ here is of the form
113
+ ut = 2uux + uxxx + λuxx;
114
+ (2)
115
+ The classical KdV equation corresponds to λ = 0.
116
+ The first three conserved quantities for KdV are
117
+ m
118
+ =
119
+ � +∞
120
+ −∞
121
+ u(x, t) dx — mass,
122
+ M
123
+ =
124
+ � +∞
125
+ −∞
126
+ u2(x, t) dx — momentum,
127
+ E
128
+ =
129
+ � +∞
130
+ −∞
131
+
132
+ 2u3(x, t) − 3(ux(x, t))2�
133
+ dx — energy,
134
+ and there are infinite number of them.
135
+ The generating functions for the above conservation laws of the KdV
136
+ are, up to multiplication constants, 1, u and u2 + uxx correspondingly.
137
+ As for the equation (2), it has a form of a conservation law, ut = Fx,
138
+ the ”mass”
139
+ � +∞
140
+ −∞
141
+ u dx is a conserved quantity. For a soliton this mass
142
+ is equal to 12aγ.
143
+ But the impulse ⟨u2⟩ =
144
+ � +∞
145
+ −∞
146
+ u2 dx declines monotonically:
147
+ Mt = 1
148
+ 2⟨u2⟩t = ⟨uut⟩ = ⟨u(u2 + uxx + λux)x⟩ = 2
149
+ 3u3��+∞
150
+ −∞ − u2
151
+ x|+∞
152
+ −∞ − λ⟨u2
153
+ x⟩
154
+ =
155
+ (3)
156
+ By analogy, for the energy
157
+
158
+ 4
159
+ ALEXEY SAMOKHIN
160
+ Et = ⟨
161
+
162
+ 2u3(x, t) − 3(ux(x, t))2�
163
+ ⟩t = 6λ⟨uxx(u2 + uxx)⟩
164
+ (4)
165
+ Thus the energy does not necessary declines.
166
+ 2.1. Transformations of KdV that retain momentum. Now let
167
+ us find perturbations of the form F(u, ux, uxx) that retain momen-
168
+ tum. Accordingly to the remark 2 above, the differential form λu ·
169
+ F(u, ux, uxx)dx must be exact. Thus
170
+ u · F(u, ux, uxx) = Dx(A(u, ux))
171
+ (5)
172
+ for some A(u, ux). Here
173
+ Dx = ∂
174
+ ∂x +
175
+
176
+
177
+ n=0
178
+ uxn+1
179
+
180
+ ∂uxn
181
+ is the operator of the full differentiation with respect to x.
182
+ Below we restrict the search to polynomials of u and its derivatives.
183
+ Then in (5) the polynomial Dx(A(u, ux)) is divisible by u, so A(u, ux) =
184
+ u2B(u, ux).
185
+ On the other hand
186
+ Dx(u2B(u, ux)) = 2uuxB(u, ux) + u2(ux
187
+ ∂B
188
+ ∂u + uxx
189
+ ∂B
190
+ ∂ux
191
+ ).
192
+ Hence the second order retaining momentum perturbation is defined
193
+ by
194
+ F(u, ux, uxx) = 2uxB(u, ux) + u(ux
195
+ ∂B
196
+ ∂u + uxx
197
+ ∂B
198
+ ∂ux
199
+ )
200
+ for an arbitrary B. Note that F is linear in uxx.
201
+ For instance, if B = ux the λ transformation of the KdV equation
202
+ ut = 2uux + uxxx + λ(2u2
203
+ x + uuxx)
204
+ (6)
205
+ retains ⟨u2⟩ as its conserved quantity.
206
+ Remark 1. This construction can be generalized. If g is the gen-
207
+ erating function for some conserved quantity Cl of an one-spational
208
+ equation E, then F = g−1Dx(g2Φ) is the addendum to E which re-
209
+ tains Cl, Φ being a arbitrary function of u and its derivatives.
210
+ Remark 2. The equation (6) has travelling wave solutions, in par-
211
+ ticular shock waves of the form
212
+ 3
213
+
214
+
215
+ a tanh
216
+ �a3λ2 + 3a
217
+ λ2
218
+ t + ax
219
+
220
+ + 1
221
+ λ
222
+
223
+ .
224
+ (7)
225
+ This shock moves to the left. If require u|−∞ = 0 then (7) becomes
226
+ the shock wave
227
+ 3
228
+ 2λ2
229
+
230
+ 1 + tanh
231
+ � 4
232
+ λ2t + 1
233
+ λx
234
+ ��
235
+
236
+ ON PERTURBATIONS RETAINING CONSERVATION LAWS
237
+ 5
238
+ with the velocity 4/λ, see figure 1, left.
239
+ Figure 1. The travelling wave solution
240
+ Left: for the equation (6). Right: For the equation (9),
241
+ a = 1/2; λ = 1.
242
+ Remark 4. The perturbed equation has only translations in x and
243
+ t as its point symmetries, but a lot of conservation laws.
244
+ 2.2. Transformations of KdV that retain energy. Now for energy
245
+ saving transformations of KdV. Since the generating function of energy
246
+ is, up to a constant multiplier, u2 + uxx, one must solve
247
+ (u2 + uxx) · F(u, ux, uxx, uxxx) = Dx(A(u, ux, uxx))
248
+ (8)
249
+ for some A(u, ux, uxx), to find an low-order F(u, ux, uxx), the suitable
250
+ transformation term. By analogy to the momentum case, the one pos-
251
+ sibility is A = (u2 + uxx)2B
252
+ F(u, ux, uxx) = 2Dx(u2+uxx)B+(u2+uxx)(ux
253
+ ∂B
254
+ ∂u +uxx
255
+ ∂B
256
+ ∂ux
257
+ +uxxx
258
+ ∂B
259
+ ∂uxx
260
+ ),
261
+ for an arbitrary B = B(u, ux, uxx). If B = u then F = 5u2ux+2uuxxx+
262
+ uxuxx
263
+ The corresponding transformed equation is
264
+ ut = 2uux + uxxx + λ(5u2ux + 2uuxxx + uxuxx).
265
+ (9)
266
+ Its point symmetries are only translations in x and t.
267
+ Remark 5. The equation (9) has travelling wave solutions, in par-
268
+ ticular — solutons of the form of a vertically shifted soliton
269
+ u(x, t) = −6a2 tanh2(a(4a4·λt+x))+4a2 = 6a2 sech2(a(4a4·λt+x))−2a2
270
+ (10)
271
+ found by Maple, with the velocity V = 4a4λ, see figure 1, right.
272
+
273
+ 6
274
+ ALEXEY SAMOKHIN
275
+ Yet it is not the whole answer. Computer experiments demonstrate
276
+ that an arbitrary initial datum for this equation scatters into a number
277
+ of solitary peaks of different but constant height and velocity and a ’tail’
278
+ (see figures 2 and 3) — in a manner of the KdV itself, cf. [6].
279
+ Figure 2. Left: Initial profile 1.5 sech2(0.5x) for the
280
+ equation (9), λ = 1.
281
+ Right: Resulting profile at t = 6: single soliton-like
282
+ peak of a constant form and velocity and an oscillating
283
+ tail moving in opposite direction
284
+ Figure 3. Left: Initial profile sech2(0.1x) for the equa-
285
+ tion (9), λ = 1.
286
+ Right: Resulting profile at t = 40: multiple soliton-like
287
+ peaks of a constant form and velocity and (seemingly)
288
+ no tail.
289
+ The analytical description of these peaks is so far unknown. The
290
+ reason is that the equation on travelling waves, u = u(x + V t), here
291
+ V u′ = 2uu′ + u′′ + λ(5u2u′ + 2uu′′′ + u′u′′
292
+ can be readily integrated introducing the new dependent variable u′ =
293
+ p(u) which leads to a linear first order ordinary differential equation on
294
+ z(u) = p(u)p′(u),
295
+ (2uλ + 1)z′ + λz = V − 5λu2 − 2u.
296
+
297
+ ON PERTURBATIONS RETAINING CONSERVATION LAWS
298
+ 7
299
+ But the resulting general solution looks hopelessly implicit. The likes
300
+ of (10) arise in the case of a very special combination of the arbitrary
301
+ constants entering this general solution, and such combinations are
302
+ hard to discover.
303
+ 3. Two-dimensional MHD System
304
+ Consider the Kadomtsev-Pogutse sysnem of equations
305
+
306
+ ∆ut + ux∆uy − uy∆ux + vy∆vx − vx∆vy
307
+ =
308
+ 0
309
+ vt + uxvy − uyvx
310
+ =
311
+ 0
312
+ (11)
313
+ which describes quasi-stationary states of plasma. It has three conser-
314
+ vation laws, that is there are three non–trivial conserved densities (two
315
+ of them depending on arbitrary functions): the total energy E (mag-
316
+ netic plus kinetic energy), generalized ’cross helicity’ Hc and mean
317
+ magnetic potential A,
318
+ E
319
+ =
320
+ 1
321
+ 2⟨u2
322
+ x + u2
323
+ y + v2
324
+ x + v2
325
+ y⟩
326
+ H
327
+ =
328
+ ⟨f ′(v) · (uxvx + uyvy)⟩
329
+ A
330
+ =
331
+ ⟨Φ(v)⟩
332
+ (12)
333
+ Their generating functions are, respective order,
334
+
335
+ u
336
+ ∆v
337
+
338
+ ,
339
+
340
+ f(v)
341
+ f ′(v)∆u
342
+
343
+ ,
344
+
345
+ 0
346
+ Φ′(v)
347
+
348
+ (13)
349
+ where f and Φ are arbitrary functions.
350
+ Let us seek transformations of (11) of the form
351
+
352
+ ∆ut + ux∆uy − uy∆ux + vy∆vx − vx∆vy
353
+ =
354
+ νF(u, v)
355
+ vt + uxvy − uyvx
356
+ =
357
+ ηG(u, v)
358
+ (14)
359
+ Here F, G are functions of u(x, y, t), v(x, y, t) and their derivatives.
360
+ 3.1. Energy-retaining transformations. In this instance
361
+ ∂⟨E⟩/∂t = 0 implies
362
+ (−νu · F − η∆v · G)dx ∧ dy = d(A(u, v)dy − B(u, v)dx) =
363
+ (DxA(u, v) + DyB(u, v))dx ∧ dy.
364
+ (15)
365
+ There are a lot of solutions to (15). We restrict ourselves to some
366
+ low-order examples.
367
+ 3.1.1. Ortogonal transformations. One can always get zero right hand
368
+ side in equation (15): just put F = η∆ and G = −νu. The vector
369
+ (F, G) is orthogonal to the generating function so ∂⟨E⟩/∂t = 0. It
370
+ works if the number of any system of equations is greater than one.
371
+
372
+ 8
373
+ ALEXEY SAMOKHIN
374
+ 3.1.2. Splitted sum transformations. Another solution may be obtained
375
+ assuming
376
+ − νu · F(u, v) = DxA(u, v),
377
+ η∆v · G(u, v) = DyB(u, v).
378
+ (16)
379
+ Here again A, B are functions of u(x, y, t), v(x, y, t) and their deriva-
380
+ tives. This equations may be solved by analogy to the KdV case.
381
+ One of numerous solutions here is A = νun,
382
+ B = η(∆v)2, so F =
383
+ −νnun−2ux, G = 2η∆vy
384
+ 3.1.3. {ν = η}—case transformations. Take A = Gvx, B = Gvy.
385
+ Then uF = vxDxG + vyDyG. For instance, choose G = u2; it fol-
386
+ lows that F = 2(uxvx + uyvy).
387
+ 3.2. Mean magnetic potential retaining transformations. Here
388
+ ∂⟨A⟩/∂t = 0 implies
389
+ (−ν0 · F − ηΦ′(v) · G)dx ∧ dy = d(A(u, v)dy − B(u, v)dx) =
390
+ (DxA(u, v) + DyB(u, v))dx ∧ dy.
391
+ (17)
392
+ Thus F is an arbitrary function. Then one possible solution is
393
+ −ηΦ′(v) · Φ(v)(αvx + βvy) = DxαΦ2 + DyβΦ2, α, β ∈ R.
394
+ That is, to retain the mean magnetic potential of (11), its first equation
395
+ may be transformed in arbitrary way and the second one by ηG =
396
+ −ηΦ(v)(αvx + βvy) for all α, β ∈ R.
397
+ 3.3. Cross helicity retaining transformations. Here ∂⟨Hc⟩/∂t = 0
398
+ implies
399
+ −νf(v)·F(u, v)−ηf ′(v)∆(u)·G(u, v) = DxA(u, v)+DyB(u, v). (18)
400
+ In the case ηη = ν it is not hard to find some suitable transformations
401
+ (F, G). Namely, take
402
+ A = −ηf 2(v)f ′(v)ux, B = −ηf 2(v)f ′(v)uy;
403
+ It follows
404
+ F = [2f ′2(v) + f(v)f ′′(v)](vxux + uyvy), G = f ′(v)f(v)∆u.
405
+ For f(v) = v it comes to
406
+ F = −2η(vxux + uyvy) G = −ηv∆u.
407
+
408
+ ON PERTURBATIONS RETAINING CONSERVATION LAWS
409
+ 9
410
+ Conclusion
411
+ The paper deals with perturbations of the equation that have a num-
412
+ ber of conservation laws. When a small term is added to the equation
413
+ its conserved quantities usually decay at individual rates, a phenome-
414
+ non known as a selective decay. These rates are described by the simple
415
+ law using the conservation laws’ generating functions and the added
416
+ term. Yet some perturbation may retain a specific quantity(s), such
417
+ as energy, momentum and other physically important characteristics
418
+ of solutions. We introduced a procedure for finding such perturbations
419
+ and demonstrated it by examples including the KdV-Burgers equation
420
+ and a system from magnetodynamics.
421
+ Our worked out examples show that the perturbed equations retain-
422
+ ing a specific conservation law frequently also retain additional alge-
423
+ braic properties such as travelling wave solutions or a presence of other
424
+ conservation laws.
425
+ Thus the present paper as well as [5] and our previous research of
426
+ the KdV solitons in nonhomogeneous media, [6], persuades that the
427
+ selective decay approach is a valid and effective instrument to obtain
428
+ qualitative approximations and estimates for behavior of solutions.
429
+ The figures in this paper were generated numerically using Maple
430
+ PDETools package.
431
+ The mode of operation uses the default Euler
432
+ method, which is a centered implicit scheme, and can be used to find
433
+ solutions to PDEs that are first order in time, and arbitrary order in
434
+ space, with no mixed partial derivatives.
435
+ References
436
+ [1] A. V. Samokhin, Decay velocity of conservation laws for nonevolution equa-
437
+ tions,Acta Applicanda Math., v. 41 n. 1, 1–11 (1995)
438
+ [2] A. C. Ting, M. H. Matthaeus, D. Montgomery, Turbulent relaxation processes
439
+ in magnetohydrodynamics Phys. Fluids, v.29, 3261–3274 (1986)
440
+ [3] E. van Groesen, F. Mainardi, Balance laws and centro velocity in dissipative
441
+ systems, J. Math. Phys.v. 31 (11), 2136–2140 (1990)
442
+ [4] J. B. Taylor. Relaxation of toroidal plasma and generation of reverse magnetic
443
+ fields, Phys. Rev.Lett., v. 33, 1139–1141 (1974)
444
+ [5] R. Brecht1, W. Bauer, A. Bihlo, F. Gay-Balmaz, S. MacLachlan. Selective decay
445
+ for the rotating shallow-water equations with a structure-preserving discretiza-
446
+ tion Phys. Fluids, v.33, 116604 (2021); https://doi.org/10.1063/5.0062573
447
+ [6] A. V. Samokhin, The KdV soliton crosses a dissipative and dispersive border,
448
+ Journal of Differential Geometry and its Applications.75, Part A, 11 pages(April
449
+ 2021) https://doi.org/10.1016/j.difgeo.2021.101723
450
+ [7] A. V. Samokhin, Taylor Trick and Travelling Wave Solutions, Lobachevskii
451
+ Journal
452
+ of
453
+ Mathematics,
454
+ 2022,
455
+ 43,
456
+ n.
457
+ 10,
458
+ 2808—2815,
459
+ (2022).
460
+ DOI:
461
+ 10.1134/S1995080222130406
462
+ Institute of Control Sciences of Russian Academy of Sciences 65
463
+ Profsoyuznaya street, Moscow 117997, Russia
464
+ Email address:
465
+ samohinalexey@gmail.com
466
+
_dFIT4oBgHgl3EQf9yvA/content/tmp_files/2301.11408v1.pdf.txt ADDED
@@ -0,0 +1,1425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Proceedings of Machine Learning Research – Under Review:1–20, 2023
2
+ Full Paper – MIDL 2023 submission
3
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
4
+ Alexander Campbell∗1,2
5
+ ajrc4@cl.cam.ac.uk
6
+ Simeon Spasov∗1
7
+ ses88@cl.cam.ac.uk
8
+ Nicola Toschi1
9
+ Pietro Li`o3,4
10
+ 1 Department of Computer Science and Technology, University of Cambridge, United Kingdom
11
+ 2 The Alan Turing Institute, United Kingdom
12
+ 3 University of Rome Tor Vergata, Italy
13
+ 4 A.A. Martinos Center for Biomedical Imaging, Harvard Medical School, United States
14
+ Editors: Under Review for MIDL 2023
15
+ Abstract
16
+ Graphs are a natural representation of brain activity derived from functional magnetic
17
+ imaging (fMRI) data. It is well known that clusters of anatomical brain regions, known as
18
+ functional connectivity networks (FCNs), encode temporal relationships which can serve
19
+ as useful biomarkers for understanding brain function and dysfunction. Previous works,
20
+ however, ignore the temporal dynamics of the brain and focus on static graphs. In this
21
+ paper, we propose a dynamic brain graph deep generative model (DBGDGM) which simul-
22
+ taneously clusters brain regions into temporally evolving communities and learns dynamic
23
+ unsupervised node embeddings. Specifically, DBGDGM represents brain graph nodes as
24
+ embeddings sampled from a distribution over communities that evolve over time.
25
+ We
26
+ parameterise this community distribution using neural networks that learn from subject
27
+ and node embeddings as well as past community assignments. Experiments demonstrate
28
+ DBGDGM outperforms baselines in graph generation, dynamic link prediction, and is com-
29
+ parable for graph classification. Finally, an analysis of the learnt community distributions
30
+ reveals overlap with known FCNs reported in neuroscience literature.
31
+ Keywords: Dynamic graph, generative model, functional magnetic resonance imaging
32
+ 1. Introduction
33
+ Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique pri-
34
+ marily used to measure blood-oxygen level dependent (BOLD) signal in the brain (Huettel
35
+ et al., 2004). A natural representation of fMRI data is as a discrete-time graph, henceforth
36
+ referred to as a dynamic brain graph (DBG), consisting of a set of fixed nodes correspond-
37
+ ing to anatomically separated brain regions and a set of time-varying edges determined by
38
+ a measure of dynamic functional connectivity (dFC) (Calhoun et al., 2014). DBGs have
39
+ been widely used in graph-based network analysis for understanding brain function (Hirsch
40
+ and Wohlschlaeger, 2022; Raz et al., 2016) and dysfunction (Alonso Mart´ınez et al., 2020;
41
+ Dautricourt et al., 2022; Yu et al., 2015).
42
+ ∗ Contributed equally
43
+ © 2023 A. Campbell, S. Spasov, N. Toschi & P. Li`o.
44
+ arXiv:2301.11408v1 [cs.LG] 26 Jan 2023
45
+
46
+ Campbell Spasov Toschi Li`o
47
+ Recently, there is growing interest in using deep learning-based methods for learning
48
+ representations of graph-structured data (Goyal and Ferrara, 2018; Hamilton, 2020). A
49
+ graph representation typically consists of a low-dimensional vector embedding of either the
50
+ entire graph (Narayanan et al., 2017) or a part of it’s structure such as nodes (Grover and
51
+ Leskovec, 2016), edges (Gao et al., 2019), or sub-graphs (Adhikari et al., 2017). Although
52
+ originally formulated for static graphs (i.e. not time-varying), several existing methods have
53
+ been extended (Mahdavi et al., 2018; Goyal et al., 2020), and new ones proposed (Zhou
54
+ et al., 2018; Sankar et al., 2020), for dynamic graphs. The embeddings are usually learnt
55
+ in either a supervised or unsupervised fashion and typically used in tasks such as node
56
+ classification (Pareja et al., 2020) and dynamic link prediction (Goyal et al., 2018).
57
+ To date, very few deep learning-based methods have been designed for, or existing
58
+ methods applied to, representation learning of DBGs. Those that do, tend to use graph
59
+ neural networks (GNNs) that are designed for learning node- and graph-level embeddings
60
+ for use in graph classification (Kim et al., 2021; Dahan et al., 2021). Although node/graph-
61
+ level embeddings are effective at representing local/global graph structure, they are less
62
+ adept at representing topological structures in-between these two extremes such a clusters
63
+ of nodes or communities (Wang et al., 2017). Recent methods that explicitly incorporate
64
+ community embeddings alongside node embeddings have shown improved performance for
65
+ static graph representation learning tasks (Sun et al., 2019; Cavallari et al., 2017). How to
66
+ leverage the relatedness of graph, node, and community embeddings in a unified framework
67
+ for DBG representation learning remains under-explored. We refer to Appendix A for a
68
+ summary of related work.
69
+ Contributions
70
+ To address these shortcomings, we propose DBGDGM, a hierarchical
71
+ deep generative model (DGM) designed for unsupervised representing learning on DBGs
72
+ derived from multi-subject fMRI data. Specifically, DBGDGM represents nodes as embed-
73
+ dings sampled from a distribution over communities that evolve over time. The community
74
+ distribution is parameterized using neural networks (NNs) that learn from graph and node
75
+ embeddings as well as past community assignments.
76
+ We evaluate DBGDGM on multi-
77
+ ple real-world fMRI datasets and show that it outperforms state-of-the-art baselines for
78
+ graph reconstruction, dynamic link prediction, and achieves comparable results for graph
79
+ classification.
80
+ 2. Problem formulation
81
+ We consider a dataset of multi-subject DBGs derived from fMRI data D ≡ G(1:S, 1:T) =
82
+ {G(s, t)}S, T
83
+ s, t=1 that share a common set of nodes V = {v1, . . . , vN} over T ∈ N timepoints
84
+ for S ∈ N subjects. Each G(s, t) ∈ G(1:S, 1:T) denotes a non-attributed, unweighted, and
85
+ undirected brain graph snapshot for the s-th subject at the t-th timepoint. We define a
86
+ brain graph snapshot as a tuple G(s, t) = (V, E(s, t)) where E(s, t) ⊆ V × V denotes an edge
87
+ set. The i-th edge for the s-th subject at the t-th timepoint e(s, t)
88
+ i
89
+ ∈ E(s, t) is defined e(s, t)
90
+ i
91
+ =
92
+ (w(s,t)
93
+ i
94
+ , c(s,t)
95
+ i
96
+ ) where w(s,t)
97
+ i
98
+ is a source node and c(s,t)
99
+ i
100
+ is a target node. We assume each node
101
+ corresponds to a brain region making the number of nodes |V| = V ∈ N fixed over subjects
102
+ and time. We also assume edges correspond to a measure of dFC allowing the number of
103
+ edges |E(s, t)| = E(s, t) ∈ N vary over subjects and time. We further assume there exists
104
+ 2
105
+
106
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
107
+ K ∈ N clusters of nodes, or communities, the membership of which dynamically changes
108
+ over time for each subject. Let z(s, t)
109
+ i
110
+ ∈ [1 : K] denote the latent community assignment of
111
+ the i-th edge for the s-th subject at the t-th timepoint. For each subject’s DBG our aim
112
+ is to learn, in an unsupervised fashion, graph α(s) ∈ RHα, node φ(s, t)
113
+ 1:N = [φ(s, t)
114
+ n
115
+ ] ∈ RN×Hφ,
116
+ and community ψ(s, t)
117
+ 1:K = [ψ(s, t)
118
+ k
119
+ ] ∈ RK×Hψ representations of dimensions Hα, Hφ, Hψ ∈ N,
120
+ respectively, for use in a variety of downstream tasks.
121
+ 3. Method
122
+ Figure 1: Plate diagram for DBGDGM. La-
123
+ tent and observed variables are denoted by
124
+ white-and gray-shaded circles, respectively.
125
+ Solid black squares denote non-linear map-
126
+ pings parameterized by NNs.
127
+ DBGDGM defines a hierarchical deep gen-
128
+ erative model and inference network for
129
+ the end-to-end learning of graph, node,
130
+ and community embeddings from multi-
131
+ subject DBG data. Specifically, DBGDGM
132
+ treats the embeddings and edge commu-
133
+ nity assignments as latent random vari-
134
+ ables collectively denoted Ω(s, t) = {α(s),
135
+ φ(s, t)
136
+ 1:N ,
137
+ ψ(s, t)
138
+ 1:K , {z(s, t)
139
+ i
140
+ }E(s, t)
141
+ i=1
142
+ },
143
+ which along
144
+ with the observed DBGs, defines a proba-
145
+ bilistic latent variable model with joint den-
146
+ sity pθ(G1:S, 1:T , Ω1:S, 1:T ).
147
+ 3.1. Generative model
148
+ Graph embeddings
149
+ We begin the gen-
150
+ erative process by sampling graph embed-
151
+ dings from a prior α(s) ∼ pθα(α(s)) imple-
152
+ mented as a normal distribution following
153
+ pθα(α(s)) = Normal(0Hα, IHα)
154
+ (1)
155
+ where 0Hα is a matrix of zeros and IHα is a identity matrix. Each embedding is a vector
156
+ α(s) ∈ RHα representing subject-specific information that remains fixed over time.
157
+ Node and community embeddings
158
+ Next, let φ(s, t)
159
+ n
160
+ ∈ RHφ and ψ(s, t)
161
+ k
162
+ ∈ RHψ denote
163
+ the n-th node and the k-th community embedding, respectively. To incorporate tempo-
164
+ ral dynamics, we assume node and community embeddings are related through Markov
165
+ chains with prior transition distributions φ(s, t)
166
+ n
167
+ ∼ pθφ(φ(s, t)
168
+ n
169
+ |φ(s, t−1)
170
+ n
171
+ , α(s)) and ψ(s, t)
172
+ k
173
+
174
+ pθψ(ψ(s, t)
175
+ k
176
+ |ψ(s, t−1)
177
+ k
178
+ , α(s)). We specify each prior to be a normal distribution following
179
+ pθφ(φ(s, t)
180
+ n
181
+ |φ(s, t−1)
182
+ n
183
+ , α(s)) = Normal(φ(s, t−1)
184
+ n
185
+ , σφIHφ)
186
+ (2)
187
+ pθψ(ψ(s, t)
188
+ k
189
+ |ψ(s, t−1)
190
+ k
191
+ , α(s)) = Normal(ψ(s, t−1)
192
+ k
193
+ , σψIHψ)
194
+ (3)
195
+ where the graph embeddings are used for initializing the means, i.e., φ(s, 0)
196
+ n
197
+ = α(s), ψ(s, 0)
198
+ k
199
+ =
200
+ α(s) and the standard deviations σφ, σψ ∈ R>0 are hyperparameters controlling how smoothly
201
+ each embedding changes between consecutive timepoints.
202
+ 3
203
+
204
+ Campbell Spasov Toschi Li`o
205
+ Edge generation
206
+ We next describe the edge generative process of a graph snapshot
207
+ G(s, t) ∈ G(1:S, 1:T). Similar to Sun et al. (2019), for each edge e(s, t)
208
+ i
209
+ = (w(s, t)
210
+ i
211
+ , c(s, t)
212
+ i
213
+ ) ∈ E(s, t)
214
+ we first sample a latent community assignment z(s, t)
215
+ i
216
+ ∈ [1 : K] from a conditional prior
217
+ z(s, t)
218
+ i
219
+ ∼ pθz(z(s, t)
220
+ i
221
+ |w(s, t)
222
+ i
223
+ ) implemented as a categorical distribution
224
+ pθz(z(s, t)
225
+ i
226
+ |w(s, t)
227
+ i
228
+ ) = Categorical(π(s, t)
229
+ θz
230
+ ),
231
+ π(s, t)
232
+ θz
233
+ = MLPθz(φ(s, t)
234
+ wi
235
+ )
236
+ (4)
237
+ where MLPθz : RHφ → RK is a Lz-layered multilayered perception (MLP) that parame-
238
+ terizes community probabilities using node embeddings indexed by w(s, t)
239
+ i
240
+ . In other words,
241
+ each source node w(s, t)
242
+ i
243
+ is represented as a mixture of communities. A linked target node
244
+ c(s, t)
245
+ i
246
+ ∈ [1 : N] is then sampled from the conditional likelihood c(s, t)
247
+ i
248
+ ∼ pθc(c(s, t)
249
+ i
250
+ |z(s, t)
251
+ i
252
+ ) which
253
+ is also implemented as a categorical distribution
254
+ pθc(c(s, t)
255
+ i
256
+ |z(s, t)
257
+ i
258
+ ) = Categorical(π(s, t)
259
+ θc
260
+ ),
261
+ π(s, t)
262
+ θc
263
+ = MLPθc(ψ(s, t)
264
+ zi
265
+ )
266
+ (5)
267
+ where MLPθc : RHψ → RN is a Lc-layered MLP that parameterizes node probabilities using
268
+ community embeddings indexed by z(s, t)
269
+ i
270
+ . That is, each community assignment z(s, t)
271
+ i
272
+ is
273
+ represented as a mixture of nodes. By integrating out the latent community assignment
274
+ variable
275
+ p(c(s, t)
276
+ i
277
+ |w(s, t)
278
+ i
279
+ ) =
280
+
281
+ z(s, t)
282
+ i
283
+ ∈[1:K]
284
+ pθc(c(s, t)
285
+ i
286
+ |z(s, t)
287
+ i
288
+ )pθz(z(s, t)
289
+ i
290
+ |w(s, t)
291
+ i
292
+ )
293
+ (6)
294
+ we define the likelihood of node c(s, t)
295
+ i
296
+ being a linked neighbor of node w(s, t)
297
+ i
298
+ , in a given
299
+ graph snapshot.
300
+ Factorized generative model
301
+ Given this model specification, the joint probability of
302
+ the observed data and the latent variables can be factorized following
303
+ pθ(G1:S 1:T , Ω1:S,1:T ) =
304
+ S
305
+
306
+ s=1
307
+
308
+ pθα(α(s))
309
+ T
310
+
311
+ t=1
312
+
313
+ V�
314
+ n=1
315
+ pθφ(φ(s, t)
316
+ n
317
+ |φ(s, t−1)
318
+ n
319
+ )
320
+ K
321
+
322
+ k=1
323
+ pθψ(ψ(s,t)
324
+ k
325
+ |ψ(s,t−1)
326
+ k
327
+ )
328
+ E(s, t)
329
+
330
+ i=1
331
+ pθz(z(s, t)
332
+ i
333
+ |φ(s, t)
334
+ wi
335
+ )pθc(c(s, t)
336
+ i
337
+ |ψ(s, t)
338
+ zi
339
+ )
340
+ ��
341
+ (7)
342
+ where θ = {θc , θz} is the set of generative model parameters, i.e., NN weights. The gener-
343
+ ative model of DBGDGM summarized in Appendix B
344
+ 3.2. Inference network
345
+ To learn the embeddings, we must infer the posterior distribution over all latent variables
346
+ conditioned on the observed data pθ(Ω(1:S, 1:T)|G(1:S, 1:T)). However, exact inference is in-
347
+ tractable due the log marginal likelihood requiring integrals that are hard to evaluate, i.e.,
348
+ 4
349
+
350
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
351
+ log pθ(G(1:S, 1:T)) =
352
+
353
+ Ω log pθ(G(1:S, 1:T), Ω(1:S, 1:T))dΩ. As a result, we use variational infer-
354
+ ence (Jordan et al., 1999) to approximate the true posterior with a variational distribution
355
+ qλ(Ω(1:S,1:T)) with parameters λ. To do this, we maximize a lower bound on the log marginal
356
+ likelihood of the DBGs, referred to as the ELBO (evidence lower bound), defined as
357
+ LELBO(θ, λ) = Eqλ
358
+
359
+ log pθ(G1:S, 1:T , Ω1:S, 1:T )
360
+ qλ(Ω(1:S, 1:T))
361
+
362
+ ≤ log pθ(G(1:S, 1:T))
363
+ (8)
364
+ where Eqλ[·] denotes the expectation taken with respect to the variational distribution
365
+ qλ(Ω(1:S, 1:T)). By maximizing the ELBO with respect to the generative and variational
366
+ parameters θ and λ we train our generative model and perform Bayesian inference, respec-
367
+ tively.
368
+ Structured variational distribution
369
+ To ensure a good approximation to true posterior,
370
+ we retain the Markov properties of the node and community embeddings. This results in a
371
+ structured variational distribution (Hoffman and Blei, 2015; Saul and Jordan, 1995) which
372
+ factorizes following
373
+ qλ(Ω(1:S, 1:T)) =
374
+ S
375
+
376
+ s=1
377
+
378
+ qλα(α(s))
379
+ T
380
+
381
+ t=1
382
+
383
+ V�
384
+ n=1
385
+ qλφ(φ(s, t)
386
+ n
387
+ | φ(s, t−1)
388
+ n
389
+ )
390
+ K
391
+
392
+ k=1
393
+ qλψ(ψ(s, t)
394
+ k
395
+ | ψ(s, t−1)
396
+ k
397
+ )
398
+ E(s, t)
399
+
400
+ i=1
401
+ qλz(z(s, t)
402
+ i
403
+ | φ(s, t)
404
+ wi
405
+ , φ(s, t)
406
+ ci
407
+ )
408
+ ��
409
+ (9)
410
+ where each distribution is specified to mimic the structure of the generative model so that
411
+ qλα(α(s)) = Normal(µ(s)
412
+ λα, σ(s)
413
+ λα )
414
+ (10)
415
+ qλφ(φ(s, t)
416
+ n
417
+ |φ(s, t−1)
418
+ n
419
+ ) = Normal(µ(s, t)
420
+ λφ , σ(s, t)
421
+ λφ
422
+ )
423
+ {µ(s, t)
424
+ λφ , σ(s, t)
425
+ λφ
426
+ } = GRUλφ(φ(s, t−1)
427
+ n
428
+ ) (11)
429
+ qλψ(ψ(s, t)
430
+ k
431
+ |ψ(s, t−1)
432
+ n
433
+ ) = Normal(µ(s, t)
434
+ λψ , σ(s, t)
435
+ λψ )
436
+ {µ(s, t)
437
+ λψ , σ(s, t)
438
+ λψ } = GRUλψ(ψ(s, t−1)
439
+ k
440
+ ) (12)
441
+ qλz(z(s, t)
442
+ i
443
+ |φ(s, t)
444
+ wi
445
+ , φ(s, t)
446
+ ci
447
+ ) = Categorical(π(s, t)
448
+ λz
449
+ )
450
+ π(s, t)
451
+ λz
452
+ = MLPλz(φ(s, t)
453
+ wi
454
+ ⊙ φ(s, t)
455
+ ci
456
+ )
457
+ (13)
458
+ where GRUλj : RHj → RHj is a Lj-layered GRU for each j ∈ {φ, ψ} and MLPλz :
459
+ RHφ → RK is Lz-layered MLP. Furthermore, we use MLPs to initialize the GRUs with
460
+ the graph embeddings such that φ(s, 0)
461
+ n
462
+ = MLPλφ(α(s)) and ψ(s, 0)
463
+ k
464
+ = MLPλψ(α(s)) where
465
+ MLPλj : RNα → RNj. This allows for subject-specific variation to be incorporated in the
466
+ temporal dynamics of the node and community embeddings. Another difference with the
467
+ generative model is now the variational distribution of the community assignment qλz(·) in-
468
+ cludes information from neighboring nodes via c(s, t)
469
+ i
470
+ . Finally, we use the same NN from the
471
+ generative model to parameterize the variational distribution of the community assignment,
472
+ i.e., λz = θz. This not only spares additional trainable parameters for the variational dis-
473
+ tribution but also further links the variational parameters of qλ(·) to generative parameters
474
+ of pθ(·) resulting in more robust learning (Farnoosh and Ostadabbas, 2021). The set of pa-
475
+ rameters for the inference network is therefore λ = {λα = {µ(s)
476
+ λα, σ(s)
477
+ λα }S
478
+ s=1, λφ, λψ, λz = θz}.
479
+ 5
480
+
481
+ Campbell Spasov Toschi Li`o
482
+ Model
483
+ HCP
484
+ UKB
485
+ NLL (↓)
486
+ MSE (↓)
487
+ NLL (↓)
488
+ MSE (↓)
489
+ CMN
490
+ 5.999 ± 0.029 *
491
+ 0.050 ± 0.005 *
492
+ 5.861 ± 0.017 *
493
+ 0.050 ± 0.003 *
494
+ VGAE
495
+ 5.857 ± 0.017 *
496
+ 0.051 ± 0.002 *
497
+ 5.851 ± 0.027 *
498
+ 0.061 ± 0.002 *
499
+ OSBM
500
+ 5.808 ± 0.026 *
501
+ 0.051 ± 0.003 *
502
+ 5.726 ± 0.039 *
503
+ 0.052 ± 0.003 *
504
+ VGRAPH
505
+ 5.569 ± 0.046 *
506
+ 0.022 ± 0.004 *
507
+ 5.716 ± 0.037 *
508
+ 0.020 ± 0.003 *
509
+ VGRNN
510
+ 5.674 ± 0.034 *
511
+ 0.011 ± 0.003 *
512
+ 5.649 ± 0.035 *
513
+ 0.014 ± 0.002 *
514
+ ELSM
515
+ 5.924 ± 0.040 *
516
+ 0.081 ± 0.002 *
517
+ 5.809 ± 0.024 *
518
+ 0.115 ± 0.003 *
519
+ DBGDGM
520
+ 4.587 ± 0.045
521
+ 0.001 ± 0.002
522
+ 4.586 ± 0.084
523
+ 0.004 ± 0.003
524
+ AUROC (↑)
525
+ AP (↑)
526
+ AUROC (↑)
527
+ AP (↑)
528
+ CMN
529
+ 0.665 ± 0.007 *
530
+ 0.654 ± 0.006 *
531
+ 0.678 ± 0.004 *
532
+ 0.668 ± 0.005 *
533
+ VGAE
534
+ 0.661 ± 0.010 *
535
+ 0.674 ± 0.008 *
536
+ 0.688 ± 0.010 *
537
+ 0.607 ± 0.009 *
538
+ OSBM
539
+ 0.655 ± 0.027 *
540
+ 0.675 ± 0.024 *
541
+ 0.678 ± 0.032 *
542
+ 0.682 ± 0.033 *
543
+ VGRAPH
544
+ 0.689 ± 0.004 *
545
+ 0.682 ± 0.002 *
546
+ 0.664 ± 0.002 *
547
+ 0.621 ± 0.001 *
548
+ VGRNN
549
+ 0.689 ± 0.007 *
550
+ 0.698 ± 0.006 *
551
+ 0.698 ± 0.009 *
552
+ 0.696 ± 0.007 *
553
+ ELSM
554
+ 0.669 ± 0.004 *
555
+ 0.662 ± 0.002 *
556
+ 0.661 ± 0.001 *
557
+ 0.662 ± 0.002 *
558
+ DBGDGM
559
+ 0.768 ± 0.026
560
+ 0.732 ± 0.032
561
+ 0.786 ± 0.040
562
+ 0.762 ± 0.038
563
+ Table 1: Graph reconstruction (top) and dynamic link prediction (bottom) results (mean
564
+ ± standard deviation over 5 runs).
565
+ First and second-best results shown in bold and
566
+ underlined. Statistically significant difference from DBGDGM marked *.
567
+ Training objective
568
+ Substituting the variational distribution from (9) and the joint dis-
569
+ tribution from (7) into the ELBO (8) gives the full training objective which can be optimized
570
+ using stochastic gradient descent. We estimate all gradients using the reparameterization
571
+ trick (Kingma and Welling, 2013) and the Gumbel-softmax trick (Jang et al., 2016; Mad-
572
+ dison et al., 2016). We refer to Appendix B further details on the ELBO and learning the
573
+ parameters.
574
+ 4. Experiments
575
+ We evaluate DBGDGM against baseline models on the tasks of graph reconstruction, dy-
576
+ namic link prediction, and graph classification. Each task is designed to evaluate the use-
577
+ fulness of the learnt embeddings.
578
+ Datasets
579
+ We construct two multi-subject DBG datasets using publicly available fMRI
580
+ scans from the Human Connectome Project (HCP) (Van Essen et al., 2013) and UK Biobank
581
+ (UKB) (Sudlow et al., 2015). We randomly sample S = 300 subjects ensuring an even
582
+ male/female split.
583
+ To create DBGs, we parcellate each scan into V = 360 region-wise
584
+ BOLD signals using the Glasser atlas (Glasser et al., 2016), apply sliding-window Pearson
585
+ correlation (Calhoun et al., 2014) with a non-overlapping window of size and stride of 30,
586
+ and threshold the top 5% values of the lower triangle of each correlation matrix as connected
587
+ following Kim et al. (2021). The described procedure gives T = 16 graph snapshots for each
588
+ subject. Biological sex is taken as graph-level labels. We refer to Appendix C for further
589
+ details on each dataset.
590
+ 6
591
+
592
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
593
+ Baselines
594
+ We compare DBGDGM against a range of different unsupervised probabilistic
595
+ baseline models. For static baselines, we include variational graph autoencoder (VGAE) (Kipf
596
+ and Welling, 2016b), a deep generative version of the overlapping stochastic block model
597
+ (OSBM) (Mehta et al., 2019), and vGraph (VGRAPH) (Sun et al., 2019). For dynamic
598
+ baselines we include variational graph recurrent neural network (VGRNN) (Hajiramezanali
599
+ et al., 2019) and evolving latent space model (ELSM) (Gupta et al., 2019). For the graph re-
600
+ construction and link prediction tasks, we also include a heuristic baseline based on common
601
+ neighbors between nodes at previous snapshots (CMN). Finally, for graph classification we
602
+ include a support vector machine which takes as import static FC matrices (FCM) (Abra-
603
+ ham et al., 2017). Further details about baseline model can be found in Appendix D.
604
+ Implementation
605
+ We split both datasets into 80/10/10% training/validation/test data
606
+ along the time dimension. We train all models using the Adam optimizer (Kingma and
607
+ Ba, 2014) with decoupled weight decay (Loshchilov and Hutter, 2017). All baseline hy-
608
+ perparameters are set following their original implementations. For DBGDGM, choose the
609
+ number of communities K based on validation NLL. Finally, we train all models 5 times
610
+ using different random seeds. Implementation details can be found in Appendix E.
611
+ Evaluation metrics
612
+ For graph reconstruction, we evaluate the probability of the edges
613
+ in the test dataset using negative log-likelihood (NLL). We also compare the mean-squared
614
+ error (MSE) between actual and reconstructed node degree over all test snapshots. For dy-
615
+ namic link prediction, we sample an equal number of positive and negative edges in the test
616
+ dataset and measure performance using area under the receiver operator curve (AUROC)
617
+ and average precision (AP). Finally, for graph classification we predict the biological sex
618
+ for each subjects’ DBG and evaluate on accuracy. To predict graph labels, we average node
619
+ embeddings per subject for the baselines and the community embeddings for DBGDGM
620
+ before training a SVM using 10-fold cross-validation. For comparing models, we use the al-
621
+ most stochastic order (ASO) test (Dror et al., 2019) with significance level 0.05 and correct
622
+ for multiple comparisons (Bonferroni, 1936).
623
+ 5. Results
624
+ Dynamic graph reconstruction and link prediction.
625
+ We summarize the average test
626
+ results of all models over 5 runs using optimally tuned hyperparameters. From Table 1,
627
+ it is clear that DBGDGM outperforms baselines on both tasks. For graph reconstruction,
628
+ DBGDGM shows an 18% and 30% relative improvement in NLL on HCP and UKB, re-
629
+ spectively, compared to the second-best baselines. For dynamic link prediction, the relative
630
+ improvement is > 11% in AUCROC and > 5% in AP compared to second-best baselines de-
631
+ pending on dataset. We attribute these statistically significant gains to DBGDGM’s ability
632
+ to learn dynamic brain connectivity more effectively.
633
+ Graph classification
634
+ For graph classification, DBGDGM achieves ∼ 75% accuracy for
635
+ HCP and ∼ 73% for UKB (see Fig. 2). We outperform 4 baselines and show indiscernible
636
+ performance to VGAE and OSBM. To show the interpretative power of DBGDGM, we re-
637
+ run the graph classification experiment for HCP with the embeddings of each community
638
+ separately. We find a community which comprises brain regions in the Cingulo-opercular
639
+ 7
640
+
641
+ Campbell Spasov Toschi Li`o
642
+ Figure 2: Graph classification results (5 runs). Statistical significance from DBGDGM marked *.
643
+ Figure 3: Overlap between communities learned by DBGDGM and FCNs from Ji et al. (2019).
644
+ (CON) and the Somatomotor (SMN) networks, which achieves 68% accuracy. This finding
645
+ is in agreement with studies that show SMN is predictive of gender (Zhang et al., 2018).
646
+ Interpretability analysis
647
+ We use the learnt distributions over the nodes to calculate
648
+ overlap between each community and known functional connectivity networks (FCNs) from Ji
649
+ et al. (2019) (see Appendix F). Figure 3 shows that DBGDGM finds communities that sig-
650
+ nificantly overlap with existing FCNs. In particular, nodes in community 1 almost fully
651
+ corresponds to the visual network (VIS1 + VIS2), which is in keeping with the nature of
652
+ the experiment (the resting state data was acquired with eyes open and cross-hair fixation).
653
+ Remarkably, the second and third most homogeneous communities correspond to a large
654
+ degree to the DMN, which is well known to dominate resting state activity as a whole
655
+ (Yeshurun et al., 2021). The inspection of additional communities and respective predictive
656
+ power, along with their evolution in time at the region-of-interest granularity, has the poten-
657
+ tial to unveil the yet largely unexplored relationships between dynamic brain connectivity
658
+ changes and, e.g. psychiatric or neurological disorders (Heitmann and Breakspear, 2017).
659
+ 8
660
+
661
+ HCP
662
+ 100%
663
+ AUD
664
+ CON
665
+ DAN
666
+ 80%
667
+ DMN
668
+ FPN
669
+ LAN
670
+ ORA
671
+ 60%
672
+ PMM
673
+ SMN
674
+ VIS1
675
+ VIS2
676
+ 40%
677
+ VMM
678
+ 20%
679
+ 0%
680
+ 5
681
+ 4
682
+ 6
683
+ 7
684
+ 8
685
+ 9 10 11 12 13 14 15 16UKB
686
+ 100%
687
+ AUD
688
+ CON
689
+ DAN
690
+ 80%
691
+ DMN
692
+ FPN
693
+ LAN
694
+ ORA
695
+ 60%
696
+ PMM
697
+ SMN
698
+ VIS1
699
+ VIS2
700
+ 40%
701
+ VMM
702
+ 20%
703
+ 0%
704
+ 5
705
+ 3
706
+ 4
707
+ 6
708
+ 7
709
+ 8
710
+ 910 1112 13 14 15 16HCP
711
+ UKB
712
+ 90%
713
+ 90%
714
+ *
715
+ *
716
+ 85%
717
+ 80%
718
+ 80%
719
+ 75%
720
+ 70%
721
+ 2
722
+ Accura
723
+ 70%
724
+ 65%
725
+ 60%
726
+ 60%
727
+ 50% -
728
+ 55%
729
+ 50%
730
+ VGAE
731
+ OSBM
732
+ ELSM
733
+ VGRAPH
734
+ FCM
735
+ VGAE
736
+ OSBM
737
+ VGRNN
738
+ ELSM
739
+ DBGDGM
740
+ VGRAPH
741
+ DBGDGM
742
+ VGRNN
743
+ FCMDBGDGM: Dynamic Brain Graph Deep Generative Model
744
+ 6. Conclusion
745
+ We propose DBGDGM, a hierarchical DGM designed for unsupervised representing learning
746
+ of DBGs. Specifically, DBGDGM jointly learns graph-, community-, and node-level embed-
747
+ dings that outperform baselines on classification, interpretability, and dynamic link predic-
748
+ tion with statistical significance. Moreover, an analysis of the learnt dynamic community-
749
+ node distributions shows significant overlap with existing FCNs from neuroscience literature
750
+ further validating our method.
751
+ Acknowledgments
752
+ This work is supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1.
753
+ Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium
754
+ (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by
755
+ the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Re-
756
+ search; and by the McDonnell Center for Systems Neuroscience at Washington University.
757
+ References
758
+ Alexandre Abraham, Michael P Milham, Adriana Di Martino, R Cameron Craddock, Dim-
759
+ itris Samaras, Bertrand Thirion, and Gael Varoquaux. Deriving reproducible biomarkers
760
+ from multi-site resting-state data: An autism-based example. NeuroImage, 147:736–745,
761
+ 2017.
762
+ Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Distributed
763
+ representations of subgraphs. In 2017 IEEE International Conference on Data Mining
764
+ Workshops (ICDMW), pages 111–117. IEEE, 2017.
765
+ Fidel Alfaro-Almagro, Mark Jenkinson, Neal K Bangerter, Jesper LR Andersson, Ludovica
766
+ Griffanti, Gwena¨elle Douaud, Stamatios N Sotiropoulos, Saad Jbabdi, Moises Hernandez-
767
+ Fernandez, Emmanuel Vallee, et al. Image processing and quality control for the first
768
+ 10,000 brain imaging datasets from uk biobank. Neuroimage, 166:400–424, 2018.
769
+ Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B Erhardt, Tom Eichele, and Vince D
770
+ Calhoun.
771
+ Tracking whole-brain connectivity dynamics in the resting state.
772
+ Cerebral
773
+ cortex, 24(3):663–676, 2014.
774
+ Sonsoles Alonso Mart´ınez, Gustavo Deco, Gert J Ter Horst, and Joana Cabral. The dy-
775
+ namics of functional brain networks associated with depressive symptoms in a nonclinical
776
+ sample. Frontiers in neural circuits, 14:570583, 2020.
777
+ Albert-L´aszl´o Barab´asi and R´eka Albert. Emergence of scaling in random networks. science,
778
+ 286(5439):509–512, 1999.
779
+ Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del
780
+ R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8:3–62, 1936.
781
+ 9
782
+
783
+ Campbell Spasov Toschi Li`o
784
+ Vince D Calhoun, Robyn Miller, Godfrey Pearlson, and Tulay Adalı. The chronnectome:
785
+ time-varying connectivity networks as the next frontier in fmri data discovery. Neuron,
786
+ 84(2):262–274, 2014.
787
+ Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and Erik
788
+ Cambria. Learning community embedding with community detection and node embed-
789
+ ding on graphs. In Proceedings of the 2017 ACM on Conference on Information and
790
+ Knowledge Management, pages 377–386, 2017.
791
+ Simon Dahan, Logan ZJ Williams, Daniel Rueckert, and Emma C Robinson. Improving
792
+ phenotype prediction using long-range spatio-temporal dynamics of functional connec-
793
+ tivity. In International Workshop on Machine Learning in Clinical Neuroimaging, pages
794
+ 145–154. Springer, 2021.
795
+ Sophie Dautricourt, Julie Gonneaud, Brigitte Landeau, Vince D Calhoun, Robin de Flo-
796
+ res, G´eraldine Poisnel, Salma Bougacha, Valentin Ourry, Edelweiss Touron, Elizabeth
797
+ Kuhn, et al. Dynamic functional connectivity patterns associated with dementia risk.
798
+ Alzheimer’s Research & Therapy, 14(1):1–13, 2022.
799
+ Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance - how to properly compare
800
+ deep neural models. In Anna Korhonen, David R. Traum, and Llu´ıs M`arquez, editors,
801
+ Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
802
+ 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 2773–2785.
803
+ Association for Computational Linguistics, 2019.
804
+ Paul Erdos, Alfr´ed R´enyi, et al. On the evolution of random graphs. Publ. Math. Inst.
805
+ Hung. Acad. Sci, 5(1):17–60, 1960.
806
+ Farnaz Zamani Esfahlani, Youngheun Jo, Maria Grazia Puxeddu, Haily Merritt, Jacob C
807
+ Tanner, Sarah Greenwell, Riya Patel, Joshua Faskowitz, and Richard F Betzel. Modu-
808
+ larity maximization as a flexible and generic framework for brain network exploratory
809
+ analysis. Neuroimage, 244:118607, 2021.
810
+ Amirreza Farnoosh and Sarah Ostadabbas. Deep markov factor analysis: Towards con-
811
+ current temporal and spatial analysis of fmri data.
812
+ Advances in Neural Information
813
+ Processing Systems, 34:17876–17888, 2021.
814
+ Zheng Gao, Gang Fu, Chunping Ouyang, Satoshi Tsutsui, Xiaozhong Liu, Jeremy Yang,
815
+ Christopher Gessner, Brian Foote, David Wild, Ying Ding, et al. edge2vec: Represen-
816
+ tation learning using edge semantics for biomedical knowledge discovery. BMC bioinfor-
817
+ matics, 20(1):1–15, 2019.
818
+ Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson, Timothy S Coal-
819
+ son, Bruce Fischl, Jesper L Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster,
820
+ Jonathan R Polimeni, et al. The minimal preprocessing pipelines for the human connec-
821
+ tome project. Neuroimage, 80:105–124, 2013.
822
+ Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell,
823
+ Essa Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson,
824
+ 10
825
+
826
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
827
+ et al. A multi-modal parcellation of human cerebral cortex. Nature, 536(7615):171–178,
828
+ 2016.
829
+ Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and perfor-
830
+ mance: A survey. Knowledge-Based Systems, 151:78–94, 2018.
831
+ Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method
832
+ for dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.
833
+ Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing net-
834
+ work dynamics using dynamic graph representation learning. Knowledge-Based Systems,
835
+ 187:104816, 2020.
836
+ Tony Gracious, Shubham Gupta, Arun Kanthali, Rui M Castro, and Ambedkar Dukkipati.
837
+ Neural latent space model for dynamic networks and temporal knowledge graphs. In
838
+ Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4054–
839
+ 4062, 2021.
840
+ Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
841
+ Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
842
+ and data mining, pages 855–864, 2016.
843
+ Shubham Gupta, Gaurav Sharma, and Ambedkar Dukkipati. A generative model for dy-
844
+ namic networks with applications. In Proceedings of the AAAI Conference on Artificial
845
+ Intelligence, volume 33, pages 7842–7849, 2019.
846
+ Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan
847
+ Zhou, and Xiaoning Qian. Variational graph recurrent neural networks. Advances in
848
+ neural information processing systems, 32, 2019.
849
+ William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intel-
850
+ ligence and Machine Learning, 14(3):1–159, 2020.
851
+ Charles R Harris, K Jarrod Millman, St´efan J van der Walt, Ralf Gommers, Pauli Vir-
852
+ tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
853
+ Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H van Kerkwijk, Matthew
854
+ Brett, Allan Haldane, Jaime Fern´andez del R´ıo, Mark Wiebe, Pearu Peterson, Pierre
855
+ G´erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
856
+ Christoph Gohlke, and Travis E Oliphant.
857
+ Array programming with NumPy.
858
+ Na-
859
+ ture, 585(7825):357–362, 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2649-2. URL
860
+ https://doi.org/10.1038/s41586-020-2649-2.
861
+ S Heitmann and M Breakspear. Putting the ‘dynamic’back into dynamic functional con-
862
+ nectivity, 181313, 2017.
863
+ Fabian Hirsch and Afra Wohlschlaeger. Graph analysis of nonlinear fmri connectivity dy-
864
+ namics reveals distinct brain network configurations for integrative and segregated infor-
865
+ mation processing. Nonlinear Dynamics, 108(4):4287–4299, 2022.
866
+ 11
867
+
868
+ Campbell Spasov Toschi Li`o
869
+ Matthew D Hoffman and David M Blei. Structured stochastic variational inference. In
870
+ Artificial Intelligence and Statistics, pages 361–369, 2015.
871
+ Scott A Huettel, Allen W Song, Gregory McCarthy, et al. Functional magnetic resonance
872
+ imaging, volume 1. Sinauer Associates Sunderland, 2004.
873
+ Eric Jang, Shixiang Gu, and Ben Poole.
874
+ Categorical reparameterization with gumbel-
875
+ softmax. arXiv preprint arXiv:1611.01144, 2016.
876
+ Jie Lisa Ji, Marjolein Spronk, Kaustubh Kulkarni, Grega Repovˇs, Alan Anticevic, and
877
+ Michael W Cole.
878
+ Mapping the human brain’s cortical-subcortical functional network
879
+ organization. Neuroimage, 185:35–57, 2019.
880
+ Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul.
881
+ An
882
+ introduction to variational methods for graphical models. Machine learning, 37(2):183–
883
+ 233, 1999.
884
+ Rayyan Ahmad Khan, Muhammad Umer Anwaar, Omran Kaddah, Zhiwei Han, and Martin
885
+ Kleinsteuber. Unsupervised learning of joint embeddings for node representation and
886
+ community detection. In Joint European Conference on Machine Learning and Knowledge
887
+ Discovery in Databases, pages 19–35. Springer, 2021.
888
+ Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation
889
+ of brain connectome with spatio-temporal attention. Advances in Neural Information
890
+ Processing Systems, 34:4314–4327, 2021.
891
+ Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
892
+ preprint arXiv:1412.6980, 2014.
893
+ Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
894
+ arXiv:1312.6114, 2013.
895
+ Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
896
+ networks. arXiv preprint arXiv:1609.02907, 2016a.
897
+ Thomas N Kipf and Max Welling.
898
+ Variational graph auto-encoders.
899
+ arXiv preprint
900
+ arXiv:1611.07308, 2016b.
901
+ Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
902
+ arXiv:1711.05101, 2017.
903
+ Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A contin-
904
+ uous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.
905
+ Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec: Scalable dynamic
906
+ network embedding.
907
+ In 2018 IEEE international conference on big data (Big Data),
908
+ pages 3762–3765. IEEE, 2018.
909
+ L-E Martinet, MA Kramer, W Viles, LN Perkins, E Spencer, CJ Chu, SS Cash, and ED Ko-
910
+ laczyk. Robust dynamic community detection with applications to human brain func-
911
+ tional networks. Nature communications, 11(1):1–13, 2020.
912
+ 12
913
+
914
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
915
+ Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph
916
+ neural networks. In International Conference on Machine Learning, pages 4466–4474.
917
+ PMLR, 2019.
918
+ Kurt Miller, Michael Jordan, and Thomas Griffiths. Nonparametric latent feature models
919
+ for link prediction. Advances in neural information processing systems, 22, 2009.
920
+ Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen,
921
+ Yang Liu, and Shantanu Jaiswal.
922
+ graph2vec: Learning distributed representations of
923
+ graphs. arXiv preprint arXiv:1707.05005, 2017.
924
+ Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for stochastic block-
925
+ structures. Journal of the American statistical association, 96(455):1077–1087, 2001.
926
+ Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
927
+ Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph
928
+ convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on
929
+ Artificial Intelligence, volume 34, pages 5363–5370, 2020.
930
+ Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
931
+ Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
932
+ perative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703,
933
+ 2019.
934
+ Dragana M Pavlovi´c, Bryan RL Guillaume, Soroosh Afyouni, and Thomas E Nichols. Multi-
935
+ subject stochastic blockmodels with mixed effects for adaptive analysis of individual dif-
936
+ ferences in human brain network cluster structure. Statistica Neerlandica, 74(3):363–396,
937
+ 2020.
938
+ Fabian Pedregosa, Ga¨el Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
939
+ Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
940
+ Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learn-
941
+ ing research, 12:2825–2830, 2011.
942
+ Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany.
943
+ Towards
944
+ better evaluation for dynamic link prediction. arXiv preprint arXiv:2207.10128, 2022.
945
+ Python Core Team.
946
+ Python: A dynamic, open source programming language.
947
+ Python
948
+ Software Foundation, 2019. URL https://www.python.org/. Python version 3.7.
949
+ Gal Raz, Alexandra Touroutoglou, Christine Wilson-Mendenhall, Gadi Gilam, Tamar Lin,
950
+ Tal Gonen, Yael Jacob, Shir Atzil, Roee Admon, Maya Bleich-Cohen, et al. Functional
951
+ connectivity dynamics during film viewing reveal common networks for different emo-
952
+ tional experiences. Cognitive, Affective, & Behavioral Neuroscience, 16(4):709–723, 2016.
953
+ Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
954
+ and approximate inference in deep generative models. In International conference on
955
+ machine learning, pages 1278–1286. PMLR, 2014.
956
+ 13
957
+
958
+ Campbell Spasov Toschi Li`o
959
+ Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
960
+ mathematical statistics, pages 400–407, 1951.
961
+ David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
962
+ by back-propagating errors. nature, 323(6088):533–536, 1986.
963
+ Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
964
+ representation learning on dynamic graphs via self-attention networks. In Proceedings of
965
+ the 13th international conference on web search and data mining, pages 519–527, 2020.
966
+ Arindam Sarkar, Nikhil Mehta, and Piyush Rai. Graph representation learning via ladder
967
+ gamma variational autoencoders. In Proceedings of the AAAI Conference on Artificial
968
+ Intelligence, volume 34, pages 5604–5611, 2020.
969
+ Lawrence Saul and Michael Jordan. Exploiting tractable substructures in intractable net-
970
+ works. Advances in neural information processing systems, 8, 1995.
971
+ Joakim Skarding, Matthew Hellmich, Bogdan Gabrys, and Katarzyna Musial. A robust
972
+ comparative analysis of graph neural networks on dynamic link prediction. IEEE Access,
973
+ 2022.
974
+ Arthur PC Spencer and Marc Goodfellow. Using deep clustering to improve fmri dynamic
975
+ functional connectivity analysis. NeuroImage, 257:119288, 2022.
976
+ Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh,
977
+ Paul Downey, et al. Uk biobank: an open access resource for identifying the causes of a
978
+ wide range of complex diseases of middle and old age. Plos med, 12(3):e1001779, 2015.
979
+ Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang. vgraph: A
980
+ generative model for joint community detection and node representation learning. Ad-
981
+ vances in Neural Information Processing Systems, 32, 2019.
982
+ Chee-Ming Ting, S Balqis Samdin, Meini Tang, and Hernando Ombao. Detecting dynamic
983
+ community structure in functional brain networks across individuals: a multilayer ap-
984
+ proach. IEEE Transactions on Medical Imaging, 40(2):468–480, 2020.
985
+ Dennis Ulmer, Christian Hardmeier, and Jes Frellsen. deep-significance-easy and mean-
986
+ ingful statistical significance testing in the age of neural networks.
987
+ arXiv preprint
988
+ arXiv:2204.06815, 2022.
989
+ David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub,
990
+ Kamil Ugurbil, Wu-Minn HCP Consortium, et al.
991
+ The wu-minn human connectome
992
+ project: an overview. Neuroimage, 80:62–79, 2013.
993
+ Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community
994
+ preserving network embedding. In Thirty-first AAAI conference on artificial intelligence,
995
+ 2017.
996
+ Yaara Yeshurun, Mai Nguyen, and Uri Hasson.
997
+ The default mode network: where the
998
+ idiosyncratic self meets the shared social world. Nature Reviews Neuroscience, 22(3):
999
+ 181–192, 2021.
1000
+ 14
1001
+
1002
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
1003
+ Qingbao Yu, Erik B. Erhardt, Jing Sui, Yuhui Du, Hao He, Devon Hjelm, Mustafa S.
1004
+ Cetin, Srinivas Rachakonda, Robyn L. Miller, Godfrey Pearlson, and Vince D. Calhoun.
1005
+ Assessing dynamic brain graphs of time-varying connectivity in fmri data: Application
1006
+ to healthy controls and patients with schizophrenia.
1007
+ NeuroImage, 107:345–355, 2015.
1008
+ ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2014.12.020. URL https:
1009
+ //www.sciencedirect.com/science/article/pii/S105381191401012X.
1010
+ Chao Zhang, Chase C Dougherty, Stefi A Baum, Tonya White, and Andrew M Michael.
1011
+ Functional connectivity predicts gender: Evidence for gender differences in resting brain
1012
+ connectivity. Human brain mapping, 39(4):1765–1776, 2018.
1013
+ Wenbin Zhang, Liming Zhang, Dieter Pfoser, and Liang Zhao. Disentangled dynamic graph
1014
+ deep generation. In Proceedings of the 2021 SIAM International Conference on Data
1015
+ Mining (SDM), pages 738–746. SIAM, 2021.
1016
+ Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang.
1017
+ Dynamic network
1018
+ embedding by modeling triadic closure process. In Proceedings of the AAAI conference
1019
+ on artificial intelligence, volume 32, 2018.
1020
+ Appendix A. Related work
1021
+ Dynamic graph generative models
1022
+ Classic generative models for graph-structured
1023
+ data are designed for capturing a small set of specific properties (e.g., degree distribution,
1024
+ eigenvalues, modularity) of static graphs (Erdos et al., 1960; Barab´asi and Albert, 1999;
1025
+ Nowicki and Snijders, 2001). DGMs that exploit the learning capacity of NNs are able to
1026
+ learn more expressive graph distributions (Mehta et al., 2019; Kipf and Welling, 2016b;
1027
+ Sarkar et al., 2020). Recent DGMs for dynamic graphs are majority VAE-based (Kingma
1028
+ and Welling, 2013) and cannot learn community representations (Hajiramezanali et al.,
1029
+ 2019; Gracious et al., 2021; Zhang et al., 2021). The few that do, are designed for static
1030
+ graphs (Sun et al., 2019; Khan et al., 2021; Cavallari et al., 2017).
1031
+ Learning representations of dynamic brain graphs
1032
+ Unsupervised representation
1033
+ learning methods for DBGs tend to focus on clustering DBGs into a finite number of con-
1034
+ nectivity patterns that recur over time (Allen et al., 2014; Spencer and Goodfellow, 2022).
1035
+ Community detection is another commonly used method but mainly applied to static brain
1036
+ graphs (Pavlovi´c et al., 2020; Esfahlani et al., 2021). Extensions to DBGs are typically not
1037
+ end-to-end trainable and do not scale to multi-subject datasets (Ting et al., 2020; Martinet
1038
+ et al., 2020). Recent deep learning-based methods are predominately GNN-based (Kim
1039
+ et al., 2021; Dahan et al., 2021). Unlike DBGDGM, these methods are supervised and
1040
+ focus on learning deterministic node- and graph-level representations.
1041
+ Appendix B. Method
1042
+ B.1. Generative model
1043
+ Algorithm 1 summarizes the generative model for DBGDGM.
1044
+ 15
1045
+
1046
+ Campbell Spasov Toschi Li`o
1047
+ Algorithm 1: DBGDGM generative model
1048
+ Input: {E(s, t)}S, T
1049
+ s, t=1
1050
+ Hyperparameters: K, Hα, Hψ, Hφ, Lψ, Lφ, Lz, σ2
1051
+ ψ, σ2
1052
+ φ,
1053
+ Initialize: D ← ∅
1054
+ for s ← 1 to S do
1055
+ α(s) ∼ p(α(s)) = Normal(0Hα, IHα)
1056
+ for t ← 1 to T do
1057
+ for k ← 1 to K do
1058
+ ψ(s,t)
1059
+ k
1060
+ ∼ p(ψ(s, t)
1061
+ k
1062
+ |ψ(s, t−1)
1063
+ k
1064
+ ) = Normal(ψ(s, t−1)
1065
+ k
1066
+ , σψIHψ)
1067
+ end
1068
+ for n ← 1 to V do
1069
+ φ(s,t)
1070
+ n
1071
+ ∼ p(φ(s, t)
1072
+ n
1073
+ |φ(s, t−1)
1074
+ n
1075
+ ) = Normal(φ(s, t−1)
1076
+ k
1077
+ , σφIHφ)
1078
+ end
1079
+ ˜E(s, t) ← ∅
1080
+ for i ← 1 to |E(s, t)| do
1081
+ z(s, t)
1082
+ i
1083
+ ∼ p(z(s, t)
1084
+ i
1085
+ |w(s, t)
1086
+ i
1087
+ ) = Categorical(fθπ(φ(s, t)
1088
+ wi
1089
+ ))
1090
+ c(s, t)
1091
+ i
1092
+ ∼ p(c(s, t)
1093
+ i
1094
+ |z(s, t)
1095
+ i
1096
+ ) = Categorical(fθπ(ψ(s, t)
1097
+ zi
1098
+ ))
1099
+ ˜E(s, t) ← ˜E(s, t) ∪ {(w(s, t)
1100
+ i
1101
+ , c(s, t)
1102
+ i
1103
+ )}
1104
+ end
1105
+ G(s, t) ← (V, ˜E(s, t))
1106
+ D ← D ∪ {G(s, t)}
1107
+ end
1108
+ end
1109
+ B.2. Training objective and learning the parameters
1110
+ Substituting the variational distribution from (9) and the joint distribution from (7) into
1111
+ the ELBO (8) gives the full training objective defined as
1112
+ LELBO(θ, λ) =
1113
+ S
1114
+
1115
+ s=1
1116
+ T
1117
+
1118
+ t=1
1119
+ E(s, t)
1120
+
1121
+ i=1
1122
+
1123
+ Eqλz qλψ
1124
+
1125
+ log pθ(c(s, t)
1126
+ i
1127
+ |w(s, t)
1128
+ i
1129
+ , ψ(s, t)
1130
+ zi
1131
+ )
1132
+
1133
+ − Eqλφ
1134
+
1135
+ DKL[qλz(z(s, t)
1136
+ i
1137
+ | φ(s, t)
1138
+ wi
1139
+ , φ(s, t)
1140
+ ci
1141
+ )||pθz(z(s, t)
1142
+ i
1143
+ | φ(s, t)
1144
+ wi
1145
+ )]
1146
+ ��
1147
+
1148
+ S
1149
+
1150
+ s=1
1151
+
1152
+ DKL[qλα(α(s))||pθα(α(s))]
1153
+ T
1154
+
1155
+ t=1
1156
+
1157
+ (14)
1158
+
1159
+ V
1160
+
1161
+ n=1
1162
+ Eqλφ
1163
+
1164
+ DKL[qλφ(φ(s, t)
1165
+ n
1166
+ | φ(s, t−1)
1167
+ n
1168
+ )||pθφ(φ(s, t)
1169
+ n
1170
+ | φ(s, t−1)
1171
+ n
1172
+ )]
1173
+
1174
+
1175
+ K
1176
+
1177
+ k=1
1178
+ Eqλψ
1179
+
1180
+ DKL[qλψ(ψ(s, t)
1181
+ k
1182
+ | ψ(s, t−1)
1183
+ k
1184
+ )||pθψ(ψ(s, t)
1185
+ k
1186
+ | ψ(s, t−1)
1187
+ k
1188
+ )]
1189
+ ���
1190
+ 16
1191
+
1192
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
1193
+ where DKL[·||·] denotes the Kullback-Leibler (KL) divergence. By maximizing (14), the
1194
+ parameters (θ, λ) of the generative model and inference network can be jointly learnt.
1195
+ Learning the parameters
1196
+ In order to use efficient stochastic gradient-based optimiza-
1197
+ tion techniques (Robbins and Monro, 1951) for learning (θ, λ), the gradient of the ELBO
1198
+ has to be estimated. The main challenge of this is obtaining gradients of the variables under
1199
+ expectation, i.e., Eq∗[·], since they are sampled. To allow gradients to flow through these
1200
+ sampling steps, we use the reparameterization trick (Kingma and Welling, 2013; Rezende
1201
+ et al., 2014) for the normal distributions and the Gumbel-softmax trick (Jang et al., 2016;
1202
+ Maddison et al., 2016) for the categorical distributions. All gradients are now easily com-
1203
+ puted via back-propagation (Rumelhart et al., 1986) making DBGDGM end-to-end train-
1204
+ able. In addition, we analytically calculate the KL terms for both normal and categorical
1205
+ distributions, which leads to lower variance gradient estimates and faster training as com-
1206
+ pared to noisy Monte Carlo estimates.
1207
+ Appendix C. Datasets
1208
+ To create multi-subject DBG datasets, we use real fMRI scans from the UK Biobank (Sud-
1209
+ low et al., 2015) and Human Connectome Project (Van Essen et al., 2013). Both data
1210
+ sources represent well-characterized population cohorts that have undergone standardized
1211
+ neuroimaging and clinical assessments to ensure high quality.
1212
+ UK Biobank1 (UKB)
1213
+ The UKB dataset consists of S = 300 resting-rate fMRI scans
1214
+ (i.e. 3D image of the brain taken over consecutive timepoints) randomly sampled from the
1215
+ v1.3 January 2017 release ensuring an equal male/female split (i.e. sex balanced) with an
1216
+ age range of 44 − 57 years. The total number of images for each scan is 490 timepoints (6
1217
+ minutes duration with a repetition time of 0.74s). The dataset is minimally preprocessed
1218
+ following the pipeline described in Alfaro-Almagro et al. (2018).
1219
+ Human Connectome Project2 (HCP)
1220
+ The HCP dataset similarly consists of S = 300
1221
+ sex balanced resting-state fMRI scans randomly sampled from the S1200 release with an
1222
+ age range of 22 − 35 years. Only images from the first scanning-session using left-right
1223
+ phase encoding are used. The total number of images for each scan is 1, 200 timepoints (15
1224
+ minutes duration with a repetition time of 0.72s). The dataset is minimally preprocessed
1225
+ following the pipeline described in Glasser et al. (2013)
1226
+ Further preprocessing
1227
+ The fMRI scans from each dataset are further preprocessed to
1228
+ create DBGs. Firstly, each scan is transformed into a multivariate timeseries of BOLD
1229
+ signals using the Glasser atlas (Glasser et al., 2016) to average voxels within V = 360 brain
1230
+ regions. Next, to ensure comparability with UKB, we truncate the length of HCP timeseries
1231
+ to 490 timepoints. Following the commonly used sliding-window method (Calhoun et al.,
1232
+ 2014), we use Pearson correlation to calculate FC matrices within non-overlapping windows
1233
+ of length 1 < W ≤ 490 along the temporal dimension. At every window, we create an
1234
+ edge set of a unweighted and undirected graph with no self-edges by thresholding the top
1235
+ 1 ≤ ϵ < 100 percentile values of the lower triangle of the FC matrix (excluding the principal
1236
+ 1. https://www.ukbiobank.ac.uk
1237
+ 2. https://www.humanconnectome.org
1238
+ 17
1239
+
1240
+ Campbell Spasov Toschi Li`o
1241
+ diagonal) as connected following Kim et al. (2021). For both datasets, we choose W = 30
1242
+ and ϵ = 5 resulting in T = ⌊490/30⌋ = 16 graph snapshots each with E(s, t) = ⌊(360(360 −
1243
+ 1)/2)(5/100)⌋ = 3, 231 edges.
1244
+ Appendix D. Baselines
1245
+ We compare DBGDGM against a range of static and dynamic unsupervised graph repre-
1246
+ sentation learning baseline models, all with publicly available code. In particular, we focus
1247
+ on baselines that are generative and can quantify uncertainty. We leave comparisons to
1248
+ popular deterministic baselines such as DynamicTriad (Zhou et al., 2018), DySAT (Sankar
1249
+ et al., 2020), and DynNode2Vec (Mahdavi et al., 2018) for future work. Furthermore, since
1250
+ all of the baselines were originally designed to model large single-graph datasets, we had to
1251
+ adapt each implementation to work with smaller multi-graph datasets.
1252
+ Variational graph auto encoder3 (VGAE) (Kipf and Welling, 2016b)
1253
+ An extension
1254
+ of the variational autoencoder (Kingma and Welling, 2013) (VAE) for graph structured
1255
+ data. Specifically, VGAE uses a graph convolutional network (GCN) (Kipf and Welling,
1256
+ 2016a) to learn a distribution over node embeddings. Originally designed for static graphs,
1257
+ we train VGAE on each dynamic graph snapshot independently.
1258
+ Overlapping stochastic block model4 (OSBM) (Mehta et al., 2019)
1259
+ A deep gener-
1260
+ ative version of the overlapping stochastic block model (Miller et al., 2009). In particular,
1261
+ OSBM places a stick-breaking prior over the number of communities which allows the model
1262
+ to automatically infer the optimal number of communities from the data during training.
1263
+ Similar to VGAE, OSBM uses a GCN to parameterize the distribution over node embed-
1264
+ dings and is designed for static graphs.
1265
+ Variational graph RNN5 (VGRNN) (Hajiramezanali et al., 2019)
1266
+ An extension of
1267
+ VGAE for dynamic graphs. Using a modified graph RNN architecture, VGRNN is able
1268
+ to learn dependencies between and within changing graph topology over time.
1269
+ Similar
1270
+ to DBGDGM, the prior distribution over node embeddings is parameterized using hidden
1271
+ states from previous timepoints.
1272
+ Evolving latent space model6 (ELSM) (Gupta et al., 2019)
1273
+ A generative model for
1274
+ dynamic graphs that learns node embeddings and performs community detection. In par-
1275
+ ticular, node embeddings are initially sampled from a Gaussian mixture model over com-
1276
+ munities and then evolved over time using an LSTM. Unlike the previous baselines, ELSM
1277
+ does not use a GNNs to parameterize model distributions.
1278
+ vGraph7 (VGRAPH) (Sun et al., 2019)
1279
+ Similar to DBGDGM, VGRAPH simultane-
1280
+ ously learns node embeddings and community assignments by modeling nodes as being
1281
+ 3. https://github.com/tkipf/gae
1282
+ 4. https://github.com/nikhil-dce/SBM-meet-GNN
1283
+ 5. https://github.com/VGraphRNN/VGRNN
1284
+ 6. https://github.com/sh-gupta/ELSM
1285
+ 7. https://github.com/fanyun-sun/vGraph
1286
+ 18
1287
+
1288
+ DBGDGM: Dynamic Brain Graph Deep Generative Model
1289
+ generated from a mixture of communities. The generative process of VGRAPH also re-
1290
+ lies on edge information. Since VGRAPH only models static graphs, we train it on each
1291
+ dynamic graph snapshot independently.
1292
+ Common neighbors (CMN)
1293
+ In light of recent work demonstrating that heuristic meth-
1294
+ ods are able to outperform deep-learning based models on dynamic link prediction tasks (Skard-
1295
+ ing et al., 2022; Poursafaei et al., 2022), we include our own heuristic-based generative model
1296
+ baseline. More formally, let π(t)
1297
+ vi ∈ [0, 1]V denote a vector of Jaccard index scores for node
1298
+ v(t)
1299
+ i
1300
+ ∈ V with all other nodes v(t)
1301
+ j
1302
+ ∈ V for i ̸= j. The Jaccard index between two nodes
1303
+ v(t)
1304
+ i , v(t)
1305
+ j
1306
+ ∈ V is defined |Γ(v(t)
1307
+ i ) ∩ Γ(v(t)
1308
+ j )|/|Γ(v(t)
1309
+ i ) ∪ Γ(v(t)
1310
+ j )| where Γ(v(t)
1311
+ i ) denotes the set of
1312
+ neighbors of node v(t)
1313
+ i . We define the probability of node v(t)
1314
+ i
1315
+ having a linked neighbor v(t)
1316
+ j
1317
+ at snapshot t as
1318
+ p(v(t)
1319
+ j |v(t)
1320
+ i ) = Categorical(π(t−1)
1321
+ vi
1322
+ ).
1323
+ (15)
1324
+ This simple generative model captures the intuition that nodes are more likely to form links
1325
+ if they had common neighbors in a previous snapshot.
1326
+ Appendix E. Implementation details
1327
+ Software and hardware
1328
+ All models are developed in Python 3.7 (Python Core Team,
1329
+ 2019) using scikit-learn 1.1.1 (Pedregosa et al., 2011), PyTorch(Paszke et al., 2019), and
1330
+ numpy 1.1.1 (Harris et al., 2020). Statistical significance tests are carried out using deep-
1331
+ significance 1.1.1 (Ulmer et al., 2022). Experiments are performed on a Linux server (Debian
1332
+ 5.10.113-1) with a NVIDIA RTX A6000 GPU with 48 GB memory and 16 CPUs.
1333
+ Training and testing
1334
+ All baselines are implemented as per the original paper and/or
1335
+ code repository given in Appendix D. For the static graph baselines VGAE, OSBM, VGRAPH
1336
+ we train on each snapshot independently and use the node and/or community embeddings
1337
+ at the last training snapshot to make predictions.
1338
+ Hyperparameter optimization
1339
+ We use model and training hyperparameter values de-
1340
+ scribed in the original implementation of each baseline as a starting point for tuning on
1341
+ the validation dataset. Since searching for optional values for each hyperparameter con-
1342
+ figuration was outside the scope of this paper, we focus mainly on tuning the dimensions
1343
+ of hidden layers. For DBGDGM, we use a learning rate of 1e-4 with a weight decay of
1344
+ 0. We choose the number of communities K ∈ {3, 6, 8, 12, 16, 24} based on lowest average
1345
+ validation NLL (see Figure 4). In the generative model, we fix the temporal smoothness
1346
+ hyperparameters σφ = σψ = 0.01. In the inference network, we fix the number of layers
1347
+ for all NNs to Lφ = Lψ = Lz = 1. For the Gumbel-softmax reparameterization trick we
1348
+ anneal the softmax temperature parameter starting from a maximum of 1 to a minimum
1349
+ of 0.05 at a rate of 3e-4. Finally, we train all models for 1, 000 epochs using early-stopping
1350
+ with a patience of 15 based on the lowest validation NLL.
1351
+ Appendix F. Interpretability analysis
1352
+ Using DBGDGM, for each community we average the node distributions across subjects
1353
+ and timepoints and take the top 10% most probable nodes. We use these high probability
1354
+ 19
1355
+
1356
+ Campbell Spasov Toschi Li`o
1357
+ 3
1358
+ 6
1359
+ 8
1360
+ 12
1361
+ 16
1362
+ 24
1363
+ Number of communities
1364
+ 4.45
1365
+ 4.50
1366
+ 4.55
1367
+ 4.60
1368
+ 4.65
1369
+ 4.70
1370
+ 4.75
1371
+ 4.80
1372
+ Validation nll
1373
+ hcp
1374
+ 3
1375
+ 6
1376
+ 8
1377
+ 12
1378
+ 16
1379
+ 24
1380
+ Number of communities
1381
+ 4.35
1382
+ 4.40
1383
+ 4.45
1384
+ 4.50
1385
+ 4.55
1386
+ 4.60
1387
+ 4.65
1388
+ 4.70
1389
+ 4.75
1390
+ Validation nll
1391
+ ukb
1392
+ Figure 4: Elbow plot for finding the optimal number of communities K.
1393
+ nodes to calculate overlap between each community and the brain regions that comprise
1394
+ each functional network from Ji et al. (2019). More specifically, the coloured proportions in
1395
+ Figure 3 represent the proportion of top nodes in each community, which belong to a given
1396
+ functional network.
1397
+ Abbreviation
1398
+ Functional network
1399
+ AUD
1400
+ Auditory network
1401
+ CON
1402
+ Cingulo-opercular network
1403
+ DAN
1404
+ Dorsal-attention network
1405
+ DMN
1406
+ Default mode network
1407
+ FPN
1408
+ Frontoparietal network
1409
+ LAN
1410
+ Language network
1411
+ ORA
1412
+ Orbito-affective network
1413
+ PMM
1414
+ Posterior-multimodal network
1415
+ SMN
1416
+ Somatomotor network
1417
+ VIS1
1418
+ Visual network 1
1419
+ VIS2
1420
+ Visual network 2
1421
+ VMM
1422
+ Ventral-multimodal network
1423
+ Table 2: Functional connectivity networks (FCNs) from Ji et al. (2019)
1424
+ 20
1425
+
_dFIT4oBgHgl3EQf9yvA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff